
AD-A241 858

~OF

DTIC DPARALLEL ALGORITHM- DESIGN

D DISSERTATION

Jeff'rey im r

A FIT/ DS/EN(19I1-02 F '"

This docuent has been approved
for public releaQz and sole; its
distribution is unlimited.

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

91 10 -25'037



I)TIC

ATOPOLOGICAL MODEL FOR

PARALLEL ALGORITHM DESIGN -------j W-
NTIS CRA&Ij

OTIC TAS
DISSERTATION Unannovoced

Justification .... ...
Jeffrey A Simmers

Captain, USAF By..................................
Distribution, I

AFIT/DS/ENTG /91-02AvibIyCx.s
Availair~

Dist Special

Approved for public release; distribition unlimited 4N1f-e



AFIT/DS/ENG/91-02

A TOPOLOGICAL MODEL FOR PARALLEL ALGORITHM DESIGN

DISSERTATION

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Jeffrey A Simmers, B.S.E.E., M.S.E.E.

Captain, USAF

September, 1991

Approved for public release; distribution unlimited



f Form ApprovedREPORT DOCUMENTATION PAGE O MB No. 0704-0188

Public repnrirg biraens for this coiection of iflormtonisfl estimrated ic. a -elage I hQur PC$ IMSVVir$C, ifLiUding thre trtfe for ree r n .1,tcc,'vns.,,eah~n9 e a 5t~ng dat, source5,
gathrering and efiantain ng thredata needed. ano tommlng and re,,e-ing the r.i ection ot nuorriation Send iornrnentf reatdn .9 i g burde.n e miale or any .thiet aspect of tfhis
collection of information. inhiuding suggestions for reducing tis. Duroer, tv iAantrngton Headqurters Series. 0-rectorateefor nkwmation Operations and Repojrts. 12 15 jefferson
Oavis Higliw,?. Sruile 12U4, rington. vA 21202-4302. and to the Office of I.1 agentent and Budget. Papermon ReductiorProject (0704-0 188). irash.ngton. DC 20503.

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Topological Model For Parallel Algorithm Design

6. AUTHOR(S)

Jeffrey A Simmers, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/DS/ENG/91-02

9. SPONSORING i MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING, MONITORING
AGENCY REPORT NUMBER

11, SUPPLEMENTARY NOTES

12a. DISTRIBUTION/IAVAILABILITY STATEMENT r12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.I

I I _ _ _
13. ABSTRACT (Maxrnum 200word) This research demonstrates that formal, mathematical analysis
in theoretical computer Science can be recast in terms of the topology of complete

*metric spaces, and also presents a methodical technique frdvlpn omlsei
fications. This effort shows that the topology Of Complete metric spaces provides a
tool that can be used to both recreate major results about computational models and
also to develop new results about these models. Using the two computational models
CSP and UNITY, this effort shows that the required mathematics needed to support this
alternative to the traditional analysis of computational models can be readily sup-
ported by a standard course sequence in real analysis. Since the approach of proving
programs correct after being written has not been widely accepted, this effort pre-
sents an alternative approach based on the developed topological framework for the
formal specification language UNITY. This approach, designed to be automated, uses a
set of transformations applied to UNITY specifications that preserve desired program
properties.

14. SUBJECT TERMS '15. NUMABER OF PAGES
Computer Science, Computational Models, Formal Specifications,39
Parallel Computation, Specification Transformations. 16. PRICE CODE

17. SECURITY CLSiIAIN1,SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
I OF REPORT I1.OF THIS PAGE 1.OF ABSTRACT
IUnclassified UnclassifiedUnlsiedL

NSN 5400 1-80-500Standard Form 298 (Rev 2.89)
f.~S 75~.0i280-SO0Pros~it#O ts~ A SfrI1 139-15



AFIT/DS/ENG/91-02

A TOPOLOGICAL MODEL FOR PARALLEL ALGORITHM DESIGN

Jeffrey A Simmers, B.S.E.E., M.S.E.E.

Captain, USAF

Approved:

J.S. Przemieniecki

Institute Senior Dean



PrCfacc

The research results documented here represent imy. attempt to extend the usefulnes

of the formal specification as a tool in the software development process; and to expand

the number of students who can obtain the necessary mathematical background to conduct

practical and theoretical computer science and engineering. The extension of the formal

specificatioii is accomplished by presenting a methodology for developing such specifica-

tions through techniques that could lead to automated support. And b presenting an

alternative mathematical development of computational models based or. the topology of

complete metric spaces, this effort supports efforts to increase the ability of colleges and

universities to supply the formalism needed for computer Science and engineering research.
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Abstract

This research demonstrates that formal. mathematical analysis in theoretical corn

puter science can be recast in terms of the topology of complete metric spaces, and also

presents a methodical technique for developing formal specifiktiorns. This effort hoib that

the topolog3 of complete metric spaces provides a. tool that can be used to both recreate

major results about computational models and also to dexelop new results about these

models. Using the two computational models CSP and UNITY, this effort shows that

the required mathematics needed to support this alternative to the traditional analysis

of computational models can be readil% supported by a standard course sequence in real

analysis.

Since the approach of proving programs correct after being written has not been

1%idel ,tacepted: this effort preents an alternatite approach based on the deeloped topo-

logical framework for the formal specification language UNITY. This approach. desig,,ed e-)

be automated. uses L set of transformations applied to UNITY specification. that preserve

desired program properties.
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A TOPOLOGICAL MODEL FOR PARALLEL ALGORITHM DESIGN

L Introduction

So now I know everything anyone knows
From beginning to end. From the start to the close.
Because Z is as far as the alphabet goes.

Dr. Seuss On Beyond Zebra

Although this quote was originally intended to be somewhat humorous, today it ad-

dresses a .ruch more serious problem within the computer science and software engineering

fields. I may know everything anyone knows, yet I still may not piuduce computer pro-

grams that do what anyone wants. Indeed, consider the following quote by C.A.R. Ioare

(164):

Long ago, the welfare of a society used to depend heavily on the skill and ded-
ication of its craftsmen - the miller, the blacksmith, the cobbler and the tailor.
These craftsmen acquired their skill by a long and poorly paid apprenticeship
to some master of their craft. They learned by imitation and experience, and
by trial and error. They did not read books or study science, they knew noth-
ing of the theory of their subject, the geometry of their rudimentary drawings,
nor the mathematics underlying their primitive calculations. They could not
explain how or why they used their methods; yet they worked effectively by
themselves or in small teams to complete their tasks at a predetermined cost, to
a. fairly well predicted timetable, and usually to the satisfaction of their clients.

The programmer of tolay shares many of these attributes of a craftsman. lie
learns his craft by apl)renticeship in an existing team of programmers - but his
apprenticeship is highly paid and usually very short. lie develops his skill by
trial; but mostly by error. Ile does not study theory, or even read books on
Computer Science. lie knows nothing of the logical and mathematical founda-
tions of his profession; and he hates to explain or justify, or even to document
what he has done. Yet he can often manage to complete his undertaken tasks,
sometimes at the predicted time and within the )redicted cost, and occasionally
even to the satisfaction of his client.

l-1



Thus the problem is stated, how to produce software that does satisfy the client

(and not necessarily the programmer). There are rnidy aspects of this problem, since

tile software development process typically includeb (at a minimum) requirements and/or

specification, code generation, testing, and maintenance. This research presents analysis

and techniques for improving the first formal step in this development process, the formal

specification. Specifically, this research addresses the theoretical and practical aspects of

generating a formal specification, and thn transforming these formal specifications into

other, more efficent (typically with respect to architecture or execution time), formulations.

The 'formal' in formal specification implies that there is a fixed set of syntactic

rules governing the writing of the specification. These rules dictate which symbol strings

constitute 'legal' specifications, and which ones do not. Thus a formal specification is

written in a formal languagc (217), such as the language of regular expressions (Section

4.2). When combine(] with a collection of given 'truths', called the axioms, and logical

rules of inference, a formal language becomes a formal systcm (317) or thcory (see Section

3.3), within which new truths, called thcorcms, can be proved (derived). These theorems

are derived by applying the rules of inference to the axioms and any previously derived

theorems. For a given formal system there is an algorithmic technique for producing all

of the theorems resulting from the formal sybtem. Note that for a formal system that has

the reasoning power of tile second order predicate logic (217), there exist true statements

written in the formal language of the system that cannot be proven as theorems, a property

known as incompleteness (91).

This investigation utilizes a. formal system described in the book by Chandy and

Misra (64), and comprised of the formal language defined by the syntax of UNITY, along

with rules of inference based on tile first order temporal logic and the execution model

for UNITY. This formal system is designed to reason about a given specification, so that

certain truths about the specification can be proven. This formal s,,stem has as axioms

certain given true statements about a specification, so that the set of axionib is not fixed,

but is a function of the specification being ,analyzed. The rules of inference ,me fixed, those

resulting from the UNITY exectution iiodel ajid the first older temnpoial logic (Appendix

A sul)plies the additional temporal rules to the first order predicate logic (217)).

1-2



Because of the formal , stem used to generate the formal specification, there is

a mathematical and logical basis for performing the type of analysis done within thi

research. This, combined with the formal specification's role as the first formal product

in the software development process, makes the formdnl spccification a logical -choice as a

starting point in addressing the concerns raised in the previous quote from IIoare.

This research presents the mathematical and logical -framework to support this anal-

ysis of the formal specification process. This framework is based on topology, specifically

the topology of complete metric spaces. The choice of metric spaces results from the re-

quirement to address conceptually computations that do not necessarily halt. By using

metric spaces, such computations can be treated as convcrgcnt processes, that is processes

that can be defined in terms of their behavior in infinite time. Within metric spaces such

convergent processes can be analyzed, and statements can be made regalding what type

of behavior they may exhibit in an unbounded (in time) fature. Accordingly, this effort

is presented in two major parts. The first is the topological analysis of the computational

models used in the analysis of the formal specifications, while the second iddresses the

actual generation and transformations of formal specifications.

1.1 Background

The software development process starts w ith a natural (English) language problem

statement, which then evol cs through a belies of transformations from one form into an-

other, until a form is reached that can be executed on a, computer. Traditionally, these

transformations have been l)erformed either manually only, or else manually with some

automtedl help. Research into completely automating the process continues (123), with

varied approaches presented by different authors (2.1, 362, 107). Many of these approaches

are designed to support specific models of computation (61), while others are based on

transformations of either the control structures ur the data stiuctureb involved in a. given

solution to the problem (23, 51, 98, 353). Many of the control structure transforlation

strategies are based on the classic paper b% Burstall and Darlington, in which they ple-

sented a transformational system fo converting recursivel) defined futctions into other

recursi'el. defined functions (to ijlproe efficienc.y), or into iterati,el. defited functions

1-3



User Requirements versus Specifications

User Software engineer
Natural language Formal language

Imprecise Precise
Nontechnical Technical

Application terminology Software- terminology

- G. W. Jones, Software Engineering, Wiley & Sons, 1990.

Figure 1.1. The Dichotomy Between User Requirements and Specifications

(57). Another early paper by Polychronopoulos presented a class of transformations based

on nonrecursively defined algorithms and associated data structures based on directed

graphs (290). 'Phis concept of equating transformations on formal products with traits-

formations on directed graphs has persisted, with recent research addressing the preserva-

tion of program properties through directed graph analysis (35). Another classification of

-transfornational approacnes is between those based on functional progrmniing styles and

languages (280), and those based on logic programming styles and languages (347).

This investigation addresses this transformation process as applied to the formal

specification, by presenting analysis and techniques designed to generate the formal speci-

fication front an informal specification/requirement or problem stittement, aud to tLi anforin

the specification into other forms. The concept of applying formal tranforniations to spec-

ifications is not new (237), but the specific techniques presented here are. The analysis

is based on mathematics and logic, since, as stated by Sommerville, '-A formal software

specification is ... expressed in a language whose vocabulary, syntax and semantics are

formally defined. The need for a. formal semantic definition means that the specification

languages cannot be based on natural languages but must be based on mathcmatics." (322)

The relationship between the informal statement of the problem given in the iequirencjt,

versus the formalization of the formal specification, is summarized in Figure 1.1 (186)).

Unfortunately. there exists an ironic disparity between the increased em plihsis on tLhe

front-end planning and deign-phases of the softwtre development wMdIel, as well d., the laick

of wide spread accep ance of formal specification techniques within the commel citl software

ih(lustry (322). An example of this emphasis on the front-end planning is a generalized rule
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used in allocating levelopment effort among the three major phases of the development

cycle called the 40-20-40 rule. This rule states that 40% of the total effort should be

directed to planning, requirements analysis, specification and design, with 20% invested

into the actual coding, and then the final 40% into the testing (293). But the increased

use of formal specifications has been slowed- by at least three major problems. The first is

a-lack of training, in that software engineers typically do not have the background and/or

experience in the mathematics and logic required to formulate formal specifications (322).

The second problem is that the applicability of formal specification techniques to complex

tasks has not been widely accepted, thus there is the classic image of the 'good for toy

problems in textbooks' (322). Lastly, much of the research has been into the theoretical

aspects of formal specification, with a corresponding lack of commercially available tools

to support the software engineer (322, 293, 186).

Consequently, instead of designing a- new formal specification language, the decision

was made to choose an existing one, and then to increase the utility of that language.

Creating a new language would probably hinder, and not help, the lack of wide spread

acceptance of formal specification languages, since it would just be olle more language to

learn. And by investing the effort into improving the utility of ai, existing language instead

of creating a new one, this research hopes to lay the groundwork for ,Lutolnated tools to

aid in the formal specification development process.

There are many choices of formal specification languages to support this research, and

these choices include several different types of formula tion. One such formulation is those

languages whose syntax resembles that of an imperative programming language (134, 3),

which includes the language UNITY (64) and the commercially available 'wide spectrum

language' REFINE (349). Additionally, there are the formal languages whose syntax is

graph based (21, 284) in the manner of Petri nets (279). Other formalized specification

languages in the literature include those that are based on algebraic equations (336, 36).

and those based on assertions written in a. formal logic (214).

Although all of these formulations may appear inherently different, they are nol.

For example, as demonstrated in Appendix C, a specification wriLten in an imperative

programming lauigu,,ge based pecification language (UNITY), caan be decomposed into

'-5



pieces that can be expressed in the first order predicate calculus over finite domains. Also,

researchers have demonstrated that the graphical specifications based on P)etri nets corre-

spond to those based on algebraic equations (142, 259, 338). This research demonstrates

the correspondence between UNITY and another formulation known as communicating

sequential processes (CSP) that is more algebraic (165), while Bailor has shown the equiv-

alence between CSP and Petri nets (21).

The formal specification language chosen for this effort is Chandy and Misra's UNITY

(Unbounded Non-deterministic Iterative Transform) (64). The choice of UNITY results

from-the capability to write specifications in UNITY that are independent of architectural

and implementation language considerations. This separation of program design (until a

certain point) from hardware considerations represents a goal of some oftthe latest research

into parallel programming (321, 33).

UNITY consists of both a formal syntax and a formal semantics, with the semantics

defined in terms of the UNITY execution model. As part of the topological analysis of

computational models this effort presents a mapping from UNITY programs into CSP

processes that preserves the behavior of the UNITY programs. With respect to a UNITY

program, the behavior is defined by the collection of all possible execution sequences for

the statements comprising the )rogram. lowever, because UNITY permits simultaneous

execution of atomic actions (assignments), while CSP does not, this mapping does not

preserve atomic actions. Consequently, this research also piesents two addition-, execution

models for 'programs' written in the UNITY syntax. These additional execution models

serve two )url)oses. One l)urpose is to provide a mapping of UNITY programns (under these

execution models) into CSP that can preserve atomic actions (although not necessarily).

The second pl)pose is to extend the conceptual model of UNITY. The conceptual model

of UNITY is that model the UNITY user will use as an analogy for the UNITY execution

model. This relates to the claim by Ierson that our internalization of a solution to a

requirement is influenced by the formal specification language employed (178). That i.,,

the UNITY solution is influenced by the fact that it's written in UNITY, and the solut.ion

may be quite different frlom a bolution written in another formal specification language ).,

the same person. This inclusion of two additional execution niodels for UNITY attemp.ts

1-6



to broaden the range of these conceptual models for UNITY by bupplying execution models

that more closely match actual hardware architectures than those of the original execution

model.

Since UNITY was primarily developed to support parallel programming (64), this

effort also primarily supports the specification of parallel programs using UNITY. T£his

does not preclude the use of these results to the design of sequential programs, since a

sequential program can be thought of as a parallel program executing on a single processor.

As an interesting aside, even though parallel computation ib generally considered a newer

development than sequential (single processor) computing, it was considered by the early

pioneers of computing. For example, the very first digital computer designers experimented

with both parallel and serial designs before deciding on what has been called (incorrectly)

the von Neumann architecture (318). Going back even further in time, perhaps the first

documented reference to parallel computing is the f, .llowing quote from a. lecture given by

Charles Babbage in 1842-(250):

When a long series of identical computations is to be performed, ... the machine
can ... give several results at the same time, which will greatly abridge the whole
amount of the processes.

1-7



1.2 Research Outline and Document O';erview

This research effort can be naturally broken into two major parts. The first is the

topological and temporal analysis of the comp! --al models: finite automata, CSP, and

UNITY. The topological analysis, based or - , .etric spaces of models, is contained

in Chapter IV, while the temporal anwl.. , a, " :easoniug about the models using

the temporal logic, is in Chapter V. The seco, : major part is the improvement of the

generation and transformation of formal spe'ifit. -, using UNITY, which is contained in

Chapter VI. The required computational ro. r ,rountl, which includes an overview of

computational models and program corrLctness, s presented in Section 1.3 of this chapter

and Chapter II. The mathematical bad ground is in Chapter II1. Figure 1.2 shows the

overall structure of the research effort as it relates to the document structure.

Section 1.3 of this chapter defines and presents examples of the two major classes

of computational models used in the study of parallel programinii.g and architectures, the

incssayc passing and the Aharcd variablc models. This material represeti., the justification

for the selection of two of the three computational models used in this reearch effort, the

comflmunicain.: sequential processors (CSP) (165), and the execution inodel for UNITY

(64). CSP is a message passi., model, while UNITY is inherently a shared variable

model, although UNITY programs can be designed to model other paradigms such as

message passing.

Chapter II presents the definitions and basic concepts of programs, proccsses, cr'ifi-

cation, and correctness. This chapter gives a more al)btr-;t defitition of a program than

just symbol strings written in a formal language which can be executed. This abstract

definition of a program is based on another abstract idea, that of a procebb. Although the

Correctness of Specifications and Programs -Chapter II
Mathematical Background - Chapter III
Analysis of Comuputational Models

Background - ection 1.3
Topological - Chapter IV
Temporal - Chapter V

Generation and Transformation of Formal Specifications - Chapter VI

Figure 1.2. Research and Documnent Strucuture
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terms 'verification' and 'correctness' are-usually applied to specific products of the software

development process, this chapter also presents more abstract versions of these-concepts.

The-ideas presented in this chapter are used extensively throughout thi- effort.

Chapter III presents the mathematical background required for the remaining chap-

ters. This background is broken up into three major areas. The first is the c-incept of

a class, which is used as the basic building block of collections of things, instead of the

more t.,ditional set, and is introiuced in Section 3.1. The second is how these classes

relate to each other, that is relation, function, and predicate, which a, defined in Section

3.2. The final section of the chapter, Section 3.3, presents introduc 'ry denitions and

concepts from category theory, a :heory that is based on directed graphs. Category theory

is included- not on!y because it is used in later -chapters, but also because the theory of cat-

egories has become a versatile tool for computer .,cientists (27), not only from a. theoretical

viewpoint, but also from a practical one. As an example of the practical side of category

theory, consider that researchers at Paris Univeristy cla;m to be developing a catfgorical

abstract machine, "which executes categorical code on a very simple abstract ,nachine"

(85). Section 3.3 also defines the ,ategory of complete metric spaces, which forms the

basis for the topological analysis of-Chapter IV.

Chapter IV gives some additional introductory material on the three specific co,,pn-

tational models used in this research. The tGrce ,niputational models used here represent

a diverse sampling from the wide spectrum of all of the different models. The first is the

finitc ,.,tomaton, which represents a classic computational model, the lowest on the hier-

archy f abstract machines whose highest position is held by the Turing machine (217).

Section -1.2 defines the finite automato.. The second model is one based on an algebra

of processes, complete with operations on the proceh.,es, and formal representation of the

processes. This model is CSP, and Section 41.3 presents the required material on formal

process representa'our. and process operators. The l&t model ib the execution model foj

UNITY, which represents a computational modei based on both a formal language and

a formal semantics for the language sinilar t, a. compiled high !evel imperative language

(64). The philosophy behind UNITY is that the execution model i.% abstract enough that

it should not reflect any specific architecture. This places UNITY iii the clas. of paraliel

j1-9



programming languages which could be described as cxprcbsion of probklr paralllzian,

that is those languages designed to express the parallelism inherent in the problem. This

terminology is inspired by tlk. detction of parallelism and cxpression of machine paral-

lelism classifications of Perrott (275), which refer to languages that are sequential (the

compilei parallelizes), and which are architecture depenident, respectively. Section 4.- and

Appendix C present some introductory material regarding the UNITY execution model.

The primary purpose of Chapter IV is to present the mathematical theory of the

topological analysis of computational models. This topological analysis demonstrates that

finite automata, CSP, and UNITY are all objects of the category of complete metric spaces.

Section 1.1 introduces the metric space of all words of finite length that can be formed

from a given alphabet, a metric spacc that f":,as the basis for the remainder of-the chapter.

Sectiun 1.2 then develops a complete me-tric space based on the finite automaton computa-

tional model. Section 4.2 also demonstrates that the topological analysis of computational

power can be directJ related to the standard machine based anal.sis. A complete metric

space based or, the CSP model is developed next in Section 1.., uhile Section 4.4 concludes

the chapter with a complete metric space of UNITY programs. The construction of the

UNITY metric space also shows that any UNITY program can be mapped into a CSP

process that exhibits the exact same behavior.

The goal of Chapter V is to unify the temporal anal.sis of UNITY programs from

Chandy and Misra (64) with that of finite automata and CSP processes. The unifying

tool is the temporal logic of Appendix A. Section 5.1 gives an overview of the three

major classifications of formal semantic., for programs the axiomnatic. operational, and

dcnotationaL Section 5.2 then presents a semantic analysis of finite automata, based on

the temporal logic (which could be considered operational and axiomatic). The chapter

coacludes with Section 5.3 presenting the same type of temporal semantic anal. sis for CSP

proc (.'ses. Thih chapter also prebents an o~er'iew of the temporal meaboning of progranib

by otLh'r researchen.

Chapter VI preseats the second major part of this re.earch effort, an improvement

to the process of genez.ting and transforming formal specificationts written in UNITY.

Section 6.2 intro(ltCire., the .latc .%parc s(,,nli.% that are crucial to the thueor% used in
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the last section of the chapter. Whereas the semantic reasoning about UNITY programs

in Chandy and Misra's book is primarily based on the syntax of the I)rograms, tile state

space semantics reasons about the trajectoyies generated by a UNITY program through a

state-space based on the named variables of the program. Section 6.3 presents a search

style methodology for generating formal specifications written in UNITY from informal

formulations, and also transforming UNITY programs into other UNITY programs so

as to preserve certain program properties. This methodology is based on a collection

of rules designed to be used in a heuristic type search. Based on information collected

during the application of these rules, this section also supplies an algorithmic technique

for the optimization of UNITY programs in terms of execution time on multiprocessor

architectures.

Appendix A presents definitions and introductory material on the modal, Icnmporat,

and prcdicatc logic. The primary purpose of this appendix is to supply the needed temporal

logic background. Since the temporal logic is a special case of the modal logic, the appendix

defines the modal logic first, and then defines the specific temporal logic used to reason

about computation within this research (see the book by Rescher (300) for an overview

of temporal logic in general). Using temporal logic to reason about programs is not new

(Apt (10) credits Pnueli (285) with first introducing tempuial logic to reaon about proofs

of program correctness), but many of the specific uses within this research effort are new.

Not only is temporal logic used for reasoning about programs and computations, but the

symbology of the temporal logic is also used as a shorthand notation in many of the proofs.

The appendix concludes with a presentation of the predicate logic as a. special cme of te

temporal logic.

Appendix B collects miscellaneous results regarding computability theory. the con-

cept of chaotic proces.ses, and the implication., of the axiom of choice, that are used througl

out this effort. This appendix also contains a. historical summary of the definition of the

word 'computable".

Appendix C presents a result which can be used in the statistical testing of imple-

mentations of UNITY specifications. Also included is the result which justifies the claim

that. UNITY is basicaill another representation of executable first order predicate cal(culis.
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Appendix D supplies additional insight into the-relationship bctwuen dlifferent speci-

fication teclinqiucs by showing how the execution model for UNITY c;an be mnodeledl using

Petri nets.

1.3 Computational Models

This section defines the concept of computational modelb, andl presents background

mnaterial on different computational modelb an(1 tlieii asbociatcd htardw-are (miachines) amid

software (languages). This presentation emphasizes the tno prinmary models for p~arallel

computing, the mcssagc pass5ing and the shar-cd variabic, since these inclJude the two miodels

that this resarch is based on, CSP (165) and UNITY (64). This section also presents the

motivation for choosing UNITY as time formal specification language for the effort. described

in Chapter VI. The section concludes with thme zveakfaiiuc.-js definition that forms the basis

for the UNITY execution model.

"A conceptual modlel or p~roblemi that embodies Lte major feature of a whole class

of p~roblems is called a paradigmn." (2,1$) Tme lparadigmis of interest here are those for

parallel computation, nhich are called comiputational inodchs. A (parallel) conirutational

model is some typ~e of form alimn for rep~resenting h ow algorithmns can be inmplemenited

on multiprocessors. The major (lifferences between the different computational models is

in how information gets from one procesbor to another, amid whether or not Lte dlifferent

processors execute dependemtI) or independently of each other. If Lte iniformnationi is pse

through mnessages, between the processors, then thme model is classified as a miussagc pas,,sinzg

modlel (228, 11, 62, 418, 323). E7xamlples of such miessage p~assing mnodels are CSP (165).

EPI. (154), CC'S (2412), and CIIOCS (332). The high level languages that arc based] on

Lte message passing mnodel include Occan (213) and Ada. (78). while examples of actual

computer:, whose architecture is bitsed on this mnodel are Lte BBN Iutterfl%. FPS T Series.

Intel iPSC Series, AMETEC S1. NC[.JIE Series,. and Lte Loral Dataftow LDF compluters

(15. 127). If Ltme information is passed herwveen proce-ssors through dhe use of a common

memorystorage (say in Lte forum of a global variable). thnI lmite iumud (4 is a sharud icnory

(or shared variabk) model (IX4. 18-5. 267). Two smudi shared variable miodel., are UNITY

(041) and ALPS (3-12), and N-odula-2 (:358') ;ind 1Pascal Phims (270). are examiples of two high
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level languages based on the shared variable model. The Alliant FX/S, Cray X-MP, IBM

3090, Sequent Balance, ETA, ELXSI, Encore, and FLEX computers all have architectures

based on the shared variable model (15, 127).

The class of models representing processors that execute in a dependent manner are

the synchronous models, while those whose processors are represented as executing inde-

pendently form the asynchronous models (39). Within the message passing models, the two

major subdivisions are -the synchronous and the unsynchronous. A synchronous message

passing model such as CSP, Ada, or Occam (213) reouires that "both the sender and the

receiver of a communication must be ready to communicate before a conimunicatio. cal

be sent", while the asynchronous message pas.ing model model allows that ;:the receiver

does not have to be ready to accept a communication when the sender sends it" (4). This

difference-is usually not important, since art asynchronous model such as Action Systems

(16) ( ctor (159) cal actually model synchronized communications.

The shared variable models cal also be divided into the synchronous and asvn-

chronous classifications. A synchronized shared variable model can be formed front any

shared variable model by simply introducing a global clock (118). This division of the

shared variable models is somewhat superflous though, since general purpose shared wari-

able models such as UNITY can model synchronous and asynchronous shared -ariable

systems (6,1)_ In fact the distinction between shared variable and message passing mod

els is somewhat artificial, since shared variable models can model both s.nchronous and

asynchronous message passing sbstemns (206), using semaphores a hL lcking mechanism

(103).

The shared variable models have split into two other subdivisions besides Lte svn-

chronous and ins nchronous. The first division includes -the classic shared -- riable models.

that is those models whose global dat. structures are accessed b3 name such it., in I'NITY.

while the second division includes the shared dulaspacc models fio.e glohal data truc-

tures are content accessible, such as Linda (135). Concurrent Prolog (31)i. and Swarm

(84).

Another emajor di-i.sion of the computational model. incle.s thp graph h,.el models
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(259,181i, 158).. such as Petri -nets (27-S, 279), abstract Petri nets (1412): transition systemns

(communicating autonriata.) (261). abstract process networks (236). and dataflow graphs

(14, 13). Depending on exactly what the atomic actions in the nodes and transitions of tile

graphs represent, these models call also be grouped unider either the message p~assin~g or

the shared variable paradigm. This effort does not spccifica.1l3 address these graph based

models.

The primary reason for differentiating between shared variable and message passing

is that these are arguably the two major parallel computation architectures. since they

are Lte tv o major subdivisions of the inutiple instruction Ifutilple data (IMIMID) class of

architectures- Thle shared variable and message passing model:, are called multiproces-

sor and multicomlputer svstems: reslpective1. (22). and aie also called shared mnenor% and

distributed meniorv architectures respecti, el% (326. 320). The single instLruction mutiple

data. (SINMD) class contains two major sub~divisionls known x- Lte vector and systolic ar

clhectures (see Duncan (109) for an overview of MID and SIMD. and Kuck (197) for

a, description of how -MINID and SINID fit into Kuck'.s) taxonomny). Because ths are thle

two primarv parallel arcllitettreb, man. of thle current programming methodologies for

concurrent computation are clasbified into either Lte message passing- or Lte shared -.triable

paradigmns (60). Although this categorization of computational modelb ignore:5 Lte many

functionald progra~mmfing model-- (301, .S. 17-5. 20, 3411). the inclubion of concurrency into

these models requiires, either *Lte shared % ariable approach or oute type of niessage passing.

Thle shared variable and message passing mjodels are not only considered thle two

major p~aradigms for Parallel comp~utation (29). but can also be used fur setimentiad compu-

tations, sinice they naturallv. match uip %-.ith parameter paLsing, b% '.alup (niessagepasn.

or b% reference (-shared v-ariable). Also note that althouzgh Lte primar% motivation behind

these mlodels is Computational (computer prog"r.1lmnting). their applicability i.% not "ore

stricted. Consider that the Acto-r model h;L- been, iised to describe the miaoentaiof multiple

particle systens within the framework of quantum niedmatuirs (227).

In dltoosinrf thr primatr:, comiputational model ftor tltis elort. U'NITY. the following

guiidelines propn! etl by Pnueli and htare! were usd: (21O:



1. The model should adequately represent the computation's behaviour on the actual

hardware architecture.

2. The model should supply needed formalism for reasoning about the properties (usu-

ally stated as propositions) of the computation.

UN7TY, as a shared variable model, satisfies the first item when the target architecture

is a multiprocessor shared variable machine. Chandy and Misra demonstrate in their

UNITY text that UNITY also contains enough flexibility so as to satisfy the first item

-for the multiprocessor memory passing architecture (64). UNITY does satisfies the second

item, as demonstrated by the proofs of program properties in the book by Chandy and

-Misra (64). UNITY also satisfies a major criterion for computational models which W\irth

calls the "intellectual manageability of programs" based on the single entry, single exit

property (357). This requires that the basic statement control structure should consist of

program units that must execute all of their constituent pieces in the same manner for every

possible execution. The assignment statements of UNITY satsify this property, since on

every execution of a statement, every assignment component executes in exactly the same

manner, simultaneously (,athough Wirth was actually addressing sequential execution of

the units).

Another consideration in choosing a computational model is whether the model as-

sumes simultaneous execution of atomic actions or not. UNITY forces the simultaneous

execution of all assignment components within a single assignment statement. Other imod-

els, which are typically called inricaving models (288, 196), prevent this simultaneous

atomic action execution. The standard UNITY execution model, another modification to

the UNITY execution model and defined in Section 4.4, prohibits the simultaneous execu-

tion of assignment componentb %%ithin a single assignment statement, thub extending the

modeling capabilities of the UNITY syntax.

Another major factor in the choice of UNITY is that the individual assignment

components are equivalent to btatements from the first order piedica-te logn over finite do-

mains (see Appendix C). This satisfies a requirement for comnputational models attributed

to Iloare that "programs should be equated w ith the )re(licate. describing tlheii obsei ,ble
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behaviour." (262) UNITY programs represent the execution of assignments that satisfy

first order predicate calculus , qments.

Usually the choice of which processor performs an atomic action at a given time

is nondeterininistic, so that some rules must be established such that a process is not

'neglected' for any substantial-interval of time. Such neglect does not represent 'real world'

concurrent computations, and can interfere with the formal analysis of the computations.

These considerations have led to the concept of fairness-requirements, so that all processors

actually execute at least one atomic action within some given time interval. Two types of

fairness are defined and used here, weak and strong. These conceptb of fairness embody the

requirement that if a parallel program is considered as a collection of concurrently executing

processes, then no one process that could be running should sit idle indefinitely while the

others are running. (See Appendix A for a reference on the symbology of Definition 1.1

and the meaning of 'temporal predicates')

Definition 1.1 Given the two predicates from the temporal logic

A -' a

B b

then the requirement for weak fairness is given by the temporal predicate

(OA ==> Oa) A (OB ==> Ob)

that is, over any unboundcd time interval during which both A and B arc true, then a will

become true an unboundcd number of timcs, and b- will become b utc an unbounded numbei

of times. The requirement for strong fairness is given by the temporal predicate

(OOA > 00a) A (OB =;,. ob)

that is, over any unboundcd time interval during which A becomis truc an unboundcd

number of times and B becomes truc an unbounded number of times, then a will bcomre

truc an unboundcd itrnbcy of limcs and b will become true an unboindcd numbei of time.s.
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Definition 1.1 can be extended to any finite number of implications of the form

A = a

by simply forming all such possible combinations of two implications at a time.

Definition 1.1 is an abstraction of the standard definition (131), and can be interpreted

in the following manner. If A represents a test, or guard, and a being true represents the

execution of some action or event, then

A := a

denotes that if the-guard- A is satisfied at some instant, then the action corresponding to

a occurs at that instant. For example, A could represent the statement that a certain

process is enabled, and the truth of a that the process is actually executing, likewise for

B and b. Then the assertion for weak fairness states that if two processes are continually

enabled (with respect to the implied present time), then they both execute an unbounded

number of times, since

O0a

states that the co:responding process will execute again regardless of how often it has

executed already. Although some authors state that the process will execute an infinite

number of times, instead of an unbounded number, there are no physically realisable

processes which have executed or ever will execute an infinite number of times (as long as

they require finite time intervals).

In a similar manner, the requirement for strong fairness states that if two processes

are both enabled an unbounded number of times, then the±, will both execute an unbounded

number of times. Or, more intuitivley, if both processes are eventually enabled with

respect to an time which is considered the'prebent., then they. will both eventually execute.

Note that UNITY uses weak fairness, since there are no guarded commands and thus all

statements are continuously enabled (64). Chandy and Misra also make the interesting

observation that 'unfair selection', which alloxks a. random choice v ithout having to satisfy

1-17



either weak or strong fairness, can be modeled with weak fairness.

1.4 Summary.]

This research effort addresses two major objectives. The first is a unified mathe-

matical framework within which to analyze the many disparate modcls of sequential and

parallel computation. This unifying effort is inspired by the multiple approaches within the

literature to analyzing these models, based on the mathematical tools of lattices, domains

(a special type of -lattice), algebras, categories, and others. This unification is accom-

plished in this research utilizing the mathematical tools of the topology-of complete metric

spaces. Three different computational models are presented as complete metric spaces:

finite automata, representing the basic state transition machine model for computation;

communicating sequential processes (CSP), a message passing model designed primarily for

modeling parallel computations; and UNITY, a shared variable model designed to model

many different types of computations, both sequential and parallel.

The second major objective of this research effort is the design of a methodical

technique for developing formal specifications written in UNITY. The purpose of this

development technique is to aid the software designer in both the writing of the original

formal specification, and also the rewriting of the formal specification so that each revision

retains the desired pioperties of the original version. UNITY is chosen for this effort for two

primary reasons: first, it is a specification language designed around an execution model

that supports both sequential and parallel computations; and second, there exists a well

documented approach to proving certain properties of specifications written in UNITY.

Since these proofs of properties comprise what is known as program corrcctncss, the next

chapter introduces the concept of correctness, and the relationship between correctness

and formal specifications.
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I. Cor-rectness and Specification

This chapter presents background material on programs and processes, and also on

the specification, verification, and correctncss of. ese programs and processes. The back-

ground material is used throughout this research effort, since the analysib of computational

models and formal specificatons is based on -reasoning about programs and processes. The

concept-of correctness and verification is crucial to this research, since the transformations

developed in Chapter VI are designed to preserve correctness, thus implying that these

transformatin,. are self verifying.

Section 2.1 gives the definitions for states, events, processes, and programs, along

with some basic results that follow from these definitions. The section also defines one

program (process) simulating or emulating another, plus two programs (processes) being

equivalent. Section 2.2 presents definitions for the specification, correctness, and verifica-

tion of programs and processes. The section also presents the interrelationship between

specification and correctness (verification). Section 2.3 addresses the concerns that mo-

tivate this research, the connection between the software development process, proofs of

prog: am correctness, and the design of formal specifications. The section also presents

the basic motivations for the generation and transformation of formal specifications as

analyzed -in Chapter VI.

2.1 Programs and Processes

This section introduesmnd defines the abstract concepts of a state of a coinputation,

an event that causes tranisition between states, and a proccss and a progr a a., a collection

of sequences of events, such that eadi sequence of events can generate a sequence of states.

Definition II.1 A state is an n-tuple whose components are called variables.

This is the basic traditional definition of a ,tate as an instantiation of all of the program

variables at any given instant of time duing tw txecution of the program (96).

Definition 11.2 An event is a funct1,,t thai Ynaps slates into states.
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Since an event is a function, then given a unique state, the function evaluated at that state

yields just one state. So the event as a function correponds to a computational event in a

program, say an assignment. The input state to the function is the state immediately prior

to the assignment, and the output state resulting from the evaluation of the e ,ent function

is the state immediately after the assignment (263). If the states are put into a one-to-one

correspondence with.intervals of time, then Definition 11.2 implies that events call be put

into a one-to-one correspondence with instants of time. This results from considering that

a state corresponds to the interval of time for which it exists, and at the-instant of time

that an event occurs, it causes a new (although the new state could be equal to the old)

state to exist for its corresponding interval of time. This coincides with the concept from

the distributed real time logic (DRTL) that an event is a temporal marker (214).

Definition 11.3 A process is a countable set of sequences of events.

This definition along with the previous one for an event also agree with the ones given

by Iloare, who states that a process consists of units of behavior called events, where

"events are regarded as instaitaneous' (48). This definition also parallels the one from

the real timc logic (which forms the basis for the DPtTL) that a procco. is an ordered set of

actions (180). In the analogy with an executable program, the process corresponds to any

sequence of executable statements that change the values of the variable (states). Thus

a process could be a subroutine, or even multiple subroutines, since a pro'.ess is a .5t of

sequences of events. The basic idea is that given any one sequence, and an initial state,

then the execution of the sequence corresponds to the sequential futictional composition

of the events in the sequence, yielding one final state.

A process does not have to be deterministic. For example, the process of roliing one

fair (lie generates a. set with a. sequence of events, each event being one roll of tile (lie. Fo

each event (roll) there is the input state, the value of the previous roll, and an output

state, the value of the next roll. If the (lie is truly random, then there is no algorithmic

process that can generate the same sequence of states. Such a, random l)rocess is based on

the concept of a ra.ndom choice, which is similar to another nonalgorithmic pocess that is

expressed in the Axiom of Choice (see Section 3.1). Thus the following theoleni:
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Theorem 11.4 There exist processes for which the set of sequ(,nces of events cannot bc

generated by any Turing machine.

Proof: See Theorem B.1 in Appendix B. U

Although Definition 11.3 does not so constrain a process, often th' concept of a

process is that of a sequence of statements executing on a single processor, while a program

is a collection of such processes executing conzurrently on multiple processors. This next

definition of a program embodies this concept, while still allowing for a p:',grarn and a

process to be interchangeable.

Definition 11.5 A program is a set formed from a- countable union of processes.

This next definition supplies the link between the events that constitute a process or a

program, and the sequence(s) of states generated by that process or program.

Definition 11.6 The program (or process) P generates the sequence of states S,

S = {s0,lI, ...}

if and only if P contains a sequence of events E,

S= {eO, el,...}

such that

i E N e(s) si+i

where

1 0. 1,2,..}

If E and S are finite. then

N = {0,1, 2, .. n)

and both E and S contain n terms.
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A program- or process can generate the sequence of states S, if it contains the sequence of

events E as given in this definition such that

e0(so) = sl

el(s 1 ) = S2

The state so is usually cdlled the initial state, and if the sequence of states has only n

terms, then s, is called the final state.

Even processes that ha, c a-finite algorithmic definition can be intractable in analysis,

as demonstrated by this next theorem.

Theorem 11.7 There exists a process P that generates only one sequence of states S,

where S is Turing enumerable, such that there does not exist any Turing machine whose

output is S given any finite subsequence of S as input.

-Proof: Consider the process P defined such that the sequence S is not finite

S= {,S2,...}

where sl is the first output from the Turing maclhine that generates S from P, s2

is the second output, and so on, and there are k (k is a natural number) possible

distinct symbols for each s, (a consequent of the Turing enumerability of S). These

machine outputs will be considered as the 'outputs' of the process. Now, for any

finite subset T of S. such that 7' contains the first n elements of S

T = {5h..., s,,}

there does not exist any Turing machine that can produce S from T. since there exists

at least k - I other processes distinct -from P (and distinct from each other) that

can also generate T (as their first u 'outl)uts') but whose next (i.e. nt + 1) 'output'

is different from s,,. And since a Turing machine can only read a finite mimber of
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tape cells in finite time, the set S cannot be input in-its entirety to the machine, only

finite subsets such as T. U

What this theorem states is that there exist finitely describable algorithms that define

processes, such that these algorithms canot be deduced given any finite behavior of tile

process. Althoughl this may seem obvious enough, there was a time when the SAT test

writers where unaware of this and wrote (ucstions that asked for the next number i a

given- finite sequence of numbers.

This next definition is based on the definition of cmulation and simulation given by

Miller and Kasai (238).

Definitioii H1.8 Given the programs (processes) S and T, then T simulates S, and S

emulates T, with respect to the function h, ij' and only if. for any sequence of states

(so,

such that S generates S as given in Definition 11.6, there exists a sequence of states

:t = (to, ti,...)

where T generates T' as given in Definition 11.6, such that

i E N 4=* h(si) =

where

Nv = 0,1,2

If 5 and "t arc finitc, then

N o0.2,...,,n}

and botlh S and Y'I contain n terms.

If the function h is to be Turing computable, then h must be fuily defined with

only a finite represenLation. That h must be finitcl% defiied is an important consideration
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whenever the two sequences are not bounded in length. This definition is presented here

because of the relationshilp between sinulation, emulation, and constructive verification,

which is addressed in Chapter VI.

If the statement is made that program T simulates program S without any reference

to -a function h, then h is implicitly the identity function. In this case, any sequence of

states generated by S is also a sequence of states generated by T. But it is possible that

tl.cre are-other sequences generated by T which are not generated by S. If however, any

sequence generated by one program is also generated by the other, then the two progams

are equivalent.

Definition 11.9 Two given programs (processes) S and 2" arc said to be equivalent with

respect to the function h, if and only if, T simulates S and S simulates T, with respect to

the function h.

As with the concept of simulation, if the function h is not explicitly given in a. statement

of equivalence, it is assumed to be the identity function. Thus the claim that S and T are

equivalent means that they cannot b, differentiated with respect to the state descriptions.

2.2 Specification, Correctness, and Verification

This section primarily adJ ,ses -the problems associated with the specification, vcri-

fication, and correctness of par lel pi-ograms, since these are the com.ir' s which motivated

this rescarch. Since this research effort is directed tox ards the &I, elopment of specifica-

tions, and since verification is not tied to any one step of the boftware development process,

the verification of most interest here is the verification of one form of the specification

with respect to another. These different forms result when the original specification is

transformed into other sl)ecifiLations, usually to address the questions of implementation.

Each successive transformation generdteb a nev. specification that preserves the properties

(expressed as predicates whose indi'idual variables are the named variables of the speci-

fication) of the previous one, but represents more closely the design of the implemented

software. Typically thee traiisformations result from the need foi mllappings of proce.sses

onto processors, refinement of the algorithms, or efficiency improvements.
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The basic idea behind the specification is that whether formal or not, it represents

what behavior the program should exhibit. The behav ior is defined as the different possible

sequences of values for the named variables. The specification is usually not considered

implementable, whereas a. prototype is. As used in this research, specification applies to

the development of programs, not to the development of executable languages (such as

through an algebraic specification (36)). The following definition of specification from

loare (165) summarizes the intended meaning as used here, although specifications that

are not expressed as predicates are also considered:

A specification of a [program] is a description of the way it is intended to
behave. This description is a predicate containing free variables, each of which
stands for some observable aspect of the behaviour of the [program].

Iennessy adds the constraint that the specification does not address how the behavioum

is obtained, only what behaviour is demonstrated (154). Since UNITY can be considered

as a formal representation of the first order predicate calculus over finite domains (64),

UNITY meets the general requirement for a specification language. The UNITY syntax

combined with an execution model thus forms-a formal specification language.

Another form of a specification is a relation consisting of a set of 2-tuples, such that

each tuple consists of an input state and an output state (2-10, 363). The actual definition

of what a 'state' is doesn't matter to this concept of a specification, but this research

defines a state (see Definition 1I.1) as a tuple (vector) representation of the current values

for all program variables. If the specification is a relation, such that there are multiple

tuples with identical input states, then the bpecification permits a. ,oindeterministic choice

of possible outputs for a given input. If the specification is a relation suL that. each tuple

has unique inl)ut states, which makes the relation a. fun-tion, then the pec-ificatiom requires

a specified unique output for any given input.

The concept of verification can be defined in terms of the walcifall model of the

software life cycle (308. 117, 160), a. model which is still in widespread use within the

Department of Defense (281). and which is considered to i:nclude the conventional boftare

develo)ment process (362, 24). Figure 2:1 (from the book by Sommerville (322)) sum-
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1. Requirements analysis and definition The system's ser% ices, constraints and goals are es-
tablished by- consultation with system users. Once these hia%-e been agreed (to), they must
be defined ii, a manner which is understandable by both users and development staff.

2. System and .softwarc design Using the reqjuirelneuts definitiun as L babe, the requirements
are partitioned to either hardware or software systemns. This process is termed systems
design. Software dlesign is the process of representing the functions of each soft%% are s3 stemn
in a manner which may readily be transformed to one or more computer programs.

3. Implementation and unit testing During this stage, Lte software design is realized as a set
or programs of program units wvhich are written in ome exec-utable programming language.
Unit testing involves verifying that each unit mneets its specification.

4. System testing The individual program units or programs are integratedl and tested as a
complete system to ensure that the software requirements have been met. After testing,
the software system is delivered to Lte customer.

.5. Operation and maintenance Normnally' (although not necessarily) this is the longest life-
cycle phase. The system is installed and p~ut into practical use. Maintenance involves
correcting errors which wvere not (discovered iii earlier btages of thle life-cycle, improving the
implementation of thle system units and enhancing the system'~s services as new require-
ments are perceivedl.

- 1. Somnmerville, Softwai-e Enginering, Addison-Wesley, 1989.

Figuire 2.1. Waterfall Model of Software Development

marizes Lte waterfall method's ive stages of software development. Tme basic idlea with

resp~ect to this model is that verification involves a, proof that one step in Lte software de-

velopmenit model produces a pioduct that i6 bommmclio% "equivalenmt' to thle product prodluce(]

in the immediately precceeling step (IS, 209. 144, 29). Depending upon thle actual (details

of thle model, these products canl be widely varying, as canl the p~roof techniques actually

used (410, 1417, 360, 222, 268, 220, 7.5, 118) and (74. 130, 97, 281, 169). But the common

concep~t for all of these applroaches is that with resp~ect to sonme definition of eqimivalemtt%

Lte softwtre dekelopmnent process should produce a serie-s of 'equaemt, product-, (tme def

illitionl of equivalent canl change from step to step). 'Note that Lte termi 'proof' is to imply

that thle technique of 'debugginmg b.N repeated testing should not, be commsdered %erificaiom

(234).

Trile concept of coirrectness is similar to verification (often Lte two terms are tv-ed

intercmamgeabl% ), in that botli require a proof that one produc nt of Lte soft.%%arc de~ elopmnent,



phase is-equivalent (in some manner) to a preceding product (218, 93, 183, 9. 151). But

whereas verification p~roofs are based on the syntax of the products, correctness proofs

reason-about the semantics of the products (201. 267). This rneai. that a verification proof

presents arguments about how certain symbol stringb froin one product are equivalent to

certain symbol strings from another Iproduct. But ar correctness Iproof gihes arguments

to show how the symbol string from the one product can be mapped into some fu;.11al

system, and how the symbol string from the other prodluct can be mappedl into some

formal system, such that the two formal system representations are equivalent. Often

the twvo formal systems are the same (in which case Lte correctness proof can be used

to substantiate the verification proof). This definition of correctness follows from the

term 'semantics' meaning that symbol strings have been trmapped into another formnulationi

which is considered to represent the 'mearting' (to humans) of the strings (141). With

respect to the fornmal systems used in Ltie semantics of the p~roof of correctnes., shiowing

the equivalency of two symbol strings within these formal sybtems is just another sym1aatic

analysis. so that a more lprecise definition of correctness would be that its verification with

respect to the formal systems that represent the semantics of the original symbol strings.

Consider Lte following examp~lle based on figure 2.2 that demonstrates Lte dlifference

between %,crification and correctness. Thme two products from the dev elopnment qrdce are a

formal specification written in UNITY, and Lte C program that supposedl% imiplemleats

the specification (sonmc authors call a formal specification a-'prototype* (309). whe~reas, a

9specification' is one or more assertions from the temporal predlicate calculus of Appendix

A). If the development p~roceeds directly from UNITY to C: as shownm by the transformation

T in Figure 2.2. thent verification involves a proof that Lte mapping T generates a C

program that satisfies the same predicates (that represent the specification requirenments)

as the UN-\ITY specification (some authors consider the verification Ofra formal.-. ecifilt ation

or prototype with respect to the informal specification as validation (24))- Correctness. of

the C program with re-spect to Lte UNITY :specification require-% two ;idditiojn.d m1appings.

(denoted by ill and N in Figure 2.2. Denoting Lte codloiains of If and A' ;L 'mnathematical

mtodlels' follows die (lafinition of correctnes-s givenm by Laniport 201). Givenm that the

UNITY sperificaioi i6 correct, thmem the* C jrogramn iN correc I if t hz temlt of applying A1 to
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the U' TY specification is equivalent to the result of appl% ing N to the C program. %",lhere

the equivalence definition depends upon exactly what Jl! and N are. Observe that the

mappings M1 and N Lould 1.e the identity mappings, which %-.ould niean that correctness, and

verification would be the sanrie. Also. some authorb considler verification ant; correctness to

be identical- whten the software development process, only cuntinsi certain formal products

(formal in the sense of being written and defined wihrespect to bonic formal system). ['or

exampLle, Jiowden states that tANWhen the 01113N dle,'loj)ileInt prod ucts! are specifications, and

programs, then .. this is consistent with Lte use of Lte %,.ord verification to refer to proofs

of correctness*' (171).

Often the two mathematical models are identical. For example, both models could be

Lte formnal systemn based on rccursivc funnctiom.. This particular chuice of recurshe functions

is appealing since M;,cCarthy has shown that any formal prodxuct (that expresses some

algorithmnic relationship between 'inputs' and outputs') froin the sofL~are (letelopment,

process camube representedl as a, recursive function, such thiaLife function and Lte product

have identical input/output behavior (230). Boyer and -Moore use Lte set of all recursive

functions that can be expressed in Lisp its the cummuin mnathenatical mnodel for correctnie-S

proofs using their meclianical theorem prover ( 15)- Another mnathemnatical model is the

first-order predicate logic, m~hich can be used for proving correctness using Elhe resolution

method (66). The two producLs to be compared are imapped into s-ets of assertions, front

Lte first order predicate logic. so that Lte proof of correctnle.ss- naust sltov. that Lte two sets

of assertions are equivalent (partially decidable).

With respect to Lte earlie-st rormal techniques for pr~grain verification, the term

*verification' was, defined in terms of 'partial' or 'total* correctnte.ss (21 7. I-S). Partial cor-

rnesmeant that the progran Natisfird~ the preiticates thai~t ukinstituted Lte pecification.

%,hile total correctnessi added Lihe ciozsstriit thast the prograrn t,.inti.;gtetl. colucqJLS nhio.e

formalism have been crediLed tor Flo-.# (126) and Iloare (161) (athough Buirstall 153) huts%

credited McCarthy (232) with Lte fir.-I formuldlisinuuf prgrami proo&f). hownever, recent

trends in correctnes-s pror.fs an.d tiefinitiol,~ hlave ilitil th.at therP tre Io mInaJor tf

of proof techntiques regartding. what nmod to lie called %erita~.timi. The .leinition of 'Lerift

ration givenl luer, is one oif eutmziiqur-. whuit It .t~res vihier i-er.';u tierinition, of
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Figure 2.2. Contrasting VerificatLion and Correctness
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verification (although these authors may lot have differentiated beeween verification and

correctness) (40, 122, 362). The other technique closely follows the definition of correctness

given here, a definition which also agrees with recent definitions and usages of the term

'correct' (209, 45, 201).

The philosophy that motivates Chapter VI is not to verify or prove a program correct

once it's finished, but instead to develop the program methodically so that the final product

is verified by construction, which has been termed constructive verification (361). This

philosophy results in proofs about the resulting product that can fall under both the

verification and the correctness concepts as l)resented in the -following definition:
I

Definition II.10 Given the function T, whose domain is a class A of formal strings of

symbols representing programs, and whose codomain is another (possibly the Samc) class

B of formal strings of symbols representing programs, functions Al and N whosc domains

arc A and B respectively, and whose codomains arc formal systems (either logical or math-

ematical), and a E A, then T(a) is verified if and only if

a = T(a)

with respect to an equality predicate defined between A and B. Further, T(a) is correct if

and only if

M(a) = N(T(a))

with respect to an equality predicate defined betwcen the codomains of Al and N. Givn the

elements a E A and b E B, then .11(a) and N(b) are called the semantics of a and b

respectively.

Note that Definition 11.10 does not specify what the codomains of M and N are,

but they mubt be specified when defining the functions Al and N. The equdlity relation

between the codlomains of M and N need only be well defined (i.e. Turing computable),

and need not necessarily satisfy any other requirements. Chapter VI addresses in more

detail a specifi example of what types of functions M, N, and T might be, and Section 4.A

gives another example that relates more specifically to Figure 2.2. The codomains of 11
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and N correspond to what some authors call a 'semantic domain' (354), a concept which

may have originated in a paper by Marvin Minsky (245), in which he stated that "once the

... problem- is given a (semantic) interpretation, -we can bring to-bear heuristic methods

acquired in a more familiar domain".

Often the differences between correctness and verification, and between specification

and prototype, become blurred. For example, in a book about logic programming and

declarative languages (which includes the logic programming languages such as Prolog),

Hogger states (and credits the idea to Darlington and Kowalski (88)) that declarative lan-

guages have the "dual functions of both specification-and computation" (167), This implies

that code written in such languages serves as specification statement, implementable pro-

totype, and final solution. Additionally, the following quote from Schnupp and Bernhard

emphasizes the fuzziness between these concepts: (309)

the Prolog versions serve ... as formal specification.. Whereas modern software
engineering discourages the program developer from writing his implementa-
tion 'directly into the computer' until he has carefully prepared a detailed
specification thereof, using Prolog one can hardly avoid such procedure. The
implementation is the specification! The fact that his specification is immedi-
ately executable and testable certainly cannot be held against him!

This research does not attempt to address the issue of validation, which is related to

verification but is typically defined in terms of the actual software development model used

(24, 340). Validation is an attempt to demonstrate that the statement of the specification

or the executable program properly reflects the or;ginal user requirements (79), or to
"compare a software development product with the user's pe iceived requirements for that

product" (171).

To demonstrate the relationships between bpecification, %erification, and correctness,

consider two separate predicate specifications, denoted by RI and R2, which are graphi-

cally depicted in Figure 2.3. With respect to RI and R2, A and C represent the inputs,

while D and D represent the outputs, respectively. Although this figure is just a symbolic

representation of the specifications and their input and output data and/or events, the

analogy with circuitry implied by Figure 2.3 is not unwarranted (214). For each specifica,
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A RI B

c R2 D

Figure 2.3. Graphical Depiction of Two Specifications

Lion the Inputs and outputs constitute the 'observable aspect(b) of the behaviour' refered

to in the previous quote fromn Hoare.

Since H~oare's definition states that a specification is a predicate, then let

R1(A, B)

dlenote a predcate that evaluates to truc for certain 'values' of A and B in such a..nianner as

to satisf~y the intent ofathe specification. L~ikewvise for R2(C, D). As -an example of such an

111 consider a spetification that states that for any input that satisfies an input p~redlicate

denoted by P, there only exists a unique instantiation of the outputs that satisfies the

outp~ut behaviour predicate denoted by Q2. With respect to Figure 2.3, this repiesentation

is given symbolically by

JA1[P(A)] ==* 3!B[Q(B)] (2.1)

This assertion actually comprises the specification given by Ri in the figure, so thiat Equa-

tion 2.1 is R1(A,B) (179). Thus Equation 2.1 represents a specific RI, whose input and

output p~redicates P and Q2 must be derived somnehowv from the specification statemnent.

Since these specification predicates are based solely on the dlesired bela..viour of the pro-

gramn, they evaluate to true or falsc following the rules, of the predlicate calculus, that is
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their evaluation is not dependent upon any outside factors (such as the actual implemen-

tation, see the next paragraph).

Now consider another predicate

DI(A, B)

that syntactically is equivalent to RI but denotes a predicate that represents the actual

design that was based upon the specification R1. So that whereas the-predicate RI can be

evaluated conceptually based on the specification, D1 evaluates to true or falsc depending

upon the actual implementation of the specification. This means that one requirement for

verification could -be that

RlI(A,B) == DI(A,B)

In a similar manner if the design denoted by D2(C, D) is based on the requirement given

by R2(C, D), then a verification requirement can be given by

R2(C,D) > D2(C,D)

This verification requirement states that whenever the specification conceptually satisfies

a given predicate, then the actual implementation derived from the specification must also

satisfy the given predicate. In general, these predicates only contain individual variables,

so they are expressed in terms of the first order predicate calculus (217). However, this

requirement allows for the possibility that the design could satisfy a predicate that the

specification does not, since

false > truie

evaluates to truc. Thus this verification requirement permits the possibility that the design

could exhibit behavior that was not explicitly addressed in the specification.

Another statement for verification could be that

SI(A,) #*2DI(AB)
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A D

Figure 2.4. Graphical Depiction of Composite Specification

or

R2(C, D) D2(C,D)

which states that with respect to -certain assertions, whatever the specification satisfies,

then so does the design, and vice versa. Thus with respect to these assertions, the design

and the specification are behaviorally equivalent. If the parameters A and B (C and D

respectively) represent the observable actions of the specification and the implementation,

then with respect to the assertions contained within RI (R2), this definition of behavioral

equivalence also satisfies the intent behind Iennessy's and Milner's observational equiva-

lence (153). That is, with respect to these observable actions, the specification and design

that are behaviorally equivalent cannot be distinguished from each other based only on

the 'observational behaviour' defined by Ri (R2).

If the two specifications were combined into one specification, such that -the 'things'

represented by B were somehow (say in type) compatible with those of C, then the spec-

ification depicted by Figure 2.4 would only have A and D as observable behaviour. Ad-

ditionally, the-predicate R(A,.D) that would represent this 'composite' specification could

be stated in terms of the individual predicates for the separate specifications by

1(A,D) = ^[Ri(A,1)A 12(ID)]

which shows how the 'hidden' I is handled.

