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Absiract

This research demonstrates that formal, mathematical analysis in theoretical com
puter science can be recast in terms of the topology of complete metric spaces, and also
presents a methudical technique for developing formal specifications. This effort shows that
the topology of complete metric spaces provides a tool that can be used to both recreate
major results about computational models and also to develop new results about these
models. Using the two computational models CSP and UNITY., this effort shows that
the required mathematics nceded to support this alternative to the traditional analysis
of computational models can be readily supported by a standard course sequence in real

analysis.

Since the approach of proving programs correct after being written has not been
widely accepted, this effort presents an alternative approach based on the developed topo
logical framework for the formal specification language UNITY. This approach. desigued -

be automated, uses a set of transformations applied to UNITY specifications that preserve

desired program properties.




A TOPOLOGICAL MODEL IFOR PARALLEL ALGORITHM DESIGN

I. Introduction

So now I know everything anyone knows
From beginning to end. From the start to the close.
Because Z is as far as the alphabet goes.

- Dr. Seuss On Beyond Zebra

Although this quote was originally intended to be somewhat humorous, today it ad-
dresses a .nuch more terious problem within the computer science and software engineering
fields. J may know everything anyone knows, yet I still may not produce computer pro-
grams that do what anyone wants. Indeed, consider the following quote by C.A.R. Hoare

(164):

Long ago, the welfare of a society used to depend heavily on the skill and ded-
ication of its craftsmen - the miller, the blacksmith, the cobbler and the tailor.
These craftsmen acquired their skill by a long and poorly paid apprenticeship
to some master of their craft. They learned by imitation and experience, and
by trial and error. They did not read books or study science, they knew noth-
ing of the theory of their subject, the geometry of their rudimentary drawings,
nor the mathematics underlying their primitive calculations. They could not
explain how or why they used their methods; yet they worked effectively by
themselves or in small teams to complete their tasks at a predetermined cost, to
a fairly well predicted timetable, and usually to the satisfaction of their clients.

The programmer of today shares many of these attributes of a craftsman. e
learns his craft by apprenticeship in an existing team of programmers - but lis
apprenticeship is highly paid and usually very short. Ile develops his skill by
trial; but mostly by error. e does not study theory, or even read books on
Computer Science. e knows nothing of the logical and mathematical founda-
tions of his profession; and he hates to explain or justify, or even to document
what he has done. Yet he can often manage to complete his undertaken tasks,
sometimes at the predicted time and within the predicted cost, and occasionally
even to the satisfaction of his client.
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Thus the problem is stated, how to produce software that does satisfy the client
(and not necessarily the programmer). There are many aspects of this problem, since
the software development process typically includes (at & minimum) requirements and/or
specification, code gencration, testing, and maintenance. This research presents analysis
and techniques for improving the first formal step in this development process, the formal
specification. Specifically, this research addresses the theoretical and practical aspects of
generating a formal specification, and then transforming these formal specifications into

other, more efficent (typically with respect to architecture or execution time), formulations.

The ‘formal’ in formal specification implies that there is a fixed set of syntactic
rules governing the writing of the specification. These rules dictate which symbol strings
constitute ‘legal’ specifications, and which ones do not. Thus a formal specification is
written in a formal language (217), such as the language of regular expressions (Section
4.2). When combined with a collection of given ‘truths’, called the axioms, and logical
rules of inference, a formal language becomes a formal systcm (317) or theory (see Section
3.3), within which new truths, called thcorcms, can be proved (derived). These theorems
are derived by applying the rules of inference to the axioms and any previously derived
theorems. For a given formal system there is an algorithinic technique for producing all
of the theorems resulting from the formal system. Note that for a formal system that has
the reasoning power of the second order predicate logic (217), there exist true statements
written in the formal language of the system that cannot be proven as theorems, a property

known as incompleteness (91).

This investigation utilizes a formal system described in the book by Chandy and
Misra (64), and comprised of the formal language defined by the syntax of UNITY, along
with rules of inference based on the first order temporal logic and the execution model
for UNTTY. This formal system is designed to reason about a given specification, so that
certain lruths about the specification can be proven. This formal system has as axioms
certain given true statements about a specification, so that the set of axioms is not fixed,
but is a function of the specification being analyzed. The rules of inference are fixed, those
resulting from the UNITY execution model and the first order temporal logic (Appendix

A supplies the additional temporal rules to the first order predicate logic (217)).
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Because of the formal .,stem used to generate the formal specification, there is
a mathematical and logical basis for performing the type of analysis done within this
research. This, combined with the formal specification’s role as the first formal product
in the software development process, makes the formal specification a logical choice as a

starting point in addressing the concerns raised in the previous quote from Iloare.

This research presents the mathematical and logical framework to support vhis anal-
ysis of the formal specification process. This framework is based on topology, specifically
the topology of complete metric spaces. The choice of metric spaces resulte from the re-
quirement to address conceptually computations that do not necessarily halt. By using
metric spaces, such computations cau be treated as convcrgent processes, that is processes
that can be defined in terms of their behavior in infinitc time. Within metric spaces such
convergent processes can be analyzed, and statements can be made regaiding what type
of behavior they may exhibit in an unbounded (in time) future. Accordingly, this effort
is presented in two major parts. The first is the topological analysis of the computational
models used in the analysis of the formal specifications, while the second addresses the

actual generation and transformations of formal specifications.

1.1 Background

The software development process starts with a natural (English) language problem
statement, which then evolves through a seiies of transformations from one form into an-
other, until a form is reached that can be executed on a computer. Traditionally, these
transformations have been performed eitlier manually only, or else manually with some
automated help. Research into completely automating the process continues (123), with
varied approaches presented by different authors (24, 362, 107). Many of these approaches
are designed to support spedific models of computation (64), while others are based on
transformations of either the contro} structures ur the data stiuctures involved in a given
solution to the problem (23, 51, 98, 353). Many of the control structure transformation
strategies are based on the classic paper by Burstall and Darlington, in which they pie-
serted a transformational system fo1 converting recursively defined functions into other

recursively defined functions (Lo improve efficiency), or into iteratively defined functions
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User Requirements versus Specifications

User Software engineer
Natural language Tormal language
Imprecise Precise
Nontechnical Technical
Application terminology Software terminology

- G. W. Jones, Scftware Engineering, Wiley & Sons, 1990.

Figure 1.1. The Dichotomy Between User Requirements and Specifications

(57). Another early paper by Polychronopoulos presented a class of transformations based
on nonrecursively defined algorithms and associated data structures based on directed
graphs (290). This concept of equating transformations on formal products with trans-
formations on directed graphs has persisted, with recent research addressing the preserva-
tion of program properties through directed graph analysis (35). Another classification of
‘transformational approaches is between those based on functional programming styles and

languages (280), and those based on logic programming styles and languages (347).

This investigation addresses this transformation process as applied to the formal
specification, by presenting analysis and techniques designed to generate the formal speci-
fication from an informal specification/requirement or problem statement, aud to t1ansform
the specification into other forms. The concept of applying formal tranformations to spec-
ifications is not new (237), but the specific techniques presented here are. The analysis
is based on mathematics and logic, since, as stated by Sommerville, “A formal software
specification is ... expressed in a language whose vocabulary, syntax and semantics are
formally defined. The nced for a formal semantic definition means that the specification
languages cannot be based on natural languages but must be based on mathematics.” (322)
The relationship between the informal statement of the problemn given in the 1equirenient,

versus the formalization of the formal specification, is summarized in Figure 1.1 (186)).

Unfortunately. there exists an ironic disparity between the increased emphasis on the
front-end planning and design-phases of the software development model, as well as the lach
of wide spread acceptance of forial specification techniques within the commercial software

industry (322). An example of this emphasis on the front-end planning is a generalized rule
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used in allocating Jevelopment effort among the three major phases of the development
cycle called the 40-20-40 rule. This rule states that 40% of the total effort should be
directed to planning, requirements analysis, specification and design, with 20% invested
into the actual coding, and then the final 40% into the testing (293). But the increased
use of formal specifications has been slowed by at least three major problems. The first is
aack of training, in that software engineers typically do not have the background and/or
experience in the mathematics and logic required to formulate formal specifications (322).
The second problem is that the applicability of formal specification techniques to complex
tasks has not been widely accepted, thus there is the classic image of the ‘good for toy
problems in textbooks’ (322). Lastly, much of the research has been into the theoretical
aspects of formal specification, with a corresponding lack of commercially available tools

to support the software engineer (322, 293, 186).

Consequently, instead of designing a new formal specification language, the decision
was made to choose an existing one, and then to increase the utility of that language.
Creating a new language would probably hinder, and not help, the Jack of wide spread
acceptance of formal specification languages, since it would just be one more language to
learn. And by investing the effort into improving the utility of an existing language instead
of creating a new one, this research hopes to lay the groundwork for automated tools to

aid in the formal specification development process.

There are many choices of formal specification languages to support this research, and
these choices include several different types of formulation. One such formulation is those
languages whose syntax resembles that of an imperative programming language (134, 3),
which includes the language UNITY (64) and the commercially available ‘wide spectrum
language’ RETINE (349). Additionally, there are the formal languages whose syntax is
graph based (21, 2841) in the manner of Petri nets (279). Other formalized specification
languages in the literature include those that are based on algebraic equations (336, 36).

and those based on assertions writlen in a formal logic (214).

Although all of these formulations may appear inherently different, they are nol.
For example, as demonstrated in Appendix C, a specification writlen in an imperative

programming language based specification Janguage (UNITY), can be decomposed into
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pieces that can be expressed in the first order predicate calculus over finite domains. Also,
researchers have demonstrated that the graphical specifications based on Petri nets corre-
spond to those based on algebraic equations (142, 259, 338). This research demonstrates
the correspondence between UNITY and another formulation known as communicating
sequential processes (CSP) that is more algebraic (165), while Bailor has shown the equiv-

alence between CSP and Petri nets (21).

The formal specification language chosen for this effort is Chandy and Misra’s UNITY
(Unbounded Non-deterministic Iterative Lransform) (64). The choice of UNITY results
from the capability to write specifications in UNITY that are independent of architectural
and implementation language considerations. This separation of program design (until a
certain point) from hardware considerations represents a goal of sume of the latest research

into parallel programming (321, 33).

UNITY consists of both a formal syntax and a formal semantics, with the semantics
defined in terms of the UNITY execution model. As part of the topological analysis of
computational models this <ffort presents a mapping from UNITY programs into CSP
processes that preserves the behavior of the UNITY programs. With respect to a UNITY
program, the behavior is defined by the collection of all possible execution sequences for
the statements comprising the program. However, because UNITY permits simultaneous
execution of atomic actions (assignments), while CSP does not, this mapping does not
preserve atomic actions. Consequently, this research also presents two addition~! execution
models for ‘programs’ written in the UNITY syntax. These additional execution models
serve Lwo purposes. One purpose is to provide a mapping of UNITY programs (under these
execution models) into CSP that can preserve atomic actions (although not necessarily).
The second purpose is to extend the conceptual model of UNITY. The conceptual model
of UNITY is that model the UNITY user will use as an analogy for the UNITY execution
model. This relates to the claim by Iverson that our internalization of a solution to a
requirement is influenced by the formal specification language employved (178). That i,
the UNITY solution is influenced by the fact that it’s written in UNITY, and the solution
may be quite different from a solution written in another formal specification language by

the same person. This inclusion of two additional execution models for UNITY attempts

1-6




to broaden the range of these conceptual models for UNITY by supplying execution models
that more closely match actual hardware architectures than those of the original execution

model.

Since UNITY was primarily developed to support parallel programming (64), this
effort also primarily supports the specification of parallel programs using UNITY. 'Chis
does not preclude the use of these results to the design of sequential programs, since a
sequential program can be thought of as a parallel program executing on a single processor.
As an interesting aside, even though parallel computation is generally considered a newer
development than sequential (single processor) computing, it was considered by the early
pioneers of computing. For example, the very first digital computer designers experimented
with both parallel and serial designs before deciding on what has been called (incorrectly)
the von Neumann architecture (318). Going back even further in time, perhaps the fisst
documented reference to parallel computing is the f llowing quote from a lecture given by

Charles Babbage in 1842(250):

When a long series of identical computations is to be performed, ... the machine
can ... give several results at the same time, which will greatly abridge the whole
amount of the processes.



1.2 Research Qulline and Document Querview

This research effort can be naturally broken into two major parts. The first is the
topological and temporal analysis of the comp: . "-~al models: finite automata, CSP, and
UNITY. The topological analysis, based o = .y .. metric spaces of models, is contained
in Chapter IV, while the temporal anzaly.. . s ' , ceasoning about the models using
the temporal logic, is in Chapter V. The seco:. { major part is the improvement of the
generztion and transformation of formal spezific. © -. using UNITY, which is contained in
‘Chapter V1. The required computational moc. - srount, which includes an overview of
computational models and program corrcctness, is presented in Section 1.3 of this chapter
and Chapter II. The mathematical bactground is in Chapter I1I. Figure 1.2 shows the

overall structure of the research effort as it relates to the document structure.

Section 1.3 of this chapter defines and presents examples of the two major classes
of computational models used in the study of parallel programming aud architectures, the
messaye passing and the shared variable models. This material represent. the justification
for the selection of two of the three computational models used in this research effort, the
communicitin, sequential processors (CSP) (165), and the execution model for UNITY
(64). CSP is a message passi o model, while UNITY is inberently a shared variable
model, although UNITY programs can be designed to model other paradigms such as

message passing.

Chapter II presents the definitions and basic concepts of programs, proccsses, verifi-
cation, and corrcciness. This chapter gives a more abstr.ct definition of a program than
just symbol strings written in a formal language which can be executed. This abstract

definition of a program is based on another abstract idea, that of a process. Although the

Correctness of Specifications and Programs - Chapter Il
Mathematical Background - Chapter II1
Analysis of Computational Models
Background - “ection 1.3
Topological - Chapter {V
Temporal - Chapter V
Generation and Transformation of Formal Specifications - Chapter VI

Figure 1.2. Research and Document Structure
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terms ‘verification’ and ‘correctness’ are-usually applied to specific products of the software
development process, this chapter also presents more ahstract versions of these concepts.

The-ideas presented in this chapter are used extensively throughout thi= effort.

Chapter III presents the mathematical background required for the remaining chap-
ters. This bachground is broken up into three major areas. The first is the voncept of
a class, which is used as the basic building block of collections of things, instead of the
more ti.ditional set, and is intreduced in Section 3.1. The second is how these classes
relate to each other, that is relation, function, and predicate, which a. - defined in Section
3.2. The final section of the chapter, Section 3.3, presents introduc °ry dennitions and
concepts from category theory, a Jheory thai is based on directed graphs. Category theory
is included-not on'y because it is used in later-chapters, but also because the theory of cat-
egories has become a versatile tool for computer .cientists (27), not only from a theoretical
viewpoint, but also from a practical one. As an example of the practical side of category
theory, consider that researchers at Paris Univeristy claim to be developing a calcgorical
abstract machine, “which executes categorical code on a very simple abstract nachine”
(85). Section 3.3 also defines the ~ategory of complete metric spaces, which forms the

basis for the topological analysis of Chapter IV.

Chapter IV gives some additional introductory material on the three specific coupn-
tational models used in this research. The tiirce computational models used Lere represent
& diverse sampling from the wide spectrum of all of the different models. The first is the
finitc ..tomalon, which represents a classic computational model, the lowest on the hier-
archy of abstract machines whose highest position is held by the Turing machine (217).
Section 1.2 defines the finite automaton. The second model is one based on an algebra
of processes, complete with operations on the processes, and formal representation of the
processes. This model is CSP, and Section 4.3 presents the required material on formal
process representat,on. and process operators. The last model is the execution model foi
UNTTY, which represents a computational madei based on both a formal language and
a formal semantics for the language similar tu a compiled high level imperative language
(64). The philosophy behind UNITY is that the execution model is abstract enough that

it should not reflect any specific architecture. This places UNITY jn the class of paraliel
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programuming languages which could be described as czpression of problem parallclism,
that is those languages designed to express the parallelism inherent in the problem. This
terminology is inspired by the delcction of parallelism and cxpression of machinc paral-
lelism. classifications of Perrott (275), which refer to languages that are sequential (the
compiler parallelizes), and which are architecture dependent, respectively. Section 4.4 and

Appendix C present some introductory material regarding the UNITY execution model.

The primary purpose of Chapter IV is to present the mathematical theory of the
topological analysis of computational models. This topological analysis demonstrates that
finite automata, CSP, and UNITY are all objects of the category of complete metric spaces.
Section 1.1 introduces the metric space of all words of finite length that can be formed
from a given alphabet, a metric space that frzias the basis for the remainder of the chapter.
Section 1.2 then develops a complete mtric space based on-the finite automaton computa-
tional model. Section 4.2 also demonstrates that the topological analysis of computational
power can be direct]ly related to the standard machine based analysis. A complete metric
space based on the CSP model is developed next in Section 1..., while Section 4.4 concludes
the chapter with a complete metric space of UNITY programs. The construction of the
UNITY metric space also shows that any UNITY program can be mapped into a CSP

process that exhibits the exact same behavior.

The goal of Chapter V is Lo unify the temporal analysis of UNITY programs from
Chandy and Misra (64) with that of finite automata and CSP processes. The unifying
tool is the temporal logic of Appendix A. Section 5.1 gives an overview of the three
major classifications of formal semantics for programs, the aziomatic, opcerational, and
dcnolational. Section 5.2 then presents a semantic analysis of finite automata based on
the temporal logic (which could be considered operational and axiomatic). The chapter
coacludes with Section 5.3 presenting the same type of temporal semantic analysis for CSP
proceases. This chaptler also presents an overview of the temporal teasoning of programs

by otiwr rescarcher:.

Chapter VI preseats the second major part of this research effort, an improvement
to the process of generating and transforming formal specifications written in UNITY.

Section 6.2 introduces the stale spacc semanlics that are crucial to the theory used in
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the Jast section of the chapter. Whereas the semantic reasoning about UNITY programs
Ain Chandy and Misra’s book is primarily based on the syntax of the programs, the state
space semantics reasons about the trajectories generated by a UNITY program through a
state-space based on the named variables of the program. Section 6.3 presents a search
style methodology for gencrating formal specifications written in UNITY from informal
formulations, and also transforming UNITY programs into other UNITY programs so
as tu preserve certain program properties. This methodology is based on a collection
of rﬁles designed to be used in a heuristic type search. Based on information collected
during the applicﬁtion of these rules, this section also supplies an algorithmic technique
for the optimization of UNITY programs in terms of execution time on multiprocessor

architectures.

Appendix A presents definitions and introductory material on the modal, tcmporal,
and predicatc logic. The primary purpose of this appendix is to supply the needed temporal
logic background. Since the temporal logic is a special case of the modal logic, the appendix
defines the modal logic first, and then defines the specific temporal logic used to reason
about computation within this research (see the book by Rescher (300) for an overview
of temporal logic in general). Using temporal logic to reason about programs is not new
(Apt (10) credits Pnueli (285) with first introducing tempoial logic to reason about proofs
of program correctness), but many of the specific uses within this research effort are new.
Not only is temporal logic used for reasoning about programs and computations, but the
symbology of the temporal logic is also used as a shorthand notation in many of the proofs.
The appendix concludes with a presentation of the predicate logic as a special case of the

temporal logic.

Appendix B collects miscellaneous results regarding computability theory. the con-
ceptl of chaotic processes, and the implications of the axiom of choice, that are used through
out this effort. This appendix also contains a historical summary of the definition of the

word ‘computable’.

Appendix C presents a result which can be used in the statistical testing of imple-
mentations of UNITY specifications. Also included is the result which justifies the claim

that UNITY is basically another representation of executable first order predicate calculus.
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Appendix D supplies additional insight into the-relationship between different speci-
fication techngiues by showing how the execution model for UNITY can be modeled using

Petri nets.

1.8  Compulational Models

This section defines the concept of computational models, and presents background
material un different computativnal models and their associated hardware (machines) and
software (languages). This presentation emphasizes the two primary models for parallel
computing, the mcssage passing and the shared variable, since these include the two models
that this resarch is based on, CSP (165) and UNITY (64). This section also presents the
motivation for choosing UNITY as the formal specification language for the effort described
in Chapter VI. The section concludes with the weak fairncss definition that forins the basis

for the UNITY execution model.

“A conceptual model or problem that embodies the major features of a whole class
of problems is called a paradigm.” (248) The paradigms of interest here are those for
parallel computation, which are called computational modcls. A (parallel) computational
model is some type of furmalism for representing how algorithims can be implemented
on multiprocessors. The major differences between the different computational models is
in how information gets from one processor to another, and whether or not the different
processors execute dependently or independently of cach other. If the information is passed
through messages between the processors, then the model is classified as a message passing
model (228, 11, 62, 48, 323). Examples of such message passing models are CSP (165),
EPL (154), CCS (242), and CHOCS (332). The high level Ianguages that are based on
the message passing model include Occam (213) and Ada (78). while examples of actual
computers whose architecture is based on this inodel are the BBN Butterfis, FPS T Series.
Intel iPSC Series, AMETEK S14, NCUBE Series. and the Loral Datallow LDF computers
(15, 127). If the information is passed between processors through the use of a common
memory storage (say in the formm of a global variable). then the model is a shared mcemory
(or shared variablc) model (184, 185, 267). Two such shared variable models are UNITY

(64) and ALPS (342), and Modula-2 {358) and Pascal Plus (276). are examples of two high
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level languages based on the shared variable model. The Alliant FX/S, Cray X-MP, IBM
3090, Sequent Balance, ETA, ELXSI, Encore, and FLEX computers all have architectures

based on the shared variable model (15, 127).

The class of models representing processors that execute in a dependent manner are
the synchronous models, while those whose processors are represented as executing inde-
pendently form the asynchronous models (39). Within the message passing models, the two
major subdivisions are the synchronous and the unsynchronous. A synchronous message
passing model such as CSP, Ada, or Occam (213) requires that “both the sender and the
receiver of a communication must be ready to communicate before a communication can
be sent”, while the asynchronous message passing model model allows that “the receiver
does not have to be ready to accept a communication when the sender sends it™ (4). This
difference-is usually not important, since an asynchronous model such as Action Systems

(16) «  ctor (159) can actually model synchronized communications.

The shared variable models can also be divided into the synchronous and asyn-
chronous classifications. A synchronized shared variable model can be formed from any
shared variable model by simply introducing a global clock (118). This division of the
shared variable models is sumewhat superflous though, since general purpose shared vari-
able models such as UNITY can model synchronous and asvnchronous shared -ariable
systems (G4). In fact the distinction between shared variable and message passing mod
els is somewhat artificial, since shared variable models can model both synchronous and
asynchronous message passing systems (206), using semaphores as a locking mechanism

(103).

The shared variable models have split into two other subdivisions besides the syn-
chronous and unsynchronous. The first division includes the dlassic shared variable models.
that is those models whose global data structures are accessed by name such as in UNITY.
while the second division includes the shared dalaspace models whose global data struc
tures are content accessible, snch as Linda (135). Concurrent Prolog (316). and Swarm

(S4).

Another major division of the computational models includes the graph based models
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(259, 181, 158), such as Petrinets (278, 279), abstract Petri nets (142), transition systems
(communicating automata) (261), abstract process networks (236), and dataflow graphs
(14, 13). Depending on exactly what the atomic actions in the nodes and transitions of the
graphs represent, these models can also be grouped under cither the message passing or
the shared variable paradigm. This effort does not specifically address these graph based

models.

The primary reason for differentiating between shared variable and message passing
is that these are arguably the two major parallel computation architectures, since they
are the tvo major subdivisions of the mutiple instruction mutiple data (MIMD) class of
architectures. The shared variable and message passing models are called multiproces-
sor and multicomputer systems respectivels (22), and ase also called shared memory and
distributed memory architectures respectively (326, 320). The single instruction mutiple
data (SIMD) class contains two major subdivisions known as the vector and systolic ar
chitectures {see Duncan (109) for an overview of MIAD and SIMD, and Kuck {(197) for
a description of how MIMD and SIMD fit into Kuck’s taxonomy). Because these are the
two primary parallel architectures, many of the cusrent programming methodologies for
concurrent computation are classified into either the message passing or the shared variable
paradigms (60). Although this categourization of compatational models ignores the many
functional programming models (301. 68. 175. 20. 341). the inclusion of concurrency into

these models requires cither the shared variable approach or some @ pe of message passing.

The shared variable and message passing models are not only considered the two
major paradigms for parallel computation (29). but can abo be used for sequentiel compu.
tations, since they naturally match up with parameter passing by value (message passing).
or by reference {shared variable). Also note that although the primary motivation behind
these models is computational {computer programming). their applicability is not so re
stricted. Consider that the Actor model has been ased to describe the momenta of maltiple

particle systems within the framework of quantum mechanies (2271,

In choosing the primary computational model for this effort, UNITY. the following

suidelines proposed by Pnueli and Harel were used: (2584




1. The model should adequately represent the computation’s behaviour on the actual

hardware architecture.

2. The model should supply needed formalism for reasoning about the properties (usu-

ally stated as propositions) of the computation.

UN'TY, as a shared variable model, satisfies the first item when the target architecture
is a multiprocessor shared variable machine. Chandy and Misra demonstrate in their
UNITY text that UNITY also contains enough flexibility so as to satisfy the first item
for the multiprocessor memory passing architecture (64). UNITY does satisfies the second
item, as demonstrated by the proofs of program properties in the book by Chandy and
Misra (64). UNITY also satisfies a major criterion for computational models which Wirth
calls the intellectual manageability of programs” based on the single entry, single exit
property (357). This requires that the basic statement control structure should consist of
program units that must execute all of their constituent pieces in the same manner for every
possible execution. The assignment statements of UNITY satsify this property, since on
every execution of a statement, every assignment component executes in exactly the same
manner, simultancously (although Wirth was actually addressing sequential execution of

the units).

Another consideration in choosing a computational model is whether the model as-
sumes simultaneous execution of atomic actions or not. UNITY forces the simultaneous
execution of all assignment components within a single assignment statement. Other mod-
els, which are typically called intcrleaving models (288, 196), prevent this simultancous
atomic action execution. The standard UNITY execution model, another modification to
the UNITY execution model and defined in Section 4.4, prohibits the simultaneous execu-
tion of assignment components within a single assignment statement, thus extending the

modeling capabilities of the UNITY syntax.

Another major factor in the choice of UNITY is that the individual assignment
components are equivalent to statements from tlie first order predicate logic over finite do-
mains (see Appendix C). This satisfies a requirement for computational models attributed

to Hoare that “programs should be equated with the predicates describing theit observable
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behaviour.” (262) UNITY programs represent the execution of assignments that satisfy

first order predicate calculus . 1ements.

Usually the choice of which processor performs an atomic action at a given time
is nondeterministic, so that some rules must be established such that a process is not
‘neglected’ for any substantialinterval of time. Such neglect does not represent ‘real world’
concurrent computations, and can interfere with the formal analysis of the computations.
These considerations have led to the concept of fairnessrequirements, so that all processors
actually execute at least one atomic action within some given time interval. Two types of
fairness are defined and used here, weak and strong. These concepts of fairness embody the
requirement that if a parallel program is considered as a collection of concurrently executing
processes, then no one process that could be running should sit idle indefinitely while the
others are running. (See Appendix A for a reference on the symbology of Definition 1.1

and the meaning of ‘temporal predicates’)

Definition 1.1 Given the two predicates from the lemporal logic

A=y a

B=1b
then the requirement for weak fairness is given by the temporal predicate
(0A = O0Ce) A (OB = 0OOh)

that is, over any unbounded time intcrval during which both A and B arc lruc, then a will
become truc an unbounded number of times, and b-will becomne truc an unbounded number

of times. The requirement for strong fairness is given by the temporal predicate
(OCA = 0Ca) A (BOB == OO))

that is, over any unbounded lime intcrval during which A becomes truc an unbounded
number of times and B becomes lruc an unbounded number of times, then a will brcome

{ruc an unboundcd number of limes and b will become truc an unbounded number of limes.
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Definition 1.1 can be extended to any finite number of implications of the form
A=a

by simply forming all such possible combinations of two implications at a time.

Definition I.1 is an abstraction of the standard definition (131), and can be interpreted
in the following manner. If A represents a test, or guard, and a being true represents the

execution of some action or event, then
A=>a

denotes that if the-guard A is satisfied at some instant, then the action corresponding to
a occurs at that instant. Tor example, A could represent the statement that a certain
process is enabled, and the truth of a that the process is actually executing, likewise for
B and b. Then the assertion for weak fairness states that if two processes are continually
enabled {with respect to the implied present time), then they both execute an unbounded
number of times, since

O0Ca ‘

states that the corresponding process will execute again regardless of how often it has
exccuted already. Although some authors state that the process will execute an infinite
number of times, instead of an unbounded number, there are no physically realisable
processes which have executed or ever will execute an infinite number of times (as long as

they require finile time intervals).

In a similar manner, the requirement for strong fairness states that if two processes
are both enabled an unbounded number of timéb, then they will both execute an unbounded
number of times. Or, more intuitiviey, if both processes are eventually enabled with
respect to any time which is considered the present, then they will both eventually execute.
Note that UNITY uses weak fairness, since there are no guarded commands and thus all
statements are continuously enabled (64). Chandy and Misra also make the interesting

observation that ‘unfair selection’, which allows a random choice without having to satisfy
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either weak or strong fairness, can be modeled with weak fairness.

1.4 Summary

This research effort addresses two major objectives. The first is a unified mathe-
matical framework within which to analyze the many disparate models of sequential and
parallel computation. This unifying effort is inspired by the multiple approaches within the
literature to analyzing these models, based on the mathematical tools of lattices, domains
(a special type of lattice), algebras, categories, and others. This unification is accom-
plished in this research utilizing the mathematical tools of the topology-of complete metric
spaces. Three different computational models are presented as complete metric spaces:
finite automata, representing the basic state transition machine model for computation;
communicating sequential processes (CSP), a message passing model designed primarily for
modeling parallel computations; and UNITY, a shared variable model designed to model

many different types of computations, both sequential and parallel.

The second major objective of this research effort is the design of a methodical
technique for developing formal specifications written in UNITY. The purpose of this
development technique is to aid the software designer in both the writing of the original
formal specification, and also the rewriting of the formal specification so that each revision
retains the desired properties of the original version. UNITY is chosen for this effort for two
primary reasons: first, it is a specification language designed around an execution model
that supports both sequential and parallel computations; and second, there exists a well
documented approach to proving certain properties of specifications written in UNITY.
Since these proofs of properties comprise what is known as program corrcctness, the next
chapter introduces the concept of correctness, and the relationship between correctness

and formal specifications.




II. Correctness and Specification

This chapter presents background material on programs and processes, and also on
the specification, verification, and correctncss of « ese programs and processes. The back-
ground material is used throughout this research effort, since the analysis of computational
models and formal specificatons is based on reasoning about programs and processes. The
concept-of correctness and verification is crucial to this research, since the transformations
developed in Chapter VI are designed to preserve correctness, thus implying that these

transformations are self verifying.

Section 2.1 gives the definitions for states, events, processes, and programs, along
with some basic results that follow from these definitions. The section also defines one
program (process) simulaling or emulating another, plus two programs (processes) being
equivalent. Section 2.2 presents definitions for the specification, correctness, and verifica-
tion of programs and processes. The section also presents the interrelationship between
specification and correctness (verification). Section 2.3 addresses the concerns that mo-
tivate this research, the connection between the software development process, proofs of
prog:am correctness, and the design of formal specifications. The section also presents
the basic motivations for the generation and transformation of formal specifications as

analyzed in Chapter V1.

2.1 Programs and Processes

This section introduces-and defines the abstract concepts of a stalc of a computation,
an evenl that causes transitions hetween states, and a process and a program as a collection

of sequences of events, such that each sequence of events can generate a sequence of states.
Definition II.1 A state is an n-tuple whose components are called variables.

This is the basic traditional definition of a siate as an instantiation of all of the program

variables at any given instant of time during the execution of the program (96).

Definition I1.2 Anevent is a functivn thel maps slates into slales.
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Since an event is a function, then given a unique state, the function evaluated at that state
yields just one state. So the event as a function correponds to a computational event in a
program, say an assignment. The input state to the function is the state iinmediately prior
to the assignment, and the output state resulting from the evaluation of the event function
is the state immediately after the assignment (263). If the states are put into a one-to-one
correspondence with intervals of time, then Definition 1.2 implies that events can be put
into a one-to-one correspondence with instants of time. This results from considering that
a state corresponds to the interval of time for which it exists, and at the-instant of time
that an event occurs, it causes a new (although the new state could be equal to the old)
state to exist for its corresponding interval of time. This coincides with the concept from

the distribuled real time logic (DRTL) that an event is a temporal marker (214).
Definition I1.3 A process is ¢ countuble sel of sequences of events.

This definition along with the previous one for an event also agree with the ones given
by loare, who states that a process consists of units of behavior called events, where
“events are regarded as instantaneous” (48). This definition also parallels the one from
the real time logic (which forms the basis for the DRTL) that a process is an ordered set of
actions (180). In the analogy with an executable program, the process corresponds o any
sequence of executable statements that change the values of the variable (states). Thus
a process could be a subroutine, or even multiple subroutines, since o prowess is a scl of
sequences of events. The basic idea is that given any one sequence, and an initial state,
then the executivn of the sequence corresponds to the sequential functional composition

of the events in the sequence, yielding one final state.

A process does not have to be deterministic. For example, the process of roliing one
fair die generates a set with a sequence of events, each event being one roll of the die. Foi
each event (roll) there is the input state, the value of the previous roll, and an output
state, the value of the next roll. If the die is truly random, then there is no algorithmic
process that can gencrate the same sequence of states. Such a random process is based on
the concept of a random choice, which is similar to another nonalgorithmic piocess that is

expressed in the Axiom of Choice (see Section 3.1). Thus the following theoiem:
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Theorem I1.4 There exist processes for which the sel of sequences of events cennot be

generated by any Turing machine.
Proof: See Theorem B.1 in Appendix B. |

Although Definition IL.3 does not so constrain a process, often the concept of a
process is that of a sequence of statements executing on a single processor, while a program
is a collection of such processes executing concurrently on multiple processors. This next
definition of a program embodies this concept, while still allowing for a program and a

process to be interchangeable.
Definition II.5 A program is a set formed from a countable union of processes.

This next definition supplies the link between the events thal constitute a process or a

program, and the sequence(s) of states generated by that process or program.

Definition I1.6 The program (or process) P generates the sequence of states 3,

S= {30,3_1,...}
if and only if P contains a sequence of events E,
E = {eg,ey,.-.}
such that
1€ N & ei(s;) = s

where

N ={0.1,2,..}.

If E and S ar¢ finile. then
N ={0,1,2,...,n}

and both I and S contain n lerms.




A program-or process can generate the sequance of states 5, if it contains the sequence of

events I as given in this definition such that

80(80) 31

e1(s1) $2

The state sp is usually called the initial state, and if the sequence of states has only n

terms, then s, is called the jinal state.

Tven processes that have afinive algorithmic definition can be intractable in analysis,

as demonstrated by this next theorem.

Theorem II.7 There exists « process P that generaies only one sequence of stales S,
where S is Turing enumerable, such that there docs not exist any Turing machine whose

outpul is S given any finile subsequence of S as inpul.

