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Chapter 1

Introduction

The analysis of reinforced concrete structures presents numerous challenges to the struc-
tural analyst. Essential prerequisites to performing effective calculations of reinforced

concrete behavior include

1. Constitutive relations that accurately model the damage incurred by the concrete

during crushing and cracking.

[A)

. Robust theories and numerical implementations that can capture strain softening.

3. An efficient methodology to model reinforcement.

In previous studies. the senior author has investigated various aspects of devel-
oping computational methods for reinforced concrete plate and shell structures. In [22]

continuum based plate and shell theories were introduced for finite element modeling which




permitted differing constitutive behavior at different laminae to facilitate representation of
reinforcement through the thickness. In [11] a comprehensive study of constitutive mod-
els and stress-point integration algorithms was performed. Elastoplastic and viscoplastic
theories were presented and isotropic damage mechanisms included. The principles upon
which integration algorithms could be designed were thoroughly discussed in the context
of the convex cutting plane method, a widely used procedure in optimization theory [14],
and application was made to the cap model which has been used for modeling soils and
concrete. In [9] the state-of-the-art in finite element modeling techniques for reinforced
concrete plate and shell structures was assessed and suggestions for further research work
were made. Several areas delineated as important in [9] have been pursued in this study,
and elsewhere (e.g., L. R. Herrmann and colleagues are performing research on the bond-

slip problem under NCEL support(5]). A summary of this report follows.

In Chapter 2 we consider constitutive models and algorithms for three-dimensional
reinforced concrete behavior. We begin in Section 2.1 with a brief discussion of explicit
and implicit methods for integrating constitutive models. The cutting plane algorithm
described in [11] may be classified as an explicit procedure, which entails advantages in
certain circumstances, and disadvantages in others. The most proment implicit method,
namely, the closest point projection algorithm, is described in Section 2.1.1 within the
framework of a general elastoplastic theory previously considered in [11]. This algorithm

overcomes numerical stability limitations in the viscoplastic case. at the price of sumewhat

o




more involved calculations during each iteration. Viscoplastic regularization has been pro-
posed as a useful device for circumventing difficulties induced by strain softening. which
occurs during concrete crushing and cracking. Consequently. the closest point projection
algorithm may prove a useful technique in the development of algorithms for reinforced

concrete structures subjected to severe loading environments.

In Section 2.2 we introduce a class of rate-independent anisotropic elastic damage
models. Previously, we investigated a simple class of isotropic damage models [11]. but
the hypothesis of isotropy precludes adequate representation of, for example, cracking,
which clearly induces anisotropy. The theories described herein, studied previously by
Simo [20] in another context, assume that the elastic moduli are damage parameters and
evolve according to a damage evolution law. The failure surface automatically induces
an anisotropic damage mechanism. Likewise, the theory accomodates initially undamaged
anisotropic elastic moduli, which are necessary for representing even the linear elastic

response of reinforced concrete when viewed as a homogeneous continuum.

In Section 2.3 we present algorithms for the rate-independent anisotropic elastic
damage model. Fully implicit algorithms are proposed in Section 2.3.1. but it is concluded
that these methods entail calculations at the stress-point level which are too intensive
for practical use in large-scale finite element analysis. Simpler explicit/implicit methods

are introduced as alternatives in Section 2.3.2. The first of these algorithms freezes an




“update direction” at its initial value whereas in the second procedure the update direction
is recomputed during each iteration in an explicit. multi-corrector fashion (see Hughes [10].
Chapter 9, for related ideas in dynamics). The latter algorithm. referred to as the updated
explicit /implicit algorithm, is viewed as simpie enough for implementatation in large-scale
finite element programs, while at the same time it “almost” attains full implicitness, a
potential advantage with respect to accuracy and stability. As an example, we apply the
theory in Section 2.4 to an elliptical failure surface in pressure-deviatoric stress space and

specialize the updated explicit /implicit algorithm to this case.

A rate-dependent generalization of the damage model is presented in Section 2.5.
The classical Perzyna idea of viscous regularization {16] is invoked in which the consistency
parameter is replaced by a non-dimensional switching function, which turns on when the
failure surface function is positive, divided by a relaxation-time parameter. A variant on
the up Jated explicit /implicit algorithm is developed for the rate-dependent model in which

a stable subincrementation strategy, as described in [11], is employed.

The damage constitutive models for three-dimensional analysis presented in
Chapter 2 are useful for detailed modeling in regions of supports. haunches. and transition
zones. They are also useful in the generation and qualification of plane stress analogs for

plates and shells applicable to large-scale structural modeling.




Plane stress generalizations of the algorithms of Chapter 2 are presented in
Chapter 3. The rate-independent and rate-dependent cases are presented in Sections 3.1
and 3.2, respectively. Use of these models in conjunction with plate and shell formulations

1s discussed in Section 3.3.

In previous research, attention has focused on the cap model for mndeling con-
crete (see, e.g., {11]). The cap model falls within the framework of the general elastoplastic
and viscoplastic theories considered in [11], except for the fact that it is a particular ex-
ample of a so-called multiple yield surface theory. In the present framework of damage
modeling, we are likewise concerned with multiple failure surfaces in analogy with multiple
vield surfaces in elastoplasticity and viscoplasticity. For the cap model, we presented previ-
ously a concise algorithm for integrating the constitutive equation and ecfficiently handling
the three branches of the yield surface. General approaches for handling multiple yield
surfaces have been presented in [18,19]. Herein we adopt a more general point of view
and in Chapter 4 develop multiple failure surface analogs of the single surface models and
algorithms described in Chapters 2 and 3. The approach assumes “m” failure surfaces.
Consequently, by taking m = 3, and specifying the failure surfaces to be those of the cap
model, the approach reduces to cap-like anisotropic damages models. However, we believe
the general approach has considrrable potential in that different and more elaborate sets of
failure surfaces will likely Le more appropriate for modeling reinforced concrete including

cracking, crushing, and bond slip.




The three-dimensional multiple failure surface, rate-independent anisotropic elas-
tic damage model is presented in Section 4.1. The updated explicit /implicit algorithm for
this case is developed in Section 4.1.1. Similar developments are carried out for the rate-
dependent version in Sections 4.2 and 4.2.1. Plane stress analogs are examined in Sections
4.3 and 4.4. The rate-independent case is dealt with in Section 4.3 and the rate dependent

case in Section 4.4. Conclusions are drawn in Chapter 5.

The present work allows for modeling reinforced concrete by way of point con-
stitutive equations. The effect of concrete, reinforcement, and their interaction, is. in
principle, representable by “homogenized”, or distributed, constitutive relations. An ap-
proach of this kind represents an efficient alternative to those currently in use in which
reinforcement and concrete are modeled separately, and bond-slip is generally ignored.
What is required to make an approach of this kind a practical reality is characterization
of the failure surfaces and hardening laws for reinforced concrete. All salient physical
mechanisms, e.g.. cracking, crushing, bond-slip. tension stiffening, shear retention. etc..
are, in principle, subsumable within such an approach. On the other hand. the practical
and specific realizations of the failure surfaces and hardening laws represents an essential
but non-trivial endeavor. As a starting point for such an endeavor it seems useful to study
the failure theory of fiber-reinforced composites. It is intuitevelv clear that fiber-reinforced
composites and reinforced concrete have many features in common. In particular. failure

surfaces for fiber-reinforced composites have been studied extensively. e.g.. one may men-




tion the well-known Tsai-Hill and Tsai-Wu criteria [12]. (An ellipsoid in stress space is a
special case of Tsai-Wu. ¢f. Section 2.4). It is felt that a worthwhile avenue of approaci: for
developing the detailed aspects of the types of models described herein begins with existing
work in fiber-reinforced composites. One of course would need to identify the material pa-
rameters of the model selected. In principle, this could be done by testing “specimens™ of
actual fabricated reinforced concrete slabs; however, due to specimen size and the number
of different tests required, this would appear impractical. On the other hand. assuming 4
constitutive model existed for unreinforced concrete that one had confidence in. and if a
sufficiently accurate model of bond-slip behavior existed (see recent work of L. Herrmann
and colleagues at U.C. Davis[5]), and employving standard elastoplastic modeling of steel
rebars, then computational tests might be performed to determine the failure surface pa-
rameters for the “composite”. These could subsequently be used to define the anisotropic

damage reinforced concrete model.