Zelkowitz has classified verification into three types, algcbraic, axiomatic, and func-

tional (363). Algebraic verification ib based on the theory of signature algebrab and type

abstraction (353, 19, 298, 330, 199, 269, 146), and can be cast in terms of Definition 11.10

with functions Yl and N whose codomains are some form ofa. univci.,al alqLybra (1-13), often
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based on algebraic specifications (36, 337, 336, 44) and/or abstract data types (331). The

basic idea behind algebraic specification and/or verification is that the desired -task and

the program that implements that task can be represented as algebraic equations. This

type of verification is not addressed any further in this effort.

Axiomatic verification includes those techniques that merge the symbol strings that

form the program (from Definition 11.10) text with statements from the predicate calculus,

characterized by specifications that are predicates. This group includes the technique

(268, 18, 145) that has emerged from the addition of predicate transformers (105) to-the

Floyd-Hloare logic (126, 161). The Floyd-Ifoare logic was the basis for some of the earliest

rigorous verification techniques (292, 217, 209). Other verification techniques, such as

those based-on lattices (312) or complete partial orders (241) may also fall into this group,

depending upon the interpretation of Zelkowitz's definition. With respect to the techniques

based upon the predicate transformers (and considering the domains of the functions to

include symbol strings that are called 'programs'), the codomains of the functions M" and

N can include statements of the form

{p}S{Q)

where an -Q are predicates, and S is a program statement (or an entire program). Thi

assertion states that if P is true when statement S starts execution, then after (if it does)
S terminates the predicate Q will become true. Thus reasoning about the 'correctness'

of the program is based on the relationships between sets of predicates and the program

statements. Starting with predicates that are true at the beginning of the program's

execution, and woiking through the statements of the prograin using assertions of the

form above, the goal is to finally derive the desired nredicate(s) as being true after the

final statement executes. The key idea is th- t the reasoning about the piograin uses rules

of inference, or a system of logic, thaL is based ou the syntax of the statements as they

appear in the program. In a more abstract sense then, this veification technique is a logic

system (or theory, see Section 3.3) whose underlyiiig mathematical model uses the syntax

of -lie progrm statements. This contrasts w ith the algebraic verification techniques whose
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underlying mathematical models use equations that do not directly use the-syntax of the

program statements.

The third group of verification te-1,niques is the functional. Their primary char-

acteristic is that the specifications are given in a relational or functional form, as sets-of

2-tuples of input/output states. This yields functions M1 and N from Definition 11.10 whose

codomains consist of assertions about the effects upon the 'state' (see Definition 11.1) that

result from- the statements that comprise the programs in the domains of" M and N. One

such technique has been developed by Mills and others (240). Since a logic programming

language such as Prolog can be considered as a relational language (as opposed to a func-

tional language such as Lisp), then certain verification -techniques for logic programming

also fall into-this category (67).

A -completely different approach to informal verification is based on probabilistic

methods. This approach uses testing to derive statistical estimates that the implementation

contains no errors (340). Since testing does not prove there are no errors, this must be

considered informal verification. And since the testing is usually designed to test for -errors

with respect to the original user's intent, this technique can also be considered validation.

An interesting problem that faces probabilistic statements about boftware verification

results from the different perspectives of the producer and the consumer. For a. given

software package, tCc producer will increase the probability that the software is error free

with each new error that is found, whereas the consumer does just the opposite, losing

confidence in the software with each new fault (340). Ironically, the historical data doesn't

necessarily support either belief. Consider that the January 1990 brcakdown in AT&-T's

telephone network, which resulted in more than $60 million in lost income, resulted from

a. "single error in one line ... of a ... scrupulously tested" program (277).

2.3 Softwvare Design and Formal Specifications

This research addresses the problem of writing a formal specification which will

eventu,-';y be used to generate the executable code. Since there are not currently any

UNITY compilel.'. the use of UNITY in writing specifications requires a manual effort
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to transform this specification into the executable program. A technique called stcpwise

refinement is based on transformations that successively refine the original UNITY program

into a form that more-closely matches how the executable program is to be written. There

are other possibilities (21), which are classified into the following three schemes, based on

the work by Bouma and Walters (44):

Direct Execution In this approach the specification is executed (compiled) directly (as

written). A major advantage is that verification of the compiler implies that the

behaviour of the executed code matches that of the specification. Disadvantages

include the possible inefficiency of the execution and the lack of such compilers.

Translation to- Logic Programming Language This tact is a two step process, the

first requires the conversion (either automated or manual) into a logic programming

language such as Prolog, and the second is the execution of the logic program. Ad-

vantages include the documentation of techniques to convert from a specification -into

Prolog (44), the possibility of modifying the logic program directly to-test changes to

the specification, plus the availability of Prolog interpreters/compiliers. Disadvan-

tages include the existence of specifications which cannot be converted into Prolog,

and the lack of modularity for Prolog when compared to standard programnming

languages (see next item).

Translation to Standard Programming Language Instead of a logic programming

language such as Prolog, the target language for the specification is a general purpose

language such as Ada or C. Compared to the conversion to a logic program, this

conversion can offer the advantage of increased efficiency for the executable program

plus greater similarity between the modularity of the specification and the modularity

of the target code. The comparative disadvantages include the increased complexity

and corresponding problems with proof of correctness for the translation procebs; a

coinsequent of the lacl of tocumented formal semantics for the target languages (4.1).

Direct execution is also called the single languagc approach to the specification and

execution of computational tasks. One conceptual example is Milner's CCS (2,12). In this

approach a single (syntactic) language is used for both the specification and the imple-
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mentation (execution) of the task. Consequently, one tact taken for such languages is to

have a large number of constructs and statements. One subset of the language is designed

for writing specifications, and another subbet of the language is designed for efficient (and

effective) execution of the tasks (263). Such languages are called widC spcctrum languages,

an example of which is the commercially available language REFINE (3,19). Another tact

is to have all of -the language constructs designed to be equally applicable to either speci-

fications or executable forms, which is the philosophy behind UNITY (64). An interesting

question is whether English is the-single language for the human machine (at least those

who think in English).

Contrasted with this single language approach is the dual language approach, which

forms the basis for the fair transition systicts/tcmporal logic approach of Manna and Pnueli

(221, 220). One language is used for specifications, which with Manna and Pnueli is the

language of temporal logic described in Appendix A, and the other language is used for

the actual execution of the task. Because of the separation of the specification language

from the language used for execution, the notion of task execution can be taken very

literall%. Thus the execution language could represent electrical, mechanical, chemical,

etc. processes, and not just 'computational' tasks. Whenever humans write a program

description in English, and then write the actual progran in some executable language,

the dual language approach is being used. Thus the traditional program development

scheme is a dual language approach, uith the efforts direited to %erification and validation

ha'ing to contend with the inherent problems of transla.tig between different languages.

This dual language approach includes both of the 'tran.hatiomn to" .sclnes described above.

Within four years of Floyd's seminal paper (126) on proving the correctness of pro-

grams (and three years before Manna's book (217) utilizing Floyd's concepts was pub-

lished), papers started appearing suggesting that the technique of first writing the pro-

grain code, and then proving its correctness, ua not amenable to serious programming

projects. Iloare (162) proposed that the proof be de'eloped in concert with the program

code. At any stage of the coding phase the code %hould be documented with the current

assertions (including those loare defined as invurwub.,) requiied to substa,,tiate the proof

of correctness of the compleled code. These asertious are called tihe pretondition.s and
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postconditions, since they state what is true before (pre) a statement (or block of state-

ments) executes, and what is true after (post) the statements execute. Hoare claimed that

the construction of the correctness proof during the coding would "prevent the intrusion

of logical errors" (162). Unfortunately, Hoare's suggestion -can easily degenerate into the

same approach Floyd suggested, whenever a change in the program specification results in

a change to the code that is significant enough to warrant a new correctness proof (which

could easily result if the original proof used a relatively small number of assertions whose

scope encompassed large portions of the program code). Another problem that was evident

within ten -years of Floyd's initial paper on using assertions in the verification process is

that the "necessary assertions are often at least as lengthy and difficult to comprehend as

the-program they describe- (348). This trend towards increasingly complex proofs asso-

ciated with increasingly complex programs led De Millo, Lipton, and Perlis to state in a

somewhat infamous article (239):

We believe that, in the end, it is a social process that determines -whether
mathematicians feel confident about a theorem - and we believe that, because
no comparable social process can take place among program verifiers, program
verification is bound to fail.

Recent research indicates that whatever techniques are being uwse-in the development

of software, they are still not preventing defective programs from being delivered to the

customer. For example, during the period 1985-1988 the British Ministr.y of Defense found

(thru the use of static code analysis) that almost ten percent of the individual software

modules checked did not completely satisfy the specification, which led to the following

quote-from an official representative of the Ministry (83):

Certainly the use of plain English with a little associated mathematics has not
proved to be adequate. What is needed is a formal method of writing top
level specifications and then proceeding in a mathematically rigorous manner
to-an ultimate implementation which can be proved to be correct, at least with
respect to some narrow group of safety properties.

This research utilizes another approach which Wirth (355) dubbed stepwisc refinc-

mcnt, which he and Dijkstra. camne to embrace as Ihe method for software engineers to use
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in developing programs (356, 105). Tile basic idea is to start with a formal specification,

and then use tile concept of successive mappings to transform this specification into the

final executable code. Each step of the transformation-process takes one or more (formal)

constructs from the previous step and converts them into new (presumabl3 more detailed)

equivalent constructs. At the final step these constructs are just the statements of the

target executable language. This process requires multiple (Wirth required at least two,

one for the original specification and another for the executable code) formal languages

within which the constructs at each step are formulated. As originally proposed by Dijk-

stra (103), stepwise refinement was a program verification technique. Each refinement step

should be "very carefully carried out, so that it can be seen to preserve the correctness of

the previous version-of the program, then the final program must be correct by construc-

tion" (17). Note that this is the motivating philosophy for the language REFINE (349),

although REFINE is only one formal language. Along with stepwise refinement, Wirth

proposed the decomposing of tasks into subtasks, and data into data structures (the basic

tenets of top down programming).

REFINE contains a. large number of constructs to support the writing of formal

specifications and efficient implementations. Because of the large number of statements

REFINE actually violates Dijkstra's requirements for a 'good' programming language.

])ijkstra stted that such a language should only contain the following statements (106):

A state preserving statement that always terminates (such as skip)

Multiple assignment

Scoped local variables within blocks

Statement composition

Alternative construct (such as if-then-else)

Loop construct (such as while-do)

Declarations for a. few simple (such as boolean and integer) data types

An optional procedure call
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UNITY however, comes much closer to matching this -list of statements. UNITY has the

multiple assignment, scoped local variables (within the ( and )), statement composition

(the I operator), an alternative construct in the conditional assignment, and a small set

of data typeb. UNITY does not have a skip statement, but a. conditional assignment with

a buvlean expression that cannot be satisfied serves the same purpose. UNITY also does

not have either the loop construct nor the optional procedure call, though UNITY does

permit function calls.

The shift away from the 'write the code and then prove it correct' paradigm has

continued, with proposed methodologies based- on systematic 'correct' development over

several phaes, such that each phase is documented with respect to a complete formal (or

at least rigorous) language (183, 184: 119, 253). Thus instead of just proving that programs,

are correct, the emphasis is on proving that the development is correct, even to the extent

of not attempting any formal or rigorous proof of correctness, a concept that has been

called 'proofles transformations' (25). This mind set shows in the following quote from

.Jones (184), which should be compared to the previous quote from loare:

Program proofs can show the absence of bugs, not avoid their insertion.

Not only are these methodologies claimed to be more effective in producing executable

code, but are also claimed to be more efficient, with Pagan quoting reductions in person

hour-s of 10 to 40 percent (253) when compared to more traditional techniques.

The idea of correctness preserving transformations has been used for years in coin

pilers (212. 289, 5, 350). in addition to being a tool for program development. Although

there was strong criticism of this tranrisormational approach :n the mid 197 0". it has come

to be widely accepted as an "established discilline in the feld of progranmiming methodol-

ogy." (271) Additionally, the increased interest in functional programming languages has

generated research into these transformations for compilers of such languages (121. 128).

However, this research addre.ses the use of.much tran.sforzttion. for program development.

Some of the earliest work in correctness pre-serving transformations was a series of

papers by Burstall (5-1). and Burstall and Darlingiton (56. 87, 57). in which lhe. classified
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transformations (with such termns as folding, unfolding, and abstraction). and developed

an automated system that would transfornm programs w ritteii in a hiighk level language (of

their own design) similar to LISP into equivalent Jprogramis in the same languiage. Their

defiition of equivalent was input/output equivalence for functionsb. and sequence of state

equivalence for certain types of procedures. Other early work with programn transforma-

tions includes Gerhart's work based onl axiomatic semantics (1:36. 137, and thie research~

of Manna, Broy. Bauer anid others into the development of re~.ursive constructs and their

transformation into itelative constructs (224. 31, 1-SR. 343, 49). MNorc recent research also

treats the transformation of recursive constructs into iterative ones (.SO). along with tlie

transformation of iteiati'.e loops into other forms (346). and transformations based un the

analysis of programs as direrted acyclic graphs (DAG) (2-S. 3.5).

it addition to thc systeni created by Bizrstall and Darlington, there are other auto.

mna ted tools designed to imp~lemnt transformations on high level 1-tiiages. ror examiple.

thieLeeds 'rra-tisormatioim System trainsforii programb with thie goal of introducing greater

.structure' (2115). A different approach is the Computer aided Intuition-guided Program

ining (CIP) project. which is based onl transformations within a wide spectrum Ilaguag

(32). This wide spectrumn language. denoted CIP. is designed for both specifications anid

i lit lenmen table (in conjunction %'ith an interpreter oteritsubset of the laniguage) p~rograms.

so that thie tran.sformaions canl %tart with the speciffication and end with Elhe imiplenien

tation. A1 system similar in philosophy to the research hiere is tlie SPES -sr-ification and

transform ation svsten %% hich i6 designed so that "Transformnations applied to thie speci

fication mnake it possible to niodifv it. with a view to building a- programn.- (12-11. For a

bu r~ e of thiese and other tr.insformuation s stenis (including thie Prugr.umner '. A pprew-itc

(302)) that is current through 19S~3. see thie article by l'artsch arud Steinbhrul!gen (272).

The programn dr-sign proces, embodied in thiese transformation sys%.teins i.S one of.,lart,

ing withl a. formlal pr'cilkation that has been proveni correct, and -silt Ps'.ly trauisrurnijliug

this -mPcificatin into thme finmal progam uhile presenIng thie rrens:.Thi.- resNearch

does(, hot attuempt to .lrs the entire dfe-sin prm.inii the ii1.tu4srorzdt'ls Iperrozmum'd

fill (hfferoInt v-rsiomus of ther specifiration. umsingm thme %peoriiratiomi aniamgae F'NITY. The'-

rour ej~s pro'seifvui here slurummld he. applicable to ,tltt-r :sperific taivn lan-gm--z~ whichl r.ummgy



from complete formal languages such as an order sorted algebraiL language (25,1), to an

informal or nonrigorous language such as English. Although this resetich relies on manual

transformations, Chapter VI presents techniques that could be partially au* ted.

2.4 Summary

Currently the most common verification technique is manual, due to the lack of au-

tomated verification tools (83). Recent research substantiates the tlaim that there is no

evidence that automated verification is any easier or less time consuming than the manual

approach. Consider that one report on the use of the automated tool SPADE estimated

that verification of each (approximately 30 lines of Pascal code) procedure consumed 8.5

person-hours (281). Assuming that verification and proofs of correctness will remain a

mostly manual process, a promising approach to boftware design is the use of formal spec-

ifications as presented in Chapter VI. This approach gives techniques for generating a

formal specification that preserve. the desiied properties of the informal specification, and

also for transforming formal specificttiuns so that the desired properties of the specification

prior to the transformation are pieserved by the transformation, and are thus pioperties

of- the specification after the transformation.
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III. Requisite Mathematical Background

This research is divided into -two major efforts. The first is the -metric space based

development of computational models as an alternative to the more traditional (mathe-

matical) development of these same models. The underlying philosophy behind this metric

space development is that -the mathematics can be supported by a standard advanced un-

dergraduate or graduate level course sequence in real analysis. In keeping with this concept,

this chapter presents certain fundamental mathematical concepts required for the follow-

ing chapters besides the metric space material. The concepts presented in this chapter

are based on the class approach to collections of things, as opposed to the more standard

set based approach. Definitions and motivations for relations, functions, predicates, and

category theory are given, all based on this -class concept. The level of presentation is

that of a course in mathematical analysis from the book by Apostol (8), and the reader

familiar with this material may proceed directly to Chapter IV. Including this material

in the real analysis courses (as presented here, particularly the category theory) can tailor

these courses towards practical and theoretical research in computer science/engineering.

Section 3.1 presents the concept of a class, which is a hierarchical technique for

grouping collections of things. By using classes, instead of the standard ZFS sets (i.e.

Zermelo-Fraenkel-Skolein (364, 129, 182)), one can avoid certain paradoxes relating to

sets. One of these paradoxes results from the claim that there exists a set U which is the

set of all sets. Is then U an element of itself, and if so, what is the complement of U? The

formalization of the concept behind this paradox is given in Russell's paradox (132, 73).

Russell's paradox starts with a set A defined as:

A = {x E UJx x}

Thus A is the set of those sets (elements of U) that are not members of themselves.

Although this definition seems strange, it is reasonable, since given any 'norinal bet ., it

should be easy to decide if x is an element of itself. UnfortunatelN, given a set that is not

'normal', this definition quickly leads to a. paradox. And such a set is A itself! This is
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because the definition of A implies that

A E A #* A A.

The idea of a class though, permits the formation of the class of all sets, which, since it is

not a set, does not lead to Russell's paradox (as long as there is no -class of all classes).

Section 3.2 presents an overview of relations, functions, and predicates, within the

framework established by the class concept of Section 3.1. The definitions given for these

are in terms of classes, but do not contradict the standard definitions based on sets. Rela-

tions are basically ordered collections of things, that are considered -as somehow related to

each other. Very similar to relations, functions are often called mappings, to signify that

given one thing, the function maps that thing into another (whereas a relation in a sense

maps into more than one other thing). The section concludes with predicates, which are

functions that map things into a special set whose only members are the symbols -repre-

senting 'true' and 'false'. This research does not try to define exactly what true and false

are, but instead accepts them as given atomic (cannot be defined in teims of other objects)

objects.

This chapter concludes with Section 3.3, which introduces category theory (156,

2,17), and defines those -terms used in the later chapters. Category theory is the study of

categories, where each category is a combination of a collectiun of certain types of objects,

and the collection of morphisms between these objects. A morphism is an abstraction of

the concept of a relation or function. This section also gives a category based definition

of a theory. The notion of a theory, as defined in this section, reflects the more abstract

concept of a theory as containing theorems which can be proven to be true. This is a

different presentation than the formalism of a theory as a category whose moi l)hisms

(mappings) represent projections and n-ary operations (112), or as a signature algebra.

plus equations (58). But the difference is very minor, and on a. more abstract level the

algebra based theory can also be show n to be a category (77), with different notions of

wFat are the 'thcorems'.
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3.1 Classes, Genus, and Species

This section introduces the class, which is used as the basic concept of a collection

of things instead of the traditional set (182). Since the categories used in this research

are based on collections which cannot be treated as classic sets, thi,, class concept yields a

formalism that is used to reason about these collections. The class used here is based on

Lewis Carroll's concept of a class: (61)

"Classification", or the formation of Classes, is a Mental Process, in which we
imagine that we have put -together, in a group, certain things. Such a group is
called a Class.

The following definition gives a frmal definition of class, based on the ideas from Carroll of

putting together in-a group, and things. There is no attempt to try to define either of these

concepts, but instead they are accepted as stated. Indeed, the following two statements

could be called hidden axioms, where 'hidden* refers to the lack of a formal definition of

the terms 'putting together in a group' and 'things':

1. There are things.

2. Things can be put together into grou)s.

That no attempt is made to define these two concepts here, reflects the 'semantic' com-

ponent of the English language. That 1b, attempts to formally define these two concepts

results in self reference, which should imply that these concepts cannot have 'meaning'. Yet

they do have meaning to us, implying tha.t thib meaning rebults from somie characteristic

of the English language (to us) that is not formalized (i.e. not a. formal language).

Definition III.1 A class is a collection of things. clases are formed in the following

Inannerl:

1. There exists a nonempty class U of all things grouped together.
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2. Given a class called the genus, another class called the species can be formed by

grouping together things from- the genus. If X represents a class, then

ACX

denotes that the class A is a species of X, and

XEX

denotes that the thing x is one of the group of things that form the class X.

3. Every genus has at least one species, which is the empty class that contains no things.

As in set theory, it is necessary to differentiate between the thing a, and the class

that contains only the thing a, say A. Thus a E A states that the class A contains the

thing a, which implies that the class A is not an element of the class A, denoted by A A,

and also that the thing a is not a species of the class A, denoted by a 0 A. The reason

a A is that the symbol a represents exactly the thing a, whereas b C A is true only if

the symbol b represents another class, that is a grouping together of things, that contains

either no things or just the thing a.

Definition 11.1 states the existence of a class called U, and also defines how other

classes are formed from U. If the d.finition did not specify the class U, the only class that

could be formed from the definition would-be the empty class, since the second item in the

definition requires that for a nonempty class to be formed there must exist another class.

The empty class alone is not enough to form other classes, since it has no elements. So the

definition contains two key concepts, that of a basc case, that is a specific example of the

item defined, and that of a -rccursive process for forming other items from the base case.

This type of definition is called a recursivc definition. In Definition 111.1 the base ca-e is

the class U, while the recursive process is the formation of species from genus, where the

'first' genus is U.

The class U in Definition 111.1 comes from the following quote from Lewis Carroll's

Symbolic Logic (6 1):
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We may imagine that we have put together all Things. The Class so formed
(i.e. the-Class 'Things') contains the whole Universe.

The choice of U to denote the class of all things comes from the reference to the 'Universe'.

The universe has not yet been specified, but in general this universe must contain all the

things that are needed for some specific reason. This implies that another effort would

need a different Universe based on different reqi'irements. Thus this class of all things is

not absolute, but contains just those things needed for a particular application.

Given the formation of such a class as U, then Definition 111.1 can be used to form

other classes, called genus and species. The terms genus and species also come from

Lewis Carroll, and this usage of them as classes parallels his. But the concept of a class

representing the universe, the class U, is not universally accepted (15G, 247). If there can

be no universal class of all things, then how else can classes be formed? Consider the

following methodology for forming-a hierarchy of collections of things that differs from this

class based approach.

Start with the standard definition of a set (364, 182, 8), then consider the collection

-of all sets. Obviously such a collection is not a set, because of Russell's paradox. One term

for such a collection is a class (defined differently from the class of Definition 111.1), with a

conglomerate defined as the collection of all classes (156). In this hierarchy, then, a class is

what Ilofstadter (166) would have called a meta-set, and a conglomerate-as a meta-meta-

set. Regardless of the names used, this process of starting with sets and then forming

collections of all sets, and collections of collections of all sets, could continue indefinitely.

Thus Definition 111.1 could have been reworded so that the set is the base case for

the class definition, with additional classes formed based on the baine conept of genus

and species, except that a genus can only be formed whose elements are defined in terms

of a given species. This approach can be summarized as starting Mith a. given class and

building other classes friom it in both the 'upward' and 'downard" seite in abstraction.

Contrasted with Definition 111.1, this approach %would not require the existence of the class

U. A variant of this appioach is to start with those things that are atomb, and then to fo in

collections of atoms, and collections of collections of atoms, and so on. This generates a

hierarchy of classes but only in the upward direction of abstraction (295).
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The previous question regarded the impact of not having the class U. An inter-

pretation of Definition III.1 would be to permit U to be a 'global' class for a particular

application. This U would include all possible atoms needed for a specific application (such

as this research effort), and classes would represent different collections of the atoms. An

atom is a thing that can be represented with one symbol, such that any required 'meaning'

associated with that atom can be derived from only that symbol. An example would be

the-forming of classes for the analysis of sets of real numbers. The atoms would be the in-

dividual numbers, plus other required things such as the unary minus operator, the binary

addition operator, and other symbols that are standard within the realm of mathematical

analysis (based on sets). Another example of a collection of atoms would be those based on

the lambda calculus (301, 274); such a collection would not necessarily require the arith-

metical operators, but would require other symbols such as A. Using such an approach

skirts the problem of the existence of a class such as U that represents (in Carroll's words)

the whole Universe. Instead of the whole universe, U only represents that portion needed

for a particular analysis.

The approach here is to define a universe U that contains all the atoms necessary

for this research effort. This definition of U is somewhat informal, for a more rigorgus

mathematical treatment see Mac Lane (202) (which is based on an earlier paper by Berlndys

(37)). Starting with the standard definition of sets, the class U contains the following:

1. The set of all computable numbers (see Appendix B) is an element of U.

2. The arbitrary union or intersection of elements of U yields an element of U. (Sce

Definition 111.4 for the definition of class union and intersection)

3. If D E U and f : D - U is a function, then the class formed by evaluating f for

every element of D is an element of U. (See Section 3.2 for a definition of function)

4. If B E U an(] b E B, then b E U

5. If C' E U and S C C, then S is an element of U.

A consequence of items 2 and 5 is the following result.
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Theorem 111.2 Given a set C, C E U, then the set of all subsets of C, denoted by 2C

and called- the power set of C, is an element of U.

Proof: Item 5 implies that

VS[S C C => S E U.

Item 2 then implies that the union of all such subsets of-C forms another element

of U, even if the collection of all subsets is uncountable. (See Appendix A for a

description of the predicate logic symbology. *
Mac Lane required the inclusion of the set of all natural numbers in U, instead of

the set of all computable numbers (from the first item), so that sequences could be formed

(See Section 3.2-for a definition of a sequence). Since the set of natural numbers is a subset

of the set of computable numbers, this U also allows the formation of sequences.

An example demonstrating the second item from the list of properties for the class

U can be formulated using bags (225). Bags are identical to sets except that bags allow

multiple elements to be represented with the same symbol. If the delimiters { and } are

also used for bags, then the two bags A and B given as

A = {a, b)

B = {a,a,b}

are not equal. If both of these bags A and B are elements of U, then the second itcm

states that the following bags are also elements of U

{a, b) U {a, b) = {a, a, b, b}

{a, a, b,-b} U {a, b) = {a, b, b, a, b, a)

a process that can be continued indefinitely.

Now that classes can be formed, an important question ib when are two classes equal.

The answer to this question, Definition 1-.3, states that two classes are equal if and only

if the following two conditions hold:
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1. Both classes are species of the same genus.

2. Both classes contain exactly the same elements.

Definition 111.3 (Class Equality) Given two classes A and B,

A = B #* 3XVx[A C X A B C X A (x E A 4=* x E B)].

This definition uses -a sentence from the predicate logic (225). Appendix A describes the

concepts, symbology, and syntax-from the predicate logic used within this -research. Note

that class equality, which requires the existence of a genus for the two equal classes, differs

-from set equality, which only requires that thetwo sets contain exactly the same elements

(182).

Although a definition is given for equality between classes, there is no general purpose

definition given for equality within a class. The definition of equality within a class is

dependent upon the class, and is defined for each specific class as required. An equality

definition for a class is not unique, so that the same class could have different definitions,

each one tailored to a specific requirement. For this effort though, each class has either

one equality defined, or where there are multiple equalities, each one is given a different

name (see the discussion of extensional versus intensional functional, equality in Section

3.2 for an example). For example, the class that contains only the natural numbers has

the 'standard[ equality based upon numerical evaluation, so 3 = 2 + 1 in addition to 3 = 3.

But the class that contains all sets (see Section 3.3) uses a different equality, which requires

the symbols representing the elements to be identical.

By defining classes in this manner Russell's paradox can be avoided. Genus and

species are abstract names that represent different classes, so -that instead of the set of all

sets, which leads to Russell's paradox, there is the genus (or class) consisting of all those

things that are sets. Given such a class as the genus of all sets, then any collection of sets

would be an example of a. species. A class can be both a. genus %%ith respect to another

species, and a species with respect to anothcr genus. One genus can have multiple specieb,

and a. class can be a. species with respect to multiple genus.
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Within a species A, x E A denotes that the thing represented by x is an element of

the species, and the notation that A is a species of the genus X is given by A C X. With

these conventions, the symbology for classes is identical to that for sets, so that

A C X

such that

A = {x E XIP(x)}.

represents the definition of the species A as the class of those things (or elements) from the

genus X such that the predicate P(-) evaluates to true. (See Section 3.2 for a definition of

predicate)

An empty class is denoted by {}, so-that given any class A

{E A.

The empty class is not the empty set, since the empty set is defined to contain no elements,

whereas the erupt% class not onil contains no elements, it is also a species of some genus.

So if two classes A and B have different genus, then the empty class that is a species of

A is not equal to the emlpty class that is a species of B, whereas in set theory all empty

sets are considered equal. Note that within the class of all sets, the uniquc empty set is

denoted by 0.

Within these first two definitions of classes and class equality there is at least one

major difference between sets and classes. Whereas a set is completely defined by its

elements (182), a class is defined by both its elements and its genus. An interesting

consequence of this dependence of a. class upon itb genus is the question of lthethei there

can be another class (sa. defined in a. different manner) that is equal to the universal class

U. Since U has no genus (and is the only class that has no genus), then there cannot exist

another class that is equal to U!

Another major difference between classes and sets is that sets contain unique ele-

ments, so that the union of the set {a.b} and the set {b} yields the set {a,b}, whereas
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this is not necessarily true for classes (and isn't true for bags). The reason for not stating

that elements of classes must-be unique is that such a claim leads to a paradox (such as

Itussell's).

One consequence of the difference between sets and classes deals with tht ery concept

that led to Russell's paradox, that is a set of sets. An element of a set of sets is itself another

set, and this element could itself be a set of sets. This leads to- the problem of using the

same name for different objects. Consider the following sets:

A = {1, 2, 3}

B = {{1,2,3},O}

C = {B,O}

Set -theory does not have a convenient way to differentiate between A, B, and C. They

are different types of sets, since A has a nesting level of one for its delimiters { and }, B
has a depth of nesting of two, whereas C has a depth of nesting of three. So the set A

is an element of B, but is not- an element of C, even though both B, C are called sets of

sets. Additionally, with-only the symbolic representation of C as given above, there is no

information to indicate- what the depth of nesting is for C, unless B is specified in more

detail. Vith classes, since a class is defined by both its gents and its elements, there is

a more convenient way to differentiate between the three species A, B, and C, since they

could each have a different genus.

Operations on classes correspond to those on sets, so that there is the union, inter-

section, complenmcnt, and cartesian product. All four are defined in an analogous manner

to the set operations (182), but with important differences. Union and- intersection are

only defined for two species of the same genus, and the complement of a bpesJie6 is always

another species within the same genus.

Definition III.4 Given that A, B, and X arc classes. dcfine class union u., intersection

n, complement , and cartesian product x, in the following manner:

A,JB C X AU B = {x E Xix E A V T E B}
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A,B C X A nlB = {x E Xjx E A Ax E B}

ACX 4=, ; = {X E XIxj A)

A x B = {(a,b)la E AAbE B}.

Note that the V symbol represents the inclusive or, which evaluates to true if either or

both of its arguments are true, and- the A symbol i'epresents the logical and. Appendix

A describes these and other symbols from the predicate logic. A result of this definition

is -that genus are closed under the operations of union, intersection, and complement.

Additionally, the cartesian product of two classes is itself another class.

In Definition 111.4 the symbols (a, b) denote the ordered pair of a and b. Some authors

(8, 156) define ordered pairs in terms of sets as

{(a, b)Ia E A A b E B} = {A, {A, B}}. (3.1)

Instead of this approach, this research defines a class of ordered pairs b&sed on the follow ing

definition of ordered n-tuples:

Definition 111.5 A class of ordered n-tuples, it E N, denoted using the delimiters (

and ) as, for example

(Xi, .. X')

is defined to contain clmcnts that arc also denoted u.sing the dclimiter ( and ) as, for

example

(x . )

such that

(xl,. ..,,X,) E (Xi,...,-X,) 4=> [i E {11, ....,n} x, E Xj].

Equality bctwcen elenenis of one (lass of ordred n-tupes, or equality btwceu two classes

of ordered n-tuples is defined by

,,n ) = (Zi....,,) =#* (1,1= Z3 1 ... A
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The zero-tuple, denoted (, is an empty class.

In testing for equality between two elements of a class of ordered n-tuples, -each 14,,, Z,

above are from the same class, although for i j, 11' does not have to be from the same

class as Z7. If instead the test is for for equality between two classes of ordered n-tuples,

then the W,, Z, themselves are classes, not necessarily all identical. Also note that the

definition includes the ordering concept in that

X 0 Y =:, (X, 1) 0 (1YX).

Since the empty class is a species of any genus, then tihe zero tuple is also a species of any

ordered n-tuple.

An example of ni-tuples is the class whose elements are denoted by

such that each x, is an element from the set of computable numbers. This class of n-tuples

is denoted by Cn, and its elements are called vectors.

Based on Definition 111.5 is the following definition of a class called a, family.

Definition 111.6 A family is a class that is dcnotcd by a special form of a onc-tuple, so

that the family (Y,,)G is defined by

X = {X. E Xla E A}

where X is a genus. andl A is a set called th index scl.

Another notation for a family, whenever the index set .1 need not be specificallV given. is

(X.)
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If-there is no confusion, then another equivalent formulation is given by

(1.)

such that

() = (Yo).aE

where

a E A -~ZaE Y'.

This nomenclature leads to the class of all 2 tuples of computable numbers being denuted

by

(CC)

A class used in this research is the class of all sets. This class is not itself L set.

but all of its elements are sets. Equality within this class i. defined as the standard set

equality, so that two elements are equal if and only if the% are represented with the same

symbol (182). This class is closed under the following operations:

1. Set Union.

2. Set Intersection.

3. Set Complement.

4. Set Cartesian Product.

The following are elements of this class:

1. {X. Y} where X.Y are sets.

2. All functions from X to '. where X. Y are sets. (See SecLion 3.2 for a- definition of

function)

3. The empky set. denoted by 0.

The following is a list of frequtmitly used example., of elvinwnk from thisk cla%.%, all of

which are also sperips of tle genus R. the rpal minulurs.
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1. N - all natural numbers.

2. Z - all integer -numbers.

3. Q = all rational numbers.

4. C = a" Turing computable numbers. (See Appendix B)

To complete the background on classes one more item is needed, an extension of the

axiom of choice for sets to an axiom of choice for classes. See section 3.2 for a formal

defi-,"tion of function.

Axiom 111.7 (Axiom of Choice for Classes) For any genus X, there exists a function

C such that

VS[(S c X A S ) C(S) E 5].

A characteristic of this choice function C is that it. is not a Turing computable function

(see Appendix B).
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3.2 Relations, Functions and Predi:ates

This section gives definitions for relations, functions, and predicatcs based on classes

instead of sets. These definitions pat illel those for the set-oriented -constructs, such that

the standard hierarchy, all predicates are functions, and all functions are relations, is

also preserved by these definitions. These relations, functions, and predicates are used

extensively in other definitions throughout this effort, and the predicate forms the basis

for the modal and temporal logic (see Appendix A).

The concept of a relation is that it represents a subset of the cartesian product of

two sets. For example, the equality relation over the natural numbers is a subset of N x N

such that (2,2) is an element of the subset, but (2,3) is not. Two traditional definitions of

a relation that are based on sets are:

1. Any set of ordered pairs is called a relation. (8)

2. Given a set X, a relation on X is a subset of X x X. (305)

In the second definition, X x X is the set Cartesian product. The first definition is just

a generalization of the second, and the two are equivalent if the relatioia is over some

particular set. In both cases the relation is characterized as a set, and is a binary relation,

that is a relation of two components. Since this research analyzes classes as they fit into

the framework of catcgory thcory, the following definition for relation is not restricted to

sets, nor is it restricted to just two arguments.

Definition 111.8 Gimen a class reprsentcd as an n-tuplc, a relation over this class is a

species of this class.

The representation as an ordered n-tuple is a carry-over from set theory,, so that the relation

of Definition 111.8 is a generalization of the concept of a relation as an ordeied pair. If the

given class in Definition is a two-tuple of bets, then the resulting relation is also a relation

under the two traditional definitions given above. As an example, if the given class in the

definition is

(i, U)
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then any relation over this class is a further generalization of the two traditional definitions.

Ti nomenclature for statements about relations is the same as that used for set

based relations. For example, if the given class is the 2-tuple

(X,Y)

where both X and A" are classes, then

(X)y) E (X,Y).

denotes that the tuple (x, y) is an element of this class. If R denotes a relation over this

class, that is

11 C (X,Y)

then

(x, y) E.

denotes that the tuple (x, y) is an element of the relation R. Another representalion that

(x, y) is an element of R (which is commonly used for set-based relations) is

xRy.

Note that with respect to the standard definition of set based relations, other math-

ematical constructs that would fit the concept of a single or multi parameter relation, such

as the sabset relation over sets, arc either simply called relations on an individual basis

(225), or are implicitly considered predicates by definition (217, 225). Definition 1II.8 in-

cludes the single and multi parameter relation, %hile single parameter ielations albo fal

under the definition of a 'family' (see Section 3.1).

Another representation for set based relations is ba.sed on the concept of a relation

as a. function that maps elements of a set of ordered pairs into the set {Iruc, falsc}. For

example, the equality relation over the set N A N (an be (,onsidered ao function which is
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denoted by eq, such that

eq(2, 2) = true

eq(2,3) = false

where eq(x, y) means the function eq evaluated at (X, y). If eq(a, b) evaluates to true, then

(a, b) -is an element of the equality relation, whereas if eq(c, d) evaluates to false, then

(c, d) is not an element of the equality relation. This example illustrates the concept of

a relation as a function- that maps elements of a class into the set {true, false}. Defined

in this manner, eq can be used just as a symbol representing a set-based predicate (see

Definition 111.20) would be used.

The following definition concludes the required terminology regarding relations, plus

supplies the concepts needed to support the analogy between relations and categories used

in Section 3.3. This research adopts the convention that the terms 'relation' and 'partial

relation' are synonymous.

Definition 111.9 A partial relation R C (X, X) is called:

Reflexive iff

VX [x E X = - (X, X) E R1

Symmetric iff

VX, Y[(x E X A y E X) =* ((x,Y) E R -= (yx) E R)]

Antisymmetric iff

VX,Y[(x E X A yE X) = [((xy) E RA (y,.) E R) ==. X = YJi

Transitive iff

V.x,,y,z[(x E X A y E X A Z E X) Y [((xy) E RA (y,z) E f) :=: (x,z) E U.]
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Total iff

VX) y[(X EX A yEX) == ((x, y) ER V(y, x) CzR)]

An Equivalence iff R is reflexive, symmetric, and transitive.

A Partial Order if R2 is reflexive, transitive, and antisymmetric.

A Linear Order if R is a total partial-order.

A Strict Partial Order iff R is transitive, antisymmetric, and

Vx[x E X = (x,x) € 1]

A Strict Linear Order ifflR is a total strict partial- order.

Note that there exist equivalence relations that are also antisymmetric, buch as the standard

C=' relation, and there exist equivalence relations that are not antisymmetric, such as the

'mod n' induced equality relation over the natural numbers, where 0 equals 3 mod 3, but

of course 0 0 3.

Since a. function within set theory is a special type of relation, then to preserve

consistency the class based definition of a. function should also be as a special form of a

relation.

Definition III.10 A function is a class of 2-tuples, that is a function is a species of the

cartesian product of two classes, denoted by, say

(FI, F2)

such that

V(f] -f 2 )- (g1 , 9 2 )[((f), f 2 ) E (FI,P 2) A (91, 92) E (Ji, F2)) = ((fl = g') = f2 = 92)1

(3.2)

The class D such that

FcD
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is called the domain of the function, while the class C such that

F2 cC

is called the codomain of the function. If the function (F, F2) is denoted by F, then

F(fl)

denotes F evaluated at fl, where

V(f 1,f 2)[(f1 ,f 2) E (F1j,FP2) F F(fl) = f2];

and

F:D-C

FD-£C

both denote the function F having domain D and codomain C.

Equation 3.2 implies that the function evaluation is defined for every element of the class

Ft, which is equivalent to saying that F1 is the domain of definition (8). Since the domain

of definition can be a proper sublcass of the domain, that is there can exist elements of the

domain that are not elements of the domain of definition, then the functions defined by

Definition 11.10 are the partial (i.e. not necessarily everywhere defined) functions. Just

as with set based functions, if S denotes a class, then

F(S)

denotes the image class of S under F, and is given by

F(S) = {yl3x[x E S A y = F(x)])
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Within set based function theory, the image of any set is itself another set (82), which is

consistent with this idea that the image of a class is another -class.

This definition- of function generalizes the standard definition of a function- as a

mapping from one set into another, such that for any function f,

f(.T) # f(Y) = * # Y.

Definition 111.10 also does not conflict with the standard definition of a function based on

Turing machines (155), since an undefined evaluation will not be equal to any other element

of the codomain. The nomenclature used to designate that a function F is undefined at

the element x is

=(x)

where _L is a symbol not used for any other purpose. Just as the standard definition

requiies that each individual element of the domain set must be mapped into just one

single element of the codomain set, Definition III.10 -also requires that all elements of the

domain of definition class that are -equal must map to equal elements of the codomain

class. The function evaluation performs the mapping, and both the equality within the

domain and the equality within the codomnain are class equalities. The major difference

between this definition and the standard set based defintion is that since classes do not

require uniqueness of elements: there is the possibility that the domain and the codomain

can have multiple elements that share the same symbol or are otheiwise equal under the

appropriate cl&ss equality. Within a class whose elements are sets: equal elementb arc

exactly unique ennents.

Definition 1111.0 states that the elements of a. function are ordered 2-tuples subject

to the constraint given by 3.2. This implies that any function is al.u a relation, since

the 2-tuples that are elements of the function can also be the elements of a. relation.

The co-,,verse is not alwa.ys true however. since there are relations that do not satisy the

constraint given by Equation 3.2, and thus are not functions. One example of a relation

that ib not a function is the relation < over the natural numbers. Both of the two-tuples

(2,3) and (2, -1) are elements of this relation, whereas both of thee tuples cmnnot elements
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of a function, since that would require that 3 = 4. Thus < violates 3.2. As another example

consider that all of the elements of the equality relation over the natural numbers can also

be the elements of a function. Indeed this function is the identity function denoted by id,

and defined by

n E N =* id(n) = n

Since any function can also be considered as- a relation, Definition 111.10 preserves

the traditional concept of the set of all functions from a- domain into a codomain, being

a subset of the set of all relations between the domain and the codomain. This definition

also preserves the traditional concept that there exists relations that do not satisfy the

definition of a function. In terms of classes, this means that given a class of 2-tuples, the

class of all functions whose elements include these 2-tuples is a species of the class of all

relations also having these 2-tuples as elements. (Note that these-definitions are consistent

with those based on the concept of a relation as a function from onle powerset into another,

with the function being completely additive (111))

A relation 11 C (X, Y) where X and Y are sets is also a function f

f : X - 2"'

where 21' represents the powerset of Y (the set of all possible subsets formed from the

elements of Y). This statement stems from the concept of a. function as a relation such

that for every element of the dumain the function evaluation yields a single element of the

codomain, whereas for a relation the evaluation yields possibly more than one element of

the codomain.

The following definition implies that within this discussion the terms 'function' and

partial function are interchangeable.

Definition 111.11 A partialfunction f,

f :D-- C

is called:
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Total iff

V.T[x D 3y E[ C A y =f(x)]]

Surjective iff

Vy[y E C 3x[x E D A y = f(x)]]

Injective iff

V, y[f(x) = f(y) ==> x = y]

Bijective iff f is both surjective and injective.

A Sequence iff f is suijective and

D=N

The codomain of a sequence

{f(0), f(1),...}

is also denoted by

{fo, fl,...}

where each fi is called the i t h term of the sequence.

Other common terms for surjective and injective are onto and -one-to-one (or 1-to-I),

respectively. These follow from the standard set ba-sed definitions, where a surjective

function is one that maps the domain 'onto' every element of the codomain, while an

injective function maps one element of the domain- to one -(and only one) element of the

codomain. In class based definitions such as the ones here, these statemeit.s are relaxed to

include equal elements, and not just unique elements.

As an example of a. sequence, consider the function F defined as

{" 1 if n = 0F(n)=

l/n if n7 > I
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The (codomain) sequence generated by this function is

If F is a sequence, then the function G whose domain is the codomain of F is called a

subsequence of the sequence F. Continuing with this example, one such subsequence is

given by the function G, where

F(n) if n E {O, 2,4,...}G(F(n))
.{ ifn E {1,3,5,...}

The-(codomain) subsequence generated by G is

{1, 1/2, 1/4,.}

The concept of a countable set is closely related to -a sequence.

Definition 111.12 A set S is countable if it is the codonzain of a bijective function whose

domain is a subset of N.

A countable set can have a finite number of elements, which means that the function from

Definition 111.12 either has a finite subset of the natural -numbers for a domain, or else

is not total. The cardinality of a finite set is just the number of elements in the set. A

countable set can have an unbounded (ur infinite) number of elements, in which case it

is called countably infinitc. This means the function from Definition 111.12 has N as its

domain, and can only be undefined for a finite subset of N. The cardinalit of a countably

infinite set is 1No, called alcph nought. This is the cardinality of the natural numbers, the

integers, and the rationals. Thus the term 'Lardinality' refers in a sense to the number of

elements in the set. Any set that contains only the terms of a sequence is countable.

Theorem 111.13 The following sets are countable:

1. X x Y where both X and Y air counlable.
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2. The union of a countable collection of countable sets.

The proof of this theorem can be found in a standard analysis text.

Not all sets are countable, and the inclusion of the irrationals into the reals creates

such an uncountable set.

Definition 111.14 A set S is uncountable if it is not countable.

Theorem 111.15 The set of all real numbers is uncountable.

Proof: (Based on the proof in Apostol (8)) This proof shows that the rational and irra-

tional numbers between 0 and 1 form an uncountable set, so that all of the reals also

form an uncountable set.

Assume that the set of real numbers greater than 0 and less than I is countable.

Since this set is not finite, then there exists a total function R whose domain is N,

such that

R(i) = 0.ujui,2uj,3 ...

is the decimal expansion of the i t h real number in the set. For real numbers these

decimal expansions can be continued indefinitely (the number 0.1 can be written as

0.1000...). Now form the decimal expansion for the real number y, where

y = O.vIv 2v3 ...

given by

I ifu., --AI
n =

2 ifU.., =I

The number y is in the interval between 0 and 1, and yet it is not in the codomain of

R. Thus the original assuml)tion, that such an 1 existed making the set countable,

is incorrect and the reals are uncountable. U

This proof technique is called the Cantor diagonalization technqiue (110), and , u.sed in

general to prove that sets are uncountable. For example, this technique can be used to hhou
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that the set of all total functions whose-domain is the-natu al numbers and XV hose codomain

is the natural numbers is uncountable, which means-that there are an uncountable number

of possible sequences.

An abstraction of a sequence is the net. Whereas a sequence is a surjective function

whose domain is the natural numbers, a net (in the most general sense) is a surjective

function whose domain is a directed set. A directed set is the two-tuple (X, R), such that

X is a set and R C (X, X) is a relation that is reflexive, transitive and satisfies (189)

VW,y[(X E X Ay YE X) * 3z[z E X A (x,z) RA (y,z)E R].

A consequence of the Archimedian principle (305) is that the set of natural numbers N

along with the relation < is a directed set (see Section 3.3 for the definition of N as the

category whose arrows are equivalent to the < relation), so that any sequence is also a net.

There-are nets that are not sequences. For example, any surjective function whost, domain

is the real numbers R, which along with the relation < forms a directed set, is a net but not

a sequence. Nets permit the generalization of the concept of Cauchy sequences (see Section

4.1). For example. the book by Taylor and Lay (328) gives the definition of a Cauchy net

whose codomnain is a topological linear space. This definition of net suggests that a more

general purpose definition of a. sequence is a function % hose domain is a countable directed

set, which of course N is. This research elects to use the definition given in Definition III.11,

since it parallels the standard definition given in analysis texts (305, 8). Since there exists

a bijection whose domain is any countable set and whose codoinain is the natural numbers

N, this bijection can be composed with a-function %hose domain is N (a sequence), so that

any net with a countable domain can be defined in terms of the definition of a sequence.

The reason nets require a directed set, instead of just a, set with a- partial or linear

order, is that nets, like sequences, arise in situations where there ib an unbounded number

of elements from the codomain that in sonie sense are bounded in skalu&, .ay with respect

to some measure or norm. but have no maximum or mininini element. As an example,

consider the sequence denoted by
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which has elements that approach arbitrarily close to 0, but has no ininuni element, onl

the infimum 0.

Given two-classes that form the domain and codomain for a collection of functions,

then this collection also forms a class, with the following definition of equality within this

class.

Definition 111.16 Given two classes D and C, then for two functions f and g that are

elements of the class of all functions whosc domains arc D and whosc codomains arc C,

f = g- = ((X.V) E f 4 (x,Y) E 9)

This definition of equality is based on the cxtcnsional view of set based functions, mohich

says that a function is defined by its ordered tuples of elements. There is no requirement

for any other representation of the function. Since there exist functions with an unbounded

number of ordered tuple elements, then nithin the extensional view there exist function,

that have no finite representation. Note that with respect to this definition of equalit.

between two functions, if either function is undefined for a given element, then the other

must also be undefined for the same element (229).

Another approach stems from the intensional or procedural view of functions, which

defines a function based upon some finite representation. The intensional equality of

functions would state that two functions are equal if and only if their repre-sentations

were equal. Although these two definitions of equalit% ma appear equivalent, the.\ have

important differences. A major difference lies with the comparison of functions that do

not have finite representations. Two such functions could be equal under the extemsional

definition, but would not even be comparable under the intensional defrition. This will

not present ;L problem though. because thi., research (with just one exception) only require.

functions that are Turing computable.

Theorem 111.17 Given two Turing rornpuzabl functions,. they satis.y tli uxttnsional

equality definition if and only if they satisfy the intunsional equality dfinition.
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Proof: The proof is the basis behind Church's Thesis, that the class of all finitel) definable

(lambda. definable) functions is exacty the same as the class of all Turing computable

functions (89, 301). U

A consequence of this theorem is that the difrerences between the intensional and the ex-

tensional view of fuctions onl. matters for thuse fundtions that are not Turing computable.

The inverse of a function, if it exists, is a function that reverses the mapping of the

original function.

Definition 111.18 Given the function F, if the relation defined by the class

{(Yj, x)l(x, i.) E F)

is a function, then it is called the inverse of F and is denotcd by F'.

If f is an injection, then it's easily shown that f exists and is an injection, and if f is

a total bijection, then f-1 is also a total bijection (305). Note that f being a. bijection is

not equivalent to saying that f is an ibomorphism. even though Lhe bijection property is a

necessary condition for the isonorphism property (198).

Since a zero-tuple is an empty class. then

represents the unique function F

F:0- A.

This function appears again in Section 3.3 with re.Npert to the category SET. and in some

.sense represents a -generator of X. The converr.e of the function ({).A) is the unique

function . ho.se e-ahations are undefined for .1l elnnent if itLs domnain. and i. specified b-

S1.56)

f:. -0.
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The representation (A, {}) denotes this totally undefined function. This f is unique, since

a.ny uther function that is also totally undefined over the same domain is equal to f with

respect to the intensional view (331, 298).

An example of a function that -is undefined for all of its domain is a function that

satisfies

h:N- N

h(n) = h(n + 1).

To evaluate h(5) for example, first requires the evaluation of h(6), which requires the

oval -ation of h(7), and so on indefinitely. The everywhere undefined function satisfies this

recursive dnition, since /(5) = h(6) = ... are all undefined. Ne;e that this is not a unique

solution for h, since -h(n) = no, where -no is any natural number, is also a solution.

This next definition of the terms retract and retraction supports definitions used in

category theory (see Section 3.3).

Definition 111.19 Given two sets X and Y, and the functions

f X -~Y

:Y-* X

such that

x E X -= !I(f W)) = X

then X is c'led a retract of Y, and y is called a retraction.

Note tht given a function f whose domain is the set X, then any other function g, such

that the composition of g with f formb the identity function on X, is called a retraction.

The final -oncept needed for this section is that of a predicate, which is a function

that (if defined) evaluates to either true or false (232). This use of predicate includes

the traditional concepts of prcdicate, temporal predicate, spatial predicate, tn(l spatial

temporal predicate (300).
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Definition 111.20 A predicate is a function whose codomain is the set {true, false),

such that true and false are atomic symbols with respect to the class U.

The stipulation that true and false be atomic symbols with respect to this universal -class

U is equivalent to saying that for any class formed from U the.se two symbols are interpreted

in the same manner. Thus true and false have the standard meanings of true and false

from the set based predicates of predicate logic.

Since a predicate is a function, predicates can be represented in a manner similar to

the standard set-based representations. As an example, consider the predicate Q whose

domain is the class of 2-tuples of natural numbers, such that

Q(nm) = { true if n + 1 = m

f alse otherwise

This predicate can be used to define a successor function, denoted by succ, whose domain

and codomain are the natural numbers.

succ(n) = m , Q(n, in).

This definition of succ uses Q(n, m) just as a standard set-based predicate would be used,

so that succ(n) = ?n if and only if (iff) Q(n, m) evaluates to true. Some representative

elements of the predicate Q would include ((0, 1), true), ((l, 0), false), ((1,2), true), and

((2,2), false). This definition is a finite representation of the infinite collection of elements.

Since a predicate is also a function, and- a function is a relation, there is a hierarchy

formed by these concepts, which is shown in Figure 3.1. In Figure 3.1 PREDICATE is

the class of all predicates with a fixed domain, say D. Then FUNCTION is the class

of all functions with the same domain D, and whose codomain is fixed, say C, where

C includes the atomic elements true and false. This means that RELATIONS is the

class of all relations of the form (D, C). The U symbol is just the class/species symbol

C turned up, so this figure shows that the class PREDICATE is a. species of the class

FUNCTION, which is itself a. species of the class RELATION. This hierarchy is also

true for the standard set-based definitions of relations, functions, and predicates.
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U

FUNCTION

U
PREDICATE

Figure 3.1. A Iierarchy of Classes

Since the Church-Turing thesis -claims that the most general algorithmic method for

generating unbounded numbers of things using a finite-representation is the Turing machine

(125), then for any relation, function, or predicate whose elements must be generated by

some Turing machine (or another equivalent computing dcvice (217)), there can only be a

countable number of elements generated. This doesn't preclude the hypothesized existence

of an uncountable number of elements, only that any computable or algorithmic technique

for generating them can only produce a countable number. Appendix B presents a more

detailed analysis of this idea of choosing a countable number of things out of an uncountable

collection.
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3.3 Categories -and Theories

Not only has category theory emerged as a useful tool for theoretical (345, 330, 27,

216, 6, 205) and practical computer science (55, 59, 283), but it serves as a useful framework

within which to embed mathematical analysis based on the concept of classes (247, 203,

156). For example, the primary category within which we perform our topological analyses

is COMP, the category of complete metric spaces aitd the continuous mappings bctween

them. (Note that we denote categories with boldface names) To answer the question of

whether two metric spaces are 'equal', we must first show if the underlying sets for the

metric spaces are equal, where set equality is defined with respect to the category SET,

the category of all sets and total functions whose domains and codumains are these sets.

Since the collection of all sets is not itself a set, we have that the category SET is actually

based-upon the class of all sets, and that it is the clas., definit:Xn that supplies the definition

of equality within that class. We see that the basic concepts (such as -the concept of set

equality) regarding the different types of 'things' that we need are handled within the

confines of the appropriate category, where each category is defined relative to some class.

Accordingly, this section presents the basic definitions and ideas from category theory

that we need in te folloming chapters. Note that the only differencc between oui definition

of category and the 'standard' one is the inclusion of the clasb requirement (see Definition

111.23), which is implicit in Hlerrlich's definitirml (156), and implied in Mac Lanes's definition

(Mac Lane defines a category based on a universal set, which ib equitalent to our class of

all sets, so that his small set is just our set) (203). WNe start with the definition of a directed

graph, since we use directed graphs to represent categories and other concepts (such as the

binary automaton tree of Section 4.2).

Definition 111.21 A directed graph is a four-tuplc (0, A, h. t), whrc 0 is a class whosc

elements are called lhe objects or th( nodes, A is a class wihosc clcrents arc called the

arrows or the arcs, h is a total function

h:A -0
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and-t is a- total function

t: A - 0

such that for any a E A, h(a) is called the head of a, and t(a) is called the tail of a.

The directed graph (0, A, h, t) is called:

1. A small directed graph if both 0 and A are sets.

2. A countable directed graph if both 0 and A are countable sets.

3. A finite directed graph if both 0 and A- are finite sets.

4. A locally finite directed graph if both -0 and A are sets, and the set A- given by

o E 0 = A = {ala E A A h(a) = o}

is finite for all o E 0.

Although we have defined a directed graph in terms of 'classes', with one exception we

only need directed graphs whose classes of objects and arrows are actually sets (the one

exception is the definition of category). Thus we present the more useful (to our pur-

poses) definitions of countable, finite, and locally finite directed graphs, which are based

on directed graphs with 'sets' of objects and arrows. Since in the remaining chapters we

only require directed graphs, versus nondirected graphs (72), the terminology graph can

be used interchangably with directed graph without ambiguity. Note that the requilement

for a locally finite directed graph states that for any node of the graph there exists only a

finite number of arcs whose heads are this node, that is the outdegree (72) of every node

must be finite. Also note that contrary to some definitions of a graph within the computer

science literature (72, 330), we do not require that either the graph be finite or that a

'labelling function' be defined. The labeling of the vertices (arcs). which produces the so

called 'labeled graph*, is defined by the fact that the sets A and 0 and the functions h and

1 in our definition of a directed -graph must satisfy the axioms of set theory (in )articular

the replacement axiom (203)). Thus (0, A. h, t) uniquely identifies the graph up to an

'equality' replacement of the symbols used in the sets 0 and A.
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a 2 1

Figure 3-.2. Example Directed Graph

Consider the directed-graph defined by the four-tuple

(f{1, 2, 3), {a, b, c}, { (a, 1), (b, 2), (c, 1)}, f{(a, 2), (b, 2), (c, 3)}) (3.3)

where the functions corresponding to h and t are dlefined using the tuple convention from

Section 3.2. Figure 3.2 shows a graphical -representation for this graph, with the functions

It and -1 -depicted by the arcs in the figure. Many different interpretations of this graph

are possible, since the symb~ols in 0 can represent anything, even wvhole classes. If tie 'e

elements fromn 0 representedl individual sets, then the arcs of A could represent functions

such that

a E A A 0 E 0 == ((h(a) = o == dorn(a) = o)-A (t(a) = o ==* cod(a) = o))

where dom and cod are the domain and codoinain functions respeclively from Section,3.2.

Another interpretation of the graphi fromn Equation 3.3-is that the elements of 0 are just

the natural numbers 1, 2, and 3, with

a E A -=* h(a) t(a)

that is, the functions hi anid t .re anothier rep~resentation of the biiiar.N relation < over the

natural numbers. With this reprcsentation, we see that the .s)1nlol N could be defined as

such a (countable) directed graph with 0 = 1, 2,...).

Now that we have defined graphs, we nieed the concep)t of a inapping. or a miorpism,.

b~etween graphs.
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Definition II.22 Given two directed -graphs G = (O,A,h,i) and K = (VE,s,u), a

directed graph morphism is a two-tuple (f,-g), denoted

(f,g) : G - 11I

such that

f: 0 V

g: A B

where f and g are total functions and

Va [f(h(a)) = s(g(a)) A f(t(a)) = u(g(a))]. (3.4)

if
0 C V

and

A C EP

then (f,g) is called a directed graph imbedding.

The reqairement stated in Equation 3.-I is that the directed graph morphism preserves the

h, (head) and t (tail) functions. Another way to state the assertion in this equation is to

claim that the graph of Figure 3.3 commutes. In this graph the nodes represent the sets

from the two graphs G and H, while the arcs correspond to the functions defined b) h and

t for G, s and u for JI, plus f and g from the graph morphism. Note that there can be

multiple arrows between any two vertices, and that these multiple arrows do not hiLve to

point in the same direction as they de in Figure 3.3. To claim that this graph commutes

means that if we start at any vertex, say A, and follow the arrows to another vertex, say

V, then the sequence of arrows does not affect the interpretation we give to the final rebult.