Proof: Consider the process P defined such that the sequence § is not finite

5= {81 352, }

where s; is the first output from the Turing machine that generates § from P, so
is the second output, and so on, and there are & (k is a natural number) possible
distinct symbols for each s, (a consequent of the Turing enumerability of ). These
machine outputs will be considered as the ‘outputs’ of the process. Now, for any

finite subset T of 5. such that 7' contains the first n clements of 5

T= {81 T s,,}

there does not exist any Turing machine that can produce S from T, since there exists
at least k — 1 other processes distinct from P (and distinct from ecach other) that
can also generate 1" (as their first n ‘outputs’) but whose next (j.e. n + 1) ‘output’

is different from s,. And since a Turing machine can only read a finite number of
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tape cells in finite time, the set S cannot be input in-its entirety to the machine, only

finite subsets such as 7. W

What this theorem states is that there exist finitely describable algorithms that define
processes, such that these algorithms cannct be deduced given any finite behavior of the
process. Although this may seem obvious er.ough, there was a time when the SAT test
writers where unaware of this and wrote quustions that ashed for the next number i1 a

given finite sequence of numbers.

This next definition is based on the definition of cmulation and simulation given by

Milier and Kasai (238).

Definiticus 11.8 Given the programs (processes) S and T, then T simulates S, end S

emulates T, with respect to the function h, i and only if, for any sequence of states
S= (s0,51,--)
such that S generates S as given in Definition I1.6, there ezisls a sequence of slales
T = (to, 1, .--)
where T generales T as given in Definition I1.6, such that
TEN <= Ms)={;

where

N ={0,1,2,..}.

If § and T arc finite, then
N ={0.1,2,...n}

and both S and T’ conlain n lerms.

If the function h is to be Turing computable, then h must be fully defined with

only a finite representation. That & must be finitely defined is an important consideration
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whenever the two sequences are not bounded in length. This definition is presented here
because of the relationship between simulation, emulation, and constructive verification,

which is addressed in Chapter VI

If the statement is made that program T simulates program S without any reference
to.a function %, then A is implicitly the identity function. In this case, any sequence of
states generated by § is also a sequence of states generated by T. But it is possible that
thcre are-other sequences generated by T' which are not generated by S. If however, any
sequence generated by one program is also generated by the other, then the two progams

are equivalent.

Definition I1.9 Two given programs (processes) S and 1" arc said lo be equivalent with
respect to the function h, if and only if, T simulates S and S simulates T, with respect to

the function h.

As with the concept of simulation, if the function & is not explicitly given in a statement
of equivalence, it is assumed to be the identity function. Thus the claim that S and T are

equivalent means that they cannot br differentiated with respect to the state descriptions.

2.2 Specificalion, Correciness, and Verificalion

This section primarily add sses-the problems associated with the specification, veri-
fication, and correctness of par llel programs, since these are the conceras which motivated
this rescarch. Since this research effort is directed towards the d: elopment of specifica-
tions, and since verification is not tied to any one step of the software development process,
the verification of most interest here is the verification of one form of the specification
with respect to another. These different forms result when the original specification is
transformed into other specifications, usually to address the questions of implementation.
Each successive transformation generates a new specification that preserves the properties
(expressed as predicates whose individual variables are the named variables of the speci-
fication) of the previous one, but represents more closely the design of the implemented
software. Typically these transformations result from the need for mappings of processes

onto processors, refinement of the algorithms, or efficiency improvements.
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The basic idea behind the specification is that whether formal or not, it represents
what behavior the program should exhibit. The behavior is defined as the different possible
sequences of values for the named variables. The specification is usually not considered
implementable, whereas a prototype is. As used in this research, specification applies to
the development of programs, not to the development of executable languages (such as
through an algebraic specification (36)). The following definition of specification from
Hoare (165) summarizes the intended meaning as used here, although specifications that

are not expressed as predicates are also considered:

A specification of a [program] is a description of the way it is intended to
behave. This description is a predicate containing free variables, each of which
stands for some observable aspect of the behaviour of the [program].

Hennessy adds the constraint that the specification does not address how the behavious
is obtained, only what behaviour is demonstrated (154). Since UNITY can be considered
as a formal representation of the first order predicate calculus over finite domains (64),
UNITY meets the general requirement for a specification language. The UNITY syntax

combined with an execution model thus forms a formal specification language.

Another form of a specification is a relation consisting of a set of 2-tuples, such that
each tuple consists of an input state and an output state (240, 363). The actual definition
of what a ‘state’ is doesn’t matter to this concept of a specification, but this research
defines a state (see Definition I1.1) as a tuple (vector) representation of the current values
for all program variables. If the specification is a relation, such that there are multiple
tuples with identical input states, then the specification permits a nondeterministic choice
of possible outputs for a given input. If the specification is a relation such that cach tuple
has unique input states, which makes the relation a function, then the specification requires

a specified unique output for any given input.

The concept of verification can be defined in terms of the walerfall model of the
software life cycle (308. 117, 160), a model which js still in widespread use within the
Department of Defense (281). and which is considered to include the conventional software

devclopment process (362, 24). Figure 2.1 (from the book by Sommerville (322)) sum-




1. Requircments analysis and definition The system’s services, constraints and goals are es-
tablished by consultation with system users. Once these have been agreed (to), they must
be defined in o manner which is understandable by both users and development staff.

o

. System and softwarc dcsign Using the requirements definition as a base, the requirements
are partitioned to either hardware or software systems. This process is termed systems
design. Software design is the process of representing the functions of each software system
in a manner which may readily be transformed to one or more computer programs.

3. Implementation and unit tesling During this stage, the software design is realized as a set
or programs of program units which are written in some executable programming language.
Unit testing involves verifying that each unit meets its specification.

4. System testing The individual program units or programs are integrated and tested as a
complete system to ensure that the software requirements have been met. After testing,
the software system is delivered to the customer.

o

. Operalion and maintenance Normally (although not necessarily) this is the longest life
cycle phase. The system is installed and put into practical use. Maintenance involves
correcling errors which were not discovered in earlier stages of the life-cycle, improving the
implementation of the system units and enhancing the system’s services as new require-
ments are perceived.

- I. Sommerville, Software Engincering, Addison-Wesley, 1989.

Figure 2.1. Waterfall Model of Software Development

marizes the waterfall method’s five stages of software development. The basic idea with
respect to this model is that verification involves a proof that one step in the software de-
velopment model produces a product that is somehow ‘equivalent” to the product produced
in the immediately preceeding step (18, 209, 144, 29). Depending upon the actual details
of the model, these products can be widely varying, as can the proof techniques actually
used (40, 147, 360, 222, 268, 220, 75, 118) and (74, 130, 97, 281, 169). But the common
concept for all of these approaches is that with respect to some definition of *equivalent’.
the software development process should produce a series of “equivalent products’ (the def
inition of equivalent can change from step to step). Note that the term “proof” is to imply

that the technique of ‘debugging’ by repeated testing should not be considered verification

(234).

The concept of correciness is similar to verification {often the two terms are used

interchangeably ), in that both require a proof that one product of the software development

2-8




phase is-equivalent (in some manner) to a preceding product (218, 93, 183, 9, 151). But
whereas verification proofs are based on the syntaz of the products, correctness proofs
reason-about the semantics of the products (201, 267). This meau. that a verification proof
presents arguments about how certain symbol strings from one product are equivalent to
certain symbol strings from another product. But a correctness proof gives arguments
to show how the symbol string from the one product can be mapped into some fu;.mal
system, and how the symbol string from the other product can be mapped into some
formal system, such that the two formal system representations are equivalent. Often
the two formal systems are the same (in which case the correctness proof can be used
to substantiate the verification proof). This definition of correctness follows from the
term ‘semantics’ meaning that symbol strings have been mapped into another formulation
which is considered to represent the ‘meaning’ (to humans) of the strings (141). With
respect to the formal systems used in the semantics of the proof of correctness, showing
the equivalency of two symbol strings within these formal systems is just another sy niatic
analysis, so that a more precise definition of correctness would be that its verification with

respect to the formal systems that represent the semantics of the original symbol strings.

Consider the following example based on figure 2:2 that demonstrates the difference
between verification and correctness. The two products from the development cycle are a
formal specification written in UNITY, and the C program that supposedly impleme:ts
the specification (some authors call a formal specification a *prototype’ (309), whereas a
‘specification” is une or more assertions from the temporal predicate calculus of Appendis
A). If the development proceeds directly from UNITY to C, as shown by the transformation
T in Figure 2.2. then verification involves a proof that the mapping T° generates a C
program that satisfies the same predicates (that represent the specification requirements)
as the UNITY specification (some anthors consider the verification of a formal . . ecification
or prototype with respect to the informal specification as validation (24)). Correctness of
the C program with respect to the UNITY specification requires two additional mappings.
denoted by M and .V in Figure 2.2. Denoting the codomains of 3/ and .V as *mathematical

models’ follows the definition of correctness given by Lamport 201). Given that the

UNITY specification is correct, then the C program is correct if the sesult of applying M to




the UNITY specification is equivalent to the result of applying .V to the C program, where
the equivalence definition depends upon exactly what M and .¥ are. Observe that the
mappings M and ¥ could Le the identity mappings, which would mean that correctness and
verification would be the same. Also. some authors consider verification and correctness to
be identical when the software development process only contains certain fuormal products
(formal in the sense of being written and defined with respect to some formal system). For
example, Howden states that “When the only development products are specifications and
programs, then ... this is consistent with the use of the word verification to refer to proofs

of correctness” (171).

Often the two mathematical models are identical. For example, both models could be
the formal system based on recursive funclions. This particular choice of recursise functions
is appealing since McCarthy has shown that any formal product (that expsesses some
algorithmic relationship between ‘inputs” and ‘outputs’) from the software development
process can-be represented as a recursive function, such that the function and the produoct
have identical input/output behavier (230). Boyer and Moore use the set of all recursive
functions that can be expressed in Lisp as the common mathematical model for correctness
proofs using their mechanical theorem prover (13). Another mathematical model is the
first order predicate logic, which can be used for proving correctness using the resolution
method (66). The two products to be compared are mapped into sels of assertions from
the first order predicate logic. so that the proof of correctness must shov that the two sets

of assertions are equivalent (partially decidable).

With respect to the earliest formal techniques for program verification, the term
*verification” was defined in terms of “partial” or “tolal” correctness (217, I5). Partial cor-
rectness meant that the program satisfied the predicates that constitated the specification.
while total correctness added the constraint that the program terminated. concepts whose
formalism have been credived to Flovd (1263 and Hoare (161) (although Burstall (53 has
credited McCarthy (232) with the first formalism of program proofi). However. recent
trends in correctness proof and definitions have indicated that there are ten major ty pes
of proof techniques regarding what used to be called verification, The definition of verifi

cation given hiere is one of these techniques. ehich agrers with other recent definitions of
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verification (although these authors may uot have differentiated between verification and
correctness) (40, 122, 362). The other technique closely follows the definition of correctness

given here, a definition which also agrees with recent definitions and usages of the term

‘correct’ (209, 45, 201).

]

The philosophy that mativates Chapter VI is not to verify or prove a program correct
once it’s finished, but instead to develop the program methodically so that the final product
is verified by construction, which has been termed constructive verification (361). This
philosophy results in proofs about the resulting product that can fall under both the

verification and the correctness concepts as presented in the following definition:

Definition I1.10 Given the function T, whose domain is a class A of formal strings of
symbols rcpresenting programs, and whosc codomain is another (possibly the samce) class
B of formal strings of symbols represcnting programs, functions M and N whosc domains
arc A and B respectively, and whose codomains arc formal systems (either logical or math-

ematical), and a € A, then T(a) is verified if and only if
a=T(a)

with respect to an equality predicale defined between A and B. Further, T(a) is correct if

and only if

M(a) = N(T(a))

with respect to an cquality predicale defined between the codomains of M and N. Given the
elements « € A and b € B, then M(a) and N(b) are called the semantics of ¢ and b

respectively.

Note that Definition I1.10 does not specify what the codomains of M and N are,
but they must be specified when defining the functions M and N. The equality relation
between the codomains of A and N need only be well defined (i.e. Turing computable),
and need not necessarily satisfy any other requirements. Chapter VI addresses in more
detail a specific example of what types of functions M, N, and T might be, and Section 4.4

gives another example that relates more specifically to Figure 2.2. The codomains of A
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and N correspond to what some authors call a ‘semantic domain’ (354), a concept which
may have originated in a paper by Marvin Minsky (245), in which he stated that “once the
... problem is given a (semantic) interpretation, we can bring to-bear heuristic methods

acquired in a more familiar domain®.

Often the differences between correctness and verification, and hetween specification
and prototype, become blurred. For example, in a book about logic programming and
declarative languages (which includes the logic programming languages such as Prolog),
Hogger states (and credits the idea to Darlington and Kowalski (88)) that declarative lan-
guages have the “dual functions of both specification-and computation” (167), This implies
that code written in such languages serves as specification statement, implementable pro-
totype, and final solution. Additionally, the following quote from Schnupp and Berrhard

emphasizes the fuzziness between these concepts: (309)

the Prolog versions serve . .. as formal specifications. Whereas modern software
engineering discourages the program developer from writing his implementa-
tion ‘directly into the computer’ until he has carefully prepared a detailed
specification thereof, using Prolog one can hardly avoid such procedure. The
implementation is the specification! The fact that his specification is immedi-
ately executable and testable certainly cannot be held against lim!

This research does not attempt to address the issue of validation, which is related to
verification but is typically defined in terms of the actual software development model used
(24, 340). Validation is an attempt to demonstrate that the statement of the specification
or the executable program properly reflects the original user requirements (79), or to
“compare a software development product with the user’s peiceived requirements for that

product” (171).

To demonstrate the relationships between specification, verification, and correctness,
consider two separate predicate specifications, denoted by R1 and R2, which are graphi-
cally depicted in Figure 2.3. With respect to R1 and R2, A and C represent the inputs,
while B and D represent the outputs, respectively. Although this figure is just a symbolic
representation of the specifications and their input and output data and/or events. the

analogy with circuitry implied by Figure 2.3 is not unwarranted (214). For each specifica-
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Figure 2.3. Graphical Depiction of Two Specifications

tion the.dnputs and outputs constitute the ‘observable aspect(s) of the behaviour’ refered

to in the previous quote from Hoare.

Since Hoare’s definition states that a specification is a predicate, then let
R1(A, B)

denote a predicate that evaluates to truc for certain ‘values’ of A and B in such a.manner as
to satisfy the intent of:the specification. Likewise for R2(C, D). As.an example of such an
R1, consider a spedification that states that for any input that satisfics an input predicate
denoted by P, there oniy exists a unigue instantiation of the outputs that satisfies the
output behaviour predicate denoted by Q. With respect to Figure 2.3, this representation
is given symbolically by

JA[P(A)) => 3BIQ(B)] (2.1)

This assertion actually comprises the specification given by R1 in the figure, so that Equa-
tion 2.1 is R1(A,.B) (179). Thus Equation 2.1 represents a specific R1, whose input and
outlput predicates I and @ must be derived somehow from the specification statement.
Since these specification predicates are based solely on the desired beliaviour of the pro-

gram, they evaluate to true or falsc following the rules of the predicate calculus, that is
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their evaluation is not dependent upon any outside factors (such as the actual implemen-

tation, see the next paragraph).

Now consider another predicate

D1(4, B)

that syntactically is equivalent to R1 but denotes a predicate that represents the actual
design that was based upon the specification R1. So that whereas the predicate R1 can be
evaluated conceptually based on the specification, D1 evaluates to irue or falsc depending
upon the actual implementation of the specification. This means that one requirement for

verification could be that

RI(A, B) => D1(4, B)

In a similar manner if the design denoted by D2(C,D)is based on the requirement given

by R2(C, D), then a verification requirement can be given by

R2(C,D) = D2(C, D)

This verification requirement states that whenever the specification conceptually satisfies
a given predicate, then the actual implementation derived from the specification must also
satisly the given predicate. In general, these predicates only contain individual variables,
so they are expressed in terms of the first order predicate calculus (217). However, this
requirement allows for the possibility that the design could satisfy a predicate that the
specification does not, since

false = lrue

evaluates to {ruc. Thus this verification requirement permits the possibility that the design

could exhibit behavior that was not explicitly addressed in the specification.

Another statement for verification could be that

R1(A,B) <= DI1(A, B)
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Figure 2.4. Graphical Depiction of Composite Specification

R2(C, D) <= D2(C,D)

which states that with respect to-certain assertions, whatever the specification satisfies,
then so does the design, and vice versa. Thus with respect to these assertions, the design
and the specification are behaviorally equivalent. If the parameters A and B (C' and D
respectively) represent the observable actions of the specification and the implementation,
then with respect to the assertions contained within R1 (R2), this definition of behavioral
equivalence also satisfies the intent behind Hennessy’s and Milner’s observational equiva-
lence (153). That is, with respect to these observable actions, the specification and design
that are behaviorally equivalent cannot be distinguished from each other based only on

the ‘observational behaviour’ defined by R1 (R2).

If the two specifications were combined into one specification, such that the ‘things’
represented by B were somehow (say in type) compatible with those of C, then the spec-
ification depicted by Figure 2.4 would only have A and D as observable behaviour. Ad-
ditionally, the predicate R(A, D) that would represent this ‘composite’ specification could

be stated in terms of the individual predicates for the separate specifications by
R(A, D) =3I[RL(A,T)A R2(], D))

which shows how the ‘hidden’ I is handled.

Zelkowitz has classified verification into three types, alycbraic, axiomatic, and func-
tional (363). Algebraic verification is based on the theory of signature algebras and type
abstraction (353, 19, 298, 330, 199, 269, 146), and can be cast in terms of Definition 11.10

with functions M and .,V whose codomains are some form of a universal elyebra (143), often
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based on algebraic specifications (36, 337, 336, 44) and/or abstract data types (331). The
basic idea behind algebraic specification and/or verification is that the desired task and
the program that implements that task can be represented as algebraic equations. This

type of verification is not addressed any further in this effort.

Axiomatic verification includes those techniques that merge the symbol strings that
form the program (from Definition I1.10) text with statements from the predicate calculus,
characterized by specifications that are predicates. This group includes the technique
(268, 18, 145) that has emerged from the addition of predicate transformers (105) to-the
Floyd-Hoare logic (126, 161). The Floyd-Hoare logic was the basis for some of the earliest
rigorous verification techniques (292, 217, 209). Other verification techniques, such as
those based on lattices (312) or complete partial orders (241) may also fall into this group,
depending upon the interpretation of Zelkowitz's definition. With respect to the techniques
based upon the predicate transformers (and considering the domains of the functions to
include symbol strings that are called ‘programs’), the codomains of the functions M and

N can include statements of the form

{P}5{Q}

where » " and-@Q) are predicates, and S is a program statement (or an entire program). Thi

assertion states that if P is true when statement 5 starts execution, then after (if it does)
S terminates the predicate @ will become true. Thus reasoning about the ‘correctness’
of the program is based on the relationships between sets of predicates and the program
statements. Starting with predicates that are true at the beginning of the program’s
execution, and woiking through the statements of the program using asscrtions of the
form above, the goal is to finally derive the desired nredicate(s) as being true after the
final statement executes. The key idea js th-t the reasoning about the prograin uses rules
of inference, or a system of logic, thai is based on the syntax of the statements as they
appear in the program. In a more abstract sense then, this verification technique is a logic
system (or theory, see Section 3.3) whose underlying mathematical model uses the syntax

of the prograin statements. This contrasts with the algebraic verification iechniques whose
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underlying mathematical models use equations that do not directly use the syntax of the

program statements.

The third group of verification te-hniques is the functional. Their primary char-
acteristic is that the specifications are given in a relational or functional form, as sets-of
2-tuples of input /output states. This yields functions M and N from Definition I1.10 whose
codomains consist of assertions about the effects upon the ‘state’ (see Definition I1.1) that
result from- the statements that con:prise the programs in the domains of M and N. One
such technique has been developed by Mills and others (240). Since a logic programming
language such as Prolog can be considered as a relational language (as opposed to a func-
tional language such as Lisp), then certain verification techniques for logic programming

also fall into this category (67).

A -completely different approach to informal verification is based on probabilistic
methods. This approach uses testing to derive statistical estimates that the implementation
contains no errors (340). Since testing does not prove there are no errors, this must be
considered informal verification. And since the testing is usually designed to test for errors

with respect to the original user’s intent, this technique can also be considered validation.

An interesting problem that faces probabilistic statements about software verification
results from the different perspectives of the producer and the consumer. For a given
software package, ti.c producer will increase the probability that the software is error free
with each new error that is found, whereas the consumer does just the opposite, losing
confidence in the software with each new fault (340). Ironically, the historical data doesn’t
necessarily support either belief. Consider that the January 1990 breakdown in AT&T's
telephone network, which resulted in more than $60 million in lost income, resulted from

a “single error in one line ... of a ... scrupulously tested” program (277).

2.3 Software Design and Formal Specifications

This research addresses the problem of writing a formal specification which will
eventua'y be used to generate the executable code. Since there are not currently any

UNITY compilers. the use of UNITY in writing specifications requires a manual effort




to transform this specification into the executable program. A technique called stcpwise
refinement is based on transformations that successively refine the original UNITY program
into a form that more closely matches how the executable program is to be written. There
are other possibilities (21), which are classified into the following three schemes, based on

the work by Bouma and Walters (44):

Direct Execution In this approach the specification is executed (compiled) directly (as
written). A major advantage is that verification of the compiler implies that the
behaviour of the executed code matches that of the specification. Disadvantages

include the possible inefficiency of the execution and the lack of such compilers.

Translation to Logic Programming Language This tact is a two step process, the
first requires the conversion (either automated or manual) into a logic programming
language such as Prolog, and the second is the execution of the logic program. Ad-
vantages include the documentation of techniques to convert from a specification into
Prolog (44), the possibility of modifying the logic program directly to test changes to
the specification, plus the availability of Prolog interpreters/compiliers. Disadvan-
tages include the existence of specifications which cannot be converted into Prolog,
and the lack of modularity for Prolog when compared to standard programming

languages (see next item).

Translation to Standard Programming Language Instead of a logic programming
language such as Prolog, the target language for the specification is a general purpose
language such as Ada or C. Compared to the conversion to a logic program, this
conversion can offer the advantage of increased efficiency for the executable program
plus greater similarity between the modularity of the specification and the modularity
of the target code. The comparative disadvantages include the increased complexity
and corresponding problems with proof of correctness for the translation process; a

consequent of the lack of Jocumented formal semantics for the target languages (44).

Direct execution is also called the single language approach to the specification and
execution of computatjonal tasks. One conceptual example is Milner’s CCS (242). In this

approach a single (syntactic) language is used for both the specification and the imple-
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mentation (executivn) of the task. Consequently, one tact taken for such languages is to
have a large number of constructs and statements. One subset of the language is designed
for writing specifications, and another subset of the language is designed for eflicient (and
effective) execution of the tasks (263). Such languages are called widc spectrum Janguages,
an example of which is the commercially available language REFINE (349). Another tact
is to have all of the language constructs designed to be equally applicable to either speci-
fications or executable forms, which is the philosophy behind UNITY (64). An interesting
question is whether English is the single language for the human machine (at least those

who think in English).

Contrasted with this single language approach is the dual language approach, which
forms the basis for the fair transition systems/lemporal logic approach of Manna and Pnueli
(221, 220). One language is used for specifications, which with Manna and Puueli is the
language of temporal logic described in Appendix A, and the other language is used for
the actual execution of the task. Because of the separation of the specification language
from the language used for execution, the notion of task execution can be taken very
literally. Thus the execution language could represent electrical, mechanical, chemical,
elc. processes, and not just ‘computational’ tasks. Whenever humans write a program
description in English, and then write the actual program in some executable language,
the dual language approach is being used. Thus the traditional program development
scheme is a dual language approach, with the efforts directed tu verification and validation
having to contend with the inherent problems of translating between different languages.

This dual language approach includes both of the “translation to” schemes described above.

Within four years of Floyd’s seminal paper (126) on proving the correctness of pro-
grams (and three years before Manna's book (217) utilizing [loyd’s concepts was pub-
lished), papers started appearing suggesting that the technique of first writing the pro-
gram code, and then proving its correctness, was not amenable to scrious programming
projects. Iloare (162) proposed that the proof be developed in concert with the program
code. At any stage of the coding phase the code should be documented with the current
assertions (including those Hoare defined as invarianis) requised to substantiate the proof

of correctness of the completed code. These assertions are called the preconditions and
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postcondilions, since they state what is true before (pre) a statement (or block of state-
ments) executes, and what is true after (post) the statements execute. Hoare claimed that
the construction of the correctness proof during the coding would “prevent the intrusion
of logical errors” (162). Unfortunately, Hoare's suggestion -can easily degenerate into the
same approach Floyd suggested, whenever a change in the program specification results in
a change to the code that is significant enough to warrant a new correctness proof (which
could easily result if the original proof used a relatively small number of assertions whose
scope encompassed large portions of the program code). Another problem that was evident
within ten years of Floyd’s initial paper on using assertions in the verification process is
that the "necessary assertions are often at least as lengthy and difficult to comprehend as
the-program. they describe” (348). This trend towards increasingly complex proofs asso-
ciated with increasingly complex programs led De Millo, Lipton, and Perlis to state in a

somewhat infamous article (239):

We believe that, in the end, it is a social process that determines whether
mathematicians feel confident about a theorem - and we believe that, because

no comparable social process can take place among program verifiers, program
verification is bound to fail.

Recent research indicates that whatever techniques are being used-in the development
of software, they are still not preventing defective programs from being delivered to the
customer. Tor example, during the period 1985-1988 the British Ministry of Defense found
(thru the use of static code analysis) that almost ten percent of the individual software
modules checked did not completely satisfy the specification, which led to the following

quote-from an official representative of the Ministry ($3):

Certainly the use of plain English with a little associated mathematics has not
proved to be adequate. What is needed is a formal method of writing top
level specifications and then proceeding in a mathematically rigorous manner
to-an ultimate implementation which can be proved to be correct, at least with
respect Lo some narrow group of safety propertics.

This rescarch utilizes another approach which Wirth (355) dubbed stepwisc refine-

ment, which he and Dijkstra. came 1o embrace as fthe method for software engineers to use
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in developing programs (356, 105). The basic idea is to start with a formal specification,
and then use the concept of successive mappings to transform this specification into the
final executable code. Each step of the transformation process takes one or more (formatl)
constructs from the previous step and converts them into new (presumably more detailed)
equivalent constructs. At the final step these constructs are just the statements of the
target executable language. This process requires multiple (Wirth required at least two,
one for the original specification and another for the executable code) formal languages
within which the constructs at each step are formulated. As originally proposed by Dijk-
stra (103), stepwise refinement was a program verification technique. Lach refinement step
should be “very carefully carried out, so that it can be seen to preserve the correctness of
the previous version-of the program, then the final program must be correct by construc-
tion” (17). Note that this is the motivating philosophy for the language REFINE (349),
although REFINE is only one formal language. Along with stepwise refinement, Wirth
proposed the decomposing of tasks into subtasks, and data into data structures (the basic

tenets of top down programming).

REFINE contains a large number of constructs to support the writing of formal
specifications and efficient implementations. Because of the large number of statements
REFINE actually violates Dijkstra’s requirements for a ‘good’ programming language.

Dijkstra stated that such a language should ouly contain the following statements (106):

A stale preserving statement that always terminates (such as skip)
Multiple assignment

Scoped local variables within blocks

Statement composition

Alternative construct (such as if-then-else)

Loop construct (such as while-do)

Declarations for a. few simple (such as boolean and integer) data types

An optional procedure call
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UNITY however, comes much closer to matching this list of statements. UNITY has the
multiple assignment, scoped local variables (within the { and )), statement composition
(the || operator), an alternative construct in the conditional assigninent, and a small set
of data types. UNITY does not have a skip statement, but a conditional assignment with
a buulean eapression that cannot be satisfied serves the same purpose. UNITY also does
not have either the loop construct nor the optional procedure call, though UNITY does

permit function calls.

The shift away from the ‘write the code and then prove it correct’ paradigm has
continued, with proposed methodologies based on systematic ‘correct’ developrient wver
several phases, such that each phase is documented with respect to a complete formal (ot
at least rigorous) language (183, 184, 119, 253). Thus instead of just proving that programs
are correct, the emphasis is on proving that the development is correct, even to the extent
of not attempting any formal or rigorous proof of correctness, a concept that has been
called ‘proofle,s transformations’ (23). This mind set shows in the following quote from

Jones (184), which should be compared to the previous quote from Hoare:

Program proofs can show the absence of bugs, not avoid their insertion.

Not only are these methodologies claimed to be more effective in producing executable
code, but are also claimed to be more cfficient, with Fagan quoting reductions in person

hours of 10 to 40 percent (253) when compared to more traditional techniques.

The idea of correctness preserving transformations has been used for years in com
pilers (212, 289, 5, 350). in addition to being a tool for program development. Although
there was strong criticism of this transtormational approach in the mid 1970%. it has come
to be widely accepted as an “established discipline in the field of programming methodol-
ogy.” (271} Additionally, the increased interest in functional programming languages has
generated research into these transformations for compilers of such languages (121, 1285).

However, this rescarch addresses the use of such transformations for program development.

Soimne of the earliest work in correctness preserving transformations was a series of

papers by Burstall (54). and Burstall and Darlington (36. 87, 57). in which they classified
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transformations (with such terms as foiding, unfolding, and abstraciion), and developed
an automated system that would transform programs writien in a high level language (of
their own design} similar to LISP into equivalent programs in the same language. Their
definition of equivalent was input/output equivalence for functions, and sequence of state
equivalence for certain types of procedures. Othker carly work with program transforma-
tions includes Gerhart’s work based on axiomatic semantics (136, 137), and the research
of Manna, Broy, Bauer and others into the development of recursive constructs and their
transformation into iterative constructs (224, 31, 188, 343, 49). More recent research also
treats the transformation of recursive constructs into iterative ones (80), along with the
transformation of iterative lvops into other forins (346), and transformations based en the

analysis of programs as direrted acyclic graphs (DAG) (28, 35).

In addition to the system created by Burstall and Darlington, there are other auto-
mated touls designed to implement transformations on high level languages. For example,
the Leeds Transformation System transforms programs with the goal of introducing greater
‘structure” {215). A different approach is the Computer aided Intunition-guided Program
ming (CIP) project, which is based on transformations within a wide spectrum language
(32). This wide spectrum language. denoted CIP-L, is designed for hoth specifications and
implementable (in conjunction with an interpreter over a subset of the language) prograins.
so that the transformations can start with the specification and end with the implemen
tation. .\ system similar in philosophy to the research here is the SPES specification and
transformation system, which is designed so that *Transformations applied to the speci
fication make it possible to modify it. with a view to building a program.” (i24). For a
survey of these and other transformation sysiems (including the Programmer’s Apprencice

(302)) that is current through 1953, sce the article by Partsch and Steinbrugeen (272).

Lo }

The program design process embadied in these transformation systesns is one of start
ing with & formal specification that has been proven correct. and successively transforming
this specification into the final program while preserving the correctness. This research
dues not attempt to address the entire design procesa. only the Gansformations petformed

on different versions of the specification. using the specitication Lagnage UNITY. The

coneepls presented here should be applicable to other specification langnage=. which range




from complete formal languages such as an order sorted algebraiv language (254), to an
informal or nonrigorous language such as English. Although this research relies on manual

transformations, Chapter VI presents techniques that could be partially au*  ted.

2.4 Summary

Currently the most common verification technique is manual, due to the lack of au-
tomated verification tools (83). Recent research substantiates the claim that there is no
evidence that automated verification is any easier or less time consuming than the manual
approach. Consider that one report on the use of the automated tool SPADE estimated
that verification of each (approximately 30 lines of Pascal code) procedure consumed 8.5
person-hours (281). Assuming that verification and proofs of correctness will remain a
mostly manual process, a promising approach to software design is the nse of formal spec-
ifications as presented in Chapter VI. This approach gives techniques for generating a
formal specification that preserves the desited properties of the informal specification, and
also for transforming formal specifications so that the desired properties of the specification
prior to the transformation are pieserved by the transformation, and are thus properties

of-the specification after the transformation.




III. Requisite Mathematical Background

This research is divided into-two major efforts. The first is the -metric space based
development of computational models as an alternative to the more traditional (mathe-
matical) development of these same models. The undetlying philosophy behind this metric
space development is that the mathematics can be supported by a standard advanced un-
dergraduate or graduate level course sequence in real analysis. In keeping with this concept,
this chapter presents certain fundamental mathematical concepts required for the follow-
ing chapters besides the metric space material. The concepts presented in this chapter
are based on the class approach to collections of things, as opposed to the more standard
set based approach. Definitions and motivations for relations, functions, predicates, and
category theory are given, all based on this class concept. The level of presentation is
that of a course in mathematical analysis from the book by Apostol (8), and the reader
familiar with this material may proceed directly to Chapier IV. Including this material
in the real analysis courses (as presented here, particularly the category theory) can tailor

these courses towards practical and theoretical research in computer science/engineering.

Section 3.1 presents the concept of a class, which is a hierarchical technique for
grouping collections of things. By using classes, instead of the standard ZFS sets (i.e.
Zermelo-Iraenkel-Skolem (364, 129, 182)), one can avoid certain paradoxes relating to
sets. One of these paradoxes results from the claim that there exists a set U which is the
set of all sets. Is then U an element of itself, and if so, what is the complement of U? The
formalization of the concept behind this paradox is given in Russell’s paradox (132, 73).

Russell’s paradox starts with a set A defined as:
A={zeUlx ¢}

Thus A is the set of those sets (elements of U) that are not members of themselves.
Although this definition seems strange, it is reasonable, since given any ‘normal’ set x, it
should be casy to decide if  is an element of itself. Unfortunately, given a set that is not

‘normal’, this definition quickly leads to a paradox. And such a set is A itself! This is
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because the definition of A implies that
Acd= Ad A

The idea of a class though, permits the formation of the class of all sets, which, since it is

not a set, does not lead to Russell’s paradox (as long as there is no-class of all classes).

Section 3.2 presents an overview of relations, functions, and predicates, within the
framework established by the class concept of Section 3.1. The definitions given for these
are in terms of classes, but do not contradict the standard definitions based on sets. Rela-
tions are basically ordered collections of things, that are considered as somehow related to
cach other. Very similar to relations, functions are often called mappings, to signify that
given one thing, the function maps that thing into another (whereas a relation in a sense
maps into more than one other thing). The section concludes with predicates, which are
functions that map things into a special set whose only members are the symbols repre-
senting ‘true’ and ‘false’. This research does not try to define exactly what true and false
are, but instead accepts them as given atomic (cannot be defined in teims of other objects)

objects.

This chapter concludes with Section 3.3, which introduces category theory (156,
247), and defines those terms used in the later chapters. Category theory is the study of
categories, where each category is a combination of a collectivn of certain types of objects,
and the collection of morphisms between these objects. A morphism is an abstraction of
the concept of a relation or function. This section also gives a category based definition
of a theory. The notion of a theory, as defined in this section, reflects the more abstract
concept of a theory as containing theorems which can be proven to be true. This is a
different presentation than the formalism of a theory as a category whose morphisms
(mappings) represent projections and n-ary operations (112), or as a signature algebra
plus equations (58). But the difference is very minor, and on a more abstract level the
algebra based theory can also be shown to be a category (77), with different notions of

wlat are the ‘theorems’.
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3.1 Classes, Genus, and Species

This section introduces the class, which is used as the basic concept of a collection
of things instead of the traditional set (182). Since the categories used in this research
are based on collections which cannot be treated as classic sets, this class concept yields a
formalism that is used to reason about these collections. The class used here is based on

Lewis Carroll’s concept of a class: (61)

“Classification”, or the formation of Classes, is a Mental Process, in which we
imagine that we have put together, in a group, certain things. Such a group is
called a Class.