Likewise, failure surfaces used for unreinforced concrete such as the well-known
plane stress Kupfer surface [13] — see Figure 1.1 — and its three-dimensional general-
izations could be used as failure surfaces for anisotropic damage models'. Constitutive
equations of this kind are frequently combined with discrete truss-like or membrane-like
equivalent rebar distributions in current capabilities (see. e.g.. Cervera. Hinton. and col-

leagues [2.3] for representutive approaches of this kind).

!The failure surtace could likewise be the CAP yield surface used in previous studies




I\
O
D
m————

— 20'5 cm

e P
IPE2 g

JESEEEE RS

>.,.,._v—z’—-—_:§

Figure 1.1: Bi-axial streagth of concrete. fe stands for the uniaxial compressive strengzh.

W




An issue which needs to be emphasized when dealing with severely loaded rein-
forced concrete is strain softening. The theoretical and numerical sensitivities engendered
by this phenomenon are still subjects of heated discussion in research circles. Essential in-
sights into numerical difficulties (i.e., spurious mesh dependence) brought about by strain
softening were presented in one of our previous studies [9]. Basically. two methodolo-
gies remain in use to deal with this problem. The first involves specifying key material
parameters to depend upon finite element mesh length scales (e.g., the plastic modulus
in an elastoplastic theory). This approach is throughly discussed in [9] and references
cited therein. The second approach employs viscous regularization. Deficiencies noted
for rate-independent elastoplastic models used to represent strain-softening are avoided
by rate-dependent viscoplastic models obtained by a viscous regularization of the elasto-
plastic model. This approach has been advocated by several investigators. Valanis [23]
has provided computational and theoretical results supporting this view. One of the main
reasons we developed the rate-dependent versions of the anisotropic damage models in this
report was to provide a practical means for dealing with strain softening behavior. Fur-
ther research is, of course, still necessary on this topic. Nevertheless, within the spectrum
of methods and algorithms presented herein, fundamental objections to specific classes
of models (e.g.. rate-independent elastoplastic models), may be overcome. In principle.
the classical Perzyna viscous regularization employved herein also avoids the necessity of

employing mesh-dependent material parameters as described in [9]. Likewise. the rate-




dependent mechanisms present allow for more faithful representation of material response

to high rates of loading.

Throughout this report we focus our attention on small-deformation response.
The generalization to finite deformations, necessary for modeling large translations and
rotations associated with reinforced concrete plate and shell structural response to severe
blast loadings, may be simply accomplished by procedures described in [8]. See also {18] for
an update on approaches of this kind, and a description of their trials and tribulations. By
way of these by now standard procedures, all that is developed herein may be immediately

generalized to the finite-deformation case.

10




Chapter 2

Constitutive Models and Algorithms
for Reinforced Concrete

2.1 Explicit and Implicit Methods

In a previous report (see [11]), general classes of inelastic constitutive equations were stud-
ied and their applicability to concrete was examined. It was pointed out that two general
methodologies had emerged for the numerical integration of rate-independent inelastic
constitutive equations: the cutting plane algorithm [14] and the closest point projection

algorithm [18].

The cutting plane algorithm was discussed in detail in [11]. It avoids the evalua-
tion of gradients and Hessians. and thus is computationally simpler than the closest point
projection algorithm and therefore shculd be utilized whenever possible. However. severe

limitations exist when a viscous regularization is employed: the cutting plane algorithm is

11




ezplicit and numerical stability conditions may engender excessively small subincremental
time steps (see [11]). On the other hand. the closest point projection algorithm is implicit
and unconditionally stable. Consequently, it offers a potentially superior alternative to
the cutting plane algorithm when viscous effects are present in the constitutive theory.
However, the closest point projection algorithm is more computationally intensive than
the cutting plane algorithm per iteration, and thus this also needs to be weighed in any

comparison.

The closest point projection algorithm will be illustrated below for a general

class of rate-independent elastoplastic materials.

2.1.1 Closest Point Projection Algorithm

The following notations are employed:




> @ o

(]

Iteration counter
Cauchy or true stress

Total strain

Plastic strain

Elastic strain energy density function
Yield function

Strain-like internal hardening parameters
Consistency parameter

Function defining the direction of q

Function defining the direction of ¢P!

Hessian of the elastic strain energy density function
Residual vector in the Newton iteration

Tangent matrix in the Newton iteration

Identity tensor

Tolerance for feasible stress region

Tolerance for nonlinear residual

Partial derivatives are written in the following short-hand notation:

3]
Oo f = —a-g- (2.1)
qu = gé (2.2)
3 02
Ooqf = gg—éf(—],etc. (2.3)

13




The theory employed has been presented in [11]. For completeness we recall it

here. For further details. the reader is urged to consult [11].

Box 1. A small-deformation rate-independent elastoplastic constitutive theory.

Constitutive equation:

o = 0¥ <e _ epl) (2.4)

Hardening law:

q = Ah(o,q) (

o
(S]]
s

Flow rule:

ePl = ir(e,q) (2.6)

Loading/unloading conditions:

A>0 (2.7)
flo,q) <0 (2.8)
AM(o.q)=0 (2.9)

14



Remarks:

1. Note that the elastic constitutive law may be nonlinear and the flow rule may be

nonassociative. In the associative case

r=0cf (2.10)

o

The loading/unloading conditions are written concisely in the so-called Kuhn-Tucker

form of optimization theory.

3. The consistency condition yields the following expression for A:

aa'f'Cé

/.\=
(6af-cr—8qf-h)

The closest point projection algorithm is given by Algorithm 1{17]:

Algorithm 1. Closest point projection algorithm for the small-deformation rate-independent

elastoplastic theory of Boz 1.

Step 1. Initialize:

k=0 (2.12)

epl(o) = Pl (2.13)

n+l T bn




Q' =q, (2.14)

6Xd =0 (2.15)
Step 2. Compute stress. yield function and flow rule and hardening law residuals:
1
‘7521 = 0¥ (5n+1 - 654-(1/‘)) (2.16)
k k k -
fr(|+)1 =f (Uf.ll,Qill) (2.17)
plxy , _pl (k)
k —€ny1 T €n k T
R{), = { 3 } + 621, { e } (2.18)
—Qn+1 +9n n+1

If (k=0 and f{, < TOL,) or (|f{}\| < TOL, and ||R), ]| < TOL)) then

n

P, = Pl (2.19)
Qosr = aS (2.20)
return

endif

Step 3. Compute elastic moduli and consistent tangent moduli:

k 1k

), = 82 ¥ (€n+x - )) (2.21)

(k) \~1 (k) 5 (k) (k) k B

AR _ [(cn-l»l) + ‘5'\n+1adrn+1} 5An+x3ql‘sx+)1 (2.22)

" A%, 05 hi¥) I+ 6%, aqh® o
n+190 Ny =1+ 0A410qhn
Step 4. Calculate increment of consistency parameter:
(k) (k) k (k) (k)
A/\Sﬂx _ n+l = [ atrfnn aqfr(u-)l ] An+an+1 (2 23)

(k)
k k (k) r,
o0t oarthy | AR 1 )

n+1

16




Step 5. Calculate incremental plastic strains and internal variables:

Lk k) \—! (i)
v T VL DD [R“‘im_\u\n,x{ o) }1 (2.24)
Aqgﬁzl 0 -1 " " hn-zl J

Step 6. Update plastic strain. hardening and consistency parameters:

plx)

(% 1 -
E§3+(1 = GE+(1k) + Aen (2.25)
k+1 k k
ql =) + aql?, (2.96)

k -\ (k k -
ALY = 52 4 AN (2.27)

Set k =k + 1 and go to Step 2.

Remarks:

1. The above algorithm is conceptually simple: the rate equations are integrated via
an Euler backward-difference scheme and the resulting (nonlinear) equations are
then solved with Newton's method. A sketch of the derivation is provided for the

interested reader:

Backward difference formulas:

1
554.1 = fgl + 6Ans1Tnsy

dn+1 = qQn + 6/\n+1hn+1
6/\714»1 = /\n+1 - /\n

17




Newton's method:

kth

Linearization is performed about the 1terative approximation to state n+ 1. The

notation “A” is used to denote the difference between consecutive iterates, e.g.,
AN = N = a8 (2.31)
This should be contrasted with the use of “67, i.e
SV = AN -, (2.32)

We need to evaluate the backward difference formulas at iterate & + 1 and linearize

about iterate k, viz.

