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ABSTRACT

The Low Power Atrospheric Coxpensation Experiment (L3CE)

spacecraft was launched for NRL in february 1690. The LACE '
flight dynamics experiment will provide on-orbit systems i
identification of the LACE spacecraft. The experiment is ,

designed to measure modal frequencies, damping ratios, and

oscillation amplitudes of the LACE spacecrait. The purpose of
this study is to develop a finitz slement model of the LACE

spacecraft and conduct a dynemics analysis to determine

natural freguencies and mode shapes. Fouvr configurations of
the spacecraft are analyzed. This data will be coempared with

actual orbital data and will provide an opportunity for

improvements in the accuracy of computer simulations of !
flexible structures and multi-body dynamics. Thermoelastic I
effects due to differential heating are addressed to check the
magnitude of deformations that may cause a problem for
stability or on-orbit identification. The f£inal phase of this
study is to conduct a parametric analysis of the spacecraft
boom to investigate the presence of chaotic vibration for

combinations of excitation amplitude and frequency.
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I. INTRODUCTION

A. PURPOSE

This study is concerned with the modeling and analysis of
the Low Power Atmospheric Compensation Experiment (LACE)
spacecraft. One of the missions of the LACE spacecraft is to
conduct and obtain £flight data for on-orbit system
igentification. The flight dynamics experiment is designed to
measure modal frequencies, damping ratlios, oscillaticn
anplitude of the LACE spacecraft and vibration intensity
generated ny boom deployments and retractions. This experiment
will provide an opportunity for improvements in the accuracy
of computer simulations of large flexible space structures and
malti-body dynamics.

It will also provide a mechanism for evaluating influence
of magnetic torques, gravity gradient torques and atmospheric
drag on the LACE-type structures.

The purpose of this study is to develop a finite element
model of the LACE spacecraft using the finite element program
Graphical Interactive Element Total System (GIFTS). Dynamic
analysis is performed on the model to determine the natural
frequencies and mode shapes. Thermoelastic effects due to
differential heating are addressed to check if the magnitude

of deformations could cause a problem for stability or system



identification. Finally, a parametric analysis is conducted on
a model of the spacecraft boom to investigate the possibility

of chaotic vibrations that may be induced during the mission.

B. OVERVIEW/BACKGROUND
1. Spacecraft Description

NRL-developed LACE was successfully launched on February
14, 1990, from Cape Canaveral on a DELTA II launch vehicle.
The spacecraft incorporates three deployable/retractable booms
of maximum length 150 feet. The 2,800 lb. LACE spacecraft is
stabilized by a 150 ft. zenith directed gravity gradient boom
mounted on top of the spacecraft, a momentum wheel with axis
along the pitch axis and a magnetic damper at the tip of the
gravity gradient boom. The retroreflector boom is mounted
forward and deployed along the velocity vector, while the
balance boom is mounted and pointed aft. Figure 1 shows the
basic configuration of the spacecraft.

2. Experimental Hardware

The flight dynamics experament hardware consists of
three germanium corner cubes mounted on the lead boom, on the
bottom of the bus and on the aft balance boom to serve as
targets for the 10.6 micron Firepond laser radar at MIT
Lincoln Laboratory, Lexington, Massachusetts. The Firepond
laser has a 4 millisecond square wave pulse at a frequency of

62.5 Hz and pulse enerqgy of 3.2 joules. The Firepond laser

radar will illuminate the cubes to measure the relative motion
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Figure 1. LACE Spacecraft Confiquration
of the boom with respect to the main body. Reflections from
the corner cubes wi’l give differential Doppler information on
the magnitude of the displacement rates due to boom flexure.
fRef. 1)

The Ultra-Violet Plume Instrument (UVPI) will be used
to measure the absolute bus rotation rate. It has the
capability of resolving angular velocities of 5 * 1078

radian/sec. (Ref. 2]

Figure 2 depicts the LACE flight dynamics experiment.

.




Figure 2. LACE Flight Dynamics Experiment

3. Acquisition Sequence

The recommended acquisition sequence £for the LACE
spacecrait calls for four different boom deployments.
Initially, the gravity gradient will be extended to 75 feet.
After the spacecraft has stabilized, the boom will be deployed
to 150 feet and the momentum wheel will be spun up. Then the
leading (retroreflector) and tracking (balance) booms will be
extended to 119.5 feet. The final configuration will have the
retroreflector boom and gravity gradient boom extended to 150

feet and the trailing balance boom extended to 75 feet.
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4. Orbital Parameters
Table I lists the orbital paraxeters for LaCE.