This means that since A is a set, starting at A is equivalent to choosing an arbitrary a E A,

and following any arc from A is equivalent to applying the function denoting the ar to
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A 0

E V

Figure 3.3. -Commuting Graph Depicting Graph Morphism

a. Thus moving from A to 0 along the arrow h represents the evaluation h(a), where

h(a) E 0. If the next step is to follow the arrow f to V, then we have f(h(a)), an element

of V. Going back to A, if we instead had followed the arc g, yielding g(a) an element of

E, and then the arc s, wov-wonud have stopped in V with the element s(g(a)). Our claim

that the graph commutes -implies that

f(h(a)) = s(g(a))

which is identical to Equation 3.4. Thus a graph that commutes is one where given a

start A stop node, the interpretation of the result from -traversing the path fiom stai t

to stop is independent of the actual -path followed. So Figu'e 3.3 depicts the graph that

defines the requirement given by Equation 3.-4 for graph morphismns. Just ts %ith directed

graphs, we can use the term- graph morphism instead of directed graph mo)hi.rm without

any ambiguity.

If (f, g) :G , II is a directed graph imbedding, which -is synonymous with L. graph

imbedding, then all of the nodes from G are also nodes of II, likewise all of the arrows of G

are also arrows in //. This, together with the preservation of the headb and tails property,

means that fI is the graph formed b.1 adding zero or more fl(Ies and/or arrows to G. The

identity mapping, whereby G = 1I, is the 'simplest* graph imbedding, in the sense that all

other graph imbeddings can be viewed as 'extensions* of the identity mapping.

The following definition of a, calcgory demonstrates why directed gi ,phs halve also

been called 'precategrories'.
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Definition 111.23 A category is-a six-tuple (0, A, s, t, o,id) such that:

1. (O,A,s,t) is a -directed graph.

2. o is a partial function

o: A x A A

such that

Vf,g [(f E A Ag E A A-s(g) = t(f)) (o(f,g)-E A A s(o(f,g)) = s(f) A t(o(f,g)) = t(g))]

and

Vf,g,h[(o(f,g) E A-A o(g,h) E A) o(o(f,y),h) = o(f,o(g,h))]

Denote o(f,g) by gf .

3. id is a total function

id: 0 --- A

such that

Va,p [(a E 1 A ApE 0) .-* ((s(a) = p .= o(id(p),a) = a) A (t(a) = p 4*= o(a, id(p)) =a))

The two functions ob and mor have the class of all categories as the-ir domain, such that

ob((O, A, s, t, o, id)) = 0

mor((O, A, s, t, o, id)) = A

where the elements of 0 arc called the objects of the category, the clcrmnts of A are callcd

the miorphisms of the category, and for any category (0, A, s, t, o, id) denoted by C, the

function home

home: 0 x 0 - 2A

is given- by

Vo,p[(o E 0 A p E 0) =-, honzc(o,p) = {ala E A A s(.) = o A t(a) = p}]
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h(gf) = (hg)f

qp

g

Figure 3.4. Commutative Graph for Composition of Arrows

Note that because of-a category's roots as a directed giaph, we can interchangably use the

terms 'object' and 'node', and also the terms 'arrow', 'arc', and 'morphism'.

A category, then, is a directed graph with two additional functions, the first is a

binary operator on the arcs (a composition or concatenation function), while the second

'creates' one additional arc (an identity arc) corresponding to each node than might not

otherwise be included in just a directed graph. Item 2 in this definition states that this

first function o(f, g) is only defined for two arrows such that the tail of f is the same node

as the head of g (the first assertion), and also that o is associative over those arrows for

which the pairwise evaluations of o are defined (the second assertion). This is equivalent

to claiming that the graph of Figure 3.4 commutes. We base our choice of denoting o(f,.q)

by gf on the standard approach to denoting functional composition or concatenation, so

that if p E 0, then

of,g)(p)

cal be denoted by

gf(P)

or the redundant

Of()).

Note that the use of the iff in the first assertion of item 2 ensures that the 0 function is

only defined for the appropriate pairs of While the use of the inplIcLtiUII in the second
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0 f

idX(p)g

p q

Figure 3.5. Commuting Graph That Corresponds to the Identity Function

assertion allows -for the possibility that

o(f. g) A A o(g. hL) A

implying that

o(o(f, g), 4) = o(f, o(g. h))

since both o evaluations-would be undefined. Thus we allow that if two function evaluations$

are undefined, then thiey are equal. Note that this does not conflict wvith extensional

equality (see Section 3.2). Item 3 asserts that the second function, id. ensures that for

every element of O-tlere exists one unique arrow (an elemein, of A)-that can be interpreted

as an identityj arc, that is it serves as both a. left and a right identity with respect to Lte o

operator. This is equivalent to saying that the graph of Figure 3.5 commutes.

For the reader interested in signature algebras (298, 270, 116) another way to view

a category is as a, two sorted algebra. Given a category C. the two sortb would be ob(C)

andl mor(C). where each arrow would l)C an operation of typ~e

ob(O) x mior(C) - ob(C)

I hat is for each object and arrow (whose head is that ob~ject), this operation % ieils another

object (Lte tail of Lte arrow) or is mndefin'od. Although this is just aa outline of Lte idea,

the formialism would parallel Lte definition of a fiie automaton ,s a t%o ortCe algebra.

(330). where the set of states and the input alphabet are the sort-s. sch that the tr.tnsition*
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operation yields a state for-each state and input symbol pair.

We require the following definitions for the remaining chapters.

Definition 111.24 The category (O, A, s, t, o, id) is called:

1. A small category if both 0 and A are sets.

2. A countable category if (0, A, s, t) is a countable directed graph.

3. A finite category if (0, A, s, t) is a finite directed graph.

4. A locally finite category if (0,/'., s, t) is a locally finite directed graph.

Most of -the categories we need are small categories, and indeed ;,re countable categurieb.

Definition 111.25 The tuple (0, A, .s, t, o, idr) is a subcategory of the category (IV' E, h, u,. id)

if and only if the following are all true:

1. (0, A, s, t. o, idr) is a category.

2. 0 C V

3. i C E

4. s =

5. 1 =ILA

The notation f Is denotes function restriction, such that

(dom(g)-C doln(f) A cod(g) C cod(f) A Vx[x E doin(g) ==* g(x) = f(x)) = g = fldo.i(g)

If A is a subcategory of B and

ob(A) = ob(B)

then A is a strict subcategory of B.
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If A is a subcategory of B and

Vo, p[(o E ob(A) A p E ob(A))== homA(o,p) = honB(o,p)]

then A is a full subcategory of B.

Denote that A is a subcategory of B by

AcB.

In general, a subcategory of a given category B is another category that contains some

subsets of the nodes and arrows from B. while retaining all of the requirements for a

category with respect to the identity and composition functions. If the subcategory retains

all of the nodes from B, then it is a strict subcategory; whereas if it retains- only some

of the nodes but for each pair of nodes kept, all of the arrows connecting these nodes in

B are retained, then it's called a full subcategory. The following examples both serve as

examples of these definitions plus present the categories that we use in later chapters.

SET is the category whose objects are sets and whose morphisms are the total (single

valued) functions between sets; that is ob(SET) is the class of all sets, while for any two

sets A and B, homfSET(A,B) is the set of all total functions whose domain is A and

whose codomain is B. Composition is just function composition, along %kith the standard

identity function on sets. If instead of total functions we allow partial functions, then the

corresponding category is called PFN. Thus we have that

SET C PFN

plus the fact that SET is astrict (but not a full) subcategory of PFN. This is because all of

the objects in PFN are also objects in SET. and all of the arrows in SET ate also arrows in

PFN. but there exists arrows in PFN that are not arrows in SET (partial function.s that

are not total). REL is the category w hose objects are also sets. hut Lho.se morphti.,ns are

the relations between these sets. Composition is standard relation ompomsition. w hile the

identit.v relation is just the identit% function. Since all partial functions are also relations.
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we have that

SET C PFN C REL (3.5)

where PFN is a strict subcategory of REL.

Section 3.2 showed that any relation R between two sets A and B

It C A x B

can also be represented by a set valued function f

f : A - 2B

A consequence of Theorem 111.2 is that given any set A, tie class of all sets also contains

its power set 2". This mneans that for any given relatiun (arrow) within the category REL,

there exists a partial function (arrow- within the category PFN that corresponds to this

relation. This suggest a category MFN. whose objects are those sets such that

VA[A E ob(PFN) ==* (A E ob(MFN) A 2A E ob(MIFN))]

and

Vf, A. B[f r-_ hOfMlFN A. B) =: 3C[C E ob(PFN) A B = 2c A f : A B]].

So we have that any object in MFN is also an object in PFN, and any arrow in MFN is

also an arrow in PFN. which means that

MEN C PFN

but also

SET ' MEN

MEN i SET
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REEL

PFN

SET MFN

Figure 3.6. Directed Graph Representing a Category of Categories

since SET contains morphisms (whose codomain is not a set of sets) that are not mor-

phisms of MFN, and MFN contains morphisms (which are partial) that are not mor-

phisms of SET. Combining these results with those of 3.5, we can form the directed-graph

of Figure 3.6 where the arrows represent the subcategory C relation. If we include the

identity relations, and observe that C among categories is tra-*t;ve (i.e. composition is

defined) and associative, then we see that Figure 3.6 also depicts (minus the identity and

composite arrows) a category of categories.

Categories have certain special objects which prove useful in theoretical computer

science, in particular the initial, terminal, and zero objects.

Definition 111.26 Given a category C, then I, where 1 E ob(C), is called a preinitial

object if and only if

VA[A E ob(C) = 3f[f E homc(I, A)]]

A preinitidl object then, has at least one arrow corresponding to each other object in the

category such that the head of the arrow is the preinitial object and( the tail of the arrow

is the other object.

Definition 111.27 Given a category C, then I, where I E ob(C), is called an initial

object if and only if

VA[A E ob(C) ==' !f[f E homc(l, A)]]
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An initial object differs from a preinitial object in that there is only one arrow correspond-

ing to each-other object in the category such that the head of the arrow is the initial object

and the tail of the arrow is the other object. In our category SET the initial object is the

empty set 0, since for any set A, there exists a unique function (156)

f :0 - A.

Although we do not 4o so, it's possible to construct a category of 'sorted algebras' such that

the initial object in this categozy is the initial algebra of the computer science literature

(330), a concept based on the idea of representing an algebra as a dir cted graph (336).

Definition 111.28 Given a category C, then 2', where 7' E ob(C), is called a terminal

object if and only if

VA[A E ob(C) == 3ff E homc(A,T)]

Any single element set is a. terminal object in SET, since for any other set A, the unique

morphism is the function that maps all the elements of A onto the single element.

Definition 111.29 Given a category C, then Z, wherc Z E ob(C), is called a zero object

if and only if Z is botlh an initial and a terminal object.

Although SET does not have any zero objects, the empty set is a. zero object in the category

PFN, s1.mce for any set A, the existence of the completely undefined unique function f

f :-A - 0

implies that 0 is a. terminal object, in addition to being an intitial object.

The last category we present is very important to computer science. This category is

GRPI-I, whose objects are countable directed graphs and whose niorphiznis are directed

graph morphisms. Composition is just finctional composition based on the definition of

gra ph morphisnis (Definition 111.22).
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Given these definitions, we conclude this section with some observations that other

mathematical constructs can be defined as categories. For example, a set is just a category

whose only arrows are -the identity arrows, and so the objects of the category are the

elements of the set.

A monoid is a category with just one object, whose arrows correspond to the elements

of the ionoid, so that composition of arrows represents the associative binary operator

of the monoid, and the one identity arrow represents the identity element of the monoid.

Since a monid is a sernigroup with an identity element (157), then given a finite alphabet

of symbols E, the free monoid 2* (see Section 4.1) is a category with one object, an arrow

for each finite length word (i.e. element of v*), and one identity arrow that corresponds

to the empty word.

The concept of the graph of a relation 11, is based on the idea that we can graphically

depict that (a, b) E R by a. directed arrow whose head is a and whose tail is b. Since

predicates are relations (see Section 3.2), this idea forms the basis for scmantic nctworks

(195). We can extend this concept so that different types of relations are reflected by

their differing graphical characteristics. This results in the motivation for defining types of

relations in terms of the most general graphical construct we haie a-vailable, the category.

The following definitions support our intuitive idea that there exists a strong relationship

between categories and relations. 'or reference, the follouing standard definition of pai tial,

linear, and well orders is given.

Definition 111.30 Given the class S, the relation 11

11 C S x S

is a preorder if and only if R is reflexivc and transitive.

1 is a partial order if and only if R is reflexive, transitive, and anlisynanetric.

1?. is a linear order if and only if At is a partial order and

a, b E S == , [afb V blta]
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R is a strict partial- order if and only if R is transitive, antisymmetric, and

a E S = (a,a) .R

1" is a strict linear order if and only if 1R is a strict partial order and

a, b E S = [aRb V bRa] whenever a 0 b

11 is a well order if and only if R is a strict linear ordcr and for cvcry nonempty subset

E of S, there exists a unique element s of E (called the least element), such that

[x E .E A x 54 s] => sflx

Given the preorder R, then the induced equivalence denoted by 5, is given by

xSy 4=. (xfly A yRx)

One example of a partial order is the logical implication relativa denoted by =z; as applied

to any set of well formed formulas from the predicate calculus (see Appendix A). Thus

(P, Q) E= iff P= Q

That ==* is reflexive follows from

P=> P

Since

P -Q

and

Q R

implies that

P 3'
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then = is transitive. Antisyimetry results from defining the equality of t%%o predicates

as the 'if and only if, -=*, that is if

P Q

and

Q= P

then

P Q

and the two predicates P and Q are considered equal. So the ==* relation over a set of

formulas is reflexive, transitive, and antisyrnmetric, thus forming a partial order over the

set. Note that the equivalence induced by the =:, is just the -#=, and that for any partial

order the induced equivalence is the equality defined with respect to the antisymmetry

property.

Definition 111.31 it category P is called a:

Preorder iff

VA, 3[(A E ob(P) A B E ob(P)) =#- card(homp(A, B)) _ 11

Partial order iff P is a preorder and

VA, B[(A E ob(P)AB E ob(P)Acard(homp(A, B) = card(hoinp(B. A) = t) :=: A = B]

Linear order iff P is a partial order and

VA:B[(A E ob(P)AB E ob(P)) =---> (card(homp(A, B) = I Vcard(honp(B. A) = 1)]

Well order IT P is a lincar ordcr such hal cvcry full subcacgory of P contain., an initial

object.
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card is the cardinality function whose domain is thc class of all s.ts and who.c codomain

is the set of cardinality symbols.

The cardinality function generalizes the concept of how many element: a bet contains, so

that card(S) evaluates to a member of N if the set S is finite, and evaluates to other

nonnumeric symbols (such as No) if the set is infinite (82).

Within a category that satisfies one of these order definitions, each arrow corresponds

to an element of a relation R, so that if A is the head of the arrow, and B is the tail of the

arrow, then (A, B) E J1 holds. The composition of arrows reflects the transitive property

of the relation, while the identity arrows signify that the relation is reflexive, since the

identity arrow for the object A corresponds to (A, A) E R. Thus any category satisfies

the basic requirements for a preorder, that is the arrows are reflexive and transitive. But

we must restrict our category to have at most one arrow that corresponds to (A, B) E R

for each pair of objects A and B, which is stated in the preorder item of Definition 111.31.

Thus our definition of a preorder satisfies the standard set based definition if we restrict

our category such that the class of objects constitutes a set.

The additional constraint for the partial order is just the statement that the arrows

must satisfy the antisyminmetry property, which also agrees with the standard bet based

definition of a-partial order. Note the equalit4 in the statement for the partial order item

contains an equality that is defined in terms of the class that contains the objects for the

category.

The linear order constraint states that for any two objects within the category there

exists an arrew whose head is one of the objects and whose tail is the other. This is

equivalent to the set based statement that anY two elements of i lineall1 ordered bet are

comparable with respect to the linear order relation. Note that if a category represents

a. linear order, then a preinitial (actually initial, since in a linear order categomy there is

at most one arrow between two objects) object is the 'first' or minimum element in the

linearly ordered class of the objects, and tw terminal object is the 'last" or maximum

element.
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Since the difference between a set based strict linear order and a linear order is just

the lack of the reflexive property (305), we can convert a linear order category into all

object that we could call a strict linear order by simply removing the identity arrows. As

a result, we do not differentiate between a. linear order and a strict linear order in the

following chapters. If there is some requirement for a strict linear order such that a linear

order would not suffice, then we explicitly state that a strict linear order is needed, and

we treat the strict linear order as a category without identity arrows. Thus the motivation

for our definition of a well order as retaining the reflexive identity arrows, in contrast to

the standard definition of a well order based on , strict linear order (305). Our constraint

for a well order states that every full subcategory must contain an initial object, which is

equivalent to saying that a set based %ell order satisfies the requirement that every subset

contains a first element. As a result we have the following categorical wording of the Well

Ordering Principle which states that any set can be well-ordered (305):

Any small category can be mapped onto a well ordered category using a total bijective

mapping on the objects and a partial surjective naplping of the arrows.

We use the word mapping in this statement since therc may not exist a Turing computable

function that satisfies this claim, because this principle is derivable from the Axiom of

Choice for sets, and as we show in Appendix B, the choice function is not necessarily a

Turing computable function.

Because a partial order can be treated as a category, many of the concepts from coin-

puter science (and other fields) can be easil% recast as categories, thus providing additional

formnalisn and structure. For example. consider the set of all CSP processe.s (see Section

.1.3). One partial order on this set is denoted by

and mieans that the procr.ss P is more nondetermini.tmi than Q. that is he .et of oxeution

sequences of P contains the sel of the execution weluence. of Q, al rana contain exeut,!ion

sequences that aro not. poss.ible for Q. This partial ordf-r has a leat element. [he proress

denoted by CIAOS (-17). which is the prore.ss that ran behave like any other prorr.,.,.
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This partial order forms a category, such that the objects are the CSP processes, and the

morphisms represent some type of reduction (or no change) in nondeterininism. Note that

this ordering of the CSP processes is akin to Shannon's partial ordering of information

representation (315), such that

P<Q

would denote that P is an abstraction of Q.

The standard definition of a sequence is as the codomain of a function whose domain

is the natural numbers (8). Implicit in this definition is that the codoinain set is linearly

ordered by the < order from N on the subscripts given to each element. Thus we can

define a sequence as a-linear order countable category.

Another example of a linear order countable category is any Icmiporal logic (see Ap-

pendix A), since we adopt the assumption that time is countable (300). Thus we can

use the tools from temporal logic to prove assertions about sequences, since both can be

modeled with the same type of category (see Section 1.2).

We present this discussion regarding ordering relations for two reasons, the first

being that we use ordered sets in the following chapters, and the second is that we can

now present a more formal definition of what we previously defired in terms of sets. We

start by denoting with a boldface natural number a- linear order categor. that contains

n objects if the number is n, such that for any arrow a, h(a) < t(a). Thus our previous

Figure 3.2 represents the categor% 3 without the identit. arrows. Following this reasoning,

we can define N to be the linear order categor3 that contains one object for each natural

number, along with the order <. In a similar manner we can define the categories R (a

category with an uncountable number of objects), Z, Q, and 0.

Consider a (proposed) countable category which contains an initial object. labeled F.

and a terminal obiect T. such that F / T. We could interpret each object as an assertion

of the predicate calcilu.s. and eacl arrow as a logical implication. Thu. each ideutit% arrow

would represent ithe fact that

P ==. 1'
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where P is any-assertion. The initial object corresponds to the concept-of'false', such that

for any assertion P

F =* P

is a unique implication, and the terminal object corresponds to 'true'. where

P--f 7,

is a unique implication for any assertion P. Since ==0 is transitive then composition of

arrows is satisfied. But what of the associativity of arrows? Unfortunately, if P, Q, and

R are all false, then

r =(Q =* R)

evaluates to true, but

(P =>Q)~ Ii

is false. (This is why we define = to be right associative)

We can correct this lack of associativity for the arrows by defining the objects to be

only theorems, the arrows to represent derivations, and adding the unique object A that

represents the set of all axioms. This means that F is no longer an object. Thus, given

a set of axioms and the rules of logical inference, we can construct the category such that

each object is a. provable truth (i.e. theorem), and each arrow represents a derivation. For

example, Figure 3.7 depicts a 'slice" from such a category, so that

(P - R) A (Q -- R)

where -- means 'leads to the (lerivation of". The basic axiom that relates - to Predicate

logic is

(A - B) .# ((A =. B) A ,!)

where the application of re.solutiou (2i0) to tle right hand side of the iff yield. that hoth .1

and B are true. Note that the siniilarit% of the - operator with the syilbolog. used for

tile " pC" of the implication operator i. not entirel% ,ircidental (19). Note tha this article

3-.50



Q

Figmure 3.7. Arrows in a Consistent Theory

by Backhouse on constructive type theory contains a rigorous dlefinition of the ctype of

as equivalent to the type of

P~.

wvhere 0 dlenotes tlhe empty type. This is not equivalent to saying that

,P (P =* false)

(a mistake that p)eriodically appears in the computer science literature) Since the unar3

operator -,cannot be (lcfined in teriis of an% binary operator that hias a different binding

strength.

Another way to interpret Figure 3.7h; thateither the truth of Por the truth of Q lead~.

to the derivation of Lte truth of fl. Thusi we have thc same Kind of graphical interpretation

that led to finite automata. being labeled a., 3 automnata (222). or 'or' antoinata. Note that

there can be mnultiple derivations of on#- theorem from .xnother, m)~ there can be more than

one arrow whose head is one object andl whoseP tail is another. This category lia.s no

(in general) initial 0lbject. since F is no longer thin iial objet t. nad wv canniot assumine 1
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unique derivation of any theorem from the axioms. The axioms object-ib a preinitial object,

since we assume that every theorem can be derived from the axioms. We (an retain the

object T as the terminal object by assuming that the derivation of T given any theorem

(or the axioms object) is unique.

We can correct the lack of an initial object by requiring the arrows to form a, well

ordering on the objects so that our category can be interpreted as a collection of objects

that cal be enumerated in some well ordered manner. That is. each arrow denotes the

existence but not uniqueness of a derivation. The arroub %%ould albo represent the concept

of a temporal ordering of the tl'eorems, consistent with the idea of btarting %% ith only the

axioms and then enumerating each theorem in a linear time ordered manner. Thus the

,azxioms object is now the initial object, since it represents the object that 'comes first'.

We use the word 'theorem' to denote derivable true statements, versus "truths" w.-hich are

true, but not derived. So that although there may be an uncountable number of truths

that could be derived for a given set of ,xioms and rules of inference, there will only ever

be a. countable number derived by means of any given process (Turing machine). No%%

(assuming that the collection of objects are consistent (225)) since each object represents

a true assertion,

P-Q--R

evaluates to true regardless of the parantlheses grouping. so that the arrov., are both

coniposable and associative. This category corre-spondh to the concept of a con.istcni

theory (225). Note that the true implications from our first attempt hate not been lost,

since if the axioms and rules of inference are those from the predicate calculu,, then if

P ==* Q is true. even though P may not be. there is an object of this category that

represent. this assertion. With respect to such a categor% that represenL. the theory of

predicate logic, the Deduction Theorem (199) can be stated in th followin. namner:

Deduction Theorem The existence of an object repreosenting
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is not a sufficient condition for the existence of an object representing

P

Unfortunately, this approach to defining a theorj as a category suffers from two major

shortcomings. The first results from our assumption that we can represent any countable

number of theorems as a well ordered set. Although the Axiom of Choice implies that

we can (see Appendix B). there exists countable sets that cannot be well ordered by any

Turing machine, such as tie set of all second order predicate calculus theorems, or tile set

of all computable niumberb (Appendix B). So. although we can claim the existence of such

well -ordered categorical theories, we hate no means to construct such categories. Within

this thesis though, we restrict our analysis to only those theories that can be constructed

by some Turing machine. so that this problem will not restrict our results. As we return

to the concept of a theory as a. category, we shall present additional definitions.

The second shortcoming is that we do not have a concise reproentation of the rules of

inference for our theory category. We can simpy Lrite them out as the% normally appear

(i.e. equationally, or as formulas) but then .-e have the inconsi.tenc. that %hen applying

them to the axioms object we muA-t go 'inside" the fbject and pull out individual axioms.

whereas when applying them to the derived objects we treat those objects a- one entity.

What we need is a technique for representing and applying thes rules of inference that

is as formal as the structure of the category itself. The following definition batisfies this

second problem. although not the first.

Definition 111.32 A theory is a rmckgory T. whose oijicls nr calcgoics such1 dial;

I- Ther c-xisls a preinilial objecl of T called lt axioms. which is a rauntabli r-tlqorp

whosr int arrozrs are Mhe irdnhl.k arreir..

2. Ertry morphismi oft is a di.e'letd graph izbcddingu. thi nzmrphi.:tL., ,f ,rt rallr

rules of inference.

3. Eiruling Me axriom.T. a jr. c.rr ,j wit, r tg-ul #,f T i- ,rti urnrid rrda,,f-r rz.,,.

itilial ,l&itel i., ilt itug tof s t' nuxi,,ts "Idjt t~lI rt.,,t rt few "nm rf III, w, f T.
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A theory T is called:

Consistent iff the fa!se object is not an object of any category within T.

Finite iff T is a finite category whose objects are all finite categories.

The definition of the axioms object ensures that the axioms are always a countable set,

but not necessarily finite (see Ginzburg (138) for an example of an axiomatic theory that

requires a, countably infinite number of axioms). Since more than one rule of inference

could be applied to the axioms to yield a given collection of theorems, the axioms is only

a preinitial object, not necessarily an initial object.

We shall use the traditional interpretation of a theory, so that each object of the

theory represents a collection of axioms and theorems organized as a well ordered cate-

gory, such that the theorems can be derived from the axioms using the rules of inference.

Additionally, we only require theories such that each object uf the theory is a well ordered

category containing an initial object that represents the axioms. With few exceptions, we

shall analyze theories whose objects are small categories, that is the collection of axioms

and theorems forms a set.

Note that Definition 111.32 is slightly more general than those definitions that require

a theory to be consistent. For example, Loeckx (209) defines a theory as a set of well fom meed

formulas from the predicate logic that satisfies the following two conditions:

1. The set is consistent with respect, to some semantic interpretation of the formulas.

2. Given any formula w from the set, all other formulas that can be formally derived

from -w are also members of the set.

Our definition of a consistent theory depends upon a semantical interpretation of

the object F, the falsc object. For theories based upon some standard (see Appendix A)

form of predicate (temporal) logic, the absence of the object F is equivalent to saying that

if P is a. theorem, then -,) cannot be a theorem. This results from the derivation in any

standard logic of the theorem

(P A -P) - fale
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which, if P and -P are both theorems, implies that there exists an object within the

category that contains F as an object.

If we informally define a complete theory as one such that for any given predicate

P, we can prove that either P is an object of some category within the theory, or we can

prove that it's not, then we have implied the existence of a theory of theories. This results

from the interpretation of the proof of either P or -,P being true as a derivation of the

theorem P or negP within this theory of theories, where each other theory would be an

object of this theory. Unfortunately, we run up against the same types of paradoxes that

result from a set of all sets (see the discussion of Russell's paradox in the beginning of

the first chapter), so that we refrain from attempting such a definition within this thesis.

What we will do is to follow the standard practice of considering a complete theory as

one within which all truths can be proven, or equivalently that every syntactically correct

string of symbols within our logic can be proven either true or false, but not both. This

means that for any wff (see Appendix A) P, either P is an object of one of the categories

that comprises the theory, or -,P is, but not both. More formally, we present the following

definition, which generalizes the concept of a complete theory so that we are not restricted

to just wffs of the modal (temporal) logic.

Definition 111.33 Given the theory T, the class C, the atomic symbols truc and false,

the unique false object F, and the function

- :{false} x C- C

such that for any two objects t and u of T

(c E ob(t) A -(false, c) E ob(u)) F F

then T is complete with respect to C iff

Vc[c E C =. (3t[t E ob('r) A c E ob(t)J

E3u[u E ob(T)A -(fals, c) E ob(u)])]
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The statement P ED Q reads 'P exclusive-or Q', and is true if either P is true or Q is true

but not both are true, as opposed to the standard 'inclusive-or' of modal logic which is

true if both arguments are true. (see Appendix A)

The function - represents the concept of a complement with respect 'o the false

object. This means that if the element c represents-a true formula, then

(false, c) (3.6)

represents a formula that could be called the complement of the original formula. Within

the modal logic (Appendix A), if c is a. wff, then 3.6 evaluates to the wlf -c. Thus this

definition states that for every element of the base class C, a complete theory contains

either that element or its complement. This implies that a theory could be incomplete ;f

either certain elements of the base class or their complemenits were not contained within

the theory (i.e. there exists formula which can neither be proven true or false), or if the

theory contained both elements and their complements (i.e. there exist. formula which

can be proven both true and false, which is an inconsistent theory), or both.

This definition implies that the concept of a complete theory actually contains two

essential ideas. The first is that every element of the base class must be proven either

true or false, so that some means must exist to perform these proofs or derivations. And

the second is that for any given formula within the base class there exists some method

to determine what the complement of that formula is (if it exists within the class). For

example, the propositional logic (non modal) along with the interpretation of functions as

having domains and codomains the natuial numbers is a complete theory. Conide that

within this theory (and class) the following wff is true

3f[f(3) = 31

since such an f is the identity function. whereas the wff

Vf[f(3) = .31
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is false, as can be seen if f equals thle successor function. It is not thle wits alone which

are true or false, but the wffs as interpreted within the context of some theory, since if we

conoider the theory of all functions over the natural numbers that have fixed points at 3,

then both of these wffs are true. Likewise we can find theories that make both of these

wffs false.

Note that the preceding definition of a theory implies that there exists a theory that

satisfies the standard definition of a 'logic' (139). This follows from the observation that if

the morphisms within the well ordered categories that comprise the objectb of the theory are

equivalent to the -, operator, and the objects within the well ordered categories represent

wffs from the modal logic (see Appendix A), then the theory satisfies the mcquirement that

the set of formulas that constitute a logic satisfy the rule of detachment:

If F and P == G are members of the logic then G is a member of the logic.

The remaining chapters attempt to show that our 'theory' of theories is not devoid

of practicality. That is, we do not wa:it our 'theory' to fall into that 'category' described

by Knuth in the following quote (194). (Emphasis is the author's)

Some theory is developed which is very beautiful, and too often it is therefore
thought to be relevant.

3.4 Summary

With the increased use of category theory in computer science, there is a need for

collections of things, which do not satisfy the traditional definitions of sets. Thib is because

there are categories whose objects consist of all possible sets. As shown by Russell's

paradox (132), the collection of all sets is itself not a set! Thus the need for collections

that are not constrained by the axioms of set theory. The cla-s concept of Lewis Carroll

(61) supplies the necessary collections used in this research.

A class is defined to be a collection of things, such that other collections (classes)

can be formed from any given ioniempt class. No additional constraintb are iiposed on
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classes in general, so that if a given class must satisfy the axioms of set theory, thein that

class must be identified as a set. Tile operations defined for classes tre identical with those

defined for sets: union, intersection, complement, and cartesian product. The concept

of class equality (between classes) is also based on the set based definition (although not

identical), while the definition of equality within a class is dependent upon the specific

class. The informal definition of a univeral class that contains all of the things needed

for this research effort is given, although this universal class is not explicitly used in the

subsequent chapters.

The definitions given for rclatious, functions, and prcdicatcs parallel those from stan-

dard analysis based on sets, except that the class replaces the set, and partial functions

replace the total functions assumed in many analysis texts. This means that certain def-

initions, such as those for a scqucncc and countablc sets, are slightly different than the

standard ones from a text such as Apostol (8), because partial functions are possible. The

definitions relating to relations, functions, and predicates given in this chapter are used

extensively throughout this iesearch. For example, most of the concepts presented in the

next Chapter are based on relations and functions, while predicates are used extensively

in all of the following chapters to formalize the concept of assertions that are true.

The definition given for a catcgory is equivalent to the standard definition, but is

worded in a slightly different manner to draw on the analogy with dirccted graphs, a

concept more familiar to computer and softwaie engineers. Although categories are not

strictly required by the subsequent chapters, one ica.,on for including this material is the

prevelance of category based research in the literature. Additionally, standard texts on

categories include analysis of those cateogries whose objects are complete metric spaces.

The next chapter shows that different types of computational models actually generate

complete metric spaces, so that the lesultb from these texts can be applied to the analysis

of computational models.
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IV. Imbeddiig Computational Models Within the Category of Complete Metric

Spaces

This chapter presents the topological analysis of computational models. The math-

ematical tool that enables this topological view is the complete metric space, that is,

the objects that comprise the category COMP of complete metric spaces defined in the

last chapter (Section 3.3). This approach based on metric space topology, while not new

(95, 6, 7), does present an alternative to the more 'standard' approach based on domains

and resursive equations, which was pioneered by Scott (313), Stoy (325), and Strachey

(324, 314).

Specifically, this chapter demonstrates that the finite automaton, the CSP, and the

UNITY models can ail be recast as metric spaces, based on the metric given in the next

section. The same techniques can also be applied to other major computational models

that support concurrency, such as Milner's CCS (242), Petri Nets (279), and Hennessy's

EPL (154), so as to create other complete metric spaces that permit the type of topological

analysis performed in this chapter. Section 4.4, which presents the metric space based on

UNITY programs, also lays the ground ork for the th ansforirational techniques of program

development given in Chapter VI.

This chapter comprises the first major division of this research effort, the relation-

ship between computation theory alnd the topological analysis of the compc-awonal models.

Section 4.1 presents the metric on strings from the frcc monoid E, where E is the alphabet

of symbols, that forms the basis for the metrich used in the remaining sections. Section

4.2 addresses the basic model of computation, the finite automaton, and demonstrates

the correspondence bctween the metric space of finite automata, its completion, and com-

putational power. Section 4.3 also develops a. metric space, based on the CSP model of

computation. The primary purpose for choosing CSP is thaLt it is significantly different

(syntactically) than the primary model used in Chapter VI, UNITY. Also, whereas tie

philosophy behind CSP is closely related to an applicati-ve approach, UNITY is basically

,n imperative model. Section 1.4 then completes the chapter by first defining an ilteration

to the -UNITY execution model called the .alndald cx(cution model, and secondl sho~king
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that a metric space of UNITY programs under both the UNITY execution model and the

standard execution model can be defined in terms of the CSP metric space.

The motivation for the topological analysis of computational models steins from the

requirement to construct a framework within which to develop the transformations of

Chapter VI. But this topological analysis was also inspired by the woik of authors such

as Day (92), who presented (at that time) the tools of topology as a new way of studying

computational models. This early topological analysis followed from the observation that

a semigroup based on the composition operator o, can be defined as a topological space S,

plus the continuous associative function o

o:SxS- S

The third section develops a complete meti ic space based on Ioare's concurrent

computational model Communicating Sequential Processes (CoUP) (165). CSP is chosen as

a representative from a class of concurrent models *hat are based on the idea of modeling

the bchaviour of the computation. This behavioui concept common to all of the models

within this class is summarized by the following definition from Milner'b book on a Calculus

of Communicating Systems (CCS) (242):

We define a program to be a closed behaviour expression, i.e. one with no free
variables.

Thus an informal definition of this class wou, be th;' il contains those computational

models that represent the behaviour of the compuLtt, such that given any model the

complete instantiation of the variables (model variAbleb, not program wariables) results in

the specification of a program. The representation of the behaviour includes a, representa-

tion of both the initial state (see Appendix A for a. definition of state) of the computation,

and the rc.sulting sequence of states that follo%% the intial staLe until the computation halts

(assumning it halts). Within this class exists t' o natural sulcla. ses, the first consisting of

those models whose representations are primarily algebraic, .such its CCS (although CCS

does straddle between both subclasses), (' P. and llennessy's Example Process Language
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(EPL) (154). Those models whose %;presentations are p~rim1arily grap~hic make up the

second subclass, and includes such models as Petri nets (279).
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4.1 Complete Metric Spaces and the Star Closure

This section lays the foundation for the top~ological analysis of computational models

andl die categories based on these models. Our topologies result from ii- 4ric spaceb, where

a metric space is a combination of a set and a function called a metric. Within .his section

we develop a metric space based onm the star closure that b~o-.h serves as the 1a.,is for later

analysis, and also serves as an example of the topological concepts. First we give the formal

definh ion of a mretric, space.

Defi nition IVA1 A metric space is a tivo-tuple (X, d) where X I-a nont mpty set, and

d is a function

d :X xX -+R'U10}

wher-e R+ denotes the set of positive real numbers, quchi that

1. (Strictly Positve) Vx -y [(x E X A yE G ) =* (d(x, y) = 0 4= x = y)I.

2. (Symmetry) Vx, v ((x C- X A Y E X) ==> d(x, y) = d(y, x)].

3. (Triangle Inequality) Vx, y.; CE X AYE X Az -XN)=> d(x,y) K d(xz) ±d(Zy)j

A function (I that satisfies the requirements of Definition 1V.1 is called a, netr,, .nd is

interp~retedl as a. measure of the 'closcncs.%' or distance between two elements ofl the set.

The elements of the set X are called the points of the metric space. If we replace the third

iteir, in the list of requirements for d in Definition IV.1 with

Vxuy, --[x E X A y E X A - ENX) == d(x,y) < iax{d(x,z),d(z,ij)}]

then the function d is called a non-Archimiedian or an ultra metric (413). Note that if d

is an ultra. netr-;c then it is also a metric, bdt the converse is not necessarily true. The

secondl defintion r'e neced is for a, Cauchy sequence.

Defi nition IV. 2 Given a metric spacc (X'. i), the set

{x~~~ C A'



which is called a sequence of points in the metric space (X, d) and is denoted by {x,,}, is

a Cauchy sequence if and only if:

For every 6, 6 E R+, there is an N, N E N, such that

Vn, m[(n E N A in E N A n > N A in > N) == d(x,,, x,n) < 6]

where

N = {O,1, 2...}

A Cauchy sequence (within some metric space) then, is an ordered sequence of points,

such that the distance between theui as defined by the metric decreases as we go further

into the sequence. As an example of a C- chty sequence, consider the -metric space (Q. d),

where Q is the set of rational numbers, and

d(xy) = Ix - yI where x, E Q.

The sequence defined by
n

X, = E Ili! (4.1)
i=0

is a Cauchy sequence of rational numbers.

Although Definition IV.2 implieb that Cauchy sequences must have an infinite number

of points, sequences that onl. have a finite number of point.s can still be covered by this

definition b3 simply extending the finite sequence indefinitel3 by repeating the 'last' point.

For example. the sequence

{32.11

becomes the Cauchy sequence

The Cauchy sequence is a.e(uence whose elements I)ecom increasingly 'closer* (with

respect to the distance concept of the netric) to something that may or miy not be an

element of the metric , pace that tile Cauch sequence lies in. "rhihs '.omething' is called
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the limit of tile sequence, a concept formalized in tile following definition. This definition

also defines exactly what types of sequences have limits.

Definition IV.3 A sequence {x,} of points in a metric space (X,d) is convergent if

and only if there exists an x, x E X, such that:

For every 6, 6 E R+, there exists an N, N E N, such that

Vn, j(n E NAt > AT) -=* d(xn,,x) < 6].

This x is called the limit of the sequence and is denoted by

lim x, = x

A sequence that is not convergent is divergent.

Another nomenclature for the limit point of a Cauchy sequence {xn} is x,-, if such a

limit exists, since not all Cauchy sequences have limits that are elements of the set X. If a

Cauchy sequence has a limit, then the elements of tile sequence become arbitrarily 'close'

(with respect to the metric) to this limit, and the sequence converges. A theorem from

topology states that this limit is unique if it exists (8).

Return to the example of the sequence of rational numbers generated by Equation

4.1. Although this sequence is a Cauchy sequence within the metric space (Q, d), the limit

point of the sequence is not a. rational number, and so is nut an element of the metric .space.

This means that the sequence is divergent. However, within tile metric space (R, d). using

the same metric d, this sequence is conergent, since the limit point of the sequence ib the

irrational number denoted by L.. That this sequence converges in the metric space (R. d).

is a consequence of another theorem from topology that states that all Cauchy Sequenceb

in (t, d) are also convergent (256). Any metric space with this propert3 that all Cauchy

sequences are convergent is called a complete metric space.

Definition IV.4 A indric spac( (X, d) is complete if and only if ctrury Couch .4qutnc(

in the metric spacc is al.so convergent.
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Within any complete metric siace, if we take a sequence of points thiat become progressively

closer together with respect to the metric, then we are assured that there is an element

of lhe metric space that the elements of the sequence eventually have zero distance from.

For infinite sequences this eventuality may take a countably infinite time.

We conclude this section with an example of a complete metric space that will not

only serve as an example, but will supply some needed tools for later analysis. This

example is based on the star closure of a finite set, where the finite set often represents

the individual symbols or atoms of a given language.

Given a finite set of symbols, Z, we present a metric for the space of all strings of

symbols from E of finite length. Then we motivate the definition of infinite strings of

symbols from S as the completion for this metric space.

Definition IV.5 Given a finite set S, the star closure of E, denoted by 2-, is the set

that contains only those elements given by:

1. A E Z

2. Va[a E E O=* E C "]

S. v.8,-,[(1 E A E E-) P-j E IS]

where

A S

and

Vb [6 E E- => (Ab = A = b)J. (4.2)

Front this definition we see that E" is the set that contains all possible finite strings that

can be formed b. concatenating the symbols representing the elements of E plus the sy nbol

for the empty string A (138). For example, if S {a,b}, then

= {Aa.baa.ab.ba,bb.aaaaab,...).
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The A symbol represents the concept of an identity with respect to the concatenation

operation. So for our sample " = {a, b}, we have

AA=A Aa=a abA= ab etc.

Sometimes we need to restrict our analysis to strings of symbols from a set E such that

each string has at least one such symbol. We denote this set by +.

Definition IV.6 Given a finite set S, the set denoted by I+ is defined by

Z+ = S'- {A}

where A is that unique element of E' that is the concatenation identity.

fore we define the metric for the set " we-first need to define two functions len

and prefix, where

len:- N

such that

len(A) = 0

Vx (x E + = 3c,t[(a E 'IA uA E A , = x) =. len(x) = I + len(u))].

Our function len is just the length of the string, that i. the number of symbol. from E that

comprise the string, with the convention that the empt., word A ha,, zero length. Next we

define the set valued function prefix, where

prefix : E' 2

such that

prefix(A) {\}

Vx[x E %+ ==. Vu.r((u E " Ar -: S' A ur x) n E prefix(x)Jj.
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Given these definitions for len and prefix, a metric for the set S' is tile function denoted

by a, where

0 if x =
(x E ZA! E ') =" u(x,y) = {inf{1/2k lk = len(u) Au E prefix(z) flprefix(y)} else

(4.3)

for all such x and y that are elemzents of E'.

Since the len function has N for its codomain. k is nonnegative and this a function

does map pairs of elements of S' into the nonnegative reals. Also, a(z, y) = 0 whenever

x = y. So, to prove that a is indeed a metric we need to show that:

1.a(z.t)= 0 =* X = y Vx, y E E-.

2. a(x y) =a(' x) Vx- y E S'.

3.~ ~ y(r,)< c~ .) + c(y, z) Vx-Y.z E '--

It has already been proven that a batisfies all three of these requirement.s. (.13), but we

repeat here the proof of the first item from the list to demonstrate an important concept.

Consider two elements from Z say x and y. If a(x. y) = 0 and we do not know that

x = y. then it must be true that

inf{1/2t''k = len(L) A u E prefix(x) A u E prefix(y)} = 0.

But this implies that k is unbounded, since if k %,ere bounded then the inf %.,-ld simpl.%

be the minimum of the set. a fixed nonzero number. flaying k unbounded means that the

two elements X and y hae identical prefixes of unbounded length, %hich meanis that . and

y are identica for amta finite number of s%. mholb. Our interpre-tation of uih ain x and 9 is

that they are equal (305). So a as given by -1.3 is a netri(. and (Y.at is a metric space

for any finite set S.

Although the metric a is the only nuto required fit: thi anal.-it. other im-is exist

for the set . each with its own titpirdgival prtip-c-rlie. Fr example. ,r--uis the mestric -I

w hich result. in open lalhh that are al. o ,led. flae ni-trit n generatle ,,pen h1.tl 11.41 .Ilte
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not closed, where & is given by

0 if x=
=~y E= ' 1/2kxk(X,Y) else

where

Xk(x Y) X Yk

0 Xk = k

and for z E 2*, zk denotes the kth symbol of z, such that zk E E.

Given a finite set E, E* is the set that contains all possible strings of symbols from

2 of finitc length. We emphasize the finiteness of the length of the strings because it is

possible to consider strings that have infinite length. To demonstrate this concept, consider

the following example based on the real numbers. If

= {-, 0, 1, 2, 3,4, 5,6,7,8, 9,.}

then we can form strings of symbols from E that represent real numbers. So some elements

of R, the set of all real numbers, can be represented by the elements of E*. If we temporarily

(for the duration of this example) denote the bijection between the real numbers and their

representations with the equality symbol, then we can ask whether E* = R. The answer is

no, since -1.1- is an element of Z* but does not represent a real number. A more subtle

question then, is if R C }2? The answer to this question is also no, since the real number

we denote with zi, which is the ratio of a. circle's circumference to its diameter, cannot be

represented with any string of symbols from E of finite length. Indeed, to represent 7, with

a finite number of symbols we are forced to use symbols that are not from F. So if we wish

to have a set based on , that we can claim is equal to the set of rCal numbers, we must

allow strings of digits that are infinite. This rcsults from the fact that the real numbers,

with the standard metric d(x, y) = Ix - yl, forms a complete metric space.

So the next question is whether our ( , a) with a given by 1.3 is a complete metric

space. To show that the answer is no, consider the sequence from E where E = {0, 1,
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given by
XiLO-00 1.

i symbols

This is a Cauchy sequence with respect to the metric o, but the limit of this sequence,

which is an infinite string of alternating O's ad l's, is not an element of E* since it's not

a finite string. However, a theorem from topology states that given any metric space we

can form a unique complete metric space from it by adding in those elements which are

the limit points of each Cauchy sequence (256). The con'plete metric space formed in this

manner is called the complction of the given metric space. We now define the completion

of our (E*, a) metric space.

Definition IV.7 Given a finite set E, and the metric or defined by 4.3, the set El contains

only those elements such that

is the completion of the metric space (E*, o).

Based on Definition IV.7, the set E' contains all of the elements of E*, plus all of

the limit points of all of the Cauchy sequences that can be formed from the elements of

r*. If we arbitrarily select any infinite string that can be formed from the symbols of F,

aja2a3 ... ai E , I < #,

then we can form a Cauchy sequence from this string,

whose limit point is the original infinite string. This means that S contains all finite

strings of symbols from E, pUS all infinite strings of such symbols. Consequently, E' can

be shown to contain an uncountable number of elements (305), which, since there are only

a countable number of computable sequences, implies the truth of the following theorem.
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Theorem IV.8 Given a finite set E, and the metric a given by 4.3, there exists Cauchy

sequences of elements of 2" that cannot be generated by any Turing machine.

Proof: Since there are only a countable number of finite length strings, there must be an

uncountable number of infinite length strings, each of which is unique. Therefore,

since each infinite string is the limit point for at least one Cauchy sequence, and

the limit point for a given convergent sequence is unique, there are an uncountable

number of distinct Cauchy sequences, whereas there can only be a countable number

of Turing computable Cauchy sequences (334). U

That there are only a countable number of Turing computable Cauchy sequences follows

from a theorem in Turing's 1937 paper on computability, which states "The limit of a

computably convergent sequence is computable." (334)

Although E contains the infinite strings needed to complete the metric space

(*, a), we do not have a need for an uncountable number of such strings. This thesis

deals with computation, and so instead of all infinite strings we only need those infinite

strings that are the limit points of Cauchy sequences that can be generated by Turing ma-

chines. We call such sequenes Tvring computablc. Accordingly, we define the set needed

to form a pseudo complete metric space, based on only those Cauchy sequences that are

Turing computable.

Definition IV.9 Given a finite set E, and the metric a defined by 4.3, the set denoted by

EO contains only the following elements:

1. All of the elements of E'.

2. The limit points of all Turing computable Cauchy sequences tht can be formed from

the elements of .

As a consequence of this definition %xv have cxactl oui Turiug computablh complce metric

space.
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Definition IV.10 Given a finite set E, the set EC defined by Definition Illg, and the

metric a defined by 4.3, then the two-tuple

(EC,a)

forms a Turing computable complete metric space.

The concept behind the Turing computable complete metric space is that for any Cauchy

sequence that can be generated by a Turing machine, the limit point for that sequence

is an element of the space. This means that the metric space is 'effectively' complete

with respect to any analysis that requires sequences of strings to be generated by Turing

machines.

In one of the landmark papers dealing with the mathematical properties of compu-

tation (311), Scott claimed that the set El satisfies the following property:

E00 =

Unfortunately, the paper did not present a rigorous proof, and also did not define what is

meant by the concatenation of two infinite strings. However, if we do define concatenation

of infinite strings in terms of Turing machines (the actual definition does not matter), then

we can prove the following result.

Theorem IV.11 Given a finite set E, the set FC defined by Definition 11V.9 satisfies the

following equality:
FC= F, U (c

Proof: The equality holds by definition for all possible finite strings of symbols from Z,

so-only infinite strings need be considered. For any given infinite string x, where

x E u U

another infinite string can be formed by concatenation with either a finite or an

infinite string, an( anN such concatenation is Turing compulable. The result of atty
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countable number of such concatenations can be computed by a Turing machine,

so that any strings generated in this manner are Turing computable (note the star

closure is a countable number of such string concatenations). Additionally, given any

computable infinite string x,

x E c

a computable Cauchy sequence can be formed using the technique described in the

paragraph following Definition IV.7. This means that the operations on the right

hand side of the equality can only generate additional elements of EC (as long as

string concatenation is defined for any combination of finite and/or infinite strings).

Thus

Since the right hand side of the equality includes the star closure of the left hand

side, then

20 C (' U ( C)*)

since any element of the set 2C is also an element of the set on the right hand side

of the equality. This proves the equality. U

Corollary IV.12 The set E* can be represented as a theory (see Section 3.3).

Proof: Since do finite -' can be represented with the two element set, the proof assumes

that

F= {a,b}.

The axioms object cojisits of three objects representing the symbols a, b, and A (the

empty word), while the worphisms corresl)ond to:

/-7x 'E =;, ax E E']

where

a' r {A a.b}
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Corollary IV.13 The set Z, can be represented as a theory.

Proof. Take the theory representing Z" and add all of the limit points of the Turing

computable Cauchy sequences to the axioms object, along with the rule of inference

that represents infinite with infinite (and infinite with finite) string concatenation.

That neither of the theories representing Yz* or ZO are complete theories follows

from the analogy between these sets and the real numbers. If E is the set of decimal

digits and the period, then there exists real numbers from the interval [0, 1] that cannot

be represented with either elements of Z* or Z

Corollary IV.14 Given that

= {., 0,1, 2,3,,,5, 6,7,8, 9}

then

CC C

where C is the set of Turing computable numbers (see Appendix B).

Proof: Since a Turing computable number is a string of decimal digits that has the prop-

erty that a Turing machine can produce any finite number of consecutive digits in

finite time (246), then the limit point of a Turing computable Cauchy sequence of

real numbers is exactly a Turing computable number. This follows from considering

each successive element in the Cauchy sequence as the next iteration of the digits of

the computable number. U

In some sense (excluding strings that are not numbers), the set §r* corresponds to the set

C of computabl- numbers. Thus the set E' corresponds to the set of all numbers with

finite decimal expansion, al the sel 'S' corresponds to the set R of all the real numbers.
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Since the set of reals with finite decimal expansion is dense in the set of reals (standard

absolute value metric), the statement that E* is 'dense' in the set E' has some meaning.

Also note that since 'computer science' addresses the science of what is possible within the

realm of Turing machines, then EC is sufficient fi.r computer science (as opposed to E'),

since any string that can by computed by a Turing machine will be an element of EC.

Note that the definition of rC is based on the topological concepts of a complete

metric space. However, Theorem IV.11 shows that EC also satisfies a strictly set-theoretic

specification. So thib theorem states that there exists a relationship betweea the concept

of computation and that of topology. The next section addresses this issue in more detail.
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4.2 A Complete Aetric Space Based on Finite Automata

Extending the groundwork laid in the last section, t,. section further demonstrates

the relationship between computational and topological c. ,cepts. In particular, this sec-

tion shows that the concept of computational power can b(. analyzed using the topology

of complete metric spaces. This analysis is based on compleing a metric space whose

elements are finite automata, such that the completion includez elements that are not fi-

nite aulomata. This section considers these elements from a computational power point

of view, and not as 'infinite automata', which are closely related to temporal predicates

(191) (and not to be confused with infinite strings associated with finite automata (235)).

The basic model of cmnputation is the finite automaton, a computing machine based

on discrete states and the tianaitions between states (see the Introduction for a definition

of state). The finite automaton is at the bottom of a hierarchy of computing machines

with ever increasing abilities or power (138, 217). Although the finite automaton is at the

bottom, it is the only type of machine in the hierarchy that can be physically realised, in

that all real computers are finite automata (with the possible exception of Man) (2419). In

addition to the computing machines consituting this hierarchy, many other computational

models dre based on the finite automaton (5, 168, 360), and this section gives an example

of one of these models, called the computation system (238).

There are two basic types of finite automaton, the nondeteriministic and the dcter-

ministic. Although there is no difference in the computational power betWeen the two, this

section gives the definitions for both.

Definition IV.15 A noncleterministic finite automaton is a five-tuple (S, A. R, s, E),

where

S {Si,.,S,}

is a finite set whose elements are called the states.

A = {aj ..., a,}
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is a finite set whose elements are called the inputs, and

R = {r, ..., rm}

is a finite set whose elements are relations over S, that is

Vrj[rj E R ==* ri C S x S]

and

sES

is called the initial state, and

E C S

is a finite set whose elements are called the final or accepting states.

Since for any nondeterministic automaton (S, A, R, s, E) there are exactly the same

number (both A and R have m elements) of relations in Rt as inputs in A, the standard

practice is to label each relation with a symbol from A. One interpretation of a non-

deterministic finite automaton (S, A, R, s,,E) is that of a directed graph, with the nodes

labeled with the elements of S, and the arcs labeled with the elements of A, such that

each relation in R corresponds to exactly one element from A (one or more of the relations

from R may be empty sets). Given the relation that corresponds to the bymbol a (where

a E A) which contains zero or more ordered pairs, then for each pair (i,,) that is an

element of this relation there is an arc labeled with a whose head is s, and whose tail is s..

With this interpretation, we can consider pathb through the directed graph that start with

the initial state s. Inputs to the graph are words, which a.re strings of symbols from A,

and as each successive (starting with the leftmost symbol) symbol from a, word i. read, we

traverse the arc labeled with that ,ymbol whose head is the current node to the node that

is the tail of the arc. After the last symbol in the word is processed in this manner, and if

the final node is an element from the set E, then that %ord is said to be accpled by the

automaton, othei wise the word is rcjted. B3 repeating this process fur all posbible woid.

(of finite length) from A'. we can construct the set of all words that are accepted by a
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given noiidetermninistic finite automaton. If we dlenote the automaton %ith the Symbol T',

then accept(T) denotes thii set of all w-ords from A* that are accepted by the automaton,

while reject(T) denotes -the set of all words from A1* that are rejected by T. Note that

accept(T) U reject(T) = *

Whereas the nonideterministic automaton hias transistions between states based onl

relations, the dctcrininistic finitc automaton hias transitions based upon total functions.

Definition IV.16 A deterministic finite automaton (5, A,f, s, E) is defined such

that the sets S, A, E and the element s (s E S) are exactly the same as in Definition IV.15;

whereas the set R~ contains total functions, that is for m > 1

R~f..;m

such that

Vfi.ri E fl == f S .S]

where each fi is defined for all of the elcinents of the domain S5 ('138).

Just as uithi the nonideterministiic finite automaton, the number of elements in the set It

equals the number of elements in the set A. The directed graph interpetation is also the

same ds for nondetermninistic finite automata, with one exception. For the deterministic

automaton tile arcs are determined by functions, not relations. Giv-tn . node s., tile arc

that is labeled wvith a (where a E A) w"hose hlead is s.,, htas as its tail the nodle Sk, wvhere

fG:)= k

A consequence of this difference in the elenments of the bet R betw een time nondeterniinistic

alld the (letermninisitic finite automata is that for each nodle in the directed graph repre

seiltatioll of a deterministic finite automaton, thtere is exactix one arc labeled with each

symbol from A whose head is that node, %hile for a. Iondletcriiistic finite automaton

there can be zero or imore arcs labeled withi a s% mbol fronm A %% hose ]lead is a given node.



Two nondeterministic (or deterministic) finite automata that have identical sets of

input symbols are said to be equivalent if they both accept exactly the same set of words.

Note that if two automata accept the same set of wordb, then they also reject the same set

of words, since for any automaton T we have that reject(T) = S' - accept(T), where S

is the set of input symbols. Also, since it has been shown that any nondeterministic finite

automaton is equivalent to a deterministic finite automatun, vwe refer to both determinitic

and nondeterministic finite automata as simply finite automata (217). If we define two

finite automata to be equal if aid only if (iff) their directed graph-representations differ only

in the symbols chosen for the arcs and nodes, then this equivalence relation between finite

automata is not equality, since two finite automata can be equivalent but ha,,e different

numbers of states (138). We can partition the class of all finite automata that share the

same set of input symbols into equivalcnce partitions, such that all automata in a partition

accept the same set of words. Each equivalence partition can be denoted by the set (%lhich

is described in a finite representation using a regular cxprcbsion (217)) of all wo d.h accepted

by the finite automata in that partition.

Now we present an example of a computational model based on the finite automaton,

which is called a computation system (238).

Definition IV.17 A computation system is the ordered two-tuple ((E, D, x), F),. where

E

is a finite set, D is a counlablc set, x is an element of D, and F is a total function whose

domain is V* and whosc codomain is the sct of all partial function' with domain D and

codomain D, such that

Ve~a e " F(c.) =

where

: D
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and function composition is given by

VO f, 'y[(P E Z*AY E Z* A y E D) =* 7-(y) =i3Q(ei))]

!f A denotes that unique element of r.* that is the concatentation identity, then

F(A) =

where A denotes the identity function on the elements of D, that is

V'y[y E D ==, \(y) = y]

such that A is not an element of either E or D.

A computation system consists of the triple (, , x) along with the finction F that

maps elements of E' into partial finctions from the elements of D into the elements of D.

Additionally, concatenation of elements of E into strings of symbols (which are elements

of E*), corresponds to composition of the functions represented by the individual symbols.

As an example of a computation system, consider ((S, D,.x),P) where

E= la, b)

D = lo,1)

and

F(a) = i {(0, 0), (1, t)}

F(b) = b = {(0, 1), (1,0))

with the functions F(a) and F(b) denoted u.sing the to tuple nomienclattre from Definition

111.10. With the notation of Definition IV. 17. we have

ii(O) = 0 and d(l) = I
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with

b(y) =1-y yED.

Although F is defined for all of its domain E', the definition of function composition in

Definition IV.17 implies that we only need specify F evaluated for the elements of E.

In Definition IV.5 we define E7 so that it includes the distinct element A wi"zh is

not an element of Z (and for any computation system ((.D, x),F). A is not an element

of D). This A represents the concept of the empty word (217). Definition IV.5 states that

this empty word serves as an identit when composing btrings of elements from E. Since

the empty word is not an element of E, and there is not necessarily an identity function

on the elements of D that corresponds to an element of E, our definition of it computation

system includes the identity function A which corresponds to the empty word A.

Since for any computation system ((E D, x), F) there exists a collection of partial

functions that maps elements of D to elements of D. one for each element of E, we can

collect these functions into a set, say M. For example, consider the computation system

((S, D, x), F) where

,= { I,}

) = {I.2,3}

F ={(:A, a, a), (b)...

such that

a= {(.2),(2,3)}

(= {1:3).(2 1).

Then we can form

M = {Xai,b}

such that

al) =2 and a{2) :3
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Figure 4.1. Directed Graph Representation of Example Computation System

(l)= 3 and b(2)=

In this example both &, and b are partial functions. since neither a(3) nor b(3) is defined.