El(f“) - €§1+5/\g1+11) (k+1) (2.33)
QY = au+ IR (234

l(k 1(k k) (K k k k
p '+ Ae E+(1) ~ fgl + A’\&llrglx + 5’\£u21 ( &-21 + Arfﬂ)-l)
= epl A’\(+1T$:2x +
k k k k k k -
S (2 + Brldy - Aol + 0grlh) - AqlY),)  (2.35)

Likewise,

k k (K
qf,lx + Aqﬁlx = q,+ A)‘gw)lh‘ﬂ +

A (s + O il - Aol + 0qridy - Aqy) (2:36)

Lineanzing o results in,

A (k) (k) l(x)
Aan+1 = Chsr <“A€£)+1 )

—_
[EV]
(9% ]
-1
—

18




&

Substituting this result into the previous two. and combining in a matrix format

results in

()

Al (Rﬁfl + AL { s }) (2.38
Aqn+l 0 -1 +1 1 +1 hg‘ll )

(s8] o

where AfH,, is defined in (2.22) and R,(fz] is defined in (2.18). In order to determine

an expression for AAn+1, we must linearize f about state k, viz.,

k k k
0= £ = L+ and

lix)

AeP

o e [—ansth sasth )| 35 |

[ * d ] Aqiti)-l

= fEh - 0o f% gl | A
(k) w [ i 5
R, + AXn B (2.39)

n+1

Solving this expressicn for A/\n +1 yields (2.23).

The algorithm has a simple geometric interpretation in the case of perfect plasticity
( @ = 0 ), linear elastic response ( ¢ = constant ), and an associative flow rule

(h = 8g f). o041 is the projection onto the yield surface of the trial elastic stress

trla.l

o.M = 0¥ (e,,.H - egl> taking as a metric the tensor ¢ (see Figure 2.1). In

trial

summary. & .4, 1s the closest point projection of o}

onto the yield surface in the

energy norm.

. In the case of an associative fiow rule. normality is enforced with respect to state

n+ 1.

19




4. The algorithm is fully implicit.

2.2 Rate-independent Anisotropic Elastic Damage Model

The starting point is the assumption that reinforced concrete can be suitably defined by
elastic moduli. We note that nothing in the theory precludes these moduli from defining
an anisotropic material. For example, the moduli could represent the anisotiopy induced
by the pattern and amount of reinforcement. One assumes in this case that the basic

constitutive relation is given by

Time differentiating the above equation one gets

O = C€ + Ce (2.41)

As opposed to classical plasticity, where a rate equation defines the evolution
of the plastic strain. the proposed damage model contains an evolution law for the elastic

moduli c.

The following notation is introduced:




Figure 2.1: Conceptual representation of the elastic predictor-plastic return mapping al-
gorithm for perfect plasticity (no hardening).




o Stress tensor

€  Strain tensor

¢ Elastic moduli

a  Strain-like internal variable

q  Stress-like internal variable conjugate to a

¢ Failure surface

f  Stress dependent contribution to ¢

v  Total free energy function, ¥ (€,c,a) = € - ce + H(a)

H  Surface-like energy such that ¢ = —H'(a)

A Consistency parameter

oy Material constant used in the definition of the failure surface

N Update direction given by N = cOg ¢

® Tensor product

The stress-dependent contribution f to ‘e failure surface ¢ should not be con-

fused with the yield surface employed in the theory of Box 1. As will become clear, the
proposed model contains no plasticity, relying instead on an elastic constitutive relation

combined with a failure surface.

The continuum damage model is then given by the following equations:

td
o




Box 2. A small-deformation anisotropic elastic damage constitutive theory.

Constitutive equation:

Hardening law:

q~ -_ -dH”

Damage evolution law:

. :clof®clof
¢=-A 6af-ce

Loading/unloading conditions:

¢(e,q)=f(e)+q—0,<0
A>0

Af (Uvq) =0

(2.43)




Remarks:

)

. Since H is a function of & only, we employ the notation

H =0, H (2.48)

H' = &,H (2.49)

Because of the specific form chosen for the failure surface, one should note that

906 = do f (2.50)

. In a previous approach [11], damage was defined by a single scalar d € [0,1] that

altered the elastic moduli in an isotropic fashion. Although this approach may
be suitable for certain applications, the cracking of concrete intuitively gives rise
to anisotropic damage. The model under consideration accomodates anisotropic

changes in the elastic moduli (see equation (2.44)).

The total free energy consists of a classical elastic energy and a surface-like energy

H that accounts for damage hardening/softening behavior.

Unlike classical elasticity, the elastic moduli ¢ are treated as progressively degrading
internal parameters; these are determined through their initial values — possibly
anisotrepic to account for reinforcement — and an evolution law which redefines
them in specified directions according to the failure ciitcrion. An illustration of this

behavior is shown in Figure 2.2.




Figure 2.2: Stress-strain relation for a one-dimensional elastic damage model. The damage
mechanism causes unloauing at reduced values of the elastic modulus. Unloading occurs
towards the origin.
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6. The equations in Box 2 can be obtained by employing the principle of maximum

dissipation (see {1.6.18]). We sketch the derivation below.

Time differentiating the free energy leads to
: . 1 . - -
w=e-ce+[;e~ce+'Ha (2.51)

By definition, the dissipation function D gives the rate of change in free energy due

to changes in the inelastic internal variables. From (2.51), we get

’D:—%e-ée—?—('d (2.52)
Hence, the rate of change in the free energy is given by

h=cé~D (2.53)
The second law of thermodynamics requires that. for all €,

-~ +0-€>0 (2.54)

Satisfaction of (2.54) can only be obtained if the following two conditions hold

!J
ot
e

v
Vv
(o]
e
31
D

Hence, the second law of thermodynamics combined with the form of the free energy

assumed leads to two conclusions:

(a) The stress-strain relation takes on the usual elastic form. namely o = ce.
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(b) The dissipation function D is non-negative.

In order to state the principle of maximum dissipation we introduce the set of ad-

missible states &,

E={(e.q)]¢(o,9) <0}

®
Ot
<1

The principle of mozimum dissipation then states that the dissipation function D is

maximum subject to the constraint

(o,9)€ & (2.

(&)
<]}
oo
S—

Equivalenty, this can be phrased in terms of a minimization problem for —D, namely

min (=D)

(0.q) € E (2.59)

If it were not for the constraint ¢ < 0, the optimality conditions could be simply
obtained by differentiating —D with respect to o and ¢. This approach can still be
utilized if one employs the method of Lagrange multipliers, which transforms the con-
strained minimization problem above into an unconstrained problem by appending

to —D the constraint times a Lagrange multiplier A. This gives rise to a Lagrangian

L. defined by

L=-D+Xé(o.q) (2.60)
The optimality conditions are then given by

OcL =0 (2.61)

9qL =0 (2.62)

9
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along with the Kuhn-Tucker conditions

A>0 (2.63)
é(o,q) <0 (2.64)
Ao (o,q)=0 (2.63)

In order to perform the differentiations in (2.61) and (2.62), we rewrite the dissipation
function D as an explicit function of & and ¢, obtaining
1 -1: =1 . z
£=§a-c ccTlo—qa+ A[f(o)+q—oy] (2.66)
Differentiation with respect to o and ¢ is now straightforward leading to
¢e = —A\cdo f (2.67)

&= A (2.68)

Note that the consistency parameter A can be interpreted as a Lagrange multiplier

that forces & and ¢ to stay within the allowable region.
7. In view of (2.68), the hardening law (2.43) can be rewritten as

G= -\ H (2.69)

8. During amage loading, o = 0. From (2.45) one gets

é:@a-f.d'-.*-q (2.

£
-1
faw]

1N
o0




Time differentiating the constitutive equation (2.42) and substituting into (2.70)

leads to

2

1)

Substituting the hardening and damage evolution laws, equations (2.43) and (2.44).
into (2.71) and setting o to zero results in an explicit expression for the consistency

parameter,

_ aaf'Cé
—agf-caa'f+H”

. The derivation of the expression for ¢, (2.44), deserves special attention. Assuming

that ¢ is a rank-one tensor, the symmetry conditions

Cijkl = Ckiij = Cjikl = Cijik (2.73)
and (2.67) imply the damage evolution law:
— _Acadf@v’cadf (2.74)
ao'f - C€

The rank-one assumption is the key to obtaining this simple expression. Note that
(2.67) and (2.73) can be satisfied by infinitely many other definitions of ¢. This
may be a worthwhile avenue of future research in that cracking and crushing may be
amenable to more realistic treatment by appropriate generalizations of the definition
of ¢. The subject of quasi-Newton updates may be relevant in this regard (see. e.g..

Luenberger{14]) in that (2.67) has the form of the so-called quasi-Newton equation. It
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should be possible using the methodology of quasi-Newton updates to satisfy (2.67),
(2.73). and other attributes deemed useful in the descrpti. 21 of cracking, crushing.

bond-slip. etc.