Table I. LACE ORBITAL PARAMETERS

1 S e S ———

Rltitude 541 kn

Period 95.47 min
Inciication 43.087 decrees
Eccentricicy .00108
Sexi-major Axis 69319.351 kn

C. MOTIVATION

During cthe past Zfive years, systen identification o
fiexible space structures has eserged as an important problen.
¥any proposed space missions will involve large space
structures that are very £lexible, contdin thousands of
structural elements and have special mission requirements,
such as pointing accuracies. Some oI these structures include
space defense platforms, solar power stations and manned
laboratories, such as the space station. These structures may
require some type of active control to carry out ongoing
maneuvers, suppress and control vibration and achieve accurate
and reliable pointing. An obstacle to meeting some of these
objectives can be attributed to the inability to analytically
model the structural dynamics of these highly flexible
structures with a high degree of confidence or precision.
Typically, such information is also required in the design of

vibration suppression and control systems.
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*he
structures is caused by four Zfactors:

1. Because of lzunch costs, large space structures are
constructed out oI very licht co=posites and caanot

support their weight 3im gravity. This preveats
cround-based testing.

2. New cozposite materials will result 3in modeling
uncertaiaty of the xaterial properties.

3. Cozplications arise from the cozbination of very high
iit

£lexibility and large therzmal grauients.

4. On-orbit structure will be exposed to harsh space
environzents which include particle radiation, solar
effects, gravitational anoxalies, extreme
texperatures and near vacuum. %he structure may
underco physical parameter changes. [Ref. 3]

General purpose structural rodeling and multi-body dynamics
computer programs such as GIFTS and TREETOPS, respectively,
can be used to define and investigate conplex space
structures. However, there is no assurance that optinum
structural models can be generated with these programs. It is

envisioned that the on-orbit data received from LACE can be

used to improve these computer models.

D. THESIS OUTLINE

This study contains eight chapters. The second chapter
provides a discussion of the theoretical basis adopted by
GIFTS to develop a finite element model and provide dynamic
analysis. Chapter III describes the development of the simple

beam model and complex finite element model of the LACE

spacecraft. Chapter IV provides the natural frequencies and




rode shapes ¢f the spacecraft. In Chapter V a thermoelastic
apalysis is conducted on the LACE spacecraft boon to determine
the effects of differential heating. Chapter VI discusses
nulti-body dynemics and describes a multi-body progran called
TREETOPS. Chapter VII gives a description and a method to
identify chaotic vibrations. A parametric analysis of the LACE
spacecraft boon rmodeled as a single degree of freedom system
is provided to determine if chaotic vibrations may be induced.
The model uses experimental data for stiffness, mass and
daxping and examines the beh.vior for possible chaos in the

systen. Chapter VIII contains conclusions and scope for future

research.




II. TEEORETICAL FORMULARTION

&. FINITE ELEMENT METHOD

The Zinite elexent method is a numerical procedure to
compute the response of complex structures. The basic unit of
this analysis, the discrete finite element, is a geometrically
simplified representation of a small part of the physical
structure. The <£inite element method views the complete
compley. structure as an assembly of a finite number of these
finite discrete elements (beams, rods, plates, etc.), each of
whose properties and deformation responses are simple, as
compared to the complete structure. The division of the
discrete elements is natural, in general, and follows the way
the actual structure is built (truss members, frames, etc.).
The elements interconnect at nodes where the elements meet and
move in unison only after compatibility requirements are met.
This assures that adjacent elements will not overlap or
s2parate.

Each node has six degrees of freedom with three deflections
and three rotations. Based on how the elements are connected
at the rods, the computed properties of the individual
elements are determined and assembled to obtain the

equivalent, but more complex properties of the entire

assembled model. The structural model created can then be used

thev s e
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to predict the behavior of the real structure. In this study,
the structural model will be used to determine the structure’s
natural Zreguencies and mode shapes. The finite elemeat types
used to model the LRCE spacecraft include rod, beam and
plate/shell elements. These elements will be discussed £arther
in accordance with the theory adopted used by GIFTS.
1. Rod Elements

Rod elements are pin-jointed truss members that ave

capable oI carrying axial forces only. Ficure 3 shows a

typical rod element.

Figure 5. Rod Elements

The element 1s located in tne (x-y-z) coordinate system, which
is also known as the xeference or global coordinate system.
Ccordinates along the element are the local or element
coordinate system (%-Y-%).