Also note that F can be complete], specified with just those elements that correspond to

the symbols from E. along wi!.h (A: A).

We can represent this sample computation systein using a, directed graph. Figure

4.1 shows such a graph, where the elements of D are the nodes, and the elements of M

are the directed arcs. Each arc is labeled vvith the element from L that corresponds to the

element of 31 that the arc represents. So the arc %lhose head is node 2 and whose tail is

node I. and is labeled with the symbol b, represents the function evaluation b42) ;- 1. .lust

as is the common practice w' th finite automata. %, do not include the arc. labeled Vith

A that would have the same node for their head awd tail. one uch arc per node jI -13-).

This directed graph representation suggests that a contpllatitn svstoni ctirrspond. t* an

automaton (1(11 ). Ind4d. in Figure 4.1 we have lalhel,.t node 1 Ith a to inifi that it

is the node x in the rutinputation syvunst ((v. D.x). Ft.jus.t a. we label the initial node in

the graphicad repre:sentatiun of a finite WitelUaton. We an t all the ru.,d sl It. graph the
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states, with the arcs representing the transitions. If we choose the state x to be tWe initial

state, and choose zero or more states collected in a set E to be the final states, then our

computation system augmented with E would satisfy our definition of a nondeterministic

finite automaton (Definition IV.15). Since ED can be empty, then any computation system

can be considered as a finite automaton without any accepting states.

Now let us show that a finite automaton is a special instance of a computation system.

Recall that we labeled each function in All with a symbol that corresponded to a symbol

from E in our sample computation system ((2, D, x), F) (along with the implicit set M).

In our example computation system, the set D corresponds to the set S of states, the set

2 corresponds to the set A of inputs, and the set Al corresponds to the set R of relations.

The common interpretation (101, 138, 217) for a finite automaton is that of moving from

one state to another on receiving one of the input symbols. So for our example (see Figure

4.1), if we are currently in state 2 and receive an input of a, then we move to state 3.

These moves between states are called transitions.

Although our definition of finite automaton requires the existence of a set whose

elements are relations, our set Al of partial functions satisfies this requirement, because

as we saw in Section 3.2 the class of all functions (which includes partial functions) is a

species of the class of all relations. So any partial function is also a relation, which is also

true for the set-based definitions of partial functious and relations that the definition of

finite automaton is based upon (138). Since a computation system ((2, D, x), F) requires

that the set 2 be finite, then this set M of partial functions will also be finite, since

there is only one partial function corresponding to each element of 2. So 2 satisfies the

requirements of the set A, and Al satisfies those for the set R in our definition of a finite

automaton (S, A,/1, s,E). If we take the element x to be the initial state s, then except

for the set E the only difference between the requirements imposed oil the sets for a

computation system and dhose for a finite automaton is the cardinalit of the set D from

the computation system, which corresponds to the set S for the finite automaton. This

means that all computation systems uhose (posbiblN comantably infinite) set D is finite, and

that have a set of states (possibly empty) considered to be final or accepting states (so as

to make up the set E), also satisfy Definition IV.IG of finite automata. Note that for any
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computation system that doesn't have a candidate set of final or accepting states for the

set E, the set E can be considered as empty.

So it is established that the class of all computation systems whose set of states is

finite is a species of the class of all finite automata. But the objective of this section is to

further ebtablish a link betv een computational power and the topology of complete metric

spaces. So the next step is to choose the appropriate metric space to complete, based on

a model of known computational power, the finite automaton. This implies that we need

a metric for finite automata. And the metric that we choose will depend upon a bijection

between finite automata and binary automaton trees.

Definition IV.18 A binary automaton tree is a four-tuple (N,Pn,M), where N is

a finite set whose elements are called the nodes, P is a set whose two elements are total

functions with domain N and codomain N, n is an element of N called the root node,

and Al is a subset of N whose elements are called the accepting nodes.

Since we wish to define a bijection between finite automata. and binary automata trees,

we first observe the similarities between the two. A finite automaton is a five-tuple, say

(S, A, R, s, E). If A contains just two elements, then R contains just two total functions

whose domain and codomain is the set S. And since s is an element of S, and E is a subset

of S, then we have that any finite automaton (S, A, 11, s, E) with just two inputs (the set

A contains elements called the inputs), leads to the four-tuple (,5, R, s, E) that satisfies the

definition of a binary automaton tree. Since any finite input bymbol bet can be represented

by just two distinct symbols (138), we will drop the caveat that the set A only contain two

symbols, so that what follows applies to any finite automaton.

For example, if we are given the finite automaton (S, A, R, s, E) where

S = {1,2,3}

A =ab)

11 ={Tib

E={3}
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such that

,a = {(1, 2), (2, 2), (3, 2))

rb= {(1, 1), (2,3), (3, 3)}

then we can form the binary automaton tree (S, R, s, E). Figure 4.2 shows the standard

graphical representation of the finite automaton (S, A, 1, s, E), while Figure 4.3 graphically

depicts the binary automaton tree (S, R, s, E) in a tree-like manner, hence the term 'binary

automaton tree'. In Figure 4.2 we label node 1 with a '-' to signify that this is the initial

node, and node 3 with a '+' because it is an accepting node. In Figure 4.3 we label node

1 with a '-' since it is the root node of Lhe tree, and node 3 (which appears twice) with a

' to show it's an accepting node. Our four-tuple representation for a binary automaton

tree does not include the set of input symbols from the finite automaton because if we did

there would only be two symbols in the set. What the two symbols actually are does not

matter, so we can use any two distinct symbols to labL! the arcs of the binary automaton

tree's graphical representation, where each symbol corresponds to one of the two functions

that make up the set R. Given a graphical representation of a finite automaton, use the

following technique to construct the graphical representation of the corresponding binary

automaton tree. For an example, refer to Figures 4.2 and 4.3.

1. Start with the initial node from the finite automaton and make it the root node of

the binary automaton tree.

2. Given any parcnt node p of the binary autom-ton tree, we draw an arc labeled with

the input symbol i (We could use any two distinct symbols to differentiate between

the arcs) whose head is p and whose tail is the child node c, if the arc i had the node

p as its head and the node c as its tail in the graphical representation of the finite

automaton, and if the parent node has not previously appeared in the tree.

3. A parent node that has already appcared in the binary automaton tree is a. lcaf node

and has no child nodes, that is there are no arcs whose head is this node.

4. The binary automaton tree is constructed in this manner starting with the root node,

and whenever there is more than one child noue that can be drawn next the leftmost
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node is drawn first, where all of the leftmost child nodes are the the tail nodes of

arcs labeled with the same symbol (i.e. each symbol corresponds to one of the two

total functions that define the arcs).

The last item in our constructive description guarantees that given any finite automaton

we-can construct a unique representation of a corresponding binary automaton tree, since

any possible arbitrary choice has been removed.

Conversely, we can take any given binary automaton tree and graphically construct

the-representation for a unique finite automaton using the following procedure.

1. Start with the root node of the binary automaton tree and make it the initial node

of the finite automaton.

2. Given any arc labeled with the symbol i from the binary automaton tree, add the

parent node p and the child node c from the tree to the finite automaton if they are

not already present, and drav an arc labeled with the input symbol i whose head is

p and whose tail is c.

3. The finite automaton is constructed in this manner starting with the arcs that connect

the root node to its two child nodes, and then repeating the second step once for

each arc in the binary automaton tree.

This constructive technique ensures that there will be the same number of arcs in the

graphical representation of the finite automaton as in the binary automaton tree, which

is the desired result. Also note that given an arbitiary graphical representation of a finite

automaton, we can generate a unique five-tuple representation for the automaton, just

as for any five-tuple representation we can construct a unique graphical repiesentation

(138). This means that our use of 'finite automaton' can mean either the five-tuple or the

graphical representation.

Consequently, given the graphical representation of either a. finite automaton or a.

binary automaton tree, we can uiiquely construct the other, and giien eithei graphical

representation, we can generate both the four-tuple repiebentatioi of the binary itutomaton

tree and the five-tuple representation of the finite automaton. So we see that fom any given
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a b

2 +

Figure 4.2. Graphical Representation of Finite Automaton (S, A, R, s, E)

finite automaton, we can construct the unique binary automaton tree that represents it,

and for any binary automaton tree there exists a unique corresponding finite automaton

(with the caveat that in -generating the finite automaton given a four-tuple representation

of the binary automaton tree we have an arbitrary choice as to the two input symbols,

but we can force uniqueness by simply specifying that these two symbols will always be

the unique symbols a and b which are not members of any -of the other sets needed for

the representations). Thus the motivation for the existence of a bijective function between

finite automata and binary automaton trees, and for the next theorem, which requires the

following definition.

Definition IV.19 Two binary automaton trees (T,Pt,, U) and (V, Q, v, W) are equal, if

and only if, there exists a bijective total function 0,

T V

such that

Vx, y, p, q[(x E T A y E V A p E P A q E Q) ==€ (q(y) = ¢k(p(x)) =: y = O(x))]

0(t) = v

vu, IV [(u E U = O(I) E 14') A (w E = -' (1) E U)]

Theorem IV.20 There exists a total bijectivm function. whose domain is the set of all

finite automata and whose codomain is the set of all binary atdomaton trees. Thc.rc also
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Figure 4.3. Graphical Representation of Binary Automaton Tree (S, R, s, E)
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exists a total bijcctivc function whosc domain is thc sct of all binary automaton tr(Us and

whose codomain is a specified set of graphical reprcsentations of binary automaton trees.

Proof: The requirement for binary automaton tree equality states that two trees are equal

iff their graphical representations based on the proceeding construction technique are

identical except for a relabeling of the nodes and/or arcs, that is they are isomorphic

with respect to the initial and accepting nodes, and the functions that are represented

by the connecting arcs.

The preceeding construction demonstrates the existence of such a bijective function

for the set of all finite automata with only two input symbols. Since any finite set of

input symbols can be represented with just two distinct symbols, the existence claim

holds for all finite automata. U

The specified set in this theorem refers -to the set 'specified' by the constructive technique

described above. Note that if we had not designed our constructive technique so as to be

deterministic then the second part of this theorem would not have been true.

If we extend the definition of the function accept, so that its domain includes all

binary automaton trees, with the enumeration of the accepted set of words for a. binary

automaton tree performed just as for a finite automaton, then we have the following corol-

lary to this theorem. (Note that we use 'enumeration' in the sense of Turing-enumerable)

Corollary IV.21 There exists a bijective function 1, whosc domain is the set of all finite

automata and whose codomain is the set of all binary automaton tr-es, such that

accept(rn) = accept(4(rn))

for any finite automaton m, and

accept(b) = accept(,J-(b))

for any binary aulomalon trec b.
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Proof: The function (P is just the bijection from Theorem IV.20. Given a finite automaton

m, and any arbitrary nonempty word iv, such that

w E accept(m)

we can decompose w into a sequence of individual symbols from the input alphabet

of m, that is

W - 1S2...> 1.

Both m and i((m) have an initial node that processing of w starts in, and for each

symbol s,, the transition from one state to another in m has a corresponding transi-

tion in (I(m), such that a given input symbol leads to an accepting state for 7n iff it

leads to an accepting state for - (m), which implies

accept(m) C accept(,(mi)).

Since (') is total and bijective, then for any binary automaton tree b, there exists a

finite automaton fa. such that

b (1 7i t () ()

This, along with the above reasoning, implies that

accept (j)-(b)) C accept(b)

for any binary automaton tree b. These subset containments hold for accept(m)

nonempty, and such that the enipty word L. not an element of accept(m). But if

n accepts the empty word then the initial node of ?n is accepting, which will also

be true for (1,(m), thus (1,(m) accepts the empty word. The converse is also true, if

,I(m) accepts the empty word, so does m. If accept(m) = 0 then in has no accepting

states, and neither does ,(in). so that accept(,l,(m)) = 0; the converse is also trte.
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By repeating the above argument for any given binary automaton tree b, and for any

word w, such that

w E accept(b)

the implications yield

accept li(m)) C accept(m)

accept(b) C accept(,I-(b))

which establishes the equalities. U

Figure 4.4 shows two such isomorphic trees that iaeet the definition for binary au-

tomaton tree equality from Theorem IV.20, and Figure 4.5 graphically depicts the rela-

tionships specified by this definition of equality. For Figure 4.4 tile bijective function 0 is

given by

0(i) = a 0(2) = b.

Note that the definition for equality given in Theorem IV.20 does not address the labels oin

the arcs, since the placement of the arcs suffices to identify which function they represent.

In Figure 4.4 however, we have labeled the arcs so that the functions represented by the

Ca' and the 'V correspond to the functions represented by the '0 and the 'T respectively.

Before we proceed we need to define the concept of how far away from tile root node is

any given node in our graphical rel)resentation of a binary automaton tree, which i., called

the levelof the node (46). Also, because of the second part of Theorem IV.20, we no longer

need to differentiate between a binar. automaton tree and its graphical representation ubing

our construction method. So whenever %%e use the term 'binar% automaton tree', we mean

either the four-tuple designation or the graphical representation.

Definition IV.22 Given a binary automaton tree, Il level of any no&d within that tru

is given by:

I. The level of the root node is 1.
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Figure 4.4,. Two Equal Binary Automnaton Trees
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x y

p(x) q(y)

0

Figure 4.5. Relationships Specified by Binary Automaton Tree Equality

2. Given that the level of a parent node is j, then the level of any child node of that

parent node is j + 1.

Definition IV.23- A level k restricted binary automaton tree contains only nodes

whose level is less than or equal to k.

Definition IV.24 Given a binary automaton tree T, construct the level k restriction

of T, denoted by 7k, by deleting all nodes of level k + 1 or greater, and any ares whose

heads or fails are these nodes.

Next we give a metric for binary automaton trees, which will serve as the basis for

our metric for finite automata. Just as the metric a given by 4.3 of Section 4.1 measured

how 'far into' two strings the equality of their prefixes would hold, our binary automaton

tree metric measures ho% far into two trees the equality of their level k restrictions will

hold. Note that level k restriction equalities are just those given by Theorem IV.20 for

any binary automaton tree. Given any two binary automaton trees 7' and V, we define

a function di, that maps two tuples of binary automaton trees into the nonnegative real

numbers by

0 if T = V
d,(T, V) = (,I.41)

inf l/2kIT,, = 171} otberwise



T

+

a b

2 2

a 

b

2 2

0
V

0 0

Figure 4.6. Binary Automaton Trees T and V

If two binary automnaton trees T and V do not have equal level 1 restrictionb, thten we have

tht

d1,-(T, 1V) =inf{1)

'I

since there is no value of k for which T. = 14..

Consider the two binary automaton trees T anid V depicted in Figure .1.6. If we

considIer their level I restrictions. Owen we have that J~I', . bcause there exists, abi
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jection 0 such that 0(1) = 0, and both states 1 and 0 are initial and accepting states in

the corresponding restricted binary automaton trees. But when we conbider the level 2

restrictions we find that there does not exist any such bijection that satisfies the require

ment of Theorem IV.20 for (restricted) tree equality. Consequently, we have T2 A V2, and

also that T3 - 3, so that

d,.(T,V) = inf{1,1/2}

= 1/2

The proof that dtr given by 4.4 is a metric for the set of all binary automaton trees

follows the proof that a (see 4.3 in Section 4.1) is a metric for the set Z* (43). (Note

that Degano and Montanari show how the concept behind this metric can be extended

to more complicated structures that reprebent distributed systems (99)) Since Theorem

IV.20 states that there is a one-to-one correspondence betweel! finite automata and- binary

automata trees, then it follows that we can use our metric di, to define a metrh on the set

of all finite automata.

Theorem IV.25 Giten the bijection 1) from Corollary IV.21 and the function dtr from

4.4, thcn the function dja that maps the sc: of all finite automata into thc nonnegativc real

numbers given by

df,(A, B) = di, (''(A), (IB))

for any two finite automata it and B, is a metric for the set of all finite automata.

Proof: The proof that di, is a metric follows the proof from Section 4.1 for the metric a

on E*. Consider any three finite automata A. B. and C. Since 1 is a total bijection,

then

d(,,(A ,,I(B)) , ,, +,,, ,, d,,(A. B) < dja(A,C)+dj(('. B).

Since dir is a metric. then this implication sttates that dt1 , satisfies the triangle in

equality requirement of a metric (see Definition IV. ). Th constructive techndque
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used to prove Theorem IV.20 provides the bijection , between finite automata and

binary automaton trees such that

( =A )= (B)) -~(A = B)

which implies that since dl, satisfies the strictly positive requirement for a metric.

then df. also satisfies this requirement. Further.

dLT.(I(A), (1,(B)) = dir(1i(B), 4(A)) = df,(A:.B = dfL(B, A)

so that dfa satisfies tle symmetr requirement; therefore (ifa satisfies all the require-

ments for a metric. U

One question we can ask is whether the metric df accurately represents any intuitive

concept of 'closeness" of two finite automata. In Figure 1.6 we have to binar automaton

trees 2' and V such that d1,(TV) = 1/2. But both the finite automaton that produced T

and the one that produced V accept the same set. which is {a + b}. So in this case the

measure of closenes, given b,, the nmotric does not reflect the concept of computational ca-

pability% that is reprzented by the accepted sets. We can partially circumvent this problem

though, by modifying the set of all finite automata. Instead of including every possible

finite automaton, ne can include only the canonical homomorphic images of all possible

automata. WVe do this by collecting all of the finite automata, together into equivalence

classes based on the accepting sets. so that each equivalence class contains only those

automata that accept a given set. Then '%e generate a canonical honmozorphic image of

all tie automata in the equivalence clas,, m.hich %%ill be a finite autumaton that accepts

tile same set as all tie automata in the cla-s. but has the minimum number of ,tates of

any automaton in that equikalence cla.,. It hasN been sholm tha thi nique automaton

exists for each equivalence class. and can he generated from any atitutmaton in the class

thru a homomorphi.m, and %%ill be i.somiorphir ('with respert to r-laling of thle nle-s and

arcs) to the finite automnata in the equi'alence clas, hat ha e the feuosi numipr offtate,

(13N). This means that %e can fairm a metrir %pace wlho-w set r,,ntains earlt ramnonical

homontorphir inage tfroin eacl eqlivalerif l-.-s. .tild .!>e mInlrif i6 Ill. fimunrlin dp..
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This metric space now has the desired property that for any two finite automata a and b,

dfa(a, b) 0 0 =:* accept(a) 0 accept(b)

and for any regular set that would have been accepted by some automaton in the original

set of all finite automata, there exists a finite automatun in this new set that accepts the

same set. So we have a metric space whose elements have all of the required computational

power (i.e can accept all regular sets), and whose metric has to some degree the desired

intuitive property.

Theorem IV.26 Given a finite set E, and the function dja defined in Theorem IV.25,

there exists a set M of finite automata such that (M, d1 a) forms a metric space, and

Va, b [(a E M A b E A) : (accept(a) = accept(b) df (a, b) = 0)].

Additionally, for every regular set S such that S C Z*, there exists a finite automaton

m E M such that

accept(m) = S.

Proof: For each regular set that can be formed from E-, create one equivalence class of

all finite automata that accept that set, and form the set H by choosing from each

class one automaton that has the minimum number of states for all the automata

in the class. (Disregarding isomorphisms due to relabeling of the nodes and/or arcs

this set M would be unique) Since each element of M accepts a different set,

accept(a) = accept(b) = a b

a = b dI (a, b) = 0

for any a, b E Al. Since dfa is a. metric for any set of finite automata,

dfa(a,b) = 0 4=* a = b

a = b =: accept(a) = accept(b)
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due to the positive definiteness of the metric and the fact that the definition of

automaton equality given in- Theorem IV.20 implies that any two automata that

are equal must be members of the same equivalence class; this is proved by having

the 4) of Corollary IN .21 be the isomorphism between equal finite automata defined

by the function 0 of Theorem IV.20, which implies that accept(m) = accept(i (n))

whenever m = 4)(m).

The construction of M ensures that every regular set is accepted by some element of

i. U

The remainder of this section deals with the metric space (M, df a) given in this theorem.

Now that we have formed a metric space (M, dja) (see Theorem IV.26) for which we

hae elements with well defined computational power (the accepting sets), and for which the

metric imparts intuitike meaning in terms of closeness with respect to this computational

power, our next goal is to answer the following question: Does the completion of this

metric bpace of finite automata yield elements that lie higher up on the Chomsky hierarchy

(327, 69, 70) of computing machines? As we shall prove, the answer is yes!

Given a finite alphabet 2 = {a, bi, consider the set S C E* given by

S = {anb'a'ln > 0)

which is a set generated by a type-1 grammar, but not by a type-2 grammar (101). If we

fix an upper bound to n, say n < 3, then we would have the regular set that is accepted

by the finite automaton shown in Figure 4.7. To increase clarity in this figure, we have

only included the arcs that eventuall. lead to an accepting state. All of the arcs not shown

have the node labeled 'S' as their tail, and from this node there is no string of symbols

that will lead to an accepting state. If we had chosen n = 10 instead, then the structure

of the finite automaton would follow that of Figure -1.7, with just more added states to

handle those words with 3 < n < 10. We can continue this process indefinitely, so that

for any fixed finite value of it, there exists some finite automaton that can accept the set.

So even though there is no finite automaton that can accept the set S, since the value of

n is not fixed, what could we sa.y about an infinitc autonaion constructed in the manner

4-39



S a,b

Figure 4.7. Finite Automaton that Accepts {a'"ba"I0 < n < 3)

of Figure 4.7 that would have an infinite number of states? This concept of an infinite

automaton corresponds to that of a transition systcm (12). We can't answer this question

by constructing such an automaton, but we can answer it using topological concepts and

our metric space (M, dfa).

Before stating the primary theorem of this section, we need some intermediate results

regarding the relationships between recursivc sets, the metric space (Al, dfa), and binary

automaton trees. A recursive set, say R, of words formed from some finite set of symbols

E, has the property that both the set and its complement , - R are Turing enumerable

(101). This means that we could order the words of E. by length using the function len

of Section 4.1, along iith another function to choose between words of equal length; then

starting with the word A (the concatenation identity, or empty word) ,nd continuing for

each successive word a of Z* (initially a = A), concurrently enumerate both / and Z* - R

so as to decide if a is an element of R. Since both enumerations vill generate any given

element of either ,R or E' - t in finite time, the decision of whether or not a is an element

uf R can also be done in finite time, since we only have to wait to see which enumeration

produces a. Note that one of the two enumerations will eventuall produce a s,;'ce either

"1-40



a E R or a 1R. Proceeding thru the length-ordered version of E* in this manner allows

us to generate a unique length-ordered version of R. Thus we have that the elements of

any recursive set can be uniquely ordered by length (190).

Given-any finite subset S of a length-ordered recursive set R (R is not generated by

any context sensitive grammar),

R? ={161;Oa2,...,I'n,...

we can construct the finite automaton that accepts only those elements of S (327). Ex-

tending this concept, we can construct a sequence of finite sets

S1C S2 C S3 C ...C Sn C...

such that

Vi [i E N Si C 11]

with the (proposed) property that

lir Sn = 1 (4.5)

and

Vi [i E N == Si = {6 , 62, .., Ci] .- (,46)

Note that R must be countably infinite, since if it was finite then it would be a. regular set.

Equation 4.5 states that the limit of a, sequence of finite (regular) sets can be a recursive

set! Our next task is to prove this claim.

Consider a sequence of finite automata friom the metric space (JA, dia)

F1,F 2,. .. ,F;,...

such that

Vi [i E N =:, a ccepl(Fi) = S.
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We can use the bijection 1) from Coirollary IV.21 to construct a corresponding sequence-of

binary automaton trees

T , T2, ..., ,..

such that

Vi [i E N = 2%3 = (I)( Fi)]

and

Vi [i E N =* accept(T) = accept(Fi) = Si]. (4.7)

Our sequence of finite automata {F,}eN correspond6 to Reeker's concept of acccptor scrics

(297), except that we do not use Reeker's technique of substituting graphs into graphs.

Note that Corollary IV.21 and Theorem IV.26 imply that given a set 3,, there is one

unique element of (M,dfj) denoted by F, such that accept(F) = S,, and consequently

there is one unique (disregarding isomorphic relabeling) binary automaton tree T,, such

that accept(7;) = S,. A consequence of our length-ordering of Ri is that this sequence

{T,},N of binary automaton trees is a Cauchy sequence with respect to the metric dtr.

Lemma IV.27 The sequence of binary automaton trccs givcn in Equation 4.7 is a Cauchy

sequence within the metric space of all binary automaton trees with the metric dt,.

Proof: For this proof and the remaining ones of this section we will use the modal oper-

ators 0 and 0 with respect to the indicies of the sequences. For any sequence, the

indicies form a total linearly ordered set (177), so that the indicies cln be considered

as discrete time, and the operators as from linear time temporal logic (see Appendix

A).

Consider two sets from the sequence of sets of accepted words, say 3, and S3. If

Si = Sj then Theorem IV.26 implies that F = F, where accept(Ji) = S, and

accept(Fj) = S,. Further, the bijection (1, from Corollary IV.21 implies that

i = Fj == 7%- = Tj == dtr(Ti,'7) = 0

where 7j = (T)(F) and Ti = (1)(j).
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If Si 0 Sj, and j > i, then

Vak, alj [(k E Si A al 0 Si A 0-1 E Sj) == len (oi) : len (0.k)

which follows from the length-ordering of 1 and the assertion given in Equation 4.6.

Since the number of distinct words in R is not finite, and there are only a finite

number of words of a given length (the symbol set E is finite), then with respect to

any given index i,

O>i (3IVk [0ui E Sj A ( . E Si * len(9) > len(ak))I

(lHere the 0>, along with the S, means 'there exists an index j greater than i such

that the following is true') Given the index j for which this assertion is true, then it

follows that

O>j (Sj c Sk)

which implies that given any index i,

O>>O (3lVk [Ori E Sj A (ak E Si =* len(t0) > Ien(ak))]). (,1.8)

For any such distinct sets S, and S., with j > i, then I' (I)(F,)) is equal to T, (1(Fj))

plus the additional nodes and arcs needed so as to accept the additional words in

S3 - S, (since Si C 5,). If some of the words in S3 - S, are the same length as the

words of greatest length from S,, then 7' and T, differ at the level of the nodes that

accept these 'longest' words from S,. If any of the words from S. have greater length

than the words of greatest length in 5,, then T, has one or more nodes of greater

level than T,, and if all the words iii Sj - .5, are longer than the words of greatest

length from 5,, then 2' and T, differ at a greater level than that of the nodes that

accept the longest words from S,. A result of the assertion given in 4.8 plus the fact

that for any given length there are only a finite number of words (from E") of that

length, is the following. Let N be the maximum possible number of words of length

ien(a 1 ), where or, is the word of shortest length from R. Then for any set S1, vwhere
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I > N, there exists another set Sk., such that S1 - Sk. contains only words longer than

those of greatest length from Sk. Conversely, given a set Sk, then:

1. There exists a set Sk whose longest word is equal in length to the longest word

of Sk.

2. There exists a set St such that S - Sk contains only words longer than those of

greatest length from S.k -(and thus from Sk.).

The above arguments imply the following conclusion. Given K E N, there exists a

set Sk whose longest words have length K, and there also exists a set S1 such that

dtr(2k, TI) < 1/2 K+ 1 < 1/2 K

where Sk = accept(Fk), Si = accept(Fi), and Tk = 4)(F), T = ,(1(R). This implies

that with respect to some index N,

V6[b E R-} == NOdr(T.,Tn) < b).

As a. natural consequent of this result we have the following.

Corollary IV.28 The sequence {F,},EN given by 4.7 is a Cauchy sequence within the

rnetric space (Al, dfy).

Proof: Theorem IV.25 implies that if {T,:eN is a Cauchy sequence, then so is {J'-(T,)},EN,

where .F = (I-'(Ti). 0

Having completed these preliminary results, we can now prove the claim that the Cauch..

sequence of regular sets {Si},GN converges to the given recursive set R.

Theorem IV.29 Given a length-ordered recursive set R (not a finitc set)

R = (6] -,2,", .n }
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along with the sequence {Si)iN given by 4.7 such that

S1 c C2 c...c Sc...

with

Vi [i E N ==' Si C R]

and

Si O l {G, .Oj}

for each i, then there exists a metric for the set of all regular sets such that

lim S, = R.
n-co

Proof: Given any regular set S, Theorem IV.26 implies that there exists a function f

whose domain is the set of all regular sets and whose codomain is the set Al from

the metric space (M, dfa), such that

accept(f(S)) = S.

Define the metric d, on regular sets such that for any two regular sets S and T,

drs(ST) = inf{1/21+'Il = len(u) A a E TA a S} if S C T

1 else

(Note t:-at 1 is the length of the shortest word a from T that is not a word from S)

The arguments presented in the proof of Lemma IV.27 imply that

ds(S,T) = df,(f(S), f(T))

for any regular sets R and S. Although this equality holds for all regular sets, it

would not have served as the definition of ds since f(U) is undefined for any U

that is not a regular set but is an element of the completion of 1.hi6 metric Space.

This equality is sufficient to prove that d,5 is a. metric, following the reasoning of
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Theorem IV.25, since dfa is a metric. This equality and Corollary IV.28 imply that

the sequence {SiLEN is a Cauchy sequence with respect to the metric d,,.

Completing the metric space of all regular sets wvith the metric d,, implies that

lim S"
n-00

exists and is unique (189, 108). It follows froin the proof of Lemma IV.27 that

Vb [b E R+ =* *Od,,(S,, Rt) <6b]

which implies that

d( lim S, R) inf {1/2'+' Il E N)

=0

and so

lim S" = Ri
n-oo

since the limit of any Cauchy sequence is unique.U

This next corollary shows that the Turing Lomplete metric space forned from the metric

space of regular sets, includes all of the recursive sets.

Corollary IV.30 The metric space of all recursim- sets with the metric dr, is a subspace

of Ilhc Turing computable compiction of the metric spacc of all regular setsl with the mectric

drs.-

Proof: Theorem IV.29 implies that for any recursive set there exists a. Turing compJutab~le

Cauchy sequence of regular sets that converges to the recursive set.U

This corollary implies that foi any given recursive set Rt, there is a Turing Computable

Cauchyv seqiuence of finite automata such that t-r limit. pointk of this sequence i.- a. 'machine'

capab~le of accepting exactly thle rt-cursive set. Although this pr'oof reqIuiredl the Turing
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completion of the metric space of all regular sets with the metric d, it (lid not address

any other Turing computable Cauchy sequences except those generated in the manner of

Equation 4.7. Are there-possibly other Turing computable Cauchy sequences that converge

to sets which are not recursive sets? The following theorem implies (but does not prove)

that the answer to this question is yes. This theorem involves the oracle, which is a

computing device that can solve the halting problem for Turing machines (152).

Theorem IV.31 The Turing computablc completion of the metric space of all regular Sets

with the metric d,, is a subspace of the metric space of all oracle recursive sets with the

metric drs.

Proof: What needs to be proven is that all Turing computable Cauchy sequences of regular

sets converge to oracle recursive sets.

The definition of d,, from Theorem IV.29 implies that for any Cauchy sequence

{Si}iEN of regular sets, that

Jim S,, = S =:: (o E S :=, 00Oa E Sj) (4.9)

since if this wasn't true, then it would follow that

000 Si

which implies that

0dSi k) 1/2'+

I = len(ai)

which is mot true because {SbcN is a Cauchy sequence. The same reasoning implies

that

a ' S * 00a ,. (1.10)

For a set to be recursive both the set and its complement (with respect to "-) must

be Turing enunmerable (359). Alt.hough this argument. does not show that an. Turing
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machine could enumerate either S or its complement, assertions 4.9 and 4.10 imply

that S and it's complement are 'oracle enumerable', and thus S is oracle recursive.

This is based on the idea that an oracle (90, 1) that could solve the halting problem

(for Turing machines), could decide for any given word a, whether a is or is not an

element of S. This would not have been true if either

o' E S 00a E Si

or

instead of 4.9 and 4.10. U

Another related result is that any Turing computable string of symbols can also be

generated by the limit point of a Turing computable Cauchy sequence of finite automata,

i.e. the Turing completion of the metric space of finite automata includes machines that

can generate all of the computable symbol strings (equivalent to computable numbers).

Theorem IV.32 Given tny Turing computabic symbol string, there exists an clement of

the Turing computable completion of the metric space (M, dja) of finite automata that

accepts only this symbol string.

Proof: Since the string is computable, then it is the limit point of a Cauchy setjuence of

finite length strings within the metric space (Z', a) from Section 4.1 (291). Corollary

]V.28 implies that there exists a Turing machine, such that for each of these finite

length strings, a finite automaton that accepts only that string can be constructed

using the techniques of this section. Thus this sequence of finite automata is a Turing

computable Cauchy sequence, and the unique limit point is the machine that accepts

only the coml)utable string. U

The previous results of this chapter plus Theorem IV.32 supply the necessary justification

for the claim that the compu tational power of the ',machines" included in the completion

of the metric space of finite automata. is no greater than that of Turing machines.
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Figure 4.8. Hierarchy of Sets

Theorem IV.33 The set of Turing machines includes all of the elements of the Turing

computable completion of the metric space of finite automata (-A,, dfa).

Proof: Consider the set S, accepted by each finite automaton F, in an arbitrary Cauchy

sequence of such machines. The sequence of these sets corresponding to the Cauchy

sequence can be produced by a Turing machine, since the Cauchy sequence of finite

automata is Turing computable. This means that the cumulative union of these sets

for a given j

U~ jEN
i<j

is also Turing computable. Just as for the symbol strings of Theorem IV.32, if this

cumulative union is computable for any arbitrary natural number j, then the machine

that generates this cumulative union is the machine represented by the limit point

of the Cauchy sequence. U

A consequent of these results is the hierarchy of sets shown in Figure 4.8, where

'completed regular' refeis to those seth that correponl to the computational power of the

Turing completion of the metric space (Al, da) of finite automata. Neither the strictness of

the inclusion of recursive setb in completed regular sets, nor the strictness of the inclusion

of completed regular sets in recursively enumerable sets is proven here.
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4.3 A Complete Metric Space Based on GSP

The last section demnonstrated that the computational properties of Lte sequential

computational model of finite automata can be related to the topological properties of

a complete metric space based onl the model and anl appropriate metric. AdditionallyN,

the section showed that the computational concepts embodied iii Choinsk) "b hierarchy of

computational languages (and therefore models), canl be recast !in terms of a topological

hierarchy based on. the concept that the completion of a metric space canl be thigher' up thle

hierarcli3 than the other elements of thle space. This section continues tisi tact, dev eloping-

a-comp~lete metric space for a. concurrent model of computation, Iloare's Commnunicating

Sequential Processes (CSP) (165), mid then using the standlard topological tools to lresent

alternative proofs to two of the main theorems fromn Hoare's book. Thi;s section closes

with the demonstration that Iloares proof of program concept based on Lte sat operator

is equivalent to proofs based on thle ino(Ial logic presented in Appendix A.

The first goal of this section is to showv that CSP inherently generates a, comnplete

metric space and to relate the topological properties of this metric space to thle algebraic

and coinpu tational p~roperties developed by Hloare. As explained in thle introduction to

this chapter, CSP is chosen as a repres-entative of that class of concurrent computational

mnodels that are based on the behaviour of Lte computation. l3efore dleelop~ing the metric

space based on Lte processes that underly the CSP concept: anothei metric space based

on Lte CSP traces ineeds to be presented.

CSP treats a process as either defined lby its possible behaviour, or as defined lby

a systemn of eq~iations that relate outputs (which dLong n~ith the inputs constitute thle

, beh avio ur') to in p u ts. T hese p ro cesses can be either d tcri-nin wsi c o r zondec -i- min is lic .

but for both cases any process can he characterized by Lte -set of possible input/output

histories. which are called tracecs. Iloare defines, a dleterministic process as one that "call

niever refuse any ement in wvhichm it canl engage-, and a nondeterminiitic process, as, one that

"does not enjoy this property, i~e.. there is at somne time soume event in %%hidi it can engage;

bumt also (as a result of some internal ... choice) it may refuse to eaigage in that iernt. e'.Ci

though Lte emtvironniemtt is ready for it" (165). Wti tis section andl those that follow

any reference to (SP or other Iprtcesses imiplies that Lte processes, arp (leteriiislic. miles



stated otherwise.

Thus each process P generates a set denoted by

traces(P)

that contains all possible traces of P, where each trace is a sequential history of the

input/output beh;.viour of P. A trace is denoted by

(a, b, c)

where a, b, and c denote individual events, and their ordering within the brackets signifies

tie sequence in which they occur. By convention no two event! occurs simultaneously, and

every trace contains a finite number of events (165). For example, the process given by

VMS = (coin - (choc - VMS))

is-one which can peif-rm the event called coin, then performis another (unnamed) process

which first does the event choc then continues with the process I'MS repeated ane%%. Thus

the notation

x - P

denotes the process that first does the event x, then follows with the process P.

Given this process VMS defined in an equational manner. another equivalent deft

nition of VMS is given by the set of all possible traces of VMS. that is

r.,ces ilS)- { O, (coin), (coin. dhoc), (coin. choc:coin) ... }

%,here () denotes the enpkv trace, that i- the sequence that contains no events. Since foi

every process (Ik3 convetition) there e"-i.s t, a time interval that precedes, the mart of the

process. then every process contain, the emp% trace in iLs .et of traceN. even the pfoct---,

that doe, not hing. Note that tLh., et of trace, for a gien prores., can he conittably infinite.

ewn though each trace only cnntains a finite nnmnbr of evenL;.
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Thus a process can be defined either from its set of all possible traces or from one

or more equations (possibly recurs;e). Whereas the previous section developed a metric

for strings of s-, .*.-A. t ,re similar to the sequence of events in a trace (see the metric

defined by Equation 4.3), this section first presents a metric for the space of all possible

traces that ,n be formed from a given finite set of events. This metric is then used to

define a metric on the space of all possible processes that can be defined (in the CSP sense

of a process definition) given a finite set of events.

Since a trace is an ordered sequence (i.e. countable) of discrete events, the metric

o defined by Equation 4.3 can be modified to create a metric for -the space of a!! (finite)

traces. Consider the two traces denoted by

(x, x 2) ... zT)

and

for some n and 7n elements of the natural numbers. Since the metric a on strings of

symbols from '" is based on the idea o; how many symbols at the beginning of each string

are identical, the same concept can be abed to define the following metric on traces denoted

by 7r. I-= 0 ifx=y (.1

0'. y)X; if= (4.11)

max{1/2klxk # Yk} else

If

x = (I .,x,

and

Y = 01),...,) Yn, Yn+l, ..., Ym)

where

Xi = Y; for I <i< i

,I-52



then

ri(x, y) = 1/ 2"+'

based on the convention that since tnere is no xn+1 symbol, then

X1.+1# Yn+a.

That 7- is a metric follows from the same argument presented for the metric a defined

by Equation 4.3. Since traces must be of finite length, only the max function is required

instead of a sup.

This metric 7r also satisfies the intuitive requirement that two traces x and y that

are 'close' with respect to the metric are 'close' in terms of having more of their leading

symbols identical. That is, as the metric distance between the two traces decreases, the

number of events (startiig from the first event) that mubt occur before the two sequences

differ increaes. Note however, that other intuitive concepts of closeness do not necessarily

apply to this metric. For example, consider the two traces given by

x = (0,1,0,1,0,1,0)

and

y = (0,0,0,1,0,1,0)

which yields

r(x, y) = 1/4.

Compare this to the two traces

u= (0, 1,1,1,1,1,1)

and

v = (0,0,00,0,0,0)
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which also gives

r(u, v) = 1/4

Although the metric states that these two pairs of traces are equally 'far apart', an intuitive

notion of closeness would conclude that x and y are closer than u and v.

Thus the set of all finite traces along with the metric 7r given by Equation 4.11

constitute a metric space. A natural question then, is whether this -metric space is complete

or not. Consider the Cauchy sequence of traces given by

(0), (0, 1), (0, 1, 0), (0, 1,0, 1), (0, 1,0, 1,0),.

Is the limit point of this sequence an element of the metric space? The answer is no, since

no finite string can represent this lim:t. To prove this claim, consider that there does exist

a finite string x

X. = (.. . .... x7)

that is the limit point of this Cauchy sequence. If x,, = 1 the traces given by

Y =. .(0.... )

and

z = (X .... ,n, O, .)

are both elements of the Cauchy sequence such that

ir(y, z) = 1/21+'

But for any element u of the Cauchy sequence,

(x, u) >_ 1/2" + '

which means that x cannot be the limit point of the Cauchy sequence, since there are other

elements of the sequence that are 'closer together' than x is to any other element.
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This is also seen by considering each trace as the binary expansion of a number based

on negative powers of 2, that is

(0,1) = 0 x 2- + 1 x 2-2 = 1/4

(0,1,0,1) = 0 x 2-1 + I x 2 2 +0x 2- 3 +1 x 2- = 1/4+ 1/16 = 5/16

Thus the limit point is given by
001

-which evaluates to 1/3, a number that cannot be represented with any finite string of zeros

and ones.

Thus the completion of this metric space requires the inclusion of 'traces' that contain

ap infinite number of events. One logical question is whether the limit traces of Cauchy

sequences represent in some mannei unique procebses, so that these limit puintb can be put

into a one-to-one correspondence with the set of all processes (over some finite alphabet).

In the previous example the Cauchy sequence of traces (ignoring the empty trace) can be

generated by the following process named ONETHIIRD:

ONEDTIRD = (0 - (1 -4 ONETHIRD))

But this same Cauchy sequence can also be generated by the process OT:

OT = (0 - (1 - (0 - (1 , OT))))

So there ib no one-to-one correbpondence between procebses and the limit points of arbitrary

Cauchy sequences of traces.

Just as the symbol string metric given by Equation 4.3 formed a basis for the metric

on sets of strings represented as binary automaton tree.s and given by Equation 4.-, the

metric -r on traces can form the basis for a me, ,u sets of traces represented as trees.
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Consider the process ONETIIIRD defined- above, where

traces(OIETIlltD) = {0l, (0), (0, 1), (0, 1, 0), A0,1,0,1), A0,1, 0, 1, 0),...}

Note that trace theory (299) provides a more efficient representation for this set of traces.

Disregarding the commas between the events of a trace, and considering each trace as a

symbol string from A* (the enipty trace corresponds to the empty word) without the angle

brackets, where A is the-alphabet of the process, then the unary prefix operator pref yields

the result

traces(ONETHIRD) = pref({O1}*)

where

pref(X) =t E A* 13u[ E A* A tu E X]}

Since each trace can be treated as a symbol string, which is exactly the idea behind

the metric -v, then the set of traces can be treated as a set of strings that are represented

as a modification to the binary automaton tree. Just as the construction of the binary

automaton tree was based on the length ordering of an arbitrary recursive set (see the

discussion following Theorem IV.26), the construct:on of a tree representation for the set

of traces requires that the set of traces be ordered by trace length. Before presenting

the following theorem establishing that such sets can be length ordered, some additional

notation must be defined. Note that since any finite alphabet can be represented with just

the two symbol alphabet E

B= {O,1}

then all of the following results apply to processes and traces defined over this alphabet.

Definition IV.34 Given a function F that. maps processes to processes, then

ptX.F(X)
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denotes the process (if it exists) that is the solution to the recursive equation

X = F(X)

Further, if F is of the form

F(X) = (x -4 G(X))

where x is an evcnt from the alphabet of the procc.5s, and G is a function that maps procCsss

to processes (and could also be a function of x), then F is guarded.

For example, the process ONETIIIRD can be denoted as

ONETIIRD = jtX.(O -+ (1 - X))

Definition IV.34 yields the following theorem.

Theorem IV.35 Given the recursively defined process denoted by

jzX.F(X)

such that F(X) is a guarded expression, then the set

traces(1rX.F(X))

can be well ordered by trace length.

Proof: Denote the process by P, that is

P = ILX.F(X)

Since for any process its set of traces contains the empty trace, which with length

zero is the shortest trace, then the empty trace is the first elenient in the set of length
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ordered traces for P. Denote the guarded expression F(X) by

F(X) = (X -- G(X))

This implies that the next trace in the length ordering is (given that x comes before

any other trace of the same length)

().

There are only three possibilities for G(X), either it is recursively defined in terms

of F, it is recursively defined independently of F, or it terminates (see Chapter 1

of Hoare (165)). If G terminates, then the finite number of traces generated call

be length ordered. If G is recursively defined independently of F then the count-

able number of traces generated can be length ordered, since these traces form by

definition a recursive set (although not explicitly stated in Hoare's book, this thesis

assumes, as it seems that RIoare did, that the definition of such a G must be a total

recursive function). If G is recursively defined in terms ofF, then the trace genera-

tion process cal be continued with the base case for G determining the next trace,

and then the recursive definition generating the next trace from the definition (which

is based on a guarded expression) for F.

Continuing in this manner the successive generation of traces can be continued indef-

initely, with any arbitrary provision for ordering traces of the sam-.i length (of which

there can only be a finite number for any given finite length). U

Ioare's develop. cnt of recursi% ly defined processes actually implies that the process

defined by

jlX.F(X)

is a total recursive function, and so generates a set of all possible traces tha.t is a recursive

set. Although this alone %ould hae proved the theorem, the given proof demon.-trateh the

relationship between the process ab defined by F, and the type of the function denoted by

G (which to prove the theorem need only be total recursive). Since Theorem IV.35 forms

the basis for the follouiing metlic on the bpace of those processeb lios definitions sitisfy
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the requirements of the theorem, then the metric is only valid for deterministic processes

(at this point), since the constraints on the process definition given in Theorem IV.35 are

those for deterministic processes from iloare's book (165).

Given the alphabet E, the technique used to construct the binary automaton tree

of Section 4.2 can be used to construct a binary trace tree from any given deterministic

process. The primary difference between the binary trace tree and the binary automaton

tree is that the nodes marked with a 'Y' in the binary trace tree designate traces that are

actually generated by the process, while the other nodes are included to simply populate

each level and standardize the graphical representation of the tree. Figure 4.9 depicts

the first three levels of the binary trace tree constructed from the process defined by

ONETIIIRD above. Note that this particular tree can be completely represented with

a finite number of levels since the process ONETIIIRD is defined recursively in terms of

itself, which means that every trace longer than some fixed length must 'return' to the

root node. The node on the third level labelled '(0, 1)' could have its output arc labelled

with '0' return to the root node, since any trace generated by ONETIIIRD that passes

thru this node could be considered as starting over again from the root node. The other

nodes on the third level never lead to traces generated by ONETIIRD, so they can be

terminated at this level also. But this termination technique cannot be used in the formal

definition of the binary trace tree, since it it was, the binary trace trees for the processes

ONETIIIRD and OT would be different, whereas Corollary JV.38 (to follow) requires that

they be identical. Note that every process generates the empty trace, so that every binary

trace tree will have the root node (the empty trace) labeled with a '+'.

Definition IV.36 Given the alphabet

E = O,1)

and any process P defined over this alphabet in Ih( formulation ginvc by Theorem 11.35,

the binary trace tree corresponding to P is a binary trec such hat the path6 represent
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< 00 > < 01 > < 10 > < 11 >

Figure 4.9. Partial Binary Trace Tree Representing ONB THIRD

elements of Z*, and those paths corresponding to the elements of

traces(P)

contain nodes differentiated from those nodes that arc not contained in such pat h.s.

Thus for a given process, each p~ath in Lte binary tree that represenltb the biniary trace tree

corresponds to an element of E-*, since the concatentation of Lte symbols (0 or 1) oil tile

arcs constituting the path forins i symbol string front S'. And if all of Lte nodIes oin a

given path are elements of the 'differentiated' set, then thle symbol string from this path

rep~resents the sequence of eventb making up one of Lte 1)ob:iblC traces that canl be generated

by Lte process. Tile emp~ty word A represents Lte empty trace (). and cor-responds" to thle

root node of the binary trace tree. As shown in Figure -1.9, Lte differentiation of Lte unodes

containedl in time paths representing traces that can be generated by the process is by

marking these nodes with a '-F'. The ordering of thle traces of equnal length (here chosen u.~

thle natural lexicographic ordhcring) deternmines uIni(uei% the actual graphical rep~resent ation
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of the binary trace tree, in that this ordering gives the sequence of the nodes from left to

right on any given level.

Following the development of the metric given by Equation 4.4 for binary automa-

tol trees, the next theorem gives a metric for binary trace trees, and thus a metric for

deterministic processes.

Theorem IV.37 Given the set of all processes defined by recursivc formulas of the form

/IX.F(X)

such that F(X) is a guarded expression, then the function dtr given by Equation 4.4 is a

metric for the set of all binary trace trees corresponding to these processes.

Proof: That dtr is a metric for the set of all binary trace trees follows from the proof

that it is a metric for the set of all binary automaton trees, since the only difference

between the two types of trees is the marking convention for the nodes. The theorem

then follows from the existence of the constructive technique used to generate unique

binary trace trees from any given deterministic process, plus the fact that for any

process P. the set

traces(P)

contains only traces of finite length, and this set can be put into a one-to-one corre-

spondence with the set E. U

Corollary IV.38 Given the class of all proccsscs that -satisfy the requircments fron The-

oremn IV.37. such that for any two processes P and Q

P = Q = traces(P) = traces(Q)

then I&h function whosr dounain i.s thc cross product of this class with itslf, given by

dp,(P,Q) = dtr(P, )
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where P and Q are the binary trace trees constructcd from the et.s traccs(P) and-trace(Q)

respectively, is a metric for this class.

Proof: Given -any deterministic process P, the set

traces(P)

is uniquely determined, thus uniquley determining the associated binary trace tree.

This implies that two binary trace trees are equal if and only if the corresponding

sets of all process traces are equal. Thus

d(P, Q) = 0

implies that

P=Q

under the class definition of the processes comprising the domain of dp. 

Figure 4.10 depicts the first three levels of the binary trace tree generated by the process

ONESEVENTII = ILX.(0 -- (0 --+ (1 - X)))

Just as ONETIIIR.D in a sense produced the binary expansion for the number 1/3, ONE-

SEVENTH, generates the binary expansion for the number 1/7. Comparing the binary

trace tree for ONESEVENTII to that for ONETiIIRD (Figure 4.9). yields

dp(O NETI!IRD,ONESEVENTII) = 1/4

since the two trees are identical up to the second level, but not at the third.

The equality definition given in Corollary IV.38 for processes circumvents the prob-

lem manifested in the previous observation that both of the processes ONETIIIRD amid

OT generate the sanie binary tram trees, but the two proces. Ps do not have idenlical for-
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Figure 4.10. Partial Binary Trace Tree Representing ONESEVENTII

mulations. Thus the equality used here is not dependent upon formulation, but only upon

behaviour.

Once the metric space of the class of processes and the metric d1, from Corollary IV.38

is eotablished, the two primary results concerning deterministic proceses from !Ioare's

book can be proven using the btandard topological tools of complete metric bpaces. Before

proceeding uith these derivations, the following definition and theorem are needed to

demonstrate that the CSI) definition of continuity of functions is equialehit to the standai d

metric space based definition. The particular wording of this definition and theorem is from

Apostol's book (8). The primary reason for deriving Corollary IV.38 is to establish the

existence of a. metric bpace for determinsiti(, processes that can be used in conjunction %,ith

the definition and theorem.

Definition IV.39 Let (5, ds) and (T, d7) bc metric spaces and let

f :S-T
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be a function from S to T. The function f is said to be continuous at a point p in S if for

every c > 0 there is a b > 0 such that

diT(f(x), f(p)) < c whenever ds(x, p) < b.

If f is continuous- at every point of a subset A of S, we say f is continuous on A.

The following theorem, based on this definition, actually sei yes as an equivalent definition

of continuity which is used in the remainder of this section.

Theorem IV.40 Let

f :S-+T

be a function from one metric space (S, ds) to another (T, dT), and assume p E S. Then

f is continuous at p if, and only if, for every sequence {x,} in S convergent to p, the

sequence {f(x,)} in T converges to f(p); in symbols,

ir f(x,) f (im

71-00 (-

This next definition presents the CSP definition of continuity (165).

Definition IV.41 A function F from one set of all processes with a given alphabet into

another set of all processes with a given alphabet is continuous if

F(L] Pj) = j JF(Pj) if {Pill > 0} is a chain
i>O i>O

Section 2.8.2 of lloare's book presents the background and explanation of syubolog) used

in this definition. Although Iloare'b formal definition useb complete partial orders inbtead

of sets of processes, any set of all processes %ith a given ali)habet does form a complete

partial order, so this wording is used in Definition IV.AI1 since the other re mil-- are based

on such sets of proces.es. The next theorem equates these two definilion. of continuity

within the motric space defined by Corollary IV.38.
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Theorem IV.42 Let M denote the metric space given in Corollary I15.38. then a function

F.

F: Al --- Al

is continuous with respect to Theorem II'.40 if and only if it is continuous with- respect to

Definition IV.41.

Proof: The first step is to show that any chain of processes is also a Cauchy sequence

with respect to the metric space given in Corollary IV.38. Consider the chain

{/)0; Pil ...,n...}

then

n < in =* traces(Pn) C traccs(Pmo)

Since any finite sequence is Cauchy (that converges to the last element in the se-

quence), only infinite sequences need be considered. If

a = dP(PO.PO

and
a = 1]2

then

i > I =*- d {e,.e :-f a

and each P, has t trace of length k or greater (bnly definition of a chain). Either there

exists a finite I such that

i > I d1.(P,.PRI) = 0

which impliesN that tie chain is a Cmichy sequence that ',nverge. IF i. or el-e iere

doesn't. in whirh rase the lenthl ,f Ot- trar, nut cuintinuAly iitreazwe (.ire lor

any fiven level there is only a finite mnither of nde.. Since the ras recontinue to

gect lnger, and eah trace rr.nain. in th0- pror-e ,-s that -cir "latr in the chain.
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then for any natural number h., there exists another natural number N such that

(n > N A A m > N) = dp(PP)< i/2

Since for any positive real number c there exists a natural number N such that

1/ 2N < c

then for any positive real number c there exists a natural nur.ber N such that

(n > N A in > N) ==d P ) _ C (4.12)

and the -chain forms a Cauchy sequence.

The next step is to show that any chain with a least upper bound is convergent, such

that the limit of the chain is the limit of the Cauchy sequence formed by the chain.

Let P denote the limit of the chain (as defined by Hoare), then

traces(P~o) = Uj 17aces(Pi)
i>O

Since the limit of the Cauchy sequence must be a process that contains all of the

traces of those processes whose indices are greater than N for a given c (see Equation

4.12), then for any chain the limit of the Cauchy sequencc must contain all of the

traces for all of the processes, and thus this limit is exactly that process denoted by

Given that any chain with a limit is a convergent sequence, then this theorem can

be proved by showing that two conclusions follow.

1. If F distributes across all convergent sequences then F distributes across all chains

with iimits (this shows that Theorem IV.tO implies Definition IV.41).

2. If F distributes across all chains with limits then F dis ributes across all *onvergent

sequences (this shows that Definition IVA1 implies Theorem IV.4O).
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The first item is a consequent of the fact that any chain with a limit is also a

convergent sequence, thus the final step is to prove the second item.

Consider the convergent sequence of processes given by

{QO,QI, ...)

Form a chain of processes from this sequence in the following manner. Let N1 be the

minimum N such that Equation 4.12 holds for c = 1/2. Then let N 2 be the minimum

Al such that the equation holds for c = 1/4. Continue this process such that AN, is

the minimum N such that Equation 4.12 holds for c = 1/2'. The resulting sequence

{QNIQN2 ... )

has the property that

t7-aces(QNvj) C tr-aces(QN,+1 )

for any natural number i, which makes this sequence a chain. Since the sequence has

a limit Q,,, the chain also has the same limit, because

s E traces(QN,) s E Qo

and

Jim QN, = Q.

since only a finite number of the clements from the original convergent bequence can

be missing from the chain. Additionally, since only a finite number of the processes

from the original convergent sequence can be missing from the constructed chain.

then if F distributes over the resultant chain it must also distribute over the original

sequence. Thus distribution over all possible chains with limits implies distribution

over all possible convergent sequences. U

A consequent of Theorem IV. 12 is that t lie basic fixed point theorem for deterministic

CSP processes (see Section 2.8.2 of (165) for the actual proof) can be proven using the
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metric space based definition of coittinuous functions instead of the chain based definition.

This theorem states that

lX.F(X) = F(pX.F(X)) (4.13)

which means that a recursively defined deterministic process (based on r guarded) has a

solution that satisfies the recursive formulation. Additionally, by using the metric space

continuity definition, Theorem IV.10 implies that a continuous function need not neces-

sarily have a complete metric space for either the domain or the codomain. Contrast this

with the chain based definition which requires that both the domain and the codomain be

complete partial orders (which correspond to complete metric spaces based on the metric

dr).

The second major result regarding determinsitic processes is that for F a constructive

function that -maps processes to-processes, the equation

X = F(X)

has a unique solution for X, given the following definition of a constructive function. In

the following definition the I' denotes the CSP restriction operator, so that s I A, which

represents the trace s restricted to the set A, is defined by

(a, b, c, d) 1 {d, b) = (b, d)

Definition IV.43 A function F whose domain and codomain arc a set of procescs is

constructive, if F i.s monotonic with respect to the partial order that dffines chains, and

F(X) 1 (n + 1) = F(X I n) I (it + 1) (4.14)

for all processes-X.

This unique solution result for processes defined in terms of constructive functions can also

be obtained using the contraction mapping lhcorcin for complete metric spaces, ba.sed on

the following preliminary definition and results.
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Definition IV.44 Given the metric space (X. d), then the function f,

f:X-+X

is a contraction, or a contraction mapping, if there exists a real number c,

such that

x, y E X d(f(x), f(y)) -< cd(x, y)

The function f is nonexpansive if

x, y E X -= d(f(x), f(y)) < d(x, y)

Since the contraction mapping theorem requiles cnt:a(tions whose domain and codomain

are the same complete metric space, the next theorem supplies such a complete metric

space.

Theorem IV.45 The metric space defined in Corollary IV.3S is complete.

Proof: Consider the following Cauchy sequence

{PO'PI,...}

For any natural number k (not zero), there exists another natural number N, which

is the least natural number such that

n, in > N == dr(P,, P .. 1/2'

This implies that all traces of length k or less that are generated by P' are also

generated by Pm,. Now consider the set formed by ;ncluding these traces of length k
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or less for every such k. This set, which can be length ordered by considering

k = 1, 2,...

and is denoted by Q, satisfies the property that for every positive real number b,

there exists a natural number M, such that

n > M * dt,.(fPn, Q) < b

where P,, is the binary trace tree correspondirg to P,,, and Q is the binary trace

tree formed from the traces contained in the length ordtred set Q. Thus the set Q

represents those processc-, (which are all equal to one another within the clasb defined

by Corollary IV.38) which are the limit point of the Cauchy sequence. Since Q can be

length ordered by a Turing machine, then Q is a. recursive set that can be generated

by a (deterministic) recursive process. Additionally, since any finite representation

of the Cauchy sequence must be formulated in terms of a guarded expression (since

every element of the sequence is either a guarded recursive expression or a finite

representation), then the set Q can only be formulated by a guarded recursive (or

finite) expression, and the limit point is an element of the metric space. 0

An interesting implication of the combination of this proof that Q is a recursive set gen-

erated by a Cauchy sequence within a complete metric space, and Corollary IV.30, is the

following.

Corollary IV.46 There exists an injective total function whose donzain is the metric

space of deterministic CSP processes defincd by Jorollary 1I 38, and whose codonain i-s

the Turing computable complction of fhe metric ,-pac( of finite automata dfincd in Theorcm

IIK26.

Proof- The existence of such a one-to-one correspondence is based on the existence of

one-to-one correspondence between the metric space of finitc automata given by

Theoren IV.26 and the metric space of regular sets given by Theorem IV.29 (see
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the proof of Theorem IV.29), along with the statement from Theorem IV.29 that

a recursive set is the limit point of a Cauchy sequence of regular sets. Since a

deterministic CSP process corresponds to a recursive set of traces for the process,

then the process can be represented as the limit point of a Cauchy sequence of finite

automata that correspond to the regular sets. U

This corollary implies that every deterministic CSP process can be put into a one-to-one

correspondence with the limit point of a Cauchy sequence of finite automata, which follows

from the recursive nature of the sets of traces generated by deterministic CSP processes.

Thus in some sense, deterministic CSP processes are not as 'powerful' as Turing machines.

As shown in later paragraphs, this doe- .ot hold true for nondeterministic CSP processes.

