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Chapter 1

Introduction

The analysis of reinforced concrete structures presents numerous challenges to the struc-

tural analyst. Essential prerequisites to performing effective calculations of reinforced

concrete behavior include

1. Constitutive relations that accurately model the damage incurred by the concrete

during crushing and cracking.

2. Robust theories and numerical implementations that can capture strain softening.

3. An efficient methodology to model reinforcement.

In previous studies, the senior author has investigated various aspects of devel-

oping computational methods for reinforced concrete plate and shell structures. In [221

continuum based plate and shell theories were introduced for finite element modeling which



permitted differing constitutive behavior at different laminae to facilitate representation of

rcinforcement through the thickness. In [11] a comprehensive study of constitutive mod-

els and stress-point integration algorithms was performed. Elastoplastic and viscoplastic

theories were presented and isotropic damage mechanisms included. The principles upon

which integration algorithms could be designed were thoroughly discussed in the context

of the convex cutting plane method, a widely used procedure in optimization theory [141,

and application was made to the cap model which has been used for modeling soils and

concrete. In [9] the state-of-the-art in finite element modeling techniques for reinforced

concrete plate and shell structures was assessed and suggestions for further research work

were made. Several areas delineated as important in [9] have been pursued in this study,

and elsewhere (e.g., L. R. Herrmann and colleagues are performing research on the bond-

slip problem under NCEL support[5]). A summary of this report follows.

In Chapter 2 we consider constitutive models and algorithms for three-dimensional

reinforced concrete behavior. We begin in Section 2.1 with a brief discussion of explicit

and implicit methods for integrating constitutive models. The cutting plane algorithm

described in [111 may be classified as an explicit procedure, which entails advantages i

certain circumstances, and disadvantages in others. The most proment implicit method,

namely, the closest point projection algorithm, is described in Section 2.1.1 within the

framework of a general elastoplastic theory previously considered in [11]. This algorithm

overcomes numerical stability limitations in the viscoplastic case, at the price of somewhat
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more involved calculations during each iteration. Viscoplastic regularization has been pro-

posed as a useful device for circumventing difficulties induced by strain softening. which

occurs during concrete crushing and cracking. Consequently. the closest point projection

algorithm may prove a useful technique in the development of algorithms for reinforced

concrete structures subjected to severe loading environments.

In Section 2.2 we introduce a class of rate-independent anisotropic elastic damage

models. Previously, we investigated a simple class of isotropic damage models [11]. but

the hypothesis of isotropy precludes adequate representation of, for example, cracking,

which clearly induces anisotropy. The theories described herein, studied previously by

Simo [20] in another context, assume that the elastic moduli are damage parameters and

evolve according to a damage evolution law. The failure surface automatically induces

an anisotropic damage mechanism. Likewise, the theory accomodates initially undamaged

anisotropic elastic moduli, which are necessary for representing even the linear elastic

response of reinforced concrete when viewed as a homogeneous continuum.

In Section 2.3 we present algorithms for the rate-independent anisotropic elastic

damage model. Fully implicit algorithms are proposed in Section 2.3.1. but it is concluded

that these methods entail calculations at the stress-point level which are too intensive

for practical use in large-scale finite element analysis. Simpler explicit/implicit methods

are introduced as alternatives in Section 2.3.2. The first of these algorithms freezes an

3



"update direction" at its initial value whereas in the second procedure the update direction

is recomputed during each iteration in an explicit, multi-corrector fashion (see Hughes [10.

Chapter 9, for related ideas in dynamics). The latter algorithm, referred to as the updated

explicit/implicit algorithm, is viewed as simple enough for implementatation in large-scale

finite element programs, while at the same time it "almost" attains full implicitness, a

potential advantage with respect to accuracy and stability. Ab an example, we apply the

theory in Section 2.4 to an elliptical failure surface in pressure-deviatoric stress space and

specialize the updated explicit/implicit algorithm to this case.

A rate-dependent generalization of the damage model is presented in Section 2.5.

The classical Perzyna idea of viscous regularization [16] is invoked in which the consistency

parameter is replaced by a non-dimensional switching function, which turns on when the

failure surface function is positive, divided by a relaxation-time parameter. A variant on

the up dated explicit/implicit algorithm is developed for the rate-dependent model in which

a stable subincrementation strategy, as described in [11], is employed.

The damage constitutive models for three-dimensional analysis presented in

Chapter 2 are useful for detailed modeling in regions of supports, haunches, and transition

zones. They are also useful in the generation and qualification of plane stress analogs for

plates and shells applicable to large-scale structural modeling.

4



Plane stress generalizations of the algorithms of Chapter 2 are presented in

Chapter 3. The rate-independent and rate-dependent cases are presented in Sections 3.1

and 3.2, respectively. Use of these models in conjunction with plate and shell formulations

is discussed in Section 3.3.

In previous research, attention has focused on the cap model for modeling con-

crete (see, e.g., [11]). The cap model falls within the framework of the general elastoplastic

and viscoplastic theories considered in [11], except for the fact that it is a particular ex-

ample of a so-called multiple yield surface theory. In the present framework of damage

modeling, we are likewise concerned with multiple failure surfaces in analogy with multiple

yield surfaces in elastoplasticity and viscoplasticity. For the cap model, we presented previ-

ously a concise algorithm for integrating the constitutive equation and efficiently handling

the three branches of the yield surface. General approaches for handling multiple yield

surfaces have been presented in [18,19]. Herein we adopt a more general point of view

and in Chapter 4 develop multiple failure surface analogs of the single surface models and

algorithms described in Chapters 2 and 3. The approach assumes "m" failure surfaces.

Consequently, by taking m = 3, and specifying the failure surfaces to be those of the cap

model, the approach reduces to cap-like anisotropic damages models. However, we believe

the general approach has consid-zable potential in that different and more elaborate sets of

failure surfaces will likely Le more appropriate for modeling reinforced concrete including

cracking, crushing. and bond slip.

5)



The three-dimensional multiple failure surface, rate-independent anisotropic elaM-

tic damage model is presented in Section 4.1. The updated explicit/implicit algorithnm for

this case is developed in Section 4.1.1. Similar developments are carried out for the rate-

dependent version in Sections 4.2 and 4.2.1. Plane stress analogs are examined in Sections

4.3 and 4.4. The rate-independent case is dealt with in Section 4.3 and the rate dependent

case in Section 4.4. Conclusions are drawn in Chapter 5.

The present work allows for modeling reinforced concrete by way of point con-

stitutive equations. The effect of concrete, reinforcement, and their interaction, is, in

principle, representable by "homogenized", or distributed, constitutive relations. An ap-

proach of this kind represents an efficient alternative to those currently in use in which

reinforcement and concrete are modeled separately, and bond-slip is generally ignored.

What is required to make an approach of this kind a practical reality is characterization

of the failure surfaces and hardening laws for reinforced concrete. All salient physical

mechanisms, e.g., cracking, crushing, bond-slip, tension stiffening, shear retention. etc..

are, in principle, subsumable within such an approach. On the other hand. the practical

and specific realizations of the failure surfaces and hardening laws represents an essential

but non-trivial endeavor. As a starting point for such an endeavor it seems useful to study

the failure theory of fiber-reinforced composites. It is intuitevely clear that fiber-reinforced

composites and reinforced concrete have many' features in common. In particular, failure

surfaces for fiber-reinforced composites have been studied extensively, e.g.. one may men-

6



tion the well-known Tsai-Hill and Tsai-Wu criteria [12]. ( An ellipsoid in ;tress space is a

special case of Tsai-Wu. cf. Section 2.4). It is felt that a wortnwiil a\venw ()f apprnac": -Or

developing the detailed aspects of the types of models described herein begins witth existing

work in fiber-reinforced composites. One of course would need to identify the material pa-

rameters of the model selected. In principle, this could be (lone by testing "specimens" of

actual fabricated reinforced concrete slabs, however, due to specimen size and the number

of different tests required, this would appear impractical. On the other hand. assuming a

constitutive model existed for unrcinforced concrete that one had confidence in, and if a

sufficiently accurate model of bond-slip behavior existed (see recent work of L. Herrmann

and colleagues at U.C. Davis[5]), and employing standard elastoplastic modeling of steel

rebars, then computational tests might be performed to determine the failure surface pa-

rameters for the "composite". These could subsequently be used to define the anisotropic

damage reinforced concrete model.

Likewise, failure surfaces used for unreinforced concrete such as the well-known

plane stress Kupfer surface [131 - see Figure 1.1 - and its three-dimensional general-

izations could be used as failure surfaces for anisotropic damage models'. Constitutive

equations of this kind are frequently combined with discrete truss-like or membrane-like

equivalent rebar distributions in current capabilities (see. e.g.. Cervera. Hinton. aid col-

leagues [2.3] for representitive approaches of this kind).