The following derivations can be found ip more detail
in Allen and Haisler [Ref. 4: section 7.2). The element

stifiness matrix, derived from the principle of virtual work,

in local coordinate system, is defined by the equation

-




G -2E[L (1)
& = L |-1 1]

The matrix [K] represents the truss element stiffness matrix
in the local coordinate system.
Figure 4 shows the rod element oriented at a positive

angle 8 relative to the global axis.

Figure 4. Rod Element at 6

Element and global displacements at nodes 1 and 2 are related

by
U
&) fcost sine o 0 || (2)
of | 06 0 cosB sind)ju,
ul
or

10




{a} = (7] {u} (3)

P LT,
4 e = S ———
5
. —— o . —————————rd
¥

where

cosb sin® 0 O (4) ' :

n = 0 0 cosb sind . ‘

Using the strain energy equation and the matrix product

transpose rule, the following relations are derived:

u= -;-[m (K (@
= %[u] (K {u} (5)
where |
(x] = [TI7LR) (7 (6)

Therefore, using equations (1) and (6), [K] is transformed to

the global coordinate system to obtain

c? cs -¢* -cs
. Ag|lcs s* -cs -s? (1) {

X A .
Ll-¢? -cs c? csl )
~¢s -5% ¢z s?
where c =cosB and s = sin 6.

2. Beam Elements

Beam elements are characterized as members that are
capable of resisting bending. The beam element will carry

axial forces, shear forces and bending moments. Figure 5

depicts a typical planar beam finite element. !




Figure 5. Beam Element

The £following can be found in more detail in Allen and
Haisler (Ref. 4: section 7.3.}

The stiffness matrix is defined by the equation

EA -EA
= 0 0 I 0 0
12BI 6EI , -12BI §EI
LJ 2 3 LZ
o 6EI 4EI -6EI 2EI
— z L 2 L
(k) = £ L A L (8)
- ¢ o T 0 0
o ~12EI -6ET 12ET ~-6EI
L JA] L} L*
0 62I 2BI -6EI AEI
L? L L? L

where I = Iy,
In order to assemble the stiffness matrices, they must
be transformed to global coordinates. The local-global

transformation, &as before, is given by

i
i
|

o
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€ 50000 ‘
-s¢c0 0 00

- m=001ooo (9)
0 00 ¢ 50 N ,
0 00 ~-s¢coO
0 00 0 021 '

where ¢ = cos d and s = sin 9,

The remainder of the £finite element formulation is
similar to the previous section on rod elements. The stiffness
matrix in global coordinates is constructed using equations
(6), (8) and (9).

3. Plate Bending Theory

A flat plate, like a beam, supports transverse loads and

offers resistance to bending. Figure 6 shows stresses that act

on a homogeneous linearly elastic plate.

Figure 6. Plate Stresses

The normal stresses o, and o, vary linearly with 2 and

contribute to bending moments M, and M. ;

13




The normal stress o, is negligible when compared with

6., o, and t,,. The transverse shear Stresses t,, and t, vary

"
guadratically with z. Plate bending in this analysis refers to
external loads perpendicular to the xy plane and applied
moments. [Ref. 5}

The stresses shown in Figure 6 result in the following
equations {Ref. 5) for bending moments M and transverse shears
Q.

t/2 t/2 t/2
= = = 10a
M, f c/zoxzdz M, f_ c/2oyzdz M, J‘ :/2t,\.,,zdz (10a)

o, = f_ Z;:t,xdz o, = ]: :;:tyzdz (10b)

Stresses o, and o, are greatest at the surface 2=it/2,
while ©,, is maximum at the midsurface. Transverse shear
stresses t,,, v, are small compared too,, o, andt,,, and are
not considered in the classical Kirchhoff plate theory.

In what follows, Kirchhoff’s plate theory [Ref. 5] is
briefly reviewed, which forms the basis for the GIFTS
formulation.

As transverse loads are applied to the plate, the points
on the midsurface move only in the z direction. Under loads,
normals to the midsurface are assumed to remain normal before
and after deformation. Figure 7 shows a differential element
of a thin plate before and after loading. As shown, the line

OP is perpendicular to the midsurface before and after loading.