The following definition gives a furmal definition of class, based on the ideas from Carroll of
pulting together in-a group, and things. There is no attempt to try to define either of these
concepts, but instead they are accepted as stated. Indeed, the following two statements
could be called hidden axioms, where ‘hidden” refers to the lack of a formal definition of

the terms ‘putting together in a group’ and ‘things’:

1. There are things.

2. Things can be put together into groups.

That no attempt is made to define these two concepts here, reflects the ‘semantic’ com-
ponent of the English language. That is, attempts to formally define these two concepts
results in self reference, which should imply that these concepts cannot have ‘meaning’. Yet
they do have meaning to us, implying that this meaning results from some characteristic

of the English language (to us) that is not formalized (i.e. not a formal language).

Definition III.1 A class is e collection of things. Cluses are formed in the following

manner;

1. There exists a nonemply class U of all things grouped logether.
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2. Given « class called the genus, another class called the species can be formed by

grouping together things from the genus. If X represents a class, then
ACKX

denoles that the class A is a species of X, and
teX

denotes that the thing ¢ is one of the group of things that form the class X .

3. Every genus has at least one species, which is the empty class that contains no things.

As in set theory, it is necessary to differentiate between the thing a, and the class
that contains only the thing «, say A. Thus ¢ € A4 states that the class A contains the
thing @, which implies that the class A is not an element of the class A, denoted by A ¢ A,
and also that the thing « is not a species of the class A, denoted by ¢ ¢ A. The reason
a ¢ A is that the symbol ¢ represents exactly the thing a, whereas b C A is true only if
the symbol b represents another class, that is a grouping together of things, that contains

either no things or just the thing a.

Definition III.1 states the existence of a class called U, and also defines how other
classes are formed from U. If the d=finition did not specify the class U, the only class that
could be formed from the definition would-be the empty class, since the second item in the
definition requires that for a nonempty class o be formed there must exist another class.
The empty class alone is not enough to form other classes, since it has no elements. So the
definition contains two key concepts, that of a basc casc, that is a specific example of the
item defined, and that of a rccursive process for forming other items from the base case.
This type of definition is called a rccursive definition. In Definition 1111 the base case is
the class U, while the recursive process is the formation of species from genus, where the

‘first” genus is U.

The class U in Definition 1I1.1 comes from the following quote from Lewis Carroll's

Symbolic Logic (61):

34




We may imagine that we have put together all Things. The Class so formed
(i.e. the Class ‘Things’) contains the whole Universe.

The choice of U to denote the class of all things comes from the reference to the ‘Universe’.
The universe has not yet been specified, but in general this universe must contain all the
things that are needed for some specific reason. This imnplies that another effort would
need a different Universe based on different reguirements. Thus this class of all things is

not absolute, but contains just those things needed for a particular application.

Given the formation of such a class as U, then Definition III.1 can be used to form
other classes, called genus and species. The terms genus and species also come from
Lewis Carroll, and this usage of them as classes parallels lus. But the concept of a class
representing the universe, the class U, is not universally accepted (156, 247). If there can
be no universal class of all things, then how else can classes be formed? Consider the
following methodology for forming-a hierarchy of-collections of things that differs from this

class based approach.

Start with the standard definition of a set (364, 182, 8), then consider the collection
-of all sets. Obviously such a collection is not a set, because of Russell’s paradox. One term
for such a collection is a class (defined differently from the class of Definition I1L.1), with a
conglomerate defined as the collection of all classes (156). In this hierarchy, then, a class is
what Iofstadter (166) would have called a meta-set, and a conglomerate as a meta-meta-
set. Regardless of the names used, this process of starting with sets and then forming

collections of all sets, and collections of collections of all sets, could continue indefinitely.

Thus Definition IIL.1 could have been reworded so that the set is the base case for
the class definition, with additional classes formed based on the same conept of genus
and species, except that a genus can only be formed whose elements are defined in terms
of a given species. This approach can be summarized as starting with a given class and
building other classes from it in both the ‘upward” and ‘downward’ sense in abstraction.
Contrasted with Definition I1I.1, this approach would not require the existence of the class
U. A variant of this approach is to start with those things that are atoms, and then to form
collections of atoms, and collections of collections of atoms, and so on. This generates a

hierarchy of classes but only in the upward direction of abstraction (295).
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The previous question regarded the impact of not having the class U. An inter-
pretation of Definition IIL.1 would be to permit U to be a ‘global’ class for a particular
application. This U would include all possible atoms needed for a specific application (such
as this research effort), and classes would represent different collections of the atoms. An
atom js a thing that can be represented with one symbol, such that any required ‘meaning’
associated with that atom can be derived from only that symbol. An example would be
the forming of classes for the analysis of sets of real numbers. The atoms would be the in-
dividual numbers, plus other required things such as the unary minus operator, the binary
addition vperator, and other symbols that are standard within the realin of mathematical
analysis (based on sets). Another example of a collection of atoms would be those based on
the lambda calculus (301, 274); such a-collection would not necessarily require the arith-
metical operators, but would require other symbols such as A. Using such an approach
skirts the problem of the existence of a class such as U that represents (in Carroll’s words)
the whole Universe. Instead of the whole universe, U only represents that portion needed

for a particular analysis.

The approach here is to define a universe U that contains all the atoms necessary
for this research effort. This definition of U is somewhat informal, for a more rigorous
mathematical treatment see Mac Lane (202) (which is based on an eartlier paper by Bernays

(37)). Starting with the standard definition of sets, the class U contains the following:

1. The set of all computable numbers (see Appendix B) is an element of U.

2. The arbitrary union or intersection of elements of U yields an element of U. (Sce

Definition I11.4 for the definition of class union and intersection)

3. If DeVUand f:D — Uis a function, then the class formed by evaluating f for

every element of DD is an element of U. (See Section 3.2 for a definition of function)
4, f BelUandbe B, then be U

I C e Uand S CC,then Sis an clement of U.

Q

A consequence of items 2 and 5 is the following result.
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Theorem II1.2 Given a set C, C € U, then the set of all subsets of C, denoted by 2

and called the power set of C, is an element of U.

Proof: Item 5 implies that

VS[S € C = S € U).

Item 2 then implies that the union of all such subsets of C' forms another element
of U, even if the collection of all subsets is uncountable. (See Appendix A for a

description of the predicate logic symbology. n

Mac Lane required the inclusion of the set of all natural numbers in U, instead of
the set of all computable numbers (from the first item), so that sequences could be formed
(See Section 3.2 for a definition of a sequence). Since the set of natural numbers is a subset

of the set of computable numbers, this U also allows the formation of sequences.

An example demonstrating the second item from the list of propeities for the class
U can be formulated using bags (225). Bags are identical to sets except that bags allow
multiple elements to be represented with the same symbol. If the delimiters { and } are

also used for bags, then the two bags A and B given as

A= {a,b}
B = {a,a,b}

are not equal. If both of these bags A and B are elements of U, then the sccond item

states that the following bags are also elements of U

{a,b} U {a,b} = {a,a,b,b}
{a,a,b,0}U {¢,b} = {a,b,b,a,b,a}

a process that can be continued indefinitely.

Now that classes can be formed, an important question i> when are two classes cqual.

The answer to this question. Definition 1113, states that two classes are equal if and only

if the following two conditions hold:




1. Both classes are species of the same genus.

2. Both classes contain exactly the same elements.
Definition II1.3 (Class Equality) Given two classes A and B,

A=B <= 3XVz[ACXABCXA(z€ A< z€ B)).

This definition uses a sentence from the predicate logic (225). Appendix A describes the
concepts, symbology, and syntax from the predicate logic used within this research. Note
that class equality, which requires the existence of a genus for the two equal classes, differs

{rom set equality, which only requires that the-two sets contain exactly the same elements

(182).

Although a definition is given for equality between classes, there is no general purpose
definition given for equality within a class. The definition of equality. within a class is
dependent upon the class, and is defined for each specific class as required. An equality
definition for a class is not unique, so that the same class could have different definitions,
each one tailored to a specific requirement. For this effort though, each class has either
one equality defined, or where there are multiple equalities, each one is given a different
name (see the discussion of extensional versus intensional functional equality in Section
3.2 for an example). For example, the class that contains only the natural numbers has
the ‘standard’ equality based upon numerical evalvation, so 3 = 2 + 1 in addition to 3 = 3.
But the class that contains all sets (see Section 3.3) uses a different equality, Wlli_.(',]l requires

the symbols representing the elements to be identical.

By defining classes in this manner Russell’s paradox can be avoided. Genus and
species are abstract names that represent different classes, so-that instead of the set of all
sets, which leads to Russell’s paradox, there is the genus (or class) consisting of all those
things that are sets. Given such a class as the genus of all sets, then any collection of sets
would be an example of a species. A class can be both a genus with respect to another
species, and a species with respect to another genus. One genus can have inultiple species,

and a class can be a species with respect to multiple genus.
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Within a species A, z € A denotes that the thing represented by 2 is an element of
the species, and the notation that A is a species of the genus X is given by 4 C X. With

these conventions, the symbology for classes is identical to that for sets, so that
ACKX

such that

A= {z € X|P(z)}.

represents the definition of the species .4 as the class of those things (or elements) from the
genus X such that the predicate P(-) evaluates to true. (See Section 3.2 for a definition of

predicate)

An empty class is denoted by {}, so.that given any class A

{} € A

The empty class is not the empty set, since the empty set is defined to contain no elements,
whereas the empty class not only contains no elements, it is also a species of some genus.
So if two classes A and B have different genus, then the empty class that is a species of
A is not equal to the empty class that is a species of B, whereas in set theory all empty
sets are considered equal. Note that within the class of all sets, the uniquc empty set is

denoted by 0.

Within these first two definitions of classes and class equality there is at least one
major difference between sets and classes. Whereas a set is completely defined by its
elements (182), a class is defined by both its clements and its genus. An inleresting
consequence of this dependence of a class upon its genus is the question of whether there
can be another class (say defined in a different manner) that is equal to the universal class
U. Since U has no genus (and is the only class that has no genus), then there cannot exist

another class that is equal to U!

Another major difference between classes and sets is thal sets contain unique cle-

ments, so that the union of the set {e,b} and the set {6} yields the set {a,b}, whereas
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this is not necessarily true for classes (and isn’t true for bags). The reason for not stating

that elements of classes must be unique is that such a claim leads to a paradox (such as

Russell’s).

One consequence of the difference between sets and classes deals with the very concept
that led to Russell’s paradox, that is a set of sets. An element of a set of sets is itself another
set, and this element could itself be a set of sets. This leads to-the problem of using the

same name for different objects. Consider the following sets:

A=1{1,2,3}
B = {{1,2,3},0}
C = {B,0}

Set theory does not have a convenient way to differentiate between A, B, and C. They
are different types of sets, since A has a nesting level of one for its delimiters { and }, B
has a depth of nesting of two, whereas C has a depth of nesting of three. So the set A
is an element of B, but is not an element of C, even though both B,C are called sets of
sets. Additionally, with-only the symbolic representation of C' as given above, there is no
information to indicate what the depth of nesting is for C, unless B is specified in more
detail. V7ith classes, since a class is defined by hoth its genus and its elements, there is
a more convenient way to differentiate between the three species A, B, and C, since they

could each have a different genus.

Operations on classes correspond to those on sets, so that there is the union, inter-
section, complemcnt, and cartesian product. All four are defined in an analogous manner
to the set operations (182), but with important differences. Union and intersection are
only defined for two species of the same genus, and the complement of a species is always

another species within the same genus.

Definition 1IL.4 Given that A, B, and X arc classcs, dcfine class union U, intersection

N, complement 7, and cartesian product X, in the following manner:

ABCN <= AUB={zeXlre AV € B}
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ABCX <= AnB={zcX|lz€ ANz € B}
ACX <= A={z e X|z ¢ A}

Ax B ={(a,b)Jae ANDE B}.

Note that the v symbol represents the inclusive or, which evaluates to {ruc if either or
both of its arguments are true, and the A symbol represents the logical and. Appendix
A describes these and other symbols from the predicate logic. A result of this definition
is that genus are closed under the operations of union, intersection, and complement.

Additionally, the cartesian product of two classes is itself another class.

In Definition II1.4 the symbols (a, b) denote the ordered pair of @ and b. Some authors

(8, 156) define ordered pairs in terms of sets as
{(e,b)le € ANb€e B} = {A, {4, B}}. (3.1)

Instead of this approach, this research defines a class of ordered pairs based on the following

definition of ordered n-tuples:

Definition IIL.5 A class of ordered n-tuples, n € N, denoled using the delimilers (
and ) as, for example

(JX’] 3 ey JYn)

is defined to contain clements that arc also denoted using the delimiters ( and ) as, for

ezample

(-'ll],.-., mn)

such that

(1500 Tn) € (X1 Xn) = [F€ {1, ....n} = z; € X).

Lqualily between elements of onc class of ordercd n-tuples, or cqualily belween Lwo classes

of ordered n-tuples is defined by

(W, ooy W) = (Zy. ooy Zn) = (Wy = Zy A AW, = Z2).
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The zero-tuple, denoted (), is an emply class.

In testing for equality between two elements of a class of ordered n-tuples,-cach ¥, Z,
above are from the same class, although for i # j, W, does not have to be from the same
class as Z,. If instead the test is for for equality between two classes of ordered n-tuples,
then the W,, Z, themselves are classes, not necessarily all identical. Also note that the

definition includes the ordering concept in that
X#Y = (X,Y)# (¥, X).

Since the empty class is a species of any genus, then the zero tuple is also a species of any

ordered n-tuple.

An example of n-tuples is the class whose elements are denoted by

CTPNES

such that each z, is an element from the set of computable numbers. This class of n-tuples

is denoted by C", and its elements are called veclors.

Based on Definition IIL5 is the following definition of a class called a family.

Definition II1.6 A family is a class that is denoled by a special form of a onc-tuple, so

that the family (X,)ae is defined by
(—-\’a)ae.-\ = {-\’o € -X!"- S "1}
where X is a genus, and A is a sel called the index scl.

Another notation for a family, whenever the index set A need not be specifically given. is

(Xa)
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If-there is no confusion, then another equivalent formulation is given by

)

such that

(Y) = (?/c )ae.-l

where

a€EA =y, €Y.
This nomenclature leads to the class of all 2 tuples of computable numbers being denoted
by
(C.C)

A class used in this research is the class of all sets. This class is not itself a set,
but all of its elements are sets. Equality within this class is defined as the standard set
equality, so that two clements are equal if and only if they are represented with the same

symbol (182). This class is closed under the following operations:
1. Set Union.
2. Set Intersection.

3. Set Complement.

4. Set Cartesian Product.
The following are elements of this class:

1. {X.Y} where X.Y are sets.

2. All functions from X to Y. where X.)} are sets. (See section 3.2 for 2 definition of

function)

3. The emply set. denoted by ().

The following is a list of frequently used examples of elements fram this class. all of

which are also species of the genus R. the real numbers,

313




1. N = all natural numbers.

o

Z = all integer numbers.
3. Q = all rational numbers.

4. C = a" Turing computable numbers. (See Appendix B)

To complete the background on classes one more item is needed, an extension of the
axiom of choice for sets to an axiom of choice for classes. See section 3.2 for a formal

defis:tion of function.

Axiom IIL.7 (Axiom of Choice for Classes) For any genus X, there exists a function

C such that
VS(SCXAS# {3)= C(5)€e 9]

A characteristic of this choice function C is that it is not a Turing computable fanction

(see Appendix B).
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3.2 Relations, Functions and Predir:ates

This section gives definitions for relations, functions, and predicalcs based on classes
instead of sets. These definitions patallel those for the set-oriented constructs, such that
the standard hierarchy, all predicates are functions, and all functions are relations, is
also preserved by these definitions. These relations, functions, and predicates are used
extensively in other definitions throughout this effort, and the predicate forms the basis

for the modal and temporal logic (see Appendix A).

The concept of a relation is that it represents a subset of the cartesian product of
two sets. For example, the equality relation over the natural numbers is a subset of N x N
such that (2,2) is an element of the subset, but (2,3) is not. Two traditional definitions of

a relation that are based on sets are:

1. Any set of ordered pairs is called a relation. (8)

2. Given a set X, a relation on X is a subset of X x X. (305)

In the second definition, .X' X X is the set Cartesian product. The first definition is just
a generalization of the second, and the two are equivalent if the relation is over some
particular set. In both cases the relation is characterized as a set, and is a binary relation,
that is a relation of two components. Since this research analyzes classcs as they fit into
the framework of category theory, the following definition for relation is not restricted to

sets, nor is it restricted to just two arguments.

Definition II1.8 Given a class represented as an n-tuple, a relation over this class is a

species of this class.

The representation as an ordered n-tuple is a carry-over from set theory, so that the relation
of Definition I11.8 is a generalization of the concept of a relation as an ordeied pair. If the
given class in Definition is a two-tuple of sets, then the resulting relation is also a relation
under the two traditional definitions given above. As an example, if the given class in the
definition is

(U, U)
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then any relation over this class is a further generalization of the two traditional definitions.

Th< nomenclature for statements about relations is the same as that used for set

based relations. For example, if the given class is the 2-tuple
(X,Y)
where both X and Y are classes, then
(z,9) € (X,Y).

denotes that the tuple (z,y) is an element of this class. If R denotes a relation over this

class, that is

RC(X,Y)

then

denotes that the tuple (z,y) is an element of the relation R. Another representa‘ion that

(z,v) is an element of R (which is commonly used for set-based relations) is

s Ry.

Note that with respect to the standard definition of set based relations, other math-
ematical constructs that would fit the concept of a single or multi parameter relation, such
as the subset relation over sets, are either simply called relations on an individual basis
(225), or are implicitly considered predicates by definition (217, 225). Definition IIL8 in-
cludes the single and multi paranieter relations, while single parameter relations also fall

under the definition of a ‘family’ (see Section 3.1).

Another representation for set based relations is based on the concept of a relation
as a function that maps elements of a set of ordered pairs into the set {{ruc, false}. For

example, the equality relation over the set N <« N can be considered a function which is




denoted by eq, such that

eq(2,2) = true

eq(2,3) = false

where eq(z,y) means the function eq evaluated at (z,y). If eg{q, b) evaluates to true, then
(a,b) is an element of the equality relation, whereas if eq(c,d) evaluates to false, then
(¢,d) is not an element of the equality relation. This example illustrates the concept of
a relation as a function that maps elements of a class into the set {t{rue, false}. Defined

in this manner, eq can be used just as a symbol representing a set-based predicate (see

Definition I11.20) would be used.

The following definition concludes the required terminology regarding relations, plus
supplies the concepts needed to support the analogy between relations and categories used
in Section 3.3. This research adopts the convention that the terms ‘relation’ and ‘partial

relation’ are synonymous.
Definition IIL.9 A partial relation R C (X, X) is called:

Reflexive iff
Vafe € X = (z,2) € R

Symmetric iff
Ve,yl(z € X Ay e X) = ((2,9) € R <= (y,2) € R)]

Antisymmetric iff
Vo, gl(z € X Ay € X) = [(2,9) € RA (3,2) € R) = = ]}
Transitive iff

Ve,g,2[(x e XAye Xnze X)= [((x.)) € RA(y,2) € R) => (x,2) € R




Total iff
Vz,9l(z € X Ay € X) = ((=,9) € RV (3,2) € R)]

An Equivalence iff R is reflexive, symmelric, and iransitive.
A Partial Order iff R is reflexive, lransitive, and antisymmetric.
A Linear Order iff R is a tolal partial-order.

A Strict Partial Order iff R is transitive, antisymmelric, and
Vz[z € X = (z,%) ¢ B)

A Strict Linear Order iff R is a total strict partial order.

Note that there exist equivalence relations that are also antisymmetric, such as the standard
‘=" relation, and there exist equivalence relations that are not antisymmetric, such as the
‘mod n’ induced equality relation over the natural numbers, where 0 equals 3 mod 3, but

of course 0 # 3.

Since a function within set theory is a special type of relation, then to preserve
consistency the class based definition of a function should also be as a special form of a

relation.

Definition II1.10 A function is e class of 2-tuples, thet is a function is a species of the

cartesian product of two classes, denoted by, say
(Fh F’Z)

such that

Y(f1; £2): (91, 92)[((f3, 2) € (F1, F2) A (g1, 92) € (11, 2)) = (i = 1) = fa = )]
(3.2)

The class D such that

ncbh
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is called the domain of the function, while the class C such that
Khcc
is called the codomain of the function. If the function (I, F3) is denoted by I, then

F(f1)

denotes I evaluated af f;, where

V(1 (N, f2) € (1, F2) = F(H) = f2);

and

F:D=C
pEc¢

both denote the function F' having domain D and codomain C.

Equation 3.2 implies that the function evaluation is defined for every element of the class
F, which is equivalent to saying that I} is the domain of definition (8). Since the domain
of definition can be a proper sublcass of the domain, that is there can exist elements of the
domain that are not elements of the domain of definition, then the functions defined by
Definition IIL.10 are the partial (i.e. not necessarily everywhere defined) functions. Just

as with set based functions, if S denotes a class, then
F(S)

denotes the image class of S under F, and is given by

F(5) = {yl3e[z € SAy = F(z)]}




Within set based function theory, the image of any set is itself another set (82), which is

consistent with this idea that the image of a class is another-class.

This definition of function generalizes the standard definition of a function as a

mapping from one set into another, such that for any function f,

f@)# fy) =2 #y.

Definition II1.10 also does not conflict with the standard definition of a function based on
Turing machines (155), since an undefined evaluation will not be equal to any other element
of the codomain. The nomenclature used to designate that a function F is undefined at

the element z is

F(z) =1

where L is a symbol not used for any other purpose. Just as the standard definition
requires that each individual clement of the domain set must be mapped into just one
single element of the codomain set, Definition II1.10 also requires that all elements of the
domain of definition class that are-equal must map to equal elements of the codomain
class. The function evaluation performs the mapping, and both the equality within the
domain and the equality within the codomain are class equalities. The major difference
between this definition and the standard set based defintion is that since classes do not
require uniqueness of elements, there is the possibility that the domain and the codomain
can have multiple elements that share the same symbol or are otheiwise equal under the
appropriate class equality. Within a class whose elements are sets, equal elements are

exactly unique eicinents.

Definition II1.10 states that the elements of a function are ordered 2-tuples subject
to the constraint given by 3.2. This implies that any function is alsv a relation, since
the 2-tuples that are elements of the function can also be the elements of a relation.
The coiwverse is not always true however. since there are relations that do not satisfy the
constraint given by Equation 3.2, and thus are not functions. One example of a relation
that is not a function is the relation < over the natural numbers. Both of the two-tuples

(2,3) and (2, 1) are elements of this relation, whereas both of these tuples cannot elements
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of a function, since that would require that 3 = 4. Thus < violates 3.2. As another example
consider that all of the elements of the equality relation over the natural numbers can also
be the elements of a function. Indeed this function is the identity function denoted by id,
and defined by

n€EN= idln)=n

Since any function can also be considered as.a relation, Definition III.10 preserves
the traditional concept of the set of all functions from a- domain into a codomain, being
a subset of the set of all relations between the domain and the codomain. This definition
also preserves the traditional concept that there cxists relations that do not satisfy the
definition of a function. In terms of classes, this means that given a class of 2-tuples, the
class of all functions whose elements include these 2-tuples is a species of the class of all
relations also having these 2-tuples as elements. (Note that these definitions are consistent
with those based on the concept of a relation as a function from one powerset into another,

with the function being completely additive (111))

A relation R C (X,Y) where X and Y are sets is also a function f
fiX =2

where 2 represents the powerset of Y (the set of all possible subsets formed from the
elements of ¥). This statement stems from the concept of a function as a relation such
that for every element of the dumain the function evaluation yields a single element of the
codomain, whereas for a relation the evaluation yields possibly more than one element of

the codomain.

The following definition implies that within this discussion the terms ‘function’ and

parlial function are interchangeable.

Definition II1.11 A partial function f,
f:D=C
is called:
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Total iff
Ve[z € D => 3yly € C Ay = f(z)]]

Surjective iff
Vyly € C = 3z[z € D Ay = f(2)]]

Injective iff

Ve, ylf(z) = f(y) = =z = 9]

Bijective iff f is both surjective and injective.

A Sequence iff f is surjective and

The codomain of « sequence

{£(0), £(1), ...}

is also denoted by

{fO: fl: }

where each f; is called the i term of the sequence.

Other common terms for surjective and injective are onto and -one-to-one (or 1-to-1),
respectively. These follow from the standard- set based definitions, where a surjective
function is one that maps the domain ‘onto’ every element of the codomain, while an
injective function maps one element of the domain to one-(and only one) element of the
codomain. In class based definitions such as the ones here, these statements are relaxed to

include equal elements, and not just unique elements.

As an example of a sequence, consider the function F' defined as

1 ifn=0

P(n) =
Ijin ifnz1l
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The (codomain) sequence generated by this function is

{1,1,1/2,1/3,...}

If I is a sequence, then the function G' whose domain is the codomain of F is called a
subsequence of the sequence F. Continuing with this example, one such subsequence is

given by the function G, where

F(n) ifne€{0,2,4,..}

G(F(n)) =
(F(n)) N ifn€{1,3,5,...}

The (codomain) subsequence generated by G is

{1,1/2,1/4,..}

The concept of a countable set is closely related to-a sequence.

Definition II1.12 A set S is countable if it is the codomain of a bijective funclion whose

domain is a subset of N.

-

A countable set can have a finite number of elements, which means that the function from
Definition I11.12 either has a finite subset of the natural numbers for a domain, or else
is not total. The cardinality of a finite set is just the number of clements in the set. A
countable set can have an unbounded (or infinite) number of elements, in which case it
is called countably infinitc. This means the function from Definition I11.12 has IN as its
domain, and can only be undefined for a finite subset of N. The cardinality of a countably
infinite set is Ny, called aleph nought. This is the cardinalily of the natural numbers, the
integers, and the rationals. Thus the term ‘cardinality” refers in a sense to the number of

elements in the set. Any set that contains only the terms of a sequence is countable.
Theorem 1I1.13 The following sets are countable:

1. X » Y where both X and Y arc countable.
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2. The union of a countable collection of countable sets.

The proof of this theorem can be found in a standard analysis text.

Not all sets are countable, and the inclusion of the irrationals into the reals creates

such an uncountable set.

Definition IIX.14 A set S is uncountable if it is nol countable.
Theorem II1.15 The set of all real numbers is uncountable.

Proof: (Based on the proof in Apostol (8)) This proof shows that the rational and irra-
tional numbers between 0 and 1 form an uncountable set, so that all of the reals also

form an uncountable set.

Assume that the set of real numbers greater than 0 and less than 1 is countable.
Since this set is not finite, then there exists a total function R whose domain is N,
such that

R(2) = 0.u; 305 2u; 3...

h real nuniber in the set. For real numbers these

is the decimal expansion of the it
decimal expansions can be continued indefinitely (the number 0.1 can be written as

0.1000...). Now form the decimal expansion for the real number y, where
y= 0.1:'1‘1;21;'3...
given by

I if g #1

2 ifupp=1

Up =

The number y is in the interval between 0 and 1, and yet it is not in the codomain of
R. Thus the original assumption, that such an R existed making the set countable,

is incorrect and the reals are uncountable. 1

This proof technique is called the Cantor diagonalization technqiue (110), and is used in

general to prove that sets are uncountable. For example, this technique can be used to show
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thatthe set of all total functions whose domain is thenatuial numbers and whose codomain
is the natural numbers is uncountable, which means that there are an uncountable number

of possible sequences.

An abstraction of a sequence is the net. Whereas a sequence is a surjective function
whose domain is the natural numbers, a net (in the most general sense) is a surjective
function whose domain is a directed sel. A directed set is the two-tuple (X, R), such that

X is a set and R C (X, X) is a relation that is reflexive, transitive and satisfies (189)
Ve, y[(z € XAy € X)=> Fz[z€ X A(2,2) € RA(y,2) € R).

A consequence of the Archimedian principle (305) is that the set of natural numbers N
along with the relation < is a directed set (see Section 3.3 for the definition of N as the
category whose arrows are equivalent to the < relation), so that any sequence is also a net.
There-are nets that are not sequences. For example, any surjective function whosc domain
is the real numbers R, which along with the relation < forms a. directed set, is a net but not
asequence. Nets permit the generalization of the concept of Cauchy sequences (see Section
4.1). For example, the book by Taylor and Lay (328) gives the definition of a Caucky net
whose codomain is a topological linear space. This definition of net suggests that a more
general purpose definition of a sequence is a function whose domain is a countable directed
set, which of course N is. This research elects to use the definition given in Definition II1.11,
since it parallels the standard definition given in analysis texts (303, 8). Since there exists
a bijection whose domain is any countable set and whose codomain is the natural numbers
N, this bijection can be composed with a function whose domain is N (a sequence), so that

any net with a countable domain can be defined in terms of the definition of a sequence.

The reason nets require a directed set, instead of just a set with a partial or linear
order, is that nets, like sequences, arise in situations where there is an unbounded number
of clements from the codomain that in some sense are bounded in *value’, say with respect
Lo some measure or norm, but have no maximum or minimum clement. As an example,

consider the sequence denoted by

{1/"'}11621\'




which has elements that approach arbitrarily close to 0, but has no minimum element, only

the infimum 0.

Given two classes that form the domain and codomain for a collection of functions,
then this collection also forms a-class, with the following definition of equality within this

class.

Definition II1.16 Given lwo classes D and C, then for two functions [ and g that are

elements of the class of all functions whosc domains arc D and whosc codomains arc C,

f=g>((z.9)€ [ <= (z,9)€9)

This definition of equality is based on the cztensional view of set based functions, which
says that a function is defined by its ordered tuples of elements. There is no requirement
for any other representation of the function. Since there exist functions with an unbounded
number of ordered tuple elements, then within the extensional view there exist functions
that have no finite representation. Note that with respect to this definition of equality
between two functions, if either function is undefined for a given element, then the other

must also be undefined for the same element (229).

Another approach stems from the intensional or procedural view of functions, which
defines a function based upon some finite representation. The intensional equality of
functions would state that two functions are equal if and only if their representations
were equal. Although these two definitions of equality may appear equivalent, they have
important differences. A major difference lies with the comparison of functions that do
not have finite representations. Two such functions could be equal under the estensional
definition, but would not even be comparable under the intensional definition. This will
not present a problem though, because this research (with just one exception) only requires

functions that are Turing computable.

Theorem I11.17 Given lwo Turing compulable functions. they salisfly the cxlensional

equalily definition if and only if they salisfy the intensional cquality definition.
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Proof: The proofis the basis behind Church’s Thesis, that the class of all finitely definable

(lambda definable) functions is exactly the same as the class of all Turing computable

functions-(89, 301). I

A consequence of this theorem is that the differences between the intensional and the ex-

tensional view of fuctions only matters for thuse functions that are not Turing computable.

The inverse of a function, if it exists, is a function that reverses the mapping of the

original function.

Definition II1.18 Given the function F, if the relation defined by the class

{(y.2)l(z,y) € F}
is a function, then il is called the inverse of F and is denoted by F~1.

If f is an injection, then it’s casily shown that f~! exists and is an injection, and if f is
a total bijection, then [~ is also a total bijection (305). Note that f being a bijection is
not equivalent to saying that f is an isomorphism, even though the bijection property is a

necessary condition for the isomorphism property (193).

Since a zero-tuple is an empty class. then

({}r—'l)

represents the unique function F

F:0— 4.

This function appears again in Section 3.3 with respect to the category SET. and in some
sense represents a ‘generator of A%, The converse of the function ({}.:1) is the unique
function whose evaluations are undefined for all elements of its domain. and is specified by

(156)

f: 40—




The representation (4, {}) denotes tlis totally undefined function. This f is unique, since
any other function that is also totally undefined over the same domain is equal to f with

respect to the intensional view (331, 298).

An example of a function that-s undefined for all of its domain is a function that

satisfies

h:N—=N

h(n) = h(n +1).

To evaluate h(5) for example, first requires the evaluation of h(6), which requires the
eval .ation of /(7), and so on indefinitely. The everywhere undefined function satisfies this
recursive deidnition, since #(5) = h(6) = ... are all undefined. Neie that this is not a unique

solution for h, since h(n) = ng, where ng is any natural number, is also a solution.
This next definition cf the terms retract and retraction supports definitions used in

category theory (see Section 3.3).

Definition II1.19 Given two sets X and Y, and the functions

f:X=Y
9:Y = X

such that

ve€X =>g(f(z)) =2

then X is cu'’ed a retract of Y, and g is called a vetraction.

Neie that given a function f whose domain is the set X, then any other function g, such

that the composition of g with f forms the identity function on X, is called a retraction.

The final ~oncept needed for this section is that of a predicate, which is a function
that (if defined) evaluates to ejther true or false (232). This use of predicate includes
the traditional concepts of predicate, temporal predicate, spatial predicate, and spatial

temporal predicate (300).




Definition IIL.20 A predicate is a function whose codomain is the sel {true, false},

such that true and false are atomic symbols with respect to the class U.

The stipulation that true and false be atomic symbols with respect to this universal class
U is equivalent to saying that for any class formed from U these two symbols are interpreted
in the same manner. Thus true and false have the standard meanings of true and false

from the set based predicates of predicate logic.

Since a predicate is a function, predicates can be represented in a manner similar to
the standard set-based representations. As an example, consider the predicate @ whose

domain js the class of 2-tuples of natural numbers, such that

lrue ifn4l=m
Q(n,m) =

false otherwise

This predicate can be used to define a successor function, denoted by succ, whose domain

and codomain are the natural numbers.
suce(n) = m <> Q(n,m).

This definition of succ uses Q(n, m) just as a standard set-based predicate would be used,
so that suce(n) = m if and only if (iff) Q(n,m) evaluates to {rue. Some representative
elements of the predicate Q would include ((0,1), truc), ((1,0), false), ((1,2), true), and

((2,2), false). This definition is a finilc represcntation of the infinite collection of elements.

Since a predicate is also a function, and a function is a relation, there is a hierarchy
formed by these concepts, which is shown in Figure 3.1. In Figure 3.1 PREDICATE is
the class of all predicates with a fixed domain, say D. Then FUNCTION is the class
of all functions with the same domain D, and whose codomain is fixed, say C, where
C includes the atomic elements {(rue and false. This means that RELATIONS is the
class of all relations of the form (D, (). The |J symbol is just the class/species symbol
C turned up, so this figure shows that the class PREDICATE is a species of the class
FUNCTION, which is itsell a species of the class RELATION. This hierarchy is also

true for the standard set-based definitions of relations, functions, and predicates.
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RELATION

U
FUNCTION

U
PREDICATE

Figure 3.1. A Hierarchy of Classes

Since the Church-Turing thesis claims that the most general algorithmic method for
generating unbounded numbers of things using a finite representation is the Turing machine
(125), then for any relation, function, or predicate whose elements must be generated by
some Turing machine (or another equivalent computing device (217)), there can only be a
countable number of elements generated. This doesn’t preclude the hypothesized existence
of an uncountable number of elements, only that any computable or algorithmic technique
for generating them can only produce a countable number. Appendix B presents a more

detailed analysis of this idea of choosing a countable number of things out of an uncountable

collection.
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3.3 Categories-and Theories

Not only has category theory emerged as a useful tool for theoretical (345, 330, 27,
216, 6, 205) and practical computer science (55, 59, 283), but it serves as a. useful framework
within which to embed mathematical analysis based on the concept of classes (247, 203,
156). Yor example, the primary category within which we perform our topological analyses
is COMP, the category of complete metric spaces aud the continuous mappings between
them. (Note that we denote categories with boldface names) To answer the question of
whether two metric spaces are ‘equal’, we must first show if the underlying sets for the
metric spaces are equal, where set equality is defined with respect to the category SET,
the category of all sets and total functions whose domains and codumains are these sets.
Since the collection of all sets is not itself a set, we have that the category SET is actually
based-upon the class of all sets, and that it is the class definition that supplies the definition
of equality within that class. We see that the basic concepts (such as the concept of set
equality) regarding ihe different types of ‘things’ that we need are handled within the

confines of the appropriate category, where each category is defined relative to some class.