The final preliminary result is to show that the CSP concept of a constructive function

from processes to processes is equivalent to that of a contraction mapping over the metric

space of Corollary IV.38.

Theorem IV.47 A function F whose domain and codomain ar the class of processes

given in Corollary IV3S is constructive if and only if F is a contraction over the metric

space given by Corollary IV.L38.

Proof: Only if proof:

For arbitrary processes X and Y,

d,(X,Y) = 1/2k > X 1k = -'I k

which implies that

F(X I k) = F(Y 1 k)

and that

F(X 1 k) I (k+ 1)= F(Y i k) 1 (k+ ])

Since F is constructive, then by definition (see Equation 4.14)

F(X) I (k + 1)= F(Y) I (k + I)
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and so
dp(T,'(X), F(Y')) < 1/2 k+1 < (1/2)alp(X,1Y)

If proof:

(Tihe CSP convention is for n > 0 in P I n, while the metric dp is based on the

convention that n > 1) For arbitrary k,

d(X,X 1 k) = 1/ 2 k

so that if F is a contraction, then

d(F(X), F(X 1 k)) < a(1/ 2k)

Since o must be strictly less than 1, then

d(F(X), F(X 1 k)) < 1/2k+1

which implies that

F(X) I (k + 1) = F(X 1k) I (k + 1)

With these preliminary results, what Hoare calls the 'fundamental theorem' of de-

terministic processes (see Section 2.8.3 of (165)), that

X = F(X)

has a uniqie solution for a constructive F, can bc reworded as the contraction mapping

theorem, a major topological result. This particular %-ordirg for the contraction mapping

theorem is from Naylor and Sell (2.56).

Theorem IV.48 (Contraction Mapping Theorem) Lct (X,d) bc a complelc mrtric

spacc and let

f:X-X
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be a contraction. Iten there is one and only one point xO in X such that

X0 = fAXO)

MV!oreover, if x is any point in X and x,, is defined inductively by

X,= f(x)

X2=f(1

Xn f(x,,-)

then

x. x0 as n --+ o

Theorem P1V.49 Thc fundamental thcorm of deterministic proccsscs from CSP is equiv-

alent to the contraction mapping theorem.

Proof: Compare the wording of the contraction mapping theorem with the fundamental

theorem fromn Hoare (165). The previous results complete the proof. U

The application to CSP processes of the second part of the contraction mapping

theorem (compare to the Recursion Theorem of Kleene (192)), which btates that the unique

fixed point a.ssociated with the contractive F canl be found by inductivce.y appl in- F to any

initial element (process), canl be (lomonstrated using the procesb ONETIIRD. Consider

that the definition of ONETIIIRD uses the function F, such that

F(X) = (0 - (1 - X))

To sliowv that F is contractive, consider that if

dv(X, Y) = 1/2k
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then

dp (F(X) -F(Y)) =1/k2

and in general

d(F(X),F(Y)) = (1/4)dp(X,)

So thle contraction mapping theorem states that with any arbitrary choice of a process X,

repeatedl application of F to this process yields that single unique process that is tile fixed

point for F. Thus if

then-as n becomes arbitrarily large, ,, becomes arbitrarily 'clos& to the process ONETILIRD,

such that

lrn X,, ONETIJIRD

Note that this is true even if the process X is recursive, wvhich mecans that X can produce

traces of unbounded lenigthi. For any arbitrary positive real niumber c, there exists a natural

number k such that

and so

dlp(Xk-. ) < C

Just as a constructive function is equivalent to a contraction map~ping, thle nonex-

pansive function defined in Definition 1VAI is equivalent to the CSP concept of a nzonde-

structive function. a fu nction that satisfies

F(P) Iji = F(P 1 7t) 1 nt for all n and P

Theorem IV.50 A function F wLhos dIomain anl codIonain arci thec as.. of pi-cu(..rs

given in Corollary 11..18 is 110zdc.wirr~c if and onkyi if F .~ fonexpaunsivt ovt6'i/ inut-ri
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space given by Corollary IV.38.

Proof: Follows the reasoning for the proof of Theorem IVA7, with the difference that

dp(X,X I k) = 1/ 2 k

implies that if F is contractive, then the < in

dp(F(X), F(X I k)) < 1/2k

implies that only

F(X) I k = F(X 1 k) I k

can be stated. U

Another consequent of the topological analysis of CSP processes is that results from

topology can be translated into their CSP equivalents. For example, since an3 contraction

is also uniformly continuous (256), the following theorem could be added to Iloareb book.

Theorem IV.51 If F is a constructive function over a complete partial order, thcn F is

continuous.

Further, the requirement that a constructive function be monotonic is redundant, since

the equivalency between contractive and constructive functionb shown in Theorem IV.-17

did not require the monotoricity property.
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44A Complete Metric Space Based on UNITY

The last section demonstrated that the process based CSP model of computation

can be used to develop a complete metric space, such that the metric gives a somewhat

intuitive notion of the 'closentess' between two programs, where a program is defined as

one or more processes (see Definition 11.5). The purpose of this section is to show that an

imperative sharedl variable model for computation, Chandy and Misra's UNITY (64), can

be mapped into an equivalent p~rocess based CSP representation. Unfortunately, CSP is

based on the nonsimnultaneous execution of atomic events, whereas UNITY has an assign-

ient component operator 11, that denotes the simultaneous execution of the two argument

components. There are two ways to address this disparity, one being the restructuring

of the analysis of a UINITY program so that atomic actions iniclude multiple assignment

components, and thie other being a modification to thie UNITY execution model to p~revent

thie simultaneous execution of assignment components. This section presents approaches

utilizing both techniques, along with additional formalism regarding whiat is meant by an

atomic action. Both approaches are used to develop metfic, spaces of UNITY programs

b~ased on Lte metric space of CSP processes from thie last section.

Definition IV.54 gives a modified 'UNITY execution model that eliminates the si-

multaneous execution p~roblem, called the .standard czcctLdzor maAdl. Withi both execution

models defined (Chandy and \Misra define Elhe UNITY execution model (6])), Definition

IV.57 presentb. thle formalism regarding atoi actions within thie UNITY execution mlodel,

while Definition IV..56 formalizes exactly what pieces of a, UNITY program should be con-

sidlered atomic with respect to this standard execution mnodci. Thces : definition:, form the

basis for thie primiary results of this SeLtiOR. wiich are equivalences between UNITY pro-

gramns and CSP pzograms that czn be us.ed to define a nietric space of UNITY lprogrns

under either execution model.

Since the definition of 'cqtmivaleimt' from Chapter I (Definitic n 11.9) depends upon a

reference function, :jiis sectiom, %kill presecnt Pqmpi4alenmce imduimtg Imappinig. that are defined

with respect to Lte identity function on states. hus tme mnputi jrogran to these miappings

is called *equimilent* to the imaige (under thie mapping) without. explicit referemice to this

identityv Functionm. Thisv implies. that given two VNITY pro)grams. aplpliratioi of suidi a



mapp~ing permits Lte use of the metric dP fium Section -1.3, thus giving an intuitive measure

of-the 'closeness' of Lte UNITY programs. The resulting metric space of UNITY programs

provides the framework for the topological analysis of UN11Y programs, and also leads to

the investigation into 'Mhether this space is complete without having to add objects that

are not UNITY programs (just as Section 4.2 showed that completing the metric space of

finite automata required 'machines' that are not finite automnata).

Although Corollary IV.65 concludes the material regarding the metric space of UNITY

programns, this section containib additional material relating the UNITY weak fair choice

operator on statements to time CSP c'mncurrcmcy operator on. processes, culminating with

Theorem IV.71. This additional material appears hiere because of the close analogy be-

tween Theorein IV.71 and Lemma IV.63, a result which is needed for the proof of Corollary

IV.6.5. Theorein IV.71 also establishes thme transition into Chapter VI.

Although this modified execuition model for UNITY, called Lte standard execution

model, is different from Lte UNITY execution model of Chandy and IMisra (64), all of

the reasoning techniques presented for UJNITY can still be applied to the standlardl model.

This is because anv absignments that would 'yield different results if executed sequentially,

instead of simultdneouslh. call be rewritten as a single ssignnimt component, and thus

still executed simultaneously.

Blefore examining the first mapping of UJNITY to CSP. Lte CSI) process to process

operators for clzoicc. denoted by 11 and for coitcurrcricy, denoted bv 1I, nmeed e\plaining. If

xand y denote events (or possibly event variables) such that x - y. and P and~ Q denote

processes, then Lte notation

(x - ply - Q)(11)

represents Lte process that Pither perfornis x foiloned by\ the evenlts of P. or Ose perform.,

y followed b% the events~ of Q. The choice is deterministic, based on lloares definition of

dleter ministic given ait lie beginiming of Section 1.3. U\htiongil Lte traditional definition

of dletermnlistic iIfhpie's that there exi.A.s a Tnring mai~chine whtose input is a descriptionl of

both processes (i.e. Lte process (x -JP) and thle process (y -Q)). ailonig with p)ossilyl

other input infoinimatioi. anid u~hosNe omlit o1 is P-x.Lctl% one 4 t hIE'M prrzss t he thefinitioji
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of deterministic here is based on tlhe concept of weak fairness (see Definition 1.1). The

factors that influence tie choice are tyjpicaily either some input from another process (bu li

as a 'user'), or environmental effects such as the details of the hardware that the process

might be running on. In the general case, where the choice of the first event call be made

from those elements constituting a set, there is the notation for a gcenral choice operator

given by

(z: A - R(z)) (4.16)

This process permits the deterministic choice of an instantiation for z from the set A as the

first event, while the remaining events are given by the formulation R(z). For the choice

given by Equation 4.15,

A =

and

ROO P ifz=xJI(z) ={

Q ifz=y

If the set A from Equation 4.16 is empty, then the resultant process is the one which

performs no events, that is

,(z: {} - R(z)) = STOP ('.17)

The general choice operator can be uized to define the concurrenc operator. as given

by

(P[IQ) = (z-: C -- PIfQ) ('IS)

where

P (x A - P(x))

Q =y: B - Qiy))

and

C .It fi J(A -- a(Q) IU(B - oP)
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such that c(P) denotes the set of all possible events of P, called the alphabet of P (like ise

for Q), and

W Pz) ifzEA

ad P otherwise
and

r 0(z) if z E B

Q ( otherwise

The 11 operator is both commutative and asbociative, which, along with Equation 4.18

implies -the following:

(c - P)ll(c- O)= (c -t PlQ)) if a(P) = a(Q)

(c - P)l(,d - Q) = STOP if cr(P) = a(Q) and c -I d

Thu s whenever P and Q have identical a!phabets.

traces(PIIQ) = lraces(P) n firaces(Q) if O(P) = (Q)

In tile more general case. which can be stated by

a(P) -_I ct(Q)

and

a #= (o({P) - (,rt(P) ri a(O)))

hE (o(Q) - (,(P) ri(Q)))

r E (rl(Pj rto(Q)

d E (n(P) ia(Q)

it follows from Equation -1.18 that

(a - P)11(" - Q) (I. - - QM Id))

(c - P')JII -- I (h ,
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(a -- P)It(b - Q) = ((a - (Pll(b - Q)))I(b - ((a - P)IIQ)))

and

traces(PIQ) = {tt j a(P) E traces(P) A t I a(Q) E traces(Q) A t E (a(P) U a(Q))*}

Given two processes I and Q, the notation PIIQ represents a process whose traces

are the interleavings of the individual traces of P and Q, with the constraint that whenever

any event common to both alphabets occurs, it occurs for both processes (instead of being

repeated). Thus these common events from both alphabets represent events that occur

simultaneously within both processes (the interpretation being that -these simultaneoub

events are the same event), and these common events synchronize the two )roceseb at the

instant of time they occur.

UNITY programs consist of assignment statements along with the fair choice oper-

ator on statements, and assignment components along with the composition operator on

components. The symbol 11 will be used here for the composition operator, which is the

same one used in Chandy and Misra's book, but instead of their symbol for fair choice the

one used here is the 1. Since, as Chandy and Misra state, the always section of a UNITY

program is unnecessary, it will not be considered in the following analysis (64). And since

the initially section consists of a pope- set of assignments (see Chapter 2 of Chandy and

Misra's book for a definition of proper), the following theorems regaiding asbignmejmts also

apply to those of the initially section. Note that UNITY requires the set of statements in

a given program to remain unchanged by the execution of the program (See Section 22.7.4

of Chandy and Misra), so that the proofs of the following theorems do not need to coJlbideI

sets of ordered n-tuples of events that change x\ith time, a concept which is expressed in

the following lemma.

Lemma IV.52 There exists a total function f whose domain is the set of all UNIT)"

stalemcnls, such that for any UNITY statement 5. thc evaluation f(S) is a unique finitc

set of n-tuples of events.

Proof: See Section 22.7.A of Chandy and Misra (64). U
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This lemma states that for any UNITY statement there exists a mapping of that statement

into aset of sequences of events. Since the assignment componentb of a UNITY program are

considered to execute simultaneously (64), whereas the definition of 'event' from Chapter I

does not permit true simultaneity, these bequences of events represent the different possible

execution sequences for the assignment components assuming that thebe assignments must

execute sequentially. For a finite number of assignment components, which is mandated

by the UNITY model, there will only exist a finite number of these possible execution

sequences, or interleavings.

The first step is to show that the basic unit of an assignment component, represented

by

var := expr (4.19)

where vat denotes a variable and cxpr denotes anl expression, can be mapped into an

equivalent CSP process.

Lemma IV.53 The UNITY assignincnt denotcd by Equation 4.19 can be mapped by a

total function f into an equivalent (see Definition 11.9) CSP process.

Proof: Define the state of a 'UNITY program as a vector representing the values of all

program variabl's, of which there can only be a finite number. If the assignment of

Equation 4.19 is considered an event, then there exists a total function that maps an

event of this type into a unique state, given the previous state (before this event).

Section 3.3 of Chandy and Misra details the UNITY program execution model that

supports this claim. Thus the equivalent CSP process is one whose only nontrivial

trace is

(e,v/

where / denotes the CSP termination event., and r- denotes the event that generates

the identical state as does the UNITY assignment. H

The development of a. metric space of UNITY programs based on the UNITY ex-

ecuution model (see Chapters 2 ind 3 fiom Chandy and Misra (61)), ib intermixe(I with
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the development of a metric space of UNITY programs based on the modified execution

model. Many of the following results (the wordings specify which ones) actually apply to

both execution models and both metric spaces. This is because the primary difference be-

tween the two execution models is the difference bet% een what an atomic action is in each

model. Before presenting the two definitions of the atomic actions, the following definitiolh

and theorem define the modified execution model and present an important consequent of

the definition.

The basic tenet of this modified execution model is the resolution of the conflict be-

tween the nonsimultaneous property of events (which CSP assumes), and the simultaneous

execution of assignment components in the UNITY execution model. This next definition

presents the idea of a modified UNITY execution model, such that no two assignment

coml)onents can occur simultaneously.

Definition IV.54 Given two UNITY assignments S1 and $2, both of the form given in

Equation 4.19, then under the standard execution model the UNITY process

SillS2

denotes that the two assignments can execute in either order.

Unless otherwise stated, the remainder of thio section assumes the standard execution

model.

Although this standard execution model for UNITY progralns is different than the

one given by Chandy and Misra (64), is it useful? There is more than one answer to th;s

question, but one of the answers is stated in the following theorem.

Theorem IV.55 The set of all UNITY programs that execute under the UNITY execution

model is a proper subset of the set of all UNIT)' programs that exccul undcr the standard

execution model.

Proof: Since Definition IV.5,4 im)lies that any UNITY program that executes under the

UNITY execution model also executes under the standard model, then what must
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be showvn is the existence of at least one UNITY p~rogram that cannot execute under

the UNITY model, but can execute under the standard model. One such program is

given by:

Program E

declare

x :integer

initially

X M v

assign

x :=x+1 1 := x-1

end

Not only does program E execute uiidcr the standard model, but it has a fixed point, which

is that x equals its initial value. So program E diemonstrates that there are syntactically

correct UNITY programs that do not even execute uinder UNITY, but can execute and

also have a fixed point under the standlard execution model. It is true that program E

could be rewritten as two statements so that it u ould generate the samnesequence of states

-is does programn E. that is it wouild contain

x :=x+1 if x = Mv-1 or x = Mv x: x-1 if x = M+1 or x = M

but th~is modified p~rogram would not have a fixed point.

This simple example demonstrates Lte major dlifference between thle UNITY exc.

cuition model and the standard execution model. Under UIUTY, forced sequencing of

assignmnents cannot lbe achieved within a, single statenent. This netmis that Lte only tech-

nique to force two or more assignments to execute bequcujtially is to io~e the as signvments

inlto sceparate statements. However, this p)oses two p~roblem.,,. rirst, fixed point anallysis is

based onl statements, and seconid, Lte gidlelines foi nmapping UNITY p~rograims to different

architectures often call for partitioning the statements amiong thle lprocessorb. Tihis can

cause p~roblems if Lte sequentiallyv executting iusignilentsb end up1 on diflerejit. processors,

inainly because of Lte possible lack of control o,.em the sequencing, anid problems with vari-

ables dhat. are common to thle mulitiple assigniments. The standa id exection modlel canl



help remedy these problems, because it is based on the concept of a 'hierarchy of arbitrary

sequential execution', that is the execution model at the assignment component level is

very similar to that at the statement level.

The concept of simultaneous assignments still exists within the standard execution

model. Consider assignments of the form

x-y := MN

which under both models executes both individual assignments at the same time. The

philosophy of the standard model is that this assignment can be represented as a single

atomic action within the CSP model. This action corresponds to the assignment of the

new values to the state vector (a vector denoting all the values of the named program

variables). The obvious question then. is what exactly is an atomic action? For example,

the UNITY fragment

x,locky := f(x,y),false if locky 11 requesty true if -,locky

can be rewritten as

x,locky,requesty := x+(f(x,y)-x)locky,false,l-locky

with the change of type of requesty and locky from boolean to [0,1]. Thus the following

definition.

Definition IV.56 Wilhin the standard execution model, an atomic action (for CSP

purposes) corresponds to a singlc assignment component.

And this next definition defines the atomic action for the UNITY execution model.

Definition IV.57 Within the UNITY execution model, an atomic action (for CSP pur-

poses) corresponds to a single assignment statement.

Thus under each model, an atomi. action repiesent one or more variable asignmne.-tb tlt

occur simultaneously.

Can the atomic actions under one execution model be mapped into atomic actions in

the other, while still retaining the program properties? As seen in Theorem IV.55, there

exists UNITY programs that execute under the standard execution model that do not

(without modification) execute under the UNITY execution model. So the an.swer for tie
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mapping from standard execution to UTNITY execution models is that such a iInapjping, if it

exists, can be a function of the program to be mapped. This means that few generalizatiuons

can be made about such a mapping. However, for the mapping in the other direction, the

following result can be shown.

Thieorema IV.58 Given a UNVITY ptogram P that executes under, the UNITY model, and a

set S whose elements are thc ('predicates) propecrties of P, then there, exists anothr UNITY

program Q that cxcuztes under the standlard model: such that each elemnt of S i5 a proper-ty

Of Q.

Proof: The UNITY execution model (Chapters 2 and 3 of Chiandy and Mfisra (641) requires

that simultaneous execution of assignmnent components wvithin a single statement gemi-

crates a unique state vector, given a unique state vector p~rior to time execution. This

means that the program P can be miapp~ed into Lte prograin Q, so that each state-

ment of P corresponds to a. statement in Q consisting of one assignmnent component

that assigns values to the state vector. The proof of Theorem IV.61 contains Lte

details substantiating the implications of the UNITY execution model.

An intuitive prIoof for this theorem is that since thte programn P can only comipute &. partial

recursive function (217), then this function can be rewritten ats an algorithmn than us es

only sequential conplobition (120, 230, 258). Thus Lte program Q can be written without

imultiple simultaneous atomnic actions (corresponding to the inutiple assignmeut conIkju-

nents). This tact is not used in the proof because Lte standard theoremns about what is

necessary ~ ~ -tol c pteaydgritlin or funmction utili/e fixedl sequential execution. instead

of the arbitrary sequential composition allowed undler the standlard execution model.

Another answer t~o thme question of the usefulness of the stanmdard executioni model fol-

lows fromt considering Lte relationship betwecu Dijkstras, guarded conunuatud (104), whidi

formi the basis for lparallel lprogranming nmodlels amnd language., such as CSI' (1635). Dis-

tributed Processes (150), andl UNITY. The executionimodel for these guiarded commnand.s

states that a construct of the form

4[gluaI.l - conamdl 1]~ guard12 -conmand2J



will randomly (with the fair choice assumption, see Chapter 1) choose to execute the con-

mand whose guard is true until all guards evaluate to false. Thus the UNITY execution

model for a program consisting of the two statements

sit

corresponds to

*[true -+ s [] true t]

in the guarded command syntax.

Consider the guarded structure

[guardl - commandi [] guard2 -4 command2]

whose execution -is one random choice of any command with a truc guard. This corre-

sponds to the UNITY construct

sl if bl I s2 if b2

where bl (b2) is true if guardl (guard2) is truc, but once either bl or b2 evaluates to true

then the other immediately becomes permanently false. Additionally, the statements bI

and s2 perform whatever assignment5 command1 and command2 do, plus any additional

assignments to implement the requirements on bi and b2. As an example, consider

[x> y - z [ x < y - z :=2

which will assign either a 1 or a 2 to z, deterministically if x is not equal to y, or arbitrarily

if they are equal. A corresponding UNITY program is
z,flag := 1,alse if x > y A flag I z,flag 2,false if x < y A flag

where the boolean variable 'flag' is initialized to *true'. However, note that this correspon-

dence is not as strong as in the previous example. This is because in the guarded construct

there is a sense of locality in evaluating the guards, that is, no other statements external

to those between the I and the ] can affect the truth or falsity of each guard. However,

in the UNITY programn if there are other statements besides these two then this locality

concept can be violated. Such a violation would occur if the variable 'flag" were somehow

assigned a value in another statement in the UNITY program that could execute after one

of these two statements but before the other. The .standard execution model though, does

provide a corresponding UNITY program that preserve. this locality. Thi.s program is

z.flag := ,false if x > y A ilag 11 z,flag := 2,false if x < y A flag
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This p~rogram retains the locality concept because these two componlentb will execute in

immediate succebsion. and the idea of a random choice is preserved becaube the:sequenunig

of the components is arbitrary. Note that this program could not even execute under thle

UINITY model because of the possibility of simultaneously assigning both 1 and 2 to z.

A direct result of Lemmia IV.53 and Definitions IV.54 and IV.56 is that a sequence

of UNITY assignments corresponding to multiple atomic actions within one statement,

under thle standard execution model, can also be mapped into anl equivalent CS? process.

Corollary IV.59 Given two UNrIT)' assignments Si and S2, both of the formi given in

Equation 4.19-and cxcuztinzg under the .5tandard execution model, then the UNIT) -process

sills?

is equivalent to the CUSP process

PlHP2

where P1 is equivalent to S1 and P2 is equivalent to S2.

Proof: This follows from Lemnma, JV.53 and(

traccs(P1) = {,(s)}

traces(P2) = {,(t)}

where ,; denotes thle assignment of SI, and t denotes thle assignment of .92,since thle

dlefinition of 11 implies that

traces(PIIIJP2) (ss

Under tire V-UNITY rexecul ion mnodel a UTNITY programn containinig tile statentm

x :; - - 11 X := X+1

(tov. not have a %%ell (if-fined exprittion..%imce bwdh iigiirn ust tu ti ir ,initt.iv~oli"l%.



However, this statement is defined under the standard execution model, and is equi'alent

to the process that can execute either

x X-I ; X := x+1

or

x x+1 ; x := x-I

where the ';' denotes sequential composition. The corresponding result regarding the

UNITY execution model relates simultaneous execution of assignment components to a

single assignment on the state variable.

Corollary IV.60 Given two UNITY assignments S1 and 52. both of the form given in

Equation 4.19 and executing under the UNITY execution model, then the UNITY process

sillS2

is equivalent to the CSP process

P

whcrc the only nontrivial trace of P reprcsents a .bigk assignmcnt to thL variable denoting

the slate for the UNITY process.

Proof: Follows directly from the definition of tile UNITY execution model (see Chapters

2 and 3 of Chandy and Misra (64)). Since all of tile assignment components within

a single statement must execute simultaneously. anl% individual component of the

state vector is only asigned a new value at most once. The proof of Theorem I'.61

contains the details supporting this proof. U

This next theorem is the first major consequent of the previous two lemmas.- and

Corollary I'.59 and IV.60, and supplies the foundation that leads to the primary result of

this section. Theorem JV.6..

Theorem IV.61 There exists a total fimurtion f w'ho.e domaill is thr set of all UITY

assignment .,tatem:nt. under th .,standard crtr-tcion moddl. and thr r( cx.,t, a totalfutu lion

g whosr domain is thr set of all UNITuY a..sigme-nt .taturwnels lndcr th (IlT ert ctou

I. X



modcl, such that givcn the assignmcnt .statcmenti S, the £ valuation f(S), undcr thc %tarzdard

model, or the evaluation g(S under the UNITY model, is a C!SP process that is equivalent

to S.

Proof: Enumerated assignments, quantified assignments, and quantified exprebsions are

treated separately.

Enumerated Assigninent: Induction, along with Corollary IV.59 and JV.60 proves

the case wvhere (see Section 2.3.2 of Chandy and M.,i:sra (64))

variable - list := simple - expr - list

For the case of

variable - list :=conditional - expr - list

where

conditional - expr - list ::= simple - cxpr - list if booleaL - expr

I-simple - expr - list if boolean - cxpr)

that there exists such a total function f or g follows front this statement fromt ChiandY

andl Misra:

An wssinient with a conditional - expr - list causes assignment of values

fromn any constituent simple - expr - list whose asociated hoolean expres-
sion is true. If none of the boolean expressions is Irmic, the corresponding
variable values are left unchanged. If miore than one boolean expression is
truc, then~ all of thle corresponding simnplr-cx pr-lists mutst have the samec
value: hence any one of dihem can be used for assignment. Th'lis guarantees
that every assignment statenet is dleterministic: A unique programn state
results fromt executing an issignment in a given state.

fin addition. if the UNITY miodel is to b(e considleredl as a two level mlodel. suich as

thle two level lambda. calcuhmns (25X). theni tlmee boolean expresios inist evaltuate toi

either truLL or falsi at *run tim&% since thle U.NiTY'csP e~inivamlemce., are inllplirity

run imine equuivalenures ('run* ineamis execultionl).



Quantified Assiganment: The existence of Lte total function f follows from thle UNiTY

requirement th~at only a finite number of istantiations exibt for tile quantification

(see Section 2.3.3 of Chiandy and TMisra): and that a total function g must exist

whose input is the quantification and whose output is a comnposition of assignment

statements with all scoped variables bound. Thus the function f. when its input is

such a quantification, has as output the CSP process that is equivalent to thle output

of g.Since o evaluiates, to an empty statcment if there dloes not exist an instantiation,

thent in this case the output of f would be tile CSP process whose only nontrivial

trace is

W')

This CSP process, denoted by SKIP.. is equivalent to the emnpty,. statement since

both. when considered as functions from the previous state to the next state, are tile

identity function.

Quantified Expression: The quantified expression, of tile form

cxpr :=(op quantification expr)

call always be evaluated to a unique value at run time. sinice thle quantification can

on~ly include individual variables (Over a finite domain), and if there is no evaluations

for te quantification then this expression returns unique default ales.U

Althiough thle 'variables addressed in thes--e results refer to the namned 'variabhets irn a UN.\ITY

programn, note that an implemented version of a given~ UNITY program ntam require ad-

(ditional variable. ror exaiple. consider the single a:s.ig:iirit statentent that MSnaps the

vlesof two variables inmed x and v:

If thle program variable_- are thxose a..soriatedl %-ith ani jlilpplrmentation on a se'quiential ar-

chitec ture. then certaink% uhis.-AaLeineiit %% ill almo reqluire at least onte (I lhe clasNic proof of

correctness would nleed two) additional teinjimr.Lr %ariablr.. %o that i atus.tial xectitioii

of this statement Would 1u1.:



x V

y :=temp

Theorem IV.61 along with Corollary IV.59 and IV.6O supply tile proof that any

UNITY statement can be mapped b% a total function into anl equivalent CSP p)rocess. But

in a UTNITY prograin containing multiple statements, both the standard model and the

UNITY model generate arbitrar) unbounded sequencing of statement executions, using

the fair choice operator Ion statements. For example, consider the UNITY programn PI

(tile declare and initially sections hav.e beeti ignored):

Programi PI

assign

Si I 2

end

S1 and S2 denote arbitrary statements. One techinique for mapping I"1 in-to an equivalent,

CSP description would be to map stateniciabs Si and S2 into equialenit CSP processes.

and then decide which CSP operator thle U'NITY Ishould be mapped inkto. Before stating

the result which answers this question. the following Lemmna, is given.

Lernma TV.62 Given thc guarded CSP process- se Section 4.1J P1 and P2. such thmat

P1 and P2 havc only finitc length traces. thena there exits a uitique process that satisfies-

X =(PljP2): X

tlhat is. there et-rs a unique pronis

jtx.(F P1P21:X

Proof: Let F denote the function who! p doinain amnd cticlomain are (S pro ,Sees *ucli

that

Tha~t the reinlrxnain fif F i. th.- clai.- ssf CUSt "~; frilov.s fr.'mn X bieing a *,#,-,

(PlIM~ hu.ing~a prijrfv.s. amd the e klmlig )it timsi .*f Iran pri.h~t-i beig t 4hi:1



That (P1IP2) is a process results from both P1 and P2 being guarded, that is there

exists events x and y, and processes Pl(x) and P2(y) such that

P1 = (X -- Pl(x))

P2 = (y P2(y))

Consider two distinct processes X and Y, Corollary IV.38 implies that

X 0 Y ==, 3AI[M E N A dp(X,Y) = 1/ 2M]

where dP is the metric used to define the metric space of CSP processes from Section

4.3 (see Corollary BS38 for the definition of d.). Next consider the instantiation of

the process (P1jP2) as (chosen arbitrarily) P1. Since P1 is guarded, the set

iraces(P1)

contains a, shortest (nontrivial) trace whose length is greater than or equal to one,

since this shortest trace must contain x as its first event. Thus if the natural number

N equals the length of this shortest trace,

N > 0 => d,(PI; X, P1; Y) _< 1/2M e ' < 1/2'

Thus, since this still holds if P2 had been chosen instead,

d<(F(X), F(Y)) K (1/2)d,(X, Y)

which means that F is a contraction mapping on the class of CSP processes. The

Contraction Mapping theorem (see Section 1.3) completes the proof. U

Note that the requirement for the two lrocesseb to be guarded ensureb that the mapping

F is a contraction (the guard supplies the N > 0 assertion), while the requirement that
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the two processes have finite traces ensures that the evaluation

dp(Pl; X, PI; 1')

can be justified (and is not zero by definition). This raises an important issue, that Theorem

IV.64 is not valid for UNITY statements that do not generate finite events. Lemma IV.62,

needed for Theorem IV.64, requires finite traces for the constituent processes, which can be

traced back to the requirement in Corollary IV.59 and IV.60 that to map a set of UNITY

assignment components into an equivalent CSP process, the number of possible traces of

the process must be finite.

This next lemma is the result regarding the mapping of the UNITY program given

by P1 into an equivalent CSP process.

Lemma IV.63 Given the UNITY statements Si and S2, and the total function f whose

domain is the class of UNITY statements, such that the CSP process f(S1) is equivalent to

the UNITY statement S1, and the CSP process f(S2) is equivalent to the UNITY statement

S2, then the CSP process

jrX.(f(S1)1f(S2));X (4.20)

is equivalent to the UNITY program (fragment)

$11S2

Proof: The use of Corollary IV.59 and IV.60 in the proof of Theorem IV.61 ensures that

the processes f(S1) and f(S2) are guarded and have only finite length traces. Thus

Lemma IV.62 ensures that the process given by Equation 4.20 exists and is unique.

What remains to be proven is tlat the fixed point of the contraction mapping (see

Lemma IV.62) F, given by Equation 4.20, where F is defined by

F(X) = (f(SI)Jf(S2));X

represents the same operator on the sequences of states of f(SI) and f(S2), as the

UNITY weak fair choice operator I on the sequences of states of SI and S2.
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Since F is a contraction, then or any choice of an initial process Xo, (from the

Contraction Mapping theorem of Section 4.3)

lim X,, = ItX.F(X)
n--.+oo

where

Xn = F(X,-, )  E1,2,...}

Since Xo -an be arbitrary, consider the process that does nothing except terminate,

that is

Xo = SKIP

Starting with this choice for X 0 , each iteration of X, sequentially composes either

f(S1) or f(S2) onto the current process. Thus if f(S1) is chosen for the first iteration,

and f(S2) for the second,

X,= F(SKIP) = SKIP; f(S1) = f(S1)

X 2  F(X 1) = F(f(S1)) = f(S1); f(S2)

Denote by A the predicate that is true if f(S1) is eligible to be chosen at a given

iteration, and a the predicate that is true if f(S1) is actually chosen at a given

iteration. In a similar manner the predicates B and b denote the corresponding

predicates for f(S2). If the iteration index n for X,, is considered as elements from

the set N, which along with the partial order < form the frame for a linear temporal

logic (see Appendix A), then the CSI) (deterministic) requirement that I does not

allow either of its arguments to refuse being chosen is stated as

OA = O0a

and

o0 = Ob
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These two wffs implie that the construction of the sequence

X0,'x,...X,,...

satisfies the weak fair choice requirement.

All of these lemmas and corollaries provide the needed pieces so that the primary

result of this section, Theorem IV.64, can be proved. Lemma IV.53 states that the ba-

sic UNITY statement, the assignment of an expression evaluation to a variable, can be

mapped into an equivalent CSP process. Corollary IV.59 and IV.60 extend this result to

the arbitrary sequential composition of assignment components under the standard exe-

cution model, and to the general UNITY statement under the UNITY model. Theorem

IV.61 completes this tact by showing that such a mapping exists for any type of UNITY as-

signment statement under either model. Lemmas IV.62 and IV.63 show that the 'process'

that results from applying the UNITY weak fair choice operator on statements is identical

to a CSP process defined recursively in terms of the deterministic choice operator. Since

(neglecting the always section) any UNITY p:ogran can be constructed with these pieces,

the culmination of these previous results is stated in this thecrem.

Theorem IV.64 There exists total functions f and g, whose domains are the class of

UNITY programs such that given the UNITY program P executing under the standard

model, the CSP process

f(P)

is equivalent to P, and such that given the UNiTY program P executing under the UNITY

model, the CSP process

g(P)

is equivalent to P.

Proof: Theorem IV.61 proves the existence of f and g for any UNITY assignment state-

mnent. Lemma IV.63 finishes the proof of existence for the only UNITY operator on

statements, the weak fair choice 1. The uniqueness of the process given by Equation
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4.20 ensures that the total functions f and g from Theorem IV.61 can be extended

to include the UNITY I operator. U

Theorem IV.64 states that any UNITY program under either execution model can

be mapped into an equivalent CSP process, such that any sequence of states of the UNITY

program is also a sequence of states for the CSP process. This means that the topological

analysis of Section 4.3 can be applied to UNITY programs by simply mapping those pro-

grams into the complete metric space-of CSP processes. Thus the following result. (Note

that any UNITY program with an always section can be converted into an equivalent

program without one (64))

Corollary IV.65 Given the set U of all UNITY programs, and the total functions f and

g of Theorem 111.61, then

(U, d,,)

denotes two metric spaces, whcre the total function d,,, whose domain is the cross product

of U with itself, is defined by

du(P, Q) = di(h(P), h(Q))

such that if the UNITY programs P and Q execute under the standard model then h is the

function f, and if P and Q execute under the UNITY model then h is the function g, and

dp is defined by Corollary IV.38.

Proof: Since dP is a metric then d,, is also a metric, and Theorem IV.64 completes the

proof. N

This corollary shows the existence of two metric spaces, one for those UNITY piograms

tht execute under the standard model, and another for those that execute under UNITY.

But once '1 e execution model is fixed, then there is only one applicable metric space. Thus

in the following brtions reference is only explicitly made to one metric spac2 of all UNITY

lprogralns, with the impi;hit implication that the metric space is actually one of two.
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Corollary IV.65 does not explicitly state that either metric space is complete, but

any metric space can be uniquely completed (305). So there exists a complete metric space

that is the completion of the metric space of all UNITY programs aloiig with this metric.

Does this complete metric space contain only UNITY programs, or did the completion

require entities that do not correspond to UNITY programs, just as the completion of

the metric space (Section 4'2) of all finite automata required objects that were not finite

automata? This thesis does not require an answer to this question, but if the answer is no,

then the following theorem gives an intriguing consequent.

Theorem IV.66 If the completion of the metric space

(U, dl)

from Corollary IV.65 contains only UNITY programs, then there exists a UNITY program

for which there is no cquivalcnt finitc autumaton, whcre thc cquivalcncc is lefincd in t(rinb

of the sequences of states from Theorem IX.64, and the sequcnces of words acceptcd by a

finite automaton (as sequences of states).

Proof: The equivalence between a UNITY program and a finite automaton results from

Corollary IV.65 and IV.31'. That is, for a given UNITY programn P, the CSP process

f(P)

is equivalent to P, with f given by Theorem IV.64. Then assume that there exists

a finite automaton A such that the set of accepted words for A is equal to the set

of all traces of f(P), with each trace considered as a word from Z*, where E is

the alphabet of the events for the process. If this assumption is not valid, then the

theorem is proved. Thus A is equivalent (as a process) to the program P. Now, if the

completion of the UNITY metric space contains only UNITY programs, then these

programs are equivalent to some finite automaton, but Corollary IV.38, along with

Equation 4.11 and -1.4 imply that any accumulation point of the one space would be

equivalent to the accumulation point of the other. Since the completion of the metric
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space containing A requires objects that are not equivalent to any finite automaton

(as a process), then these objects are equivalent to the UNITY programs that are

the accumulation points of the UNITY metric space, a contradiction. M

This theorem implies that if the completion of the metric space of all UNITY programs

contains only UNITY programs, then there exists at least one UNITY program whose

execution sequence cannot be modeled using finite automata. That is, UNITY considered

as a formal language would be more 'powerful' (i.e. higher up on the Chomsky hierarchy)

than the regular languages. UNITY may still be more powerful as a language than the

regular languages even if the completion of the metric space

(U, d.)

doesn't contain only UNITY programs.

Thus any UNITY programn can be mapped into an -quivalent CSP process. This

mapping is based on the idea that the UNITY weak fair ch Ace operator on statements I,
behaves just as the fixpoint of the CSP choice operator on guarded processes 1, as given in

Lemmia IV.63. This fixpoint can be found by iterating the CSP operator (in the manner

of a Picard iteration (333)) an unbounded number of times, which corresponds to the

UNITY concept that the weak fair choice operator is based on an unbounded number of

iterations of a choice between two statements. Ilowevei, since one of the primaly goals

of the UNITY design is to enable the same UNITY program to be mapped into different

computer architectures, including sequential and paiall.,, al chitectureb, theni an impoi taint

question is what is the relationship between the UNITY chui wiC I,,o and the CSP

concurrency operator 11.

The first observation regarding the mapping of a UNITY program onto an arbitrary

architecture is that not all properties of the UNIT',' program are retained after the map-

ping, and conversdy, not all properties of the program after the inapping were )roperties

of the original UNITY program. For example, consider the UNITY program El:

Program El

initially
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x,y = M,N M,N are integers

assign

y x

x :=x-1 if x=y [x : , " x#y

end

Under the UNITY execution model, each execution u.. second statement results "-i only

one of the two boolean expressions being satisfied, an Jius only one assignment is made

(actually the other defaults to an empty assignment). , tIe program has no fixed point.

If initially M is larger than N the value of x can *ncreas but eventu:ally the first statement

executes, and after that the value of x can only remain the same or decrease. The UNITY

execution model implies that the value of x can decrease with no lowker bound. But the

piogram's properties change markedly when mapped onto a sequentia: architecture. In

this case if the ordering of the assignme~its-is:

y :=x

x x-1 if x=y

x x+1 if x~y

Each pass through this program leavc the value of x unchanged, and in fact this programn

can be considered to terminate with y:-x and both equal to the initial value M. But if the

mapping to the sequential a, fitecture had reversed the ol(der of the last two assignments,

then the program would have the property that repeated ex.cm.tion would cause the value

of x to monotonically decrease without bound.

Analysis of the original program El in the standard execution model, however, shows

that all of these possibilities can occur, since each one corresponids to a possible property

of the program over any finite executon sequence. For example, one possible execution

over a finite sequence yields the same behavior for x and y a., does the UNITY execution

model, considering that the two assignments of the second statement can be ordered so as

to behave just as they would if they executed simultaneously.

The reason for the difference in the properties of the different mappingh of the pro-

gram El is that there are named variables in vne statement that aic modified in another

statement. Obviously, one technique to circumiven., .ltis problem i to ensure that tie
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UNITY program contains no global variables, so that one statement catijiot modify Lhe

value of a variable used by another statement. This concept of a global or nonlocal variable

is formalized ir the following definition.

Definition IV.67 A -UNITY variable is nonlocal if it is named in more than orte state-

ment.

Definition IV.67 differs from the UNITY di qiiition of a local variable as one thaf is inamcd

on only one processor, and a nonlocal variable as named on more than one p. -essur, ont

either the right hand side or left hand side if an assignment (64). Since the b,.ic unit. of

analysis within this thesis is the statement (process), Definition I\T.67 is used here.

Before progressing to Theorem IV.71 which states the relationship between UNITY

programs with no nonlucal variables and CSP processcs that contain the concurrency

operator, the followving definition and twvo-preliminary results are needed.

Definition IV.68 Given the pro9grflS (Processes) S and T', then T computationally

simulates S, iff for any finite sequence of s'tes

such that S generates S as given in Definition H1.6, then there exists a finite sequence of

states

!P= (to, ,)

where T'generates t as given in Definition H1.6, suirh that

S=t

and

sn= 17r,

I itrtmr. S (111( T arc conitationally equivalent iff S cornpulatiortollj .simtulatcs 7'

aiud T coi))ulationally siinulate.5 .
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The concept of T comnputationally simulating S is based on (execution) sequeUCC of states

that are finite in length, that is computational simulation can be related to actual imple-

mentations. This concept focuses onl the 'coinpu tation' that a process p~erforms, i.e. what

finial output (state) canl be produced from a given input (initial state), and not onl the

dletails of how the computation is performed. Thus if S and T' are startedl in the same

initial state, any state that can be 'reached' by S (in finite time) canl also be reached by T,

although T may have reachable states that S does not. Note that if [S] (denotes a function

'compuJted' by .5, such that

then computational equivalence corresponids to Mills* concept of functional equivalence

(240). This conccpt of computational simnula 'ion '. i parallels Milner's definition of simu-

lation between programs (2413).

Ani example of computational simulation is given in the following lemlma,. which is

used in the proof of Theorem IV.71.

Lenima IV.69 Given the functions fand g of Thcorcin IV.614, and IhL UNITY statemlents

S1 - rnd S2, then the CSP process

iiiX.(h(S1)Ih(S2));X (41.21)

computationally simulates the GSP processr

jiX.(h(Si); h(S2)); X (4.22)

t ',ec It is eitherf. tunder the standard excution model, or is g, tinder the UNITY execution,

mol(del.

Proof: The noluitioni to Equation 4.22 is given by
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where this limit is applied to the following sequence of processes

Xo = SKIP

X1 = SKIP; h(SI); h(S2) = h(S1); h(S2)

-Y, = Xn-,; h(S1); h(S2)

Next consider the following sequence of processes that corresponds to one possible

instantiation of Equation 4.21

Y= SKIP

Y= SKIP; h(SI) = h(S1)

= h(S1); h(S2)

= { 1 ; h(S1) if t is oddin = - ,

Y-:h(S2) if it is even

Any finite sequence of states generated by Xn for any n can also be generated by

Y,, where m < 2n, such that both sequences have exactly the same states, and thus

the same initial and final states. M

This next lemma provides both an examl)le of coml)utational equivalence plus the

final preliminary result needed for Theorem IV.71.

Lemma IV.70 Given the functions fand g of Theorem 1I.64, and the UNIT'slatements

S1 and S2 that contain no nonlocal variables, then the CSP process

iX.(h(SI); h(S2)); X (4.23)

is coinputationally equivalent to thc CSP process

pX.(h(SI)lh(S2));X (.1.2,4)
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where h is either f, under lhe standard execution model, or is g, under the UNITY Cxecution

model.

Proof: Consider that each state is represented by a vector from R" such that each element

of the vector represents the value of one program variable, with each such variable

coded as a number. The processes Xn that correspond to Equation 4.23 (from the

proof of Lemma JV.69) each (for n > 0) contain one or more complete and/or partial

sequences of states that are generated by

h(S1); h(S2)

Since there are no nonlocal variables, then for any such partial or complete sequence

of states

(sO,...,sk)

there exists a subsequence of states

where

1i = Sj

for any i E {0,,l with j E {0, ..., k}, with the linear order of the original sequence

preserved in the subsequence, such that thi., subsequence of states contain state

vectors that have changes in element values that correspond only to the named

variables from SI. Within this subsequence the value of each vector only depends

upon the value of the immediately preceeding %ector (see Chandy and Misra, Section

3.3 (64)), and not on any of the vectors outside of this subsequence. In a similar

manner there exists a subsequence of states whose state vectors have changes in

element values that correspond only to the named variables from 52. Thus these

subsequences can be arranged into any interleaving, i.e. anN sequence that would

result from the process of Equation -1.21, provided that the linear order of states
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within each subsequence is preserved, w~hile still preserving the same initial and final

state as the original sequence. U

With these two lemmas, the first major result relating the UNITY weak fair choice

operator on statements to-the CSP concurrency operator on processes caii be stated.

Theorem IV.71 Given the functions f and g of Theorem IV.64, and the UNITY state-

ments S1 and S2 that contain no nonlocal variables, then the GSP process

;tX.(h(S1)Ih(S2)); X

which is equivalent to the UNITY program (fragment)

SljS2

comnputalionally simulates the CSP process

ItX.(h(S1)llh( S2)); X

where It is either f, under the standard execution model, or is g. under the UNITIY execution

model.

Proof: Computational simulation is tran~sitive, since if R computationall) simulates .5,

then for any sequence

(SO, .... S.) (,4.25)

of S, there exists a sequence

(4.26)

of R, such that

So = r0 and qk :- r.

If S comutationally simulate. T. thpi for any sequence

(( ..... 11) (.1-27)
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of T, there exists a sequence of S, say the oiie from Equation 4.2.5, such that

so =1to andSk = If

This implies that for any sequence of T. sayv the one from E quation 4.27. there exists

a sequence from R., here given by Equation 4.26.. that satisfies thle computational

simulation requirement, and R? computationally simulates T. Since Lenina IV.7
implies that

jtX.(Iz(S1): h(S2); X

computationally simulates

/LX.(h(SJ)Iilh(S2)); X

then Lemmia IV.69 along with the-tm ansitivity of computational simulation completes

the proof.U

Thtus thle mapping of Lte fair choice combination of two U.NI'rY statement% without non

local variables into a pair of concurrent proce!5ses, may result in the loss of sequences

of states, but will not introduce any new ones. This means that for a UNITY programn

containing thle construct

SI fS.

with no nonlocal variables, the mapping to Lte CSP proces-s

1mX.(h SI ),I1(S2)): X(4)

will yield equivalent sequience: of states- if those sequencesi that result from

tL.. (I)!h(S2)):XN

which are imot pos.sile for Lte pl'c--- of Fcjimatiton -1pSAr" mW014td.
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4.5 Summary

A complete metric space is a topological space that satisfies certain constraints relat-

ing to the metric, which is a function that measures the 'distance' between pairs of elements

of the space, and to the concept of completeness, which means that certain elements are

included in the space. This chapter demonstrates that different types of computational

models can be analyzed as complete metric spaces: finite automata, CSP, and UNITY.

Not only can these three models be cast as metric spaces, but the metric used in

all three is based on a metric developed by other researchers for the metric space whose

elements are strings of finite length formed from a finite alphabet of symbols. (If the

alphabet is denoted by Z, then these symbol strings are the elements of Z') If the symbols

are the decimal digits and the decimal point, then the completion of this metric space

corresponds to the nonnegative real numbers. Although the basic concept is not new, the

term Tu tring computabic complcte metric spacc is defined here, as the completion of this

metric space using only the computational capabilities of Turing machines. This results

in a. space whose elements correspond to that subset of the nonnegative real numbers

called the Turing computable niumbers (see Appendix B). A new result is proved which

shows that this Turing computable complete metric space also satisfies a. majol formulation

(stated for the complete metric space in the paper) from the original paper by Scott on

the mathematical basis of computation (311). Another new result shows that this Turing

complete metric space satisfies the definition of a theory (based on categories) given in the

previous chapter.

Based on the metric space of symbol strings, another metric space (which is itself not

new) is presented whose elements are finite automata. Unifying weral different ideas from

the literature, the binary automaton trtc is defined. Th binary automaton tree permits the

metric front the space of symbol strings to be used to definc the metric on finite automata,

and also p(,rmits the definition of canonical forms of finite automata., so that if any two of

these canonical forms represent equivalent automata, then they are identical. The major

new results are that for any (Turing) recursive set there is a 'machine' that is an element

of the completion of this metric space of finite automata that acccpt6 the set, and that

these machines are no more powerful (computationally) than Turing machines.

'1-106



The metric space of symbol strir -s is also used to define a metric space of determin-

istic CSP processes, using the binar,, ktomaton tree concept and the analogy between

finite strings of symbols and finite length traces. Since to date all of the analysis of CSP

process s is based on the mathematics in the text by Hoare (165), all of the topological

analysis here is new (the analysis is new, some of the results are not). The first major

result is that the CSP concept of a continuous function from processes into processes is

equivalent to the metric space concept of a continuous function. Additional results are that

the metric space based contraction mapping is equivalent to the C^P constructive function,

and that the metric space of deterministic CSP processes is complete. These lead to the

conclusion that what loare termed the fundamental theorem of deterministic processes is

equivalent to the standard contraction mapping theorem for complete metric spaces. An

interesting consequent of this equivalence between the CSP mathematical analysis and the

topological analysis, is that new results for CSP can be generated by simply rewording

existing theorems from the topological theory of complete metric spaces.

The chapter concludes with another new application of the topological theory of

complete metric spaces, to the analysis of UNITY programs (specifications). The metric

for UNITY programs is defined by showing that any UNITY program can be mapped into

an equivalent CSP process, where the equivalence is based on the two exhibiting identical

behavior. This approach is valid because all UNITY programs are deterministic (the CSP

meaning of deterministic), so that the mapping only need be into deterministic CSP pro-

cesses. Thus the metric on UNITY programs is defined using the metric on deterministic

CSP processes. Since UNITY requires the simultaneous execution of assigument compo-

nents within a single assignment statement, %hercab CSP forces the sequential execution of

atomic actions, this mapping equates UNITY asignment statementb (which are executed

sequentially) with CSP atomic actions (the symbols of the traces). The fact that UNITY

programs generate unbounded execution sequences, 'ersub the finite length traces of CSP

processes, is treated by showing that the UNITY programs map into piocesses that are the

fixed points of recursive definitions. New result: are prehelted that link the computational

hierarchy of machines based on finite automata %ith the 'computational power' of UNITY

programs, and that relate the properties of UNITY programs vithout 'global a.iableb' to
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the equivalent CSP processes.
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V. Computational Temporal Semantics

The last chapte: demonstrated that computational models can be viewed topologi-

cally as complete metric spaces, a development motivated by the analysis of assignments

and type transformations as continuous mappings. But this analysis treated the programs

from a purely syntactical viewpoint, that is the analysis was performed on strings of sym-

bols without any concern for the meaiing of the symbols. Consequently, this chapter

continues the analysis of the computational models, but with respect to the semantics, or

intended meaning, of the symbol strings comprising the programs. This chapter addresses

this semantic analysis using the tools of the temporal logic of Appendix A. Although this

type of approach is not new (38, 75, 252), applying it to the proof of correctness of CSP

programs in the manner of Section 5.3 is new.

Section 5.1 presents a brief overview of the three major classifications of formal

semantics, the opcrational, dcnotational, and axiomatic, along with an introduction to how

the temporal logic can be used in semantic analysis. Section .5.2 presents an introduction

to the temporal analysis of finite automata based on the temporal logic of Appendix

A. Since the finite automaton is the most basic model of computation, this temporal

logic is introduced first. Although temporal reasoning about finite automata is not new

(114, 113), this presentation of a formal temporal logic for finite automata is. Section 5.3

then extends the finite automaton based logic into a temporal logic for CSP processes, a

computational model more powerful than finite automata (165). Section 5.3 demonstrates

that this temporal logic for CSP supplies the framework within which to reason about

proofs of correctness of CSP programs, an alternative to the approach used in Hloare's

book (165). Although the previous chapter presented the topological analysis of finite

automata, CSP, and UNITY, this chapter only covers finite automata and CSP, since the

book by Chandy and Misra contains the basic temporal analysis for UNITY programs

(64). However, even %vithout the Clhandy and Misra analysis, UNITY programs could be

addressed by first mapping themn into their CSP equi'alentb using the results fmoi Section

4.4, and then applying the concepts from this chapter to the equivalent CSP programs.
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5.1 Program Semantics

For a given program, if P denotes the formal syntactic representation of the program

(such as-the source code listing), then from Definition 11.10 the function

P-*- .1(P)

can be considered as the semantic analysis of the program, where M(P) denotes a formal

representation of the meaning of thc program, often as some type of mathematical model

(201). Based on the structure of this mathematical model 4(P), semantic analysis has

been classified into three major groups, known as i)perational, denotational, and axiomatic

(324):

Operational: Elcments of AI(P) are program states (see Definition 11.6), where each

1)rogram is represented by one or more sequences of these states called execution

sequences. Each state is considered a mapping from program variables and other

symbol strings into their values. Thus a program is mapped into a sequence that

completely specifies the values of all program variables (luring execution of the pro-

gram. A major thrust of the analysis is specifying mathematically the relationships

between suct.cssive program states, with the temporal characteristics modeled by

the linear order or the sequences of states (339, 233, 171). Also called behavioral

semantics (201).

Denotational: An approach -hat is credited to the work of Scott (311), Strachey (314),

and McCarthy (231), the elements of Ml(P) consist of functions and constants that

can generate the sequences of program states given the initial state (the first state

in any sequence representing a progranm). Equivalently, programs are represented as

relations whose domain is sets of i tkiial program states, and whose codoiain is sets

of final states, in what is called the input/output semantics (93, 209, 48, 323, 337,

140, 329). Includes the action semantics of Lmport (201). The term 'dlenotational'

is sometimes used in conjuction with the fnictitoal representation only. whereas

predicative semantics refers to the relational z,.lIrecntaition (50). See the article
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by Bakker and Zucker (94) for a relationship between metric spaceb, denotational

semantics, and concurrent programs.

Axiomatic: Here the elements of MA'(P) include txioms about the statements of the

original program, along with rules of inference to permit reasoning about the pro-

grain. Because of this ability to reason about the program, early work with program

verification (both sequential and concurrent programs) was based on axiomatic se-

mantics, with the temporal characteristics of the program modeled with flowcharts

(126, 161, 217, 86, 211, 344, 144, 200). One of the first approaches applied to par-

allel programming, probably because of the widespread acceptance of the 'Iboare'

semantics of sequential programs (266).

As an example of these three types of semantics, consider the following program

expressed in UNITY notation, with I denoting the fair selection operator.

Program P

assign coin := 1I coin := T

end {P)

Thus program P represents an unbounded number of fair coin tosses, with the outcome of

each toss represented by the assignment of I or T to the variable coin. The operational

semantics of P can be given by (based on the CSP formalism friom Section 4.3)

t,'aces(P) = {tit E {JI,T) - {A}}

Here the operational semantics are represented by. the set of all possible sequences of

program states, where each program state is denoted by the kalue absigned to the variable

coin. These sequences are represented using trace notation, so that the bct of all possible

sequences of program states is denoted by the set of all traces, that is the set traccs(P).

One choice for the denotational semantics will be some kind of model that calm gem-

erate this set of all possible program states, that is a denotation that representbs the abilit.

to generate this set of all traces. One such possiblit. for the denotational semantics is

given by

P=(II PIT- P)
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where the formalism is based on the CSP from Section 4.3.

The last aspect of this example is a representation for the axioma-tic semantics. Since

the tradtional goal of axiomatic semantics has been to facilitate proofs of correctness,

consider the proof that program P does generate all possible finite strings of II's and T's.

One approach would be to represent how each program statement changes ally existing

string that represents the history of assignments to coAn, fron, some starting time until the

present. The variable str denotes this history, temp denotes a dummy variable, and cons

denotes the function that concatenates a single symbol onto the end of a string.

{temp = str) coin := II {str = cons(IItemp))

{temp = str) coin T {str = cons(T,temp)}

This syntax is typical of the axiomatic approach, and has been credited to Ioare (161).

It's based on assertions of the form

{PSQ(5.1)

where P is called the prcco,.dition of the program statement S, and Q is called the post-

condition. This assertion is interpreted as 'if P is true before S executes, then after S

terminates Q will become true (if S terminates). Note that this concept is based on tie

earlier techniques of Floyd that used flowcharts, with each node epresenting ,L program

statement and the arcs representing flow of control (126). Thu6 hloare'h precondition and

postconditions corresponded to labeling the arcs with these predicates, which vvas the ba-

sic approach to proving program properties until Iloare formalized the technique using

axiomatic semantics (217).

loare's approach depended on a set of inference rules that allowed the derivation of

assertions about te program. These rules gate assertions of the form of 5.1 for certain pro-

grain statements such as assignment and iteration, and foi the composition of atatements.

Unfortunately, Hoare's analysis wvas based on the idea. of 'if the .statement S terminmateb',

which meant that total correctness did not follow implicitlv. '[hi. was corrected b3 Manna,

and Pnueli (218) with the introduction of tie nomenclature

(P(x)ISIQ(x,y)).
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The intei pretation is that for every x, wvhere x is the initial vaIue oi thle lprograin variables,

if P(x) holds before S executes, then S wvill terminate with Q(x, true, where Y is the

resulting value of the program variables. Just as Hloare did, Malmo. and Pnueli give the

rules of inference for deriving assertions based onl a set of program- statements.

This thesis utilizes mainly the olperational and clenotational semajitics, which, since

the emphasis here is mnostly with design and implementation, seems consistent with the

idea expressed by Stoy that (Stoy emphasized that this Utatemnt. is an oversimplification,

but "not so far from the truth") "thle operational method is likely to be of most value to

the implemnenter, the axiomatic to the piogrammer, and the (lenotational to the language

dlesigner" (324).

Another broad categorization o~f scmantics, and one that call include examples from

either of thle above two groups, is the compooitionaI semantics. A compositionlal semantics

is one such that given the program statements s and t, and their composed statement .s, t,

then the evaluation of

M (s; t)

is comp~letely determined by the two evaluations of M(s) and[ M(t) (201).

In addition to modleling the program itself, temporal logic call be usedl to p~rove

certain statements (aussitionb) about the behavior (operational) of thle progim, or about

the relatioii (denotational) that represents, the p~rogram. These assertions canl be either

static, which mneanis their evaluation to Iruc or faIsc is not dependent upon when thle

exaliiation ih purfornied (time independent), or else such evalu~itioii does depend upon time.,

in wvhich case they are called temporal assertions (bee Appendix A). For this thesis, all

assertions about programs are considlered as temporal, so that thiosb ssertions that would

normally lbe consideredl static are simply truic or fal.sc for all relevant Lime. Temporal

assertions about programs are also called prograin prop(rHic.5, since they midk-e assertions

about certain p~rop~erties of the tempoi al structure of thle program. oI example, znaiant

p~rop~erties (286, 64l) have assertions or the forum
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where s is an element of the set of program states. Since program states call be consid-

ered as a mapping from the program variables into their values, the assertion P(s) can

be considered a function of the program variable-, their values, and the last executable

statement. The assertion P(s) does not explicitly include a time variable, instead the

implicit dependence on time is stated by the teml)oral operator 0, which is the always oi

henceforth operator.