14
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Figure 7. Differential Element of a Thin Plate a) Before
Loading b) After Loading

From Figure 7, with %" and -%—“i being assumed as

small angles, the following relations apply:

. . Ow du Fw
U Z =Zem= €, = e B =T
%X nence x o oox dx?

v = -Z'g—;’ e, = é.! = —zﬁ (11)

du , dv _ ., &w
Yo " 30 tox T zzaxay ;

These are the strain displacement relations in
accordance with classical Kirchhoff’'s plate theory applied to
a thin plate,

By using stress-strain relations, the moment-curvature
relations may be derived. Neglecting thermal expansion and

assuming isotropic material, stress-strain relations are given

by:

15
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e).‘
N=——E_ V1 0 lle (12)
(1-v3) {5 o L1V
7 | Vw

By substituting equation (11) into equation (12) and
substituting the result into equation (10a), the following is

obtained:
(M} = -~[Dg) {x} (13)

where the moments and curvatures are

Fw Sw ., Fw
= . = | W CW 14
) =M M. M F ;) lax2 ayzzaxayl (14)
and
1 v 0
o) =p|": O (15)
0 o f1-v)
2
3
where D= —EE __ | p is called the flexural rigidity of the
12(1-v?)

plate and is analogous to bending stiffness EI of a beanm.
The next step is to formulate the element stiffness

matrix using the virtual work equation:

dwyze = fv—;— (8¢} 7 [E} {8e}dv (16)

- T T ——————

e o ot



€7 =1-25% _ ;&% 5, Gw
ax? oy* oxoy

and where [E] is given by eguation (12). éw,, and ée zre the
internal virtual work and virtual st—ains respe=tively.

For plates, using the strain-displacement relations,

bWy = [ 2 (x)7ID,] i} dA, where {x} 7T = | ¥ EW _Ew ) (17,
A2

8x® dy? dxoy
For an element having N nodes, displacements W is interpolated
as
W= Ll (a3 (18)
T 1x3N

where the nodal degrees of freedom are given by

BB dw B
{d} -lwl'ax1 By, B&VE){\.F

Equation (18) is differentiated to yield curvatures
f} = 1B () (19)
On substitucing equation (19) into equation (17) yields

By, = (8A)TLKI {d) (20)

where the element stiffness matrix (K] is identified as

(k] _ | (B17(D,) (B1dA
iy = [0 21
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B. FPREE VIBRATION OF MULTI-DEGREE-OF-FREEDOM SYSTEMS

Craig {Ref. 6] provides a good overview of nulti-d;zgree—oz'—
freedom (KMDOF) systems.

The equation of motion for a free undamped MDOF systen can
be written as

(m) (63 = (K] {u} = {0} (22)

where [m] and [K) are (NxN) rgatrices and {u(t)} is a Nxl
vector of generalized displacement coordinates. The solution
of the differential equation gives harmonic motion given Dy

u = u, cos (wc-a) (23)

Substituting equation (23) iato (22) yvields the eigenvalue
problen

(K ~w2lml) {u} =0 (24)

For non-trivial solutlionm,

1k - wim] =0 (25)

Equation 25 is recognized as the characteristic eguation for
the free vibration response. The resulting polynomial in w?
yields the roots cr the eigenvalues which correspond to the

natural frequencies of the system.
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Corresponding to each eigenvalue, w,z, there will be an

eigenvector or natural node u,, where

u.={°"}r=1,2,...,H5 (26)

Typically, these rmodes may be scaled by a process called
norpalization and results in modal vectors called normal
modes. A mode that has been scaled to have a unigue amplitude
vill be designated as ¢, and will be dimensionless. The modal

vector corresponding to w, can be written
p'x = cxd>x (27)

where ¢, is a scaling constant whose units are such that ¢ ™m ¢,
has the dimension of mass.

There are three procedures for normalizing modes for MDOF
systems. {Ref. 6]

1, Scale the r™ mode so that (b;),=1 at a specified

cooxdinate i.
2. Scale the "™ mode so that ($,),=1, where

[ @) |=nax,i @),

3. Scale the'r' mode so that the generalized mass is
defined by

19
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o = §Imd, (28)

The generalized stiffr s for the r'® mode is

K, = ¢k, (29)
By expressing equation (24) for the r' mode and premultipling
by é ,T, the generalized stiffness-nass relations are obtained

as

(30)

C. NUMERICAL EVALUATION OF MODES AND FREQUENCIES OF MDOF
SYSTEMS

This section discusses the procedure used by GIFTS to
obtain numerical solution to large eigenproblems. The LACE
spacecraft in its fully deployed state was modeled by over
16,000 degrees of freedom. The dynamic analysis of this
structure involves determining the natural frequencies and the

corresponding natural modes by solving the equation

{K-wi) ¢ =0 (31)
Vector iteration methods are simple and elegant for obtaining
eigenpairs. The specific method used by GIFTS is the subspace
iteration method. The subspace iteration solution is very
effective in the calculation of the lowest eigenvalue and
corresponding eigenvectors of systems with large bandwidth and
which are too large for the high-speed storage of the

computer. (Ref. 7)
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Bathe [Ref. 8] establishes three steps for the subspace

iteration method.