Accordingly, this section presents the basic definitions and ideas from category theory
that we need'in the following chapters. Note that the only difference between ous definition
of category and the ‘standard’ one is the inclusion of the class requirement (see Definition
111.23}, which is implicit in Herrlich’s definition (156), and implied in Mac Launes’s definition
(Mac Lane defines a category based on a universal set, which is equivalent to our class of
all sets, so that his small set is just our set) (203). We start with the definition of a directed
graph, since we use directed graphs to represent categorics and other concepts (such as the

binary automaton tree of Section 4.2).

Definition I11.21 A directed graph is « four-tuplc (O, A, h, ), where O is a class whosc
clements are called the objects or the nodes, A is a class whosc clements arc called the

arrows or the arcs, I is a lotal function

h:A~0
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and-t is a-total function

t:A=-0

such that for any a € A, h(a) is called the head of a, and t(a) is called the tail of .

The directed graph (O, A, h,t) is called:

1. A small directed graph if both O and A are sets.
2. A countable directed graph if both O and A are countable sets.
3. A finite directed graph if both O and A are finite sets.

4. A locally finite directed graph if both-O and A are sets, and the sel A given by
0€0 = A= {alac AAN(a) =0}
isfinite for all 0 € O.

Although we have defined a directed graph in terms of ‘classes’, with one exception we
only need directed graphs whose classes of objects and arrows are actually sets (the one
exception is the definition of category). Thus we present the more useful (to our pur-
poses) definitions of countable, finite, and locally finite directed graphs, which are based
on directed graphs with ‘sets’ of objects and arrows. Since in the remaining chapters we
only require directed graphs, versus nondirected graphs (72), the terminology graph can
be used interchangably with directed graph without ambiguity. Note that the requitement
for a locally finite directed graph states that for any node of the graph there exists only a
finite number of arcs whose heads are this node, that is the outdegree (72) of every node
must be finite. Also note that contrary to some definitions of a graph within the computer
science literature (72, 330), we do not require that either the graph be finite or that a
‘labelling function” be defined. The labeling of the vertices (arcs). which produces the so
called ‘labeled graph’, is defined by the fact that the sets 4 and O and the functions k and
{ in our definition of a directed graph must satisfy the axioms of set theory (in particular
the replacement axiom (203)). Thus (O, A, h,t) uniquely identifies the graph up to an

‘equality’ replacement of the symbols used in the sets O and A.
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Tigure 3.2. Example Directed Graph

Consider the directed graph defined by the four-tuple

({1,2,3}, {a,b,¢},{(a, 1), (b,2), (¢, 1)}, {(2,2), (b,2), (¢,3)}) (3-3)

where the functions corresponding to & and ¢ are defined using the tuple convention from
Section 3.2. Tigure 3.2 shows a graphical representation for this graph, with the functions
h and  depicted by the arcs in the figure. Many different interpretations of this graph
are possible, since the symbols in O can represent anything, even whole classes. If these
“elements from O represented individual sets, then the arcs of A could represent functions

such that
a€ ANo0 €O = ((h(¢) = 0= dom(a) = 0)A (i) = 0 = cod(a) = 0))

where dom and cod are the domain and codomain functions respeciively from Section.3.2.
Another interpretation of the graph from Equation 3.3-is that the elements of O are just

the natural numbers 1, 2, and 3, with
a € A= hia) < Ua)

that is, the functions i and ¢ are another representation of the binary relation < over the
natural numbers. With this reprcsentation, we see that the symbol N could be defined as

such a (countable) directed graph with O = {1,2,...}.

Now that we have defined graphs, we need the concept of a mapping. or a morphism,

between graphs.
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Definition II1.22 Given two directed graphs G = (0, A, h,t) and I = (V, E,s,u), a

directed graph morphism is a two-tuple (f,g), denoted

(f,9):G—H
such that

f:0-=V

g:A=F
where f and g are tolal functions and

Vo [f(h(@)) = s(g(a)) A (1(a)) = u(g(a))]. (3.4)

If
ocVv

and

AcCcFE

then (f,g) is called a directed graph imbedding.

The requirement stated in Equation 3.4 is that the directed graph morphism preserves the
h-(head) and ¢ (tail) functions. Another way to state the assertion in this equation is to
claim that the graph of Figure 3.3 commutcs. In this graph the nodes represent the scts
from the two graphs G and II, while the arcs correspond to the functions defined by & and
t for G, s and u for JI, plus [ and g from the graph morphism. Note that there can be
multiple arrows between any two vertices, and that these multiple arrows do not have to
point in the same direction as they dc in Figure 3.3. To claim that this graph commutes
means that if we start at any vertex, say A, and follow the arrows to another vertex, sav
V7, then the sequence of arrows does not affect the interpretation we give to the final result.
This means that since A is a sct, starting at A is equivalent to choosing an arbitrary « € /1,

and following any arc from A is equivalent to applying the function denoting the arc to
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Figure 3.3. Commuting Graph Depicting Graph Morphism

a. Thus moving from A to O along the arrow h represents the evaluation h(a), where

h(a) € 0. If the next step is to follow the arrow f to V, then we have f(2(a)), an element

of V. Going back to A4, if we instead had followed the arc g, yielding g(«) an element of

v

I, and then the arc s, we-wonld have stopped in V with the element s(g(a)). Our claim

that the graph commutes-implies that

J(h(a)) = s(g(a))

which is identical to Equation 3.4. Thus a graph that commutes is one where given a
starv .d stop node, the interpretation of the result from traversing the path fiom stait
to stop is independent of the actual path followed. So Figure 3.3 depicts the graph that
defines the requirement given by Equation 3.4 for graph morphisms. Just as with directed
graphs, we can use the term graph morphism instead of directed graph morphism without

any ambiguity.

If (f,9): G — Il is a directed graph imbedding, which-is synonymous with a graph
imbedding, then all of the nodes from G are also nodes of /7, likewise all of the arrows of G
are also arrows in I/, This, together with the preservation of the heads and tails property,
means that /] is the graph formed by adding zero or more nodes and/or arrows to G. The
identity mapping, whereby G = 11, is the ‘simplest” graph imbedding, in the sense that all

other graph imbeddings can be viewed as ‘extensions’ of the identity mapping,.

The following definition of a calcgory demonstrates why directed graphs have also

been called ‘precategories’.




Definition II1.23 A category is-a siz-tuple (0, A, s,1,0,id) such that:

1. (0, A, s,1) is a directed graph.

2. o is a partial function

0:AXA—=A

such that

Vi,9[(f € Ang € Ans(g) =1U([)) <= (o(f,9)€ ANs(o(f,9)) = s(f) At(e(f,9)) = Ug))]

and

YS9, h{(o(f,9) € ANolg,h) € A) = o(o(f,9), k) = o(f, 0(g, 1))]

Denote o f,g) by gf.

3. id is a lotal function

id:0—= A

such that
Va,plla € ANp € 0) = ((s(e) = p <> o(id(p), ) = a) A (U(a) = p <=> o(a,id(p)) = a))]

The two functions ob and mor havc the class of all calcgorics as their domain, such that

ob((0, A, s,t,0,id))=0

mor((0, A, s,l,0.id)) = A

where the elements of O arc called the objects of the calegory, the clements of A are called
the morphisms of the calegory, and for any calcgory (0, A, s,1,0,id) denoted by C, the
function homg

homc : 0 x 0 — 2
is given by
Yo,p[(o € OAp € 0) == homg(o,p) = {ala € AN s(a) = oAl a) =}
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Figure 3.4. Commutative Graph for Comnposition of Arrows

Note that because of-a category’s roots as a directed graph, we can interchangably use the

terms ‘object’ and ‘node’, and also the terms ‘arrow’, ‘arc’, and ‘morphism®.

A category, then, is a directed graph with two additional functions, the first is a
binary operator on the arcs (a composition or concalenation function), while the second
‘creates’ one additional arc (an identity arc) corresponding to each node than might not
otherwise be included in just a directed graph. Item 2 in this definition states that this
first function o(f, g) is only defined for two arrows such that the tail of f is the same node
as the head of g (the first assertion), and also that o is associative over those arrows for
which the pairwise evaluations of o are defined (the second assertion). This is equivalent
to claiming that the graph of Figure 3.4 commutes. We base our choice of denoting o f, g)
by gf on the standard approach to denoting functional composition or concatenation, so

that if p € O, then

o(f,9)(p)
can be denoted by
af(»)
or the redundant
g(J/(P)-

Note that the use of the iff in the first assertion of item 2 ensures that the o funclion is

only defined for the appropriate pairs of arcs, while the use of the implication in the second
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Figure 3.5. Commuting Graph That Corresponds to the Identity Function

assertion allowsfor the possibility that

o(f,9) ¢ ANo(g.h) ¢ A

implying that

o(o(f,9); h) = o(f.o(g, )

since both o evaluations would be undefined. Thus we allow that if two function evaluations
are undefined, then they are equal. Note that this does not conflict with extensional
equality (see Section 3.2). Item 3 asserts that the second function, id, ensures that for
every element of O there exists one unique arrow (an element of A)-that can be interpreted
as an identily arc, that is it serves as both a left and a right identity with respect to the o

operator. This is equivalent to saying that the graph of Figure 3.5 commutes.

For the reader interested in signature algebras (298, 270, 116) another way to view
a category is as a two sorted algebra. Given a category C, the two surts would be 0b(C)

and mor(C). where cach arrow would be an operation of type
0b(C) x mor(C) — ob(C)

that is for each object and arrow (whose head is that object), this operation yields another
object (the tail of the arrow) or is undefined. Although this is just an outline of the idea,
the formalism would parallel the definition of a finite automaton as a two surted algebra

(330). where the set of states and the input aiphabet are the sorts. such that the “transition”
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operation yields a state for-each state and input symbol pair.

We require the following definitions for the remaining chapters.
Definition III.24 The category (O, A, s,i,0,1d) is called:

1. A smail category if both O and A are sels.
2. A countable category if (0, 4, s,1) is a countable directed graph.
3. A finite category if (0, A, s,1) is a finile directed graph.

4. A locally finite category if (0, 4, s,1) is a locally finite directed graph.
Most of the categories we need are small categories, and indeed wre countable categories.

Definition III.25 The tuple (0, A, s,1,0,idr) is a subcategory of the category (V, E, b, u, ¢, %d)

if and only if the following are ali true:

1. (0, A,s,t,0,idr) is a calegory.
2.0cV
2 ACE

4. s=1hly

n

L l=1ul4

The nolation f|s denoles funclion restriction, such that

(dom(g) C dom{[) A ced(g) C cod(f) AVz[z € dom(g) => g(z) = [(2)]) <= 9 = [lyom()

If A is a subcalegory of B and

ob{A) = ob(B)

then A is a strict subcategory of B.




If A is a subcategory of B and
Yo,p[(0 € ob(A) A p € 0b(A)) => homp (0, p) = homp(o,p)]

then A is a full subcategory of B.

Denote that A is a subcategory of B by

A CB.

In general, a subcategory of a given category B is another category that contains some
subsets of the nodes and arrows from B, while retaining all of the requirements for a
category with respect to the identity and composition functions. If the subcategory retains
alt of the nodes from B, then it is a strict subcategory; whereas if it retains only some
of the nodes but for each pair of nodes kept, all of the arrows connecting these nodes in
B are retained, then it’s called a full subcategory. The following examples both serve as

examples of these definitions plus present the categories that we use in later chapters.

SET is the category whose objects are sets and whose morphisms are the total (single
valued) functions between sets; that is 0b(SET) is the class of all sets, while for any two
sets A and B, homggy(4,B) is the set of all total functions whose domain is A and
whose codomain is 3. Composition is just function composition, along with the standard
identity function on sets. If instead of total functions we allow partial functions, then the

corresponding category is called PFN. Thus we have that
SET C PFN

plus the fact that SET is astrict (but not a full) subcategory of PFN. This is because all of
the objects in PEN are also objects in SET. and all of the arrows in SET aie also arrows in
PEN. but there exists arrows in PFN that are not arrows in SET (partial functions that
are not total). REL is the category whose objects are also sets. but whose morphisms are
the relations between these sets. Composition is standard relation composition. while the

identity relation is just the identity function. Since all partial functions are also relations.
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we have that

SET C PFN C REL (3.5)

where PFN is a strict subcategory of REL.

Section 3.2 showed that any relation R between two sets A and B
1

RCAxDB
can also be represented by a set valued function f

f:A—=2B

A consequence of Theorem IIL.2 is that given any set A, the class of all sets also contains
its power set 2. ‘This means that for any given relation (arrow) within the category REL,
there exisis a partial function (arrow) within the category PFN that corresponds to this

relation. This suggest a category MFN, whose objecis are those sets such that
YA[A € ob(PFN) => (A € ob(MFN) A 2 € ob(ME N))]
and
VS, A, B[ € hompypn(A. B) == 3C[C € o(PFN)A B =2° A f: 4 — BJ].

So we have that any object in MFN is also an object in PFN, and any arrow in MFN is

also an arrow in PFN. which means that

MFN C PFN

but also

SET ¢ MFN

MFN 7 SET




REL
/
PFN
/ \
SET MFN

Figure 3.6. Directed Graph Representing a Category of Categories

since SET contains morphisms (whose codomain is not a set of sets) that are not mor-
phisms of MFN, and MFN contains morphisms (which are partial) that are not mor-
phisms of SET. Combining these results with those of 3.5, we can form the directed-graph
of Figure 3.6 where the arrows represent the subcategory C relation. If we include the
identity relations, and observe that C among categories is trancitive (i.e. composition is
defined) and associative, then we see that Figure 3.6 also depicts (minus the identity and

composite arrows) a calegory of calegories.

Categories have certain special objects which prove useful in theoretical computer

science, in particular the initial, terminal, and zero objects.

Definition II1.26 Given a category C, then I, where I € ob(C), is called « preinitial
object if and only if

VA[A € ob(C) = If[f € hom (I, A)]]

A preinitial object then, has at least one arrow corresponding to each other object in the
category such that the head of the arrow is the preinitial object and the tail of the arrow

is the other object.

Definition II1.27 Given « calegory C, then I, where I € ob(C), is called an initial

object if and only if

VA[A € ob(C) => 3 f[f € homg(], A)]]
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An initial object differs from a preinitial object in that there is only one arrow correspond-
ing to each-other object in the category such that the head of the arrow is the initial ob ect
and the tail of the arrow is the other object. In our category SET the initial object is the

empty set (), since for any set A, there exists a unique function (156)
f:0—= A

Although we do not o so, it’s possible to construct a category of ‘sorted algebras’ such that
the initial object in this category is the initial algebra of the computer science literature

(330), a concept based on the idea of representing an algebra as a dir cted graph (336).

Definition II1.28 Given a category C, then T, where T' € 0b(C), is called a terminal
object if and only if

VA[A € ob(C) = 3 f[f € homc(4,T)])

Any single element set is a terminal object in SET, since for any other set 4, the unique

morphism is the function that maps all the clements of A onto the single element.

Definition II1.29 Given a category C, then Z, wherc Z € ob(C), is called a zero object

if and only if Z is both an initial and a lerminal object.

Although SET does not have any zero objects, the empty set is a. zero object in the category

PFN, suice for any set A4, the existence of the completely undefined unique function f
f:A—=0

implies that ) is a terminal object, in addition to being an intitial object.

The last category we present is very important to computer science. This category is
GRPH, whose objects are countable directed graphs and whose morphisms are directed
graph morphisins. Composition is just functional composition based on the definition of

graph morphisms (Definition 111.22).

3-43




Given these definitions, we conclude this section with some observations that other
mathematical constructs can be defined as categories. For example, a set is just a category
whose only arrows are the identity arrows, and so the objects of the category are the

elements of the set.

A monoid is a category with just one object, whose arrows correspond to the elements
of the monoid, so that composition of arrows represents the associative binary operator
of the monoid, and the one identity arrow represents the identity element of the monoid.
Since a moncid is a semigroup with an identity element (157), then given a finite alphabet
of symbols £, the free monoid X* (see Section 4.1) is a category with one object, an arrow
for each finite length word (i.e. element of £*), and one identity arrow that corresponds

to the empty word.

The concept of the graph of a relation R, is based on the idea that we can graphically
depict that (e¢,b) € R by a directed arrow whose head is « and whose tail is b. Since
predicates are relations (see Section 3.2), this idea forms the basis for semantic nclworks
(195). We can extend this concept so that different types of relations are reflected by
their differing graphical characteristics. This results in the motivation for defining types of
relations in terms of the most general graphical construct we have available, the category.
The following definitions support our intuitive idea that there exists a strong relationship
between categories and relations. Lor reference, the following standard definition of paitial,

linear, and well orders is given.
Definition 1I1.30 Given the class S, the relation R
RCSxS

is a preorder if and only if R is reflexive and (ransilive.
R is a partial order if and only if R is reflexive, transilive, and anlisymmelric.

R is a linear oxder if and only if R is a partial order and

a,be S == [aRbV bRa]

3-44




R is a strict partial order if and only if R is lransitive, antisymmetric, and
a€S=(a,0)¢R
R is a strict linear order if and only if R is a strict partial order and
a,b€ S = [aRbV bRa] whenever a # b

R is a well order if and only if R is a strict linear ordcr and for cvery nonempty subsel

E of S, there exists a unique element s of I (called the least element), such that
[r€e EAz #s]= sRa
Given the preorder R, then the induced equivalence denoted by S, is given by

Sy < (zRy A yRx)

One example of a partial order is the logical implication relation denoted by = as applied

to any set of well formed formulas from the predicate calculus (see Appendix A). Thus
(PQ)e= i P=Q

That = is reflexive follows from

P=r
Since

P=Q
and

Q=R

implies that

P= R

345




then == is transitive. Antisymmetry results from defining the equality of two predicates

as the ‘if and only if’ <=, that is if

P =Q
and

Q=P
then

P = Q

and the two predicates P and @ are considered equal. So the = relation over a set of
formulas is reflexive, transitive, and antisymmetric, thus forming a partial order over the
set. Note that the equivalence induced by the => is just the <=, and that for any partial
order the induced equivalence is the equality defined with respect to the antisyminetry

property.

Definition II1.31 A category P is called a:

Preorder iff
VA, B[(A € ob(P) A B € 0b(P)) = card(homp(4, B)) < 1]

Partial order iff P is « preorder and

VA, B[(A € ob(P)AB € ob(P)Acard(homp(A, B) = card(homp(B.A) = 1) => 4 = B}

Linear order iff P is a partial order and

YA, B(A € obl(P)ADB € ob(P)) = (card(homp(A, B) = 1 Veard(homp(B. A) = 1)]

Well order iff P is a lincar ordcr such thal cvery full subcatcgory of P contains an initial

object.
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card is the cardinality function whosc domain is the class of all sets and whosc codomain

is the set of cardinality symbols.

The cardinality function generalizes the concept of how many elements a set contains, so
that card(S) evaluates to a member of N if the set S is finite, and evaluates to other

nonnumeric symbols (such as Rg) if the set is infinite (82).

Within a category that satisfies one of these order definitions, each arrow corresponds
to an element of a relation R, so that if A is the head of the arrow, and B is the tail of the
arrow, then (A, B) € R holds. The composition of arrows reflects the transitive property
of the relation, while the identity arrows signify that the relation is reflexive, since the
identity arrow for the object A corresponds to (A, A) € R. Thus any category satisfies
the basic requirements for a preorder, that is the arrows are reflexive and transitive. But
we must restrict our category to have at most one arrow that corresponds to (4,B) € R
for each pair of objects A and B3, which is stated in the preorder item of Definition II1.31.
Thus our definition of a preorder satisfies the standard set based definition if we restrict

our category such that the class of objects constitutes a set.

The additional constraint for the partial order-is just the statement that the arrows
must satisfy the antisymmetry property, which also agrees with the standard set based
definition of a-partial order. Note the equality in the statement for the partial order item
contains an egualily that is defined in terms of the class that contains the objects for the

calegory.

The linear order constraint states that for any two objects within the category there
exists an arrew whose head is one of the objects and whose tail is the other. This is
equivalent to the set based statement that any two elements of a lincaily ordered set are
comparable with respect to the linear order relation. Note that if a category represents
a linear order, then a preinitial (actually initial, since in a linear order categosy there is
al most one arrow between two vbjects) object is the ‘first” or minimum element in the

linearly ordered class of the objects, and the terminal object is the ‘last” or maximum

element.




Since the difference between a set based strict linear order and a linear order is just
the lack of the reflexive property (305), we can convert a linear order category into an
object that we could call a strict linear order by simply removing the identity arrows. As
a result, we do not differentiate between a linear order and a strict linear order in the
following chapters. If there is some requirement for a strict linear order such that a linear
order would not suffice, then we explicitly state that a strict linear order is needed, and
we treat the strict linear order as a category without identity arrows. Thus the motivation
for our definition of a well order as retaining the reflexive identity arrows, in contrast to
the standard definition of & well order based vn « strict linear order (305). Our constraint
for a well order states that every full subcategory must contein an initial object, which is
equivalent to saying that a set based well order satisfies the requirement that every subsetl
contains a first element. As a result we have the following categorical wording of the Well

Ordering Principle which states that any set can be well-ordered (305):

Any small category can be mapped onto a well ordered category using a total bijective

mapping on the objects and a partial surjective mapping of the arrows.

We use the word mapping in this statement since there may not exist a Turing computable
function that satisfies this claim, because this principle is derivable irom the Axiom of
Choice for sets, and as we show in Appendix B, the choice function is not necessarily a

Turing computable function.

Because a partial order can be treated as a category, many of the concepts from com-
puter science (and other fields) can be easily recast as categories. thus providing additional
formalism and structure. For example. consider the sel of all CSP processes (see Section

p

.1.3). One partial order on this set is denoted by

PLQ

and means that the process P is more nondeterministic than Q, that is the set of execution
sequences of P contains the set of the execution sequences of Q, and may contain execution
sequences that are not possible for Q. Thix partial order has a least element. the process

denoted by CHAOS (7). which is the process that can behave like any other process,
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This partial order forms a category, such that the objects are the CSP processes, and the
morphisms represent some type of reduction (or no change) in nondeterminism. Note that
this ordering of the CSP processes is akin to Shannon’s partial ordering of informacion
representation (315), such that

P<L@Q
would denote that P is an abstraction of Q.

The standard definition of a sequence is as the codomain of a function whose domain
is the natural numbers (8). Implicit in this definition is that the codomain set is linearly
ordered by the < order from N on the subscripts given to each clement. Thus we can

define a sequence as a linear order countable category.

Another example of a linear order countable category is any tcmporal logic (see Ap-
pendix A), since we adopt the assumption that time is countable (300). Thus we can
use the tools from temporal logic to prove assertions about sequences, since both can be

modeled with the same type of category (see Section 4.2).

We present this discussion regarding ordering relations for two reasons, the first
being that we use ordered sets in the following chapters, and the second is that we can
now present a more formal definition of what we previously defined in terms of sets. We
start by dencting with a boldface natural number a linear order category that contains
n objects if the number is n, such that for any arrow a, i(a) < t(a). Thus our previous
Figure 3.2 represents the categors 3 without the identity arrows. Following this reasoning,
we can define N to be the linear order category that contains one ovject for each natural
number, along with the order <. In a similar manner we can define the categories R (a

category with an uncountable number of objects), Z, Q, and C.

Consider a (proposed) countable category which contains an initial object. labeled F.
and a terminal object T. such that ' £ T. We could interpret each object as an assertion

of the predicate calculus, and each arrow as a Jogical implication. Thus each identity arrow

would represent the fact that

P=1r




where P is any assertion. The initial object corresponds to the concept-of ‘false’, such that

for any assertion P

F=P

is a unique implication, and the terminal object corresponds to ‘true’, where
P=7T

is a unique implication for any assertion P. Since == is transitive then composition of
arrows is satisfied. But what of the associativity of arrows? Unfortunately, if P, Q, and

R are all false, then

'= Q= R)

evaluates to true, but

(P=Q)=R

is false. (This is why we define => to be right associative)

We can correct this lack of associativity for the arrows by defining the objects to be
only theorems, the arrows to represent derivations, and adding the unique object A that
represents the set of all axioms. This means that F is no longer an object. Thus, given
a set of axioms and the rules of logical inference, we can consiruct the category such that
cach object is a provable truth (i.c. theorem), and each arrow represents a derivation. For

example, Figure 3.7 depicts a *slice” from such a category, so that
(P—R)AQ— R)

where — - means ‘leads to the derivation of . The basic axiom that relates — to predicate
logic is

(4 — B) = (A= BYA )

where the application of resolution (260} to the right hand side of the iff yields that both .1
and B are true. Note that the similarity of the - — operator with the symbology used for

the *type” of the implication operator is not entirely accidental (19). Note that this article
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Figure 3.7. Arrows in a Consistent Theory

by Backhouse on constructive type theory contains a rigorous definition of the ‘type’ of
-~ P

as equivalent to the type of

P=1

where § denotes the emply type. This is not equivalent to saying that
=P <= (P = false)

(2 mistake that periodically appears in the computer science literature} since the unary
operator » cannot be defined in terms of any binary operator that has a different binding

strength.

Another way tointerpret Figure 3.7 is that either the truth of P or the truth of Q leads
to the derivation of the truth of R. Thus we have the same hind of graphical interpretation
that led to finite automata being labeled as 3 automata (222). or *or” antomata. Note that
there can be multiple derivations of one theorem from another, so there can be more than
one arrow whose head is one object and whose tail is another. This category has no

(in general) initial object. since I is no longer the initial object. wnd we cannot assmine 3
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unique derivation of any theorem from the axioms. The axioms object is a preinitial object,
since we assume that every theorem can be derived from the axioms. We can retain the
object T' as the terminal object by assuming that the derivation of I° given any theorem

(or the axioms object) is unique.

We can correct the lack of an initial object by requiring the arrows to form a well
ordering on the objects so that our category can be interpreted as a collection of objects
that can be enumerated in some well ordered manner. That is, each arrow denotes the
existence but not uniqueness of a derivation. The arrows would absu represent the concept
of a temporal ordering of the theorems, consistent with the idea of starting with only the
axioms and then cnumerating cach theorem in a linear time ordered manner. Thus the
axioms object is now the initial object, since it represents the object that ‘comes first’.
We usc the word ‘theorem” to denote derivable true statements, versus “truths” which are
true, but not derived. So that although there may be an uncountable number of truths
that could be derived for & given set of axioms and rules of inference, there will only ever
be a countable number derived by means of any given process (Turing machine). Now
(assuming that the collection of objects are consistent (223)) since each object represents
a true assertion,

evaluates to truc regardless of the parantheses grouping. so that the arrows are both
composable and associative. This category corresponds to the concept of a consistent
theory (225). Note that the true implications from our first attempt have not been lost,
since if the axioms and rules of inference are those from the predicate calculus. then if
P = Q is true. even though P may not be. there is an object of this category that
represents this assertion. \With respect to such a category that represent. the theors of

predicate logic. the Deduction Theorem (199) can be stated in the following manner:

Deduction Theorem The existence of an object representing

P =0

-




is not a sufficient condition for the existence of an object representing

p

Unfortunately, this approach to defining a theory as a category suffers from two major
shortcomings. The first results from our assumption that we can represent any countable
number of theorems as a well ordered set. Although the Axiom of Choice implies that
we can (see Appendix B), there exists countable sets that cannot be well ordered by any
Turing machine, such as the set of all second order predicate calculus theorems, or the set
of all computable numbers (Appendix B). So, althvugh we can claim the existence of such
well ordered categorical theories, we have no means to construct such categories. Within
this thesis though, we restrict our analysis to only those theories that can be constructed
by some Turing machine, so that this problem will not restrict our results. As we return

to the concept of a theory as a category, we shall present additional definitions.

The second shortcoming is that we do not have a concise representation of the rules of
inference for our theory category. We can simply write them out as they normally appear
(i.c. equationally. or as formulas), but then we have the inconsistency that when applying
them to the axioms object we must go “inside’ the chject and pull out individueal axioms.
whereas when applying them to the derived objects we treat those objects as one entity.
What we need is a technique for representing and applying these rules of inference that
is as formal as the structure of the category iiself. The following definition satisfies this

second problem. although not the first.
Definition I11.32 1 theory is a calegory L. whose ohjecls are calegories such that:

1. There cxists a preinitial objeet of T called the axioms. which is a countable raleqory
] J f707%

whose unly arrows are the identily arrers.

2. Every sorphisin of T is a dizecled graph tmbadding: the morphisms of T are called

rules of inference.

3. Exeluding the antoms alject. every ather olgecl of T is a well ordesed cateqory whose

iralinl object i~ the smage of the axiams ohjecl with respect 1o one of e grroves of T
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A theory T is called:

Consistent iff the false object is not an object of any category within T.

Finite iff T is a finite category whose objects are all finite categories.

The definition of the axioms object ensures that the axioms are always a countable set,
but not necessarily finite (see Ginzburg (138) for an example of an axiomatic theory that
requires a countably infinite number of axioms). Since more than one rule of inference
could be applied to the axioms to yield a given collection of theorems, the axioms is only

a preinitial object, not necessarily an initial object.

We shall use the traditional interpretation of a theory, so that each object of the
theory represents a collection of axioms and theorems organized as a well ordered cate-
gory, such that the theorems can be derived from the axioms using the rules of inference.
Additionally, we only require theories such that each object of the theory is a well ordered
category containing an initial object that represents the axioms. With few exceptions, we
shall analyze theories whose objects are small categories, that is the collection of axioms

and theorems forms a set.

Note that Definition 1I1.32 is slightly more general than those definitions that require
a theory to be consistent. For example, Loeckx (209) defines a theory as a set of well formed

formulas from the predicate logic that satisfies the following two conditions:

1. The set is consistent with respect {0 some semiantic interpretation of the formulas.

2. Given any formula w from the set, all other formulas that can be formally derived

from w are also members of the set.

Our definition of a consistent theory depends upon a semantical interpretation of
the object I, the falsc object. For theories based upon some standard (see Appendix A)
form of predicate (temporal) Jogic, the absence of the object I is equivalent to saying that
if P is a theorem, then =P cannot be a theorem. This results from the derivation in any
standard logic of the theorem

(PA-P)— false
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which, if P and -P are both theorems, implies that there exists an object within the

category that contains I as an object.

If we informally define a complete theory as one such that for any given predicate
P, we can prove that either P is an object of some category within the theory, or we can
prove that it’s not, then we have implied the existence of a theory of theories. This results
from the interpretation of the proof of either P or -P being true as a derivation of the
theorem P or negP within this theory of theories, where each other theory would be an
object of this theory. Unfortunately, we run up against the same types of paradoxes that
result from a set of all sets (see the discussion of Russell’s paradox in the beginning of
the first chapter), so that we refrain from attempting such a definition within this thesis.
What we will do is to follow the standard practice of considering a complete theory as
one within which all truths can be proven, or equivalently that every syntactically correct
string of symbols within our logic can be proven either true or false, but not both. This
means that for any wif (see Appendix A) P, either P is an object of one of the categories
that comprises the theory, or =P is, but not both. More formally, we present the following
definition, which generalizes the concept of a complete theory so that we are not restricted

to just wils of the modal (temporal) logic.

Definition 111.33 Given the theory T, the class C, the atomic symbols truc and false,

the unique falsc object I, and the function
—:{false} xC =~ C
such that for any two objects t and u of T
(c € ob(t) A =(false,c) € ob(n)) — F
then T is complete with respect to C iff

Ve[e € C = (L[t € ob('T) A ¢ € ob(t))

@3Jufu € ob(T) A =(falsc,¢) € ob(u))))]




The statement P @ @ reads ‘P exclusive-or @°, and is true if either P is true or Q is true
but not both are true, as opposed to the standard ‘inclusive-or’ of modal logic which is

true if both arguments are true. (see Appendix A)

The function ~ represents the concept of a complement with respect to the false

object. This means that if the element ¢ represents.-a true iormula, then

= (false,c) (3.6)

represents a formula that could be called the complement of the original formula. Within
the modal logic (Appendix A), if ¢ is a wif, then 3.6 evaluates to the wil -¢c. Thus this
definition states that for every element of the base class C, a complete theory contains
either that element or its complement. This implies that a theory could be incomplete if
either certain elements of the base class or their complements were not contained within
the theory (i.e. there exists formula which can neither be proven true or false), or if the
theory contained both elements and their complements (i.e. there exists formula which

can be proven both true and false, which is an inconsistent theory), or both.

This definition implies that the concept of a complete theory actually contains two
essential ideas. The first is that every element of the base class must be proven either
true or false, so that some means must exist to perform these proofs or derivations. And
the second is that for any given formula within the base class there exists some method
to determine what the complement of that formula is (if it 2xists within the class). For
example, the propositional logic (non modal) along with the interpretation of functions as
having domains and codomains the natural numbers is a complete theory. Consider that

within this theory (and class) the following wif is true

3B =3]

since such an f is the identity function. whereas the wif

VIU/(3)=3]




is false, as can be seen if f equals the successor function. It is not the wifs alone which
are true or false, but the wifs as interpreted within the context of some theory, since if we
consider the theory of all functions over the natural numbers that have fixed points at 3,
then both of these wils are true. Likewise we can find theories that make both of these

wils false.

Note that the preceding definition of a theory implies that there exists a theory that
satisfies the standard definition of a ‘logic’ (139). This follows from the observation that if
the morphisims within the well ordered categories that comprise the objects of the theory are
equivalent to the — operator, and the objects within the well ordered categories represent
wifs from the modal logic (see Appendix A), then the theory satisfies the 1equirement that

the set of formulas that constitute a logic satisfy the rule of detachment:

If I’ and I’ = G are members of the logic then G is a member of the logic.

The remaining chapters attempt to show that our ‘theory’ of theories is not devoid
of practicality. That is, we do not waat our ‘theory” to fall into that ‘category’ described

by Knuth in the following quote (194). (Emphasis is the author’s)

Some theory is developed which is very beautiful, and too often it is thercfore
thought to be relevant.

3.4 Summary

With the increased use of category theory in computer science, there is a need for
collections of things which do not satisfy the traditional definitions of sets. This is because
there are categories whose objects consist of all possible sets. As shown by Russell’s
paradox (132), the collection of all sets is itself not a set! Thus the need for collections
that are not constrained by the axioms of set theory. The class concept of Lewis Carroll

(61) supplies the necessary collections used in this research.

A class is defined to be a collection of things, such that other collections (classes)

can be formed from any given nonempty class. No additional constraints are imposed on
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classes in general, so that if a given class must satisfy the axioms of set theory, then that
class must be identified as a set. The operations defined for classes are identical with those
defined for sets: union, intersection, complement, and cartesian product. The concept
of class equality (between classes) is also based on the set based definition (although not
identical), while the definition of equality within a class is dependent upon the specific
class. The informal definition of a univeral class that contains all of the things needed
for this research effort is given, although this universal class is not explicitly used in the

subsequent chapters.

The definitions given for rclations, functions, and predicates parallel those from stan-
dard analysis based on sets, except that the class replaces the set, and partial funciions
replace the {otal functions assumed in many analysis texts. This means that certain def-
initions, such as those for a scquence and countable sets, are slightly different than the
standard ones from a text such as Apostol (8), because partial functions are possible. The
definitions relating to relations, functions, and predicates given in this chapter are used
extensively throughout this 1esearch. For example, most of the concepts presented in the
next Chapter are based on relations and functions, while predicates are used extensively

in all of the following chapters to formalize the concept of assertions that are true.