2.3 Algorithms for the Rate-independent Anisotropic
Elastic Damage Model

2.3.1 Fully Implicit Return Mapping Algorithm

A first attempt to integrate the above equations might employ a similar approach to
that used in the closest-point projection algorithm for plasticity. This would lead to the

following set of ncnlinear equations:

cn+laﬂfn+1 & cn+160fn+1

Cnt1 = Cpn — 6A 2.73)
* " aaf “Cnt1€n41 (
Ont1 = Cny1€n4 (2.76)
Gny1 = -H (an + 6’\) (277)
In an elastic step, one has 6\ = 0 and the solution of the above is obviously trivial.
However, if damage evolution occurs, to the above equations one adds
‘15(0'71+1~(1n+1) =0 (:2-78)

Equations (2.75)-(2.7v8) amount to a fully implicit nonlinear system. One has
to solve stmultaneously for c,,1. 0,41, ¢uyy. and &N, Solving such a large nonlinear sys-
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tem of equations at each integration point at each nonlinear iteration of a finite element
analysis appears impractical and alternative integration schemes are thus called for. Some

simplifications are described below.

2.3.2 Explicit/Implicit Methods

We consider the explicit integration of the elastic moduli while mantaining an implicit

integration for the other variables. This leads to the following system of equations

o’gillal = Cn€n41 (279)
~+rial trial
enpr = ¢, — 525207 *t‘ria? ©n0g frs1 (2.80)
JO'fn-H *Cn€nyt
Ontl = Cputf 41 (281)
gn+1 = —H' (an + 6X) (2.82)
$(Cn41:9n41) =0 (2.83)

The above system can be solved by the following algorithm:
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Algorithm 2. Ezplicit/implicit algorithm for the small-deformation elastic damage con-

stitutive theory of Boz 2.

Step 1. Initialize:

§A® =
0
‘7514)—1 :illal = Cn€nip

0
foll =Cpn- at7fn+1

k=0

Step 2. Update stress and hardening parameters:

(k) trial k)nr(0
OTnp1 = nI-;-ll ~ 8\ )NSH)—I

afﬂ, = an + 620
(k) ' k
Gny1 = —H (aﬁlx)

Step 3. Check for failure and convergence:

(k) (k) (k)
Cny1 = fn+l + dne1 — O f

If (k=0 and ¢!/, < TOL )or (|¢¥),] < TOL)) then

o U(k)
n41 = n+1

(0 (0)
Nn+l @ Nn-bl

Cy (K
Cnpy = Cp — SR o)
Nn+1 “€ng
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(2.88)
(2.89)

(2.90)



(k) (2.94)

Qnet1 = Qg
return

endif

Step 4. Compute §\-increment

D), =~ [0 fi - N + 1" (of))] (2.95)
SAE+D = 530 _ pExD Do) (2.96)

Set k =k + 1 and go to Step 2.

Remarks:

1. The trial stress a',tf'_if‘l = aﬁf’ll is similar to that introduced in plasticity: the inelastic

parameters are frozen at their previous values and the stress is updated with the

current strain value.

)

Equation (2.88) is derived as follows:

Orns1 = Cnpi1€nyg

= Cp€n4q + (cn+1 - cn)€n+l

trial ‘
= 0n+1 +(cn+1 "'Cn)en+1 ( .

2
O
-1
—
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The second term is replaced by a discrete version of (2.67). namely

(cn+1 —Cp) €ny1 = “6/\Cna¢7f7(13.)1 (2.08)

. The above system of equations contains a single scalar unknown 8\, a considerable
simplification compared with the fully implicit system described previously. This

single scalar unknown is the solution of (2.83), which can be written in the form
0=34(6)) = f (a,ﬁfjfﬂ _ 6,\Nf,°ll> — H (an + 6N) — o) (2.99)

Step 4 of the algorithm amounts to a Newton iteration method for solving this

nonlinear scalar equation.

. Note that the update direction is held fixed at its initial value Nfloll. In an attempt
to improve upon the accuracy of the explicit/implicit solution described above, we

consider a variant below which, at each nonlinear iteration. recomputes the update

direction N = cdg f.
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Algorithm 3. Updated ezplicit/implicit algorithm for the small-deformation anisotropic

elastic damage constitutive theory of Boz 2.

Step 1. Initialize:

§XM =0
0
51-4)-1 - o'gl-;-llal = Cn€n41

0 0
Nul = Cnadfr(x-i»)l

P -
n+l Cn

k=0

Step 2. Update stress and hardening parameters:

(k) _ trlal 5’\(k)NUf+)-l

ﬂ+1 - n+1

0‘51’21 = an + 6A®
(k k
aih = =M (al))

Step 3. Check for failure and convergence:

(k) (k)
Gng1 = fn+1 + qnt1 — 05

If (k=0and ¢!}, < TOL )or (Jol*),] € TOL )) then

(k)
Ont1 = Ony

(2.100)

(2.101)

(2.106)

(2.107)

(2.108)

(2.109)




Cogr = ), (2.110)
Onp1 = o) (2.111)
returm

endif

Step 4. Compute é-increment:

Do\, = - [aa.fr(llj-)l 'Nfﬂx +H (ar(z’:zl)] (2.112)
SAEHD = 520 _ 18, /Do), (2.113)

Step 5. Update return direction and moduli:

k+1 k k
NEY = )00 £ (2.114)
{41 o kD)
et = ¢, — sA+) Znat B e (2.115)
€ns1 - Npi

Set k = k + 1 and go to Step 2.

Remarks:

1. Despite the explicit update in the return direction N, the algorithm is implicit with

respect to the solution of the (nonlinear) equation

¢(0’n+1,Qn+1) =0 (2.116)
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Analogous to (2.99), we write

0=3(6\) =f <a“fial _ 5,\N‘n’;’1) —H (an + 6X) — (2.117)

n+1

Equation (2.112) follows from (2.117) by employing (2.105) and (2.106).

2. The update for the return direction, equation (2.114), is an attempt to approximate

the implicit algorithm sketched in Section 2.3.1.

3. An important distinction between the present algorithm and the implicit algorithm

of Section 2.3.1 is that here equation (2.73) is not necessarily satisfied by c,4;.

4. The present algorithm represents an attractive balance between computational effort
and implicitness. It is employed as a basis for subsequent developments within this

report.

2.4 An Example: Elliptical Failure Surface in Pressure-
Deviatoric Space

As an example of a typical application, we consider a failure surface given by

R‘Z
flo)==(p- po)’ + ||deve|® — R? (2.118)
p=—tro/3 (2.119)
Qo =deve = o + pl (2.120)

where R, S. and py are material parameters.
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Remarks:

1. Q is a projection operator that extracts the deviatoric part of a symmetric tensor.

That it is indeed a projection can be seen from the fact that

Q20,=Qa. (2121)

Along with Q we can introduce another projection operator P,

Po = tra§ (2.122)
where I stands for the identity matrix. Note that

Po+ Qo =0 (2.123)
and that

PQ=QP=0 (2.124)

2. The above failure surface represents an ellipse in p — devo space, with R being the
semi-axis of the ellipse in the deviatoric plane and S the semi-axis in the pressure

plane, as shown in Figure 2.3.

3. As mentioned in {11}, if the cutting plane algorithm is employed, the failure surface

has a preferred representation which, in the current case is

£(0) = | o) ¢ v — P (2.125)
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4. po is introduced in order to control the tensile resistance of the concrete model.

5. The failure surface above is isotropic. A more general surface of the Tsai-Wu type
(see, e.g., Jones [12]) is given by

2

F(0) = Z(p-po) +3Q0 - MQo - B (212)

where the tensor M could account for anisotropic elastic behavior as that emanating
from reinforcement. For simplicity in the exposition, we proceed with the surface

described by (2.118). The generalization to (2.126) is straightforward.

Damage will be described according to the relation
H(a) = —Ha (2.127)

where H is assumed to be a positive constant. The negative sign is indicative of the

presence of softening behavior attributable to crushing and/or cracking of concrete.

For a material characterized by (2.118) , one can utilize Algorithm 3 in which

2 R?
Oo f = 332 (P—po)I +2Qo (2.128)
H = —H (2.129)
H'=0 {2.130)

For the sake of completeness, Algorithm 3 is specialized to this case.
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Figure 2.3: Elliptical damage surface in the pressure-deviatoric plane.
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Algorithm 4. Updated ezplicit/implicit algorithm for the small-deformation anisotropic
elastic damage constitutive theory of Boz 2 with assumed elliptical failure surface in pressure-

deviator space and constant hardening modulus.