1. Establish q starting iteration vectors, g>p, where p

is the number of eigenvalues and vectors to be
calculated.

2. Use simultaneous inverse iteration on the ¢ vectors
and Ritz analysis to extract the best eigenvalue and

eigenvector approximations from the q iteration
vectors.

3. After convergence, the Sturm sequence check is used
to wverify that the required eigenvalues and
corresponding eigenvectors have been calculated.

The objective of the subspace iteration method is to solve
for the lowest p eigenvalues and eigenvectors satisfying
K = MDA (32)
where A =diagonal (A;) andd=id,,....d p)+ The eigenvectors must
also satisfy the orthogonality coaditions
Ky =A; =T (33)
Detailed derivations of the subspace iteration method are
shown in Bathe ([Ref. 8). The subspace iteration algorithm
shown below finds an orthogonal basis of vectors in Ep,
subspace.
KX, = MX, (34)
for L=1,2,..., and with iterations from E, to E;,. Next,

projections of the operators K and M onto K, are computed:
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Keyy = )_f.-'.":z K)_{;d (3%)

.
.
AR

Mo =XEME, (23€)

By solving for the eigensystem of -préjécted. operatoxs

T animh
-~

K Dm £8,400a f‘:,ox (37) ]

where Q is an ozthogc;ﬂal <matrix, ixproved approximation faor
the eigenvectors is found by

j-’;.; = )?L:oz Qa : (38)
It may be aoted that Ay ,--> A and Xy, ~~> ¢ as L-~> »,

The first step of the subspace iteration is to generate the
starting iterstion vectors in ¥,. The following algorithw is
used to select the starting iteration vector. The first column
in MX, is the diagonal of M. The other columns are unit
vectors with entries +1 at coordinates with the smallest k,/m,
ratio.

The subupace iteration method requires a measure to compute {

copvergence. Assuming that in (L-1) and L iterations,

eigenvalue approximations A ® and A Y, i=1,...p, have been

calculated. The measure for convergence, then, is

|40 - a2 |

: I = R 39
).ﬁ"'" stol ; i=1,...p (39)

where tol may be 10°®, when eigenvalues shall be accurate to

2S digits.




Since equations (32) and (33) can be satisfied by any
eigenpairs, there must be a way to verify the calculations.
Once the convergence is satisfied in eguation (39), with s
being at least equal to 3, a check may be performed to make
sure that the smailest eigenvalues and correspending
eigenvectors have been calculated. The Sturm sequence property
is used to provide this check. This property is dexived fronm
the following analysis. ({Ref. 8] By using the Gauss
elimination solution, the stiffness matrix can be factorized

as

K=LDL? (40)
where L is a lower unit triangular matrix and D is the
diagoral matrix.

Let K-pM be factorized into LDLT. In the decomposition of
K-uM, the number of negative elements in D is equal to the
number of eigenvalues smaller than p. Because of this
property, by assuming a shift p and checking whether p is
smaller or larger than the required eigenvalue, successive
iterations can reduce the interval in which the eigenvalue
must be. A summary of subspace iteration solution is shown in

Table II.
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Table II. SUMMARY OF SUBSPACE ITERATION
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III. LACE FINITE ELEMENT MODEL

T T s o,

A. GIFTS CAPABILITIES

GIFTS has several capabilities which facilitate the
modeling of large complex structures. Some of these
capabilities include:

1. automatic model generation

2. model editing, display and information

3. automatic load and boundary conditions

4. vibrational mode extraction

5. substructuring

6. thermal stress analysis

Element types that can be used include:

1. rods and beams

2. plates/shells

3. solid elements and axisymmetric elements [Ref. 9)

The elements can be selected from a library of options. The
materials can be created by the user or from a library of
defined materials. GIFTS also allows users to define
anisotropic materials.

Static and dynamic analysis can be performed on the model.
The dynamic analysis provides free vibrations and mode shapes.
These vibrational mode shapes can be displayed on the screen.