The definition given for a calcgory is equivalent to the standard definition, but is
worded in a slightly different manner to draw on the analogy with dirccled graphs, a
concept more familiar to computer and softwaie engineers. Although categories are not
strictly required by the subsequent chapters, one 1ea,on for including this material is the
prevelance of category based research in the literature. Additionally, standard texts on
categories include analysis of those cateogries whose objects are complete metric spaces.
The next chapter shows that different types of computational models actually generate
complete metric spaces, so that the 1esults from these texts can be applied to the analysis

of computational models.
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IV. Imbedding Compulational Models Within the Caltegory of Completc Metric

Spaces

This chapter presents the topological analysis of computational models. The math-
ematical tool that enables this topological view is the complete metric space, that is,
the objects that comprise the category COMP of complete metric spaces defined in the
last chapter (Section 3.3). This approach based on metric space topology, while not new
(95, 6, 7), does present an alternative to the more ‘standard’ approach based on domains
and resursive equations, which was pioneered by Scott (313), Stoy (325), and Strachey

(324, 314).

Specifically, this chapter demonstrates that the finite autematon, the CSP, and the
UNITY models can all be recast as metric spaces, based on the metric given in the next
section. The same techniques can also be applied to other major computational models
that supporti concurrency, such as Milner’s CCS (242), Petri Nets (279), and Iennessy’s
EPL (154), so as to create other complete metric spaces that permit the type of topological
analysis performed in this chapter. Section 4.4, which presents the metric space based on
UNITY programs, also lays the groundwork for the tiansformational techniques of program

development given in Chapter V1.

This chapter comprises the first major division of this research effort, the relation-
ship between computation theory and the topological analysis of the compu.auonal models.
Section 4.1 presents the metric on strings from the frcc monoid £, where T is the alphabet
of symbols, that forms the basis for the metrics used in the remaining sections. Section
4.2 addresses the basic model of computation, the finite automaton, and demonstrates
the correspondence between the metric space of finite automata, its completion, and com-
putational power. Section 4.3 also develops a metric space, based on the CSP model of
computation. The primary purpose for choosing CSP is that it is significantly different
(syntactically) than the primary model used in Chapter VI, UNITY. Also, whereas the
philosophy behind CSP is closely related to an applicative approach, UNITY is basically
an imperative model. Section 1.4 then completes the chapter by first defining an alteration

to the UNITY execution model called the standard cxeculion model, and secondls showing
. [=3
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that a metric space of UNITY programs under both the UNITY execution model and the

standard execution model can be defined in terms of the CSP metric space.

The motivation for the topological a.nalysis of computational models stems from the
requirement to construct a framework within which to develop the transformations of
Chapter VI. But this topological analysis was also inspired by the woik of authors such
as Day (92), who presented (at that time) the tools of topology as a new way of studying
computational models. This early topological analysis followed from the observation that
a semigroup based on the composition operator o, can be defined as a topological space .5,

plus the continuous associative function o
0: X5 =5

The third section develops a complete metiic space based on Ioare’s concurrent
computational model Communicating Sequential P'rocesses (COP) (165). CSP is chosen as
a representative from a class of concurrent models *hat are based on the idea of modeling
the behaviour of the computation. This behaviows concept common to all of the models
within this class is summarized by the following definition from Milner’s book on a Calculus

of Communicating Systems (CCS) (242):

We define a program to be a closed behaviour expression, i.e. one with no free
variables.

Thus an informal definition of this class woui. be thit it contains those computational
models that represent the behaviour of the computat, .. , such that given any model the
complete instantiation of the variables (model varicbles, not program variables) results in
the specification of a program. The representation of the beliaviour includes a representa-
tion of both the initial state (see Appendin A for a definition of state) of the computation,
and the resulting sequence of states that follow the intial state until the computation halts
(assuming it halts). Within this class exists two natural subclasses, the first consisting of
those models whose representations are primarily algebraic, such as CCS (although CCS

does straddle between hoth subclasses), CP. and Hennessy s Example Process Language
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(EPL) (154). Those models whose .epresentations are primarily graphic make up the

second subclass, and includes such models as Petri nets (279).




4.1 Complete Melric Spaces and the Star Closure

This section lays the foundation for the topological analysis of computational models
and the categories based on these models. Our topologies result from . *tric spaces, where
a metric space is a combination of a set and a function called a metric. Within 1his section
we develop & metric space based on the star closure that both serves as the ba.is for later
analysis, and also serves as an example of the topological concepts. First we give the formal

definiiion of a metric space.

Definition IV.1 A metric space is a two-tuple (X,d) where X > a nonempty set, and
d is a function

d: X xX —=R*"U{0}
where Rt denotes the sei of posilive real numbers, such that
1. (Strictly Posivive) Va,y[(r € XAy e X) = (d(z,y)= 0= z =y)|.

2. (Symmelry)Va.y[(x € X Ay € X) = d(z,y) = d(y,2)].

3. (Triangle Inequality)Vz,y,: t€ XAy € X Az € X) = d(z,y) < d(z,z) + d(=z,9)].

A function d that satisfies the requirements of Definition 1V.1 js called a metrie, «nd is
interpreted as a measure of the ‘closencse’ or listance between two elements of the set.
The elements of the set .Y are called the points of the metric space. If we replace the third

iter 1 the list of requirements for d in Definition IV.1 with
Ve.y,2[( € XAy E XAz €X)= d(z,y) < max{d(z,z),d(z,9)}]

then the function d is called a non-Archimedian or an ultra metsic (-{3). Note that if d
is an ultra mety;c then it is also a metric, but the converse is not necessarily true. The

second defintion we peed is for a Cauchy sequence.

Definition IV.2 Given a melric spacc (X, d), the set

{ru}as  C X




which is called « sequence of points in the metric space (X,d) and is denoted by {z,}, is

a Cauchy sequence if and only if:

For every §, § € R*, there is an N, N € N, such that
Va,m(n€E NAmMENAn2> NAm S N)=>d(zy,2m) < §]

where

N = {0,1,2,...}

A Cauchy sequence (within some metric space) then, is an ordered sequence of points,
such that the distance between them as defined by the metric decreases as we go further
into the sequence. As an example of a C. chy sequence, consider the metric space (Q, d),

where Q is the set of rational numbers, and
d(z,y) = |x — y| where z,y € Q.

The sequence defined by

Ty = il/i! (4.1)

i=0

is a Cauchy sequence of rational numbers.

Although Definition IV.2 implies that Cauchy sequences must have an infinite number
of points, sequences that only have a finite number of points can still be covered by this
definition by simply extending the finite sequence indefizitely by repeating the ‘last’ puint.
For example. the sequence

{3,2.1}

becomes the Cauchy sequence

{3.2.1.1.1,1,...}.

The Cauchy sequence is a.sequence whose elements become increasingly “closer” (with
respect (o the distance concept of the metric) to something that may or may not be an

element of the metric , pace that the Cauchy sequence lies in. This ‘something’ is called




the limit of the sequence, a concept formalized in the following definition. This definition

also defines exactly what types of sequences have limits.

Definition IV.3 A sequence {z,} of points in a metric space (X,d) is convergent if

and only if there exists an z, x € X, such that:

For every 8, § € RY, there ezists an N, N € N, such that
Yaf(n e NAn > N) = d(z,,2) < §].
This z is called the limit of the sequence and is denoled by

lim 2, =2
N=—eOD

A sequence thal is nol convergent is divergent.

Another nomenclature for the limit point of a Cauchy sequence {n} is To., if such a
limit exists, since not all Cauchy sequences have limits that are elements of the set X. If a
Cauchy sequence has a limit, then the elements of the sequence become arbitrarily ‘close’
(with respect to the metric) to this limit, and the sequence converges. A theorem from

topology states that this limit is unique if it exists (8).

Return to the example of the sequence of rational numbers generated by Equation
4.1. Although this sequence is a Cauchy sequence within the metric space (Q, d), the limit
point of the sequence is not a rational number, and so is not an element of the metric space.
This means that the sequence is divergent. However, within the metric space (R, d), using
the same metric d, this sequence is convergent, since the limit point of the sequence is the
irrational number denoted by ¢. That this sequence converges in the metric space (R.d).
is a consequence of another theorem from topology that states that all Cauchy sequences
in (R,d) are also convergent (256). Any metric space with this property that all Cauchy

sequences are convergent is called a compleie metric space.

Definition IV.4 A melric spacc (X, d) is complete if and only if cvery Cenchy sequence

in the melric spacc is also convergent.
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Within any complete metric space, if we take a sequence of points that become progressively
closer together with respect to the metric, then we are assured that there is an element
of .he metric space that the elements of the sequence eventually have zero distance from.

For infinite sequences this eventuality may take a countably infinite time.

We conclude this section with an example of a complete metric space that will not
only serve as an example, but will supply some needed tools for later analysis. This
example is based on the star closure of a finite set, where the finite set often represents

the individual symbols or atoms of a given language.

Given a finite set of symbols, £, we present a metric for the space of all strings of
symbols from T of finite length. Then we motivate the definition of infinite strings of

symbols from ¥ as the completion for this metric space.

Definition IV.5 Given a finile set £, the star closure of £, denoted by £, is the set

that conlains only those elements given by:
1. Ae X
2. Valo e E = a € 7]
3.V8.%((Be Av7e S )= 7€ %]
where
AEY

and

Vi[5 € B" = (AS = 8A = §)). (1.2)

From this definition we see that £° is the set that contains all possible finite strings that
can be formed by concatenating the symbols representing the elements of £ plus the symbol

for the empty string A (138). For example, if £ = {a,)}, then

£ = {A,a.b,aa.ab,ba,bb,aaq, aab,...}.




The A symbol represents the concept of an identity with respect to the concatenation

operation. So for our sample £ = {a, b}, we have
AA=A Aa=a abA = ab etc.

Sometimes we need to restrict our analysis to strings of symbols from a set £ such that

each string has at least one such symbol. We denote this set by 7.

Definition IV.6 Given a finile set , the set denoted by Y is defined by
ot =% - {A}
where A is that unique element of £~ thal is the concalenation identily.

2fore we define the metric for the set X~, we-first need to define two functions len

and prefix, where
len: " — N

such that

len(A)=0

Vz[z € T = Jo,uf(c € EA € " Acu= x) == len(z) = 1 + lea(u)]].

Our function len is just the length of the string, that is the number of symbols from T that
comprise the string, with the convention that the empty word A has zero length. Next we

define the set valued function prefix, where

e
-

prefix : X7 — 2

such that

prefix(\) = {.\}

Vefre St = Vu.r{(n € S Ar e S Aur = x) = u € prefix(z)]].




Given these definitions for len and prefix, a metric for the set £° is the function denoted

by o, where

fr=y
inf{1/2%[k = len(u) A u € prefix(z) N prefix(y)} eclse
(4.3)

(z €AYy €eX7) = o(z,y) =

for all such = and y that are clements of £,

Since the len function has IN for its codomain, k is nonnegative and this s function
does map pairs of elements of X" into the nonnegative reals. Also, a(z,y) = 0 whenever

z = . So, to prove that ¢ is indeed a metric we need to show that:

1. o(z,y)=0=2z=7y Vz.y€e X .
2. o(z.y) = oly.x) Vz.ye I
3. a(z,z) < a(z.y) +oly. = Vr,y,z €5

It has already been proven that o satisfies all three of these reguirements (13}, but we

repeat here the proof of the first item from the list to demonstrate an important concept.

Consider two clements from 7. say z and y. If o(2.%) = 0 and we do not know that

x = y. then it must be true that
inf{1/2%/k = len(u) A u € prefix(x) » u € prefix(y}} = 0.

But this implies that k is unbounded, since if &k were bounded then the inf would .simpl_\v
be the minimum of the set. a fixed nonzero number. Having k& unbounded means that the
two clements & and y have identical prefixes of unbounded length, which means that £ and
y are identical for any finite number of sy mbols. Ounr interpretation of such an x and g is
that they are equal {305). So 7 as given by L3 is a metric. and {X". @) is & metric space

for any finite set X,

Although the metrie 7 §s the ouly ons required fop thix analyvsis. otker metries exist
for the set X7. each with its own topalngical properties. For example, versas the metrie

which results in open balls that are also closed. the metnic 4 genetates apen halls that see

1




not closed, where & is given by

fea=y

6’(.’1} y) =
, Yo 1/25xk(z,y) else

where
1 @k # u
0 2=

xe(z, 3/) =

and for z € £*, 2z, denotes the kth symbol of z, such that 2, € L.

Given a finite set ¥, £* is the set that contains all possible strings of symbols from
L of finite length. We emphasize the finiteness of the length of the strings because it is
possible to consider strings that have infinite length. To demonstrate this concept, consider

the following example based on tiie real numbers. If
L= {_: 0,1,2,3,4,5,6,7,8,9, }

then we can form strings of symbols from T that represent real numbers. So some elements
of R, the set of all real numbers, can be represented by the elements of £*. If we temporarily
(for the duration of this example) denote the bijection between the real numbers and their
representations with the equality symbol, then we can ask whether £* = R. The answer is
no, since ~1.1— is an element of £~ but does not represent a real number. A more subtle
question then. is if R C £*7 The answer to this question is also no, since the real number
we denote with 7, which is the ratio of a circle’s circumference to its diameter, cannot be
represenied with any string of symbols from £ of finite length. Indeed, to represent & with
a finite number of symbols we are forced to use symbols that are not from Z. So if we wish
to have a set based on £ that we can claim is equal to the set of rcal numbers, we must
aliow strings of digits that are infinite. This rcsults from the fact that the real numbers,

with the standard metric d(z,y) = |@ — y|, forms a complete metric space.

So the next question is whether our (£*,0) with o given by 4.3 is a complete metric

space. To show that the answer is no, consider the sequence from £* where £ = {0,1},
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given by

z;  ©101...0101 i> 1.
i symbols

This is a Cauchy sequence with respect to the metric o, but the limit of this sequence,
which is an infinite string of alternating 0’s aud 1’s, is not an element of £* since it’s not
a finite string. However, a theorem from topology states that given any metric space we
can form a unique complete metric space from it by adding in those elements which are
the limit points of each Cauchy sequence (256). The corrplete metric space formed in this
manner is called the complction of the given metric space. We now define the completion

of our (¥*,0) metric space.

Definition IV.7 Given « finile set £, and the metric o defined by 4.3, the set £ contains

only those elements such that

(5%, 0)

is the completion of the metric space (£*,0).

Based on Definition IV.7, the set £%° contains all of the elements of £*, plus all of
the limit points of all of the Cauchy sequences that can be formed from the elements of

Z*. If we arbitrarily select any infinite string that can be formed from the symbols of X,
U1a203... G eED 1<,
then we can form a Cauchy sequence from this string,
{2} = {1, @1a2, 010003, ...},

whose limit point is the original infinite string. This means that £™ contains all finite
strings of symbols from I, plus all infinite strings of such symbols. Consequently, £ can
be shown to contain an uncountable number of elements (303), which, since there are only

a countable number of computable sequences, implies the truth of the following theorem.
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Theorem IV.8 Given a finile sel T, and the metric o given by 4.3, there exists Cauchy

sequences of elements of £* that cannot be generated by any Turing machine.

Proof: Since there are only a countable number of finite length strings, there must be an
uncountable number of infinite length strings, each of which is unique. Therefore,
since each infinite string is the limit point for at least one Cauchy sequence, and
the limit point for a given convergent sequence is unique, there are an uncountable
number of distinct Cauchy sequences, whereas there can only be a countable number

of Turing computable Cauchy sequences (334). |

That there are only a countable number of Turing computable Cauchy sequences follows
from a theorem in Turing’s 1937 paper on computability, which states “The limit of a

computably convergent sequence is computable.” (334)

Although £ contains the infinite strings needed to complete the metric space
(£*,0), we do not have a need for an uncountable number of such strings. This thesis
deals with computation, and so instead of all infinite strings we only need those infinite
strings that are the limit points of Cauchy sequences that can be generated by Turing ma-
chines. We call such sequenzes Turing compulablc. Accordingly, we define the set needed
to form a pseudo complete metric space, based on only those Cauchy sequences that are

Turing computable.

Definition IV.9 Given a finite set £, and the metric o defined by 4.3, the set denoted by
$C contains only the following elements:

1. All of the elements of T~.

2. The limil points of all Turing compulable Cauchy scquences thal can be formed from

the elements of L.

As a consequence of this definition we have exactly our Turing computable complete metric

space.




Definition IV.10 Given a finite set Z, the set I€ defined by Definition IV.9, and the

metric o defined by 4.8, then the two-tuple
(£°,0)

forms a Turing computable complete metric space.

The concept behind the Turing computable complete metric space is that for any Cauchy
sequence that can be generated by a Turing machine, the limit point for that sequence
is an element of the space. This means that the metric space is ‘effectively’ complete

with respect to any analysis that requires sequences of strings to be generated by Turing

machines.

In one of the landmark papers dealing with the mathematical properties of compu-

tation (311), Scott claimed that the set £ satisfies the following property:
¥ = LU (Z*®).

Unfortunately, the paper did not present a rigorous proof, and also did not define what is
meant by the concatenation of two infinite strings. However, if we do define concatenation
of infinite strings in terms of Turing machines (the actual definition does not matter), then

we can prove the following result.

Theorem IV.11 Given a finite set , the set £C defined by Definition IV.9 satisfies the
Jollowing equality:
£¢ = Tu (%)

Proof: The equality holds by definition for all possible finite strings of symbols from £,

so-only infinite strings need be considered. Tor any given infinite string x, where
z € SU (6

another infinite string can be formed by concatenation with ecither a finite or an

infinite string, and any such concatenation is Turing computable. The result of any
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countable number of such concatenations can be computed by a Turing machine,
so that any strings generated in this manner are Turing computable (note the star
closure is a countable number of such string concatenations). Additionally, given any

computable infinite string =z,

zexnt

a computable Cauchy sequence can be formed using the technique described in the
paragraph following Definition IV.7. This means that the operations on the right
hand side of the equality can only generate additional elements of £¢ (as long as

string concatenation is defined for any combination of finite and/or infinite strings).

Thus
(Tu(E%)c ¢

Since the right hand side of the equality includes the star closure of the left hand

side, then

¢ c(Zu(Z%))

since any element of the set £€ is also an element of the set on the right hand side

of the equality. This proves the equality. ||
Corollary 1V.12 The set £* can be represented as a theory (see Section 3.3).

Proof: Since a1} iinite & can be represented with the two element set, the proof assumes

that
L= {a,b}.

The axioms object consints of three objects representing the symbols a, b, and .\ (the

empty word), while the trorphisms correspond to:
Va[e = " = ax € 57]

where

a & { a.b}
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Corollary IV.13 The set £ can be represented as a theory.

Proof: Take the theory representing £* and add all of the limit points of the Turing
computable Cauchy sequences to the axioms object, along with the rule of inference

that represents infinite with infinite (and infinite with finite) string concatenation.

That neither of the theories representing * or £ are complete theories follows
from the analogy betwecen these sets and the real numbers. If £ is the set of decimal
digits and the period, then there exists real numbers from the interval [0, 1] that cannot

be represented with either elements of £* or £€.

Corollary IV.14 Given that
£=1{,0,1,2,3,4,5,6,7,8,9}

then

ccx¢

where C is the set of Turing computable numbers (see Appendiz B).

Proof: Since a Turing computable number is a string of decimal digits that has the prop-
erty that a Turing machine can produce any finite number of consecutive digits in
finite time (246), then the limit point of a Turing computable Cauchy sequence of
real numbers is exactly a Turing computable number. This follows {rom considering
each successive element in the Cauchy sequence as the next iteration of the digits of

the computable number. ]

In some sense (excluding strings that are not numbers), the set £ corresponds to the set
C of computable numbers. Thus the set £~ corresponds to the set of all numbers with

finite decimal expansion, and the set £™ corresponds to the set R of all the real numbers.
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Since the set of reals with finite decimal expansion is dense in the set of reals (standard
absolute value metric), the statement that £* is ‘dense’ in the set £ has some meaning.
Also note that since ‘computer science’ addresses the science of what is possible within the
realm of Turing machines, then £¢ is sufficient fur computer science (as oppused to £°°),

since any string that can by computed by a Turing machine will be an element of £€.

Note that the definition of £€ is based on the topological concepis of a complete
metric space. However, Theorem IV.11 shows that L€ also satisfies a strictly set-theoretic

specification. So this theorem states that there exists a relationship betweea the concept

of computation and that of topology. The next section addresses this issue in more detail.




4.2 A Complete Metric Space Based on Finite Automata

Extending the groundwork laid in the last section, tiu. section further demonstrates
the relationship between computational and topological c. «cepts. In particular, this sec-
tion shows that the concept of computational power can be analyzed using the topology
of complete metric spaces. This analysis is based on comple.ing a metric space whose
elements are finite automata, such that the completion includes elements that are not fi-
nite auiomata. This section considers these elements from a computational power point
of view, and not as ‘infinite automata’, which are closely related to temporal predicates

(191) (and not to be confused with infinite strings associated with finite automata (235)).

The basic model of camputation is the finite automaton, a computing machine based
on discrete states and the ti1ansitions between states (see the Introduction for a definition
of state). The finite automaton is at the bottom of a hierarchy of computing machines
with ever increasing abilities or power (138, 217). Although the finite automaton is at the
bottom, it is the only type of machine in the hierarchy that can be physically realised, in
that all real computers are finite automata (with the possible exception of Man) (249). In
addition to the computing machines consituting this hierarchy, many other computational
models are based on the finite automaton (5, 168, 360), and this section gives an example

of one of these models, called the computation system (238).

There are two basic types of finite automaton, the nondelerministic and the dcter-
ministic. Although there is no difference in the computational power between the two, this

section gives the definitions for both.

Definition IV.15 A nondeterministic finite autematon is a five-tuple (S, A, R, s, E),
where

S= {'sla ooy sn}

is a finile sel whose elements are called the states.,

fl = {(L] v aeny ayn}
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is a finile sel whose elements are called the inputs, and
R={ry,...;tm}
is a finite set whose elements are relations over S, that is
Vrifri € R=> r; C 5 % 5]

and

SES

is called the tnitial state, and

ECS

is a finile set whese elements are called the final or accepting states.

Since for any nondeterministic automaton (5, A, R, s, E) there are exactly the same
number (both A and R have m elements) of relations in R as inputs in A, the standard
practice is to label each relation with a symbol from A. One interpretation of a non-
deterministic finite automaton (5, 4, R, s,.’) is that of a directed graph, with the nodes
labeled with the clements of 5, and the arcs labeled with the eleaents of A, such that
each relation in R corresponds to exactly one element from A (one or more of the relations
from R may be empty sets). Given the relation that corresponds to the symbol a (where
a € A) which contains zero or more ordered pairs, then for each pair (s,,s,) that is an
element of this relation there is an arc labeled with o whose head is s, and whose tail is s,.
With this interpretation, we can consider paths through the directed grapl that start with
the initial state s. Inputs to the graph are words, which are strings of symbols from A,
and as each successive (starting with the leftmost symbol) symbol from a word is read, we
traverse the arc Jabeled with that symbol whose head is the current node to the node that
is the tail of the arc. After the last symbol in the word is processed in this maunaer, and if
the final node is an element from the set /7, then that word is said to be accepled by the
automaton, otherwise the word is r¢jected. By repeating this process for all possible words

(of finite length) from A". we can construct the set of all words that are accepted by a
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given nondeterministic finite automaton. If we denote the automaton with the symbol T',
then accept(T) denotes this set of all words from A that are accepted by the automaton,

while reject(T) denotes the set of all words from A* that are rejected by 7. Note that

accept(TYU reject(T) = T~.
Whereas the nondeterministic automaton has transistions between states based on

relations, the dclerministic finile automaton has transitions based upon total functions.

Definition IV.16 A deterministic finite automaton (5,4, R,s, E) is defined such
that the sets S, A, E and the element s (s € S) are exactly the same as in Definition IV.15;

wherecs the set R conlains total functions, that is for m > 1

R= {fl: "':fm}

such that

VilieR= [;: 5= 5]
where each f; is defined for all of the elcments of the domain S (138).

Just as with the nondeterministic finite automaton, the number of elements in the set 12
equals the number of elements in the set A. The directed graph interpetation is also the
same as for nondeterministic finite automata, with one exception. For the deterministic
automaton the arcs are determined by functions, not relations. (iven .. node s,, the arc

that js labeled with o (where a € A) vhose head is s,, has as its tail the node s, where

Jo(s;) = st

A consequence of this difference in the clements of the set 2 between the nondeterministic
and the determinisitic finite automata is that for each node in the directed graph repre
sentation of a deterministic finite automaton, there is exactly one arc labeled with each
symbol from A whose head is thal node, while for a nondeterministic finite automaton

there can be zero or more arcs labeled with a symbol from A whose head is a given node.
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Two nondeterministic (or deterministic) finite automata that have identical sets of
input symbols are said to be equivalent if they both accept exactly the same set of words.
Note that if two automata accept the same set of words, then they also reject the same set
of words, since for any automaton T' we have that reject(T) = 5™ - accept(T"), where S
is the set of input symbols. Also, since it has been shown that any nondeterministic finite
automaton is equivalent to a deterministic finite automaton, we refer to buth deterministic
and nondeterministic finite automata as simply finite automata (217). If we define two
finite automata to be equal if and only if (iff) their directed graph representations differ only
in the symbols chosen for the arcs and nodes, then this equivalence relation between finite
automata is not equality, since two finite automata can be equivalent but have different
numbers of states (138). We can partition the class of all finite automata that share the
same sel of input symbols into equivalence partitions, such that all automata in a partition
accept the same set of words. Each equivalence partition can be denoted by the set (which
is described in a finite representation using a regular expression (217)) of all words accepted

by the finite automata in that partition.

Now we present an example of a computational model based on the finite automaton,

which is called a computation system (238).

Definition IV.17 A computation system is the ordered two-tuple (£, D, x), F), wherc
= {0’1, ...,an}

is a finile sel, D is a counlable set, x is an element of D, and F is a lotal function whosc
domain is £* and whosc codomain is the sct of all partial functions with domain D and

codomain D, such that

Vala € & = Fla) = a)

where

a:D—=D
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and function composition is given by
Y8, 7,y [(6 € £ A7 € T Ay € D) = B(v) = B(i(v)) ] -
If A denotes that unique element of £* that is the concatentation identily, then
F(A) =)
where A denotes the identity function on the elements of D, that is
Vyly € D = My) = 4]

such that X is not an element of cither T or D.

A computation system consists of the triple (£,.D, z) along with the function F that
maps elements of £ into partial functions from the elements of D into the elements of D.
Additionally, concatenation of elements of T into strings of symbols (which are elements
of £*), corresponds to composition of the functions represented by the individual symbols.

As an example of a computation system, consider ((Z, D, z), F) where

v
L

{a,0}

D = {0,1)

and

F(a) =a= {(0,0),(1,1)}
Fib) = b = {(0,1),(1,0))

with the functions F(e) and F(b) denoted using the two tuple nomenclature from Definition

II1.10. With the notation of Definition 1V.17. we have

a(0)=0and a(l)=1




with

Wy)=1-y y€D.

Although F is defined for all of its domain £*, the definition of function composition in

Definition IV.17 implies that we only need specify F evaluated for the elements of .

In Definition IV.5 we define £* so that it includes the distinct element A wl ch is
not an element of ¥ (and for any computation system ((Z,.D,z), F), A is not an element

of D). This A represents the concept of the empty word (217). Definition IV.5 states that

this empty word serves as an identity when composing strings of clements from E. Since
the empty word is not an element of £, and there is not necessarily an identity function
on the clements of D that corresponds to an element of ¥, our definition of a computation

system includes the identity function A which corresponds to the empty word A.

Since for any computation system ((Z, D, z), F) there exists a collection of partial
functions that maps elements of D to elements of D, one for each element of £, we can

collect these functions into a set, say M. For example, consider the computation system

((Z, D, z), F) where
¥ = {a,b}
D ={1,2,3}
r=1

F = {(A, ), (a,a),(b,D)....}

such that

a={(1.2).(2.3)}
b={(1,3),(2.1)}.

Then we can form

M = {\.a,b}

such that

a(ly=2 and a{2)=3
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Figure 4.1. Directed Graph Representation of Example Computation System

6(1)=3 and 5(2)=1.

In this example both @ and b are partial functions. since neither @(3) nor §(3) is defined.
Also note that F can be completely specified with just those elements that correspond to

the symbols from I, along with (A, )).

We can represent this sample computation system esing a directed graph. Figure
4.1 shows such a graph, where the elements of I are the nodes, and the elements of 3
are the directed arcs. Each arc is Jabeled with the clement from ¥ that corresponds to the
clement of M that the arc represents. So the arc whose head is node 2 and whose tail is
node 1. and is labeled with the symbol b, represents the function evaluation 5{2) = 1. Just
as is the common practice with finite antomata. we do not include the ares labeled with
A that would have the same node for their head and tail. one such arc per node {135).
This directed graph representation suggesis that a computation system corresponsds to an
automaton {101). Inderd. in Figure 4.1 we have labeled node 1 with 2 ° 7 to signifv that it
is the node z in the computation system ((X. Dox). Fojust & we label the initial node in

the graphical represeatation of a finite antomaton. We can cofl the aodes of the graph the
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states, with the arcs representing the transitions. If we choose tie state & to be tne initial
state, and choose zero or more states collected in a set I to be the final states, then our
computation system augmented with E would satisfy our definition of 2 nondeterministic
finite automaton (Definition IV.15). Since E can be empty, then any computation system

can be considered as a finite automaton without any accepting statcs.

Now let us show that a finite automaton is a special instance of a computation system.
Recall that we labeled each function in M with a symbol that corresponded to a symbol
from ¥ in our sample computation system ((X, D, ), I') (along with the implicit set M).
In our example computation system, the set D corresponds to the set S of states, the set
L corresponds to the set A of inputs, and the set M corresponds to the set R of relations.
The common interpretation (101, 138, 217) for a finite automaton is that of moving from
one state to another on receiving one of the input symbols. So for our example (see Figure
4.1), if we are currently in state 2 and receive an input of a, then we move to state 3.

These moves between states are called transitions.

Although our definition of finite automaton requires the existence of a set whose
elements are relations, our set A/ of partial functions satisfies this requirement, because
as we saw in Section 3.2 the class of all functions (which includes partial functions) is a
species of the class of all relations. So any partial function is also a relation, which is also
true for the set-based definitions of partial functious and relations that the definition of
finite automaton is based upon (138). Since a computation system ((£,D,z), ) requires
that the set ¥ be finite, then this set M of partial functions will also be finite, since
there is only one partial function corresponding to each element of L. So ¥ satisfies the
requirements of the set A, and M satisfies those for the set I in our definition of a finite
automaton (5,4, R, s, E). If we take the element z to be the initial state s, then except
for the set I the only difference between the requirements imposed on the sets for a
computation system and ihose for a finite automaton is the cardinality of the set D from
the computation system, which corresponds to the set § for the finite automaton. This
means that all computation systems whose (possibly coantably infiuite) set D is finite, and
that have a set of states (possibly empty) considered to be final or accepting states (so as

to make up the set £), also satisly Definition IV.16 of finite automata. Note that for any
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computation system that doesn’t have a candidate set of final or accepting states for the

set [, the set E can be considered as empty.

So it is established that the class of all computation systems whose set of states is
finite is a species of the class of all finite automata. But the objective of this section is to
further establish a link betv cen computational power and the topology of complete metric
spaces. So the next step is to choose the appropriate metric space to complete, based on
a model of known computational power, the finite automaton. This implies that we need
a metric for finite automata. And the metric that we choose will depend upon a bijection

between finite automata and binary automaton trees.

Definition IV.18 A binary automaton tree is « four-tuple (N, P,n, M), where N is
a finite set whose clements are called the nodes, P is a set whosc two elcments are tolal
Junctions with domain N and codomain N, n is an clement of N called the root node,

and M is a subset of N whose elements are called the accepting nodes.

Since we wish to define a bijection between finite automata and binary automata trees,
we first observe the similarities between the two. A finite automaton is a five-tuple, say
(S,A4, R,s,E). If A contains just two elements, then R contains just two total functions
whose domain and codomain is the set S. And since s is an element of 5, and E is a subset
of S, then we have that any finite automaton (5, 4, R, s, E) with just two inputs (the set
A contains elements called the inputs), leads to the four-tuple (5, R, s, E) that satisfies the
definition of a binary automaton tree. Since any finite input symbol set can be represented
by just two distinct symbols (138), we will drop the caveat that the set A only contain two

symbols, so that what follows applies to any finite automaton.

For example, if we are given the finite automaton (5, A, R, s, I) where

S =1{1,2,3}
A = {a,b}
R = {rq, 70}
s=1

E = {3}
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such that

Ta = {(1a2)a(2:2)’(3>2)}
= {(1,1),(2,3),(3,3)}

then we can form the binary automaton tree (5, R, s, E). Figure 4.2 shows the standard
graphical representation of the finite automaton (5, 4, R, s, I), while Figure 4.3 graphically
depicts the binary automaton tree (S, R, s, E) in a tree-like manner, hence the term ‘binary
automaton tree’. In I'igure 4.2 we label node 1 with a -’ to signify that this is the initial
node, and node 3 with a ‘4’ because it is an accepting node. In Figure 4.3 we label node
1 with a ‘-’ since it is the root node of vhe tree, and node 3 (which appears twice) with a
‘+’ to show it’s an accepting node. Our four-tuple representation for a binary automaton
tree does not include the set of input symbols from the finite automaton because if we did
there would only be two symbols in the set. What the two symbols actually are does not
matter, so we can use any two distinct symbols to labe! the arcs of the binary automaton
tree’s graphical representation, where each symbol corresponds to one of the two functions
that make up the set R. Given a graphical representation of a finite automaton, use the
following technique to construct the graphical representation of the corresponding binary

automaton tree. For an example, refer to Figures 4.2 and 4.3.

1. Start with the initial node from the finite automaton and make it the root node of

the binary automaton tree.

2. Given any parcnt node p of the binary autom.ton tree, we draw an arc labeled with
the input symbol i (We could use any two distinct symbols to differentiate between
the arcs) whose head is p and whose tail is the child node ¢, if the arc ¢ had the node
p as its head and the node ¢ as its tail in the graphical representation of the finite

automaton, and if the parent node has not previously appeared in the tree.

3. A parent node that has already appeared in the binary automaton tree is a lcaf nodc

and has no child nodes, that is there are no arcs whose head is this node.

4. The binary automaton tree is constructed in this manner starting with the root node,

and whenever there is more than one child node that can be drawn next the Jeftmost
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node is drawn first, where all of the leftmost child nodes are the the tail nodes of
arcs labeled with the same symbol (i.e. each symbol corresponds to one of the two

total functions that define the arcs).

The last item in our constructive description guarantees that given any finite automaton
we-can construct a unique representation of a corresponding binary automaton tree, since

any possible arbitrary choice has been removed.

Conversely, we can take any given binary automaton tree and graphically construct

the representation for a unique finite automaton using the following procedure.

1. Start with the root node of the binary automaton tree and make it the initial node

of the finite automaton.

2. Given any arc labeled with the symbol 7 from the binary automaton tree, add the
parent node p and the child node ¢ from the tree to the finite automaton if they are
not already present, and draw an arc labeled with the input symbol 7 whose head is

p and whose tail is c.

3. The finite automaton is constructed in this manner starting with the arcs that connect
the root node to its two child nodes, and then repeating the second step once for

each arc in the binary automaton tree.

This constructive technique ensures that there will be the same number of arcs in the
graphical representation of the finite automaton as in the binary automaton tree, which
is the desired result. Also note that given an arbitiary graphical representation of a finite
automaton, we can generale a unique five-tuple representation for the automaton, just
as for any five-tuple representation we can construct a unique graphical repiesentation
(138). This means that our use of ‘finite automaton® can mean either the five-tuple or the

graphical representation.