Step 1. Initialize:

M9 =0 (2.131)
o, = oltial = ¢ e, (2.132)
Py = —trol),/3 (2.133)
devo‘f,oll = agx + Pﬂll (2.134)
N, =2¢, [-%:;: (P~ po) T+ devci‘il] (2.135)
) =c, (2.136)
k=0 (2.137)

Step 2. Update stress and hardening parameter:

o), = gtrial _ s NGB (2.138)
Poiy = —tra'd,/3 (2.139)
devo'fﬂ1 = o'f,kll + pfﬂll (2.140)
o™ = a, + 62K (2.141)
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Step 3. Check for failure and convergence:

R?, 2 2
k) k , k) .
ofgﬂ = ?(Pill - po) + ||devet " -~ R*+ H - oy (2.142)

If (k=0 and ¢*), < TOL )or (|¢!¥);] < TOL )) then

Onsr =l (2.143)
Cas1 = ciy (2.144)
Qnyy = o)) (2.145)
return

endif

Step 4. Compute §A-increment:

) 1 R?
D@S‘lkll =2 [-§§ (P(rﬂl - PO) I+ de"'ﬂsﬂl} . Nsxk-lx (2.146)
SAEHD = 5410 — g2, /Do),y (2.147)

Step 5. Update moduli and return direction:

352
k+1) k+1)
)NSH-I ® NI

(k+1)
€nt1 - Nn+1

k41 k 1R? | x )
NS _ oc) [__ 2 (o4, = po) T+ devaf,ll} (2.148)

i = e — Al

(2.149)

Set k = k + 1 and go to Step 2.




2.5 Rate-dependent Damage Model

The rate-dependent damage model can be obtained from the rate-independent model by
means of a viscous regularization of the Perzyna type[11.16]. In this generalization. Ais
replaced by (\ (¢))/7, where Y is a non-dimensional function of o. (.) denotes the Macaulay

bracket, viz.

(r)={ z fz>0 (2.150)

0 otherwise
and 7 is the relaxation time. Also, the damage loading/unloading conditions are dispensed
with. As will be shown below, this model has the advantage of being trivially implemented

in a finite element context.

The theory is summarized in Box 3.

Box 3. A small-deformation anisotropic rate-dependent damage constitutive theory.

Constitutive equation:
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Damage evolution law:

¢= 1oV clof 2 clof (2.153)

r Og f - ce

Remarks:

1. Just as in viscoplasticity, the function x may be taken to be

X (¢) = (sgno) (o/9)" (2.154)

where y and N are positive constants, [11].

2.5.1 Algorithm for the Rate-dependent Damage Model

Integration of the equations in Box 3 can be done according to the following algorithm:

Algorithm 5. Updated ezplicit/implicit algorithm for the small-deformation anisotropic
elastic damage constitutive theory of Boz 2, ot rate-dependent damage constitutive theory

of Boz 3.

Step 1. Initialize:

Ivise = f true, rate-dependent damage (Box 3)
~ | false. elastic damage (Box 2)
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lquit = false

Aty = thar — ta (2.155)
A9 =0 (2.136)
9 =+, (2.157)
afg)_, = af‘iilal = Cp€ns1 (2.138)
N = cado fol (2.159)
cff)ll = C, (2.160)
k=0 (2.161)

Step 2. Update stress and hardening parameters:

0’&3: _ Uﬁiilal _ 6/\“‘)fo+), (2.162)
ag:‘,il = a, + 5/\(k) (2163)
g = =H' (o)) (2.164)

Step 3. Check for failure and convergence:

(k) (k) (k -
Sna1 = fash + Qais — 0 (2.165)

If (k=0and ¢*), < TOL)or

( lvisc = false and ltbfﬂ,! < TOL )) then lquit = true

If ( lquit = true ) then

Oniy = Uiﬂl (2.166)




(k)
Cnt+1 = Cnpy

(k)
QUnyp1 = Qpyg

return

endif

Step 4. Compute §A-increment:

k k k k)
Dd’fz-:ll) = [3 5 N )1 +H" (Qia-:l

If ( lvisc = false ) then
A — 59— g8, Dl
else

n+1 = T T %)
T$+ID¢n+l

(k) _ k) —Qtnia
A1:1:+1 =lp4 1- €xp -(k)n
tn+1

k+1 k k
tf.u ) = tf.ll + At$:+)1

.
£

If (%4 —¢,.1 > 0) then
A, = A, - (15 — 1)
lquit = true

endif

SARHD = 510 4 A ) /7

endif

46

(2.167)
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(2.170)

(2.171)

(2.172)

(2.173)

(2.174)




Step 5. Update return direction and moduli:

k+1) k (k —
NI = ¢ld,00 £13), (2.176)
(k+1) (k+1)
Nn+1 r81\In+l

(k+1)
€nt1” Nn+1

el = cp — A

Set k = k + 1 and go to Step 2.

Remarks:

1. As discussed in (11], the approach taken herein obviates the issue of stability by
automatically defining a prior: stable subincremental time steps within the context
of the updated implicit/explicit algorithm. The reader is encouraged to note the
similarities between the subincrementation strategy described in Algorithm 5 and

the one in (11}, as applied to the cutting plane algorithm.




Chapter 3

Plane Stress Models — Applications
to Plates and Shells

The application of the damage models described previously leads to a trivial implementa-
tion in three-dimensional geometries. Evidently, one might attempt to model thick shells
and/or plates with three-dimensional elements: however, as the shell gets thinner, the
cost of three-dimensional analysis, and numerical difficulties engendered by thin, three-

dimensional elements, suggest the use of shell structural elements.

3.1 Plane Stress Algorithm for the Rate-independent
Anisotropic Elastic Damage Model

A common feature of the structural plate and shell elements is the zero normal stress (ZNS)

constraint which. in the two-dimensional case. is equivalent to a plane stress formulation.
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A general approach for the analysis of plane stress problems is based upon the
introduction of €33 as an independent variable., where the third direction is normal to the
plane of interest. Solution of the resulting nonlinear system of equations can be obtained

by introducing the ZNS constraint as an additional condition to be satisfied:

o33 =0 (3.1)

One can easily modify Algorithm 3 by noting that the ZNS constraint can be

written as
(c,,eﬁ?’) ce33 ~ SAFING) e =0 (2.2)
where e3; stands for the unit tensor in the 33-direction, namely
0 0O
e;z=10 00 (3.3)
0 01

Hence, the implicit computation of §A\*+1) is done in conjunction with the com-

putation of eg’;“). A complete plane stress algorithm is then given as follows:

Algorithm 6. Updated ezplicit/implicit plane stress algorithm for the small-deformation

anisotropic elastic damage constitutive theory of Boz 2.

Step 1. Initialize:

SAMO = (3.4)
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€ = €,4] (35)

(0) Ca3311€11 + Cna322€22 + 2Cn3312€12 + 2Cn 3323623 + 2Cna313€13
Cn,3333
"5104)-1 = ”vt:l-;l?l = Cn€nt1 (3.7)
0 0
N, = cado £ (3.8)
0
CS;-Q)-I = Cn (39)
k=0 (3.10)

Step 2. Update stress and hardening parameter:

o®), = e, — XONLY, (3.11)
o), = a, +860® (3.12)
gy =M (af."ll) (3.13)

Step 3. Check for failure and convergence:

¢ = f + ) - oy (3.14)
If ((k = 0 and ¢\, < TOL,) or

(16%),] < TOL; and |0, 45| < TOL,)) then

(k)

Ontl = Opnpy (3.135)
Ct1 = Cogy (3.16)
Uns1 = A (3.17)
return
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endif

Step 4. Update 6\ and eas:

5/\(k+1) 5A(k)
Ul J={ }-

[ (90 £%, - NS, + 7 () [cador f] } {
k

n+1,33 €5,3333

Step 5. Update return direction and moduli:

(k)
‘f’,:‘,“ } (3.18)

Tn+1.33

k
NI = cl0o ol (3.19)
k+1 k+1
kD _ 6/\(k+1)N£;:1 '@ NI (3.20)
Cnt1 = Cn — eFr D) D) =
n+l n+1
Set k = k + 1 and go to Step 2.
Remarks:
(k+1)

1. Except in the 33-component, which is updated to satisfy the ZNS constraint, €

is identically equal to € = €,,,

n+1

2. Even though the traditional plane stress analysis does not contain the transverse

shear stresses and strains, they were included in the analysis here so the algorithm

can be applied to thick plates and shells, where these quantities are important.