'The failure suriace could likewise be the CAP yield surface used in previous studies
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Figure 1-1: Bi-a-cial strength of concrete. f~stands for the uniadal compressive streng-.h.-



An issue which needs to be emphasized when dealing with severely loaded rein-

forced concrete is strain softening. The theoretical and numerical sensitivities engendered

bY this phenomenon are still subjects of heated discussion in research circles. Essential in-

sights into numerical difficulties (i.e., spurious mesh dependence) brought about by strain

softening were presented in one of our previous studies [9]. Basically. two methodolo-

gies remain in use to deal with this problem. The first involves specifying key material

parameters to depend upon finite element mesh length scales (e.g., the plastic modulus

in an elastoplastic theory). This approach is throughly discussed in [9] and references

cited therein. The second approach employs viscous regularization. Deficiencies noted

for rate-independent elastoplastic models used to represent strain-softening are avoided

by rate-dependent viscoplastic models obtained by a viscous regularization of the elasto-

plastic model. This approach has been advocated by several investigators. Valanis [23]

has provided computational and theoretical results supporting this view. One of the main

reasons we developed the rate-dependent versions of the anisotropic damage models in this

report was to provide a practical means for dealing with strain softening behavior. Fur-

ther research is, of course, still necessary on this topic. Nevertheless, within the spectrum

of methods and algorithms presented herein, fundamental objections to specific classes

of models (e.g.. rate-independent elastoplastic models), may be overcome. In principle.

the classical Perzyna viscous regularization employed herein also avoids the necessity of

employing mesh-dependent material parameters as described in [9]. Likewise, the rate-



dependent mechanisms present allow for more faithful representation of material response

to high rates of loading.

Throughout this report we focus our attention on small-deformation response.

The generalization to finite deformations, necessary for modeling large translations and

rotations associated with reinforced concrete plate and shell structural response to severe

blast loadings, may be simply accomplished by procedures described in [8]. See also [18] for

an update on approaches of this kind, and a description of their trials and tribulations. By

way of these by now standard procedures, all that is developed herein may be immediately

generalized to the finite-deformation case.

10



Chapter 2

Constitutive Models and Algorithms
for Reinforced Concrete

2.1 Explicit and Implicit Methods

In a previous report (see [11]), general classes of inelastic constitutive equations were stud-

ied and their applicability to concrete was examined. It was pointed out that two general

methodologies had emerged for the numerical integration of rate-independent inelastic

constitutive equations: the cutting plane algorithm [14] and the closest point projection

algorithm [18].

The cutting plane algorithm was discussed in detail in [11]. It avoids tile evalua-

tion of gradients and Hessians, and thus is computationally simpler than the closest point

projection algorithm and therefore should be utilized whenever possible. However, severe

limitations exist when a vi.cous regularization is employed: the cutting plane algorithm is

11



explicit and numerical stability conditions may engender excessively small subincremental

time steps (see [11]). On the other hand, the zlosest point projection algorithm is implicit

and unconditionally stable. Consequently, it offers a potentially superior alternative to

the cutting plane algorithm when viscous effects are present in the constitutive theory.

However, the closest point projection algorithm is more computationally intensive than

the cutting plane algorithm per iteration, and thus this also needs to be weighed in any

comparison.

The closest point projection algorithm will be illustrated below for a general

class of rate-independent elastoplastic materials.

2.1.1 Closest Point Projection Algorithm

The following notations are employed:

12



k Iteration counter

U" Cauchy or true stress

Total strain

01l Plastic strain

T Elastic strain energy density function

f Yield function

q Strain-like internal hardening parameters

A Consistency parameter

h Function defining the direction of q

r Function defining the direction of 0p

c Hessian of the elastic strain energy density function

R Residual vector in the Newton iteration

A Tangent matrix in the Newton iteration

I Identity tensor

TOL Tolerance for feasible stress region

TOL2  Tolerance for nonlinear residual

Partial derivatives are written in the following short-hand notation:

arf f af (2.1)

Of (2.2)Oq f=-q .

O)qf - Oo'Oq etc. (2.3)

13



The theory employed has been presented in [11]. For completeness we recall it

here. For further details, the reader is urged to consult [11].

Box 1. A small-deformation rate-independent elastoplastic constitutive theory.

Constitutive equation:

a =0 p(C - Epi) (2.4)

Hardening law:

= h(r, q) (2.5)

Flow rule:

=r (o, q) (2.6)

Loading/unloading conditions:

> 0 (2.7)

f (o,q) < 0 (2.S)

f(, q) = 0 (2.9)

14



Remarks:

1. Note that the elastic constitutive law may be nonlinear and the flow rule may be

nonassociative. In the associative case

r =(2.10)

2. The loading/unloading conditions are written concisely in the so-called Kuhn-Tucker

form of optimization theory.

3. The consistency condition yields the following expression for A:

80.! .c (211

(aof " cr- Oqf . h)

The closest point projection algorithm is given by Algorithm 1[17]:

Algorithm 1. Closes-t point projection algo-ithm for the small deformation rate-independent

elastoplastic theory of Boz 1.

Step 1. Initialize:

k = 0 (2.12)

pln Cpl (2.13)

15



(0) (2.14)

on+1 -0 (2.15)

Step 2. Compute stress, yield function and flow rule and hardening law residuals:

(k) = Ep f,+( - -E ) (2.16)
ffn+1 +1

f,(k) f (k) (k) (2.17)

R(k) -,+ ,((k (k) (2.1)
n+1-+ + I()+ 6"A~ h()1(.8

(k) +k+ h(k)
I.q+ 1  nJ

If ((k= 0 and f 1() ,- TOL,) or (Ifn!l _ < TOL, and IIR.+,I _ TOL2 )) then

pl plk) (2.19)

_(k)
q "" n+1  (2.20)

return

endif

Step 3. Compute elastic moduli and consistent tangent moduli:

(k) pl(k)'

Ck E (n+l - )n+1 (2.21)

A(k) = (k) )- + 6A (k) ao r k) 6A~k),iqr~2 ]k n+n + + n
n+1 - k (k) _ ) + r(k) (.2"-""+ ,,b,,+lo',n+ ¢\k I ~ -I + bAn+lc1, I~e

Step 4. Calculate increment of consistency parameter:

-0"knl a qjn(l ]f 0 (k)] A(k) R(k)

+-+ n+ 1n+
1

16



Step 5. Calculate incremental plastic strains and internal variables:

{C(k) 0 A (k , n) r A,, 2, i (2. 24)qn+ I o - 1n+ !

Step 6. Update plastic strain, hardening and consistency parameters:

plk+)= plI(k) ACpI(k) (2.25)n+I - n+I + n+i

(k+1) =q(k) A (k) 2.26)

n+ = n + 
(22n+)

-A('+1) = 6A + (k) (2.27)
n+1l~ ~~

Set k= k+1 andgoto Step 2.

Remarks:

1. The above algorithm is conceptually simple: the rate equations are integrated via

an Euler backward-difference scheme and the resulting (nonlinear) equations are

then solved with Newton's method. A sketch of the derivation is provided for the

interested reader:

Backward difference formulas:

pl

n+1 P1 +A n l .2S.

qn+l= q, + 6,,+lh,+l (2.29)

6An,+ = A,+I - A( 2.30)

17



Newton's method:

Linearization is performed about the kth iterative approximation to state n + 1. The

notation "A" is used to denote the difference between consecutive iterates, e.g.,

(k) (k+ ) (2.31)

A'n+l :-- n+1 - n+(2.31)

This should be contrasted with the use of "", i.e.,

6 1(k) (k) A, (2.32)

We need to evaluate the backward difference formulas at iterate k + 1 and linearize

about iterate k, viz.

pl(k+,) = 'EPl + (k+i)..(k+l) (.3
n+l n+l n+l233)

q(k+i) =k )h(k+) (2.34)qn+ I qn + "n+1 "n+1

p + PI( AA (k) ,(k) I + 6A (k) ((k) + (k)

P + z (k)i (k) +n + An+ Irn+ I +

4(k) ( k ) (k) ( (k) ± (k) . (k),n+l (r( , + ao-rn+l • O'n+j + aqrn+l • qn+,) (2.35)

Likewise,

(k) , (k) IA (k) h (k)+
,+1 + Aq+ q n n-" + ,+ n+

6(k) h(k) n .(k) A, (k) + (k) A (k)"
bAnl ( hn+I + a , hn+ I n+ aqrn+l • zqn+,) (2.36)

Linearizing a results in.