Consequently, given the graphical representation of either a finite automaton or a
binary automaton tree, we can uniquely construct the other, and given either graphical
representation, we can generate both the four-tuple representation of the binary automaton

tree and the five-tuple representation of the finite automaton. So we sce that for any given
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Figure 4.2. Graphical Representation of Finite Automaton (S, A, R, s, E)

finite automaton, we can construct the unique binary automaton tree that represents it,
and for any binary automaton tree there exists a unique corresponding finite automaton
(with the caveat that in generating the finite automaton given a four-tuple representation
of the binary automaton tree we have an arbitrary choice as to the two input symbols,
but we can force uniqueness by simply specifying that these two symbols will always be
the unique symbols ¢ and b which are not members of any -of the other sets needed for
the representations). Thus the motivation for the existence of a bijective function between
finite automata and binary automaton trees, and for the next theorem, which requires the

following definition.

Definition IV.19 Two binary automaton trees (T, P,1,U) and (V,Q,v,W) are equal, if

and only if, there exists a bijective total funclion ¢,
o:T =V
such that

Ve, y,pql(z € TAyeVApeEP Ag e Q)= (9(y) = $(p(x)) = y = ¢(x))]
¢(t) = v
Y, w [(u EU=>d(u) e WIAN(weW = ¢ Y w)e U)] ;

Theorem IV.20 There exists a lolal bijeclive function whosc domain is the sel of all

finite automata and whosc codomain is the scl of all binary automaton trces. There also
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Figure 4.3. Graphical Representation of Binary Automaton Tree (5, R, s, E)



exists a total bijective function whosc domain is the sct of all binary cutlomaton trees end

whosc codomain ts a specified sct of graphical represcntations of binary uutomaton trecs.

Proof: The requirement for binary automaton tree equality states that two trees are equal
iff their graphical representations based on the proceeding construction technique are
identical except for a relabeling of the nodes and/or arcs, that is they are isomorphic
with respect to the initial and accepting nodes, and the functions that are represented

by the connecting arcs.

The preceeding construction demonstrates the existence of such a bijective function
for the set of all finite automata with only two input symbols. Since axiy finite set of
input symbols can be represented with just two distinct symbols, the existence claim

holds for all finite automata. Il

The specified set in this theorem refers to the set ‘specified” by the constructive technique
described above. Note that if we had not designed our constructive technique so as to be

deterministic then the second part of this theorem would not have been true.

If we extend the definition of the function accept, so that its domain includes all
binary automaton trees, with the enumeration of the accepted set of words for a binary
automaton tree performed just as for a finite automaton, then we have the following corol-

lary to this theorem. (Note that we use ‘enumeration’ in the sense of Turing-enumerable)

Corollary IV.21 There exists a bijective function ®, whosc domain is the set of all finite

aulomata and whose codomain is the set of all binary aulomaton trees, such that
accept(m) = accept(P(m))
Jor any finile automaton m, and

aceepl(b) = accept(P~1(b))

Jor any binary aulomaton lrec b.




Proof: The function @ is just the bijection from Theorem IV.20. Given a finite automaton

m, and any arbitrary nonempty word w, such that

w € accept(m)

we can decompose w into a sequence of individual symbols from the input alphabet
of m, that is

W = 8182..-Sn, n > 1.

Both m and ®(m) have an initial node that processing of w starts in, and for each
symbol s,, the transition from one state to another in m has a corresponding transi-
tion in ®(m), such that a given input symbol leads to an accepting state for m iff it

leads to an accepting state for ®(m), which implies
accept(m) C accept(P(m)).

Since ® is total and bijective, then for any binary automaton tree b, there exists a

finite automaton 7, such that

b= &(h) m = &71(b).

This, along with the above reasoning, implies that

accepl(d~1(b)) C accept(h)

for any binary automaton tree b. These subset containments hold for aceept(im)
nonempty, and such that the empty word i, not an element of accepl(m). But if
m accepls the empty word then the initial node of m is acceptling, which will also
be true for ®(m), thus ¢(m) accepts the empty word. The converse is also true, if

$(m) accepts the empty word, so does m. If accept(m) = @) then m has no accepting

states, and neither does $(m). so that accept(®(m)) = 0; the converse is also true.




By repeating the above argument for any given binary automaton tree b, and for any
word w, such that

w € accept(d)

the implications yield

accept(®(m)) C accept(m)

accept(b) C accept(~1(b))
which establishes the equalities. |

Figure 4.4 shows two such isomorphic trees that .aeet the definition for binary au-
tomaton tree equality from Theorem IV.20, and Figure 4.5 graphically depicts the rela-
tionships specified by this definition of equality. Yor Tligure 4.4 the bijective function ¢ is
given by

d)=a  $(2)=0.

Note that the definition for equality given in Theorem IV.20 does not address the labels on
the arcs, since the placement of the arcs suffices to identify which function they represent.
In Figure 4.4 however, we have labeled the arcs so that the functions represented by the

‘a’ and the ‘b” correspond to the functions represented by the ‘0" and the ‘1’ respectively.

Before we proceed we need to define the concept of how far away from the root node is
any given node in our graphical representation of a binary automaton tree, which is called
the level of the node (46). Also, because of the second part of Theorem IV.20, we no longer
need to differentiate between a binary automaton tree and its graphical representation using
our construction method. So whenever we use the term ‘binary automaton tree’, we mean

either the four-tuple designation or the graphical representation.

Definition 1V.22 Given a binary aulomaton irec, the level of any node within that trec

is given by:

1. The level of the rool nodc is 1.
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Figure 4.4. Two Equal Binary Automaton Trees




p(x) \—/q(y)
e

Figure 4.5. Relationships Specified by Binary Automaton Tree Equality

2. Given that the level of a parent node is j, then the level of any child node of that

parent node is j + 1.

Definition 1V.23 A4 level £ restricted binary automaton tree coniains only nodes

whose level is less than or equal to k.

Definition IV.24 Given a binary aulomalon tree T, consiruct the level k restriction
of T, denoted by Ty, by deleling all nodes of level k + 1 or greaier, and any arcs whose

heads or tails are these nodes.

Next we give a metric for binary automaton trees, which will serve as the basis for
our metrti for finite automata. Just as the metric ¢ given by 4.3 of Section 4.1 measured
how ‘far into’ two strings the equality of their prefixes would hold, our binary automaton
tree metric measures how far into two trees the equality of their level k restrictions will
hold. Note that level k restriction equalities are just those given by Theorem 1V.20 for
any binary automaton tree. Given any two binary automaton trees T° and 1, we define
a function d;, that maps two tuples of binary automaton trees intu Lthe nonnegative real

numbers by
0 HTr=V
AT, V) = ’ : (4.4)
inf{1,1/24T% = Vi} otherwise
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a b
Iligure 4.6. Binary Automaton Trees T and V

If two binary automaton trees " and 17 do not have equal level 1 restrictions, then we have

that

die (T, V) inf{1}

= 1

since there is no value of % for which 7, = ..

Consider the two binary automaton trees T and V' depicted in Figure 1.6, If we

consider their level 1 restrictions, then we have that T} = 1], because there exists a bi-
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jection ¢ such that ¢(1) = 0, and both states 1 and 0 are initial and accepting states in
the corresponding restricted binary automaton trees. But when we consider the level 2
restrictions we find that there does not exist any such bijection that satisfies the require
ment of Theorem IV.20 for (restricted) tree equality. Consequently, we have T3 # V2, and

also that T3 # 14, so that

n

de(T,V) = inf{1,1/2}

1/2

The proof that d;, given by 4.4 is a metric for the set of all binary automaton trees
follows the proof that o (see 4.3 in Section 4.1) is a metric for the set Z* (43). (Note
that Degano and Montanari show how the concept behind this metric can be extended
to more complicated structures that represent distributed systems (99)) Since Theorem
IV.20 states that there is a one-to-one correspondence betwees finite automata and binary
automata trees, then it follows that we can use our metric d;, to define a meiris on the set

of all finite automadta.

Theorem IV.25 Giten the bijection ® from Corollary IV.21 and the funclion dy, from
4.4, then the funclion dy, thal maps the sct of all finilc aulomata into the nonnegalive rcal

numbers given by

dgo(A, B) = di {2(4), (B))

Jor any two finile aulomata A and B, is a melric for the sel of all finile aulomata.

Proof: The proof that d;, is a metric follows the proof from Section 4.1 for the metric
on I*. Consider any three finite automata A. B, and C. Since d is 2 total bijection,

then
dee(D(A), 2(B)) £ dip(P(A), R(CN 4 ( D(C), PIBY) =2 dpa( A B) < dpal A, C)Hddygo(C. B).

Since dy; is a metric. then this implication states that dy, satisfies the triangle in

cquality requirement of 2 metric {see Definition IV.1). The constructive technique
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used to prove Theorem 1V.20 provides the bijection ® between finite automata and

binary automaton trees such that
(2(A)=®(B)) <= (A= DB)

which implies that since di, satisfies the strictly positive requirement for a metric,

then dj, also satisfies this requirement. Further,
di(2(A), ©(B)) = dir(P(B), P(A)) = dje(A, B) = dga( B, A)

so that dj, satisfies the symmetry requirement; therefore dy, satisfies all the require-

ments for a metric. I :

Oae question we can ask is whether the metric d;. accurately represents any intuitive
concept of ‘closeness’ of two finite automata. In Figure 1.6 we have two binary automaton
trees T' and V" such that di,(TV) = 1/2. But both the finite automaton that produced T
and the one that produced 17 accept the same set. which is {a + b}". So in this case the
measure of closeness given by the metric does not reflect the concept of computational ca-
pability that is reprosented by the accepted sets. We can partially circumvent this problem
though, by modifying the set of all finite automata. Instead of including every possible
finite automaton, we can include only the canonical homomorphic images of all possible
automata. We do this by collecting all of the finite automata together into equivalence
classes based on the accepting sets. so that ecach equivalence class contains only those
automata that accept a given set. Then we gencrate a canonical homomorphic image of
all the automata in the equivalence class, which will be a finite antomaton that aceepts
the same set as all the automata in the cdass. but has the minimum number of states of
any antomaton in that equisalence class. It has been shown that this unique automaton
exists for each equivalence class. and can be generated from any antomaton in the dass
thru a homomorphism. and will be isomorphic {with respect to relabeling of the nodes and
ares) to the finite antomata in the eguivalence class that have the fowest pumber of states
{135). This means that we can form a metric space whose set contains each canonical

homomorphic image (from ecach equivalence class\. and eliose metsic i the fanetion dy.
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This metric space now has the desired property that for any two finite automata a and b,

dfo(a,b) # 0 = accept(a) # accepl(h)

and for any regular set that would have been accepted by some automaton in the original
set of all finite automata, there exists a finite automaton in this new set that accepts the
same set. So we have a metric space whose elements have all of the required computational
power (i.e can accept all regular sets), and whose metric has to some degree the desired

intuitive property.

Theorem IV.26 Given a finite set ¥, and the function ds, defined in Theorem IV.25,

there exists a set M of finile automata such that (M,dy,) forms a metric space, and
Va,bl{(a € M Ab € M) = (accept(a) = accept(h) <> dya(a,b) = 0)}.

Additionally, for every reqular set S such that § C I*, there exists « finite automalon

m € M such thal

accept(m) = 5.

Proof: Tor each regular set that can be formed from X*, create one cquivalence class of
all finite automata that accept that set, and form the set Af by choosing from each
class one automaton that has the minimum number of states for all the automata
in the class. (Disregarding isomorphisms due to relabeling of the nodes and/or arcs

this set M would be unique) Since each element of M accepts a different set,

accept(a) = accepl(b) = a =

e =b=>dsa,0)=0
for any a,b € M. Since dy, is a metric lor any set of finite automata,

dio(a,0) =0 <= a=1b

a=b=> accepl(a) = accepl(h)
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due to the positive definiteness of the metric and the fact that the definition of
automaton equality given in Theorem IV.20 implies that any two automata that
are equal must be members of the same equivalence class; this is proved by having
the ¢ of Corollary IV.21 be the isomorphism between equal finite automata defined
by the function ¢ of Theorem 1V.20, which implies that accept(m) = accept(P(m))

whenever m = $(m).

The construction of M ensures that every regular set is accepted by some element of

M. R

The remainder of this section deals with the metric space (M, dy,) given in this theorem.

Now that we have formed a metric space (M, dy,) (see Theorem IV.26) for which we
have elements with well defined computational power (the accepting sets), and for which the
metric imparts intuitive meaning in terms of closeness with respect to this computational
power, our next goal is to answer the following question: Does the completion of this
mnetric space of finite automata yield elements that lie higher up on the Chomsky hierarchy

(327, 69, 70) of computing machines? As we shall prove, the answer is yes!

Given a finite alphabet ¥ = {q, b}, consider the set § C I* given by
S = {d""a*n > 0}

which is a set generated by a type-1 grammmar, but not by a type-2 grammar (101). If we
fix an upper bound to n, say n < 3, then we would have the regular set that is accepted
by the finite automaton shown in Figure 4.7. To increase clarity in this figure, we have
only included the arcs that eventually lead to an accepting state. All of the arcs not shown
have the node labeled ‘S’ as their tail, and from this node there is no string of symbols
that will lead to an accepting state. If we had chosen n = 10 instead, then the structure
of the finite automaton would follow that of Figure 1.7, with just more added states to
handle those words with 3 < n < 10. We can continue this process indefinitely, so that
for any fixed finite value of n, there exists some finite automaton that can accept the set.
So even though there is no finite automaton that can accept the set §, since the value of

n is not fixed, what could we say about an infinitc entomalon constructed in the manner
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a,b

Figure 4.7. TFinite Automaton that Accepts {a"b"a"|0 < n < 3}

of Figure 4.7 that would have an infinite number of states? This concept of an infinite
automaton corresponds to that of a transition system (12). We can’t answer this question
by constructing such an automaton, but we can answer it using topological concepts and

our metric space (M, dy,).

Before stating the primary theorem of this section, we need some intermediate results
regarding the relationships between recursive sets, the metric space (3,d;4), and binary
automaton trees. A recursive set, say R, of words formed from some finite set of symbols
I, has the property that both the set and its complement £ — R are Turing enumerable
(101). This means that we could order the words of £~ by length using the function len
of Section 4.1, along with another function to choose between words of equal length; then
starting with the word A (the concatenation identity, or empty word) and continuing for
each successive word ¢ of £~ (initially ¢ = A), concurrently enumerate both 2 and £ - R
so as to decide if o is an element of R. Since both enumerations will generate any given
element of cither R or £ — R in finite time, the decision of whether or not ¢ is an element

of R can also be done in finite time, since we only have to wait to see which enumeration

produces o. Note that one of the two euunerations will eventually produce o sizice either




o € Roro ¢ R. Proceeding thru the length-ordered version of £* in this manner allows
us to generate a unique length-ordered version of R. Thus we have that the elements of

any recursive set can be uniquely ordered by length (190).

Given any finite subset S of a length-ordered recursive set R (R is not generated by

any context sensitive grammar),
R ={01,09,...,0n,...}

we can construct the finite automaton that accepts only those elements of S (327). Ex-

tending this concept, we can construct a sequence of finite sets

S51CSCSC--CS,C---

such that

Vilie N=>S; C R

with the (proposed) property that
Jm Sn =L (45)

and

Vili e N = S; = {01,092, ...,0:}]. (4.6)

Note that R must be countably infinite, since if it was finite then it would be a regular set.
Equation 4.5 states that the limit of a sequence of finite (regular) sets can be a recursive

set! Our next task is to prove this claim.

Consider a sequence of finite automata from the metric space (M, dy,)
P By Py, .

such that

Vi[i € N == accept(F}) = 5i].




We can use the bijection ® from Corollary IV.21 to construct a corresponding sequence-of
binary automaton trees

T, Ty vy T, oo

such that

Vili € N = T; = &(F)]

and

Vi[i € N = accept(T;) = accept(F;) = 5. 4.7)

Our sequence of finite automata {I}},en corresponds to Reeker's concept of acceptor scries
(297), except that we do not use Reeker’s technique of substituting graphs into graphs.
Note that Corollary IV.21 and Theorem IV.26 imply that given a set S,, there is one
unique element of (M,dy,) denoted by F,, such that accept(F,) = §,, and consequently
there is one unique (disregarding isomorphic relabeling) binary automaton tree 7}, such
that accept(T}) = S.. A consequence of our length-ordering of R is that this sequence

{T3}.en of binary autematon trees is a Cauchy sequence with respect to the metric dpy.

Lemma IV.27 The sequence of binary automaton lrces given in Equation 4.7 is a Cauchy

sequence within the metric space of all binary aulomaton trees with the metric dy,.

Proof: For this proof and the remaining ones of this section we will use the modal oper-
ators O and < with respect to the indicies of the sequences. For any sequence, the
indicies form a total linearly ordered set (177), so that the indicies can be considered

as discrete time, and the operators as from linear time temporal logic (sce Appendix

A).

Consider two sets from the sequence of sets of accepted words, say S, and §,. If
S; = §; then Theorem IV.26 implies that F; = F,, where accept(F}) = 5, and

accept(F;) = S,. Further, the bijection & from Corollary 1V.21 implies that

Fi=Fi= Ti=T; = d(T;,T;) = 0

where T; = ®(F;) and Tj = O(F;).




If S; # 5;, and j > 1, then
Yor,o1[(or € Si Aot € S; Aoy € 55) = len(or) 2 len(oy))

which follows from the length-ordering of R and the assertion given in Equation 4.6.
Since the number of distinct words in R is not finite, and there are only a finite
number of words of a given length (the symbol set ¥ is finite), then with respect to

any given index i,
Osi(3Vk (o1 € S5 A (o € Si = len(ay) > len(o))]) -

(Here the O, along with the S, means ‘there exists an index j greater than ¢ such
that the following is true’) Given the index j for which this assertion is true, then it

follows that

Os; (55 C Sk)

which implies that given any index 4,

O5i0 3k o1 € 85 A (ok € S; = len(oy) > len(o))]). (4.8)

For any such distinct sets S, and S, with § > 7, then T}, (B(F,)) is equal to T} (2(F3))
plus the additional nodes and arcs needed so as to accept the additional words in
S, — 5, (since S; C 5,). If some of the words in 5, — 5, are the same length as the
words of greatest length from 5;, then T, and T differ at the level of the nodes that
accept these ‘longest’ words from .5,. If any of the words from S, have greater length
than the words of greatest length in S;, then T, has one or more nodes of greater
level than T}, and if all the words in 5, — .5, are longer than the words of greatest
length from 5;, then T, and T, differ at a greater level than that of the nodes that
accept the longest words from 5,. A result of the assertion given in 4.8 plus the fact
that for any given length there are only a finite number of words (from £*) of that
length, is the lollowing. Let N be the maximum possible number of words of length

len(ay), where oy is the word of shortest length from R. Then for any set ), where
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I > N, there exists another set Sk, such that S; — Si contains only words longer than

those of greatest length from Si. Conversely, given a set S, then:

1. There exists a set ;. whose longest word is equal in length to the longest word
of §j.

2. There exists a set .Sy such that S; — Sy contains only words longer than those of

grealest length from Si-(and thus from S}).

The above arguments imply the following conclusion. Given K € N, there exists a

set Si whose longest words have length K, and there also exists a set S; such that

where S = accept(Fy), Si = accept(Fy), and T = O(F), Ty = ®(F}). This implies

that with respect to some index N,
Vé[6 € R} = OsnOdin(Tn, Trn) < 6).

As a natural consequent of this result we have the following.

Corollary IV.28 The sequence {F.},cn given by 4.7 is a Cauchy sequence within the

melric space (M, dy,).

Proof: Theorem 1V.25 implies that if {T;},en is a Cauchy sequence, then so is {$~(1})},eN:
where I; = @~1(T3). ||

Having completed these preliminary results, we can now prove the claim that the Cauchy

sequence of regular sets {5;},en converges lo the given recursive set R.

Theorem IV.29 Given a length-ordered recursive sel R (nol a finilc set)

R = {011025"':071:"'}
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along with the sequence {Si};eNn given by 4.7 such that
S]C52C"'CSnC"'

with

Vi[ie N= §; C R]

and

S;={o1,...,0:}
for each i, then there exists ¢ metric for the set of all reqular sets such that
im S, = R.
n=+oo

Proof: Given any regular set 5, Theorem IV.26 implies that there exists a function f
whose domain is the set of all regular sets and whose codomain is the set A{ from

the metric space (M, dgg), such that
accept(f(S)) = S.
Define the metric d;5 on regular sets such that for any two regular sets 5 and T,

inf{1/2"* I =len(c)Aoc e TAc ¢S} ifSCT

else

drs(Sa T) =

(Note trat I is the length of the shortest word o from T that is not a word from .5)

The arguments presented in the proof of Lemma IV.27 imply that

drs(5,T) = dya(f(S5), S(T))

for any regular sets R and 5. Although this equality holds for all regular sets, it
would not have served as the definition of d,s since f(U) is undefined for any U
that is not a regular set but is an element of the completion of this metric space.

This equality is sufficient to prove that d,s is a metric, following the reasoning of
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Theorem 1V .25, since dy, is a metric. This equality and Corollary IV.28 imply that

the sequence {;};cN is a Cauchy sequence with respect to the metric dys.

Completing the metric space of all regular sets with the metric d,s implies that
lim S,

n=+oo

exists and is unique (189, 108). It follows from the proof of Lemma IV.27 that
V5 [§ € RY = 00d,5(Sy, R) < 6]

which implies that

drs( Jim_Sn, R) inf {1/2"+)1 ¢ N}

= 0

and so

im S, =R
n=00

since the limit of any Cauchy sequence is unique. I

This next corollary shows that the Turing complete metric space formed from the metric

space of regular sets, includes all of the recursive sets.

Corollary 1V.30 The melric space of all recursive sets with thc metric dys is a subspace
of the Turing computable complction of the mctric space of all regular scls with the melric

dps.

Proof: Theorem IV.29 implies that for any recursive set there exists a Turing computable

Cauchy sequence of regular sets that converges to the recursive set. ||

This corollary implies that for any given recursive set R, there is a Turing computable
Cauchy sequence of finite automata such that the limit point of this sequence is a *machine’

capable of accepting exactly the recursive set. Although this proof required the Turing

4-46




completion of the metric space of all regular sets with the metric d,s, it did not address
any other Turing computable Cauchy sequences except those generated in the manner of
Equation 4.7. Are there-possibly other Turing computable Cauchy sequences that converge
to sets which are not recursive sets? The following theorem implies (but does not prove)
that the answer to this question is yes. This theorem involves the oracle, which is a

computing device that can solve the halting problem for Turing machines (152).

Theorem IV.31 The Turing computablc completion of the metric space of all regular scts

with the metric d,s is a subspace of the metric spacc of all oracle recursive scts with the

melric d,s.

Proof: What needs to be proven is that all Turing computable Cauchy sequences of regular

sels converge to oracle recursive sets.

The definition of drs from Theorem IV.29 implies that for any Cauchy sequence

{S:}ien of regular sets, that
,.lli‘éo Sp=5=(0c €S = 000€S;) (4.9)
since if this wasn’t true, then it would follow that
OCo ¢ 5;

which implies that

QOd,4(S;, Sx) £ 1/2H1
l =len(o)

which is not true because {9,},cn is a Cauchy sequence. The same reasoning implies

that
c¢ S =000¢J5;. (4.10)

For a set to be recursive both the set and its complement (with respect to £7) must

be Turing enumerable (359). Although this argument does not show that any Turing

J-47




machine could enumerate either S or its complement, assertions 4.9 and 4.10 imply
that § and it’s complement are ‘oracle enumerable’, and thus S is oracle recursive.
This is based on the idea that an oracle (90, 1) that could solve the halting problem
(for Turing machines), could decide for any given word ¢, whether ¢ is or is not an

element of S. This would not have been true if either
0€ES =000 €S;

or

cd§ = 00c ¢5;

instead of 4.9 and 4.10. Il

Another related result is that any Turing computable string of symbols can also be
generated by the limit point of a Turing computable Cauchy sequence of finite automata,
j.e. the Turing completion of the metric space of finite automata includes machines that

can generate all of the computable symbol strings (equivalent to computable numbers).

Theorem IV.32 Given any Turing computablc symbol string, there cxists an element of
the Turing compulable completion of the melric spacc (M,ds,) of finitc automata that

accepts only this symbol string.

Proof: Since the string is computable, then it is the limit point of a Cauchy seyuence of
finite length strings within the metric space (£~,0) from Section 4.1 (291). Corollary
1V.28 implies that there exists a Turing machine, such that for each of these finite
length strings, a finite automaton that accepts only that string can be constructed
using the techniques of this section. Thus this sequence of finite automatais a Turing
computable Cauchy sequence, and the unique limit point is the machine that accepts

only the computable string. I

The previous results of this chapter plus Theorem V.32 supply the necessary justification
for the clajim that the computational power of the ‘machines” incduded in the completion

of the metric space of finite automata. is no greater than that of Turing machines.
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Figure 4.8. Hierarchy of Sets

Theorem IV.33 The set of Turing machines includes all of the elements of the Turing

computable completion of the metric space of finile automata (M,d;,).

Proof: Consider the set S, accepted by each finite automaton F, in an arbitrary Cauchy
sequence of such machines. The sequence of these sets corresponding to the Cauchy
sequence can be produced by a Turing machine, since the Cauchy sequence of finite
automata is Turing computable. This means that the cumulative union of these sets

for a given j

US,' jEN

i<j
is also Turing computable. Just as for the symbol strings of Theorem 1V.32, if this
cumulative union is computable for any arbitrary natural number j, then the machine
that generates this cumulative union is the machine represented by the limit point

of the Cauchy sequence. IR

A consequent of these results is the hicrarchy of sets shown in Figure 4.8, where
‘completed regular’ refers to those sets that correspond to the computational power of the
Turing completion of the metric space (M, dy,) of finite automata. Neither the strictness of
the inclusion of recursive sets in completed regular sets, nor the strictness of the inclusion

of completed regular sets in recursively enumerable sets is proven here.
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4.3 A Complete Metric Space Based on CSP

The last section demonstrated that the computational properties of the sequential
computational model of finite automata can be related to the topological properties of
a complete metric space based on the model and an appropriate metric. Additionally,
the section showed that the computational concepts embodied in Chomsky’s hierarchy of
computational languages (and therefore models), can be recast in terms of a topological
hierarchy based on the concept that the completion of a metric space can be ‘higher’ up the
hierarchy than the other clements of the space. This section continues this tact, de»el;)ping
a-complete metric space for a concurrent model of computation, Hoare’s Communicating
Sequential Processes (CSP) (165), and then using the standard topological tools to present
alternative probfs to two of the main theorems from lHoare‘s book. This section closes
with the demonstration that Ioare’s proof of program concept based on the sat operator

is equivalent to proofs based on the modal logic presented in Appendix A.

The first goal of this section is to show that CSP inherently generates a complete
metric space and to relate the topological properties of this metric space to the algebraic
and computational properties developed by Hoare. As explained in the introduction to
this chapter, CSP is chosen as a representative of that class of concurrent computational
models that are based on the behaviour of the computation. Before developing the metric
space based on the processes that underly the CSP concept, anothes metric space based

-on the CSP traces needs to be presented.

CSP treats a process as either defined by its possible behaviour, or as defined by
a system of equations that relate outputs (which along with the inputs constitute the
‘behaviour’) to inputs. These processes can be either deferministic or nondelcrminislic,
but for buth cases any process can be characterized by the set of possible input/output
histories. which are called traccs. Hoare defines a deterministic process as one that “can
never refuse any event in which it can engage”, and a nondeterininistic process as one that
“does not enjoy this property, i.c.. there is at some time some event in which it can engage:
but also (as a result of some internal ... choice) it may refuse to eagage in that event, even
though the environment is ready for it” (165). Within this section and those that follow

any reference to CSP or other processes implies that the processes are deterministic. nnless
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stated otherwise.

Thus each process P generates a set denoted by
traces(P)

that contains all possible traces of P, where each trace is a sequential history of the

input/output beh:-viour of P. A trace is denoted by
(az b: C)

where a, b, and ¢ denote individual events. and their ordering within the brackets signifies
the sequence in which they occur. By convention no two events occurs simultaneously, and

every trace contains a finite number of events {165). For example, the process given by
VAMS = (coin — (choc — VL S))

is-one which can perform the event called zoin. then performs another (unnamed) process
which first does the event choc then continues with the process V"M S repeated anew. Thus
the notation

z— P

denotes the process that first does the event z, then follows with the process P.

Given this process V' MS defined in an equational manner, another equivalent def

nition of 1"A/5 is given by the set of all possible traces of VM5, that is
traces(V AS) = {{). {coin), {coin. choc). {coin. choc. coin),...}

where () denotes the empty trace. that is the sequence that contains no events. Since for
every process (by conveation) there exists a time interval that precedes the start of the
process. then every process contains the empty trace in its aet of traces. even the proces
that does nothing. Note that the set of traces for a given process can be conntably infinite.

even though each trace only contains a finite number of events.
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Thus a process can be defined either from its set of all possible traces or from one
or more equations (possibly recursie). Whereas the previous section developed a metric
for strings of s _.Luls Liau are similar to the sequence of events in a trace (see the metric
defined by Equation 4.3), this section first presents a metric for the space of all possible
traces that :n be formed from a given finite set of events. This metric ic then used to
define a metric on the space of all possible processes that can be defined (in the CSP sense

of a process definition) given a finite set of cvents.

Since a trace is an ordered sequence (i.e. countable) of discrete events, the metric
o defined by Equation 4.3 can be modified to create a metric for the space of a"! (finite)

traces. Consider the two traces denoted by

(ﬂ,‘l’.'vz, ...,-’Bﬂ)

and
('!/h?lZ,---lem)
for some n and m elements of the natural numbers. Since the metric ¢ on strings of

symbols from £~ is based on the idea of Lhow many symbols at the beginning of each string

ave identical, the same concept can be ased to define the following metric on traces denoted

by =.

0 ifz =1

#(z,y) = v (4.11)

max{1/2"ex # yr} else

If
= (-’l?), -")mn)
and
y= (!]1 3 ooy Yns YUnke1s "'9?/711)

where

X =Y forl1<i<u




then

m(z,y) = 1/2"*

based on the convention that since there is no zp4 symbol, then

Tr41 76 Ynt1-

That 7 is a metric follows from the same argument presented for the metric o defined
by Equation 4.3. Since traces must be of finite length, only the meaa function is required

instead of a sup.

This metric 7 also satisfies the intuitive requirement that two traces x and y that
are ‘close’ with respect to the metric are ‘close’ in terms of having more of their leading
symbols identical. That is, as the metric distance between the two traces decreases, the
number of events (starting from the first event) that must occur before the two sequences
differ increases. Note however, that other intuitive concepts of closeness do not necessarily

apply to this metric. For example, consider the two traces given by

z = (0,1,0,1,0,1,0)

and

y = (0,0,0,1,0,1,0)

which yields

w(z,y) = 1/4.

Compare this to the two traces

w={0,1,1,1,1,1,1)

and

v =(0,0,0,0,0,0,0)




which also gives

w(u,v) = 1/4

Although the metric states that these two pairs of traces are equally ‘far apart’, an intuitive

notion of closeness would conclude that 2 and y are closer than « and v.

Thus the set of all finite traces along with the metric # given by Equation 4.11
constitute a metric space. A natural question then, is whether this metric space is complete

or not. Consider the Cauchy sequence of traces given by
(0),(0,1),{0,1,0),(0,1,0,1},(0,1,0,1,0),...

Is the limit point of this sequence an element of the metric space? The answer is no, since

no finite string can represent this lim:t. To prove this claim, consider that there does exist

a finite string

T = (Tyyeee; Tn)

that is the limit point of this Cauchy sequence. If 2,, = 1 the traces given by

y= (xla =y Ty 0)

and

z= (.’121, ceay :v,,,O, ])

are both elements of the Cauchy sequence such that
7(y,z) = 1/2™*?

But for any element u of the Cauchy sequence,
w(z,u) > 1/2"

which mcans that 2 cannot be the limit point of the Cauchy sequence, since there are other

clements of the sequence that are ‘closer together’ than & is to any other element.
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This is also seen by considering each trace as the binary expansion of a number based

on negative powers of 2, that is

(0,1)=0x2"+1x2%=1/4
0,1,0,1)=0x 271 +1x 2724+ 0x 23 +1x 27" = 1/4 +1/16 = 5/16

‘Chus the limit point is given by
o
D
k
k=1 4
‘which evaluates to 1/3, a number that cannot be represented with any finite string of zeros

and ones.

Thus the completion of this metric space requires the inclusion of ‘traces’ that contain
ar infinite number of events. One logical question is whether the limit traces of Cauchy
sequences represent in some malnel unique processes, so that these limit points can be put
into a one-to-one correspondence with the set of all processes (over sume finite alphabet).
In the previous example the Cauchy sequence of traces (ignoring the empty trace) can be

generated by the following process named ONETHIRD:
ONETHIRD = (0 — (1 —» ONETIIRD))
But this same Cauchy sequence can also be generated by the process OT:
OT=(0— (1—=(0—(1—0T)))

So there is 1o une-to-one correspondence between processes and the limit points of arbitrary

Cauchy sequences of traces.

Just as the symbol string metric given by Equation 4.3 formed a basis for the metric
on sets of strings represented as binary automaton trees and given by Equation 4.4, the

metric 7 on traces can form the basis for a me*  .a sets of traces represented as trees.




Consider the process ONETHIRD defined above, where
traces(ON ETHIRD) = {(),(0),(0,1),(0,1,0),(0,1,0,1),(0,1,0,1,0), ...}

Note that trace theory (299) provides a more eflicient representation for this set of traces.
Disregarding the commas between the events of a trace, and considering each trace as a
symbol string from A* (the empty trace corresponds to the empty word) without the angle
brackets, where A is the alphabet of the process, then the unary prefix operator pre f yields

the result

traces(ONETHIRD) = pref({01}*)

where

pref(X) = {t € A*|3ufue A" A tu € X]}

Since each trace can be treated as a symbol string, which is exactly the idea behind
the metric 7, then the set of traces can be treated as a set of strings that are represented
as a modification to the binary automaton tree. Just as the construction of the binary
automalon tree was based on the length ordering of an arbitrary recursive set (see the
discussion following Theorem IV.26), the construction of a tree representation for the set
of traces requires that the set of traces be ordered by trace length. Before presenting
the following theorem establishing that such sets can be length ordered, some additional
notation must be defined. Note that since any finite alphabet can be represented with just

the two symbol alphabet ©

2 = {0,1)

then all of the following results apply to processes and traces defined over this alphabet.

Definition IV.34 Given a function I thal maps processes lo processes, then

pX.F(X)
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denotes the process (if it exists) that is the solution to the recursive equalion

Further, if F is of the form
F(X)=(z - G(X))

where x is an event from the alphabet of the process, and G is a function that maps proccsses

to processes (and could also be a function of x), then F is guarded.

For example, the process ONETIIIRD can be denoted as

ONETHIRD = pX.(0 = (1 = X))

Definition 1V.34 yields the following theorem.

Theorem IV.35 Given the recursively defined process denoted by

such that P(X) is a guarded expression, then the set

traces(pX.F(X))

can be well ordered by lrace length.

Proof: Denote the process by P, that is

P=puX.F(X)

Since for any process its set of traces contains the empty trace, which with Jength

zero is the shortest trace, then the empty trace is the first element in the set of length




ordered traces for P. Denote the guarded expression J'(X) by
P(X) = (2 = G(X))

This implies that the next trace in the length ordering is (given that x comes before

any other trace of the same length)

There are only three possibilities for G(X), either it is recursively defined in terms
of F, it is recursively defined independently of F, or it terminates (see Chapter 1
of Hoare (165)). If G terminates, then the finite number of traces generated can
be length ordered. If G is recursively defined independently of F' then the count-
able number of traces generated can be length ordered, since these traces form by
definition a recursive set (although not explicitly stated in Iloare’s book, this thesis
assumes, as it seems that Ioare did, that the definition of such a G must be a total
recursive function). If G is recursively defined in terms of I, then the trace genera-
tion process can be continued with the base case for G' determining the next trace,
and then the recursive definition generating the next trace from the definition (which

is based on a guarded expression) for I".