For structures that undergo thermal loading, deflections and
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stresses can be calculated by computing thermal (pseudo-
forces) forces to simulate the thermal effects.

GIFTS also has the capability for substructuring and muiti-
level substructuring. Large models may be divided into
substructures. Certain areas of a substructure may be modeled
as a second level substructure to allow economic modeling and

reduce computational costs.

B. SIMPLE FINITE ELEMENT MODEL OF LACE

Initially, the LACE spacecraft is modeled as a point mass
with three attached beam members. The three dimensional
triangular trusses are modeled as solid circular beams. To
ensure that this beam had the same bending characteristics,
the following bending stiffness relations was used from AZC-

Able Engineering {Ref. 10).

flexural rigidity (EI) = 1.5n ER*e? (41)
where
e = maximum bending strain of longerons when completely
coiled (¢ = d/2R = F/E)
F = coiling stress of longerons
d = longeron diameter
E = Young’s modulus of longeron material
R = boom radius
with
e = ,015
R = 5.0 inches
E = 8.0 x 10°% psi

This results in EI = 5.3 x 10° lbs-in®,

e Bt et e A B W
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From this relation, I is seen to be .663 which results in
a solid circular beam with a radius of .9583 inches. The beam
is with 10 elements for a 150 foot truss and 5 elements for a
75 ft. truss. This model is used in GIFTS with the appropriate
tip masses to determine the natural f£reguencies and mode
shapes. The results will be shown and discussed in the next
chapter. A listing of the file to generate the model is given

in Appendix A.

C. COMPLEX FINITE ELEMENT MODEL OF LACE
1, Main Spacecraft Body

The on~orbit configuration of the LACE spacecraft is
shown in Figure 8. From the figure, it can be seen that the
LACE spacecraft consists of structural panels, solar panels,
sensor panels, truss elements and various beam types.

The primary structure of LACE consists of a frame type
structure consisting of channel section stringers, tee-section
stringers, z-section doublers, and angle-section members. The
primary structure also consists of honeycomb panels. Figures
9a and 9b show the basic configuration of the primary
structure.

The secondary structure of the LACE spacecraft consists
of the fixed and deployable solar array substrate, deployable
sensor panels and deployable sensor arms. Figure 10 shows the

LACE spacecraft secondary structure.
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Figure 8. LACE Spacecraft On-Orbit Configuration

The primary frame members are made of aluminum, AL6061-
T6. Table III shows the material characteristics of AL6061-T6
used in GIFTS. ; '
Table IIX. AL6061-T6 CHARACTERISTICS ,

Tield Stress 1.8 B4 psi {
Young’s Modulus 9.9 E6 psi ‘
Poisson's Ratio .33 i
Mass Density 2.5382 E-4 lbs-sec®/in’®

The honeycomb panels consist of .05 thick face sheets
consisting of aluminum, AL6061-T6. The core of the panels are i

1/4 -5052 -.003, with a density of .01552 lbs-sec®/in'.
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Figure 9a. LACE Spacecraft Primary Structure

Figures lla and 11lb show the primary and secondery
honeycomb panel structure and dimensions.

The primary panels are one inch thick with a .9 inch
core. The solar array panels are .5 inches thick with a .4
inch core and the deployable sensor panels are .75 inches
thick with a core of .65. The deployable sensor arms are
channel beams with .125 inch thick aluminum, AL6061-T6.

The honeycomb panels are modeled as aluminum panels,

AL6061-T6, with appropriate conversions to account for
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Figure 9b. LACE Spacecraft Available Panel Area

equivalent stiffness and weight. The panel stiffness for a

honeycomb panel is given by {Ref. 11}

Eth*®
p=_—Eth* (42)
2 (1 - v?)
where

E = Young’s modulus
t = face thickness of the panel
h = core thickness
v = Poisson’s ratio

The stiffness for each honeycomb panel is calculated

using the above formula.
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Figure 10. LACE Spacecraft Secondary Structure

Using the stiffness, an equivalent thickness is

calculated, using the flexural rigidity formula for isotropic

materials.
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- E 3
12 (1-v?) (43)

The mass of the honeycomb panels is computed and used
with the new thickness to determine volume and density. These

calculations are presented in Appendix B. Table IV summarizes |
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the nesw parameters used to modél thé honeycomb panels as
aluminun panels with appropriate stiffness and mass.