An example of an invariant property is partial correctness, which can be btated as, it is

always true from now on (the 0) that if a certain assertion holds at the start of the program,

then another assertion (the termnination assertion) alk1ays holds. Another terminology for

these type o; )r,,pcies is safety properties, since they are based on the concept that 'no

bad things will ha;per.' (147). Another example of an invariant is clean behavior, which

states that executing an instruction does not poduce a fault Ur undefined results (219).

Mutual exclusion and freedom from deadlock (v.hich is ,ddressed in Chapter VI) are also

considered as invariant or safety properties (219). One of the major advancements in

proving prograin properties was the development of an axiomatic theory that can be used

to prove safety properties of concurrent programs (268, 265). The theory is based on the

concept of hared variables and monitor-like (monitors are ciedited to Hansen (149) and

loare (163)) control of these variables.

The second class of properties are called livencss properties, which can have the

following (and others) forms:

KOP(s)

0ooJ'( s)

OOP(s)

The idea behind liveiiess propertic.s is that if the current state of the coiputa.tion does not

satibfy the property, then eentually the computation will reach b state that does satisfy

the property. This is the rea.-oning behind the statement by Pnueli that. livene.ss lroperties

are satisfied by infinitelN man3 finite prefixes of an infinite comp)tation (287). Livenes..s
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properties include a class of properties that satLfy the leads to operatur - (200), that is

these properties have the form

O(P(s) Q(s))

Whereas partial correctness is classified with invariant properties, total correctness

can be considered one such 'leads to' property. This results from the interpretation of

total- correctness as, if some assertion holds at the start of thc program, then eventually

another assertion will hold when the program terminates, since the program always ter-

minates. Liveness properties embody the concept that 'good things will happen' (147).

Another liveness property is called internitt yt absertions, based on the intermittent-

assertion statements of Manna and Waldinger (223), which state than whenever a certain

assertion is satisfied during the execution of a program, then ever~fually another specific

assertion will become truc. Accc.5sibility i a liveness property that ensures certain program

statements nill execute an unbounded number of tines in unbounded execution sequenceb,

while rcsponsivencss atates that in unbounded execution sequences that are modeled after

the- consumer-producer paradigmn, no consumer can be left unsatisfied indefinitely.

A third class of program properties a-e the precedence properties, which are based

on the until operator (see Appendix A), ;IGo is assertions of the form

F(s)UQ(s)

which states that the predicate Q will eventually become true, and until that time the

predicate P will remain true. Manna and Pnueli clasify a type of precedene.: properties

as safe livcncss, in which tl.e predicate P reprmsents a safety property that is to remain

truc until the liveness property Q is satisfied. They call this "nothing bad happens until

something good happens'", and "strongly suggest that a full specification of a. program

should always be expressed as an until expression" (219).

One important class is the stabIc pro)erties, which have the formulation

F(s) * OP(s)
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These properties state that if P holds at any point during the execution of the program,

then P will hold continuously from that point on. An important subclass of the stable

properties are the quiescent properties, which intlude termination and deadlock (63). The

quiescent properties embody the concept that a program (or process) is idling, that is, not

achieving useful progress (65).
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Figure 5.1. Finite Automaton Ml

5.2 Temporal Logic of FinitelAutomata

This section introduces the analysis of computational models using the concepts of

temporal logic from Appendix A. Since the finite automraton i6 the-simplest computational

model addressed in this thesis, this temporal analysis begins with the finite automaton

before progressing into the CSP model in Section .5.3. (Section 4.2 defines and describes

finite automnata)

Consider the finite automaton MV of Figure .5.1 (repeated from Section 4.2). This

automaton accepts all words from the set

accept(A') = {ab, aab, bab,...)

where accept(M) can be wveil ordered by length (since it's a recursive set). Next consider

a subset of Al, denoted by AN,

jI = {bab, babab. bababab, ...} = {b(ab)'Jit > 1) (.5.2)

For any two elements (words) of Y, one of them wvill always be the p~refix of thle Other, that

is,

(s E P A IE P). T411u E V'A (qu =t Vmlu= s)] (.5.3)

wvhere v" denjotes thie alphabet of symbols, and 71 = A (time emipty wvord), if S =I
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Consider two arbitrary elements from the set N, say

s, tE N

and the binary relation

R C A X N

such that

sRt 4= u[u E E* A su = t]

This relation R is reflexive, since

sA = s

and thus sRs holds for any element s of N. R is transitive, since

(rfts A sftt) * 3u3v[ru = s A sv = l]

implies that

ruv = t =::. r/

since uv is just another word from E'. A slight variation of this argument shows that Rt is

antisymmetric, since

(sJ2t A tRs) L 3u3v[su = t A tv =s]

which implies that

IVL = t

or that

and thus
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So R is a partial order, and further, is a linear order, since Equation 5.3 implies that

(s E N A t E N) =* (sRt v tRs)

For any word from N, the state transitions that occur for eadh symbol can be con-

sidered as occurring at equally spaced intervals of time, with the first symbol (leftmost)

representing a transition at a time instant called the 'present'. Thus any such word is a

representation of a temporal history of state transitions, and for any two words from N.

one history will include the other. This suggests that the elements of N are the interpreta-

tions associated with the frame (N. R) of a temporal logic (since It is a partial order), and

indeed a linear temporal logic because R is a linear order on N (see Corollary A.9). Thus

reasoning about the states of the finite automaton M can be carried out, and expressed in

terms of, the temporal logic of Appendix A.

Although this analysis so far has only addressed sets of the form of N. the concept

can be extended to the complete set accept(,ll). This follows from the following lemma,

which is a summary of certain paragraphs from Section -1.2.

Lemma V.1 Given any finite automaton M. the set acccpt(A) is thc countable union of

sets Si, that is

accept(M) = Si
iEN

such that for each i there exists a linear order R, of thc elements of S1 . given by

(.-; E .5i A I E T) =: (sRit -- 3u[u E S' A, su = 1])

Proof: Follows directly from construction of binary automaton trees (see Section -1.2). in

that every finite automaton correspond. to an equivalent finite binary automaton

tree. The sets S, correspond to tihe different 'paths' down throghlm the treo startingv

from the root node. and ending a ;t n accepting node. As each path is raversd.

each traversal retracing the nodes of the prehiom- trav-oral and -hpn continuing on

to an accepting node. the sequence of words fs0rmed (r'ach ite a preri% of the iextI Is%

these travrsals contains the elemo nl.-of the.irrvspnndin .i N,. The clfintabilitv of

:;-11



these different paths follows from the finiteness of the tree. (As opposed to 'infinite'

trees, which could yield an uncountable number of paths) N

Thus each pair (S,, R,) forms a linear temporal logic, which leads to the following theorem.

T.,eorem V.2 For any finitc automaton AM, there exists a partial ordering R of the ele-

ments of

accept(M)

such that

(accept(M), 1)

forms the frame for a branching temporal logic.

Proof: The partial order R is formed by combining the linear orders RZ, of Lemma V.1.

Thus the branching temporal logic follows from

accept(M) = U Si
ieN

along with the corresponding Ri, and the functions

(I: Si - N x N

defited by

(s E Si A t E Si) * (sR!t 4=, ,Ii(s) <_ I)i(t))

where the inequality is one induced on ordered pairs of natural numbers, that is

(a, b) < (c, d) 4=, (a = c A b < d)

The collection of the if), functions defines the function

(1, : accept(M) - 2NxN
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such that

s E accept(M) ((n, m) E ,(1) 4=. (nz,r)= (I ))

as required in Definition A.10. U

Although these concepts can be exteded to the set v*, not just restricted to accept(M),

this effort deals only with the set of accepted words, based on the idea that a successful

computation corresponds to an accepted word (165) (in reference to processes as lan-

guages).

The assertion

(71, m) = 1)()

is based on the idea that for one path through the binary automaton tree, denoted as path

(or branch) n, the string s is the prefix of any (different) string t, such that

(,k) = ,,(t)

with k > m. For a given s, (1)(s) evaluates to a. set because of the possibility that a given

string could be part of more than one bralch (path). Consider the string bab, which is

contained in the two branches represented by the set N of Equation 5.2 and the set

{(bab)"In > 1}

which is also a subset of the set accept(MV).

The branching temporal logic associated with an3 finite automaton permits temporal

reasoning about sequences of states associated with strings of bymbolb that form the 'input'

words tu the automaton. Thus temporal reasoning about the states of the automaton is

possible in a sort of indirect manner. Contrast this with a temporal logic based dhectly on

the states. Such a temporal logic would require a partial order on the states themselves.

Consider the a.ttempt to define this partial order in an intuitive nimnei ba.sed on the arcs,

tha is

skIt 4== 3fi[(s, t) E fh])
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where s and t are arbitrary states of the automaton, and f, is one of the functions that

comprise the transitions of the automaton. This relation states that sRt, if and only if

there exists an arc whose head is ., and whose-tail is t. Unfortunately, it is easily shown

that this R is not a partial order, since any (nontrivial) cycles cause R to violate the

antisymmetry property (208). Thus an R defined in this intuitive manner cannot form the

basis for a temporal logic.

With respect to Lemma V.1, the countability (versus finiteness) of the sets S, can

be shown using the finite automaton of Figure 5.1. A countable collection of subsuts of

accept(M) consists of

{b(ab)>__ > 1}

{bb(ab)-jn > 1}

{(b)>(ab)nn 1}

where k is any natural number. And each one of these subsets can be linearly ordered

using the appropriate Ri of Lemma V.1.
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5.3 Temporal Logic of CSP

Given that CSP models of computation can be analyzed using the mathematical

tools of complete metric spaces (see Section 4.3), a goal of this section is to show that

the sat operator, used in proving assertions about programs, is another denotational tool

for reasoning about programs using the modal logic of Appendix A. Thus statements

about programs that invoke the sat operator can -be equivalently reformulated using the

symbology from the modal logic, given that there is a direct correspondence between the

modal logic concept of an interpretation and the CSP concept of a trace. Note that there

exist other approaches to include the temporal logic concept into CSP, such as the Real

Time CSP (RT-CSP) (351).

Given a process P and a wff W, then

PsatW

read as 'P satisfies W', denotes that any possible behaviour of P, that is any possible trace

of P, implies that the wff W evaluates to true. The formal definition states that if S is

any trace of P, then

s=:W

where the wff IV may or may not have 5 as a variable (165). Ioare develops the following

initial set of laws (axioms) governing the sat operator: (Nomenclature is HIoare's)

Li

Psatirue

L2

If PsatS

and PsatT

then Psat(S A T)
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L3

If PsatS

and-S T

then PsatT

Since the concept of the sat operator is to show that a wff evaluates to true for

any arbitrary trace of the process, this suggests that given any process 1, a logic model

(traces(P), R, V) can be formed, where traces(P) denotes the set of all of the possible

traces of the process P. The set V contains those wfts which P satisfies by assumption

(i.e. without requiring a formal proof), and the set R reflects the type of modal logic,

either temporal or predicate (see Appendix A), used to prove that a process satisfies one

oi more wffs. One such 'assumed' wff that is an element of V for any process is true, which

is given as the Jaw Li. The other elements of V will depend upon the particular process

chosen, such as for the process STOP (which does nothing), for which V contains the wff

'the trace of the process is empty' (loare's L4).

Thus the different traces of the process P form the elements of the set of interpreta-

tions within the modal logic (traces(P), R., V), so that each trace is a different interpreta-

tion. A consequent of Definition A.2 then, is that

ks 147

is true, if and only if, given some process, the assertion denoted by ]V evaluates to true

given the trace s of this process. Given it one-to-one correspondence between a trace of

a process and a computation, then this definition corresponds to the definition gi en with

respect to denoting correctness within the temporal logic progi ainining language Tbmpura

(148). A consequence of this definition is that there mna., exist another trace I for this sale

process such that

does not hold. Since for any process P the set V in any model (traccs(fI'), 1t, ') used in
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conjunction with this analysis of CSP processes will remain fixed (since it's the bet of wffs

that hold for the process by decree), then the nomenclature

Iw

can also denote that the assertion 14/ is valid for a given process, which agrees with the

nomenclature used for the Tempura programming language (see Definition A.4).

Since a process satisfies a wff if the wff evaluates to truc for every trace, and a wff is

true (see Appendix A) if it evaluates to truc for every interl)retation, then it follows from

'traces as interpretations' and Definition A.2 that

PsatW, #::k W'

The notation

I=s W'

where s is a trace of the proocess P will be deloted by

P 1--, 11V

whenever needed to prevent ambiguity.

As a result of this equivalence between traces and interpretations, the statement 'P

satisfies 1'V' is equivalent to saying that within the modal logic defined by the traces of P,

W is true. Extending the concept from single procesets to concurrent processes using the

operator does not change this 'traces as interl)retation' idea. Consider the two processes

P and Q that form the concurrent process PIlQ. Any trace of the Concurrent process

is an interpretation of the concurrent process, while such it trace restricted to either the

alphabet of ' or the alpabet of Q is aii interpretation of either process P or Q re.pectively.

Symbolically,

(P k, S A Q k T ) T  PIIQ , 5 A 7'

if and only if the trace q restricted to the alphabet of P equals the trace .s, and the trace q
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restricted to the alphabet of Q equals the trace t. This is another formulation of Iloare's

law regarding the specification of concurrent processes (see Li in Section 2.7 of (165)).

Given that the concept of sat can be recast as a modal logic, each of the three laws

Li - L3 above can be derived from Definition A.2. The derivation of Li is given by:

Definition A.2 states that for any s,

-i k, false

and that

n W= 5 w

which taken together imply that

b TIle

Since this holds for any s, then

=truct

or

Psat true

which is L1. In a similar manner follows the derivation of L3: ])efinition A.2 states that

I (V =* 10) V' (= = v ' to)

which implies that

(IS A S= T) I= T

or

((PsatS) A (S = T -) -- satT

which is L3. This derivation uses the concept that loare's
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is equivalent to stating that

(S T)

for any trace s. The derivation of L2 uses the ilAationship between the A and the

operators from Appendix A, which is given by

-(a -b) 4= (a A b)

and leads to the derivation: Given the premise of L2

PsatS A PsatT

which is equivalent to (for any s)

,SA= 5 T

then

(since - 7 '== T if and only if j= -,T) which is equivalent to

-' k(S --T)

which is equivalent to

-(. -T)

and to

= S A'1

which is the consequent of L2, that is

Psat(S A T)
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An interesting extension to the CSP presentation would be to add a law that follows

from the inclusion of the modal operator 0 in Definition A.2, that is

k, ow 4-=* vt[(t E S A (s, t) E i) ==*, w]

where S is the set of interpretations, which for CSP would be the set traces(P) for the

process P, and where

R C traces(P) x traces(P)

A literal translation of this modal operator statement into the nomenclature of CSP would

be

(s E traces(P) =* Ow) #= ((s, tr) E i =R ,(t,))

where tr is any trace of the process P, and w(tr) denotes that w evaluates to Iruc given

the trace tr.

Returning to the frame that this analysis has been based on, (traces(P),R), for

some process P, what is the nature of if? Although the analysis required no specific R,

the choice of an R that follows fror the metric on traces given by Equation -4.11 yields

an interesting result. Consider tihe requirement that the order satisfy the following two

properties:

RI (s. t) = 0 4= (sift A iks)

R2 r(s, u) -r(s, t) 4== (slt A tifu)

where s. t. and u are arbitrary processes generated by a given process P. and a is the metric

from Equation 1.11. The first property states that tihe distance between two traces should

be zero if and only if the txo traces would be equal if the relation were antibyminetric.

The second property surnmarizes the idea that if the relation were transitive. then Mien

compared to a fixed trace, traces that are 'deeper into' i. given chain %ith respect to the

relation would albo be 'clober to' the fixed tract with respect to the netric, and %ice versa.

At least one such order on traces exists, and is given by the following definition for R.

sRt -#, 3u[si = (5.1)
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where s, t, and u are traces associated with a given process P. Thus one trace is 'less than

or equal to' another trace if and only if it's a prefix of the other trace, which is exactly the

idea behind the partial order used in the temporal analysis of finite automata in Section

5.2. Note that with this order, the set of traces formed by following one path 'down' the

binary trace tree is linearly ordered by R. That this relation satisfies the first property

follows from the fact that 1 is antisymmetric (as shown in Section 5.2). 11 also satisfies

the second property, since

(sRt A t1u) 4=- 3v3v[sv = t A L1 = ]

which also means that

or equivalently,

0 < -r(s, it) v (s, t) < 1/2k

where k is the length (in symbols) of the trace s. Note that this argument also shows that

It is transitive, since

3v3w(sv1 = u] = stu

The reasoning of Section 5.2 implies that R is reflexive, and thus ft is a partial order.

But It is not a linear order, since for the process P such that

traces P) = (0),(1)

it follows that

((o), (1)) ¢/ R^ (( 1), (0)) ¢ R,

Theorem V.3 Given a process P, then the modal logic based on lhc frame (Lracc.(P), fR).

whcrc R is any rlation that sati.%fics the lwo propcrtic..s RI and R2 (iur h a.-, Ihe lIri( U (d
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in deriving the sat equivalences), is a temporal logic (see Dcfinition A.6). Further, such a

logic is a branching temporal logic (see Dtfinition A.1O).

Proof: As just shown, such an R is-a partial order, thus (traces(1.), R) forms the frame

for a temporal logic. That this temporal logic is also a branching temporal logic

follows from the constructive function whose domain is the class of all processes and

whose codomain is the class of all binary trace trees (see Section 4.3). For any two

traces

s= (Soh, ... , Si )

where n does not necessarily equal m, the function ,I, from Definition A.10 satisfies

the following

I (i, 0), U, 0)) C 1'()

,(i(<(o,..C I((SO,. .,Sk)) 51 ( _ k = tI)

and for any single trace

U = (u0, 71, ..., uo)

,1 satisfies
(h,p) E(1(o u)

where i, j, and h are the disjoint branch numbers associated with the three traces s,

t, and u, and

0 < k < min({n, ?n.}) 0 < p < o

Since all traces are finite in length, this completely defines the function ). U

That these logics are branching temporal logics can be demonstrated with the fol-

lowing example. Consider the process f) defined b. the formula.shown in figure 5.2. From
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P =(0 -~(1 -~STOPIO -~STOP))

Figure 5.2. Example -Process P Formulation

this formula it followvs that

traces(P) W, (0), (0, 0), (0, 1)1

Applying the relation R1 defined by Equation 5.4 yields

()R(0) (0) R(0, 0) (0)1?(0, 1)

These 'relationships' demonstrate that each path thru the binary trace tree generates

traces that constitute one 'branch' of the branching temnporal logic associated with the

frame (traces(P), Ri). One such branch is given by

0(0),1 (0, 0)

wvhile the other branch comprises

~,(0),1 (0, 1)

To relate these branches to the function (1 given in Definition A.10, consider thtat

-{(1, 0), (2,0}

( (1, 1).. (2, 1)}

(I((0,)) {((1,2)}

(1,((0, 1)) = (2. 2)}

whichi further demionstrates the existence of two 'branches* for the lbranciiing tempJoral

logic associatedl withi the process P.
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5.4 Summary

The syntax of a program refers to the rules that govern low the symbols can be coin-

bined -to form the symbol strings that comprise -the program. The scmantics of a program

refers to me type of 'meaning' credited to the symbol strings, although this meaning is

often-defined using another syntax, such as the .yntax of the temporal logic. The temporal

logic can be used in the semantic analysis of programs by allowing a compact denotation for

program properties. Program properties are simpl assertions about programs that can be

expressed using the syntax of the temporal logic, Mhere the predicate symbols within the

temporal formulas represent statements regarding the program %tat.,. A program state, ws

used extensively in the next chapter: is a. representation of all of the %alues of the program

variables at an instant of time.

This chapter demonstrates that the temporal logic (see Appendix A) can be used

for reasoning about, and developing proofs for, program properties of 'programs' that

are represented with the computational models used in this research. This application

of the temporal logic is first shown for finite automata, and while the basic concept is

not new, the specific presentation given here is. The proof that the program properties

of finite automata can be represented using the branching temporal logic is based on tile

same concepts used in the preioub chapter to develop the complete metric bpace of finite

automata, further emphasizing the unifying ideas presented by this research.

Besides finite automata, the other two computational models addressed by this effort

are CSP and UNITY. Since the last chapter demonstrated that any UNITY program can be

mapped into an equivalent (equivalence of obser'ed behavior) deterministic CSP process.

this chapter only shows that temporal logic can be used for semantic analysis of CSP

programs (processes). Although temporal logic has been used in conjunction with CSP, tile

approach presented here is new. This approach Is to sho1 that tile CSP operator sat, Used

in proofs of program properties, can be equialenth exlreszed using the s% mbology of the

)ranching temporal logic. The pre.pentation utilizes the same concepts used in de,eloping

the branching temporal logic for finite automata, and demon.strates that tile 'proof rules'

given for CSP using the sat operator have equivalent parallels in the syinolog of tile

branching temporal logic.
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The pievious chapter demonstrates that three diverse computational models. finite

automata, CSP, and UNITY, call be cohesively analyzed with respect to their syntactic

representations by considering the different inbtantiationb of these niodels elements of

complete metric spaces. This chapter shows that these same three computational models

can also be cohesively analyzed mwith respect to their semantic representations using the

branching temporal logic. These two chapters complete the unified mathematical frame-

work that comprised the first major objective of this research. The next chapter addresses

the second major objectihe, a methodical technique for developing formal specifications.



VI. Extensional Based UNITY Program Transformations

This chapter- presents the second major portion of this research effort. 'I in-

cludes the development of methodical techniques to generate UNITY formal specifications

from either informal specifications or from multiple UNITY programs, and the methodical

transformation of one UNITY program into another. When merging multiple programs

into one, these techniques preserve desired program properties from the multiple programs,

and when transforming one UNITY program into another, the presented methodology pre-

serves the desired program properties of the program to be transformed.

Section 6.1 discusses the reasons for the selection of UNITY as the formal specification

language for this chapter. This section also discusses the modeling power of UNITY, and

demonstrates UNITY's ability to model asynchronous distributed architectur-.s (such as

the Intel Hypercube).

Section 6.2 develops a semantic model for -UNITY program execution based on the

concept of a state space. This semantic model, termed the state space -SeMantib, differs

from the approach used in the Chandy and Misra book (64). This state space semantics

permits an intuitive insight into the execution of a UNITY program, and also leads to new

results regarding the concept of program union and superposition. The basic concept of the

state space semantics is that a UNITY program is a dynamical system, whose execution

generates trajectories through a state space. This state space consists of vectors whose

component values represent the instantiations of the (named) variables of the UNITY

program.

- tion 6.3 uses the foundations from the state space semantics to develop a method-

ical approach to the generation of UNITY programs as formal specifications, and to their

transformation into other UNITY programs. For both the generation and the transforma-

tion, the resulting UNITY programs retain the de, rcd program properties of either their

constituent pieces, or ;rnmediate predecessor. This section presents a. UNITY program,

called search, which combines both the generation and the transformation processes into

one program. This program randomly searches for the generated/tra itsformed programns

that retain the desired properties of eithta the separate lrograms that were combined to
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form a new one, or else the original program before the transformation. Although the basic

concepts behind the Search program are not new (71, 210), their application to UNITY is

new.

6.1 UNITY

UNITY was chosen for this chapter for two primary reasons. The first is that UNITY

has syntax which more closely resembles standard imperative programming languages, ver-

sus a model such as CSP, which does not (note that in his CSP book (165), Hoare uses

LISP to illustrate how the trace theory aspects of CSP could be implemented). The sec-

ond reason is that UNITY permits relatively simple representations of other models, along

with formal specifications. This characteristic of 'simple representation' is one of Peter

Naur's primary requirements for ranking the worth of any computing language (consider-

ing UNITY as a modeling and specification language), a concept Naur expressed in the

following quote (which Naur attributes to Otto Jespersen) (255):

That language ranks highest which goes farthest in the art of accomplishing
much with little means, or, in other words, which is able to express the greatest
amount of meaning with the simplest mechanism.

As a specification language, UNITY is equivalent in expressive power to the first

ord,, femporal logic over a finite domain, since all variables must be individual (to prevent

dy ,c statement modification), and must come from finite domains to ensure statement

termination (see Section 4.4). The actual syntax of UNITY programs can be equivalently

expressed using the first order predicate logic, but the inclusion of the UNITY execution

model increases this expressive power to the temporal predicates. Note that Chandy and

Misra. present other reasons for choosing UNITY in the first chapter of their book (64),

while Knapp states that (193)

it abandons the notion of a process as a fundemental concept of parallel program
design and that it facilitates program derivation by rigorously separating the
concerns of l)rogram correctness from that of hardware and implementation.
The method is completely formal in the sense that ... all inferences are done
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within predicate calculus. Furthermore a program is viewed as a mathematical
object enjoying certain properties (invariants, stability).

As examples of the modeling power of UNITY, consider Chandy and Misra's (64)

examples of UNITY programs that simulate certain asynchronous and synchronous mes-

sage passing systems, in particular systems based on bIoare's CSP (165) and the work of

Milner (244). Additionally, Chandy and Misra give examples of transforming certain logic

programs (based on the work of Kowalski (195)) into their UNITY -.,1 ivalents (equivalent

based on the ability to resolve the same facts). The modeling power of UNITY is further

demonstrated by the following example based on one of the most unstructmed models of

a message passing system, what Bertsekas calls the totally asynchronous model (39).

Consider a function f

f :X x Y--+ X x Y

whose domain and codomain are a set of 2-tuples (ordered pairs), such that

f(x,y) = (g(xy), h(xy))

where

g X X Y X

and

h X x Y -- Y

If this function is to be used iteratively to generate an unbounded sequence

((XOyo), (X,Y),...)

where

(Ti+l,Yi+i) = f(xi,yi) i E {0.1,2,...}

then the totally asynchronous model would have two processors, each ith its own local

memory, such that one processor iterates a sequence of 2-tuples using only the function p;

and the other processor iterates another sequence of 2-tuples using only the function h.
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Thus the first processor repeatedly evaluates

(X.y) (g(x,y),y)

while the second processor repeatedly evaluates

(X, y) =(X% /(,y))

and at arbitrary times each processor receives a message updating its local copy of (.x, y)

(note that it doesn't matter if the update is only for one of the variables X or y, or

both of them). At unspecified times, and with arbitrary transit delays, a processor will

send its local copy of the 2-tuple to the other processor in an update message. The

totally asynchronous requirement is that each procesbor receives buch update messages an

unbounded number-of times, and for any given processor and any given (real) time t, there

exists -another -time, say i, such that

i>t

and the processor receives an update message at time t.

This totally asynchronous system is modeled by the following UNITY program (de-

sign), in that both generate exactly the same sequences of states.

Program Totally Asynchronous

assign

(rs) (g(r,s),s) I

(u~v) (u,h(uv)) I

(rs) (1,V)

(uv) (r,s)

end

The first two statements replicate the sequences of states generated by the two procebsorb,

while the third statement is equivalent to an update message from the second lrocesbr

(the one iterating (u, v)) to the first (the one iterating (r, s)), while the fourth statement

is equivalent to an update message from the first processor to the second. 'his UNITY

6-ri



program assumes that the update messages send a copy of the complete 2-tuple. If in-

stead, only that portion of the 2-tuple that is actually changed by a processor is sent out

in the message (i. e. the first processor only changes the first component, while the second

processor only changes the second), then the third and fourth statements in the UNITY

program would be

(r,s) (r,v) I
(u,v) (r,v)

The execution model for the UNITY weak fair choice operator ensures that the third and

fourth statements (the update messages) are executed an unbounded number of times.

The execution model albo ensures that with respect to any given instant of time considered

as the present, that eventually the third statement will execute at some future instant of

tme, and the fourth statement will eventually execute at some future instant of time (see

Section 4.4). Thus the set of all postible scquences of vectors whose components are the

values of the variables of the UNITY program, is equal to the set of all possible sequences

of vectors whose components are the values of the corresponding variables from the totally

asynchronous system.
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6.2 State Space Semantics

This section introduces the state space semantics that, along with the material from

Section 4.4, form the basis for the the material in Section 6.3. The purpose of this state

space semantics is to consider a UNITY program as a dynamical system, where the system

states are-the vectors fo. med by the instantiations of the named variables from the program,

so that a sequence of states corresponding to an execution can be analyzed as would

a trajectory within a state space. But whereas the trajectories for dynamical systems

based on difference or differential equationb are fixed (352), the inclusion of the weak fair

choice operator (see Section 4.4) into a program yields multiple possible trajectories for

a given program. So, while a difference equation yields one tiajectory for a given initial

state, a UNITY program may generate a collection of trajectories, implying that a UNITY

program may correspond to a collection of difference equations. This state space bemantics

is basically an abstraction of what Arbib, Kfoury, and Moll call the opcrational scmantics

of While programs (190).

Is this analogy of a UNITY program as a dynamic system consistent with the stan-

-(lard meanings of 'dynamic system' and 'state'? Consider the following definition of a

dynamical system from Cook (81):

A dynamical system is characterized by a set of related variables, which can
change with time in a manner which is, at least in l)rinciple, predictable pro-
vided that the external influences acting on the system are known.

This would certainly seem to apply to UNITY programs, given that the 'external influences'

are the different possible execution sequences iesulting from the faii choice operator on

statements I (note that Chandy and Misra designate this operator as 0 (61)). Cook also

states that a 'state'

should contain all information about the past history of the system which is
relevant to its future behavior. That is to say, if the state at a given instant
is known, then its subsequent evolution can be predicted without any other
knowledge of what has previously happened to the system.
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This UNITY state based on the values of the named variables also satisfies this definition,

given that the execution sequence is fixed. Thus for a UNITY program with the fair choice

opeiator, each possible execution sequence (there is in general a countable number of such

sequences) must be considered separately so that the UNITY program can be treated as

a dynamical system with its named variables defining the states of the system. Note that

just the named variables is not quite enough information to satisfy the state requirement,

since there is no way of knowing which assignment to execute next. Thus the UNITY

states also contain an implicit variable which contains some type of pointer to the next

executable assignment. This idea is also treated in Section 3.3 of Chandy and Misra (64).

This section presents the viewpoint that a UNITY program can be considered a

dynamical system whose dynamics are represented by trajectories through a state space

of vectors formed from the named variable instantiations. This implies that analysis of

dynamical systems based on difference equations of the form

x(n + 1) = T(n, x(n)) (6.1)

can be applied to the analysis of UNITY programs. In Equation 6.1 the vector x denotes

the state, that is the vector whose components are the values of the named variables,

the index n is a counter that corresponds to the assignment statement being executed

at the nA' step, and the operator T maps states into states, and is itself a function of

which assignment statement is executing (thus a function of n). This operator T is also

dependent upon which execution sequence (of the possible ones resulting from the fair

choice operator 1) is chosen, but once a sequence is fixed, then T only depends upon n. An

execution sequence is a sequence of events (see Definition 11.1).

Lemma VI.A Given the sci S of possible cxecution sequences for a given U;VITY program,

then each execution sequcncc

sy E S

generates a sequencc of states equal to the sequence of states given by

X(,1 + 1) = "J1(n,X(,71)) n E N (6.2)

6-7



where x denotes the state, and T, is a Turing computable function of s,.

Proof: A given execution sequence fixes the sequence of states once the initial state xO

is instantiated, so that Ta is determined by this fixed sequence of execution of the

UNITY assignments. Equation 6.2 represents this sequence of states in the form of

a standard initial value problem (303). U

In Equation 6.2 the index is a, suggesting that the number of possible execution

sequences for a given UNITY program might be uncountable. Certainly the number of

executable sequences that would be possible without the weal, fairness requirement on the

UNITY statement operator I is uncountable, but is this uncountable set 'reduced' to a

countable set with the inclusion of weak fairness. Unfortunately, the answer is no.

Theorem VI.2 The number of different execution sequence6 for a UNITY program with

at least two assignment statements is uncountable.

Proof: Denote the execution sequences by unbounded strings over the alpl,3bet {0, 1},

where a 0 denotes the choice of one statement, and a I denotes the choice of the

other. The set of all such strings is uncountable, and can be put into a one-to-

one relationship with the real numbers between 0 and I (with an implicit leading

deicmal point) Now remove those strings that violate the weak fair choice operator

requirement. This means removing all strings that end in an unbounded number

of 0's or I's, which is equivalent to removing a subset of the rational numbers in the

interval. This removed subset of rationals is countable, which means that there are

still an uncountable number of strings left. U

Another problem with the weak fairness requirement is that it is not eabily testable in

finite time. An interesting conjecture is that perhaps & differeiit ty pe of tdtement opet ator

requirement would yield both a. countable set of executioun sequenc. %%ould be easier to

test in finite time.

Although Equation 6.2 is in the form of the classical nonlineai dynamical system,

the standard analysis of dynamical systems described by Equation 6.1 Cannot be directl.
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applied to UNITY programs. This results from the requirements -imposed oil the operator

T from Equation 6.1 by the many different classifications of the initial value problem.

These classifications can be grouped into the following three types. The first requires the

operator T have as domain and codomain either a compact set or a bounded subset of a

complete set (a precompact set), such that T is analy tic (everywhere differentiable) over

this set (307). The second classification forces the vectors x to be elements of a Banach

space (complete normed linear space (256)), plus T must be continuous over this domain

(204, 303). The third classification requires that T must be continuous over its domain,

which, along with its codomain, must be a Frechet space (42). A Frechet space is defined

so as to be metrisable (a metric can be defined for the space), such that a complete metric

space results (294). Thus at a minimum, the domain and codomain of T must be complete

(with respect to some topology or metric), and T must be continuous.

Although the completeness requirement can be satisfied, say by using some subset

of the natural numbers as a domain and codomain for T, the continuity of T remains

a problem. Even if an appropriate definition of continuity could be found so that the

continuity of any possible UNITY assignment could be assessed, there remains 'et another

hurdle. The primary purpose of using the classical analysis is to address the stability of

the UNITY program at the fixed points. Since UNITY programs in general would be

nonlinear systems, then the stability analysis would require taking the derivatives of all

possible UNITY assignments (81,187). What would be the derivative of, say a conditional

assignment such as

z :=x + y if x> y

Consequently, this section presents the basic theory of difference equations of the type

of Equation 6.2 that correspond to UNITY programs. These equations can be characterized

as coming from a family of similar equations, where each member of the family has a.

different set of Tz,(n, o) depending upon the actual execution sequence chosen. The primar.y

concern here is one of stability for these equations, since this stability relates directly to

the concept of fixed points for the corresponding UNITY programs.

The term fixed point as defined by Chandy and IMism. "is a. program state such that

execution of any statement in that state leaves the state unchanged." and "reaching a.
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fixed point is equivalent to termination in standard sequential-programming terminology."

(64)

Definition VI.3 Given a UNITY program P, a fixed point is any state s, such that for

any execution sequence

{eo, el,...,}

of P,

3k[-, > k == en(s) = s] k~n E N

One assumption in this definition is that e, 1(s) is defined for any natural number n, an

assumption substantiated by the UNITY philosophy that every assignment statement ter-

minates. This definition permits a fixed point to be 'unreachable', in that although s may

be a state that satisfies the fixed point definition, some (or all) execution sequences of a

given program may not actually generate the state s.

Consider the UNITY program El from Section 4.4, which is repeated here:

Program El

initially

x,y = M,N MN are integers

assign

y :=x

x := x-1 if x=y II x := x+l if x-y

end

Since El has only two named variables, x and y, a sequence of states for El is a sequence

of 2-tuples, such that the first component is the current value of x, while the second is the

current value of y. So if x is initially equal to 3, and y is initially 2, then one sequence of

states for El is

(3, 2), (4, 2), (5, 2), (5,5), (,5). (5.5), (4,5), (5,5)

This corresponds to two executions of the second statement, followed by the first statement,

then two more executions of the second statement, and so on. As bhovji by continuing this
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execution sequence indefinitely, program El does not have a fixed point over the domain

(for x and V) of computable numbers (see Appendix B).

For any UNITY program whose states represent an n-tuple of the instantiations of

the named variables, these n-tuples can be considered as vectors from a subset of C', where

C denotes the computable numbers. Although finite computers actually execute programs

with finite domains, these unbounded domains suffice for the mathematical analysis. This

means that certain UNITY programs, such as E3 below, have theoretical properties that

cannot be realized on any finite machine.

Program E3

initially

x = c {c 0 0}

assign

x x/2

end

Program E3 has the property that if x is initially any nonzero computable number, then this

program has no reachable fixed point (zero is the only fixed point within the computable

numbers). But if x is initially any nonzero number from the domain of finite precision

floating point numbers, then E3 does have a fixed point, which is x=0. The formal reason

why E3 has a fixed point on any finite machine is that the domain for any individual

variable is actually a finite set of integers,

{o,..., 2N1

where N is the maximum number of bits used for variable storage, and the division repre-

sents integer division.

Denote by D a set that represents a suitable domain for all of the individual vari-

ables of any UNITY program (what D represents can vary, depending upon the analysis).

Then the state space for the program is D", where nm is the number of named variables in

the l)rogram. Any execution sequence generates a sequence of (iscrete state changes, each

discrete change resulting from a single assignment statement (all of x'hu:e components ex-
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ecute simultaneously). This means that any sequence of states generated by the execution

of the program is represented by a trajectory of points within D". The convention is that

for any sequence of states

{so , ... 2 ,

then for any two states

si, si+i i E {0,...,n- 1}

the trajectory is represented by a directed arc from the state s, to the state 5,+,. Thus

the trajectory for any (nonsingleton) sequence of states is a directed path (in the sense of

a directed graph).

Definition VI.4 Given the UNITY program F, then the domain for F is the set D",

where each element of this domain is a state vector,

(vo, vi , ..., IVII)

such that each v, denotes the instantiation of a named program variable from F.

Definition VI.5 Given the bNITY program F, with domain D', then a trajectory of

F is a sequence of state vectors contained within the domain.

The trajectories of program E3 above illustrate an important concept regarding the

proof of program termination using well founded setb. A well founded set is ,set along with

a strict partial order, such that there are only finite decreasing sequences (with respect

to the order). This means that if a trajectory represents a decreasing sequence within

a domain that is a well founded set, then that trajectory reaches a fixed point, i.e. it

terminates in a single state vector. Thus the fixed point concept is analogous to that of a

stable equilibrium point in a dynamical system (187). Consider a tLajectory for iJrogranl

E3 within the domain C (the computable numbers) that does not start at zero. Such a

trajectory approaches arbitrarilty close (Cauchy sequence with respect to the looI metric

over tile domain) to the zero vector, but never reaches it in finite time. This implies that

the donma in is not a well founded set, an(l program termination is not emnsured. However, if
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the domain is changed to the set of floating point numbers with fixed 'word length', then

any trajectory will reach a fixed point, the domain is a well founded set, and the program

'terminates'.

Definition VI.3 implies that each assignment statement in all execution sequence

cannot alter the values of the variables once the fixed point has been reached, any trajectory

for a program with a reachable (for that trajectory) fixed point terminatesin a single point.

Thus any trajectories terminating in a single point correspond to the standard notion of

p) rgram termination (217). If every trajectory for a UNITY program ends in a single

point in the state space, then that program can be said to terminate. This leads to the

idea that certain UNITY programs can be coJibidered as subprograms that can be called

-from other UNITY programs with the guarantee that these subprograms will terminate

within a certain fixed number of statement executions.

Definition VI.6 Given the UNI1TY program P, then P is a subprogram if and only if.,

there exists a Turing computablc function f, such that for any execution sequence of P,

and any (possible) initial state so, then any sequence of states

S = co(so)

S2 = el(s,)

Sit =Ca(n--I )

satisfies

k>, Ml~- k(s Mf) = s  E N

f(P) = 31 M E N

6-13



Any subprogram-will reach a fixed point within at most Al statemenit executions, where M

is computed by a Turing comiputable function dependent only on the subprogr am, and not

on either the initial state nor the actual execution bequence chosen. Titus tile bu'prograin

satisfies the intent of the 'functions* used by Chandy and Misra, in constructing UNITY

programs. Any algorithmn that can be written as a U'NITY program with a single asssign

mont statement and that terminates for an) possible input can in general be -.,n'erted into

a subprogram (i.e. any total recursive function that can be encoded as a single statement

UNITY p~rogram). If a UNITY program contains two assignment statements. and they

both must execute at least once before the fixed point is reached, then that UNITY pro-

gram is not a subprogram. since the execution model pe~rmits either statement to execute

31 successive times, for any finite Al. For algorithms that compute convergent sequences,

if the rate of convergence can be computed (and is fixed), then in general the algorithin can

be converted into a subprogram, given that Lte fixed point is defined by one or more termis

fromn the con-vergent sequence that batisf% a terindntiuon condition (such as two successive

terms within some interval).

This definition of a subprogramn implies that any subprogram can be modified into

another UNITY programn that reaches Lte same fixed point for Lte named %airiables of the

subprogram, an(I also sets a boolean variable to tue onh% after the fixed point on these

variables has been reached.

Theorem V'I.7 For any subprogrami P. there exist.- another UN.'ITY programI G. Such that

any propertyJ of P is a property of G. and all of Ihk namzed variables of P arc also inmed

variables of C. A4dditionally. the namcd variables of G that an nained in A. mach a fixed

point for any cxcntion of G. that is equal to thu fixed point reached for any exccution of

P. given that these variables have the same initial valuts tithint P and G, plus C contains

a niamed variable that is' assignmed a Ltue Ialm~ ontly after theses comzmon variables have

reachedl the fixed point.

Proof. Thme p~roof is b% con-truction ofr ovr jrograin G fronm 1. Adld to P two additional

variables tiat arp not named in I". tIer are /k. %lmirht is derlaired integer and intiahizeld

to 0. and flag. which is declared h-olemt and in-Itialized ito faiset. Fach asskniunent



statement s of P is changed into

silk k+1

which does not ect the assignments made to the variables of P, nor the attainment

of a fixed point for the variables of P in M statement executions. One additional

assignment statement is added,

flag := true if k > M

which also does not affect the assignments made to the variables of P, nor their

attainment of a fixed point -in M statements excluding this additional one. Thus

whenever flag = true, the variables from P have reached the fixed point (although G

itself is not claimed to be a subprogram, since this additional statement can execute

an arbitrary finite successive number of tines). U1

This state space concept leads to a development of the program -properties unless,

ensures, and leads-to which is parallel to the 'UNITY based development in Chandy and

Misra. This parallel development utilizes the coitccpt that if a predicate p ib truie at some

point iii the execution, this can be stated as saying that the corresponling state vector

is ai element of the set f1 of states for which p holds. Conversely, if p is false, then the

corresponding state vector is not contained within the set f).

Definition VI.8 Gzven the UNITY prograrn P oier the state space domain D", and any

p;'ogramn property (predicate) p which is a fu,ction of the state wmctor, then the statement

that the program property. p i., true at tht itstant of proginm execution that corresponds

to-state S, is denoted by

sE

where

s E 4 =# p(s)
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and

s E D true

sE 0 = false

While a program is executing, whenever the state trajectory lies within the set P3, then p

is true, and if the state trajectory lies outside the set Pl, then p is false. Since the entire

state space is denoted by D", then D' - f denotes the set that is outside the set f). With

these preliminaries, the program property definitions can be restated in terms of this state

space semantics.

Definition VI.9 Given the UNITY program P over the state space domain D', any ex-

ecution sequence

{ eo, el, ...,)

any (possible) initial state so, any sequence of states

s, = eo(so)

52 = e (s-1)

and the nomenclature

- ,=D" - f

then:

p unless q iff

si E (p n -) si+l E ( uel)

p stable iff

p unless false
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p invariant iff

so E f A p stable

p ensures q iff

p unless q A 3 k[sk E (P n -'n ) = Sk+1 E O]

p leads-to q if"

si E f) =* k[k >i ASk E I

From the definitions of unless, stable, and Definition VI.8, it follows that

p stable #* si E (P n D' ) =- s+i E (f U 0)

which reduces to

p stable < .s E 5 si+ E f

which states if p stable holds for a program, then once any trajectory enters the set f3

it does not leave the set. The definition of invariant implies that if p invariant is true

for some program, then no trajectory of the program ever leaves the set P. The leads-to

concept is one easily verified from the state space trajectories. To show that p leads - to q,

it suffices to have every trajectory that passes through f) pass through 4 eitlel at the same

,,ir a, later state.

A consequence of Lemma VI.1 is that once an execution sequence is fixed, then the

sequence of assignments for a UNITY program can be use(d to define a Solultion operator

U(n, in)

such that

U(ni n)c(rn) = X(n) 0 < M < n it, m EN

where

X(0) = so
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denotes the inital value (established by the initially section of the UNITY program) for

the state (represented as the function x). With respect to the nomenclature of a sequence

of states as

{SO, s1 , ..-,s.,9n }

then

X(n) = s,

denotes the value of the state for a given execution sequence of the program. This formu-

lation of the solution operator is basically identical to that for an initial value differential

equation problem (273), except that the domain for the evaluation of the state values is

the natural numbers. This leads to the following definition, which is also based on the

analysis of the differential equation problem.

Definition VI.1O Given the solution operator U, whose domain and codomain arc the

class of all possible states of a given UNITY program P, that satisfies

0 _<7n < i t U(n, m)X(rn) x(n) n, m. E N

and dcfine.s the solution to the differencc equation of Equation 6.2 for a given execution

sequence of P, then U is a discrete evolution system if and only if,

U(n, m) = I

and

U(i,j)U(j,k) = U(i,k) 0 < k < j <_ i

where I denotes the identity operator on slates.

This discrete evolution system is identical with that for a differential intial vAue problem

except that in the discrete case there is no strong contir ,equirement for the mapping

f, whose domain is the class of ordered pairs of nati, mnbers such that the first inumber
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is not less than the second, and (273)

f(n, m) = U(n, m)

A direct consequence of Definition VI.10, and the UNITY requirement that each

assignment yields a unique state given a unique state, is that every UNITY program has

an associated set of discrete evolution systems.

Theorem VI.11 Given the UNITY program P, there exists a unique set

UUo

whose elements are discrete cvolution systcms, such that for any given execution sequence.

of P there is a unique Ua.

Proof: This follows directly from Lemma VI. and Definition VI.10. Since each execution

sequence is unique (see Section 3.3-of (64) for the standard UNITY execution model),

then given an execution sequence the set T (from Lemma VI.1)

T = {To, ...,T, ...}

is unique, and since each U, is uniquely determined by the set T that corresponds to

each execution sequence, each U; is unique. U

As an example, consider the UNITY program El, such that the execution sequence (under

the UNITY model) consists of an alternating sequence of the two statements, with the

statement y := x executing first. This means that the discrete evolution ystem can be

defined as

U(M 1,nt) 0] if m = 0 miod 2U(m+1,mn)= 1 0

{ f f = I mod 2

where the states are represented as column vectors hobe first component is the value of

x, and whose second component is the value of y. The function f maps states to states,
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such that

f =V

Although this is a simple example, it does demonstrate that the formulation of the discrete

evolution system can take many forms, with two possibilities shown here. Whenever the

next assignment to execute is y := x, then the solution operator U(m + 1, m) takes the

form given by the matrix above, whereas if the other assignment executes, this solution

operator takes the form given by f. Thus the evaluation

U(m + 1,m)x(m) = x(tn + 1)

where x denotes the vector representat: a of the state, can be performed for any natural

number m. The value of x(i) for any i E N can be computed from the initial value x(O)

by induction.

A result of having discrete evolution systems for UNITY programs is that a trajectory

cannot intersect itself unless the intersection is the entrance to a cycle, i.e. a loop.

Theorem VI.12 Given a UNITY program P, then for any trajectory of P,

ISO, si, .

there can be no noncyclic intersections, that is

(Sjj 0 Sk-i A s. = SO:) Vn[sj+,, = Sk+] n E IN

Proof: (Based on a proof from Pazy (273)) At the intersection state, the unique

U(M, j)

and the unique

U(m. k)

imly that for j = k, the two must be equal. U
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This implies that any trajectory can only contain one cycle, since there can be no exit from

a cycle. Another consequent is that if a cycle is contained entirely within a set j), then

eventually p is stable, which can be expressed as

0 p stable

A very useful result of Theorem VI.12 is that the counterexample to

p leads-to q ii F, p leads-to q in G

p leads-to q inFIG

with respect to the unic i (see Section 7.2 of Chandy and Misra (64)) of two UNITY

programs F and G, can be demonstrated using state space trajectories in an abstract

manner, instead of having to actually write the UNITY programs F and G. The claim

that p leads-to q for the program F is equivalent to stating that all trajectories of F that

have a state s, E P3 also have a state s, E 4 where j > i. Theorem VI.12 implies that if

j > i, then there can be no cycles in the trajectory between s, and s . The same reasoning

holds for G, any trajectories of G that have a. state sk E j) also have a state st E q where

1 > k. Theorem VI.12 implies that if I > k, then there can be no cycles in the trajectory

between sk and st. But when the two programs are unioned together, i.e. FIG, then it

is possible that a trajectory from F and another one from G could together form a cycle

between the state s, that lies in j3 and the state s3 that lies in 4. Figures 6.1, 6.2, and 6.3

demonstrate graphically how this could occur. The solid trajectory in Figure 6.1 is one

from F that satisfies the p leads-to q property, while the dashed trajector in Figure 6.2

is one from G that satisfies this property. But when the programs are unioned together,

then the cycle that forms as shown in Figure 6.3, is a possible trajectory of FIG, and so

the unioned program does not satisfy the p leads-to q property.

This state space semantics leads to an alternate development of what Chandy and

Misra call the superposition structure for use in "avered program deveol)ment" (61). The

idea of siperposition is thal an underlying progran, with its associated idmned variable"

called the underlying varzablcs, can be modified by either adding anothem bta-tement (the

idea behind union), or ). adding another assignment component. to an exi.ting btatei.ent..
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the trajectory u of F (or equivalently, the trajectory u of F is equal to the trajectory t of

G restricted to the domain of F), if and only if, for any state vector of t,

(.90,61) ... ,7 Sn, S11+ , .. ,Si)

there exists a state vector of u,

(so, Sl, ... Si)

and for any state vector of ?t,

(ro, ri, ...,r,,)

there exists a state vector of t

(To, ?'I -... rn, r11+1 -. , ril)

This leads to the modified version of the rules of superposition which expresses a

more inclusive form of the original rules in the language of the state space semantics.

Definition VI.14 (Rule of Superposition (Modified)) Given the UNITYprogram F,

then G is a superposition transformation of F, if and only if, any trajectory of G re-

stricted to the domain of F is equal to a trajectory of F, and any trajectory of F is equal

to a trajectory of G restricted to F.

This generates a more inclusive form of the superposition theorem from Chandy and Misra.

Lemma VI.15 (Intermediate Form of Superposition Theorem) If the UNITY pro-

grant G is a supcrposition transformation of the program F, then cuvry prograrn propwrty

of F is a property of G.

Proof: Since the program properties of F are dependent only upon the variables repre-

sented by the state vectors in the domain of F, then every traJectory of G satisfies

the program properties of F; every trajectory of G is equivalent io a trajectory of F

with respect to the domain of F. U
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This proof implies that the theorem still holds even if there are trajectories of F that

do not correspond to trajectories of G restricted to tile domain of F. This leads to the

following more general result.

Theorem VI.16 (General Form of Superposition Theorem) If every trajectory of

the UNITY program G restricted to the domain of the program F is equal to a trajectory

of F, then every program property of F is a property of G.

Proof: Since the program properties of F hold for every possible trajectory, any trajectory

of F which does not have a correponding trajectory in G does not affect the conclusion

of the theorem. *

By extending the state space semantics to include the concepts of a projection and a

sum, a result which combines the concept of both superposition and union is developed.

Definition VI.17 A function whose domain and codomain arc a given UNIT)' domain

Din is a projection on Di, if and only if.

f(f(Dm)) = f(D'n).

This projection is similar to the standard projection from vector space analysis, except

here there is no claim that either the projection is a linear transformation, or that the

domain is a. linear space (256).

Definition VI.18 The domain Di is the sum of the two domains Dk and Dm- k , if and

only if, there exists two projections f and g on D', such that for any state vector in D'",

f(sOsi,.., sm) = (so, sI, .... s-, 0- ...: 0)

g(soI, , ,$in) = (0, ... 0, k+1, ..., ;Sin)

and

(so, , .... k) ~E Dk

(k.+...) E D - tk
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If a domain A is the sum of two other domains B and C, then each of B and C has state

vectors that represent a subset of the set of variables represented by the state vectors of A.

Additionally, the union of the two sets of variables corresponding to B and C equals the

set of variables corresponding to A, such that the intersections of these two sets is empty.

This sum is also similar to the concept of a linear space being the sum of two subspaces

(256).

The concept of the domain of one program being the sum of the domains of other

programs leads to the following theorem, uhich combines concepts from both the union

theorem and the superposition theorem of Chandy and Misra.

Theorem VI.19 (Superposition/Union Theorem) If the UNITY progranm II is formed

by the union of the program r with the program G (adding the declaration6, initializations,

and assignment statements of the program G to the program F), and if the domain of thc

UNITY program II is the sum of the domain of the program F and the domain of the

program C. then any program property of F is a property of H1, and any property of C is a

property of H.

Proof: Any trajectory of 11 restricted to the domain of F (G) is a trajectory of the program

F (G), so that Theorem VI.16 implies that all properties of F (G) are also properties

of 1I. E

If the domains of F and G (liffer, and G is a superposition transformation of F, then

in a sense G is an extension of F, since any trajectory of F corresponds to a trajectory

of G that performs the same assignments on the variables of F as does F, but can also

perform other assignments to variables of G that are not variables of F. If F and G

have identical domains though, and G is a superposition transformation of F, then both

programs generate the exact sarne trajectories. This implies that for a given domain, the

superposition transformation (lefineb equivalence c(lasse. of UNITY programs, where the

equivalence is based on identical trajectories. Thu., for x given equivaleilce class, any one

program i., asuperpo.ition tran.-formation of ain other program. ,-ven though no 1%o maN

be identical .,yntacticallk. and -here i., one fixed loh,iior (as defined 1 time trajectorie..)

for all programs in the entire class.
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Definition VI.20 Within the class of UNITY programs with the same domain, two UNITY

programs are equivalent, if and only if, one i-s a tsupcrposition transformation of the other.

This definition follows from the observation that within a set of UNITY programs all

having the same domain, superposition transformation represents a reflexive, symmetric,

aaid transitive relationship between UNITY programs, that is, it induces an equivalence

relation.

Since superposition transformations yields programs with identical trajectories within

a single domain, what type of transformation leads to the 'extension' concept within do-

mains? That is, what type of transformation applied to a program F with domain A, yields

another program with domain A whose behavior (in terms of trajectories) is an extension

of the behavior ofF. Such a transformation is the simulation transformation.

Definition VI.21 Given the UNITY program F with domain A, then the program G with

domain A is a simulation transformation of F, if and only if. G simulates F (see

Definition ILS).

If G simulates F, and both programs have the same domains, then any trajectory of r is

a trajectory of G. But unlike the superposition transformation, G may have trajectories

that F does not. A consequence of G being an extension of F is that program properties

of G are also properties of F, but the converse is not true.

Theorem VI.22 If G is a simultation transformation of F, then any program property

of G is also a program property of F.

Proof: Since G simulates F, then any sequence of states (trajectory) of F is sequence

of states (trajectory) for G. Since any program property of G must hold for all

trajectories, then these properties hold for ali trajectories of F. U

Obviously for any UNITY program there exist. the trivial similation transformation

that leaves the program unchriged, i.e. an identity Ln.nsforination. But what of the

existence of other nonLri ial siimilation tran.Jforniat6n%. Con.sider thi, iodification of the
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program E3:

Program {Simulation Transformation of E3}

initially

x = c {C Z 01

assign

x x/2 I x := 0 if x = c

end

If the first statement executed is the

x := x/2

statement. then this transformed program has exactly the same trajectories as does E3.

But if the other statement is executed first, then this program has a trajectory which E3

does not have, assuming that c is not initially zero. Thus the set of all trajectories of this

transformed program is a superset of the set of all trajectories of E3, and this program

is a simulation transformation of E3. Note that this program has the property that for

any given execution, the probability of reaching a fixed point is 1/2, whereas the original

program E3 never attains a fixed point (over the computable numbers).
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6.3 Development of UNITYI Specifications

This section presents a heuristic type search technique for developing UNITY pro-

grams as formal specifications and transforming these UNITY programs into other UNITY

programs such that specified program properties are preserved. This section also prescnts

an algorithm for transforming UNITY programs to achieve greater efficiency with respect

to mappings of the programs to multiprecessor architectures. The techniques of this sec-

tion are based on those developed for systolic arrays by Huang and Lengauer (173, 172).

A systolic array is a collection of processors with local memory, and solnm, type of inter-

connecting communications network. This communications network is usually designed

so that the processors are considered to be either a two or three d' ,nsional array. This

means each processor can comitunicate only with its nearest neighbors, where the nearest
tneighbors are -ouid by visualizing the processors at the nodes of either a two oi three

dimensional grid. Since each processor in the array only communicates with a fixed num-

ber of other processors (not counting the boundaries of the array), a systolic array is

considered a constant valencc cube. The term 'constant valence' means that the number

of communications links connected to a. single processor is constant, versus a hypercuboid

(such aL, the Intel Ilypercube) architecture, where the number of communication links is

lg(r.' vhere n is the number of processors (321). Typically systolic arrays are designed so

that the processors perfol n very few (uften only one) different opemations individually, and

the communicatios links pass specific kinds of data in a repetitive manner. Such an array

is actually a hardware implementation of a specific algorithm, a 5ystolic program (207).

This hardware implementation of the systolic program is called a systolic solution, and

such systolic slutions exist for many matrix and graph based algorithms (174, 170, 52).

The bausic :dea of this approach to developing UNITY programs is to start with a

description of the algorithm to be specifieu, and decompose it into indixidual opcrations.

An operation, which is not precisely defined, combines the properties of both an atomic

action and a functio;. a.plplication. With respect to informal specifications, an operation

corresponds to one , vent, or a sequence of events that can be considered together as one

unit. In the structural decoml)osition of a. program, an operation cot, cl)onds to any sction

of code that can be considered its a single-entry, single-exit unit such as a. subroutine. This
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section presents a. collection of rules for the generation and transformation of UNITY

programs. With respect to these rules, if a UNITY program is considered as the source

of the operations in the application of a rule, then an operation corresponds to either art

assignment component, an assignment statement, or a complete program.

Regardless of the actual type of operations considered, they are grouped according

to the following classifications (called .5cmantic relations in the systolic array literature

(173)):

Definition VI.23 Given the two operations s and t:

Idempotent Thc operation 6 ib idcmpotcnt, iff two successivc applications of s is equal to

one application of s; denoted by the predicate

idern(s)

Commutative Thc two opcrations s and t aic commutative, iff the sequential application

of s -thcn t is equal to the scquential application of t thcn s; denoted by thc predicatc

conn(s, t)

Independent Thc two operations s and t an. indepcnd.nt, iff thc application of s and t

simultaneously is equal to eithcr th cquential application of s thcn t, or thc sequential

application of t then s; denoted by the predicate

ind(s. -t)

An immediate consequent of this definition is that the independence of two operations

implies they are also commutative.

Lemma VI.24 Given the two operations s and t,

ind(s., t) =:* comin(s, t)
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For examples of idempotent and commutative operations, consider the class of total

funtions with domain and codomain equal to the natural numbers as the operations. Then

for the identity function id,

idemn(id)

holds, because for any natural number a,

id(a) = id(id(a)) = a

If f and g denote the two functions

f(a) = a+a

g(a) = a+a+a

then

comm(f, g)

since

f(g(a)) = g(f(a)) = 6a

For an example of independent operations, consider the class of all UNITY assign-

ments over the domain whose state vectors are denoted by

(Xy)

that is, x and y are the only two named variables. Let f denotc the function that maps

UNITY assignments ir to equivalent CSP processes (see Section 1.4). Then it follows that

ind(x := x+x,y := yiy)

because the arbitrary sequential application of the two operations: which correbpunds to

f(x := x+x) II f(y := y+y)

(this 11 is the CSP concurrency operator) yiel(b the same result as the simultaneous appli-
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cation of the two operations, which corresponds to

x := x+x 11 y := y+y

(this 11 is the UNITY assignment component separator). Ali example of nonindependent

operations is given by the true value for

-,ind(x := y,y := x)

since the application denoted by

x :=y y :=x

which corresponds to the simultaneous application of the two asignmentb, is not equal to

the application denoted by

f(x : y)II f(y :- x)

which corresponds to the two possible sequential applications of the two assignments. In

the first case, the execution of the two assignment components yields the swapping of

the values for x and y, whereas in the second case, the sequential execution of the two

assignments yields either both x and y equal to the original value of x, or equal to the

original value for y. Note that the UNITY program containing only the single statement

x := y II y :- x

does not reach a fixed point, but instead repeatedly swaps the values of x and y back and

forth. However, the UNITY program containing omly the two statements

x :=y I y:=x

does reach a fixed point, with the values of x and y equal.