Continuing in this manner the successive generation of traces can be continued indef-
initely, with any arbitrary provision for ordering traces of the same length (of which

there can only be a finite number for any given finite length). b |

Hoare’s develop: ent of recursiv:ly defined processes actually implies that the process
defined by

rX.F(X)

is a total recursive function, and so generates a set of all possible traces that is a recursive
set. Although this alone would have proved the theorem, the given proof demonstrates the
relationship between the process as defined by F', and the type of the functivn denoted by
G (which to prove the theorem need only be total recursive). Since Theorem IV.35 forms

the basis for the following metiic on the space of those processes whose definitions satisfy
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the requirements of the theorem, then the metric is only valid for deterministic processes
(at this point), since the constraints on the process definition given in Theorem IV.35 are

those for deterministic processes from lloare’s book (165).

Given the alphabet I, the technique used to construct the binary automaton tree
of Section 4.2 can be used to construct a binary trace tree from any given deterministic
process. The primary difference between the binary trace tree and the binary automaton
tree is that the nodes marked with a ‘4’ in the binary trace tree designate traces that are
actually generated by the process, while the other nodes are included to simply populate
each level and standardize the graphical representation of the tree. Figure 4.9 depicts
the first three levels of the binary trace tree constructed from the process defined by
ONETHIRD above. Note that this particular tree can be completely represented with
a finite number of levels since the process ONETIIRD is defined recursively in terms of
itself, which means that every trace longer than some fixed length must ‘return’ to the
root node. The node on the third level labelled ‘(0,1)" could have its output arc labelled
with ‘0’ return to the root node, since any trace generated by ONETHIRD that passes
thru this node could be considered as starting over again from the root node. The other
nodes on the third level never lead to traces generated by ONETIIIRD, so they can be
terminated at this level also. But this termination technique cannot be used in the formal
definition of the binary trace tree, since it it was, the binary trace trees for the processes
ONETHIRD-and OT would be different, whereas Corollary IV.38 (to follow) requires that
they be identical. Note that every process generates the empty trace, so that every binary

trace tree will have the root node (the empty trace) labeled with a ‘+°.
Definition IV.36 Given the alphabel
£={0,1}

and any process P defined over this alphabet in the formulation given by Theorcm 1V.35,

the binary trace tree corresponding lo P is a binary lrec such *hal the paths represent
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Figure 4.9. Partial Binary Trace Tree Representing ONETHIRD

elements of £*, and those paths corresponding to the elements of
traces(P)
contain nodes differentiaicd from those nodcs that arc not conlainced in such paths.

Thus for a given process, each path in the binary tree that represents the binary trace tree
corresponds to an element of £*, since the concatentation of the symbols (0 or 1) on the
arcs constituting the path forms a symbol string from I~. And if all of the nodes on a
given path are clements of the ‘differentiated” set, then the symbol string from this path
represents the sequence of events mahing up vne of the possible traces that can be generated
by the process. The empty word A represents the empty trace (), and corresponds to the
root node of the binary trace tree. As shown in Figure 1.9, the differentiation of the nodes
contained in the paths representing traces thal can be generated by the process is by
marking these nodes with a *4+'. The ordering of the traces of equal length (here chosen as

the natural lexicographic ordering) determines uniquely the actual graphical representation
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of the binary trace tree, in that this ordering gives the sequence of the nodes from left to

right on any given level.

Following the development of the metric given by Equation 4.4 for binary automa-
ton trees, the next theorem gives a metric for binary trace trees, and thus a metric for

deterministic processes.

Theorem IV.37 Given the set of all processcs defined by recursive formulas of the form
rX.F(X)

such that F(X) is a guarded expression, then the funclion dy, given by Equation 4.4 is a

melric for the set of all binary trace trees corresponding to these processes.

Proof: That d, is a metric for the set of all binary trace trees follows from the proof
that it is a metric for the set of all binary automaton trees, since the only difference
between the two types of trees is the marking convention for the nodes. The theorem
then follows from the existence of the constructive technique used to generate unique
binary trace trees from any given deterministic process, plus the fact that for any
process . the set

traces(P)

contains only traces of finite length, and this set can be put into a one-to-one corre-

spondence with the set 5=. I8

Corollary IV.38 Givcn the class of all processcs that salisfy the requivements from The-

orem IV.37, such that for any two processes P and @
P = Q < traces(P) = iraces(Q)
then the funclion whosc demain is the cross product of this class with ilsclf. given by

d(P,Q) = du( P, Q)
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where P and § are the binary trace trees constructed from the sels traccs(P) andtraces(Q)

respectively, is a metric for this class.

Proof: Given any deterministic process P, the set

traces(P)

is uniquely determined, thus uniquley determining the associated binary trace tree.
This implies that two binary trace trees are equal if and only if the corresponding

sets of all process traces are equal. Thus
dp(P,Q) =10

implies that

P=Q

under the class definition of the processes comprising the domain of d,. |
Tigure 4.10 depicts the first three levels of the binary trace tree generated by the process
ONESEVENTH = pX.(0 — (0 — (1 ~ X)))

Just as ONETHIRD in a sense produced the binary expansion for the number 1/3, ONE-
SEVENTIH generates the binary expansion for the number 1/7. Comparing the binary

trace tree for ONESEVENTII to that for ONETHIRD (Tigure 4.9), yields
d(ONETHIRD,ONESEVENTH) = 1/4

since the two trees are identical up to the second level, but not at the third.

The equality definition given in Corollary 1V.38 for processes circumvents the prob-

lem manifested in the previous observation that both of the processes ONETHIRD and

OT generate the same binary trace trees, but the two processes do not have identical for-




—

Figure 4.10. Partial Binary Trace Tree Representing ONESEVENTII

mulations. Thus the equality used here is not dependent upon formulation, but only upon

behaviour.

Once the metric space of the class of processes and the metric d;, from Corollary IV.38
is established, the two primary results concerning deterministic processes from Hoare’s
book can be proven using the standard topological tools of complete metric spaces. Before
proceeding with these derivations, the following definition and theorem are needed to
demonstrate that the CSP definition of continuity of functions is equivalent to the standaid
metric space based definition. The particular wording of this definition and theorem is from
Apostol’s book (8). The primary reason for deriving Corollary 1V.38 is lo establish the
existence of a meuric space for determinsitic processes that can be used in conjunction with

the definition and theorem.

Definition IV.39 Lel (5,ds) and (T, dr) be metric spaces and et

f:5=T
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be a function from S to T. The function [ is said to be continuous at a poinl p in S if for

every ¢ > 0 there is a 6 > 0 such that

dr(f(z), f(p)) < ¢  whenever ds(z,p) < 6.
If f is contlinuous-al every point of 1 subsel A of S, we say f is continuous on A.

The following theorem, based on this definition, actually seives as an equivalent definition

of continuity which is used in the remainder of this section.

Theorem IV.40 Let
f:5=T

be a function from one metric space (5,ds) to another (T',dr), and assume p € §. Then
[ is conlinuous al p if, and only if, for every sequence {z,} in S convergent lo p, the

sequence {f(z,)} in T converges to f(p); in symbols,
Jim, f(e) = £ (Jim, )
This next definition presents the CSP definition of continuity (165).

Definition IV.41 A function F from onc scl of all processes with a given alphabet into

another set of all processes with a given alphabel is continuous if

F(L| P) = || F(P) if {Pli > 0} is a chain
i>0 i20
Section 2.8.2 of Hoare's book presents the bachground and explanation of symbology used
in this definition. Although Hoare's formal definition uses complete partial orders instead
of sets of processes, any set of all processes with a given alphabet does form a complete
partial order, so this wording is used in Definition IV.11 since the other results are based
on such sets of processes. The next theorem equates these two definitions of continuity

within the metric space defined by Corollary IV.38.
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Theorem IV.42 Let M denolc the metric space given in Corollary IV.38. then a function
F,

is conlinuous with respecl to Theorcm IV.40 if and only if it is conlinuous with respecl lo

Definition I1V.}1.

Proof: The first step is to show that any chain of processes is also a Cauchy sequence

with respect to the metric space given in Corollary 1V.38. Consider the chain
{PO: Ph "':Pn: ---}

then

n < m = traces(P,) C traces(P)

Since any finite sequence is Cauchy (that converges to the last element in the se-

quence), only infinite sequences need be considered. If
a= llp(Po, P])

and

a=1/2*

then

i>l=d(P.P)<a

and each P, has a trace of length & or greater (by definition of a chain). Either there
exists a finite I such that

i> == dg{l. P) =0

which implies that the chain is & Ceuchy sequence that converges to /3 or elve there
doesn’t. in which case the Iugths of the traces mnst continually inerease (sinee for
any given level there is only a finite number of wodes). Sinece the trives continue to

get longer. and earch trace remains in the processes that acenr “Edor” in the chain.



then for any natural number I, there exists another natural number N such that
(> NAm > N) = dp(Ly, Pp) < 1/2"
Since for any positive real number ¢ there exists a natural number N such that
1/2V < ¢
then for any positive real number ¢ there exists a natural nuxber N such that
(n>NAm>N)=>dp(Py, P )< ¢ (4.12)

and the-chain forms a Cauchy sequence.

The next step is to show that any chain with a Jeast upper Lound is convergent, such
that the limit of the chain is the limit of the Cauchy sequence formed by the chain.

Let Py denote the limit of the chain (as defined by Ioare), then

traces(Py) = U lraces(Ps)
i>0
Since the limit of the Cauchy sequence inust be a process that contains all of the
traces of those processes whose indices are greater than N for a given ¢ (see Equation
4.12), then for any chain the limit of the Cauchy sequence must contain all of the

traces for all of the processes, and thus this lunit is exactly that process Jenoted by

Poo.

Given that any chain with a lisnit is a convergent sequence, then this theorem can

be proved by showing that two conclusions follow.

1. If I distributes across all convergent sequences then F* distributes across all chains

with iimits (this shows that Theorem IV.40 implies Definition 1V.41).

2. If I’ distributes across all chains with limits then F distributes across all convergent

sequences (this shows that Definition 1V.41 implies Theoremn 1V.40).
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The first item is a consequent of the fact that any chain with a limit is also a

convergent sequence, thus the final step is to prove the second item.

Consider the convergent sequence of processes given by

{QO’QI,'"}

Form a chain of processes from this sequence in the following manner. Let Ny be the
minimum N such that Equation 4.12 holds for ¢ = 1/2. Then let N3 be the minimum
N such that the equation holds for ¢ = 1/4. Continue this process such that N, is

the minimum N such that Equation 4.12 holds for ¢ = 1/2¢. The resulting sequence

{QN; ) QNza }

has the property that

, traces(Qpn;) C traces(Qn,,,)

for any natural number ¢, which makes this sequence a chain. Since the sequence has

a limit Qq, the chain also has the same limit, because

s € lraces(Qn,) = s € Qo

and

Iim Qn, = Qoo
[Zudee]

since only a finite number of the clements from the original convergent sequence can
be missing from the chain. Additionally, since only a finite number of the processes
from the original convergent sequence can be missing from the constructed chain.
then if I” distributes over the resultant chain it must also dictribute over the original
sequence. Thus distribution over all possible chains with limits implies distribution

over all possible convergent sequences.

A consequent of Theorem IV.12 s that the basic fixed point theorem for deterministic

CSP processes (see Section 2.8.2 of (165) for the actual proof) can be proven using the
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metric space based definition of coutinuous functions instead of the chain based definition.

This theorem states that

pX.F(X) = P(pX.F(X)) (4.13)

which means that a recursively defined deterministic process (based on I" guarded) has a
solution that satisfies the recursive formulation. Additionally, by using the metric space
continuity definition, Theorem IV.40 implies that a continuous function need not neces-
sarily have a complete metric space for either the domain or the codomain. Contrast this
with the chain based definition which requires that both the domain and the codomain be

complete partial orders (which correspond tv complete metric spaces based oun the metric
dp).

The second major result regarding determinsitic processes is that for F a constructive

function that maps processes to-processes, the equation
X = P(X)

has a unique solution for X, given the following definition of a constructive function. In
the following definition the | denotes the CSP restriction operator, so that s | A, wluch

represents the trace s restricted to the set A, is defined by
(a,b,¢,d) 1 {d, b} = (b, d)

Definition IV.43 A function I’ whose domain and codomain arc a sct of processes is

constructive, if F is monolonic with respect lo the partial order that defines chains, and
FX)T(n+D)=F(X |n)](n+1) (4.14)
Jor all processes X

This unique solution result for processes defined in terms of constructive functions can also
be obtained using the contraction mapping thcorem for complete metric spaces, based on

the following preliminary definition and results.
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Definition IV.44 Given the metric space (X.d), then the function f,
f:X—-X

is a contraction, or a contraction mapping, if there exists a real number ¢,
0<ex1

such that

2,y € X = d(f(z), f(y)) < cd(z,y)

The function [ is nonexpansive if
2,y € X = d(f(z), [(y)) £ d(=,y)

Since the contraction mapping theorem requires contiactions whose domain and codomain

are the same complete metric space, the next theorem supplies such a complete metric

space.

Theorem IV.45 The metric space defined in Corollary 1V.38 is complete.
Proof: Consider the following Cauchy sequence
{Po, P1,...}

For any natural number & (not zero), there exists another natural number N, which

is the least natural number such that
n,m > N = dp( Py, Pn) £ 1/2"'

This implies that all traces of length Lk or Jess that are generated by P, are also

generated by B,,. Now consider the set formed by including these traces of length &

4-69




or less for every such k. This set, which can be length ordered by considering

and is denoted by @), satisfies the property that for every positive real number &,

there exists a natural number M, such that
n> M= dp(P,,) < 6

where P, is the binary trace tree correspondirg to P,, and Q is the binary trace
tree formed from the traces contained in the length ordered set Q. Thus the set @
represents those processes (which are all equal to one another within the class defined
by Corollary 1V.38) which are the limit point of the Cauchy sequence. Since @ can be
length ordered by a Turing machine, then @) is a recursive set that can be generated
by a (deterministic) recursive process. Additionally, since any finite representation
of the Cauchy sequence must be formulated in terms of a guarded expression (since
every element of the sequence is either a guarded recursive expression or a finite
representation), then the set ¢ can only be formulated by a guarded recursive (or

finite) expression, and the limit point is an element of the metric space. ||

An interesting implication of the combination of this proof that «} is a recursive set gen-

erated by a Cauchy sequence within a complete metric space, and Corollary 1V.30, is the

following.

Corollary IV.46 I'herc ezisls an injeclive lolal function whose domuin is thc melric
space of delerministic CSP processes defined by Corollary V.38, and whose codomain is

the Turing compulable complction of the melric space of finilc automata defined in Theoren

1V.26.

Proof: The existence of such a one-to-one correspondence is based on the existence of
a one-to-one correspondence between the metric space of finitec automata given by

Theorem IV.26 and the metric space of regular sets given by Theorem 1V.29 (see
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the proof of Theorem 1V.29), along with the statement from Theorem [V.29 that
a recursive set is the limit point of a Cauchy sequence of regular sets. Since a
deterministic CSP process corresponds to a recursive set of traces for the process,
then the process can be represented as the limit point of a Cauchy sequence of finite

automata that correspond to the regular sets. N

This corollary implies that every deterministic CSP process can be put into a one-to-one
correspondence with the limit point of a Cauchy sequence of finite automata, which follows
from the recursive nature of the sets of traces generated by deterministic CSP processes.
Thus in some sense, deterministic CSP processes are not as ‘powerful’ as Turing machines.

As shown in later paragraphs, this doe. ..ot hold true for nondeterministic CSP processes.

The final preliminary result is to show that the CSP concept of a constructive function
from processes to processes is equivalent to that of a contraction mapping over the metric

space of Corollary I1V.38.

Theorem IV.47 A function I’ whosec domain and codomain arc the class of processcs
given in Corollary 1V.38 is constructive if and-only if I is a contraction over the melric

space given by Corollary IV.38.

Proof: Only if proof:

For arbitrary processes X and Y,
(X, ¥) =1/ = X Thk=Y 1k

which implies that

F(XTE)=FY k)

and that
FIX1E T (k+ D) =FY i1 (k+1)

Since I is constructive, then by definition (see Equation 4.1:4)
FIXITk+D=FY) 1 (k+1)
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and so

GUX), F(Y)) S 124 < (1/2)d,(X,Y)

If proof:

(The CSP convention is for n > 0 in P T n, while the metric d,, is based on the

convention that n > 1) For arbitrary £,
dX, X 1k)=1/2"
so that if I" is a contraction, then
dF(X), P(X 1 k) < a(1/2%)
Since a must be strictly less than 1, then
AFP(X), F(X T k) < 1/28

which implies that

FX)T(k+1)=FXT1E)T(R+1)

With these preliminary results, what Hoare calls the ‘fundamental theorem’ of de-

terministic processes (see Section 2.8.3 of (165)), that
X = F(X)

has a unigne solution for a constructive I, can be reworded as the contraction mapping
theorem, a major topological result. This particular wordirg for the contraction mapping

theorem is from Naylor and Sell (256).

Theorem IV.48 (Contraction Mapping Theorem) Let (X,d) be a complele melric
spacc and let

f . /Y

4-72




be a contraction. Then there is one and only one point g in X such that
zo = f(%o)
Morcover, if z is any point in X and =, is defined inductively by
z = f(z)
zg = f(21)
Tn = f(Tn-1)

then

Ty — Tg ST — OO

Theorem IV.49 The fundamental thcorem of detcrminislic processcs fromm CSP is equiv-

alent to the contraction mapping theorem.

Proof: Compare the wording of the contraction mapping theorem with the fundamental

theorem from Hoare (165). The previous results complete the proof. E

The application to CSP processes of the second part of the contraction mapping

theorem (compare to the Recursion Theorem of Kleene (192)), which states that the unique

fixed point associated with the contractive I can be found by inductively applying F to any

initial element (process), can be domonstrated using the process ONETHIRD. Consider

that the definition of ONETIHIRD uses the function F, such that
F(X)=(0=(1— X))
To show that I' is contractive, consider that if

dy( X, Y ) = 1/2F




then

dp(F(X), F(Y)) = 1/2"+?

and in general

G(F(X), F(Y)) = (1/4)dy(X,Y)

So the contraction mapping theorem states that with any arbitrary choice of a process X,
repeated application of I’ to this process yields that single unique process that is the fixed

point for F. Thus if

Xy = F(X) = (0 (1= X))
Xp = FF(X)) = (0= (1 = (0 = (1 = X))))

then as n becomes arbitrarily large, X, becomes arbitrarily ‘close’ to the process ONETIHIRD,

such that

lim X, =ONETHIRD

N—=e s

Note that this is true even if the process X is recursive, wiich means that X can produce
traces of unbounded length. For any arbitrary positive real number ¢, there exists a natural

number k such that

1/45 < ¢

and so

d(X1 X) < ¢

Just as a constructive function is equivalent lo a contraction mapping, the nonex-
pansive function defined in Definition 1V.4 js equivalent to the CSP concept of a nonde-

structive function. a function that satisfies
FiPyin=F(Pln)|nforallnand P 1
|

Theorem IV.50 A function I’ whosc domain and codomain arc the class of processes

given in Corollary IV..38 is nondcstructive if and only if F is nonexpansive over the melric




space given by Corollary 1V.38.
Proof: T'ollows the reasoning for the proof of Theorem IV.47, with the difference that
dp(X, X 1) = 1/2*
implies that if I is contractive, then the < in
d(F(X), F(X T k) < 1/2F

implies that only

F(X)Tk=FX1k)Tk

can be stated. |l

Another consequent of the topological analysis of CSP processes is that results from
topology can be translated into their CSP equivalents. For example, since any contraction

is also uniformly continuous (256), the following theorem could be added to Hoare’s book.

Theorem IV.51 If I is a conslructlive funclion over a complete partial order, then I is

continuous.

Further, the requirement that a constructive function be monotonic is redundant, since
the equivalency between contractive and constructive functions shown in Theorem IV.47

did not require the monotonicity property.




4.4 A Complete Melric Space Based on UNITY

The last section demonstrated that the process based CSP model of computation
can be used to develop a complete metric space, such that the metric gives a somewhat
intuitive notion of the ‘closeness’ between two programs, where a program is defined as
one or more processes (see Definition 1I.5). The purpose of this section is to show that an
imperative shared variable model for computation, Chandy and Misra's UNITY (64), can
be mapped into an equivalent process based CSP representation. Unfortunately, CSP is
based on the nonsimultaneous execution of atomic events, whereas UNITY has an assign-
ment component operator ||, that denotes the simultaneous execution of the two argument
components. There are two ways to address this disparity, one being the restructuring
of the analysis of a UNITY program so that atomic actions include multiple assignment
components, and the other being a modification to the UNITY execution model to prevent
the simultaneous exccution of assignment components. This section presents approaches
utilizing both techniques, along with additional formalism regarding what is meant by an
atomic action. Both approaches are used to develop metiic spaces of UNITY programs

based on the netric space of CSP processes from the last section.

Definition IV.54 gives a modified UNITY execution model that eliminates the si-
multaneous execution problem, called the standard czecution model. With both execution
models defined (Chandy and Misra define the UNITY execution model (G4)), Definition
IV.57 presents the formalism regarding atomic actions within the UNITY execution model,
while Definition 1V.56 formalizes exactly what pieces of a UNITY program should be con-
sidered atomic with respect to this standard execution modci. These definitions form the
basis for the primary results of this section. which are equivalences between UNITY pro-
grams and CSP programs that can be used Lo define a metric space of UNITY programs

under either execution model.

Since the definition of “equivalent” from Chapter I (Definiticn 11.9) depends upon a
reference function, *his section will present equivalence inducing mappings that are defined
with respect to the identity function on states. Thus the mput program to these mappings
is called “equivalent’ to the image (under the mapping) without explicit reference to this

identity function. This implies that given two UNITY programs. application of such a




mapping permits the use of the 1aetric dp, fiom Section 4.3, thus giving an intuitive measure
of the ‘closeness’ of the UNITY programs. The resulting metric space of UNITY programs
provides the framework for the topological analysis of UNITY programs, and also leads to
the investigation into whether this space is complete without having to add objects that
are not UNITY programs (just as Section 4.2 showed that completing the metric space of

finite automata required ‘machines’ that are not finite automata).

Although Corollary 1V.65 concludes the material regarding the metric space of UNITY
programs, this section contains additional material relating the UNITY weak fair choice
operator on statements to the CSP concurrency operator on processes, culminating with
Theorem IV.71. This additional material appears here because of the close analogy be-
tween Theorem IV.71 and Lemma IV.63, a result which is needed for the proof of Corollary

IV.65. Theorem IV.71 also establishes the transition into Chapter VL

Although this modified execution model for UNITY, called the standard execution
model, is different from the UNITY execution model of Chandy and Misra (64), all of
the reasoning techniques presented for UNITY can still be applied to the standard model.
This is because any assignments that would yield different results if executed sequentially,
instead of simultaneously, can be rewritten as a single assignment component, and thus

still executed simultancously.

Before examining the first mapping of UNITY to CSP, the CSP process to process
operators for choicc, denoted by |, and for concurrency, denoted by ||, need eplaining. If
z and g denote events (or possibly event variables) such that x £ y, and P and @ denote
processes, then the notation

(x — Ply— Q) (4.15)

represents the process that either performs r followed by the events of P, or else performs
y followed by the events of Q. The choice is deterministic, based on Hoare’s definition of
deterministic given at the beginnning of Section 1.3. Although the traditional definition
of deterministic implies that there exists a Turing machine whose input is a description of
both processes {i.e. the process {x — I’) and the pracess (g — Q). along with possibly

other input infoimation. and whose output is exactly one of these processes, the definition




of deterministic here jis based on the concept of weak fairness (see Definition I.1). The
factors that influence the choice are typicaily either some input from another process (such
as a ‘user’), or environmental effects such as the details of the hardware that the process
might be running on. In the general case, where the choice of the first event can be made
from those elements constituting a set, there is the notation for a general choice operator
given by

(z2: A= R(2)) (4.16)

This process permits the deterministic choice of an instantiation for z from the set A as the
first event, while the remaining events are given by the formulation R(z). For the choice

given by Equation 4.15,

A= {z,y}
and
P ifz=12
R(z)=
) ifz=y

If the set A from Equation 4.16 is empty, then the resultant process is the one which
performs no events, that is

(z:{} — R(z))=STOP {(4.17)

The general choice operator can be used to define the concurrency operator. as given

by

(PlQ) = (z: C — PYIQ) (4.18)
where

P={x:A~—Plx)p

Q=(y:B—Qiy))
aml

C=AnRBU(d - alONUB —-aP))




such that a{ P} denotes the set of all possible events of I, called the alphabet of P (likewise
for @), and

. Plzj ifze A
P=
P otherwise

and [
. 1 Q(z) ifze B
Q=

Q otherwise

The || operator is both commutative and associative, which, along with Equation 4.18

implies the following:

(e = Pllitc — Q) = (c =1 PIIQ)) if a(P) = a(Q)
(c~ P)j{d— Q)= S5STOP ifa(P)=a(Q)and c# d

Thus whenever P and Q have identica. a*phabets.
traces(Pl|Q) = traces( P) Niraces{(Q) if a{ P) = a(Q)
In the more general case. which can be stated by
al{P) # alQ)
and

a & (a{ P) = (e Py 1c(Q)))
bhe{alQ) ~ (al Py a{Q)})
ce{al P)r1alQ)

d & {a(P)r1a{Q)

it follows from Equation -LIN that

{a — Pifiic - Q)= (a—(Plliir — Q1)
te — Pyt — QY= (h — (e — QN




(¢ = P)|(b = @) = ((a = (PlI(b — QNI(b = ((« = P)IIQ)))

and
traces(PY|Q) = {t|t | a(P) € traces(P) AL T a(Q) € traces(Q) At € (a(P) U a(Q))*}

Given two processes I and @, the notation PJ|Q represents a process whose traces
are Lhe interleavings of the individual traces of P and @, with the constraint that whenever
any event common to both alphabets uccurs, it occurs for both processes (instead of being
repeated). Thus these common events from both alphabets represent events that occur
simultancously within both processes (the interpretation being that these simultaneous
events are the same event), and these common events synchronize the two processes at the

instant of time they occur.

UNITY programs consist of assigninent statements along with the fair choice oper-
ator on statements, and assignment components along with the composition operator on
components. The symbol || will be used here for the composition operator, which is the
same one used in Chandy and Misra's book, but instead of their symbol for fair choice the
one used here is the |. Since, as Chandy and Misra state, the always section of a UNITY
program is unnecessary, it will not be considered in the following analysis (64). And since
the initially section consists of a prope~ set of assignments (see Chapter 2 of Chandy and
Misra’s book for a definition of proper), the following theorems regaiding assignments also
apply to those of the initially section. Note that UNITY requires the set of statements in
a given program to remain unchanged by the execution of the program (See Section 22.7.4
of Chandy and Misra), so that the proofs of the following theorems do not need to consides
sets of ordered n-tuples of events that change v.ith time, a concept which is expressed in

the following lemma.

Lemma IV.52 There exists a lolal funclion [ whose domain is the sel of all UNITY
stalements, such that for any UNITY statcment S, the cvaluation f(S) is a uniquc finitc

set of n-tuples of events.

Proof: Sce Section 22.7.4 of Chandy and Misra (64). K
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This lemma states that for any UNITY statement there exists a mapping of that statement
into a set of sequences of events. Since the assignment components of a UNITY program are
considered to execute simultaneously (64), whereas the definition of ‘event’ from Chapter I
does not permit true simultaneity, these sequences of events represent the different possible
execution sequences for the assignment components assuming that these assignments must
execute sequentially. Tor a finite number of assignment components, which is mandated
by the UNITY model, there will only exist a finite number of these possible execution

sequences, or interleavings.

The first step is to show that the basic unit of an assignment component, represented

by
var 1= expr (4.19)

where var denotes a variable and capr denotes an expression, can be mapped into an

equivalent CSP process.

Lemma IV.53 The UNITY assignment denoted by Equation 4.19 can be mapped by «
total funclion f into an equivalent (see Definition I11.9) CSP process.

Proof: Define the state of a UNITY program as a vector representing the values of all
program variabl-s, of which there can only be a finite number. If the assignment of
Equation 4.19 is considered an event, then there exists a total function that maps an
event of this type into a unique state, given the previous state (before this event).
Section 3.3 of Chandy and Misra details the UNITY program execution model that
supports this claim. Thus the equivalent CSP process is one whose only nontrivial
trace is

{es V)

where / denotes the CSP termination event, and ¢ denotes the event that generates

the identical state as does the UNITY assignment.

The development of a metric space of UNITY programs based on the UNITY ex-

ecution model (see Chapters 2 and 3 from Chandy and Misra (61)), is intermixed with
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the development of a metric space of UNITY programs based on the modified execution
model. Many of the following results (the wordings specify which ones) actually apply to
both execution models and both metric spaces. This is because the primary difference be-
tween the two execution models is the difference between what an atomic action is in each
model. Before presenting the two definitions of the atomic actions, the following definition
and theorem define the modified execution model and present an important consequent of

the definition.

The basic tenet of this modified execution model is the resolution of the conflict be-
tween the nonsimultaneous property of events (which CSP assumes), and the simultaneous
execution of assignment components in the UNITY execution model. This next definition
presents the idea of a modified UNITY execution model, such that no two assignment

components can occur simultaneously.

Definition IV.54 Given lwo UNITY assignments S1 and 52, bolh of the form given in

Fquation 4.19, then under the standard execution model the UNITY process
51|52

denotes thal the two assignments can execulc in either orvder.

Unless otherwise stated, the remainder of thi. section assumes the standard execution

model.

Although this standard execution model for UNITY programs is different than the
one given by Chandy and Misra (64), is it useful? There is more than one answer to this

question, but one of the answers is stated in the following theorem.

Theorem IV.55 The set of all UNIT'Y programs that execute under the UNITY ezeculion
model is « proper subset of the set of all UNITY programs thal czccute under the standard

execulion model.

Proof: Since Definition I'V.54 implies that any UNITY program that executes under the

UNITY execution mode] also executes under the standard model, then what must
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be shown js the existence of at least one UNITY program that cannot execute under

the UNITY model, but can execute under the standard model. One such program is

given by:
Program E
declare
X : integer
initially
x=M
assign
x:=x+1 | x = x1
end
E

Not only does program E execute under the standard model, but it has a fixed point, which
is that x equals its initial value. So program E demonstrates that there are syntactically
correct UNITY programs that do not even execute under UNITY, but can execute and
also have a fixed point under the standard execution model. It is true that program E
could be rewritten as two statements so that it would generate the same sequence of states
as does program E, that is it would contain
x=x+lifx=Mlorx=M|x=xlifx=M+lorx=M

but this modified program would not have a fixed point.

This simple example demonstrates the major difference between the UNITY exe-
cution model and the standard execution model. Under UNITY, forced sequencing of
assignments cannot be achieved within a single statement. This means that the only tech-
nique to force two or more assignments to exccute sequeatially is to move the assignments
into separate statements. Ilowever, this poses two problems. Tirst, fixed point analysis is
based on statements, and second, the guidelines for mapping UNITY programs to different
architectures often call for partitioning the statements among the processors. This can
cause problems if the sequentially executing assignnents end up on different processors,
mainly because of the possible lack of control over the sequencing, and problems with vari-

ables that are common to the multiple assignments. The standard execution model can
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help remedy these problems, because it is based on the concept of a ‘hierarchy of arbitrary
sequential execution’, that is the execution model at the assignment component level is

very similar to that at the statement level.

The concept of simultaneous assignments still exists within the standard execution

model. Consider assignments of the form

Xy = M,N
which under both models executes both individual assignments at the same time. The
philosophy of the standard model is that this assignment can be represented as a single
atomic action within the CSP model. This action corresponds to the assignment of the
new values to the state vector (a vector denoting all the values of the named program
variables). The obvious question then, is what exactly is an atomic action? For example,
the UNITY fragment

xlocky := f(x,y),false if locky || requesty := true if ~locky
can be rewritten as

x,locky,requesty := x+(f(x,y)-x)locky,false,1-locky
with the change of type of requesty and locky from boolean to [0,1]. Thus the following

definition.

Definition IV.56 Within the standard czecution model, an atomic action (for CSP

purposes) corresponds to a single assignment component.
And this next definition defines the atomic action for the UNITY execution model.

Definition IV.57 Within the UNITY ezeculion model, an atomic action (for CSP pur-

poses) corresponds lo a single assignment slatement.

Thus under each model, an atomic action represents one or mose variable assignmnents that

occur simultancously.

Can the atomic actions under one execution model be mapped into atomic actions in
the other, while still retaining the program properties? As seen in Theorem IV.55, there
exists UNITY programs that execute under the standard execution model that do not

(withont modification) execute under the UNITY execution model. So the answer for the
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mapping from standard execution to UNITY execution models is that such a mapping, if it
exists, can be a function of the program to be mapped. This means that few generalizations

can be made about such a mapping. However, for the mapping in the other direction, the

following result can be shown.

Theorem IV.58 Given a UNITY program P that executes under the UNITY model, and a
set S whosc elements are the (predicates) properties of P, then there exists another UNITY

program Q that cxccules under the standard modcl, such that cach clemert of S is @ property

of Q.

Proof: The UNITY execution model (Chapters 2 and 3 of Chandy and Misra (64) requires
that simultaneous execution of assignment components within a single statement gen-
erates a unique state veclor, given a unique state vector prior to the execution. This
means that the program P can be mapped into the program Q, so that each state-
ment of P corresponds to a statement in Q consisting of one assignment component
that assigns values to the state vector. The proof of Theorem IV.61 contains the

details substantiating the implications of the UNITY execution model. |

An intuitive proof for this theorem is that since the program P can only compute a partjal
recursive function (217), then this function can be rewritten as an algorithm than uses
only sequential composition (120, 230, 258). Thus the program Q can be written without
multiple simultancous atomic actions (corresponding to the mutiple assignment compo-
nents). This tact is not used in the proof because the standard theorems about what is
necessary to compute any algorithm or function utilize fixed sequential execution. instead

of the arbitrary sequential composition allowed under the standard exccution model.

Another answer to the question of the usefulness of the standard execution model fol-
lows from considering the relationship between Dijkstra’s guarded commands (104), which
form the basis for parallel programming models and languages such as 'SP (165). Dis-
tributed Processes (130), and UNITY. The exccution model for these guarded commands
states thal a construct of the form

Hguardl — command] [} guard2 -~ commandz]
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will randomly (with the fair choice assumption, see Chapter 1) choose to execute the com-
mand whose guard is {rue until all guards evaluate to false. Thus the UNITY execution
model for a program consisting of the two statements

s|t
corresponds to

*true — s ] true — ]

in the guarded command syntax.