Tabic IV. THICKNESS AND DENSITY PARAMETERS

3 Thiékness*(in) Density (lbs-sec?/in‘)
Primary Panels | .624 5.364 x 10°
Solar Panels .3634 8.1915 x 107
Sensor Panels .502 6.22 x 10°

The £inite elements model of the main body of the LACE
spacecraft is shown in Figure 12. The associated file to
generate the model is given in Appendix C.

The LACE spacecraft has several sensors and components.
Even though the spacecraft is essentially a rigid body, the
mass of the components was modeled as accurately as possible
according to the mesh size of the grids. Appendix D contains
the component placements and mass distributions.

2. Spacecraft Trusses

The automatic deployable lattice booms are manufactured
by AEC-Able Engineering Company, Ianc. They are designed for
applications that require high dimensional stability and high
ratio of bending stiffness to weight. Figure 13 shows the
principal parts of the continuous longeron boom and the
retraction geometry. The longerons are continuous along the
length and are connected to the batten frames with pivot
fittings. Six diagonals provide shearing strength and
stiffnesses. When the boom is twisted, tension increases on

three of the diagonals, causing batten members to buckle and
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Figure 12. Finite Element Model of LACE Spacecraft

shorten. As twisting increases, the longerons rotate about the
pivots and assume a helical configuration. In the retracted
position the longerons are coiled in flat helices while
battens lie on top of each other.

The longerons and battens are modeled as circular beams

while the diagonals are modeled as rod elements. The battens
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Figure 13. Continuous Longeron Boom

are oval-shaped and attached to the longeron by pivot joints,
but for simplification the battens are modeled as circular and
the joints are not modeled. Listed in Table V are the
dimensions and properties of the truss. When fully retracted
the triangular batten frames lie within a 10 inch diameter
circle.

Figure 14 shows a cross-sectional view of the truss and

its dimensions.
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Table V. fRUSS PROPERTIES AND DIMENSIONS

Longeron and Batten Diameter .150 inchkes
Diagonal Diameter .050 inches
Material Type S-glass epoxy
Density .075 lbs/in?
Young‘s Modulus E=8.0 x 10% psi

Figure 14. Cross-Sectional View and Dimensions of Longeron
Structure

The booms of the spacecraft are ideal for
substructuring. The 150-foot boom results in over 5,000
unknowns, when modeled as three-dimensional beam-truss
elements. The substructuring technique is used in modeling
when the number of unknowns may be reduced substantially.

Initially, substructuring and multi-level substructuring
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techniques were used to model the trusses, reducing the
computational time considerably.

The f£irst substructure was a 15-foot section of the
truss. Ten of these substructures were joined together to
construct the 150-foot boom. This multi-level substructure was
attached to the main body of the spacecraft, thus forming a
super element to the main body. This reduced the complete
model from over 16,000 unknowns to about 2,500 unknowns. This
was an attempt to capture the dynamics of the LACE spacecraft
more accurately.

However, the use of substructuring generated large
negative masses in the mass matrix. Kamel et al. ([Ref. 12)
provide a detailed formulation of the constrained
substructurang technigues. As only the executable version of
GIFTS program was available, and the objective was to obtain
dynamic characteristics, it was decided to pursue modeling the
whole structure.

The limitations of the program or the methodology
adopted there is being pursued as well. The supplier of
software is looking into the problem. The input files used to
generate the multi-level substructuring model of LACE and
typical negative mass elements are attached in Appendix E.

The listing of the file to create the trusses and

attachment to the spacecraft is in Appendix F.
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IV. RESULTS OF DYNAMIC ANALYSIS E

For linear behavior, resonance occurs when the frequency o !
of excitation equals the natural frequency. In order to avoid
the ill-effects of large amplitude vibration at resonance, the
natural frequency must be known and compared with potential
excitation frequencies. The gravity gradient pitch vibration
frequency is 2.3 x 10 Hz and is widely separated from the
lowest modes of the fiinite element models. ‘

Table V presents computed values for the first four modes
of three different models of the LACE spacecraft.