, (k) _(k) / pl(k)'

A-O'n + Cn+1 -%n+ 1 (2.37)
is



Substituting this result into the previous two, and combining in a matrix format

results in

pI 'Ik) ( k) - 1 (k)
= (c.+.) 0 J(, fl 

'+ '  ~,5 2.A E Cn) 0 A ( )I R ( )I +Ai( ~ , 1 (2 .38 )-(k)  0 I "n+ n + n+l (k)
Aqn+l 0 -1 n+ 1

where A,+ 1 is defined in (2.22) and Rtt is defined in (2.18). In order to determine

an epresion orA (k)

an expression for ,+ we must linearize f about state k, viz.,

o (k+l) ,(k)+ A f(k)"-fn+l f n+l 
+  

1 a~

fnkl + -C 1  &o l &)' dn I'q {n ~l }(k)
A.-qn+ l

f(k/l [ (')J aq n ) ] (k)
- J+- [a 0 .g, qfn+] An+1 X

k) A (k) I, +'(

Rn(+l + Afl (k) (2.39)
htn+1

Solving this expression for Aink yields (2.23).

2. The algorithm has a simple geometric interpretation in the case of perfect plasticity

( q = 0 ), linear elastic response ( c = constant ), and an associative flow rule

(h = 9of). o+ is the projection onto the yield surface of the trial elastic stress

o=trial p (E+ - Cp) taking as a metric the tensor c (see Figure 2.1). In
n + l f n

summary, O'n+i is the clo.qe.tt point projection of _tril onto the yield surface in the

energy norm.

3. In the case of an associative flow rule. normality is enforced with respect to state

n+1.

19



4. The algorithm is fully implicit.

2.2 Rate-independent Anisotropic Elastic Damage Model

The starting point is the assumption that reinforced concrete can be suitably defined by

elastic moduli. We note that nothing in the theory precludes these moduli from defining

an anisotropic material. For example, the moduli could represent the anisotlopy induced

by the pattern and amount of reinforcement. One assumes in this case that the basic

constitutive relation is given by

U = CE (2.40)

Time differentiating the above equation one gets

& = c + & (2.41)

As opposed to classical plasticity, where a rate equation defines the evolution

of the plastic strain, the proposed damage model contains an evolution law for the elastic

moduli c.

The following notation is introduced:

20



\fl lnv

Figure 2.1: Conceptual representation of the elastic predictor-plastic return mapping al-
gorithm for perfect plasticity (no hardening).
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o" Stress tensor

f Strain tensor

c Elastic moduli

a Straini-like internal variable

q Stress-like internal variable conjugate to a

€ Failure surface

f Stress dependent contribution to €

y) Total free energy function, V, (e, c, a) = e. cE + (a)

H"t Surface-like energy such that q = -7"' (a)

A Consistency parameter

a I Material constant used in the definition of the failure surface

N Update direction given by N = c, 0o.

8 Tensor product

The stress-dependent contribution f to 1 e failure surface < should not be con-

fused with the yield surface employed in the theory of Box 1. As will become clear, the

proposed model contains no plasticity, relying instead on an elastic constitutive relation

combined with a failure surface.

The continuum damage model is then given by the following equations:

2)



Box 2. A small-deformation anisotropic elastic damage constitutive theory.

Constitutive equation:

ar = cc (2.42)

Hardening law:

4 = -&-"" (2.43)

Damage evolution law:

_cOof ® caof (2.44)
190,f .-cc

Loading/unloading conditions:

€(o, q) = f (o,) + q - a < 0 (2.45)

> 0 (2.46)

of(, q) = 0 (2.47)

23



Remarks:

1. Since 7" is a function of a only, we employ the notation

(2.48)

7-/" = 70- (2.49)

2. Because of the specific form chosen for the failure surface, one should note that

'90,0 = 8af (2.50)

3. In a previous approach [11], damage was defined by a single scalar d E [0, 1] that

altered the elastic moduli in an isotropic fashion. Although this approach may

be suitable for certain applications, the cracking of concrete intuitively gives rise

to anisotropic damage. The model under consideration accomodates anisotropic

changes in the elastic moduli (see equation (2.44)).

4. The total free energy consists of a classical elastic energy and a surface-like energy

"R that accounts for damage hardening/softening behavior.

5. Unlike classical elasticity, the elastic moduli c are treated as progressively degrading

internal parameters; these are determined through their initial values - possibly

ar sotrepnic to account for reinforcement - and an evolution law which redefines

them in specified directions according to the failure ciltcrion. An illustration of this

behavior is shown in Figure 2.2.
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Figure 2.2: Stress-strain relation for a one-dimensional elastic damage model. The damage
mechanism causes unloacaing at reduced values of the elastic modulus. Unloading occurs
towards the origin.
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6. The equations in Box 2 can be obtained by employing the principle of maximum

dissipation (see [1.6.18). We sketch the derivation below.

Time differentiating the free energy leads to

W, = E • C + ) C E + a'lj (2.51)

By definition, the dissipation function E) gives the rate of change in free energy due

to changes in the inelastic internal variables. From (2.51), we get

= V."& (2.52)
2

Hence, the rate of change in the free energ' is given by

?P= cc - (2.53)

The second law of thermodynamics requires that, for all i,

+ . > 0 (2.54)

Satisfaction of (2.54) can only be obtained if the following two conditions hold

o" = cC (2.55)

_> 0 (2.56)

Hence, the second law of thermodynamics combined with the form of the free energy

assumed leads to two conclusions:

(a) The stress-strain relation takes on the usual elastic form. nanely o, = c.
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(b) The dissipation function D is non-negative.

In order to state the principle of maximum dissipation we introduce the set of ad-

missible states S,

= {(o,q) I(o,q) < 01 (2.57)

The principle of maximum dissipation then states that the dissipation function V is

maximum subject to the constraint

(o,q) E ' (2.58)

Equivalenty, this can be phrased in terms of a minimization problem for -E, namely

min (-) (2.59)
(o', q) E S

If it were not for the constraint 0 _< 0. the optimality conditions could be simply

obtained by differentiating -D with respect to o" and q. This approach can still be

utilized if one employs the method of Lagrange multipliers, which transforms the con-

strained minimization problem above into an unconstrained problem by appending

to -) the constraint times a Lagrange multiplier ,. This gives rise to a Lagrangian

£, defined by

C = -7)+ A6(o,.q) (2.60)

The optimality conditions are then given by

(gar= 0 (2.61)

aq, 0 (2.62)
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along with the Kuhn-Tucker conditions

> 0 (2.63)

0(o, q) < 0 (2.64)

q) = 0 (2.63)

In order to perform the differentiations in (2.61) and (2.62), we rewrite the dissipation

function ") as an explicit function of oa and q, obtaining

1= Iur c- cc1-lo, - q6 + ,[f (o') + q - a] (2.66)
2

Differentiation with respect to or and q is now straightforward leading to

= -AcOof (2.67)

& =A (2.68)

Note that the consistency parameter A can be interpreted as a Lagrange multiplier

that forces o" and q to stay within the allowable region.

7. In view of (2.68), the hardening law (2.43) can be rewritten as

q = -A& , 1(2.69)

8. During amage loading, o = 0. From (2.45) one gets

olf. + (2.70)
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Time differentiating the constitutive equation (2.42) and substituting into (2.70)

leads to

o = & -f. (6 + E) + (2.71)

Substituting the hardening and damage evolution laws, equations (2.43) and (2.44),

into (2.71) and setting p to zero results in an explicit expression for the consistency

parameter,

aef c " (2.72)

9. The derivation of the expression for c, (2.44), deserves special attention. Assuming

that c is a rank-one tensor, the symmetry conditions

ciC.ki = cIii = cjiki = cijlk (2.73)

and (2.67) imply the damage evolution law:

= , f 0 C19-f (2.74)
af .ecc

The rank-one assumption is the key to obtaining this simple expression. Note that

(2.67) and (2.73) can be satisfied by infinitely many other definitions of c. This

may be a worthwhile avenue of future research in that cracking and crushing may be

amenable to more realistic treatment by appropriate generalizations of the definition

of .The subject of quasi-Newton updates may be relevant in this regard (see. e.g..

Luenberger[141) in that (2.67) has the form of the so-called quasi-Newton eqiation. It
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should be possible using the methodology of quasi-Newton updates to satisfy (2.67),

(2.73), and other attributes deemed useful in the descrpti. :i of cracking, crushing.

bond-slip. etc.

2.3 Algorithms for the Rate-independent Anisotropic
Elastic Damage Model

2.3.1 Fully Implicit Return Mapping Algorithm

A first attempt to integrate the above equations might employ a similar approach to

that used in the closest-point projection algorithm for plasticity. This would lead to the

following set of ncnlinear equations:

,+1= Cn- Ce + Iao 'fn~ l 0 en+Ia'fn+l (2.75)

ffn+= Cn+lEn+l (2.76)

qn+1 = -h (an + 6A) (2.77)

In an elastic step, one has 6A = 0 and the solution of the above is obviously trivial.