Likewise, the preceding algorithm may be reduced to the traditional case by omitting

the transverse stresses and strains.




. The algorithm allows for different tolerances in the satisfaction of each of the con-

straints. namely TOL, for the failure surface. and TOL; for the ZNS constraint.

. The 2 x 2 system of equations one solves in Step 3 reflects the satisfaction of the two

scalar constraints,

5 {Cnefﬁt—ll) _ SARFING) gy (Ozn n 5/\(k+1))] =
hy (62041, 5 = A =0 (3.21)
(cneiﬁfl“) cezy — SARFINY) ey =

ha (A, €53) = A2 =0 (3.22)

Standard application of Newton’s method to the above two equations leads to
(k
[ 35'\}11 a€n+1.33h1 J ){ 5?(k+1) - i/\(k) } = { h(lk) } (3 ‘73)
] = 2
65/\h2 6!u+1.33h2 €£x++1,:)!3 - 55:-31.33 hgk)

Differentiating (3.21) and (3.22) we get

a&\hl = - (adf,(li)x . NL’:)-I + H” (C!,(.ﬁ)_l)) (324)
Bursrssht = [enlor fN] (3.25)
Bsahy = —NO, (3.26)
Ocpyr3ah2 = Cn3333 (3.27)

Combining (3.23) to (3.27) leads to the final expression in Step 4. equation (3.18).




3.2 Plane Stress Algorithm for the Rate-dependent
Damage Model

In this Section we present an algorithm which incorporates the plane stress constraint in the
rate-dependent damage constitutive theory. Qur approach combines features of Algorithms
5 and 6. In the absence of rate-dependent effects, the algorithm reduces identically to the

plane stress elastic damage case, namely Algorithm 6. The procedure is given as follows:

Algorithm 7. Updated ezplicit/implicit plane stress algorithm for the small-deformation

anisotropic elastic damage constitutive theory of Boz 2, or rate-dependent damage consti-

tutive theory of Boz 3.

Step 1. Initialize:

lvisc — true, rate-dependent damage (Box 3)
| false, elastic damage (Box 2)

lquit = false

Atpyy = thyr — tn (3.28)
0 =1, (3.29)
A0 =0 (3.30)
€= €4, (3.31)




(0) Cn.3311€11 + Cn.3322€22 + 2Cn 3312€12 + 2Cn.3323€23 + 2Cn 3313€13

€y = —

33 Cn,3333
(@ __ _trial _

Un+1 - an+1 = Cné€ny

(0 (0)
N, = .00

1)
cn+1 =Cn

k=0

Step 2. Update stress and hardening parameter:

k k k k
o)) = caell)) — ABNE),

afﬂl = a, + 61K

‘11(:»)1 =-H (aﬂl)

Step 3. Check for failure and convergence:

k (%) k)
SH)-I = Jfap1 T+ ‘11(;+1 — 0y

If (k=0 and ¢%*), < TOL,) or

( lvisc = false and |¢L’21| < TOL, and

o), 13l < TOL;)) then lquit = true

If ( lquit = true ) then

_ k)
Onyy = 0n+1

— (R
Cnt+1 = Cuyy

(k)
Apnyy = an+1

(3.33)
(3.34)
(3.35)

(3.36)

(3.37)
(3.38)

(3.39)

(3.40)

(3.41)
(3.42)

(3.43)




return

endif

Step 4. Update éA and €33:

Do)y = — (90 fih - NG + M (o)) (3.44)

If ( lvisc = false ) then

SAk+1) SA)
& T

(k) (k) -1 k
D¢n+l [Cnaﬂfnd—l]sa { ?21)-21 } (345)
- Nr(ik+)1 ,33 Cn,3333 Tn+1,33
else

7(k) T ,

bl = — = (3.:6)
X Dol
k k -Atn .‘ -
Atfﬂ)-l z(ni)-l [1 — exXp (Wj—l) (3.47)
tn+1 J

toan =i, + At (3.48)

If (¢&5) = tayy > 0) then
Atﬁl = Atﬁl ( S:&:l) - tn+l) (3.49)

lquit = true

endif
k .
AT = §AR) L g ) (KD (3.50)
fE+D Cna311€11 + Cn3320€22 + 2Cn 3312612 + 2Cn 3323€23 + 2Cn 3313613
3 = -

Cn.3333

k (k)
6/\( +l)*\n+l.33

(3.51)

"n.3333

(@3]
[S1}




endif

Step 3. Update return direction and moduli:

k+1 (k) (k) 3
N£‘+1 )= Cn+100 fatr (3.52)
(k+1) o nglk+1)
(k+1) _ 6k(_k+l)Nn+l ® Nﬂ+1 (3 53)
Cat1 = Cn — (<T) g+ 1) .
€1 Nmp

Set k = k + 1 and go to Step 2.

Remarks:

1. Note that with the introduction of the flag “lvisc”, Algorithm 7 can be employed for

both elastic and rate-dependent damage.

2. Because 6A(*+1) is explicitly computed, in the rate-dependent case — see (3.50) — the

evaluation of eg’;“) = efffll‘;a is also trivially obtained through use of the constitutive

relation, equation (3.51).

3.3 Applications to Plates and Shells

The above algorithm can be naturally emploved in the analysis of structural elements
like plates and shells. An excellent source of information concerning three-dimensional
continuum based shell/plate formulations is Stanley[21]. Other works pertinent to the
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present subject are {16-18]. Because of the completeness of [21], only major features of the

theory relevant to the present discussion will be recalled.

1. The shell element is obtained by degenerating a three-dimensional element with lin-
ear displacement variation through the thickenss. Two assumptions are made that

distinguish continuum based shell elements from regular three-dimensional elements:

Straight Normals. This assumption is expressed by the equation

x(&,m,z) = x(&n)+ 2x(&,n) (3.54)

where £ and 7 stand for parent domain curvilinear coordinates while z is a

(linear) through-thickness -oordinate. We note that z is usually written as
2(&m) = (¢~ ) h/2 (3.55)
where ¢ € [~1,1] and { locates the reference surface. A is the shell thickness.
Inextensible Normals. This can be described incrementally by the relations
Au(g,n,z) = Aa(é,n) + A0(¢,n) (3.56)
Aa-x=0 (3.57)
However, in practice it is necessary to maintain the inextensibility condition
exactly. This can be achieved by various means. For example, one can use Au

to define an increment of angle of rotation and thereby construct an orthogonal

rotation matrix to transform the normal rigidly[21]. or one can use a radial

w
-1




projection algorithm (e.g., Hughes and Liu [T7]).

2. An orthogonal local coordinate system (ell, eh. eg) referred to as the laminar system

is introduced. Its most important attribute is that e} is normal to the surface ( =
constant at each point in the current configuration. By expressing the stress tensor
in this laminar system, the constitutive algorithms introduced above for the plane

stress problem can be easily implemented.

3. The continuum based approach has the distinct advantage that rigorous finite defor-
mational constitutive theories can be readily utilized: one is only left with the ZNS

constraint to deal with as described above.




Chapter 4

Extension to Multiple Failure
Surfaces

4.1 Rate-independent Anisotropic Elastic Damage Model

Because of the importance of models that need to accomodate multiple failure surfaces
(e.g., the cap model [11] or those proposed by Hashin [4]), we present extensions of the

preceding ideas to multiple surfaces {20,18].

A theory for a model whose failure surface is defined by m smooth surfaces is




Box 4. A multiple failure surface, small-deformation anisotropic elastic damage constitu-

tive theory.