These examples imply that there exists a direct relationship between these types of

assignment operations aid their formulation as UNITY programs mid progiam fragnuentb.

Theorem VI.25 Given the UNITY assignment statement i- and the two UNITY as-

signment conponcnis s and I, Ihcrn for any UNITY program containing the asiflnniuut

statentent n5

idein(-)

holds, which implics that the UIWT'progrom containing only thc assignmint statcniunt r

is equivalcnt (scc Dcfinition 1.20) to thc UNTY program cont'tining only thc assiglniet

6-32



statements

if

ind(s, t) A idem(s) A idem(t)

then the Ul,'ITY program containing only the assignment statement

s 1i t

is equivalcnt to the UNITY program containing only the two assignment statcmcnts

sIt

Proof: The ficst part of the theorem is direct consequent of the definition of idempotence

and the UNITY execution model, since

rIr

just represents the repeated application of r.

The second part of the theorem follows from considering that ind(s, t) implies that

the simultaneous execution of s and t is equal to the sequential execution of s and

t in either order, say s first. But idem(s) states that s can execute an arbitrary

number of times before t executes. Then idcm(t) states that t can also execute an

arbitrary number of times. Thus any execution sequence of

sIt

where s executes first is equal to the exeuction sequence of s, t s, 1,..., and if t

executes first then any execution sequence of these two statements is equal to the

execution sequence of t, s,t, s,. ... Since independence implies coinmutativity, then

the execution sequence with s first equals the one wtlh I first, which both equal the

repeated simultaneous execution of s and t resulting from

sli

Theorem VI.25 supplies the initial rc2ult needed to address the mnappilng from an informal

specification into a UNITY program. This mapping is I)ased on the relationship betw"een
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idempotence and sequential operations, the relatiuailp betueek independence and parallel

(concurrent) operations, and the relationship between coininutativity and both sequential

and parallel operations. The following rules supply the basis for this mapping, based on

UNITY programs that consist of a declare, initially, and assign sections. Whenever new

assignments are added to an assign section, the corresponding declarations and initialia-

tions must be added to the declare and initially sections, with the assumption that no

new declaration or initialization conflicts with an existing one.

Consider a specification that requires the explicit sequencing of a finite number of

steps that constitute the operation s. One technique for mapping this sequencing to a

UNITY program is to imbed s in the always sec' ,n of the UNITY program (see Section

5.3.2 of Chandy and Misra (64)). Unfortunately, this process can become unwieldy when-

ever this UNITY program contains other equations in the always section, or contains

other assignments in the assign section, because of the lack of theorems regarding the

superposition of assignments and equations. A primary reason for a lack of such results

is probably the lack of a direct correspondence between the equations of an always sec-

tion and the trajectories generated by the assign section. Another problem ib that while

syntactically correct assignments can be added %,ithout interfering with the prograim exe-

cution (although the program properties miay change), the additioti of equations into the

always section can cause the equations to contradict the assignment executions. Because

of this, this research does not recommend that the always section be used to implement

sequentially executing algorithms. Instead, the recommendation here is to use assignments,

such as the type used in Chandy and Misra to implement. specified equential execution

of nested loops (Section 5.3.3 of Chandy and Misra). The technique used by Chandy and

Misra is to map a loop into the assignment statement

s 1i t

where s denotes an assignment component equivalent to the as.iigniments in.ide the loop,

while t denotes an a-ssignment component that increa.seb the loop (for a. nested loop t in-

creases all app)ropriate loop indices) index or counter. Since tie mapping to the UNITY

program yielded a form (i.e. the s and L) for the loop that is designed to execute sequen-
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tially any number of times, then

idem(s l1 t)

This implies that the UNITY program consisting of just one such statement can be rewrit-

ten with multiple copies of this statement, without affecting any of the piogram trajectories.

This leads to the first rule of specification composition:

Rule 1 For the UNITY program F containing the assignment statement s, add idem(s)

to the fact base for F.

The fact base is a set of assertions regarding the idempotence, comnmutativit), and inde-

pendence of portions of the UNITY program.

If the specification consists of multiple sequential algorithms, then these can be added

into an existing UNITY program if certain constraints are satisfied. The concept is that

each added piece must not alter an already existing trajectory, so not to affect the program

properties that have already been proven, and the additional trajectories munst also satisfy

any already proven program properties. These constraints can be worded in terms of

the superposition translormation, the General Form of Superposition Theorem, and the

Superposition/Union Theorem of Section 6.2. The technique is to convert each sequential

algorithm into a separate UNITY program, and then to either union the separate programs,

or else form a superposition of the separate programs.

Rule 2a Given two specification operations s and t, create two UNITY programs F and

G that correspond to s and t respectively, such that F and G sharc no named variables.

The UNITY program 1H that consists of the union of the declare, initially, and assign

sections of F and G preserves all of the program properties of F and G.

The partial justification that H preserves all of the program piopcrtieb of F and G is gi'ven

in this next lemma.

Lemma VI.26 If the UNITY programs F and G shar no named variables, then the

domain of the UNITY program formed by the union of the two prograims F and G is 1hc

sum of the domain of F and the domain of G.
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Proof: If program F contains the variables

and programi G contains the variables

then the domains of F, G, and JI are, respectively:

(11,Y2, Ylm)

The remainder of the justification for Rule 2a. is the Superposition/lUnion Theorem. Since

Rule 5 can be applied multiple times simultaneously (see the UNITY implementation of

Rule .5 in ' UNITY program Search in Figure 6.4), then Rule .5 and 6 can be used in

conjuction %%ith Rule 2a to a(d absertionsb of independence into Lte fdc~t base of Lte program

II of Lte form

ind(s, t)

where s is any statement of' F, and[ t is any statement of G. Withi these independence

assertions, Rule 7 and 8 can then be ubed to nmodify Lte program 1! %itmouL changing any

of the programn properties.

Part 1) of this rule gives the add~itions to the fact base for the resulting programn

HI. As a result of applying part b, Rule 7 and 8 can be used to modify Lte as;-mment

statements of the programn 11, just as they can be uhed in conjmction with part .t andl Rule

5and 6 to nmodify Lte -vssiginent statements of tife programn 11.

Rule 2b For c'rtry pair of a~s.igrowntu kslntr u'nts suI..'mch thal . is~ in prograiy F. and



is in program G, add ind(g, i) to the fact base for II.

With respect to Rule 2, if the operations s and t arc quir(led to pass information

back and forth, this can be done by adding a third operation, say u. The idea behind it

is that it uses a set of variables that includes the (set) union of a subset of those used by

s and a subset of those used by t. Thus s and t communicate by shared variables, where

the shared variables are among the variables used by u. The philosophy embodied by u is

given in the statement by Chandy and Misra that "interfaces among modules be narrow,

limited to the sharing of a few variables or based on a small number of assuillptions about

the shared variables." (64) This philosophy motivates the next design rule.

Rule 3a Given three specification operations s, t, and u, such that the UNITY programs

F and G, that correspond to s and t respectively, contain no shared named variables, the

UNITY program 1I that corresponds to u and shares named variables with both F and C.

and the UNITY program A1 that results from the replacement of any assignment in H to

a shared variable with a nondcterministic assignment to that ,ay iable; create the UWiTY

program F by the union of the declare, initially, and assign sections of F and K!, and

create the UNITY program G by the union of the declare, initially, and assign sections

of G and I. The UNITY program fI that consists of the union of the declare, initially,

and assign sections of F and G and I1, prcsert'es all of the program properties of P and

This rule states that for two separate programs that share acommon assignment statement

(the communication statement), but otherwi.e have no common named variables, then

the union of these two programs preserves certain properties of the Lzeparate programs.

These preserved properties are thosc resulting from the replacement of the absignments to

the communication variableS in tile common assignment statement, vith nondeternuinsti_

assignments, subject to the constraints of the variable declarations. This implies that

the declarations of these shared variable-s should impose what Chandy and Misra call

the "small number of assitma ptions" about their permissible 'ahie. The folloi hg lenna

supplies some of the justification for thi.s statement about this pr-ser .tion of properties.
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Lemma VI.27 If the UNITY program P contains only the two assignment sta~ecents

and the UNITY programn 0 contains only the two assignmnent statements

iIf,

wherc the statcmcnis .3 and i share no natncd variablc.5, aad all of the a.5signmnlts within

the statement fi to the named variables common to fL and .9, or common to fL and 1, are

nondeterministic, and the UNITY program fi is equal to the union of the programs P

and C such that eve-ry nondctcrministic assignment is re-plactd with a detcrnsinitic on(, ('it

docsn't maitr whiat thc replaccmcnt, assignments arc-), then every trajectory of restricted

to the domain of P is equal to a trajectory of P, and every trajectory of ft restricted to

the domain of 0 is equal to a trajectory of C

Proof. The program 11 contains the assignment statements

iit t

where u. denotes Lte statement resulting from replacing all of the nonideterinistic

assignments in fi with~ deterministic ones, and tile idemipotence of u. eliminates the

need for two copies. Within any execution sequence of ft, if . is Lte next statement

to execute, then whatever tlhe current values are for Lte shared variables could have

resultedl from an arbitrary assigonment during Lte execution of P. Similarily, if i is

the next statement to execute, then whatever the current values are for thle shared

variables could have resulted from an arbitrary assignment during thle execution of

G. If uL is the next executable statement, then whatever Lte current 'values are for

Lte shared variables could have occurred (luring anl execution of eithefr F or C . Thus

any execution sequence for if with all of thle executions of i remove-d generates a

trajectory that is also a. trajectory of f', anud if all of iflue exerutionus of ;~ are remnoved

the resulting trajectory is also a trajectory of C.Since . and i Sluare [to conliun
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named variables, any trajectory of fl restricted to the doinain of P can be generated

by P (since the effect on the shared variables by i can be duplicated by arbitrary

assignments); and any trajectory of fI restricted to the domain of 0 can be generated

by m

Although this lemma only addresses programs P and C that contain just one other assign-

ment statement besides the one denoted by fi, the reasoning of the proof applies to any

finite number of assignment statements in either program. The General Form of Super-

position Theorem completes the justification for the statement of Rule 3a. As with Rule

2a, the application of Rule .5 and 6 permits the inclusion of new independence assertions

into the fact base for the program fI, such that the application of Rule 7 and 8 yields
permissible (without affecting the program properties) modification0 to the program II.

The remainder of this rule parallels Rule 2b. Just as for Rule 2, the application of

Rule 3b implies that Rule 7 and 8 can be used to modify the statements of the program
fi.

Rule 3b For every pair of assignment statements . j, such that . is in program F. and i

is in program G, add ind(i. i) to the fact base for II.

The argument used to prove Lemma VJ.27 can be used to prove the following result.

Corollary VI.28 If the UNVITY program F contains only thr assignment statement

and the UNITY program G contains only the assignment statenment

11 f

where the components .Z a:nd t .hart no narnd variabhs. and-all of Ihc a..iginvmn., within

thc component iL to the naimed variahks common to fi and .. or common to h anid i. ar(

nondeterministic, and the UNITY pregram fI i.% equal to thr union of the program., P

and 0 .uch that rery nondlcermini.sti as.,ignicntl is rrplact d with a det(rnin.,ti( own (it
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doesn't matter what the replacement assignments are), thtn every trajeLtory of f[ restricted

to the domain of P is equal to a trajectory of P, and every trajectory of fi restricted to

the domaiw of 0 is equal to a trajectory of 0.

Proof: Follows from Lemma VI.27, since there i. no differeni.tion between the sequential

or the simultaneous execution of . and fi, or t and fi, in the argument of the proof.

The-resulting program fI contains the assignment statements

sllu I ilk

This result and the General Form of Superposition Theorem form the basis for the next

rule, which is similar to Rule 3, but lacks the parallel structure shared by Rule 2 and

Rule 3. Whereas Rule 3 addresses a specification whose separate module., communicate

in a manner represented in UNITY as a separate assignment statement, Rule -1 addresses

communication represented in UNITY as a separate assignment component %%ithinm one or

more of the assignment statements corresponding to the modules.

Rule 4a Given two specification operations s and t, such that the UNITY programs F and

G. that correspond to s and t respectively, contain no share(: nanicd variablcs except for

statements of the form, for a specific fi.

in the program F, and

illkt

in the program G, where . and fi share named variables. i and fi shart named variables,

but i and i do not share named variables; create the UNITY proginm P by replacing any

assignment in 0 to a shared variable with a nondeturmnini.,tic a.,sigmintnt to that variable.

and creat, the UNITY program G by rtplacing aty assignment ii h to a shared variable

with a nondtermini.stic as.ignminnt to that variable. The UNITY proyamm II that cornsists
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of the union of the declare, initially, and-assign sections of F and G, preserves all of

the program properties of P and C.

Rule 4b For every pair of assignment statements, S from the programs F, and i from the

progrem G, that satisfy Rule 4a, add ind( , t to the fact base for IT

Rule 4c For any statement u of F, and any statement v of G, such that u and v share no

named variables, add ind(u, v) to the fact base for IT

Because of the inability to state that

ind(11u llift)

with only the given information, Rule 4 cannot make as strong a statement about the

in .. sion of assertions into the fact base for the program I1 as does part b of Rules 2 and

3; thus the two 'weaker' statements of parts b and c of Rule 4. As with Rules 2 and 3, the

application of Rule .5, 6; and -a yields additional independence asbertions for the program

IH, which can then be used in the application of-Rule 7 and 8 to modify II without changing

Its program properties. Applying Rules lb and 4c in conjunction with Rule 7 and 8 also

generates permissible modifications to the program I! without altering its properties.

With respect to Rule 4c, since a program property of F does not depend upon the

values of the variables of the statement r, and a program property of G does not depend

upon the values of the variables of the statement n-. the independence of u and v is true.

This is because if it and v share no -named %ariables, then an. property of the individual

execution of u is also a property of the simultaneous execution of iL and ii, any property of

the individual execution of v is also a property of the simultaneou, execution of U and v.

Attempting to make Rule Ic more general, b% applying it in an arbitrary program

to any two statements s and t that do not share variables, does. not work! For example.

if the execution of s forms the trajectory from state a to state b, and the execution of t

forms the trajectory from state b to state c, then their simullaneons execution forms thie

trajectory from state a to state c. Although rhe variables of s do not change from b to c.

and the variables of t do not change from a to b, it i6 possihle that it progran propert.% of

II could rely on tihe transitional state b. which is lIst if t- two .satnuents are combined
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into-one statement using the 11 operator under the assumption of independence.

This next rule supplies the needed criteria for adding an assignment statement to

the existing ones %ithin a given program,. while still preserving the prog--ram properties.

Additionally. along with Rule 7 and IS. this rule can be used to add an assignment compo-

nent to an assignment statement within a given program without changing that program's

properties. This rule follows from the rea-sonin- used to just ify the p~revious rules.

Rule 5a If the statemzent s shares no named variables, with any statfement within tIhe

UATiTY program F. then 1hc program G.. formed by the union of the statement s with the

program r., preserves all of the program properties of F.

-Rule 5b For the statement s of Rule .5a: add idem(s) to the firt base of the program G;

for every statement u of the program, F, add ind(s. uL) to the fact base of the program .

Rule 1 added assertions to the fact base of a given program" while, Rules 2, 3. 4.

andl -5generated new UNITY programs and added assertions to the fact base for the newv

prgas. Rule 6 is the last rule in this first group of rules, and it also adds assertions to

the fact base of a given p~rogram. Although Rule 6 can be applied at any time in the de-

velopinent, of a UNITY programn. this rule is lprimnariI% designed so that: Rule Ga is applied

after all of the other rules, Rule 6b, is applied after Rule 7. and Rule 6c is applied after

Rule S. Rule 6- simply states direct results of Lemma, VI.24, the UNITY execution model,

and the definition of independence.

Rule Ga For arty two ass-ignment statements s and I of the (*NVITY- program F. add

comm(s., 1) to the fact base for F.

Rule Oh For arty two assignhllctit statemenits r anid s. such that ind(r.s) is all element of

the fact base for F. add the two ms.erlions ind(r,rjs,) andti nd(.rfl) to thit fact basc for F.

Rule 6c; For arty threer asignizcit statcenLs r. s. anid 1. suich that ind(r-,s). ind(s.Q. arid

ind(r.t) arc all eltmitnt. of thr fact base- for F. add th( four as.'crilons indt'r.silt). intlfssj1t).

indfrrfrj., and in~j~f1to Ihc fact basr for F.

Rile 7 and S are ilifferent than the first six rules. in thiey do not -tlter the fact base

for a progiam. nor roanhin. ther programs ito one. Instead. 64al 1 of time'se rule.- tse
-,-,Prt ions fronm thle fart1 base f(or a, "vrprrm.t uoi\imasIgmiuitrit sttIeu.f

Lt#e program. %Ohilemstll t~e~in"te prorau lpr(lpprtie,. Hhim, 7 ue m he wz~ene
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property of statements within a given program to arbitrarily rewrite certain statements,

and is a direct consequent of Theorem VI.25.

Rule 7a Given a UNITY program F, then for any pair of statements s and t of F such

that ind(s,t) is an element of the fact base for F, removing the statement. S and t plus

adding the statement slit, does not alter either the program properties or the fact ba& of

F.

Rule 7b Given a UNITY program F, then for any statement silt of F such that ind(s,t)

is an element-of the fact base for F, removing the statement slit plus adding the two state-

ments s and t, does not alter either the program properties or the fact base of F.

Rule 8 Given a UNITY program F, then given the assertions ind(r,s), ind(s,t), and

idem(s) are elements of the fact base for F, and that the statements r and slit are in

F, then the deletion of the statcment r plus the addition of the statement rls, does not

alter either the program properties or the fact base of F.

This next example, while straightforward, demonstrates a fairly complex application

of a combination of Rule 3 with Theorem VJ.7 regarding subprograms from Section 6.2.

Consider a UNITY program F which has been written to implement a specification oper-

ation, whicl primarily consists of multiple a.soigument statements on the variable denoted

by x. One of the assignment statements of F is

x := P(X)

such that P is a total recursive function. Although this initial UNITY specification assumes

that P can be implemented, it is desired to encode P into UNITY and include this into

the program F. If a self contained UNITY program P is written for the function P, then

how is P to be added into F? The first step is based on Definition VJ.6. Thius the UNITY

program P is written as a subprogram, such that P and F share no named variables, %ith

the variable denoted by z representing the input to, and final value of, P(o). Thus P(x) is

the fixed point value of z in the subprogram P with z initialized to x.

Thus the two UNITY programs F and P represent the specification operations s and

t from Rule 3a. This implic, that the link between the two programs, correbpoi(ling to tile
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spvd icatiolI OPterAtioii 11, 1111941 I1w (Ieign('(l. In this ca'se! the it is basedl on the assign ment

L I.atv illent

which is in the programn P. Since at the conclusion of Rule :3a the UNIT1Y program I!

corresp~ondling to this U is uniofled with the program P, at this stage thle program F it;

modified by removing this statement. This is the F" used to complete the example.

WVhat is nteeded is somne way to pass the value of x into the subp~rogrami P by as-

signinig the value of x to z, and after 1' reaches the fixed point, assign thle value of z to

x. Additionally, once the assignment of x to zt is made, the assignment of x to z or z to x

should not occur again until P has reached the fixed point. By not assigning x to z again

* mil lOe fixed point is reached(, ensures that P) reaches the fixed point in the predicted

1nu 1nher of statement~ executions, andl not assigning z to x again until the fixed point is

rea11ched m1ilinmizes the analysis of hlow to implement the 'nondeterministic' assignment to

the shared variable x. These constraints call be satisfied in the following manner. First

* modify P' into the program G as given] in the proof to Theorem VI.7. This means that

G conitains the new boolean variable flag initialized to false, the new integer variable k

initialized to 0, ai -~lan add itiouial statement (compared to P)

flag trite if k=M

alot1ig With the modifications to the original assignment statements of P as given in the

proof of thle theoreml. '['lV Ite of Al is the inaximu in n timber of statemnt executions of

P1 flweded to reach till! fi xedl potint.

TPhe iiext step) is to enlcode the UNlITY programi // (from Ituk' 3a) corresp)onin(lg to

thUt operaition of x :=z l'( x). Tlhis program i is given by:

Programiii

declare

supndIlPI( hooleanl



assign

x,fltg z,false if flag ?,,HiIHJend~ x,lritc if -t uspolil

end

One add(itional change is nieeded, which is to rep~lace the statement

flag :=truec if k=M

ill the program G7, wit Lii l statemiet

fag :=trite if k=M 11 suspend :=false if k=M

which is justified by the assertion

bid(flag :,.ztii if k=M,siispe!nd fals~e if k=M)

a11d the fact th~at suispeti ( is not a nainedl variable of thc prograin G' (Rule 5). Tlis modified

C is the G7 tsed in the remin der of the exam pie.

Since tim result (oin I-le variable x) of any execution of the assignment statement ill

Iis dlso a rewilt of some execution of the non(Ieterinhllistic statement

x :=x if random -z if -, ran~oni

where randiom is a nondeterministic boolean mill~ed variable not named in either F, G'.

or- 1I, tihen I ( from l1.ile 3a) is formed lby repikicilig thme ansigment statement of 11 withl

thiis lionideteriniinistic one(. Thiiis is because nondleterministic assignments to z, flag, anid

* suImipefid are not iieeded, since tlIe only proper-ty of u' that is needed is that1 it reaches a

fixed point for anly Possib~le legal input value z, which is not changed by a nondleterminist ic

assigninlent to Z;an Llieitiit' do) the values of flag and suspend affect, this property or '

As stated in li' :;.I, tlh' progrmm P and11( 6' are formed ftan ow1 thiinlot of thp pro

griniis FIan 11I, 5111 fronim tin iuni of or ow programs G mand II, re.lpectively. C onsequiently.

Oiw program il. which is roritmd by ow~ iunion of oiw programsl~ F. G, antd H., pwrervsd

* ~~Of OIi rgrauin jiropert ii' of P' mii 6'. 'Ilii' only program property of 67 that is required

is' tOw I it rott'i lu' II 14 I iXI III p lijt1 frI ili n i l 1 valm' of as dlows t lhe OnipIuiah G. Which
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is true because the value of z is not changed until the fixed point is reached. Since F was

formed by removing the assignment statement x := P(x) from the original version of F,

the union of F with At to form/ P is equivalent to replacing this assignment in the original

F with the nondeterministic assignment statement from Ii. What this means is that if the

properties of the program resulting from replacing the statement

x := P(x)

in the original version of F with the nondeterministic statement

x := x if random - P(x) if -, random

do not conflict with the desired properties of the original F, then the program fI preserves

all of the desired properties of the individual specification operations.

6.4 UNITY Program Search

The generation and transformation of UNITY programs as formal specifications using

these rules follows the flow of a heuristic search. Starting with the root node (of the search

tree) which corresponds to some combination of informal specification and/or UNITY

program(s), some subset of these six rules are applied generating one or more UNITY

programns, which represents a new node in the search tree. Which of the rules to apply

requires some decision based on the nature of the operations represented in the informal

specification and/or UNITY program(s). This process continues, such that for any node

in the search tree, an application of a subset of the rules yields another new node. The

decisions as to which rules to apply at a given stage of the search can be guided by

heuristics, i.e. guidelines that indicate one choice is better than another.

If such a search process can be designed, then automating it (to some degree) would

logically follow, bince this aut.)mnation %vuld repiesent a mna.jol contribution to the debign of

(parallel) computer programs. A first step in the attempt to autoinatasuch asearch process

is the formal specification of the search. This implies tha. a UNITY progrin should be

written to specify how such a heuristic search can be conducted on UNITY programs, that

is, a UNITY program that. can manil)ulate other UNITY programs. Unfortunately, UNITY

does not have the exprebsive po er of the second order predicate logic, but i. constrained

to the first order predicate logic (see Appendix C). Thus, some method miust be found
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for UNITY programs to manipulate other UNITY programs in an indirect manner. This

section takes the first step towards this automation by presenting such a UNITY program:

This program -both represents a formal specification of the initial version of such a search

(without the heuristics), and also incorporates a novel technique for manipulating other

UNITY programs (as part of the search process).

If the heuristic based decision capability to choose which rules to apply is removed

from this search process, and instead each new node is generated from a given node by

the random application of one of the rules (assuming the rule can be applied), then the

resultant search tree is a random search tree. The collection of all of the nodes from all

possible random search trees represents all of the possible UNITY programs that could be

generated from the original root node through the application of these rules. The UNITY

program Search in Figure 6.4 generates all such possible random search trees. Note that

the variable names used in the assignments are chosen to closely match those used in tile

wording of the rules.

The UNITY program Search manipulates other UNITY programs. Since UNITY

was not designed as a second order language (i.e. not designed' to allow UNITY programs

as named variables), some type of data structure must be used to represent these UNITY

programs. The choice made here is to use the sct structure, with assignment statements

denoted as the elements of the sets. Certain properties of UNITY programs are naturally

condusive to the set structure. For example, assignment statements can be written in

any order, corresponding to the same property for the elements of a set. Additionally,

adding multiple copies (or deletig multiple copie.) of any assignment btatement to (from)

a UNITY program does not change an. of the program properties, which corresponds to

the concept of unique elements within sets. There are two other properties of UNITY

programs that are not inherent properties of the set structure, however, and these must

be handled in some other manner. The technique m.sed in the program Search is to include

these two properties in the always section, as the two statements

slit = tils
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slls = s

Whereas Rule 5 addresses one statement at a time, the UNITY implementation of

Rule 5 in program Search- applies this rule to multiple statements simultaneously, given

that each one individually satisfies the constraint of Rule 5. This UNITY version of Rule

5 resulted from applying the Search program to the original version of the rule, which was

in the form

fI := F U {s} if R5a ...

However, for multiple statements that satisfy RSa, this single assignment cant actually be

written as multiple statements of this form, each one with unique named variables. This

results from applying Rule 5 to the version of the Search program containing this original

version of Rule 5! Rule 3 can then be applied to the Search program with these multiple

copies of the Rule 5 statements, which yields the version of Rule 5 shown in Figure 6.4.

Thus the program Search was actually applied to itself, generating an improved version!

Although the current form of Rule 5 in the program Search could be written

1I := F U G if R5a ...

the use of the

(U s: Ma {s} >...

instead of the set G, is to give some insight as to how the set should be constructed.

6.5 Summary

Chandy and Misra.'s UNITY is used for the formal specification language in this re-

search effort because of its similarity to standard imperatihe programming languages, and

also because the UNITY execution model has an inherent temporal basis. This temporal

aspect )ermits both reaoning about the temporal properties of UNITY specificationh (pro

grains), and the design of UNITY specifications that exhibit certain temporal properties.

In addition to its use as a specification language, UNITY can be used as a computation
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model and has the flexibility to model many other computation models, such as shared

variable, message passing, synchronous, and asynchronous models.

The basic concept behind UNITY is that of a shared variable computation model,

with all variables either global or locally bcol)ed within quantified statements. Since a ma-

jor classification of parallel computers includes those with separate processorb each having

their own local memory (such as the Intel Ilypercube), this chapter introduces the sharcd

variable execution modcl for UNITY programs written in an extended syntax. This new

execution model includes the concept of a mapping of the statements of a UNITY program

onto separate processors that each contain their own memory and execute asynchronously.

An additional constraint imposed on this execution model is that no two assignments

(processors) can execute simultaneously. The additional sy ntax includes two additional

operators, one delineates which assignments map to a given processor, while the other in-

dicates the sequencing of assignments that are n,tpped to a given processor. An interesting

consequent of this execution model is that any UNITY program (written in the Chandy

and Misra syntax) can be rewrittep in the sy ntax of the shared variable model, such that

the UNITY program under the UNITY execution model and the shared variable program

uider the shared variable model both generate the exact same set of possible sequence of

states; that is the two programs exhibit identica! behavior. Another consequent of this ex

ecution model is that the shared -ariable model mapping of any UNITY program preserves

the program properties of the UNITY program.

This chapter also applies concepts from dynamical systems to the semantic analysis

of UNITY programs. This new approach (for UNITY programs), termed statc spacc se-

mantics, is based on the analogy between a. UNITY program state (as defined by Chandy

and Misra) and the 'state' of a dynamical system, along with the analogy between a

UNITY program and a nonlinear discrete operator (on states). As shown in this chapter.

any UNITY program can be represented as such a nonlinear operator, an operato, that is

Turing computable. Considering a UNITY program as a. dynamical operator. the sequence

of states resulting fron the program': exec.ution corre-sponds to the concept of a traitwclor7

for a dynmaical-system. One result of this approtch i. that the UNITY concept of a fixed

point is analogous to the stable equilibrium points of dynamical systems.
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An important new concept p~resented in this chapter, resulting from the UNITY pro-

gram as dynamical system paradigm, is that of a UNITY subprogram. A subprogram is

a. UNITY program that reaches a. fixed point vvitliin aL most a fixed number of statement

executions, where the fixed number is independent of the initial state and the p)articu-

lar execution sequence; it's dependent only upon the p~rogram. The importance of the

subprogram is that since the fixed point will always be reached in a certain number of

statement executions, a subprogram can be imibedded into another UNITY program just

as a subroutine can be imbedded into a standard imperative program. Additionally, thle

progranm properties of the subprogranm can be preberved after being imbedded inito ano~ther

programn.

Chandy and %Misra introduce the concept of augincrilation and unfionl, which are thle

inodification of and addition to the statemeamts of a UNITY program, respectively. Their

.5upcrpo~sition theom states that if augmientationk andl union follon, the rulcs of superpo-

.,ition, then the augmented/unioned p~rogram preserves all of the programi properties of

the origiinal lprograin. Based on the concept of U'NITY programs as dynamical systems.

this chapter p~resenits a mnodified version of the rule of superposition that leads to a more

general statement of the superposition theorem called the Intermediate -Form of Super

position Theorem. This leads to an even mnoregieneral result called the General Forin of

Superposition Thcorem, which gives Lte requirement for a, iodified version of a UNITY

program to preberve the Iprograni properties of the original in terms of the correspondhing

program trajectories. These results also lead to time Superposition/Union Theorem, which

combine-s conceptb from both thme huperposition theorem and the union thcorcm of Clmand%

antilNMisra.

This chapter p~resent,% a new approach to developing UNITY progranms, represenmtinig

formal specifications.,, based oii technmiques de'~eloped for sytlcarray dlesign (althoughm

Chandy and Misra addres-s the specification of systolic arrays usiAng UNITY. the material

lpre-iemted hiere concerns the development of U'NITY programs. not systolit arrays). Tme

techniques lpresvntedl here arp applicablP to both the generation of a UNITY program, or

the transformiation of a UNXITY Iprorain into another run programn while jpres4*rLing

the program lpropertie., of Lhmr original. The key idea i, to considt-r the umssigninvuemm state
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ments-of a UNITY program as the operations of the systolic array literature, and then to

develop rules for transforming or generating UNITY programs based on certain relation-

ships bet~veen the assignment statements known as scmantic rlations; in a similar manner

to how these semantic relations have been used for synthesizing systolic arrays.

Several new results are proved, which along with the Intermediate and General Form

of Superposition Theorems, and the Superposition/Union Theorem form the basis for a

collection of eight rules about UNITY programs. These rules address how multiple UNITY

programb can be combined so tha. the desired program properties of the constituent pro-

grams are preserved, and also how UNITY programs can be modified while still retaining

the desired program properties. These rules are designed to facilitate some type of au-

tomation, such as an expert system, because of the use of the if- then structure of the rules.

Also, the rules use a set based data structure for the UNITY programs. which relates

directly to some type of computer based automation. As a start ,owards this automation,

the UNITY prograita Search is given. This program serves as a formal specification for the

random application of these rules to the development of UNITY programs.

As stated in Section 6.4, the UNITY program Search represents the formal specifi-

cation of a first version of a search methodology designed to transform UNITY programs

into other UNITY programs such that certain progray properties are preserved by the

transformationb. These program propertie repres-,ent the desired temporal behavior of the

UNITY programs, that is, the program properties embody the temporal characteristics

defined b% the specifications. Consequently. the program Search repre.sents the beginning

of additional researmh effort that could lead to automated tool-, to help in the development

of formal specifications for both serial and parallel algorithms for multiple hardware archi

tectures. This additional research should include the trnalysis of the prograim properties

of tle Search program (which are not addressed here). and the introduction of heuristic

techniques into the program.
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Program Search

declare
R1,Rt2a,%R,'a,R4b,R,1c R5a: boolean

{These are true if and only if, the antecedent of the corresponding rule is-true)
s~t : assignment statements

{ Whenever assignment statements are used in a quantification, they are from the set of all
statements that could satisfy the quantification)

F,G3,lIff: 'UNITY programs
{ft is the UNITY program, that is being developed, i.e. each new 11 represents another
node in the search tree}

Io.Ili : UNITY programis
(UNITY Programs are represented as sets of assignment statements)

Facts : array 11 .. J of fact base
(A fact base is a set of facts, the indices are integer values for the UNITY programs)

random( ): integer
{ random(n) returns an arbitrary numb~er front 0 .... .it)

always
slit = tils
slis = S

{The two p~rimary axioms of the UNITY execution model needed for this program)

initially
(Initializations to F. G, and It dependent upon root node of search tree)

f! = o}

Ili={
1Initializations of R.2a. R.3a. R-1a. Ri1b. RItc. R-5a dependent upon initial values of Lte
programns F, 0, and 11)
{Trhe variables s and t are only used irt quantified expressions. and are not initialized)
(Initializations of ract[FJ. Fact[Ci. and ract[jll dep~endent upon initial values. of Lte ipro-
grams F. G, and ]I}
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assign
{Rulel1}
Fact~fl := rFact[]IJ U (U s : s E ft :: {idem(s)})

(Rule 2}
ff := F U G if R2al11 Fact[lj := F-act[JfJi U(u s~t sE F A tLEG :: {ind(st) ) I

{Rule 3}
fl := F u Gullt if R3a. 11 Fact[fIJ := Factiffl U (U s.: sE F A tE GC:: {inid(s,t)}) I

(Rule 4}
ff := F U G if M~a 11 Fact[JIJ := Fact[fI] U (U st : s E F A t EG A ROb:: {inid(st)}) U

(U; sit : s E F A t E C A lc ::{ind(sQ)})

(Rule Q1
ff := F U (U s : R5a :: {s} ) l act[it] := factiFi U (U s :R5a :: {ideni(s)} UJ

(U t : t E IF :: {ind(sQ)) )) I

{Rule G}
ract[fIl := Fact[Hj] U (U SAt: s E KI A t E 1! :: {comnin(s..Q)1) U

(U r~s : ind(r.-s) E Fact [II :: {iJnd(r~riis)jiid(srlis)} ) U
(U ~s~: id~rs) E Fact[fjI A ind(s.t) E.Fact[JIJ A ind(r.) E-act[!I

(Rule 7}
(This, statement constructs the set of statenients, to be removed from f!. dlenoted b Ito,

and the set of statements to be put into fl. denoted by Ili. For every sit or slt that is

removed (i.e. p~ut into lbo), a randomn selection of either sit or .,iL is put back in its place

(i.e. put into Ili)
Hto := (U s~t : ind(s.L) E ractlJ1l A s E It A t E ft : {s.L} ) U
(U s~t :iiid(s-t) E Fa.ct[ljI A slit C- ft:: {slL} ) 11

Ili := (U s.t : ind(s..) EFact[fIj A s C- I! A t E fl :: sL} if randoin( 1) =0

{sllL1 if random(l) = I ) U
(U s.t : ind(sQL E Fact(JIJ A slit E ff :: {s.L) if randorn(I) = 0

(slit) if .randoin( ) 1 I
ft := (1 I to) U Ili

(Rule -S)
(This statement uses: Ito and Ili as Rule 7 does. Giw'ri the farcts, ind( r.s).ind(s.U). and

idlemf(s). the two.-.tateinents% r and -slilt can arlbitraril% be converted itbt the stateinzenLs rj.

andl slit (the fiat batse is unchanged))

Ilo := (ii r.t-.t : nu(r.s) E Fact[fII A htd(s.t) E Factl[J it r g- fl A Ii'

li (U r.s.t :ind(r.N) C- Fac[Jij A indl(s.t) t Fact[flj A r t- ft slit 'C I

fr.slitI if randt-nill I ) 0 fri{ri.slt if randni( 1) 1
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{New Search Node Assignments) (Once a new ft has been generated. then all of the vari-
ables can be reinitialized accordingly)
F.GJLlR2.RaJ-,a.lb.Rci.aFactlFJFact[G.Fact[ll] := (new values} if fI - {}j
Jf:Fact[fJ1:l~oojli :={}.{}.{}.{) j i It {) I

end

Figure 6.4. UNITY Program Search
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VII. Conclusions and Recommendations

The major goals of this research effort are twofold: first, to demonstrate that much

of the formal, mathematical analysis in theoretical computer science can be recast in

terms of the topology of complete metric spaces; and second, to develop a methodical,

transformation based technique for dex doping UNITY programs that represent formal

specifications.

7.1 Conclusions

With respect to the first major goal, the topology of complete metric spaces does

provide a tool that can be used to both recreate important results about computational

models, and to dLvelop new results about these same computational models. The support-

ing mathematics used iii this research represents the type of topics, and level of presenta-

tion, of an advanced undergraduate or graduate level course in real analysis, such as from

the text by Apostol (8).

This research presents the class as the basic concept of grouping things together,

instead of the set. However, the most important results presented only required classes

that were also sets. This means that a mathematical background based on sets would

suffice to understand and apply the major results. The two primary uses of the non set

based mathematics in this research are to develop the formal definition of a thcory, which

i., bazed on- calegorics, and the inclusion of the computational models within the category

of complete metric spaces.

The complete metric spaces used in this research have as their elements instantiations

of computational models. Although the mettics used in the diffcrent spaces could hate been

developed completely independently, that approach would have violated the underlying

theme of cohesiveness that this research attempts to preserve. Consequently, this effort

sought what could be called a baseline mctric, which all of the other metrics would be

based upon. This search was successful, and resulted in the metric (the nietric is not new)

used to develop the metric space whose elements form the frcc monoid (138) of symbol
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strings based on a finite alphabet of symbols. Since computational models are also based

on symbol strings, this metric space is a logical choice for a baseline metric space.

It is shown that although the traditional concept of completeness applied to this

metric space yields symbol strings that could not be generated by any computing device

(Turing machine), all of the computablc strings are elements of this complete metric space.

Consequently the Turing computable complete mctric spacc is defined, a new definition

that equates the completion of a metric space to only those Cauchy sequences which are

computable. An intriguing result is proved that demonstrates the connection between this

Turing computable complete metric space and the original analytical work by Scott (311)

regarding the set of all possible finite and infinite stfings of symbols formed from a finitc

alphabet. This work by Scott eventually led to the type of mathematics used ia computer

science with respect to which this research presents an alternative. Additionally, the metric

space of symbol strings is shown to satisfy the category based definition of a thcory.

This investigation demonstrates that other metric spaces based on diverse compu-

talional models can be developed from this baseline metric space of a monoid of symbol

strings. This is first shown for the finitc automaton, a computational model that can

represent the computational power of any finite (i.e. real) machine. The metric defined

for this space of finite a.utomata is a direct application of the one defined for the sym-

bol strings. Further, this metric is shown to be consistent with an intuitive concept of

'closeness' between two finite automata.

Several results are proven that connect the concept of the completion of the met-

ric space of finite automata with the standard hierarchy of computing machines. These

results yield a. hierarchy of sets, which is shown in Figure 7.1. In the figure, the term

'completed regular' refeis to the sets accepted (oi generated) )y machines coriesponding

to the computational power of the Turiiig computa.ble completion of the metric bpace of

finite automata. The inclusion of regular sets in recursive sets is strict (i.e. there are

recursive sets which are not regular), but neither the stitne.ss of the inclusion of recursi've

sets in completed regular sets, nor the strictnesb of the inclusion of completed regular sets

in recursively enumerable sets is proven.
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Figure 7.1. Topolgical Based Hierarchy of Sets

The communicating sequential proccssses (CSP) (165) computational model is also

analyzed using this crriple't( metric space viewpoint. A metric space of deterministic CSP

processc- is developed using basically the same metric used in the metric space of finite

automata. Certain major definitions from Hoare's book on CSP are shown to be equiva-

lent to standard definitions from metric space analysis. For example, the definition of a

continuous function that maps CSP processes into CSP processes is shown equivalent to

the metric space based definition of continuous functions. And the CSP concept of.a con-

structivc function mapping processes into piocesb is bhown equivalent to the definition

of contraction mappings over a metric space. Based on this equivalence between construc-

tive and contractive mappings, this research demonstrates that what Hoare termed the

"fundamental theorem" of deterministic procebses is equivalent to the contraction map-

pig theorem, a major result from metric space analysis. Because of this equivalence of

the metric space analysis of CSP processes and the analysis from Hoare's book, this effort

gives an example of one of mans theorems from metric space analysis that could be added

to the literature on CSP processes.

UNITY, which is classified as a computational model because of its execution model,

is also analyzed using the concept of complete metric spaces. Compared to the finite

automata and CSP models, the approach differed ".itii UNITY; instead of developing a

metric for UNITY programs, several theorems showed that any UNITY program can be

mapped into an equivalent CSP process. The definition of equivalent requires that the

UNITY program and tie CSP process have the same set of atomic actions, and that a

sequence of atomic actions is possible for an execution of the UNITY program, if and only
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if. the saime sequence is possible for some execution of the CSP process. This mapping is

used to define a metric space for UNITY programs such that the metric distance between

programs is evaluated by mapping the programs into equivalent processes in the CSP

metric space, and then evaluating the CSP metric distance between the processes. Thus

the mapping is an isometric imbedding, since it preserves metric distances.

Part of the analysis of computational models is the development of a semantics for

or reasoning about these models. The formal system used in this effort for the semantic

analysis is the temporal logic. This research shows that the branching temporal logic

supplies the necessary tools to reason about finite automata, and also to duplicate the

proof of process correctness technique used in Ioare's book on CSP (165).

With respect to the development of an executable program, the approach of proving

the program correct after it has been written has not been widely accepted by the software

development community. This research supports an alternate approach, which is based on

proving the correctness of an informal or formal specification, and then transforming this

(in)formal specification so that the original proof of correctness is preserved. The second

major portion of this research effort addresses this alternate approach through the use of

the formal specification language UNITY.

To facilitate reasoning about the execution model for UNITY, another semantic

model called the state space semantics is introduced, that is based on the concept of

UNITY programs as nonlinear dynamical systems. This state space semantics is shown

to lead to intuitive proofs of statements from Chandy and Misra's book (64), and to

also permit bhort proofs of theorems that represent more incluive veisions of theorems

from Clhandy and Misra. The state space semantics is used to define tile new concept

of a UNITY subprogram. The subprogram is used much as a subroutine would be in a

sequential language.

State space semantics permits analysis of UNITY )rogramns that, is more black box

oriented, i.e. the internal structure of the UNITY )rogram is not so important, ersus the

white box approach of Chandy and Misra, i.e. more colncerned %ith tire actudl structure of

the assignments within a, UNITY program (264).
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State space semantics is combined with the concept of indcpcndcnt, commutativc, and

idempotent properties of assignment components and statements fromn UNITY programs, to

develop an algorithmic approach to the gencration and transformation of UNITY programs.

The generation is from either informal versions (specifications) of the programs, or from

multiple programs that need merging into one program. This algorithm is designed such

that both the merging of multiple programs into onc, and the tra.nsformation of a program

into another program, are accomplished while preserving the desired program properties of

the ancestor program(s). This algorithm is presented as a UNITY program, called Search,

which was itself transformed into its final form using the original version!

7.2 Recommendations

With respect to the first major goal of this effort, the topological analysis of computa-

tional models demonstrated that major results pertaining to these computational models,

can be duplicated and augmented using the basic concepts of complete metric spaces.

However, the foJlowing theoretical questions remain unanswered by this research effort:

1. The topological analysis of finite automata yielded partial results connecting the

classical hierarchy of computational machines, and a hierarchy based on complete

metric spaces. One missing piece of this connection is whether the computable com-

pleted metric space of finite automata is equal in computational po%%cr to the spac(

of Turing machines, instead of the inclusion relation shown.

2. The topological analysis of CSP generated results that had been proven using other

techniques, plus new results. But this analysis is restricted to the deterministic

processes only, and should be extended to nondeterministic processes.

3. The metric space of UNITY programs is based on an isometric imbedding (into)

from UNITY programs into the metric space of CSP processes. It remains to be

shown whether or not this mapping is also surjective (onto). Two other unanswered

ques0;ons are: does there exist a homeomorphismn between the two metric spaces,

and does ti,- completion of the metric space of UNITY programs include elements

that are not UN'I Y programs.
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The second major goal of this research effort develops theory and techniques for

developing UNITY programs as formal specifications. In addition to the many accomn-

plishments, there still remain many areas for further research:

1. The shared variable model for UNITY programs presents the groundwork for a more

comprehensive a)proach to the mapping of UNITY programs to actual machine

architectures, such that the syntax of the UNITY program guides the mapping.

Other syntax-execution model combinations could be developed for various types of

architectures.

2. The analogy of UNITY programs as dynamical systems can also be developed fur-

ther. Can concepts such as stable and unstable equilibrium points be applied to the

fixed points of UNITY programs? What constraints must a UNITY program satisfy

with respect to the state space semantics so that certain properties of the program,

such as a reachable fixed point, are valid? What are the state space equivalents

to the theorems from parallel progfamming, such as the Asynchronous Con'ergence

Theorem (39)?

3. The replacement of nondeterministic assignment components for standard deternin-

istic UNITY assignment components can be further developed, and should lead to

additional rules which can be added to the program Search.

4. The additional evolution of the program Search should occur, especial]:, -:ice this

prograi can evolve by applying its rules to itself. What are also needed are the

necessary and sufficient constraints that force Search to reach a fixed point.

7.3 Final Comments

The topological analysis of computational models presented in this the.is repre:eitb

one solution to a current problem at schools such as the Air Force Inbtitute of Technolog%

(AFIT). This problem is either tile lack of mathematics courses to support high level

theoretical computer science. and/or the lack of room in Lite students schedules foi such

courses. These math course would have to cover such topics a. lalticuc, domatin.s. .5zgqIahutc

algebra and calcgory thcory, so tb to col rehpond to the current tren(ls in co nputel :eience
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research. The topological analysis presented here has duplicated niany of the major results

from the theoretical analysis of computational models, plus has supplied new results. Thub

theoretical com)uter science research can be accomplished without introducing any new

courses, but instead by having the student take a real analysis sequence.

The development of the program Search represents a. milestone in the evolution of

UNITY into a useful framework for the design and implementation of parallel algorithms.

In its present form Search can provide the software engince with the techniques needed

to develop UNITY programs as -formal specifications. However, Search limits the range

of informal specifications, and the range of possible collections of UNITY programs to be

merged, that a single UNITY formal specification can be developed from. Since the Air

Force will rely even more on parallel algorithms as future airborne and ground based com-

puter systems evolve into more complex distributed systems, the continued improvement

of the Search program and the ideas it represents, will oriy enhance the Air Force's ability

to design and manage software for these systems.
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Because, finally, lie saidl:
"This is really great stuff!
"And I guess the old alphabet
"ISN'T enough!"
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Appendix A. Relation Based Logic: Modal, Temporal, and Predicate

The-first section from this appendix presents a description of modal !,.. 'hich is

used for both the specification and verfication of programs (2, 30, 257). This introduction

includes the primitiGe nodal unary operator 0 (henceforth), along with the derived -nary

operator 0 (eventually) and the derived binary operator -_ (leadsto). The basic cunept

behind an% .,Aerpretation of the meadtings of the modal operators, the fraic, is defined

and illustrated with examples using different types of binary relations J underlying

sets. Definitions are given for the terms syntax, interpretation, and sen. .ntics, dnd the

syntax, semantics, and possible interpretations are presented for the modal logiL. This

presentation stresses the generalized nature of this definition of a modal logic, which leads

to the definition in tIe second section of a temporal '.)gic as a modal logic with a specified

type of underlying set and binary relation constituting the logic's frame. This section also

defines the syntax and scmantics of the temporal logic used within this thesis, along with

possible interpretations. Additionally, the standard temporal logic primitive operators 0

(next) and U (until), along with the derived operator U (unless) are defined. Finally, the

third section presents a definition of the nredicate logic as another special case u.i L~e modal

logic based on certain types of frames which lead to logics without the modal opera ..

along with the possible interpretations, semantic, and syntax of the predicate as'ertions

used in this thesis.

Go'1att's book (139) ies a definition of modal logic similar to the one presented

here, whi!, the book by Cresswell and Ilughes (176) contains more detail about modal

logic. The book by Rescher and Urquharl (300) supplies additional information ,tbout

temporal logic, whereas a shorter reference for temporal logic vvould be Chapter -1 froin the

published version ofllailpern's dissertation (1.17). Tihe first three chia.pcrs friom Manna and

Waldinger's (Volume 1) book (225) gives much more detail regarding both propositional

and predicate logic, whereas Chapter 2 from Manna's book (217) presents the material in

a more concise (read 'denser') manner.
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In this research the symbols used to represent functions and predicates are uniquel

specified without regard to arity, so that

P(*,*)

P

all represent the same function or predicate of arity two. The P(*, *) denotes that P has

two arguments, but is not evaluated, while P(x, y) represents the evaluation of P at (x, y),

where the evaluation is either symbulic or instantiated. The symbol P bimply represents

the function or predicate, in effect giving i. a name. Note that literature based on symbolic

logic programming (such as PROLOG) often Ui~ierentiates between P and P(x, y) as two

different entities (76).
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A.1 Modal Logic

This section presents the definitions of the terms syntax, interpretation, and seman-

tics, and then gives these for the modal predicate logic, which is called the modal logic

within this thesis. The modal logic definition is designed so that the standard temporal

and predicate logics can both be defined as subsets of the modal logic.

Given a finite set of symbols from which formulas, or strings of symbols from this set,

can be formed, a syntax is a collection of rules defining the formation of certain formulas. If

the syntax is that of a grammar, then the formulas formed from the s)ntax can be grouped

into a set called the language of that grammar (327). With respect to the modal logic, any

formula formed from the syntax is called a well formed formula, or wff. Thus the modal

logic can be informally defined as the study of the well formed formulas. In addition to

the standard syntax of the predicate logic, the modal logic adds (, a minimum) the two

modal operators denoted by 0 and 0. Although these operators extend the semantics of

the predicate logic, many of the proof techniques, including rcsolutionL (100), can be carried

over from the predicate to the modal logic.

Once a syntax has been -defined, the next step is the idea of an intcrpretation. Given

a finite set and corresponding syntax, the interpretation is a function that maps certain

symbol strings from the well formed formulas into a, codoiaiii % hohe element, are called the

valucs of the interpretation (225). The purpose of these values is to give some meaning to

the symbol strings that are not the operators within the wfl'b. Each different interpretation

can have a. different mapping, a different codomnain, or both. for the modal logic within

this thesis, the codomiain of the interpretations includes con.stant. vartablc,, and fuiLction6.

Note that relations were not included, since any relation required by a wff will be recast

as a. fumction whose codomain is time set of atomic symbols Lruc and falsr. For example.

consider the relation < over the natural numbers. Instead of statements of the form

(2,3) E<
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(see Section 3.2 for a description of relations), the relation is represented wvith a predicate

function, say p

p: N x N , true, false}

such that

p( 2 , 3) = true.

The final concept is semantics, which is a. function that maps the remaining symools

of a wif that are not in the domain of the interpretation into a fixed codomain whose

elements are called the mcaning, of the s nbol strings. Ab opposed to the interpretation,

the mapping and the codomain of the semantics remains fixed for a given modal logic.

Thus the semantics presented in this appendix holds for every v ff %ithin this thesis. Taken

together, the interpretation and the semantics absign to ever3 synibol string within the wff

some form of meaning, so that the entire wff call be given some meaning. Within modal

logic, the only possible meanings given to a vfl* are true, false, or undefined. So the

combination of the interpretation and the semantics is a partial finction whos.e codomain

is the set {lru, falsc). The tern interpretation is used to signify this combination of

the semantics and interpretation into one function, so that the interpretation of a, wft is a

predicate function whose domain is the set of all wffs.

The following definition of the syntax of the modal logic (lifters from the standard

presentation (139) in that tme syntax of the predicate logic is included, instead of first

defining the predicate syntax separately and then adding the syntax for the modal oper-

ators. Additionally, this appendix l)resents the modal predicate logic, and iiot just the

modal propositional logic (functions, including predicate functions, can be represented as

variables in the formuilas).

The set of symbols and sy itax is given in two steps, the first being those primitivm

symbols that are used in the definition of the initial syntax. and then the additional

svmnbols that can be derived from the primnitive symnobl., along uith the sy ntax governing

these additional symbols. The first set of primitive symbols consists of:

I. The upper and lower case letters of the English alphabet.

A-I



2. The arabic numerals 0 thru 9.

3. The symbol false.

4. The unary logic operator -n.

5. The binary logic operator ==.

6. The unary modal operator 0.

7. The logic binary relation =.

8. The arithmetic binary relation

9. The quantifiers 3 and R!.

10. The punctuation symbols 'C, ')', ']', and ','.

The corresponding syntax for this set of primitive symbols is given by:

< wff > ::= < term >=< term > Ifalsel < pred > I < wff >==-< wff > I- < wff >

I < quant >< var >< wtff > 10 < wff > 1[< wff >]I(< wff>)

subject to the following constraints:

Right associativity: FbGcJI if and only if Fb(GcH).

Binding strength: uvbG if and only if (uF)bG.

where

< wff > is a well formed formula.

< term > is a term.

< pred > is an evaluated predicate. (See Section 3.* for the syntactir form of ail evalulated

predicate)

< qnant > is a quantifier.

< iar > is a variable.

A-5



and F. G. and H are wffs, b and c are binary operators (either logic or modal), and u is

a unary operator (either logic or modal). Thib forviat for presenting the byntax of a wff is

called 3ackus-Naur form (3NF). The ::= can be read as 'is'. while the vertical bar I is read

as 'or". Thus if < formula > represents any formula, and < not - wff > any formula

that is not a wif, then

< formula >::=< wff > j < not - wff >

can be read as 'any fornula, is a wff or is not a wff'. which is a true statement.

To conform with the standard practices for the predicate logic (217). the following

libt. those interpretations that will aluavay hold 1,rue for certain stnbol -Strings within the

wiTs used in this thesis. Given any wiT. the following hold:

Any symbol(s) representing x constant is a term.

Any symbol(s) representing a variable is a termn.

Any symbol(s) repreenting a. function is a term.

Any symbol string representing an evaluated function is a term.

Although our li.t of terms doe. not include relations (see Section 3.2). we can include

relations I% con.idering them -L-, predicate.s. Thus the relation < oi the nmaLlrai number,

defines a predicate. sa-y p. -inch that pix. y} e-duate.N to true if x - I . -,. it ewduattes,

falst.

Addiinali). certain other interpretatins are i.sed without expliitl. li.sting theim. if

the% repre -ett. -andard iimalhaenjatkal or logkial teri., or preditates. Fit examiple. wtitler

the wff

[xI -X1

u hich Con;ai. 1h . mil -trin"_. r ._ X. wliin- inl,.rprelatiin .v, an ,.-aleal, pri.firat

imp~lies that iii, .nuire string is a wff.

Th,. N,,,ok It St-hming (31111 pr.,-nts a si1uiilau illinii,,n ,f well frmir! frml.

.'hile t11. h1o,k h Mranna 217) pr,-,znas . inre ,,i, rh°-:.i4 ,ld-initioi #of -If-. thal
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includes the 'IF THEN ELSE' and the 'if then else' operators, neither of which is needed

for this thesis.

The second set of symbols contains the derived symbols and operators, in that they

can be derived from the primitive symbols and operators presented above. This set con-

tains:

The atomic symbol true.

The binary logic operators V, A, =, and .

The unary modal operator 0.

The binary modal operator

The quantifier V.

The derivations are given by:

true if and only if -,false.

F V G if and only if -,F == G.

F A G if and only if - (F :=: -,G).

F G C if and only if (F = G) A (G = F).

F - G if and only if (F== G) A F.

OF if and only if -0-,F.

F -.+ G if and only if O(F == CG).

VxF if and only if -x-F.

where F and G are wffs.

The following two examples present both a wff and a formula. that is not a wff. In

showintg that the first is actually a wff, the combina.tion of the syntactic analysis with a

partial interpretation demonstrates that whether a, foi mala ib a wfrof not ma.. depend upon

the interpretation, since syntax alone does not always resolve what a, particular symbol

string is. Consider that

P(X, y)
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could be either an evaluated predic 'e, which makes this formula a wff, or an evaluated

function whose domain is the natur auimbers, making the formula a term. The following

paragraphs present more detail regarding interpretations.

The first formula is

0:3x[f(x) = 0 A Vy[p(y) ==* q(x,y)]] (A.1)

To show this formula is a wff, break it up into appropriately choscn pieces and then combine

the pieces following the rules of the syntax. If p(y) represents an evaluated predicate, then

it is a wff, so that if q(x, y) is another evaluated predicate, then

P(V) == q(x, Y)

is also a wff. This implies that

Vy[p(y) = q(x,y)]

is also a wff. If f(x) is a term, based on letting f(x) be an evaluated function, then

f(x) = 0

is a wff since the constant 0 is a term. This implies that

f(x) = 0 A Vy[lp(y) =* q(x, y)]

is a, wff, which leads to the conclusion that the entire expression A.I is a wff. The second

example is the formula

3f[f : -X- Y]

which is not a wff, although for any two sets X and Y it can be shown that this is a true

statement with the unambiguous meaning that 'given any two bets there exists a function
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whose domain is the first and whose codomain is the second'. This is not a wff because

f :X - Y

is not a well formed formula, although it could be considered all evaluated predicate (but

is not considered such for this example).

The definition of the alphabet of symbols used with the modal logic differentiated

between the equality used with predicates and the equality used vMth arithmetic construc-

tions even though both are the '=' symbol. This is to emphasize that the formation of the

wff s = t from the two terms s and t requires the class definition of equality that goes with

the class (see Section 3.1) that both s and t are element- of. This also means that s = t is

only defined when both s and t are elements of the same class. However, the syntax does

not preclude forming wffs such as

(S = i)= (u = V)

which, if both equalities inside the parantheses are undefined, yieldl the true interpretation

thal 'undefined' equals 'undefined'. In this example, the term s z t is considered a constant

whose value is undefined. Additionally, this syntax substitutes the binary operator ,

for the equivalence operator - used by Manna (217, 225), since F G C, where P and G

are wffs, is defined exactly the same as Manna's F - G.

Now that the syntax has been defined, the next step is to define the concept of an

intcrprctation. This presentation is an informal definition of an interpretation, the book by

Manna and Waldinger (225) gives a formal definition that paiallel. this one. Well formed

formulas contain symbol strings that represent both predicates and other t, pes of functions

(many texts present these other types of functions as partial functions whose domains are

the natural numbers), constants and variables. These are tie sy mnbols that are the domain

of the interpretation, whereas the other symbols such as the quantifierb and the binar3 logic

operators are the domain of the semantics (see following paragraphs). An interpretation

is a mc:pping that assigns to each constant, variable, fuimction, and predicate symbol(s)

a. value. Informal], a. value is ,omething that has meaning to us, where these assigned
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values determine the true or false evauation of the wff, based on the semanitics given in

the following paragraphs. Thus an interpretation is a mapping from certain bymbol strings

within the wff into a specified domain, such that the interpretation plus Jie semantics

permits the wff to be evaluated as either true or false. Note that a partial interpretation

assigns values to some or all of the symbol strings within the wff, but does not premnit the

wff to be evaluated as either true or false.

As an example, consider the following wff

Vf[3x3q[p(x) -= q(f(x))]] (A.2)

One interpretation consists of the following assignments:

1. f is an element of that class of functions that have a defined evaluation for at least

one element of their domains.

2. p is a predicate such that p(x) evaluates to true if x is an element of the domain of

the function f, else p(x) evluates to false.

3. q is a predicate.

Observe that an interpretation does not require the same level of detail foi like objects.