However, if damage evolution occurs, to the above equations one adds

6(On+l,q,+,) = 0 (2.78)

Equations (2.75)-(2.78) amount to a fully implicit nonlinear system. One has

to solve qimultaneo vily for c,,,. irn+i. qn+. and 6A. Solving such a large nonlinear sys-
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tern of equations at each integration point at each nonlinear iteration of a finite element

analysis appears impractical and alternative integration schemes are thus called for. Some

simplifications are described below.

2.3.2 Explicit/Implicit Methods

We consider the explicit integration of the elastic moduli while mantaining an implicit

integration for the other variables. This leads to the following system of equations

trial
+1 = c f+l (2.79)

,-cri al a., trial
c+1 = - 6A +I n +(2.80).Ftrial

Jn+l "nEn+l

O'n+1= c,-, ,+l (2.81)

q = -H' (an + 6A) (2.S2)

€ (O,+,, q,+1) = 0 (2.83)

The above system can be solved by the following algorithm:
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Algorithm 2. Explicit/implicit algorithm for the small-deformation elastic damage con-

stitutive theory of Box 2.

Step 1. Initialize:

-A
(° ) = 0 (2.84)

a(o) I trial (2.85)
n+l n+1 = Cnf'n+l

N(O). ao (0) (2.86)
n+1 = Cn "€OJ~

k = 0 (2.87)

Step 2. Update stress and hardening parameters:

o(k) = trial - bx(k)N(o) (2.88)

n+ "n+ n+1

M( 6)k
a = ) +1 (2.89)

(k) (k) (2.90)
q+l = (a (+.)

Step 3. Check for failure and convergence:

6 ) , ( k ) ( k ) (2 .9 1

n+ I = Jn+ I+ qnI - Of(2.91)

If ((k = 0 and On+, < TOL ) or (I n+I < TOL )) then

_(k) (2.92)
(k)+ N (0 1noN

1
0

c = - 6  n4(k) , - (2.93)

)n+l " 3n+
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an+1 = an+ (2.94)

return

endif

Step 4. Compute 6A-increment
DO() (k) k) _,,o , (k)

n+1 = - [O +l • c[06- 1 + N(()) )] (2.95)

6A(k+l) 6A(, k) _ (k+) (2.96)
S - n+l lD6k) n+1l2.6

Set k= k+1 andgoto Step 2.

Remarks:

1. hetril tres trial (0)
1. The trial stress t = i is similar to that introduced in plasticity: the inelastic

parameters are frozen at their previous values and the stress is updated with the

current strain value.

2. Equation (2.88) is derived as follows:

O'n+1  _-- n+ 1 fn+ 1

- CEn+l + (c,+ 1 - C) En+I

- trial (2.97)
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The second term is replaced by a discrete version of (2.67). namely

(c,+l - c.) E,+, = -- , -aff+ (2.9)

3. The above system of equations contains a single scalar unknown 6A. a considerable

simplification compared with the fully implicit system described previously. This

single scalar unknown is the solution of (2.83), which can be written in the form

/trial ) (,+6) f(.9
0 = a (SA)= f (a+o,+ - 6ANn+,) - 7(a+6A) -af (2.99)

Step 4 of the algorithm amounts to a Newton iteration method for solving this

nonlinear scalar equation.

4. Note that the update direction is held fixed at its initial value N(O) In an attempt

to improve upon the accuracy of the explicit/implicit solution described above, we

consider a variant below which, at each nonlinear iteration. recomputes the update

direction N = cOof.
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Algorithm 3. Updated explicit/implicit algorithm for the 3mall-deformation aniotropic

elastic damage constitutive theory of Box 2.

Step 1. Initialize:

bA(O) = 0 (2.100)

(0) = trial (2.101)

n+l n+ = CnEn+l

N(O) = f (O) (2.102)

c()= (2.103)

k = 0 (2.104)

Step 2. Update stress and hardening parameters:

or(k) _trial - (k)N(k) (2.105)
n+l n+1 6A )"n+(

a an + 6A(k) (2.106)

(k) -H1 (a k) (2.107)n ( n+l,/

Step 3. Check for failure and convergence:

() (k) (k)

n+i = J +, + q+:1  (2.108)

If ((k 0 and (k)I < TOL or (j Tk): ',+ 1 n O o + 11 < T O L )) then

_(k)
UTI+l = o(k+ (2.109)
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_(k) (2.110)Cn+ I =-- CLn+I

(k) (2.111)Cfn+ 1 = an+1

return

endif

Step 4. Compute SA-increment:

D(k [= f(k) Nj(k) + 1-( (k) (2.112)

6A(k+,) -6Ak) -I (2.113)

Step 5. Update return direction and moduli:

N(k+l) =(k) (k) (2.114)

_n+1 n + 1  f .1

,n+- cn - 6A(k+l) N+1 (2.115)k+ 1+)
En+l " N'n+l

Set k= k+1 andgoto Step 2.

Remarks:

1. Despite the explicit update in the return direction N, the algorithm is implicit with

respect to the solution of the (nonlinear) equation

¢(n+1,qn+I) = 0 (2.11 )
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Analogous to (2.99), we write

0=r(a)=f, - 6AN 1 )+6 - (2.117)

Equation (2.112) follows from (2.117) by employing (2.105) and (2.106).

2. The update for the return direction, equation (2.114), is an attempt to approximate

the implicit algorithm sketched in Section 2.3.1.

3. An important distinction between the present algorithm and the implicit algorithm

of Section 2.3.1 is that here equation (2.75) is not necessarily satisfied by c, +1.

4. The present algorithm represents an attractive balance between computational effort

and implicitness. It is employed as a basis for subsequent developments within this

report.

2.4 An Example: Elliptical Failure Surface in Pressure-
Deviatoric Space

As an example of a typical application, we consider a failure surface given by

S()=R 2 (21S

f (0') = R(p - po) 2 + I[devo' 1 2 - R 2

p = -tr'/3 (2.119)

Qo" = devu" = o" + pI (2.120)

where R, S, and po are material parameters.
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Remarks:

1. Q is a projection operator that extracts the deviatoric part of a symmetric tensor.

That it is indeed a projection can be seen from the fact that

Q 2 - "(2.121)

Along with Q we can introduce another projection operator P,

I
Po = tro- (2.122)

where I stands for the identity matrix. Note that

Po + Qo=o (2.123)

and that

PQ = QP= 0 (2.124)

2. The above failure surface represents an ellipse in p - devor space, with R being the

semi-axis of the ellipse in the deviatoric plane and S the semi-axis in the pressure

plane, as shown in Figure 2.3.

3. As mentioned in [11], if the cutting plane algorithm is employed, the failure surface

has a preferred representation which, in the current case is

f (a) = -(p - p0) 2 + I1devoalI - R 2  (2.125)
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4. Po is introduced in order to control the tensile resistance of the concrete model.

5. The failure surface above is isotropic. A more general surface of the Tsai-Wu type

(see, e.g., Jones [12]) is given by

f () = -(p - pO), + 1Qo MQo - R2  (2.126)

where the tensor M could account for anisotropic elastic behavior as that emanating

from reinforcement. For simplicity in the exposition, we proceed with the surface

described by (2.118). The generalization to (2.126) is straightforward.

Damage will be described according to the relation

h(a) = -Ha (2.127)

where H is assumed to be a positive constant. The negative sign is indicative of the

presence of softening behavior attributable to crushing and/or cracking of concrete.

For a material characterized by (2.118) , one can utilize Algorithm 3 in which

2 R 2

90f =7 - R (p - p0)I + 2Qo" (2.128)

If= -H (2.129)

R-/"1 0 (2.130)

For the sake of completeness, Algorithm 3 is specialized to this case.
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Figure 2.3: Elliptical damage surface in the pressure-deviatoric plane.
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Algorithm 4. Updated ezplicit/implicit algorithm for the small-deformation anzi.otropic

elastic damage constitutive theory of Box 2 with assumed elliptical failure surface in pressure-

deviator space and constant hardening modulus.