Constitutive equation:

Hardening law:

m
. 2
9a = Z aBaaAaa

Damage evolution law:

500 fB ® c0o fB
= E* Do [ -ce

Loading/unloading conditions:

ba=fa+q1—-04%0

Aa>0

Mafalo,qa)=0

(4.1)

(4.2)

(4.3)
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Remarks:

o

H is a function of m independent strain-like variables oy, ay. .. .. an. Thus. the total

free energy may be written as

1
U)(E,Caal,az,---,am) = ")'5 'CE+H(al,a2,-'-vam) (47)
The g4’s are defined by
ga=—0,,H (4.8)

The principle of maximum dissipation is invoked as for the theory of Box 2. In the

present context, this leads to

ce=—) Mcogfs (4.9)
B=1
G4 = A (4.10)

The consistency parameters A4 can be obtained by time differentiating the damage
functions ¢4 and setting the resulting expression to zero. From (4.1), (4.2), (4.4)

and (4.10) we get

$a=00fs - (cé+¢e)=Y AP  H=0 (4.11)
B=1

asap
Substituting (4.9) into (4.11) leads to the final system of equations for A4
\ -1
(A} = 00 f1-cOofs+ O ,0yH]” {00 f5-cé) (4.12)
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5. From symmetry arguments, and by assuming that each surface contributes a rank-

one update to the rate of change of the elastic moduli. one obtains

L = ~BcaafB®C30'fB 1
e=-3Y A P Fce (4.13)

4.1.1 Algorithm for the Rate-independent Anisotropic Elastic
Damage Model

We consider an integration scheme similar to that of Algorithm 3; however, because the
active surfaces (i.e., those for which ¢4 > 0) are not known a priori, a new procedure

needs to be developed. To this end we introduce the set of active surfaces at iteration k,

act =

I ={4a1% >0} (4.14)

The procedure is then defined by the following steps:

1. Let J (ct be the set of active surfaces at the k-th iteration. Compute increments

SAAK) 4 ¢ g

act: DY employing an approach similar to that of Algorithm 3. as

described below.

to

Update §AA(%) by setting
SAAKRHL) — g AK) 4 A \AK) (4.15)

and check the sign of §A**+1) If negative. drop constraint A4 from the active set and

restart the iteration. Otherwise proceed.
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The algorithm can be stated as follows:

Algorithm 8. Updated ezplicit/implicit algorithm for the multiple failure surface, small-

deformation anisotropic elastic damage constitutive theory of Boz 4.

Step 1. Initialize:

5240 — g (4.16)
o, = ot = e (4.17)
Nﬁ),)n-n = Cnaﬂffgu-n (4.18)
@ e, (4.19)
k=0 (4.20)

Step 2. Update stress and hardening parameters:

(k) trial k
an+1 = o.nx-;-ll - Z 5AB(k)N(B')n+1 (421)
BeJ™)
act
o) =aaa+ 6 A€ Jz(:c)t (4.22)
k k
O‘Si.)n+1 =agn, A¢ Jéc)t (4.23)
(k) (k) k k
ans1 = _aaAH (al.n-H : 0(2.1)1+1v Tty ain.)n-H) (4-24)

Step 3. Check for failure and convergence:

If (k=0) then
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. (0) (0) (0)
Pan+1 = Jans1 T 9anse1 — 04 (4.25)

T = {4100 >0, A=12.. ,m} (4.26)
else
¢f:.)n+l = z(:r)x-i—l + qgk,11+l —04, AE Jékc)t (4.27)
endif
If (k= 0 and JU, = 0) or (|¢4hy,| < TOL for all A € J ;7)) then
Tt = O (4.28)
Cat1 = ot (4.29)
Apntr = ainyy, A€ TS (4.30)
QAnsl = Qan, AE J;(:c)t (4.31)
return
endif
Step 4. Compute § A-increments:
For A.B ¢ Jz(xkc)t
DB = — (05 f4h sy NELL, + 82, 1Y) (4.32)
{52440} = {5ra00) [Dgflm]" (68} (4.33)
Tremp = {4 € Jioy | 8314+ > 0} (4.34)

If (J,0, # Jtemp) then
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Taer = Jtemp (4.35)
For A ¢ ‘]Ea‘::)t
XA = g (4.36)
Go to Step 2.
else
T8 = Jeemp (4.37)
endif
Step 5. Update return directions and moduli:
NG =Moo fid,,, aedlty (4.38)
cs‘kflx) =c, — z 5/\A(k+1)N£ak.:l)1 ® I:E{Ei)l (4.39)
AcJiR+D €ns1* Nany1

act
Set k = k + 1 and go to Step 2.

Remarks

1. We note that qﬁf‘)n +1 > 0 does not guarantee that surface 4 will ultimately be active.

{(k+1) C g%

By construction, Jact act

2. The linear system of equations (4.33) reflects a Newton-like iteration to force

Oans1 =0, A € Jact (4.40)




The similarity between (4.33) and (2.113) should be noted.

4.2 Rate-dependent Damage Model

The viscous regularization of the multi-surface theory follows closely the development of

the single surface theory — see Section 2.3. It is given in Box 5 for completeness.

Box 5. A multiple failure surface, small-deformation anisotropic rate-dependent damage

constitutive theory.

Constitutive equation:

o = Ce (4.41)

Hardening law:

g4 = — i (X (68)) 5°
B=1 T

aop

H (4.42)

Damage evolution law:

¢ = i (x(@8)) cOo fg @ cOg f5

4.43
5 T Oo fB - C€ ( )
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4.2.1 Algorithm for the Rate-dependent Damage Model

Numerical integration of the equations can be performed the same way as for the single

surface case. The procedure is described in Algorithm 9 (cf. Algorithm 35).

Algorithm 9. Updated ezplicit/implicit algorithm for the multiple failure surface, small-
deformation anisotropic elastic damage constitutive theory of Boz 4, or rate-dependent

damage constitutive theory of Boz 5.

Step 1. Initialize:

Ivisc = true, rate-dependent damage (Box 5)
~ | false, elastic damage (Box 4)

lquit = false

Atppy = tapr — tn (4.44)
) =t (4.45)
sa? =0 (4.46)
o® =eottal e (4.47)
N 1 = .o fOh (4.48)
i =ca (4.49)
k=0 (4.50)




Step 2. Update stress and hardening parameters:

(k) trial Blk)ng(k)
O =0 - Z SA ( )NB,n+1

n+1
(k)
BGJaCt

k k (k)
01(,")“+I =ayn,+ SNAK) 4 € Jact

k) (k)
alh = aan AZJIEL

(k k) (k) (k)
QA,Z;+1 = =0, 1 (a(l.n+h LOEES TR am.n+1)

Step 3. Check for failure and convergence:

If (k = 0) then

0) (0) (0}
¢£1.n+1 = Sfan+1 T Qant1 — 04

0 (0
J:Ea.c)t = {A | 4’54,)n+1 >0, A=1,2,...,m}

else

(k)

k) (k)
¢£4.n+1 = fA,n+] + qA,n+l - UA) -4 E Jact

endif

If (k=0and J*, =0)or

act —

(lvisc = false and |¢%{),,,]| < TOL forall A €

If ( lquit = true ) then

—_o®
Ontl = Onyy

e =W
n+l = Cnyg

(k (k)
danyl = CYA’),H_“ A€ Jact
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(k)

(4.57)

J&

act)) then lquit = true




(k
Qgn+l = Qo A4 g ‘]ac}t

return

endif

Step 4. Compute dA-increments:

(k)
For A,B € J,

B (k) (k) {k (k)
D:+1 =- (ad’fA.n+1 ) NB.)n+1 + a; Hn+1)

axAQB

If ( lvisc = false ) then

-1
O e [D"B ""] [} A Bely

n+1 act
else
8 =<
Atfﬂl = t_kall [1 — exp (;%l)-‘
ntl J

Ak Alk (k) | (k+1) -
SAARHY) — grAlk) 4 Atnl]XA.rH‘l/T’ A€ JELC)t

endif
Jiemp = {4 € J{, 1 634+ > 0}

If (J{ # Jremp) then

act

JU‘)

act = Jtemr

For A ¢ J¥

act

EAAR) =
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{4.61)

(1.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(1.69)




Go to Step 2.
else
If ( lvisc = true ) then

(k) _ 0 A8 (4.70)

tn+l

If (¢4 ~ ¢4 > 0) then
k k k —~
AR = At = (5 - tan) (4.71)

lquit = true

endif
endif
(k+1) -
Jact = Jtemp (4.72)
endif
Step 5. Update return directions and moduli:
(k+1) k k k -
Nins1 = Cilladf,g,,)ww Ae J;(ic:n 14.73)
(k+1) (k+1)
(k+1 k) N @ Ny _
V= 3 6 ndl N(k:1)+l (4.74)
AeJxtD €nt1 N4l

act
Set £ =k + 1 and go to Step 2.




Remarks:

1. The parameter S in (4.64) has the same physical meaning as —\",{i)lDo‘ni)] in the

single surface algorithm; cf., e.g., (3.46). Because we now have a matrix D*8 to deal
with, we need an economical way to bound its eigenvalues. This can be accomplished

through Gerschgorin’s circle theorem(15]. We define

~ [l B -

D?8 = X,(;I,‘r)\+lDrf:+l(k)v A/Be Jz(lkc)t (4.75)
We define the radii of the Gerschgorin circles by

R*= Y |D*B (4.76)

BeJ,
B#A
Then,
- ; NAA _ pA
S = | rmn(k) (D R )I (4.77)
A€ T

This value of S provides a lower bound for #¥),, and thus provides a conservative
n+1 p

estimate for stability purposes.