Consider the guarded structure

guardl — commandl [] guard2 — command?2}
whose execution is one random choice of any command with a {ruc guard. This corre-
sponds to the UNITY construct

s1if bl | s2if h2
where bl (b2) is true if guardl (guard2) is {ruc, but once either bl or b2 evaluates to true
then the other immediately becomes permanently falsc. Additionally, the statements s1
and s2 perform whatever assignments commandl and command2 do, plus any additional
assignments to implement the requirements on bl and b2. As an example, consider

x2y—2z:=1{]x<Ly—~2:=2
which will assign either a 1 or a 2 to z, deterministically if x is not equal to y, or arbitrarily
if they are equal. A corresponding UNITY program is

z.flag := Lfalse if x > v A flag | z,flag := 2,false if x < y A flag
where the boolean variable ‘flag’ is initialized to “true’. However, note that this correspon-
dence is not as strong as in the previous example. This is because in the guarded construct
there is a sense of locality in evaluating the guards, that is, no other statements external
to those between the [ and the ] can affect the truth or falsity of cach guard. Howoever,
in the UNITY program if there are other statements besides these two then this locality
concepl can be violated. Such a violation would occur if the variable flag” were somehow
assigned a value in another statement in the UNITY program that could execute after one
of these two statements but before the other. The standard execution model though. does
provide a corresponding UNITY program that preserves this locality. This program is

zflag := 1false if x > v A flag || zflag := 2.false if x < v A flag
4 5 A
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This program retains the locality concept because these two components will execute in
immediate succession, and the idea of a random choice is preserved because the sequencing
of the components is arbitrary. Note that this program couid not even execute under the

UNITY model because of the possibility of simultaneously assigning both 1 and 2 to z.

A direct result of Lemma IV.53 and Definitions IV.54 and IV.56 is that a sequence
of UNITY assignments corresponding to multiple atomic actions within one statement,

under the standard execution model, can also be mapped into an equivalent CSP process.

Corollary IV.59 Given two UNITY assignments S1 and §2, both of the form given in

Equation 4.19-and cxccuting under the standard execution model, then the UNITY process
S1)|52

is equivalent to the CSP process

P1)|P2

where P1 is equivalent lo S1 and P2 is equivalent Lo §2.

Proof: This follows from Lemma JV.53 and

traces(P1) = {{), (s)}
traces(P2) = {{), (1)}

where s denotes the assignment of S1, and 1 denotes the assignment of 52, since the

definition of || implies that

traces( P1||P2) = {{).{s), {.1).(1).{L,5)}

Under the UNITY execution model a UNITY program containing the statement
x:=x-1 ] x = x4l

does not have a well defined execution. since both assigniments must occur sitmnltaneonsly.
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However, this statement is defined under the standard execution model, and is equiralent
to the process that can execute either

X:=Xx-1;x:=x+1

or

xi=x+1;x = x1
where the °;* denotes sequential composition. The corresponding result regarding the
UNITY execution model relates simultancous execution of assignment components to a

single assignment on the state variable.

Corollary IV.60 Given two UNITY assignments SI and S2. both of thc form given in

Equation .19 and executing under the UNITY czecution model, then the UNITY process
S51jj52

is equivalent lo the CSP process

P

where the only nontrivial trace of P represents a single assignment to the variable denoting

the staic for the UNITY process.

Proof: Follows directly from the definition of the UNITY cxecution model (see Chapters
2 and 3 of Chandy and Misra (64)). Since all of the assignment components within
a single statement must execute simultancously. amy individual component of the
state vector is only assigned a new value at most once. The proof of Theorem IV.61

contains the details supporting this proof. n

This next theorem is the first major consequent of the previous two lemmas and
3 1 J
Corollary IN.59 and IV.60, and supplies the foundation that leads to the primary result of

this section. Theorem IV.6.1.

Theorem IV.61 There exisls a lotal function [ whose domain is the sel of all UNITY
assignment stalements under the standard creculion model. and theore cxists a tolal function

g whose domain is the sel of all UNITY assignment statements under the UNTTY creculion
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modcl, such that given the assignment stalement S, the evaluation f(S), under the standard
model, or the evaluation g(S), under the UNITY model, is @ CSP process that is equivalent

loS.

Proof: Cnumerated assignments, quantified assignments, and quantified expressions are

treated separately.

Enumerated Assignment: Induction, along with Corollary IV.59 and 1V.60 proves

the case where (see Section 2.3.2 of Chandy and Misra (64))
variable — list := simple — expr — list

For the case of

variable — list := conditional — cxpr — list

where

conditional — ¢xpr — list == simple — cxpr ~ list if boolean — cxpr

{~ simple - expr — lisl if boolean — cxpr}

that there exists such a total function f or g follows from this statement from Chandy

and Misra:

An assignment with a condilional - cxpr — lisl causes assignment of values
from any constituent simple — expr ~ list whose associated hoolean expres-
sion is lrue. If none of the boolean expressions is {ruc, the corresponding
variable values are left unchanged. If more than one boolean expression is
truc, then all of the corresponding simplc—cxpr —lists must have the same
value; hence any one of them can be used for assignment. This guarantees
that every assignment statement is deterministic: A unique program state
results from executing an assignment in 2 given state.

In addition. if the UNITY model is to be considered as a two level model. such as
the two level lambda calcuins (258}, then these boolean expressions must evaluate to
either fruc or false at “run time’, since the UNITY /CSP equivalences are jimplicity

run time equivalences ("run’ means execution).
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Quantified Assignment: The existence of the total function f follows from the UNITY
requirement that only a finite number of instantiations exist for the quantification
(see Section 2.3.3 of Chandy and Misrz), and that a total function g must exist
whose input is the quantification and whose output is a composition of assignment
statements with all scoped variables bound. Thus the function {, when its input is
such a quantification, has as output the CSP process that is equivalent to the output
of g. Since g evaluates to an empty statement if there does not exist an instantiation,
then in this case the output of {f would be the CSP process whose only nontrivial

traceis

(V)

This CSP process, denoted by SKIP, is equivalent to the empty statement since
both, when considered as functions from the previous state to the next state, are the

identity function.

Quantified Expression: The quantified expression, of the form
cxpr ::= (op quantification expr)

can always be evaluated to 2 unique value at run time. since the quantification can
only include individual variables (over a finite domain). and if there is no evaluations

for the quantification, then this expression returns unique default values. IR

Although the ‘variables’ addressed in these results refer to the named variables in a UNITY

program, note that an implemented version of a given UNITY program may require ad-

ditional variables. Tor example. consider the single assignment statement that swaps the

values of two variables named x and y:

XV = VX

If the program variables are those associated with sn implementation on o sequential ar-

chitecture. then certainly this statement will also require at least one (the classic proof of

correctness would need two) additional temporary variable, so that the actnal execution

of this statement would b

femp 1= x




X=y

4,

y := temp

Theorem 1V.61 along with Corollary IV.59 and IV.60 supply the proof that any
UNITY statement can be mapped by a total function into an equivalent CSP process. But
in a UNITY program containing multiple statements, both the standard model and the
UNITY model generate arbitrary unbounded sequencing of statement executions, using
the fair choice operator | on statements. For example, consider the UNITY program P1
(the declare and initially sections have beea ignored):

Program P1
assign
S1]8S2
end
S1 and S2 denote arbitrary statements. One technique for mapping Pl into an equivalent
CSP description would be to map statements S1 and 52 into equivalent CSP processes.,
and then decide which CSP operator the UNITY | should be mapped into. Before stating

the result which answers this question, the following Lemma is given.
L [a)

Lemma 1V.62 Given the guarded CSP processes {sec Scetion 4.3} Pl and P2. such that

Pi and P2 have only finitc length traces. then there cxisls a unique process that salisfies
X=(PlP2X

that is, therc exisls a unique process
nN(PHP2: X

Proof: Let F denote the function whose domain and codomain are CSP processes such
that

FeXy=grnurae X

That the eodomain of F is the class of OSP procesae follows from X being o proeess,

{Pl}l’zb lwing & Prwess, and the i'nmpugiiirm of ino Procesees h-ing o process | IEay,
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That (P1]|P2) is a process results from both P1 and P2 being guarded, that is there

exists events z and y, and processes P1(z) and P2(y) such that

P1 = (z = Pl(z))
P2 =(y — P2y))

Consider two distinct processes X and Y, Corollary IV.38 implies that
X #Y = IM[M € N Ady(X,Y) =1/2M]

where d,, is the metric used to define the metric space of CSP processes from Section
4.3 (see Corollary IV.38 for the definition of dp,). Next consider the instantiation of

the process (P1|P2) as (chosen arbitrarily) P1. Since P1 is guarded, the set
traces(P1)

contains a shortest (nontrivial) trace whose length is greater than or equal to one,
since this shortest trace must contain 2 as its first event. Thus if the natural number

N equals the length of this shortest trace,
N> 0= d,(PL; X, PL;Y) < 1/2M+N < 1/9M
Thus, since this still holds if P2 had been chosen instead,
d(FP(X), F(Y)) < (1/2)dy(X,Y)

which means that F is a contraction mapping on the class of CSP processes. The

Contraction Mapping theorem (see Section 4.3) completes the proof. |

Note that the requirement for the two processes to be guarded ensures that the mapping

I is a contraction (the guard supplies the N > 0 assertion), while the requirement that
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the two processes have finite traces ensures that the evaluation
dp(PL X, PLY)

can be justified (and is not zero by definition). This raises an important issue, that Theorem
1V.64 is not valid for UNITY statements that do not generate finite events. Lemma IV.62,
needed for Theorem 1V.64, requires finite traces for the constituent processes, which can be
traced back to the requirement in Corollary IV.59 and IV.60 that to map a set of UNITY
assignment components into an equivalent CSP process, the number of possible traces of

the process must be finite.

This next lemma is the result regarding the mapping of the UNITY program given

by P1 into an equivalent CSP process.

Lemma 1V.63 Given the UNITY stalements S1 and S2, and the total function f whose
domain is the class of UNITY slatements, such that the CSP process f(S1) is equivalent to
the UNITY statement S1, and the CSP process f(52) is equwvalent to the UNITY statement
52, then the CSP process

pX.(f(S1)]/(52)); X (4.20)
is equivalent to the UNITY program (fragment)
5152

Proof: The use of Corollary IV.59 and IV.60 in the proof of Theorem IV.61 ensures that
the processes f(51) and f(52) are guarded and have only finite length traces. Thus
Lemma IV.62 ensures that the process given by Equation 4.20 exists and is unique.
What remains to be proven is that the fixed point of the contraction mapping (see

Lemma 1V.62) F, given by Equation 4.20, where F' is defined by
F(X)=(S(SDIf(S2)): X

represents the same operator on the sequences of states of f(.51) and f(S52), as the

UNITY weak fair choice operator | on the sequences of states of S1 and 52.
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Since I is a contraction, then tor any choice of an initial process Xo, (from the

Contraction Mapping theorem of Section 4.3)
nli_’,lgo’X" = pX.F(X)

where

Xn = F(JYn_l) n E {1,2, -..}

Since Xp can be arbitrary, consider the process that does nothing except terminate,
that is

Xo = SKIP

Starting with this choice for Xy, each iteration of X, sequentially composes either
f(S1)or f(52) onto the current process. Thusif f(S1)is chosen for the first iteration,
and f(52) for the second,

X; = F(SKIP) = SKIP; f(51) = f(S1)
Xa = F(X1) = P(J(S1)) = [(S1); /(52)

Denote by A the predicate that is true if f(51) is eligible to be chosen at a given
iteration, and @ the predicate that is true if f(S1) is actually chosen at a given
iteration. In a similar manner the predicates B and b denote vhe corresponding
predicates for f(52). If the iteration index n for X, is considered as elements from
the set N, which along with the partial order < form the frame for a linear temporal
logic (see Appendix A), then the CSP (deterministic) requirement that | does not

allow either of its arguments to refuse being chosen is stated as
OA = DCa

and

0B = 0¢b
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These two wils implie that the construction of the sequence
X0, X1, - Xny oo
satisfies the weak fair choice requirement.

All of these lemmas and corollaries provide the needed pieces so that the primary
result of this section, Theorem IV.64, can be proved. Lemma IV.53 states that the ba-
sic UNITY statement, the assignment of an expression evaluation to a variable, can be
mapped into an equivalent CSP process. Corollary IV.59 and IV.60 extend this result to
the acbitrary sequential composition of assignment components under the standard exe-
cution model, and to the general UNITY statement under the UNITY model. Theorem
IV.61 completes this tact by showing that such a mapping exists for any type of UNITY as-
signment statement under either model. Lemmas IV.62 and 1V.63 show that the ‘process’
that results from applying the UNITY weak fair choice operator on statements is identical
to a CSP process defined recursively in terms of the deterministic choice operator. Since
(neglecting the always section) any UNITY p:ogram can be constructed with these pieces,

the culmination of these previous results is stated in this thecrem.

Theorem IV.64 There ezists total functions f and g, whose domains are the class of
UNITY programs such that given the UNITY program P ezecuting under the standard
model, the CSP process

J(P)

is equivalent to P, and such that given the UNITY program P execuling under the UNITY
model, the CSP process

9(P)

is equivalent to P.

Proof: Theorem IV.Gl proves the existence of f and g for any UNITY assignment state-
ment. Lemma IV.63 finishes the proof of existence for the only UNITY operator on

statements, the weak fair choice |. The uniqueness of the process given by Equation
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4.20 ensures that the total functions f and g from Theorem IV.61 can be extended

to include the UNITY | operator. IN

Theorem 1V.64 states that any UNITY program under cither execution model can
be mapped into an equivalent CSP process, such that any sequence of states of the UNITY
program is also a sequence of states for the CSP process. This means that the topological
analysis o Section 4.3 can be applied to UNITY programs by simply mapping those pro-
grams into the complete metric space-of CSP processes. Thus the following result. (Note
that any UNITY program with an always section can be converted into an equivalent

program without one (64))

Corollary IV.65 Given the set U of all UNITY programs, and the total functions f and
g of Theorem IV.64, then

(U,dy)

denotces two melric spaces, where the total function dy,, whosc domain is the cross product

of U with itself, is defined by

du(P, Q) = dy(h(P), (@)

such that if the UNITY programs P end Q czecuic undcr the standard modcl then h is the
function f, and if P and Q execule under the UNITY model then h is the function g, and

dy ts defined by Corollary 1V.38.

Proof: Since d), is a metric then d,, is also a metric, and Theorem 1V.64 completes the

proof.

This corollary shows the existence of two metric spaces, one for those UNITY piograms
thet execute under the standard model, and another for those that execute under UNITY.
But once he execution model is fixed, then there is only one applicable metric space. Thus
in the following scrtions reference is only explicitly made to one metric spac: of all UNITY

programs, with the impiizit implication that the metric space is actually one of two.
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Coroilary 1V.65 does not explicitly state that either metric space is complete, but
any metric space can be uniquely completed (305). So there exists a complete metric space
that is the completion of the metric space of all UNITY programs along with this metric.
Does this complete metric space contain only UNITY programs, or did the completion
require entities that do not correspond to UNITY programs, just as the completion of
the metric space (Section 4.2) of all finite automata required objects that were not finite
automata? This thesis does not require an answer to this question, but if the answer is no,

then the following theorem gives an intriguing consequent.

Theorem IV.66 If the completion of the melric space

(U,dy)

from Corollary IV.65 contains only UNITY programs, then therc cxists a UNITY program
Jor which therc is no cquivalent finitc automaton, where the cquivalence is defined in terms
of the sequences of states from Theorcm IV.64, and lhe sequences of words accepted by a

[inite automaton (as sequences of slales).

Proof: The equivalence between a UNITY program and a finite automaton results from

Corollary IV.65 ard IV.35. That is, for a given UNITY program P, the CSP process

/(P)

is equivalent to P, wilth f given by Theorem 1V.64. Then assume that there exists
a finite automaton A such that the set of accepted words for A is equal to the set
of all traces of f(P), with each trace considered as a word from ¥, where ¥ is
the alphabet of the events for the process. If this assumption is not valid, then the
theorem is proved. Thus 4 is equivalent (as a process) to the program P. Now, if the
completion of the UNITY metric space contains only UNITY programs, then these
programs are equivalent to some finite automaton, but Corollary V.38, along with
Equation 4.11 and 1.4 imply that any accumulation point of the one space would be

equivalent to the accumulation point of the other. Since the completion of the metric
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space containing A requires objects that are not equivalent to any finite automaton
(as a process), then these objects are equivalent to the UNITY programs that are

the accumulation points of the UNITY metric space, a contradiction. |

This theorem implies that if the completion of the metric space of all UNITY programs
contains only UNITY programs, then there exists at least one UNITY program whose
execution sequence cannot be modeled using finite automata. That is, UNITY considered
as a formal language would be more ‘powerful’ (i.e. higher up on the Chomsky hierarchy)
than the regular languages. UNITY may still be more powerful as a language than the

regular languages even if the completion of the metric space
(U, du)

doesn’t contain only UNITY programs.

Thus any UNITY program can be mapped into an :quivalent CSP process. This
mapping is based on the idea that the UNITY weak fair chice operator on statements |,
behaves just as the fixpoint of the CSP choice operator on guarded processes |, as given in
Lemma IV.63. This fixpoint can be found by iterating the CSP operator (in the manner
of a Picard iteration (333)) an unbounded number of times, which corresponds to the
UNITY concept that the weak fair choice operator is based on an unbounded number of
iterations of a choice between two statements. However, since one of the primaiy goals
of the UNITY design is to enable the same UNITY program to be mapped into different
computer architectures, including sequential and paiallel aischitectures, then an impoitant
question is what is the relationship between the UNITY chui  perator | and the CSP

concurrency operator ||.

The first observation regarding the mapping of a UNITY program onto an arbitrary
architecture is that not all properties of the UNITY program are retained after the map-
ping, and converscly, not all properties of the program after the mapping were properties
of the original UNITY program. For exainple, consider the UNITY program I1:

Program Ll

initially
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X,y = M,N M,N are integers
assign
y=x|
Xi=x-1if x=y || x =" i xy
end
Under the UNITY execution model, each execution c. . . second statement results in only
one of the two boolean expressions being satisfied, an * .hus only one assignment is made
(actually the other defaults to an empty assignment). the program has no fixed point.
If initially M is larger than N the value of x can ‘ncreas , but eventually the first statement
executes, and after that the value of x can only remain the same or decrease. The UNITY
execution model implies that the value of x can decrease with no lower bound. But the
program’s properties change markedly when mapped on.o a sequentia) architecture. In
this case if the ordering of the assignmeats-is:
y:i=x
X = x-1if x=y
X = x+1 if xs#y
Each pass through this program lcave the value of x unchanged, and in fact this program
can be considered to terminate with y=—x and both equal to the initial value M. But if the
mapping to the sequential a:chitecture had reversed the order of the last two assignments,
then the program would have the property that repeated exccution would cause the value

of x to monotonically decrease without bound.

Analysis of the original program EI in the standard execution model, however, shows
that all of these possibilities can occur, since each one corresponds to a possible property
of the program over any finite executivn sequence. For example, one possible execution
over a finite sequence yields the same behavior for » and v as does the UNITY execution
model, considering that the two assignments of the second statement can be ordered so as

to behave just as they would if they executed simultancously.

The reason for the difference in the properties of the different mappings of the pro-
gram Ll is that there are named variables in one statement that aie modified in another

statement. Obviously, one technique to circumven. inis problem is to ensure that the
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UNITY program contains no global variables, so that one statement cannot modify ihe
value of a variable used by another statement. This concept of a glubal or nonlocal variable

is formalized ir the following definition.

Definition IV.67 A UNITY variable is nonlocal if it is named in more than one stale-

ment.

Defirition IV.67 differs from the UNITY ds inition of a local variable as one tha' is named
on only one processor, and a nonlocal variable as named on more than one p. .essor, on
either the right hand side or left hand side of an assignment (64). Since the b.oic univ of

analysis within this thesis is the statement (process), Definition 1V.67 is used here.

Before progressing to Theorem IV.71 which states the relationship between UNITY
programs with no nonlucal variables and CSP processcs that contain the concurrency

operator, the following definition and two-preliminary results are needed.

Definition IV.68 Given the programs (processes) S and T, then T computationally

simulates S, iff for any finite sequence of s'7les
S = (505 - Sn)

such that S generates S as given in Definition [I.6, then there exisls a finite sequence of

slales

T= (t(): ad tm)
where T generates T as given in Definilion 1.6, such that
so=1o

and

Sn =l

turther, S and T arc computationally equivalent iff S computationally simulatcs T

and T compulalionally simulates S.
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The concept of T computationally simulating S is based on (execution) sequences of states
that are finite in length, that is computational simulation can be related to actual imple-
mentations. This concept focuses on the ‘computation’ that a process performs, i.e. what
final output (state) can be produced from a given input (initial state), and not on the
details of how the computation is performed. Thus if § and T" are started in the same
initial state, any state that can be ‘reached’ by .S (in finite time) can also be reached by T',
although T may have reachable states that .§ does not. Note that if [S] denotes a function

‘computed’ by S, such that

Sy € [S](SO)

then computational equivalence corresponds to Mills’ concept of functional equivalence
(240). This concept of computational simulation < . » parallels Milner’s definition of simu-

lation between programs (243).

An example of computational simulation is given in the following lemma, which is

used in the proof of Theorem TV.71.

Lemma 1V.69 Given the functions f and g of Thcorem 1V.64, and the UNITY statements
S1 «nd 52, then the CSP process

pX.(h(S1)N(S2)); X (4.21)
compulationally simulates the CSP process
X ((S1); h(52)): X (4.22)

where b is cither f, under the standard excculion model, or is g, under the UNITY ezecution

model.
Proof: The solution to Equation 4.22 is given by

lim X,

e
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where this limit is applied to the following sequence of processes

Xo = SKIP
X; = SKIP; h(S51); h(52) = h(S1); h(52)

Xn = Xn-1; R(S1); 1(S52)

Next consider the following sequence of processes that corresponds to one possible

instantiation of Equation 4.21

Yo = SKIP
1 = SKIP; 1(S1) = h(S1)
% = h(S1); h(52)

=13 1(S1) il nis odd
Yn-1; 1(52) if n is even

ot
=5
I

Any finite sequence of states generated by X, for any n can also be generated by

Yo, where m < 2a, such that both sequences have exactly the same states, and thus

the sane initial and final states. IR

This next lemma provides both an example of computational equivalence plus the

final preliminary result needed for Theorem IV.71.

Lemma IV.70 Given the functions f and g of Theorem IV.64, and the UNITY statements

SI and S2 that conlain no nonlocal variables, then the CSP process

pX.(h(S1); k(52)); X (4.23)
is compulalionally equivalent lo the CSP process

pX(MSHA(S2)): X (-1.24)
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where h is cithcr f, undcr the standard cxecution model, or is g, under the UNITY cxecution

model.

Proof: Consider that each state is represented by a vector from R such that each element
of the vector represents the value of one program variable, with each such variable
coded as a number. The processes .X,, that correspond to Equation 4.23 (from the
proof of Lemma 1V .69) each (for n > 0) contain one or more complete and/or partial

sequences of states that are generated by

h(51); h(52)

Since there are no nonlocal variables, then for any such partial or complete sequence

of states
(SQ, ores Sk)
there exists a subsequence of states
(510:---: 511
where
S1i = 55
for any 7 € {0,...,{} with j € {0,..., £}, with the linear order of the original sequence

preserved in the subsequence, such that thi. subsequence of states contain state
vectors that have changes in element values that correspond only to the named
variables from 1. Within this subsequence the value of each vector only depends
upon the value of the immediately preceeding vector (see Chandy and Misra, Section
3.3 (64)), and not on any of the vectors outside of this subsequence. In a similar
manner there exists a subsequence of states whose state vectors have changes in
clement values that correspond only to the named variables from 52. Thus these

subsequences can be arranged into any interleaving, i.e. any sequence that would

result from the process of Equation 1.24, provided that the linear order of states




within each subsequence is preserved, while still preserving the same initial and final

state as the original sequence. Il

With these two lemmas, the first major result relating the UNITY weak fair choice

operator on statements to-the CSP concurrency operator on processes can be stated.

Theorem IV.71 Given the functions [ and g of Theorem IV.64, and the UNITY state-

menlis S1 and 52 that contain no nonlocal variables, then the CSP process
pX.(M(SV)|h(S2)); X
which is equivalent to the UNITY program (fragment)
51|52
compulalionally simulates the CSP process
pX (MSDA(S52)); X

where h is cither f, under the standard czecution model, or is g, under the UNITY ezecution

model.

Proof: Computational simulation is transitive, since if R computationally simulates 5,

then for any sequence

(505 +r-+5%) (4.25)

of 5, there exists a sequence

(1‘(),...,7'1) (‘1.2())

of R, such that

sp=1g and sp =7,

If § computationally simulates T'. then for any sequence

(lge .o 0y} {-1.27)
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of T, there exists a sequence of S, say the one from Equation 4.25, such that

so=1lp andsp=1{

"This implies that for any sequence of 1", say the one from Equation 4.27, there exists

a sequence from R, here given by Equation 4.26, that satisfies the computational

simulation requirement, and R computationally simulates T. Since Lemma IV.70
implies that

prX(R(S1):1(52); X

computationally simulates

pXAR(SR(S2)); X

then Lemma IV.69 along with the tiansitivity of computational simulation completes

the proof. n

Thus the mapping of the fair choice combination of two UNITY statements without non
local variables into a pair of concurrent processes, may result in the loss of sequences
of states, but will not introduce any new ones. This means that for a UNITY program
containing the construct

S1§52

with no nonlocal variables, the mapping to the CSP process

RN AMSTA(S2): X (4.25)

will yvield equivalent sequences of states if those sequences that result from

n X {MSDHAS2): X

which are not possible for the provess of Equation 125 are aeglected.




4.6 Summary

A complete metric space is a topological space that satisfies certain constraints relat-
ing Lo the metric, which is a function that measures the ‘distance’ between pairs of elements
of the space, and to the concept of completeness, which means that certain elements are
included in the space. This chapter demonstrates that different types of computational

models can be analyzed as complete metric spaces: finite automata, CSP, and UNITY.

Not only can these three models be cast as metric spaces, but the metric used in
all three is based on a metric developed by other researchers for the metric space whose
elements are strings of finite length formed from a finite alphabet of symbols. (If the
alphabet is denoted by ¥, then these symbol strings are the elements of £*) If the symbols
are the decimal digits and the decimal point, then the completion of this metric space
corresponds to the nonnegative real numbers. Although the basic concept is not new, the
term Turing computablc completc metric space is defined liere, as the completion of this
metric space using oniy the computational capabilities of Turing machines. This results
in a space whose elements correspond to that subset of the nonnegative real numbers
called the Turing computable numbers (see Appendix B). A new result is proved which
shows that this Turing computable complete metric space also satisfies a major formulation
(stated for the complete metric space in the paper) from the original paper by Scott on
the mathematical basis of computation (311). Another new result shows that this Turing

complete metric space satisfies the definition of a theory (based on categories) given in the

previous chapter.

Based on the metric space of symbol strings, another metric space (which is itself not
new) is presented whose elements are finite antomata. Unifying s.veral different ideas from
the literature, the binary aulomalon trecis defined. The binary automaton tree permits the
metric fron the space of symbol strings to be used to define the metric on finite automata,
and also purmits the definition of canonical forms of finite automata, so that if any two of
these canonical forms represent equivalent automata, then they are identical. The major
new results are that for any (Turing) recursive set there is a ‘machine’ that is an element
of the completion of this metric space of finite automata that accepts the set, and that

these machines are no more powerful (computationally) than Turing machines.
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The metric space of symbol strir “s is also used to define a metric space of determin-
istic CSP processes, using the binary .tomaton tree concept and the analogy between
finite strings of symbols and finite length traces. Since to date all of the analysis of CSP
process s is based on the mathematics in the text by Hoare (165), all of the topological
analysis here is new (the analysis is new, some of the results are not). The first major
result is that the CSP concept of a continuous function from processes into processes is
equivalent to the metric space concept of a continuous function. Additional results are that
the metric space based contraction mapping is equivalent to the CCP constructive function,
and that the metric space of deterministic CSP processes is complete. These lead to the
conclusion that what Ioare termed the fundamental theorem of deterministic processes is
equivalent to the standard contraction mapping theorem for complete metric spaces. An
interesting consequent of this equivalence between the CSP mathematical analysis and the
topological analysis, is that new results for CSP can be generated by simply rewording

existing theorems from the topological theory of complete metric spaces.

The chapter concludes with another new application of the topological theory of
complete metric spaces, to the analysis of UNITY programs (specifications). The metric
for UNITY programs is defined by showing that any UNITY program can be mapped into
an equivalent CSP process, where the equivalence is based on the two exhibiting identical
behavior. This approach is valid because all UNITY programs are deterministic (the CSP
meaning of deterministic), so that the mapping only need be into deterministic CSP pro-
cesses. Thus the metric on UNITY programs is defined using the metric on deterministic
CSP processes. Since UNITY requires the simultaneous exccution of assignment compo-
nents within a single assignment statement, whercas CSP forces the sequential execution of
atomic actions, this mapping equates UNITY assignment statements (which are executed
sequentially) with CSP atomic actions (the symbols of the traces). The fact that UNITY
programs generate unbounded execution sequences, versus the finite length traces of CSP
processes, is treated by showing that the UNITY programs map into processes that are the
fixed points of recursive definitions. New results are presented that link the computational
hierarchy of machines based on finite automata with the ‘computational power’ of UNITY

programs, and that relate the properties of UNITY programs without ‘global vaiiables’ to
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the equivalent CSP processes.
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V. Computational Temporal Semantics

The last chapte: demonstrated that computational models can be viewed topologi-
cally as complete metric spaces, a development motivated by the analysis of assigninents
and type transformations as continuous mappings. But this analysis treated the programs
from a purely syntactical viewpoint, that is the analysis was perforined on strings of sym-
bols without any concern for the meaning of the symbols. Consequently, this chapter
continues the analysis of the computational models, but with respect to the semantics, or
intended meaning, of the symbol strings comprising the programs. This chapter addresses
this semantic analysis using the tools of the temporal logic of Appendix A. Although this
type of approach is not new (38, 75, 252), applying it to the proof of correctness of CSP

programs in the manner of Section 5.3 is new.

Section 5.1 presents a brief overview of the three major classifications of formal
semantics, the opcrational, denotational, and ariomalic, along with an introduction to how
the temporal logic can be used in semantic analysis. Section 5.2 presents an introduction
to the ‘temporal analysis of finite automata based on the temporal logic ol: Appendix
A. Since the finite automaton is the most basic model of computation, this temporal
logic is introduced first. Although temporal reasoning about finite automata is not new
(114, 113), this presentation of a formal temporal logic for finite automata is. Section 5.3
then extends the finite automaton based logic into a temporal logic for CSP processes, a
computational model more powerful than finite automata (165). Section 5.3 demonstrates
that this temporal logic for CSP supplies the framework within which to reason about
proofs of correctness of CSP programs, an alternative to the approach used in loare’s
book (165). Although the previous chapler presented the topological analysis of finite
automata, CSP, and UNITY, this chapter only covers finite automata and CSP, since the
book by Chandy and Misra contains the basic temporal analysis for UNITY programs
(64). However, even without the Chandy and Misra analysis, UNITY programs could be
addressed by first mapping them into their CSP equivalents using the results fiom Section

4.4, and then applying the concepts from this chapter to the equivalent CSP programs.
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5.1 Program Semantics

For a given program, if P denotes the formal syntactic representation of the program

(such as-the source code listing), then from Definition 11.10 the function
P— M(P)

can be considered as the semantic analysis of the program, where M(P) denotes a formal
representation of the meaning of the program, often as some type of mathematical model
(201). Based on the structure of this mathematical model M(P), semantic analysis has

been classified into three major groups, known as sperational, denotational, and axiomatic

(324):

Operational: Elements of AM(P) are program states (see Definition 11.6), where each
program is represented by one or more sequences of these states called execution
scquences. Lach state is considered a mapping from program variables and other
symbol strings into their values. Thus a program is mapped into a sequence that
completely specifies the values of all program variables during execution of the pro-
gram. 3 major thrust of the analysis is specifying mathematically the relationships
between suciossive program states, with the temporal characteristics modeled by
the linear order of the sequences of states (339, 233, 171). Also called behavioral

semantics (201).

Denotational: An approach . hat is credited to the work of Scott (311), Strachey (314),
and McCarthy (231), the clements of M(P) consist of functions and constants that
can generate the sequences of program states given the initial state (the first state
in any sequence representing a program). Equivalently, programs are represented as
relations whose domain is sets of initial program states, and whose codomain is sets
of final states, in what is called the input /output semantics (93, 209, 48, 323, 337,
140, 329). Includes the action semantics of Lamport (201). The term ‘denotational’
is sometimes used in conjuction with the functivoal representation only, whereas

predicalive semantics refers to the relational rcyresentation (50). See the article




by Bakker and Zucker (94) for a relationship between metric spaces, denotational

semantics, and concurrent prograins.

Axiomatic: Iere the elements of M(P) include axioms about the statements of the
original program, along with rules of inference to permit reasoning about the pro-
gram. Because of this ability to reason about the program, early work with program
verification (both sequential and concurrent programs) was based on axiomatic se-
mantics, with the temporal characteristics of the program modeled with flowcharts
(126, 161, 217, 86, 211, 344, 144, 200). One of the first approaches applied to par-
allel programming, probably because of the widespread acceptance of the ‘Iloare’

semantics of sequential programs (266).

As an example of these three types of semantics, consider the following program
expressed in UNITY notation, with | denoting the fair selection operator.
Program P
assign coin := H | coin := T
end {P}
Thus program P represents an unbounded number of fair coin tosses, with the outcome of
each toss represented by the assignment of Il or T to the variable coin. The operational

semantics of P can be given by (based on the CSP formalism from Section 4.3)
traces(P) = {t|t € {H, T} - {A}}

Here the operational semantics are represented by the set of all possible sequences of
prograin states, where each program state is denoted by the value assigned to the variable
coin. These sequences are represented using trace notation, so that the set of all possible

sequences of program states is denoted by the set of all traces, that is the set {raccs(P).

One choice for the denotational semantics will be some kind of model that can gen-
erate this set of all pussible program states, that is a denotation that represents the ability

to generate this set of all traces. One such possibility for the denotational semantics is

given by

P=(Il = PIT — P)
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where the formalism is based on the CSP from Section 4.3.

The last aspect of this example is a representation for the axiomatic semantics. Since
the tradtional goal of axiomatic semantics has been to facilitate proofs of correctness,
consider the proof that program P does generate all possible finite strings of II's and T’s.
One approach would be to represent how each program statement changes any existing
string that represents the history of assignments to coin, from some starting time until the
present. The variable str denotes this history, temp denotes a dummy variable, and cons

denotes the function that concatenates a single symbol onto the end of a string,.

{temp = str} coin := U {str = cons(1l,temp)}
{temp = str} coin := T {str = cons(T,lemp)}
This syntax is typical of the axiomatic approach, and has been credited to Ioare (161).

It’s based on assertions of the formn

{rys{e} (5.1)

where P is called the precos.dition of the program statement S, and @ is called the post-
condition. This assertion is interpreted as ‘if P is true before § executes, then after §
terminates @ will become true (if S terminates). Note that this concept is based on the
earlier techniques of Floyd that used flowcharts, with each node 1epresenting « program
statement and the arcs representing flow of control (126). Thus Ioare's precondition and
postconditions corresponded to labeling the arcs with these predicates, which was the ba-
sic approach to proving program properties until Hoare formalized the technique using

axiomatic semantics (217).

Hoare's approach depended on a set of inference rules that allowed the derivation of
assertions about the program. These rules gave assertions of the form of 3.1 for certain pro-
gram statements such as assignment and iteration, and for the composition of statements.
Unfortunately, Hoare's analysis was based on the idea of ‘if the statement S terminates’,
which meant that total correctness did not follow implicitly. This was corrected by Manna,

and Pnueli (218) with the introduction of the nomenclature

(P(2)IS1Q(=, 9)-
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The intes pretation is that for every &, where x is the initial veluc of the program variables,
if P(x) holds before S executes, then § will terminate with Q(z,.! true, where y is the
resulting value of the program variables. Just as lloare did, Manue and Pnueli give the

rules of inference for deriving assertions based on a set of program siatements.

This thesis utilizes mainly the operational and denotational semautics, which, since
the emphasis le