Step 1. Initialize:

6A( °) = 0 (2.131)

(o) = _trial
n+ = c, (2.132)

(0) (0)
,+j = -trtr,+1/3 (2.133)

devo(o)1 = + (o) (0) (2.134)
n+-n+ 1 +-¢ Pn+l

/

N)1 = 2c[ 1  R2 (P,+1 -& I + dev(2.135)

(0))cn+I = cn (2.136)

k = 0 (2.137)

Step 2. Update stress and hardening parameter:

F(k) _trial - A(k)N (k) (2.13S)

+ rn+1 n+1

p() -tro+1/3 (2.139)

dev = ( + P(2.140)

ask) +6, (k)
Q+I= a + (2.141)
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Step 3. Check for failure and convergence:

(k(k) -
__ ( P Po) + Ildevo,,kl) 1 1 - R' H - 2.142)

If,((k= and+< TOL )or(I n+l_ TOL ))then

,. (k) (2.143)

,C(k) (2.144)

(k)
an+ 1 =i+l (2.145)

return

endif

Step 4. Compute bA-increment:

(k) -_ 1R (k) p0) (k) (kl (2.146)
D,+n= - T2 + ) + devo,+j • (2.146)

A (k+l) A() ,(k) ,(k) (k)47

S6A -n+/,n+ (2.147)

Step 5. Update moduli and return direction:

1 (k) 1 (k) I O)(

-N ' (+ [I,.,+ +- dev,-,] (2.148)

(k+ 1) = _~ 0 (2.149Cn+ 1  C n - ~)kl 219

Cn+l " N~n+ I

Set k = k+ 1 and go to Step 2.
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2.5 Rate-dependent Damage Model

The rate-dependent damage model can be obtained from the rate-independent model by

means of a viscous regularization of the Perzyna type[11.16]. In this generalization. is

replaced by (X ((P))/r, where " is a non-dimensional function of o. (.) denotes the Macaulay

bracket, viz.

() XIf X > 0
0 otherwise (2.130)

and 7 is the relaxation time. Also, the damage loading/unloading conditions are dispensed

with. As will be shown below, this model has the advantage of being trivially implemented

in a finite element context.

The theory is summarized in Box 3.

Box 3. A small-deformation anisotropic rat,-dependent damage constitutive theory.

Constitutive equation:

1 = CE (2.151)

Hardening law:

(o)) i, (2.152)
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Damage evolution law:

= (0o) cOrf :' co-f (2.133)r Ouf" cE

Remarks:

1. Just as in viscoplasticity, the function X may be taken to be

x (0) = (sgn¢) ((/P)N (2.154)

where y and N are positive constants, [11].

2.5.1 Algorithm for the Rate-dependent Damage Model

Integration of the equations in Box 3 can be done according to the following algorithm:

Algorithm 5. Updated explicit/implicit algorithm for the small-deformation anisotropic

elastic damage constitutive theory of Box 21 or rate-dependent damage constitutive theory

of Box 3.

Step 1. Initialize:

lvisc = f true, rate-dependent damage (Box 3)

t false, elastic damage (Box 2)
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lquit = false

Atr, l = t,+1 - t, (2.155)

6A( I = 0 (2.156)

t =o) t, (2.157)

01(o) ,trial (2.158)

n+ n+ 1 = Cnfn+l

N(O cn f, (o) (2.159)

()n+

c(O) (2.160)

k = 0 (2.161)

Step 2. Update stress and hardening parameters:

o.(k) _trial - bA(k)N(k) (2.162)

n+l n+ - +1

(= an 6A(k) (2.163)

q -I= -HI (an+1) (2.164)

Step 3. Check for failure and convergence:
6(k) ¢(k) _(k)

,,+'= , + + q,,,+, - oaf (2.165)

If ((k = 0 and 61,I OLo

(k)

lvisc = false and I'n+j I :S TOL )) then lquit - true

If ( lquit = true ) then

(k)
5(2.166)
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_i)= (2.167)

On+1 = c<21  (2.168)

return

endif

Step 4. Compute 6A-increment:

(k+l) k) ( k) + ( j (169)

o+ - - [O'J+1 . + (n,1)]

If ( lvisc = false ) then

bA(k+l) =A(k) _ )/D,( (2.170)
-- - n+ll/D"n+1l210

else

,M )(2.171)
xn+ lDi. n+ l

n =1 t{k) 1 - exp ( - (2.172)[ ( ~k)I
(k+l) t(k) +At(k) (2.173)

n+1 - n+l "-""n+1

if ( n+l - t,+l -> 0) then

=At ( 1) (2.174)n + l - n + l - n + 1 -- n + l

Iquit = true

endif

(k+,) =(k) (k).(2.175)

endif
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Step 5. Update return direction and moduli:

S+1= c 1 a f(k) (2.176)

(k+ ) N (k+l) 1 N (k-. 1)

_(+l = - 6 A(k+J, n+1 - -+1N(k+ 1)
C'n+l " N'n+l

Set k=k+l and gotoStep 2.

Remarks:

1. As discussed in [11, the approach taken herein obviates the issue of stability by

automatically defining a priori stable subincremental time steps within the context

of the updated implicit/explicit algorithm. The reader is encouraged to note the

similarities between the subincrementation strategy described in Algorithm 5 and

the one in [11], as applied to the cutting plane algorithm.
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Chapter 3

Plane Stress Models - Applications
to Plates and Shells

The application of the damage models described previously leads to a trivial implementa-

tion in three-dimensional geometries. Evidently, one might attempt to model thick shells

and/or plates with three-dimensional elements; however, as the shell gets thinner, the

cost of three-dimensional analysis, and numerical difficulties engendered by thin, three-

dimensional elements, suggest the use of shell structural elements.

3.1 Plane Stress Algorithm for the Rate-independent

Anisotropic Elastic Damage Model

A common feature of the structural plate and shell elements is the zero normal stress (ZNS)

constraint which. in the two-dimensional case. is equivaient to a plane stress formulation.
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A general approach for the analysis of plane stress problems is based upon the

introduction of 63 3 as an independent variable, where the third direction is normal to the

plane of interest. Solution of the resulting nonlinear system of equations can be obtained

by introducing the ZNS constraint as an additional condition to be satisfied:

a33 = 0 (3.1)

One can easily modify Algorithm 3 by noting that the ZNS constraint can be

written as

(k+1) 6(k+)N(k)

(Cner+e)-e3 - 6A + )N *e3 = 0 (P.2)

where e33 stands for the unit tensor in the 33-direction, namely[°°°1
e33= 0 0 0 (3.3)

0 0 1

Hence, the implicit computation of 6A(k+') is done in conjunction with the com-

putation of 3 A complete plane stress algorithm is then given as follows:

Algorithm 6. Updated ezplicit/implicit plane stress algorithm for the small-deformation

anisotropic elastic damage constitutive theory of Box 2.

Step 1. Initialize:

6A( ) - 0 (3.4)
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= Cn+1 
(3.5)

(0) Cn.3 311 IE + Cn.3322622 + 
2
Cn.3312612 + 2Cn.33 23E23 + 

2 C..333l3
E33 3331 36

C',3333

(0) trial (37)
SO = nE - - nE + 1( 

.7

N(O) 1  Cn fn3o (3.8)n+l- t~tOJ+1

c(O) (3.9)
cn+l = cn

k=0 (3.10)

Step 2. Update stress and hardening parameter:

(k) (k) - 6A(k)N$(k (3.11)On+l =- Cnfn+l n+1

(k) + 6A(k) (3.12)
n+1 = n -.-

q1= -(a'+,) (3.13)

Step 3. Check for failure and convergence:

n+1 = fS.X + q - (3.14)

If ((k = 0 and n+ < TOL) oir
O~)11(k) TO ))te

(n+I _< TOL1 and In+1,33I <70L 2 )) then

.()+1  = 
(3.15)

Cn+ 1 =Cn (3.16)

+ an 1  
(3.17)

return
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endif

Step 4. Update 6A and E33:

{6A (k+l) 6A fS(k) '

(k+r ) + )(k)1
33 c33

- -2(k) 13 k).,+ ( (Qnk.)) [Cn9.f+ 1 ] 3 3  O (3.18)
N(k) 

0(k)
-- + 1,33 Cn,3333 n-+1.33

Step 5. Update return direction and moduli:

N(k+l) ,.(k) (k) (3.19)
Nn+l - n+laO'Jn+13.9

+(k+l) (k+)

=n+I =e - 8A(E+ )(N + l'N k+ (3.20)
n+1 "*n+l

Set k= k+1 andgoto Step 2.

Remarks:

_(k+ 1)

1. Except in the 33-component, which is updated to satisfy the ZNS constraint, e+ 1

is identically equal to E = f,+1,

2. Even though the traditional plane stress analysis does not contain the transverse

shear stresses and strains, they were included in the analysis here so the algorithm

can be applied to thick plates and shells, where these quantities are important.

Likewise, the preceding algorithm may be reduced to the traditional case by omitting

the transverse stresses and strains.
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3. The algorithm allows for different tolerances in the satisfaction of each of the con-

straints. namely TOL, for the failure surface, and TOL, for the ZNS constraint.