4.3 Plane Stress Algorithm for the Rate-independent
Damage Model

Generalization of the single surface plane stress inviscid algorithm to multiple surfaces is

straightforward: just as in the single surface algorithm. we introduce an extra unknown

11




€33 and an extra equation,

-
<
on

o33 =10

Derivation of the algorithm follows along the same lines as for the single surface algorithm

described in Section 3.1. It is presented here in detail for completeness.

Algorithm 10. Updated ezplicit/implicit plane stress algorithm for the multiple failure

surface, small-deformation anisotropic elastic damage constitutive theory of Boz 4.

Step 1. Initialize:

140 = ¢ (4.79)
{0) Cn.3311€11 + Cn,3322€22 + 2Cn a312€12 + 2C, 3323623 + 2Cn 3313613
€33 = — (4.81)
€n,3333
"i.oll = "rtll-;-lxal = Cp€n41 (4.82)
NG 1 = Calo finss (4.83)
Crt1 = Cn (4.84)
k=0 (4.85)

Step 2. Update stress and hardening parameters:

k k k
o) = el - 3 BN (4.86)

BeJ'®
€ act




k k) (k
ag.zﬂ»l =a4,+ 60 g€ Ja,c)t

(k) ()
O.-{.H-fl = OA‘n,_-l g Ja.ct

(k) (k)

(k) _
dan+1 = _aﬂAH Oy nt19 X2 041500+

Step 3. Check for failure and convergence:

If (k = 0) then

[s) 0 0
¢() (0) (0)

An+l = Jan+1 T dans1 — %4

a

else

(k) (k)

(k)
¢A.n+1 = Jant+1 T Qans1 — 04

endif
If (k=0 and J3 =0) or

(18%+D | < TOL, for all A

PR )
ntl = Onypy

c _ C(k)
n41 = bn4tl

(k)

k
Xpgnsl1 = a,\,n+1,-4 € J( )

k
Fanst = @an A € Ty

return

endif

€

act

act

’ ai":,)n+l)

J((::)t = {A | ¢§),)n+1 > 0, A= 1,2,...,m}

(k)

| < TOL,)) then

and |0, .33

(4.90)

(4.91)

(4.92)

(4.93)
(1.94)
(4.95)

(4.96)




Step 4. Compute §A-increments and €;3 increment:

For A.B € Jact

AB (k) _ k N
Di (atrf,(a b1 Npny + 0

xqap

{5/\A(k+l)} {5/\,4(1:)}

k1) 5 -
n+1,33 €n+1,33

[ {[D:fl(k) {caf4) } {{oﬁf)m} } A,Be¥, (498)

k (k)
V(B 2;+1 33 Cn,3333 On+t1,33

Hah) (4.97)

Jtemp = {A € J(, | 634%+V > 0} (4.99)

If (Jae; # Jtemp) then

T = Jtemp (4.100)
For A¢ a(v.l::)t
XA = (4.101)
Go to Step 2.
else
Jg::‘;l = Jtemp (4.102)
endif




Step 5. Update return direction and moduli:

(k+1} {k) (k) (k)
Nynri =100 fine: A€ ‘]act
(k+1) (k+1)
) Z 5/\A("+1)N.4.n+1 @ Nni1
n+1l = Cn = 1) g+ D)
AgJrD €n+1 " Nan4

act
Set k= k + 1 and go to Step 2.

(4.103)

(4.104)

4.4

Plane Stress Algorithm for the Rate-dependent

Damage Model

The integration algorithm for the plane stress, multiple surface theory with regularization

follows, once again, along the lines of the single surface theory. At the end of the inviscid

calculation the viscoplastic regularization is done, the 33-strain is updated to account for

the ZNS constraint, and the final stress is computed.

-1
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Algorithm 11. Updated ezplicit/implicit plane siress algorithm for the multiple failure
surface, small-deformation anisotropic elastic damage constitutive theory of Boz 4, or rate-

dependent damage constitutive theory of Boz 5.

Step 1. Initialize:

Ivisc — 4 true rate-dependent damage (Box 5)
%€= false, elastic damage (Box 4)

lquit = false

Atpyr = thyr — tn (4.105)
0 =t, (4.106)
040 =0 (4.107)
€ = €nyy (4.108)
Egg) _ _Cnasn€nn + Cogsa2€n + 2¢n 3312612 + 2Cn 3323623 + 2¢5 3313613 (4.109)
Cn,3333
ol =¥ = cren (4.110)
N i1 = €n00 finan (4.111)
9 =c, (4.112) ]
k=0 (4.113) -
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Step 2. Update <tress and hardening parameters:

(k) B(k)
Oni1 = Cn€ppy — Z 6A N1:‘¢n+1
Bes¥)
act

a%)n_H =aqn+ 608 A€ ']z(:c)t

(k)
Agn+r =~ a4""4 ¢ Jact

k) (%) (%)
qgn+1— aC'AH( Ont> O2ngrs e -

Step 3. Check for failure and convergence:

If (k = 0) then

d)(O) (0) (0)

, ag:.)n-H)

Antl = Jant1 T an+1 — 04
(©) ,
act = {4 I Bamns1 > 0, A= 1,2,...,m}
else
(k) (k)
¢A 1 = Jang1 T ‘IA n+l —o4, A€ ‘]act
endif

If (k=0and J), = 8) or

( lvisc = false and |64} ,,| < TOL, for all 4 € J.)

act

and Ia,(,ﬁ)i's;;f < TOL,)) then lquit = true

If ( lquit = true ) then

(k)
Onel =0 pp

(k)
Crns1 = Cn

(4.114;

(4.1153)
(1.116)

(4.117)

(4.118)

(4.119)




A Antl _a4n+1,.-1 J& (4.123)

'lct
a4"+“‘0‘4"’4€‘7act (4.124)
return

endif

Step 4. Compute §X-increments and €33 increment:

For A,B e JW

act

k -
Dﬁfl( ) = (ao‘fA n+l "’ g)n+l + 62 51121) (4-120)

axpaap

If ( lvisc = false ) then
{5/\A(k+1)} {5/\;1(/:)}
elk+1) 5
n+1,33 n+1,33

[ {[fol(k)] {endfa} } {{¢‘,{"n+1} } A4,BeJ%, (412

k
V( Bn+1 33} Cn,3333 On+1.33
else
-
L=< (4.127)
(k Hk ~Atns .
Atn_(),1 = rH)»l [1 — exp (—_f“’) )} {4.128)
n+1
o/\A(k+1) _ 6/\:4(‘!) At( (k) A J(k) 4 199
+ +1YA n+1/T’ E act ( c L - )
(k+1) Cn3311€11 + Cn3322€22 + 2Cna312€12 + 2Cn 3322622 + 2Cnama€rs |
€ny133 = — +
Cn,3333
K+ 1
$1.33 (4.130)
Acs™® Cn,3333
act
endif
_ (k) k+1) .

Jiemp = {A € Jhey | 64+ > 0} (4.131)

T3




I (JI, # Jremp) then

(k)
Tact = Jtemp
(k)
For A ¢ J. &
§AAR) =0
Go to Step 2.

else

If ( lvisc = true ) then
ter) = th + A,
If (#5441 > 0) then
At = o), — (188 ~ tann)
lquit = true
endif
endif

(k+1)
‘]a,ct = Jtemp

endif

Step 5. Update return direction and moduli:

(k+1) (k) (k) (k)
NA,n+1 = cn+lao'f.4.n+1‘ AelJ

act
(k+1) ~ nplk+1)
c(k+1) . Z 6\A(k+1)NA.n+l 0 NA.n-'.l
4l = Ca — . (k1) 7g(k+1)
AekH) €ar1 " Nan4

act

(4.134)

(4.135)

(4.136)

(4.137)

(4.138)




Set k = k + 1 and go to Step 2.
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Chapter 5

Conclusions

In this report we have considered a variety of three-dimensional and plane stress constitu-
tive models and algorithms for reinforced concrete plate and shell structures. Anisotropic
damage mechanisms have been accounted for to provide a setting for incorporating vari-
ous failure phenomena within a homogenized, cr distributed. constitutive representation.
Rate-dependent effects have been introduced by way of a viscous regularization technique.
This feature is useful for faithfully modeling high rates of loading, and also provides a con-
stitutive framework which avoids certain numerical pitfalls associated with strain-softening
behavior. Multiple failure surface theories have also been investigated. These are useful
for the development of damage theories based upon often-used. multiple surface theories,
£

such as the cap model, and related potentially useful theories employved in the modeling of

fiber-reinforced composites.
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