The variable f is described in some detail, but the variable x is not addressed at all, while

the variable q is described in less detail than f. Additionally, the predicate q can be used

as a. variable, in which case it's represented just as 'q', and can also be represented as an

evaluated predicate, as 'q(f(x))', a symbol string that is a wff by itself. As demonstrated

in the following paragraphs, this interpretation contains enough infoi mation such that the

value of the wff can be determined using the following rules of semantics.

-,F means 'not F', such that if F evaluates to true, then -,F evaluates to false.

F ==* G means 'T implies G', such that if F evaluates to truc and G to falsc, then

F :=* G evaluates to false, else to true.

I means 'there exists', such that 3x[F] evaluates to true if there exists soie x such that

F evaluates to true.
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3! means 'there exists a unique', such that 3!x[F] evaluates to true if there exists a unique

x such that F evaluates to true.

Note that the modal operators are not defined, sir. e they are not considered to have an

intrinsic meaning. Instead, depending upon the context within which the modal logic

is used, the modal operators are assigned meanings consistent with the context. One

example is the temporal logic defined in Section A.2. Another example is a logic based on

nondeterministic program termination, such that

OF

would mean 'After every possible termination of the program the wff F evaluates to-true',

while

SF

would mean 'After at least one possible program termination the wff F evaluates to true.

Also note that the meaiings of the derived symbols follow directly from the primitive

symbols, so that

VX[F]

means 'There does not exist an x such that aot F is lrue', or the more accepted 'For all

x F is true. The symbol # means 'if and only if', and the symbol - means 'leads to

the derivation of', or *lcads to the truth of'. The symbols V and A mean 'or' an(l 'and'

respectivel . The derive(l modal operators - and 0 have no inherent meaning, although

Section A.2 gives meanings fom these modal operators within the context of temporal logic.

With these semantic definitions, the previous sample wfi" (see A.2) can now be as-

signed a meaning that l)ermits its xltation as either true, falsc, or undefined. This wff

is
Vf[3x3q[p(x) -- q(f(x))]]

and means 'There exists a function which has a. del,,ed evaluation foi at leabt one element

of its domain such that there exists an element ol its domain such tha there exists a-
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predicate which evaluates to true for the function evaluated at this element'. That this

wff is indeed true-can be seen by letting the predicate be a test for whether its argument

is an element of the codomain of the function.

The following concepts regard the correspondence between the different types of

modal logic and the forms of wffs that are always true (i.e. theorems) within these logics.

The first definition is an informal one for the word schema. A schema is a set of wffs

that all have the same form, with respect to an additional syntactic rule. For example,

within the temporal logic of concurrent programs (see Section A.2) those wffs that have

the form

S<wff>

are called invariants. Thus we could call such wffs members of the invariant schema.

The next definitions involves those different possible interpretations for which a given

wff is truc. The combination of an interpretation and the semantics establishes the evalua-

tion of a wff as either true or falsc. This leads to the concept of a domain of intclrpr.tation

as the domain for the interpretation(s) of either one wff, a schema, or a class of wits. For

example, the wff

Vx3y[x 0 y A f(x) =f(y)]

could have as one domain of interpretation those partial functions whose domain and

codomain are a finite subset of the natural numbers, and as another domain of interpre-

tation the two functions sin and cos. The selection of any member from either domain of

interpretation is sufficient to determine the value of the wiT. If all domain of interpretationb

are restricted to be sets, then the following definitions can be made.

Definition A.1 A frame is a two-tupIc (S, R), such that S is a domain of intcrpictation

(a set), and 1t is a binary relation 11 C S x S.

This leads to the following definition.
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Definition A.2 .Given the framc (S,R.R), a set 14 of wffs whosc domain of interprctation

is S, a model is the three-tuple (S, 11, 1/), such that V is a function

VW : - 2s

Further, given the model (S, R, V), the interpretation s, s -E S, the wffs v, w, v E 14 and

w E W, then the assertion

1= W

can be evaluated recursively as follows:

", i=, false

I-s -rW €=*' -, Ihs ?.

Is(v = . W) 4=#. (I=, v = 1I 0 i)

O= Ow Vt[(t E S A (st) E R) ==I, V v]

1, w 4--* w 1(iv)

An equivalent definition is that V is a set

V C W1

such that all of the above statements regarding the evaluation of

hold. except that

= iv a, E 1

instead of

IV i- E 170v)
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Note that F-, (and the J= of the next definition) binds Lightei than any binary operator,

so that

where B is any binary operator and v and w are wffs. Often the bi 1 ding prccedence ib not

strictly followed if the intent is clear from the text, such as when

j vBw

is intended to mean

= (vl~w)

The nomenclature k, w is taken to mean that the wff w evaluates to true at the

point or interpretation s. For certain wffs in 1'V, the function V maps a. wff w into a

subset of S, V(w) C S, that contains those points in S for which the wff evaluates to

true. The equivalent definition, where V is a subset of 14' instead of a function, yields the

concept that V contains those wffs that evaluate to truc regardless of the intelpretation

s. In other words, the set V is a set of axioms that are given for the logic and holI for

all interpretations. One example would be the proof laws regarding the sat operator for

CSP (see Section 4.3). Since 1 is only a. partial function, or typically only a proper sub. et

of the set of all wffs (V = W4' yields an uninteresting logic where every wff is true), this

definition supplies a recursive algorithm that permits the evaluation of ki w for which

V(iv) is undefined or iv is not an element of V. For example, consider tile wff

F == OF (A.3)

such tha.

s E V(F)

where s is an element of S. If the binary relation R, R C 5 x S, is the ideotity relation,

that is

Vs, t[(s,t) E R -#=* = . ]
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then assuming that

j=F

for s E S, implies that

since

I=., F Vt[(s, 1) E R~ F]=

because t must be equal to s for this R. Thus the wif A.3 must be true. This result wvill

frmn the basis for the predicate logic in Section A.3

Note that the statement above that

is equivalent to claiming that

since

(V == IV) -# (-,v V IV)

This implies that this appendix piesents a mnodal logic that also p)ossesses the modal Ais-

junction propcrty (133). since the wvffs v and IV can represent wffs from the schemna Ott.

This example along with p~revious analysis has usedl the conlcep~t of a true or false wff,

without formalizing the idea. The following presents the formal definition of a true wif,

andl the default dlual covcept is that any wvff that is not true is eithr false or unidfined.

Definition A.3 Giv,--n the model (S, R~. 1/), the toff IV is true, denoted by

if aild only if

Vs[s E .5 =1 IV]
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A schema is true if and only if every wif within the schema is true.

The next definition abstracts the concept of truth to that of validity, which is truth for all

possible models.

Definition A.4 Given the frame (S, 1), the tvJf w is valid if and only if

for all models (S, 1, V). A schema is valid if and only if every wff within the schema is

valid.

These definitions of 'model', 'true', and 'valid' which are based on the definitions

used in the symbolic logic literature (139), differ from those u5ed in the computer science

literature. The definition of true from Definition A.3 corresponds with the computer

science definition of 'valid' as a. wff that evaluat-s to true for every interpretation, while

the computer science literature defines a model as an interpretation that results in the truc

evaluation of a wff (40).

Based on these definitions, tl..e fulowing theorem presents a result from the modal

logic that is used in the definition of predicate and temporal logic in the following sections.

The proof given here augments t!-" ,artial proof presented in Goldblatt's book (139).

Theorem A.5 Given a set S, a binary relation R, 1 C S x S, the following properties of

1 where s, t, and u are elements of S:

1. Reflexive Vs[(s, s) E 1]

2. Symmetric Vs, t[(s. t) E R = (t, s) E R]

3. Directed (serial) Vs-t[(s, t) E R]

4. Transitive Vs, I,1[((s,t) E RZA (t,u) E R) it (s,u) E R]

.5. Functional Vs.!t[(s, t) E 1]

6. Weakly Dense V.,[(s, i) E I? = 3t[(s, it) E R A (u, t) E I]
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the following schemata where w is any wff whose domain of interpretation is S:

1. Ow ==' w

2. w =* OOw

3. Ow = Ow

4. Ow = OOw

5. Ow 4 Ow

6. 0Ow Ow

such that (S, R) is a frame, then if R satisfies any of the properties 1-6 given above, the

corresponding schema is valid. Conversely, if any of the schemata 1-6 given above are

valid, then R satisfies the corresponding property.

Proof: The proof is given for the symmetric property, the others follow the same pattern.

Consider first that 1 is symmetric, and (S, R. V) is any model based on the frame

(S, R). Then for any s E S (assuming non empty S so that the proof is nontrivial),

show tha.t

= = mOw

From Definition A.2 the right hand side of this implication can be written as

(s,t) e R Ow

or, since Ow is -,O-w

(s, t) E R =*= o-,w

or

(sE) E R - 0,-'w

which can be written as

(st) E R =* -((t,i) E i ,, -,w). (h..'i)
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Since P-is symmetric, then

(S' t) E .R =~(~)E R

and substituting s for u in AA4 yields

(S, t) E R =: -i((t, s) E R i= -w)

which is true, since

(S' t) E R =* ((t, s) E R ~= w)

The next step is to prove the converse statement. Thus given that the schemia

w =: 0OWt

is valid, prove that R is symmetric. Given any model (S,R, I') based on (S, At),

assume that (s, t) E R and that J=-, w. Then from AA4 the assertion

-((t. i) E Rt -w)=

is true, which means that

is false. For this implication to be false, both

(1, i) E Rt (A-5)

and

kto (A-.6)

must be true. Since this conclui~on holds for an.N modlel, it must hol1( for that model

that only yields w triie at s, imlyinlg that

(s)E P
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must be true to satisfy both A.5 and A.6 with u = s. Thus the relation is symmetric,

since the choice of s and I were arbitrary.

With respect to the corresponding property for the symmetric relation

W ==* CIOw

the proof of this theorem assumed that tw represents V, w for some S E S. Since both

concepts of w being true and w being valid are based on k, w, then this proof technique

holds for w being interpreted as =, w, w true, or w valid. In the next section on temporal

logic, the symbologv w is taken to mean w(O), where w(t) is a predicate with a, temporal

(time) argument.

Note that any relation satisfying the functional property is also a function. Also note

that the proof of this theorem uses the fact that
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A.2 Temporal Logic

Temporal logic is tlhat branch of modal logic within which the modal operators have

semantic interpretations with Tespect to a temporal domain, i.e. time (306). Thus temporal

predicates or assertions have a parameter %vhose -values come froin a. domain (set) that is

considered time, although this domain is actually nothing more than a set along wtlx a

binary relation over the set. Within this thesis the set is always a set of numbers or tuples

of numbers.

In the following formal definition temporal logic is differentiated from modal logic

by the nature of the frames within which the wffb are e'aluated, such that the underlying

set of these frames is this set of numbers that is considered as 'time'. Although different

types of sets have been used to represent Lte time '%ariablc, with correspomiding differences

in the interpretations and analyses of the resulting wffs (300: 139). this section presents

the two sets used within this thesis. which result in what is called linear and branching

time (11.5). Linear time steins fromt the concept of time as a sigesequence of numbers,

which is useful in reasoning about bequential processesz, %%hile branching time is ba!sed on

multiple zequences , of numnbers. leadingo to the Jibiliti to reason about concurrent processes .

Another term for branching time is multiformu limc7 which includes additional (sequence)

operators to those presented here (282). These two concepts are presented in Definitions

A.S and A.10. The presentation of temporal logic within this section follows closely that

of Goldblatt (139). and Manna and Prneli (219).

This thesis define-s temporal logic as %hat is called Stoic temporal logic. named after

the Stoics of ancient Greece- The Stoics based their loagic on the concept of a relative iaow.

so that all assertions about time refer to time st-trting with the prfeent. This implies that

the wffs can only ;ssert truths or non truths about the pres ent and the future. and not

about Lte past (as oppiosed to the Mrgarians. whlo alloued assertions abouut pa.Nt times)

(300). This approach ciarresponils to the slawciardl amxalh.s of programs -ts seqmemreN Of

events that are based on Lte first .tatentent or thie prnogramj (126i. *217). Thtus the time

atwhich the first %tatenionit for evenmt) P~xet ultP i_- considered tlh.. mmow .. f the tetmpoiral

logic used to rea.Non aboutm thiese jprtogramt. Vemapur-ilAgi limi pat4 andI fuitfre linurn,

withi respect to a simugle instant in timnie is. aso tahled temnptiral b.vit imith jvtimt sunwmittirS~
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(263), as opposed to interval semantics (251). Point semantics temporal logic is usea in

the specification of programs, and also in the synthesis of programs in certain languages

such as CSP (226).

Before prescnting the formal definition of temporal logic, consider the possibilities for

the set of numbers that comprises the time domain. One approach is to allow the set to be

a continuum over some bounded or unbounded interval, where the cor cept of a continuum

is a set that can be put into a one-to-one correspondence with some subset of nonzero

measure-of the real numbers, and satisfies the completeness axiom (305). (Disregarding any

nonstandard analysis questions, such as the issue of infinitesimals (304)) Thus a continuum

is a set that is uncountable. This choice implies that the probability of any two events

occurring at exactly (to infinite precision) the same time is zero. This eases the analysis

of concurrent computations, since it can be assumed that no two atomic actions occur

simultaneously, an assumption that holds even for a countable number of processors. The

drawback though, is that this time domain contains values that are nomcomputable, and in

some sense random (see Appendix B). Another alternative is for the time domain to be a

countable set, such as the natural numbers N, yielding what is called linear time. Although

all elements of the time domain are now computable, the assumption is no longer always

valid that the probability of two atomic actions (such as two processes staiting) occurring

simultaneously is zero. A third alternative is also based on a countable set, but one that

contains countable subsets for each possible process that could occur simultaneously, an

approach called branching time. This thesis bases the underlying countable sets of both

linear and branching time on the natural numbers. Thus a program starts execution at

time 0, and the shortest possible time duration for any event is arbitrarily set to 1. This

implies that the first possible event after the program starts may not occur at time 1,

although in most cases this assumption is valid.

The following definition formalizes the concept of temporal logic.

Definition A.6 A modal logic with frame (S, R), s E S, I E S, u E S, is called a tem-

poral logic if and only if the binary relation R is

1. Reflexive: Vs[(s, s) E R]
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2. Transitive: Vs, t, it((s, t)-E R A (t, u) E R) ==* (s, u) E R]

S. A ntisymmetric: Vs, t((S, t) E R A (t, s) E R) == s = t]

Thus Theorem A.5 states that the following schemiata are valid for any temporal logic:

1. OW IV t

2. Ow O w

3. 00w 4= Ow

The second item from the list follows from the fact that R1 being reflexive implies that 1R

is also directed- (see Theorem A.5), while the third follows from R being transitive and

weakly dense. That any reflexive relation is also weakly dense is showvn by

Vs) t((S, t) E R? == (S . s) E 11 A (s. ) r- Ri]

Definition A.6 leads to the followving result.

Theoremn A.7 Within any temporal logic the following schenma is valid.

(07) == 0q) = , (P = q)

Proof: This followvs directly from the valid schemna

Oil == IV

In the previous section the assertion that it; is true meant that IV evaluated to true

for every interpretation s, s C- S, and with respect to a. schema-such as

w == OIw (A .7)

the assumption that v; %va truc meant that there exi.Atcd boine interpretation s such that

IV evaluated to trit at s. Within this thesis, the use of mnodal op~erators within a schema
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signifies that the logic is actually temporal logic, with the convention that the schema

given by A.7 means that 'if w is true at the present (time 0), then eventually w is true'.

Thus the s that w is taken to be true at is that which represents the present, which is

typically s = 0.

Whether the schema of A.7 is valid or not within temporal logic addresses a subtle

issue regarding the 0 operator. Although

[=s OW

can be true even if there is no t E S such that (st) E R,

IOsW

can only be true if there exists a t E S such that (s, t) E R and

Since Definition A.6 states that R is reflexive for a temporal logic, then the schema

is valid, since if

I~W

is true, then

must also be truc because (s, s) is always an element of R. This follows from tile semantics

of the 0 under reflexive time to mean 'at the l)resent or any future time', whereas if time

were defined as irreflexive (iiut an unintuitive definition), then the 0 would mean 'at ally

future time'.
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The previous section presented the primitive modal operator 0i, along with the de-

rived modal operators 0 and +. The sytactical use of these operators did not require any

reference to the-frame of any particular modal logic, but conversely the semantics associ-

ated with these operators, which was not given in the last section, does lequire reference

to the underlying frame. Considcr first the primitive 0 operator. With respect to a given

frame (S, R) that satisfies Definition A.6, Ow, where w is a wff, is valid if and only if

Vs[s E S ==* Vt[(t E S A (s, t) E 1R) = t zJ]]

for all possible models based upon (S, R). This statement says that a wff of the form Ow is

valid if and only if it's true for all possible models, where Ow is considered true if and only

if for every interpretation s that makes w true, then if (s, t) is an element of R, w must be

true at t. Given the above definition of a linear time, such that for s and t elements of S

(s, t) E 1-# S < I

the following semantics for the 0 operator are a natural consequent. The wff

OW

is true if and only if the wff w is truc at the present time and for all future times. For this

reason this operator is called cnccfortlh, so that Ow reads 'henceforth w'. Consequently

the derived operator 0 is called eventually, so that 0w reads 'eventually w', and the derived

operator - is called leadsto, with w - v read as 'w leadsto v'. The name 'eventually'

follows from the linear time semantics of te truth of

OwV

meaning that 'it is not true that for all present and future times w is and will be false',

or equivalently 'for some present or future time w is or will be Irue. Likewise, 'leadsto'
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arises from the semantic meaning that the wff

w ^-+ V

is true if and only if henceforth if w is true then eventually v :s true, which means that 'if

at any time to becomes true, then at that or some future time v will become true'. Note

that for all other times except those specifically addressed by these semantics the values

of the wffs are unknown.

Another presentation of the meanings of the modal operators within linear time )ased

frames uses explicit symbolic representations of the time variable. Given a predicate P

that has a time variable as a parameter, denoted by P(t), then with respect to the value of

0 for t, which represents the present, the following statements relate the modal operators

to quantified wffs from the predicate logic:

OP 4==* Vt[P(t)]

OP, €=, 3t[P(t)]

Within linear time temporal logics there are additional operators which appear in

the literature, refered to as temporal operators and typically applied to logics based on

computational models (64, 319). The three presented here are the binary operators until

U, unless U, and the unary operator next Q. The U operator is primitive, such that given

the model (S, R, V), the interpretation s, s E S, and the wffs v and w

ks (vUzw) m= 3t[(s, t) E RA k=L w A Vu[((s, 21) E R A (u1, t) E Rt)= ,, v]] (A.8)

From this follows the semantic definition that

UVU)

read 'v until w', is true if and only if at some future time w will become truc, and from

the present time until that future time v remains continuously truc, or else both v and w

are true at the )resent time. At all other times the values of v and w are unknown.
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The unless operator U is derived from the modal operators and the primitive operator

U by

(vUlw) €, (Ov V (VUw))

This implies that the semantic meaning of

vUw

read as 'v unless w', is true if and only if either v is henceforth true or v is true until w

is true (and w will eventually become true). Another equivalent meaning is that either v

is henceforth true, or if not, then either at or before the time v becomes false w becomes

true. At all other times the values of v and w are unknown. The UNITY based definition of

the unless operator from Chandy and Misra (6-1) is slightly different, in that v is permitted

to be continuously false, that is

vlkw #* O-V V (Ov V (vU7V))

The definition of the unless operator ubed in this research agrees with the standard usage

in the temporal logic literature (351, 267, 139).

It is possible to select a different set of primitive operators than those chosen here,

although the end result, the syntax and semantics of the wffs, will be unchanged. One

choice of primitive operators does appear to be minimal (fewest number) when compared

to the others, and results from an observation by Sistla. (319). It requires only one piimitive

operator, the U, with

Oil; truetuv

defining the 0 and 0 operators. The othem operators would be derived in the same manner

as presented here.

Within the temporal logics there are different subtypes, u hich are based on the differ-

ent structures of the underlying frames (300). Within this thesis two such temporal logics

are required, the linear c-niporal logics or lincar time Icmporal logic.., and the branching

temporal logics or branching time- lemporal logics.
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Definition A.8 A temporal logic with frame (S, R) is callcd a linear temporal logic if

and only if there exists an injective total function 0

-:S-+N

such that

Vs, t[(s E S A t E S) ((s,t) E R O(s) _ O(t))]

Although the injection 0 is often the identity function, within this thesis 0 is usually not

the identity function (see Section 5.2 and 5.3). An immediate consequent of this definition

is the following corollary.

Corollary A.9 A temporal logic with frame (S,R), such that R is a linear order on S, is

a linear temporal logic.

Proof: A partial order is not sufficient to generate a linear temporal order, since it's

possible to have two elements of S, say s and t, such that

¢(s) _< ¢(t)

but

- (s! t)

With a linear order, defining

O(s) _ ¢(t) -= s/t

satisfies the requirement for a linear temporal logic, and does not define an inconsis-

tent image of 0, since cycles (inder P) are not possible. U

With respect to this thesis, the other possibility for a. temporal logic is given in the jiext

defilitiol.
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Definition A.10 A temporal logic with frame (S,R) is called a branching temporal

logic if and only if there exists an injective total function 1)

1) : S -, 2 NxN

such that

V-,t[(s E S A t E S A (n, m) E {,(s) A (j,k) E (1(t)) ((st) E 1 -=* (n = j A m < k))]

where n, m, j, k E N.

That a branching temporal logic is also called a branching timc temporal logic can be seen

by considering that for an arbitrary s,

(n, ,,) E '(I)

yields an element (n, in) that is said to lie on-the branch n. Thus all such elements that lie

on any given branch can be linearly ordered by a relation that corresponds to the original

R?. If this linear order is denoted by 11, then

(,,, )i?(n, k) 4-=* (m < k)

The function 1) has a range that consists of sets of ordered pairs because of the possi-

bility that a given point s could lie on multiple branches. For an example see the text

that accompanies Figure 5.2. Just as for linear temporal logics, this thesis typically uses

branching temporal logics whose frames are not (N x N, 11), where N is a subset of the

natural numbers.

The primitive operator 0 does not have a standard definition of

k' 0w
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with respect to arbitrary frames (S, R). However, the following definition satisfies the

requirements of this thesis:

1--, Qw 4= 3j[s < j A ((s < k A k-< j) ==* j = k)A 1=j w]

where IV is an arbitrary wff. With a specific choice of a frame though, there exist such

standard definitions for the 0 operator. Consider the frame chosen for the linear time

logics of this thesis, the set of natural numbers along with the < binary relation, that is

(N, <). Given this frame and the interpretation 5 E S,

J-=' OW =k+ IV

defines the concept of truth associated with the next operator. Thus the idea of 'next

w' means that IV will be true at the very next instant of time, with its value unknown

otherwise.

Note that one consequence of representing time with the natural numbers is this

concise representation for 0. If instead a continuum had been chosen for time, then there

would not have been such a representation for the 0 operator, since there is no known

well ordering of such sets. And if instead a set dense in the continuum had been chosen,

such as the rational numbers, the representation of the next time instant would not be

based on the intuitive < ordering that is associated with linear time.

The temporal operators defined to this point, with the exception of the next operator

0, address infinite intervals of time. For certain applications, such as the specification of

real time systems (102), operators are needed that can quantify over finite intervals of time.

One such formal logic is the temporal logic augmented with such additional operators,

known as the quantized temporal logic (QTL) (288). Instead of using the exact same set of

additional operators as QTL, this thesis adds a. set of operatos to the temporal operators

such that all of the operators from QTL ha-ve equivalents in this additional set, plus the

set used here is based on a more uniform s.ymbology. These idditional symbols do not

add to the already defined semantics, they only assist in shortening the length.s of wff.,.

Although they are not traditionall3 considered modal oper,ttors (351). tLhe% will be called
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modal operators within this thesis to simplify analytical statemcnts. This-set of additional

modal operator along with their truth definitions is:

K, O<kW 4- Vj[(j E S A j s A j < k) >j w]

k, O<kW # 3j[j E S A j s A j kA =j w]

Ks 0 > kW '4= Vj [(j E S A j s A j k) ==* i= w]

ks 0>k -=* 9j[j E S A j > s A j > kA kj w]

where s E S, given the frame (S, R), and

(j, k) E R = j < k

((j k) E RA^ (k, j) €- R) 4=. j < k

defines the use of the '<' and the '<' symbols for an arbitrary frame. The meaning of

O< P

is that the predicate P is true at the present and will remain true until the time t is

reached, at which instant the value of P is unknown. Likewise,

O<iP

means that at some instant within the interval starting with now and ending at 1 the

predicate P will be true, with its value unknown at all other times. So

o>iP

ieansc that the predicate P will be true a.t the time intant i and continuously after that,

with its value unknown until then; whereas

O>iP
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means that the predicate P will be true at some instant after i, with -its value unknown at

all other times.

The QTL wff

[klw

means that w holds continuously in the closed time interval starting with the present and

ending k time units after the present. This statement is equivalent to

o<(k+l)w

Likewise, the QTL wff

(k~w

which means that w must hold at least once in the closed interval starting with the present

and ending k time units after the present, is equivalent to the wif

OZkW

The QTL wff

vU(k)w

which means that w must hold at least once in the closed invterval between the present

and k time units from the l)ient, and v holds continuously until them, is equivalent to

3j[j< k A <<jw A O<,v ]

Finally, the QTL wff

O(k)w

which means that 7v will hold in k time units from the present, is equialent to

l A . K
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As an example of a wff using these shorthand notations, consider this alternate

definition of the until operator 75

vUw # 3t[o<tv A O<tw]

where v and w are wffs, andl E N. If 1 is the instant that w first becomes true, then the

t in this assertion is given by t > 1 + 1.

The following summarizes the syntax, binding and associativity rules including the

additional modal operators introduced in this section. Given the wff P, then

mP

is also a wff, where m is any of the unary modal operators O, 0;, 01 0<6 O>t, o<t, or

O>t. If P and Q are wffs, then

PbQ

is also a wff, where b represents one of the binary operators -, U, or U, and

PbQcR 4> Pb(QcR)

where R is any wff, and c is any of these binary operators. This means that these binary

operators are right associative, just as ==* is. Also,

inPbQ 4-=€ ((inp)bQ)

where P and Q are wffs, b is any binary operator, andi m is any of the unary operators.

Thus the unary operators bind tighter than any of the binary operators.

A consequence of Definition A.6 is that for any temporal logic

OOP - OP
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is a valid schema for any 'vif P. Since for any modal logic

O-* O,-P

it follows that for any temporal logic

00 #*O

is a valid scheina. Additionally, the following therem coverb the other possible combina-

tions of more than two of the 0 and 0 operators.

Theorem A.11 Given any temporal logic and wiff P, the following arc valid sche-mata:

0OOP cOOP

OOOP OO0PJ

Proof: See the book by hlailpern (1417).

These assertions imiply that no more than two consecutive (non 0) imnary modal operators

are requiredl within or preceding any wif. The assertion

~03P

means that eveituall. P will become true and then henceforth icinain true. One example

of such a wff is

Vc E R+ =. c'0[d(x ,1) : c]]

which states that I is the limit point of the sequence {XIEN-l with respc~t to the metric

d. Note that the predicate d(xt. 1) £can be represented as P(t. 1), where I is the time

variable.

Since for a temporal logic whose framie is (N. <). 0 ssmlrtDh ucso

operator, it's possible to have multiple cu)Isecuti% P 0 operawor~. within or pret rding A mff.

For example, given Ltme lpreoicatP- P andl a linear temporal logic whmose frame is (IN. <).
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sEN,

1=sO 0 P * ,+2 P

which shows that there is no (finite) limit to the number of consecutive 0 operators that

can precede a wif.

The proofs of the assertions from Theorem A.I1 also result in the following, which

are valid for any temporal logic, and address the distribution of the unary (not tile Q)

modal operators over tile binary operators A and V:

o(P A Q) (OP A OQ)

Oo( Q) (o p , * oOQ )

OO(P AQ) -4- (OOPvAf00Q)oo0(p v Q) 4=; (ooP v ooo)

where P and Q are any wffs.

Instead of repeating the proof of one or more of the above statements, the folloing

illustrates why the 0 does not distribute over the A. and why the 0 does not distribute

over the V. The other proofs all follow the same basic pattern. Consider the two wits P

and Q within a temporal logic whose frame is (S. R). If both

and

are true. where

12 > 11

then

- -PA: Q

hold.s. but
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does not hold. This means that

-,(O(P A Q) -= (OP A OQ))

Likewise, if

t2 < tl

then

O(PV Q)

holds, whereas

O3P V OQ

does not hold. This implies that

,(O(P V Q) ,, (o.P V 0Q))

The following theorem addresses the distribution of the 0 operator over certain

binary and unary operators within a temporal logic whose frame is (N, <).

Theorem A.12 Given a linear temporal logic whose frame is (N, <), the following are

valid for any wffs P and Q:

O(P V Q) = (OP v %Q)

0(1' A Q) -- (OP A OQ)

OOP== ' (OP

O(P ZQ) <== (OP5 0 Q)

Proof: The proofs of the third and fifth schemata are given, the others follow the same

pattern.
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To prove the third schema, consider that

= O(P =Q)

if and only if

I=,+i (P = Q)

if and only if

1I=s+1 P =*i=+1 Q

if and only if

1=. OP *K OQ

if and only if

I= (OP == OQ)

For the-fifth item, consider that

= O(Pu5Q)

if and only if

k=,+i PUQ

if and only if

3t[(s + 1) <,A I-t Q AVu[(s + 1 < uAu < t) =-41=,, P]

if and only if

3(t - 1)[s < I - IA I=(,)+, Q AV(u - 1)[(s < u- I A u- I < t - 1) =1 = (u_)+1 P11
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Since if s + 1 < then t - I > 0, and s + 1 < u implies that it - 1 > 0. Thus the last

assertion is true if and only if

3i[s < !A k1+ Q A Vfi[(s < fL A fi < i) ==ka+j P1]

if and only if

k.,(OPUO0Q)

To conclude this section consider the wff that asserts that the predicate P satisfies

the induction principle:

o(P == OP) - (P * OP)

Given that P has arity one, then a linear time logic with frame (N, <) such that the variable

is a natural number, results in the same meaning given to this wff as the traditional meaning

based on an induction variable, which is also a natural number. But the underlying frame

of the logic can be changed to (N x N, R) to yield a branching time temporal logic such

that the meaning of this wff changes. For example, consider a. countable set of processes

running concurrently, where P represents the predicate given by P(t) = true iff some

process stops at time t. Then the induction principle states:

If is is henceforth true that whenever a process stops then another process stops in the

next instant,

then it is true that if a process stops now there will henceforth be at least one process

stopping at every instant.

If the number of processes is infinite, then this wff is true, since no finite time duration

can cause all of the processes to terminate; but if instead the number is finite, then the

induction principle would not be true, since once the last proc-ebs stops there can be no

more processes to stop. Thus the presence of a. boundary condition (on the number of

processes not yet stopped) causes this wff to be true until this boundary condition (no

more processes to stop) is reached.
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A.3 Predicate Logic

Instead of presenting the predicate logic separately, this thesis defines the predicate

logic as a special case of the modal logic defined in Section A.1. Although other definitions

of predicate logic are more standard (217, 225, 310), the one presented here is equivalent to

the others and fits in better with the overall framework of this thesis. The only difference

between the predicate logic of this section and the standard second order predicate logic

is that this section omits the term operator

if < w f f > then < term > else < term >

and the predicate (or wff) operator

IF < wff > THEN < vff > ELSE < wff >

since these two operators are not needed for this thesis. The standard usage of the term

'predicate' agrees with the definition given in Section 3.2 as a function whose codomain

is the set {truc, false), while the term 'proposition' applies to a predicate of arity zero

(296), that is a predicate whose evaluation does not depend upon any variables.

The basic idea of the predicate logic is that the wffs contain no modal operators

(such as 0 or --*). Since the modal operators convey the idea that a wff can change

its valuation by changing the interpretation, then predicate logic deals with wffs that

have fixed interpretations and thus fixed values (once the variables are instantiated, see

following paragraphs) of either true, false, or undefined. The following definition preents

this concept more formally.

Definition A.13 A modal logic with frame (S,R) is called a predicate logic if the set

S contains a single element.

Note that Definition A.13 is 'if' only, and not an 'if and only if' definition. This follows

from the result that (ie ztandard definitions of the predicate logic do not necessarily imply

the existence of a frame whose underlying set is a singleton. For example, if the frame s
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set contained k elements, k > 1, but the relation -8 was defined such that

vs, [(s, t) E R - s = t]

then the resulting logic would be a traditionally defined predicate logic whose wffs could

be written without the modal operators, but would not have satisfied Definition A.13 if

it had been worded 'if and only if'. As the definition stands, it does not preclude such a

logic from being called a predicate logic.

Consider any predicate logic whose frame (S, R) contains the singleton set S, then

the only two possibilities for the relation Ri are

(S)s) E R

where s is the sole member of S, or

The first possibility, that R is reflexive, yields the following.

Theorem A.14 Given a predicate logic with frame (S, -8), such that S contains one ele-

ment and 1R is reflexive, then for any wffs v and w:

Ow W w

cOw ¢=: w

v - W 4=:: v =' w

vUw - v A w

Proof: Since the proof of the second and third are based on the first, only the proof of

the first and fourth is given.

The first follows directly from

W =* Vs, t[(sA 1) E R? ===t i]
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for s = .

The fourth follows from setting both t and u (the only such u) equal to s in the

definition for the U operator (see Equation A.8).

Thus any wff from the modal logic whose-frame satisfies Theorem A.14 can be written

as an equivalent wff without the modal operators, i.e. written as a wff from the predicate

logic. Intuitively, the removal of the modal operators can be justified based on a linear

temporal logic interpretation. For example,

Ow 4 w

means that if w is and will always be true, then w is necessarily truie. This conveys the

idea that a wff does not change its valuation simply by 'waiting long enough'.

However, if the frame of the logic is (S, R), where S is a singleton set but ? is not

reflexive (i.e. R is empty), then the results from Theorem A.14 do not all hold. Specifically,

is not true, since even if

is true, there is no element of S, say t, such that

(s, t)ERA^tw

Since this is counter-intuitike with the semantics associated with the 0 operator under

the temporal logic of linear time, the convention used in this thesis is that unless stated

otherwise, any predicate logic based on a frame (S, R) with a singleton set S, has a binary

relation R that is reflexive.

Given a predicate logic with frame (S, R), consider the concept of a stalc. Although

the state can be assumed to be a primitive concept within the propositional mudal logic

(139), this thesis will define what a state is for both temporal and predica-te logics. The
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predicate logic definition is presented here, and applies to all frame based predicate logics

within this thesis, while the definition for each temporal logic is given within the text as

-required. Note that each temporal logic can have a unique definition of a state.

Although a frame based predicate logic may consist of only one interpretation, there

can exist multiple sets from whose elements values are selected for the variables (either

individual, functional, or predicate) within the wffs of the logic. The idea of a state stems

from the different possible instantiations for these variables, such that each state of the

wff corresponds to one choice of a value for each variable.

Definition A.15 Given a predicate logic with frame (S, R), and wff w, the state of w is

a set of assignments, each assignment denoted by

v :=a

where v denotcs a variable from w, and a denotes an element of the set of possible values

for v, 6uch that thct is exactly one assignment for each unique variable from w. If there

arc fewer assignments than the number of unique variables from w, then the set is called a

partial state.

Definition A.15 is presented without explicitly defining what an assignment is, or how the

determination is made as to what the unique variables are in any wff. The book by Revesz

(301) or the one by Barendregt (26) present detailed explanations of these concepts, but

for this thesis they will be assumed to be primitive concepts. Additionally, all assignments

are assumed to be Turing computable (see Appendix B), which rules out the concept of

random assignments (139).

As an example of the states of a wif, consider the predicate logic with frame (S, R),

where S is a singleton set and R is reflexive, along with the wff

VX, YV, ) = -q(r, s, X, 0)]

If the (single) interpretation ib that p is a. predicate such that p(x, y) is true if x > y, and q

is a predicate such that q(r, s,x, y) is true if x and y are both the greatest common divisor
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(gcd) of r and s, where r, S, x, and y are natural numbers, then this wff is true. A partial

state would be

r:20, s := 25}

Now consider the program that implements Euclid's algorithm for finding the gcd of two

nat.ural numbers (46). The following is the sequence of states that result from each iteration

of the algorithm (subtraction version) starting with the values of r and S given by the above

partial state.

I, := 15,s := 10,x := 5,y:= 10},{ r:= 15,s := 10,x := 5,y := 5}

Once the values for the variables generate a true value for the predicates p and q, the

algorithm stops. Although the wff is always true, regardless of the assignments, there is

only one specific set of values for the predicates comprising the wff that correspond to

successful program termination, which is typical of the wffb used in the analysis of the

partial correctness of programs (126, 217, 64).

The important concept here is not the assignments themselves, but the idea that the

iterative algorithm can be somehow described and monitored using a. sequence of states

pertaining to one or more wffs. Such states, resulting from a wff that debcribeb or monitors

a program, are called programn .tatcs. Often the program states are listed alone, %%ithout

the corresponding wif (217, 64).
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Formulation Statements States
Ow Vp Vsi A initially
Ow 3p' 3si V initially
Ow 3p 3si
0Ow Vp Reachable Fixed Point

1 This requirement can be satisfied by the initially section.

Figure A.1. Temporal Specifications Versus UNITY Execution Sequences

A.4 Analogy Between Temporal Specifications and UNITY

This section presents a short overview of the analogy between certain specifications

written in the syntax of the temporal logic and the design and structure of UNITY pro-

grams. The class of specifications considered are shown in the left hand column of Figure

A.1, where the w denotes a static well formed formula (wff). The general issue of repre-

senting temporal specifications in terms of as tate based machine is analyzed in a paper by

Manna and Pnueli (222), but there does not appear to be a similar summary type analysis

of the relationship between such specifications and UNITY, although the proof of program

properties in the Chandy and Misra book (64) is very closely related. Since the UNITY

execution model is based on infinite sequences of state transitions (see Section 4.4), such

an analogy between UNITY and temporal formulas is a natural consequent. Figure A.1

summarizes the material presented in this section.

Consider a specification of the form

Ow

where w denotes a static (no explicit time dependence) well formed formula (wff) from

the first order predicate calculus (the free variables correspond to named variables in the

program). To design a UNITY program that satisfies this specification requires that every

statement satisfy the wi" w independentl3 of the execution sequence chosen, and that the

initially section must also satisfy w. If these two requirements are met, then w will be truc

for every possible state of every possible execution -s'quence. This is depicted h': Figure

A.1 by the two entries under the 'Statements' and 'States' columns oil the rou whose entry
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under the 'Formulation' heading is the Ow. The

Vp

entry under the 'Statements' column states that for every statement p in the program, u; is

true for some state of some sequence generated by the statement p. The possible sequences
of states generated by a statement include those (finite) sequences that result from any

possible initial state when the statement begins execution under either the UNITY model

or the standard execution model (see Section 4.4). Te

Vsi

portion of the entry under 'States' means that w is true for every state s, of any sequence

that can be generated by the statement p, while the

Ainitially

states that the initially section results in an initial state for the program execution that

also satisfies the wff w. A specification of this form implies that w is what Chandy and

Misra term an invariant (64). If w is satisfied by the UNITY statement s, such that s can

be written in the form of a proper set of equations (see Sections 2.5 and 2.7 of (64)), then

the specification Ow is satisfied by the UNITY program

Program Satisfy Invariant

always

S

The next row in the figure corresponds to a temporal wff of the form

Since this states that in any possible execution the wif tv %kill eeintuallN become rut, then

either iv is trut as a consequent of the initially section, or from sonie state geiierated b%,
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at least one statement. The entry

3p

under 'Statements' indicates that w is truc for at least one state in some sequence of states

generated by a statement p, subject to the provision that if w is true for the state resulting

from the initially section, then there is not necessarily such a statement p. The entry

3si V initially

under 'States' means that either some state in every possible state sequence generated

by the statement p-satisfies w, or (inclusive or, both could be true) the initially section

generates an initial state for program execution that satisfies the wff w. A specification

of this form implies that w describes what Chandy and Misra call a progress property of

the program, although the intent of a progress property is for w to be satisfied by another

state in the program execution sequence besides the initial state (64).

The next entry in the figure, corresponding to the wff

00w

conveys the concept that foi any unbounded sequence of states generated by the program,

there is an unbounded n-,uiber of these states that satisfy the wff w. This means that since

both the UNITY and the standard execution model require that every statement execute an

unbounded numbei of times in ever. unbounded execution sequence (sequence of states),

then if there is at least one statement p such that some state for every possible execution

sequence of p satisfies tv, then 0Ow is true. This figure expresses this requirement by

stating that there must be at least one statement p, the

3p

entry under 'Statements', .uch that there is at least one state s, for CeerN po.sible execution

sequence for p. the

3si
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entry under 'States', such that s, satisfies w. This figure emphasizes that the only difference

between a specification of the form Ow and another of the form Ow, is that the first can

be satisfied by having the initially satisfy w, whereas the second cannot (although the

intially section may satisfy w). Manna and Pnueli call the set of states that satisfy w an

unbounded number of times in the manner described for O0w the r7ccurrnt statcs of the

computation (222).

The last entry in the figure is for specifications formulated as

<Ow

which state that for any unbounded execution sequence for the program, there are only a

finite number of states that do not satisfy w, and after the last of these stateb is generated,

all of the remaining unbounded number of states do satisfy w. This is the concept of a

reachable fixed point, which is crucial to many specifications, and ubuall3 .pecifies program

termination. The entry

Vp

under 'Statements' denotes that w must satisfy at least one state in some sequence gen-

erated by every statement p of the program, while the entry under 'States' denotes that

the requirement as to which states of which sequenceb ,atihfieb it is based on the reachable

fixed point requirement from Chandy and Misra's book (61). The set of stateb that satisfy

w as given by such a reachable fixed point consists of what Manna and I'nueli call the

siablc states of the computation (222).
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Appendix B. Computability, Chaos, and Metric Spaces

This appendix presents assorted- theorems and analysis that support and augment the

material in the previous chapters with respect to computabilit) and claos; it also presents a

topological theorem to support the material from the introduction to Chapter VI regarding

the relationiship between the computable real numbers and the standard metric space of

the real numbers with the absolute value metric.

Section 3.3 assumed that any countable set can be well ordered, an assumption which

can be derived from the Axiom of Choice for sets (1S9). Another assumption from Section

3.3 is that the choice function from the choice axiom is in some sense 'more powerful'

than any Turing computable function. The proof of this second assumption also follows

from the Axiom of Choice, and is given in the follo%%ing theorem along with a more formal

statement of the assumption.

Theorem B.1 The class of choice functions (from the Axiom of Choice), whose domains

arc a countable collection of countable sets, contains functions that arc not Turing com-

putable.

Proof: (Note that the actual derivation of the set T from the set S below is not required to

prove this theorem, but is presented to partially demonstrate the equivalence between

the Axiom of Choice and the Well Ordering Principle. This derivation follows that

of Kelley (189))

Consider an arbitrary countable set S. The Axiom of Choice implies that S can be

well ordered using a choice function C, such that

C(S) = s4

C(S - {}= s2

CWs - ,



forming tile well ordered set

If S is a countable set that is not Turing enumerable (type 0), such as the set Of all

Turing computable numbers, then C is not a Turing computable function. since no

Turing computable function can produce the set T.

Section 4.2 uses the concept of computability and computable numbers. Within this

thesis computability refers to ally finite algoritlhn that camn be implemented on a.Turing

machine. Accordingly, computable niimbers are defined in termbs of Turing machines. ba-sed

on the original concept of a computable number expressed by Turing. Turing's definition

was in bome sense a recursive one- Tile bas-e case was that the computable numbers include

all those numbers whose digits can be placed onto a Turing mnachine's tape in finite time.

These numbers form a set with respect to thie reals that would be all thobe real number:,

with finite decinmal expansions. An interesting propert% of thibs set is that it is dense in the

reals, and is a proper subset of thme rational nuiber. The recursive p~art of the definition

was that the computable numbers include all of Lte limnit points of con, crgent comuputable

sequence-- of computable numbers. The original de~finition by Turin,- was that-. (3341)

We shall say tmat asequence ;3,, of computable numbers converges comnputably if
there is a computable integral valued function N(t) of Ltme computable .ariable
C, such that we can show that, if c> 0 and it > N(c) and in > N(r). then

Thus the computable miumberb include Lte limit point% of Caurh% ,equxences of "uputable

numbers. such that Elhe sequence is comnputtable. Turing romucludes that thme computable

numbers include all (f thke real algebrat mimmmnlwer,.10- wio.~ith thmose ruMemln numnber.-

that are dlefined in terms of computable series. suich as raiA z.

A more intuitive notion as to exactiv whlat ,ire comiputable nuniher.- i.- contained iii

thie following definition fromt Minsky: (2-11j)



The digits must be generated sequentially by a Turing machine. That is, we
require that in order that the real number .aoala2... be a computable real
number, there must be a Turi,,5 machine which starts with a blank tape and
prints out a ta.- A orm

...O00xaoxalxa2...O00

We make the rule that, once an x is printed, the machine must never move to
the left of, or change, that x.

Minsky concludes the definition by saying "the printing of an x is an irrevocable announce-

ment that-- digit has been computed and is in the square to the lcft of the x." This concept

can be summnarized by saying that a computable number is one for which there exists a

Turing machine, such that for any natural number i. there exists some other natural num-

ber k, so that the first n digits of the number will be placed on the Turing machine's tape

within the-first k moves of the machine, and k can be computed in finite time by a Turing

machine whose input is n.

In most cases, computable numbers input into computable functions yield com-

putable ans.vers, but there are exceptins. Otte of these is based on the proven unsolvability

of the halting problem for Turing machines (217). Consider the function f, such that for

any Turing machine I that corre.iponds to a function of a single natural number, and nat-

ural number n, the evaluation of f(t, i) is a real number between 0 and 1. Further, f(t, it)

,onsists of a decimal point, and then a. string of decimal digits formed in the following

manner-

If, given the input n, t halts on step k of its operation, then digit number k is a 4, and

all successive digits are 0.

If, given the input n, t dues not halt on step k of its operation, then digit number k is a

3.

Next consider the function r that has the same domain and ,odomaini as does f, such that

g(t, n) is defi iied as follows:

If, given the input n, t halts on step k of its operation, then digit number k is a 6, and

all successive digits are 0.
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If, given the input n, t does not halt on .tep i of its operation, then digit number k is a

6.

That f(t, n) and g(t, n) are computable numbers follows from the defikition given by Min-

sky above. For any required number k of decimal digits of either number, only k steps of

the Turing machine t are required. So the function h, whose domain is ordered pairs of

computable numbers, is defined for

h(f(t, n), g(l, n))

for any applicable Turing machine t and natural number n. But if h is the addition function,

then there exist certain t and n for which the evaluation of h cannot be computed, even

though addition is a computable function.

The converse concept to this last example would be if there exist complutable func-

tions such that given uncomputable inputs, the evaluation would still be computable. The

following theorem shows that such a case can occur.

Theorem B.2 Thc noncomputability of the (instantiation of thc) variable(s) of a com-

putable functiou docs not strictly imply lhut the function cvaluation is noncomputabic.

Proof: Consider the function

a : E x S' Z R+ U {}

defined by Equation 4.3. If both x and y are noncomputable elements of {0, 1)* such

that

x=0...

y=:..

then

-(4%y) = 1

B-I



In his book on CSP (165), Ioare defines a chaotic process as one which is totally

nondeterministic, that is one which can perform any type of behavior. To demonstrate

this concept, Ioare defines the process CHAOS as a process that is capable of behaving

as any other process, that is for any fixed alphabet E,

CHAOS = 1LX.X

which implies that

traces(CIAOS) = E*

UNITY's weak fair choice operator on statements implies that there is no UNITY program

that is equivalent to CHAOS. Even though UNITY alone cannot duplicate CHAOS, it is

possible in a sense to have a UNITY simulation of CHAOS, that is a UNITY program that

uses named variables to replicate the behavior of the CHAOS process. Based on Chandy

and Misra's (64) observation that fair choice can be used to construct an *unfair' choice

operator, the following UNITY program Chaos generates values for a variable denoted

'trace' that are equivalent to the possible traces of the process CHAOS. (Think of the

variable 'trace' as storing the trace of the execution of the process CHAOS) The operator

';' represents trace concatenation, and A denotes the empty trace.

Program Chaos

initially

trace A

assign

trace := trace;O if b -. trace;1 if -nb

Ib := -b

end

The 'b' denotes a boolean valued variable.

The following theorem supports the claim made in the introduction to Chapter VI

that the computable numbers, which are dense in the real number." but do not include all

of the real numbers, cannot be complete with respect to the standard metric (I I) for the

reals.
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Theorem B.3 Given the complete metric space (X,d), and the set Y, such that 1' is a

subset of X but is not equal to X, and Y is dense in X with respect to d, then (Y,d) is not

complete.

Proof. Since X Y, then there exists an element of X, say x, that is not an element of

Y. Consider a Cauchy sequence in Y whose limit point is x. Such a Cauchy sequence

exists because Y is dense in X. But the linit point of this Cauchy sequence is not

in Y, thus Y is not complete. U
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Appendix C. Analysis of UNITY Program Implementations

This appendix presents a well known theorem from program testing theory and

demcnstrates its application to the probabilistic analysis of actual implementations of

UNITY programs. Although the theory (in the form of the theurem) is not new, the

application to implementations of UNITY programs is new material. Additionally, a key

mathematical result used in the proof of the theorem, which is not found in the common

computer science references, is proved instead of simply stated. This appendix concludes

with a proof tlat the execution of a UNITY program is equivalent to the execution of a

sequence of first order predicate logic formulas.

The following theorem is Theorem 4.3 from Howden (171), with only minor changes

in the wording that do not affect the content.

Theorem C.1 Suppose that f is a function whose input is selccted according to an oper-

ational input distribution and Ict Ff be a set of functions containing f and other functions

with the same operational distribution as f. Suppose that f' is some function in Ff and wc

wish to test for the probable equivalence of f and f'. This can be done as follows. Let 0

be the unknown probability that f J f when testcd over an input eemEnt which is .slected

according to the operational distribution. Choose h to be such that if 0 < 1/h we can think

off and f' as being probably equivalent. Now consider the following hypothesis II.

1: 0 < 1/h

Suppose we test f and f' over n tests and do the following. Wc accept the hypothesis if

f = f' over all tests and reject it otherwise. The type 2 error (the error of accepting the

hypothesis when it is false) for this hypothesis is more serious than the type I crior (the

error of rejecting the hypothesis when it is true). In the type 2 error we accept that 0 < 1/h

when it is not true, that is, we accept that f is probably equal to f when it is not true. In

the type 1 error we reject that 0 < 1/h when in fact it is true. But rejecting the hypothesis

only happens if f was found to bc unequal to f on somc tc.st. and if this happens we ar no
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longer interested in 0 anyway, f is known to be unequal to f'. If

n = hln(h)

then the probability of making a type 2 error is less than 1/h, that is, if f and f' agree on

hln(h) tests then they are probably equal, to within probability 1/h.

Proof: Most of the proof is contained in (171), what follows is that part that is not, nor

is it contained in the original cite given by lowden (335).

Starting with the requirement (proved in (171))

In(h)
ln(h) - ln(h - 1)

to ensure that the probability of type 2 error is less than lh, the first step is to

prove that

(1- 1/)k < l/e k E {1,2,...}

The inequality holds for k = 1, while for k > 2 only the limiting case as k -+ oo

needs be considered, since the function

(1- 1/1)k

is strictly increasing, and the right side of the inequality is a constant. By comparing

the binomial expansion (found in the CRC (41))

(1 - 1/k)k = 1 - k/k + k(k - 1)(1/k) 2/2!- k(k - 1)(k - 2)(1/k) 3/3! + ... (C.1)

with the series expansion for e (found in the CR.C)

C' = 1 - I + 1/2! - 1/3!+ ... (C.2)

the inequality follows from the observation thatl each numerator iii Equation C.1 is

less than the corresponding numnierator in Equation C.2, after the I - k/k and I - 1
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are deleted.

Given that

(1- /k)k < e-

then it follows that
kh,(l - ilk) < -1

which implies that
kin(l-li/k)-1 > I

and so
1

k > ln(k/(k - 1))

This last inequality implies that

Ic> 1k >
ln(k) - ln(k - 1)

which yields

k hi(k) > In(k)
Jn(k) - 11(k - 1)

Substituting i for k in this last inequality proves the theorem. U

Although this theorem is intended for analysis of the equivalence of two programs,

it can also be applied to the analysis of an implementation of a UNITY program on a

finite machine. This analysib intends to answer the question of whether a, given fixed point

that is always reachable fe any execution sequence of the UNITY program can always be

expected to oe reached in the implementation if it's always reached during testing (of the

implementation).

Consider the mapping of a UNITY program onto a machine that satisfies the following

assumptions:

Random E:.ecution Selection Given the set of possible finite execution sequences of

the statements in the UNITY program, either in the standard UNITY execution

model or the shared variable execution model (see Appendix )), each -!xecution of
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the implementation represents a random choe from this set, such that each choice

is independent of the other choices.

Equi-probable Execution Subset Given the set of possible finite execution sequences

of the statements in the UNITY program, either in the standard UNITY execution

model or the shared variable execution model, there exists a subset of this set such

that each sequence in this subset has equal (nonzero) probability of occurring as an

execution sequence of the implementation.

These are reasonable assumptions for a machine such as the Intel Ilypercube (34). Each

execution of the HIypercube is independent of any previous executions, and also any sub-

sequent. Additionally, within the set of reasonably expected possible interleavings of the

individual node program statements, the probability of any one interleaving actually oc-

curring can be considered equal to that for any other interleaving. Certainly there are

execution sequences for the UNITY program that are never expected to occur on the

IIypercube, and those sequences are excluded from the equi-probable execution subset.

The concept behind this next theorem is that for a UNITY program with a reachable

fixed point, the implementation may be designed to also reach that fixed point in every

possible execution (34). But short of some type of formal proof that this is true, the

alternative must be testing. An important question is how much testing is enough, and

also, once testing is complete, what can be actually stated.

Theorem C.2 Given a UN[TY program P with fixed point, and an implmcntation of P

on a finitc machine, if thih implementation -5ati.sfic- the Random Exrecution Sclcctiort and

Eqit-probabl Execution Sub.set assumplion6, theu the followinlg m.thodology ,can be uS;d

for testing and reporting on the hypothesis

II: Every execution of the implementation reaches the fixed point.

If, for some positive integer k,

k ln(k)

tests of the il)lntatiOUl, U sing the same operational input dhtribution a., the UNITY

program, each attain the fixed point, the.n it can bc .statcd that all xurutiions of the inipI.-
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mentation attain the fixed point with the probability of type 2 error less than

1/k

Proof: Denote the implementation as a program f whose possible execution behavior is

governed by the R~andom Execution Selection and Equi-probable Execution Subset

assumptions. Consider the program F, as the desired implementation that behaves

just as the UNITY program constrained to these two assumptions, that is the UNITY

program -whose set of possible executions is restricted to only those from the equi-

probable execution subset. This restriction does not affect the fixed point property

of the UNITY program, since fixed points are independent of the actual execution

sequence (64). Both f and F are elements of the set of all possible implementations

of the UNITY program that satisfy the two assumptions. This theorem then follows

from Theorem C.1. U

The execution model for UNITY requires that given a unique state immediately

prior to the execution of an assignment statement, then there is another unique state

immediately after the statement executes. The primary constraint on UNITY programs

that ensures this requirement is satisfied is that the domains for the individual variables

must be finite. This leads to the result that the execution of any UNITY program (with

the assumption that there are no duplicated statements) is equivalent to the execution of

an arbitrary sequence of statements from the first order predicate logic.

Theorem C.3 Given a UNITY program with uniquc assignment statcments, then for

each assignment statement under the UNITY execution model, there exists a wff from

the first order predicate logic whose individual variables arc the named variables from the

assignment, such that the wff is true, if and only if, the assignment .tatimcnt is cccutable.

Proof: Figure C.1 shows the syntax for any given assignment statement from a UNITY

program (figure is from "Predicate and Temporal Logic", Gary B. Lamont and Jef-

frey Simmers. Dept of Electrical and Computer Engineering, Air Force Institute of

Technology. 1991). Starting wi ti the simplest assignment statement
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variable := expr

this can be represented as

= f(T')

where the sequence

{xi~iEN

denotes the sequence of state vectors resulting from a given execution of the UNITY

program, each state vector composed of the named program variables. The function

f represents the assignment performed by the expr. If the assignment is a conditional

of the form

variable := exprl if boolean-exprl -. expr2 if boolean-expr2

then the corresponding wff is

(P(x.n) x.nl = f(xn))A(Q(xn) => x.+l = g(x,,))A[(-iP(x,,)A-Q(x,)) =€ x,,+ = x,,]

where P, f. Q. and g correspond to boolean-expri, exprl, boolean-expr2, and expr2,

respectively. The and operator A results from the requirement that if both boolean

expressions are true, then both f and g must represent the same assignment, while

if none of of the boolean expressions are true, then the value of x, is not changed.

If the assignment is a quantified assignment such as

(11 i0 i < N variable := expr)

then the corresponding wff is

i E {0,...,N} X = f(X1)

where f denotes the assignment performed by expr. In the imore general case of

(11 quantification assignmenl-statenent)

then the wff becomes

( POV) =:€ (wf f) ) (C.3)

where ir is a vector variable denoting any individual variables named in the quantifi-

cation. P is a predicate that evaluates to truc if the quaonification is satisfied, and
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(wff) represents the wff that corresponds to assignment-statement. If P(w) is not

true for any w, then UNITY requires that the quantified assignment be an empty

statement, so that there is no additional symbology needed in tile wff of Equation

C.3.

As shown in Figure C.1, any assignment component can be composed from these

pieces. Given two assignment components within the same assignment statement,

the the wff that corresponds to

componentl 11 component2

is

(wf f 1) A (wf f2)

such that (wff 1) represents the wff for componenti, and (wf f2) represents the wff

for component2. The and operator A results from the simultaneous execution of tile

two components.

Thus the wff corresponding to any assignment statement can be inductively con-

structed. U
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assign-section :=statement-list
statement-list :=assignment-statement {Dassignment-statement}
assignment-statement :=assignment-statement I quantified-statement-list
quantified-statement-list ::= ( 0 quantification statement-list
assignment-statement ::= assignment-component

f 11 assignment-coinponent}
assignment-component :=enumerated-assignment I quantified-assignment
enumerated- assignment variable-list := expr-list
variable-list ::= variable { variable)
expr-list ::= sirnple-expr-list I conditional-expr-list
simple-expr-list :=expr {,expr}
conditional-expr-list ::= sirnple-ezpr-list if boolean-expr

I-s simyple-exjpr-list if boolean-expr}
expr :=(op quantification expr)
expr :=basic-expr
quantified-assigninent 11=(I quantification assignment-statement)
qu~antification :=variable-list: boolean-expr:
0o) ::= min max + I X I A I =_

Figure C.1. Syntax for assign-section



Appendix D. Representation of UNITY Using Pehi Nets

This appendix presents a generalized Petri net (278, 279); that represents the ex-

ecution model for UNITY. Since UNITY represents a formal specification language that

is statement based, this appendix bridges the gap between UNITY and another formal

specification language that is graphical, Petri nets.

There are two key properties of Petri nets as relate to the UNITY execution model.

The first is that no two transitions can 'fire' simultaneously, so that scqucnccs of states are

generated, and no two assignments can simultaneously access the same nonlocal variable

(see Definition IV.67). The second is that whenever -there is more than one arc leading

from a place, the weak fair choice principle applies, that is for aly unbounded number of

choices made as to which arc will 'fire', each arc is chosen an unbounded number of times,

and each arc must only wait a finite number of choices before being chosen.

Given the UNITY program P,

Program P

assign

a 11 b

Ic 11 dI

end

where a, b, c, and d denote assignments, then Figure D.1 depicts the Petri net that

generates the same sequence-, of states as the execution model for lie UNITY program P.

The transitions represent an assignment execuition, and the multiple arcs emanating from

the place labeled 'w' represent the weak fair choice execution (see Section 4.4. Thus the

places represent instantiations of the named %ariablb. that is they denote the program

states, and a sequence of states corre.ponds to a sequence ofj places. The transition labeled

'ad depicts that the firing of this transition generate- the same state as the execution of

the assignent a in the program P. This same analog. applies to tie transitions labeled

with the other assignments of P.

flI



/ w

b d

Figure D.I. Petri Net Model for UNITY Program P
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