4. The 2 x 2 system of equations one solves in Step 3 reflects the satisfaction of the two

scalar constraints,

[cf"I - 6A (k+I1)N (k) n-iin (an V+ ))-(k I , (k+ 1) ' (k+i)

h i (SA(k+1), = = "+ - 0 (3.21)

(k+) 6,\(k+l)N(k)
(C ncn+l ) e33 -- ' n+ l e33

( 'k+ ) ,k )

h 2 (A(kb , 
n+1, 3 3 ) = h2k = 0 (3.22)

Standard application of Newton's method to the above two equations leads to

O 6Ahh j +.3h h (k) I 6A(k+ ' ) - 6) k) h(k)(
06hi 01,+,' (k+3) (k) hk) (3.23)
L96,2 L,+15 3 3 h2 J n+1,33 - "-n+1,33 h

Differentiating (3.21) and (3.22) we get

hi (O'f (k) . N (k) I + 7,, (a(k)) (3.24)

,1,h, nOf1 133 (3.25)

asAh2 = (k) (3.26)
-" - n+ 1,33

(9"+.33 h 2 =- Cn,3333 (3.27)

Combining (3.23) to (3.27) leads to the final expression in Step 4. equation (3.18).
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3.2 Plane Stress Algorithm for the Rate-dependent
Damage Model

In this Section we present an algorithm which incorporates the plane stress constraint in the

rate-dependent damage constitutive theory. Our approach combines features of Algorithms

5 and 6. In the absence of rate-dependent effects, the algorithm reduces identically to the

plane stress elastic damage case, namely Algorithm 6. The procedure is given as follows:

Algorithm 7. Updated explicit/implicit plane stress algorithm for the small-deformation

anisotropic elastic damage constitutive theory of Box 2, or rate-dependent damage consti-

tutive theory of Box 3.

Step 1. Initialize:

lvisc = f true, rate-dependent damage (Box 3)
[ false, elastic damage (Box 2)

lquit = false

At,+i = t,+1 - t,, (3.2S)

tn° = tn (3.29)

6A ( ) = 0 (3.30)

E= E,+1 (3.31)
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(0) Cn.3311II + Cn, 3 3 2 2 E 2 2 + 2Cn,33 1 2 E1 2 + 2Cn.3 3 2 3 E 2 3 + 2Cn, 3 3 1 3 E1 3  (332)33 =(.2
Cn,3 3 3 3

(o _trial (3.33)
n+1 - n+1 = Chfr+l

N(0)  a^ n (0)

n+l= n +1  (3.34)

(0) (335)
cn+1 = C(3

k=0 (3.36)

Step 2. Update stress and hardening parameter:

(k) (k) (k (k) (337)
Ofl+1 = 71nl-b N+1 (.7

(kc) '(k)
an1= an1 + 6A' (3.38)

(k) - / (k) (3.39)

qn+l (an 1

Step 3. Check for failure and convergence:

+(k) (3.40)
n+l "--3"+1 + qn'+l - OV(340

If ((k 0 and 0) <TOL) or

(lvisc = false and () <TOL and

l j1,331 < TOL2)) then lquit = true

If ( 1quit = true ) then

(k) (3.41Orn+l =On+1 3.1

_(k)

cn+1 =Cn+ (3.42)

=n+ (3.43)
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return

enclif

Step 4. Update 6A and 633:

Do+ -'"flk - 721 + 'H (ak) (3.44)

If ( Ivisc =false )then

{ 6A(k+l) 6 &\(k) *
E(k+l) E (k)~33 1 3333

k) ]fk 3 (k)ID4n(+ [Cn&aj?] -+ On (3.45)
_yk)47(k)

I n+1,33 Cn,3333 ~ n+1,33

else

ek) (3-.6)

1 n+1 n~

Ntk e1k) Atnep lk L (3.47)

(kl k + At()(3.48)

If ( t n('1
1 ) - tn+1  0) then

An = An1- (tny~l tn+ 1  (3.49)

iquit = true

endif

6A\(k+l) L(k) + (3.50) (k

(k+ 1) Cn.33 1 1 fll + Cn.3322fE2 2cn3 l~l + 2Cfl.3323623 + 2Cfl 3313 13+
E33 +

Cn,3333

6A(k+l). y(k)
n-I.33 (3.51)
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endif

Step 5. Update return direction and moduli:

(k+i) c(k) a (k) (3.52)
n+l n+1lO 0' nI+l

(k+l) N k+i) 0 N(k+)
S I,(k±) ) n+I (3.53)

n+I " n+l

Set k= k+1 and go to Step.

Remarks:

1. Note that with the introduction of the flag "lvisc", Algorithm 7 can be employed for

both elastic and rate-dependent damage.

2. Because 6A(k+,) is explicitly computed, in the rate-dependent case - see (3.50) - the
(k+ 1) _(k+ 1)

evaluation of -33 = En+1,3 is also trivially obtained through use of the constitutive

relation, equation (3.51).

3.3 Applications to Plates and Shells

The above algorithm can be natural.. employed in the analysis of structural elements

like plates and shells. An excellent source of information concerning three-dimensional

continuum based shell/plate formulations is Stanley[211. Other works pertinent to the

56



present subject are [16-18]. Because of the completeness of [21], only major features of the

theory relevant to the present discussion will be recalled.

1. The shell element is obtained by degenerating a three-dimensional element with lin-

ear displacement variation through the thickenss. Two assumptions are made that

distinguish continuum based shell elements from regular three-dimensional elements:

Straight Normals. This assumption is expressed by the equation

x ( , 77, z) = x (, /) + z:k (, 77) (3.54)

where and 77 stand for parent domain curvilinear coordinates while z is a

(linear) through-thickness :oordinate. We note that z is usually written as

z( 7)=(-()h/2 (-5

where c E [-1, 1] and c locates the reference surface. h is the shell thickness.

Inextensible Normals. This can be described incrementally by the relations

AU(=, , z) -- Ad ( ,77) + zA ( ,r7) (3.56)

AC. = 0 (3.57)

However, in practice it is necessary to maintain the inextensibility condition

exactly. This can be achieved by various means. For example. one can use Aft

to define an increment of angle of rotation and thereby construct an orthogonal

rotation matrix to transform the normal rigidly[21]. or one can use a radial
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projection algorithm (e.g., Hughes and Liu [7]).

2. An orthogonal local coordinate system (el, el. el) referred to as the laminar system

is introduced. Its most important attribute is that e'3 is normal to the surface ( =

constant at each point in the current configuration. By expressing the stress tensor

in this laminar system, the constitutive algorithms introduced above for the plane

stress problem can be easily implemented.

3. The continuum based approach has the distinct advantage that rigorous finite defor-

mational constitutive theories can be readily utilized: one is only left with the ZNS

constraint to deal with as described above.
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Chapter 4

Extension to Multiple Failure
Surfaces

4.1 Rate-independent Anisotropic Elastic Damage Model

Because of the importance of models that need to accomodate multiple failure surfaces

(e.g., the cap model [11] or those proposed by Hashin [4]), we present extensions of the

preceding ideas to multiple surfaces [20,18],

A theory for a model whose failure surface is defined by m smooth surfaces is

described in Box 4. The free index "A" is understood to take on the values 1,2 ... , m.
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Box 4. A multiple failure surface, small-deformation anisotropic elastic damage constitu-

tive theory.

Constitutive equation:

0= c (4.1)

Hardening law:

m

a- 2 &Ba7 (4.2)
B=1

Damage evolution law:

c -BC'fB ® .CO~fB (4.3)

B=i '9 ufB -cc

Loading/unloading conditions:

OA = fA + qA - aA < 0 (4.4)

AA > 0 (4.5)

AAfA (u,qA) = 0 (4.6)
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Remarks:

1. 'H is a function of rn independent strain-like variables a,, a- . . an. Thus. the total

free energy may be written as

V)(f,C, al, 02,...am) E IE + R (al, a2,...am) (4.7)

2. The qA's are defined by

qA = -a, R (4.8)

3. The principle of maximum dissipation is invoked as for the theory of Box 2. In the

present context, this leads to

ci= - E BacfB (4.9)
B=i

&A = AA (4.10)

4. The consistency parameters 5.A can be obtained by time differentiating the damage

functions OA and setting the resulting expression to zero. From (4.1), (4.2), (4.4)

and (4.10) we get

A = .9 OfA . (C + )- y A AaB 7- = 0 (4.11)
B=1

Substituting (4.9) into (4.11) leads to the final system of equations for A.,

{ j = [aof, . CcfB + &a'2B7H]- { 8 ofB- CE (4.12)
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5. From symmetry arguments, and by assuming that each surface contributes a rank-

one update to the rate of change of the elastic moduli. one obtains

= _ f c (4.13)

B=1 aOfB -CIE

4.1.1 Algorithm for the Rate-independent Anisotropic Elastic
Damage Model

We consider an integration scheme similar to that of Algorithm 3; however, because the

active surfaces (i.e., those for which 0A > 0) are not known a priori, a new procedure

needs to be developed. To this end we introduce the set of active surfaces at iteration k,

P) = {A10(k) 0> (4.14)act A

The procedure is then defined by the following steps:

1. Let j(k) be the set of active surfaces at the k-th iteration. Compute incrementsact

6AA(k), A E (k) . by employing an approach similar to that of Algorithm 3, as

described below.

2. Update 6,\A(k) by setting

6AA(k+l) = 6 AA(k) + AA 4 (k) (4.15)

and check the sign of 6AA(k+) If negative, drop constraint A from the active set and

restart the iteration. Otherwise proceed.
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The algorithm can be stated as follows:

Algorithm 8. Updated explicit/implicit algorithm for the multiple failure surface, small-

deformation anisotropic elastic damage constitutive theory of Box 4.

Step 1. Initialize:

6AA(O) = 0 (4.16)

7(01) _trial (4.17)
n+l -- n+l1 he+

N(O) +1 = C f (4.18)

c0)= (4.19)

k = 0 (4.20)

Step 2. Update stress and hardening parameters:

(k) trial B c(k(k) (4.21)
(n+l -- nn+ Bn+

BEj(k)act
(k) A(k) A (k)

aA,n+l = aA,n + 6A A E act (4.22)

= a A J( )  (4.23)(k)A act

( a (k) +.0 (k) (k) 1) (4.24)9)A.,n+i ...--8, 1,n 1 t2.,n+l1,  , a m,,,., 1)

Step 3. Check for failure and convergence:

If (k = 0) then
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(0) ( o) + q(o) (4.25)
6A,n+l = JA,n+l A,n+ - O'A

act = A,+ > 0. A = 1,2,.. . (4.26)

else

() (k) q(k) A r(k) (4.27)
A,n+l -- dA,n+l + qA,n+l - O'A, A e jact

endif

If ((k = 0 arid P~) = 0) or I O(k) TO o l (k) tte

act =)o a,n+lI < TOL for all A E ac)) then

(k) (4.28)O'n+ I -- + (4.28)

,.= , (4.29)

aA,n+l = (k) A E (k) (4.30)
act

)
An+l= aA.n, A jck) (4.31)O An+1 -" tA~, A€ act

return

endif

Step 4. Compute 6A-increments:

For A, B E j(k)
act

DAB (k) - - (k) . + 2 (k) (4.32)
n+l I - t'Or 4,n+l * B,n+l 

"
+ a"O2ac B 'Jn+1

A~~~k~~lA) Afl -[ ABM k

6A/~ -6 Dn1 ] OBn+1 (4.33)

Jtemp = {A E (k) I 6AA(k+l) > 0} (4.34)

if act # temp) then

64



j(k) (4.35)
act = Jtemp

.(k)

For .4 -act

6 AA(k) = 0 (4.36)

Go to Step 2.

else

j(k+l) j (4.37)

act = temp

endif

Step 5. Update return directions and moduli:

N(k+l) = c 8 (k) A T(+I) (4.38)

A,n+l - n+ ' A,n+ A E (act

(k+ 1)1: b6 AA(k+ 1) NA (k+lN(A+1
Cn+1 -- =c - A.n+1 (4.39)c N k+ 1

AEik
+1

) En + I A,n+l

act

Set k= k+1 andgoto Step 2.

Remarks

1. We note that ,+I > 0 does not guarantee that surface A will ultimately be active.

By construction, j(k+l) C j(k)
act act'

2. The linear system of equations (4.33) reflects a Newton-like iteration to force

(bA,n+, = 0, A E Jact (4.40)
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The similarity between (4.33) and (2.113) should be noted.

4.2 Rate-dependent Damage Model

The viscous regularization of the multi-surface theory follows closely the development of

the single surface theory - see Section 2.5. It is given in Box 5 for completeness.

Box 5. A multiple failure surface, small-deformation anisotropic rate-dependent damage

constitutive theory.

Constitutive equation:

S= ce (4.41)

Hardening law:

4A - X (6B)) 7-1 (4.42)

B=I 7"

Damage evolution law:

(X, (6B)) cOo.fB 0 c&Of(
7 09 fB C'E(4.43)

B=1 r 'f•
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4.2.1 Algorithm for the Rate-dependent Damage Model

Numerical integration of the equations can be performed the same way as for the single

surface case. The procedure is described in Algorithm 9 (cf. Algorithm 5).

Algorithm 9. Updated explicit/implicit algorithm for the multiple failure surface, small-

deformation anisotropic elastic damage constitutive theory of Box 4, or rate-dependent

damage constitutive theory of Box 5.

Step 1. Initialize:

lvisc = J true, rate-dependent damage (Box 5)
false, elastic damage (Box 4)

Iquit = false

'At+l = tn+1 - t. (4.44)

t(o)
, + = tn (4.45)

6AA(O) = 0 (4.46)

(0) =_trial (4.47)
1n+l On+l Cn+l (4.47)

(0) (4.49)
n+I = C(

k = 0 (4.50)
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Step 2. Update stress and hardening parameters:

(k) trial -B() (k) (4.31)--1+ =z ff+ 6A )B,n+l

BEJP)
act

a(k) = + 6AA(k) j(k) (4.52)
A,n+l = aA,, + A, A E act

Ck(k) A r (k )  (4.53)
A,n+ = QA,ni, A _ ct

() a (k) -(k) ... (k)  
(4.54)qA,n+l =,n+l i I m,n+l

Step 3. Check for failure and convergence:

If (k = 0) then

(o) ( 0 (0) (4.55)
OA,n+l =- fA,n+l " qA,n+l - A

act {AI¢ > 0, A = 1,2,..., m} (4.56)

else

M +(k) ,(k) A(k) (4.57)
A,n+l = . A,n+l + A,,n+l - rA , A E "act

endif

If((k=0andP) = or

(lvisc = false and A,,+lI < TOL for all A E act)) then lquit = true

If ( lquit = true ) then

_(k) (4.58)47n+1 = Orn+ I  4.8

_=k (4.39)

(k)k

Cnq.I = Cn+ 1  
(.9

a4,n+l = c+() A E act (4.60)

68



rA)n+1 = aAn' A (k) (4.61)aA,, l = a ,,, . -ct

return

endif

Step 4. Compute 6A-increments:

For A, B E J(")
act

DAB (k) = _ ( (k) N(k )  7+-a2) (k(4.62)n+1 (af li 'A~n+l " B,n+l 
dl  O B n+ l(4 62

If ( lvisc = false ) then

4 ,A(k1} l) {bAA(k)}_ [AB (k)] - { ,(k) A B (4.63)6A, r61A , D;+ a+., B E j-k + mact

else

= 
(4.64)

+ k) 1 - exp 4 (4-65)
[.(k) (k+ ) ,(k)4

6AA(k+l) 6 bAA(k) n+IXAn+1/r, A E act(

endif

temp = act 6 \A(k+l) > O} (4.67)

If ((k) Jtemp) thenIf(act

a ter(k) 
(4.68)

For A ja(k

6AQAtk = 0 (4.69)
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Go to Step 2.

else

If (lvisc =true ) then

= 41 t" + + -nl(4.70)

Iqit =n true>0 te

endif

j(k+l)-
act - temp (4.72)

endif

Step 5. Update return directions and moduli:

(k+.1 = C~k1 8aof k)+ A (kct 1' 3

NAn_ n0 NAn ~ kA J)4.3

(k1 A(I)N(+1 N (kn+1
cn+1 -cn-6 ~ + (k-+l (4.74)

AEJP+ n+ IAn+1
Set k = k +1 and go to Step 2.
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Remarks:

1. The parameter S in (4.64) has the same physical meaning as - (+D 1 in the

single surface algorithm; cf., e.g., (3.46). Because we now have a matrix DAB to deal

with, we need an economical way to bound its eigenvalues. This can be accomplished

through Gerschgorin's circle theorem[15]. We define

f)AB = I(k) D A B (k)  B e (k)
XA,n+lDnBk i act (4.75)

We define the radii of the Gerschgorin circles by

AA E IfAB I  (4.76)

B E j(k)
act

B#A

Then,

S min (bAA _ fA)I (4.77)
j(k)A act

This value of S provides a lower bound for tgk and thus provides a conservative

estimate for stability purposes.

4.3 Plane Stress Algorithm for the Rate-independent
Damage Model

Generalization of the single surface plane stress inviscid algorithm to multiple surfaces is

straightforward: just as in the single surface algorithm, we introduce an extra unknown
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E33 and an extra equation.

U33 = 0 (4.7S)

Derivation of the algorithm follows along the same lines as for the single surface algorithm

described in Section 3.1. It is presented here in detail for completeness.

Algorithm 10. Updated explicit/implicit plane stress algorithm for the multiple failure

surface, small-deformation anisotropic elastic damage constitutive theory of Box 4.

Step 1. Initialize:

$AA() = 0 (4.79)

E = E,+1 (4.80)

(0) C-n,33 1 1E 1 1 ± Cn, 3 3 2 2 E2 2 + 2Cn,3312612 + 2Cn. 3 3 2 3 E 2 3 + 2Cn.331 33 (4.81)
E3 3 -(

Cn,3333

r(0) =,trial (4.S2)
n+ n+ l = Cnen+(

N(O) ^ l= (o) (4.83)

(0)
C O) = (4.84)

k = 0 (4.85)

Step 2. Update stress and hardening parameters:

(k) (k) - (k) (k)
n+ ,. 1 ,- n UA1Nln+i (4.G)

BEJk)"
act
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() A(_r (k) ( .7
A.,, I a.4., + AA(k), A E act4.S)
(k)(k

A.. , = Q 4 .,.4.., - J (4.SS)

(k) -(k) (k) (k) (4.89)qA-l = - 1.n+1 I O2,n+lI

Step 3. Check for failure and convergence:

If (k = 0) then

0(o) (0) (0) (4.90)
A,n+l f dA,n+l 

"
+

l 
"A,n+l - O'A

() 4 10(, > 0, A = 1, 2, m} (4.91)

act 0,n.l

else

+(k) (4.92)A,n+l A~n+l +r "A,n+l - OA (.2

endif

If ((k = 0 andJ ( ) =0) or

((k+1) I'TO (ko)l AJk n j ~<
A,+, < TOL, for all A E J(') and ( 3) TOL 2)) then

(k) (4.93)O'n+ 1  ffOn+ 1  4-3

_(k) ( .4
cn+l - cn+ 1  (494)

_ (k) j (k) (4.95)A'n+ l -= A,n+ l A E "act

aAln+l = aA.n ' A ( k )  (4.96)

return

endif
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Step 4. Compute 6A-increments and E33 increment:

For A. B E Pat)act
DAB (k) (k k) *()) + 2  (4.97)

O ,n+ * B n+l 
- AaB n+lj

6AA~kl{ bA(k)}(k+ I) = ' (k) -

n+ 1,33 n+1,33

[DABl] {c(k)1} { } 1
-{ OAn+11 A,B E J(k) (4.98)

f +) 13 CT(k), 
a

n , Cn,333 n+ 1,33

htemp = {A E Jakt I b AA(k+ l ) > 0} (4.99)

If (Jakt # Jtemp) then

Jct = Jtemp (4.100)

For A J()t

6AA(k) = 0 (4.101)

Go to Step 2.

else

(k+l1)-
c t -temp 

(4.102)

endif
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Step 5. Update return direction and moduli:

N(k+=) _ D A e jtk) (4.103)
A,n+l 'n+1 J.4,n+l (4.10)act

1A(k++)N N+
lA A'n+l A.n-1 (4.104)=k+l) _ (k+ 1) N(k+l)

AEJ(k;l) n+I A,n+l
act

Set k= k+I and go to Step 2.

4.4 Plane Stress Algorithm for the Rate-dependent
Damage Model

The integration algorithm for the plane stress, multiple surface theory with regularization

follows, once again, along the lines of the single surface theory. At the end of the inviscid

calculation the viscoplastic regularization is done, the 33-strain is updated to account for

the ZNS constraint, and the final stress is computed.
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Algorithm 11. Updated explicit/implicit plane stress algorithm for the multiple failure

surface, small-deformation anisotropic elastic damage constitutive theory of Box 4, or rate-

dependent damage constitutive theory of Box 5.

Step 1. Initialize:

vise =f true, rate-dependent damage (Box 5)
s false, elastic damage (Box 4)

Iquit = false

Atn+I : tn+1 - t, (4.105)

n= t( (4.106)

6AA(0) = 0 (4.107)

E = fn+l (4.108)

(0) Cn,331 1 11  + Cn,33 22e 22 + 2cn.3 312 C1 2 ± 2cn. 3323E23 + 2Cn,31 3€3 (4.109)
Cn,3333

(0) = trial
n+ = n+I = c.En+1 (4.110)

N A,n+l = Cnn90'fJAOn+l

(0)n+I = cn (4.112)

k=0 (4.113)
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Step 2. Update :tress and hardening parameters:

On= C(0 nC.. - E 6A R 'k )N+4.114)

BE 7 k )act
(k) j(k)

aA,.+I aA, + 6A ', A E Iact (4.115)

= &~, A ~ ac a4.1t

( ( k )  
4.116

(k) (k) (k) ( (a
qA,=+1 -0- (al,n+l, a.,n+l . .an+(4.117)

Step 3. Check for failure and convergence:

If (k = 0) then

(o) f r(o) +9(o) +-OA(4.118)
A,n+1 - A,n+1 

"}  A,n~l - '

act { A , ( > 0, A = 1,2,..., (4.119)

else

(k) _ (k) _(k) AJ(k) (4.120)OA,n+l -- fA,n+l + qA,n+l -- (A, A4 E "act

endif

If ((k=O0 and ° J O)ac Or
act )o

lvisc = false and TOL, for all A j(k( vsc fls nd]A,n+ act

aid ln.k) i ,3 3 1 < TOL2 )) then 1qiit = true

If ( lquit = true ) then

(k)
(,n+l = 0'71+1 (4.121)

n- (k)  (4.122)
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S (k) j(k)aA.n+l .n+l A E (4.123)
-act

a.4. n j ( k) 4.124)
aAn+l = .. 4 act  . .

return

endif

Step 4. Compute 6A-increments and E33 increment:

For A, B E Pk)act

AB (k) a ( (k N(k) + a2 H (k)Dn+ 1  t' ) N rA,+"S, I+oo'n (4.125)

If ( lvisc = false ) then

_ J {) AA(k)}
(k+ 1) - I() --

{ n+1,33 n+ 1,33

DA Bkl 1 (k~i+[Dn+ 1  T {cOfA} 4 A A,B1E " (k) (4.126)
L " B(k) 1 T  (k) , 'act

- Bn+, Cn,3333 n+1.33

else

+ = (4.127)

t(k) 1-exp( 
4,2))

An+1 = + ik)(41)
1 n+1

6 6~ ,,A(k) + At(k) (k) , A j(k)) A 6Al = ,ak n+IXA,n,+1/7 ' A E at(4.129)
act

(k+1) Cn,3311-II + Cn.33-22 622 + 2C, 133 E1 e12 - 2Cn,3323 E'3 + 2Cn,33 13E1 3fn+ 1,33 = "

Cn,3333

6 )A (k+ 1) (k)
A" n+1.33 (4.130)

AEJ (k) Cn, 3 333
act

endif

Jtemp { E J ct I &6A, +I) > 0} (4.131)
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if (Jact 54 Jtemp) then

j(k) j4.!32)
act = "temp

F o r A j' -a

6 ,A(k) = 0 (4.133)

Go to Step 2.

else

If ( lvisc = true ) then

t(k+i) =(k) ^+(t) (4.134)tn+l t n+l +f .Atn+1 414

If (tlk+' - t+ 1 > 0) then
A(k) At(k) (k+) (4.13)

n-+x = -,+l - n,+1 -tn+1 415

lquit = true

endif

endif

j(k+l) (4.136)act = Jtemp(416

endif

Step 5. Update return direction and moduli:

N (k+ ) C!k) n (k) j() ( .3
A,n+l A E act (4.137)

N k+) N (k-4.- ()
c ( k+ l 1)6\4.13(8,-6 A -6

1(k+1) N k+1)

act ni-4-I
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Set k = k + 1 and go to Step 2.

so



Chapter 5

Conclusions

In this report we have considered a variety of three-dimensional and plane stress constitu-

tive models and algorithms for reinforced concrete plate and shell structures. Anisotropic

damage mechanisms have been accounted for to provide a setting for incorporating vari-

ous failure phenomena within a homogenized, cr distributed. constitutive representation.

Rate-dependent effects have been introduced by way of a viscous regularization technique.

This feature is useful for faithfully modeling high rates of loading, and also provides a con-

stitutive framework which avoids certain numerical pitfalls associated with strain-softening

behavior. Multiple failure surface theories have also been investigated. These are useful

for the development of damage theories based upon often-used, multiple surface theories.

such as the cap model, and related potentially useful theories employed in the modeling of

fiber-reinforced composites.
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