Table V NATURAL FREQUENCIES OF THREE LACE MODELS

Mode GIFTS NASTRAN [Ref 1] GIFTS
Beam Model (Hz) Beam Model (Hz) Complex Model (Hz)
1 .01930 .01935 .0216 ; .
2 .04825 .04729 .0516
3 .05454 .0536 .0588
4 .1738 .1106 .1253 ; ‘
t

Initially, the NASTRAN beam model was developed by Naval
Research Laboratories (NRL). The present beam model was

developed as described in the previous chapter. The first

three modes agree within 2%, however the present fourth mode
appears to be an anomaly. The GIFTS complex model is
consistently 10% higher than the NASTRAN model. The NASTRAN

model appears to yield fairly good data in the lower modes.
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This discrepancy may be attributed to the modeling
uncertainties and approximation of the geometric and stiffness
distributions. The detailed modeling of NASTRAN was not
available. It may be noted that there is no excitation
frequencies at those computed frequencies. Further, complex
modeling is recommended when higher modes and frequencies are
required. The simple model may not capture these higher modes
and even skip some modes. The higher modes assume importance,
especially, for very flexible structures and in the design of
control systems for vibration control and suppression. Figures
15 to 20 show the mode shapes and frequencles for the NASTRAN
model while Figures 21 to 26 show the data for the GIFTS beam
model. Figures 27 to 30 show the GIFTS complex model of the
spacecraft. Appendix F contains the frequency and mode shapes
of the LACE spacecraft in three configurations as it deploys

to its final state.
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.1808 Hz, NASTRAN BEAM MODEL

Figure 19. Mode 5, u
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Figure 21. Mode 1, v = .01930 Hz, GIFTS BEAM MODEL
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48




mitl

N

~v

[

\

Figure 24. Mode 4, v = .1738 Hz, GIFTS BEAM MODEL
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Figure 25. Mode 5, v = .2142E Hz, GIFTS BEAM MODEL
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Figure 29, Mode 3, v = .05879 Hz, GIFTS COMPLEX MODEL
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V. THERMOELASTIC EFFECTS

A change in temperature along a bar will change its
dimensions. When an isotropic bar is heated uniformly and is
free to expand, the sides will increase in length. The

material undergoes a uniform thermal strain e, given by:
€, = a(AT) (44)

where &« is the coefficient of thermal expansion and AT is an
increase in temperature. The length of the bar will increase

by an amount
8, =a(AT)L

where L is the length of the bar.

The ABLE booms (Ref. 10) used on LACE are designed so that
they undergo minimum thermal bending or twisting in the solar
radiation environment. Pretwist 1s used to prevent thermal
twisting or thermal kending that would occur if one longeron
15 shadowed by another.

This chapter presents analysis for deformations that could
result in a worst case scenario. Two possible scenarios
considered are when the boom may bend due to unegual heating
of the diagonals and unequal heating of the longerons. Unequal
heating of the diagonals is more likely to occur than unequal

heating of longerons. ([Ref. 13}. The following analysis
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con;iders only the unequal heating of the diagonals and
assumes no shadowing effects.

Sources of heat include spacecraft components, solar flux,
albedo flux and thermal radiation of the earth. The solar flux
is defined as the flux existing at a distance of one
astronomical unit (AU) £from the sun. Albedo £flux is the
fraction of total incident solar radiation on the earth which
is reflected into space as a result of scattering in the
atmosphere and reflection from the clouds and earth surfaces.
Thermal radiation from the earth is the portion of incident
solar radiation absorbed by earth and its atmosphere and re-
emitted as thermal radiation according to Stefan-Boltzman law
[Ref. 11]}. For the computation of LACE thermal deformations,
the following data is used {Ref. 13):

Solar flux: 442 Btu/sq ft hr

Thermal Zarth Radiation: 70 Btu/sq ft hr

Albedo flux: 160 Btu/sq ft hr

efe = .8
where e is the emissivity and ¢ is the absorptivity.

The worst case of unequal diagonal heating occurs when the
sun rays are parallel with one set of diagonals and almost
perpendicular to the other set. The set of diagonals
perpendicular to the sun will receive maximum solar flux. The
parallel set will receive no solar flux, but will receive
earth’s albedo and thermal radiation flux. A simple approach

is taken where the hottest and coldest temperatures ¢f the
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diagonals are calculated. This 7results in a maximum
temperature of 192°° and a minimum of -5°F., Following the
discussion in Ref. 12, calculations are carried out and
presented in Appendix G.

It is assumed that the battens and longerons receive equal
heating of 80°F. Using a 3-D model of the truss, the
temperatures above, and a coefficient of thermal expansion of
1.75 x 10°%/°R, the maximum deflection is calculated. Figure
3la shows that the deformed shape is similar to the first
bending mode. Figure 31b shows a closeup of the deformation.
A maximum deflection of 1.88 inches is calculated usang GIFTS.
This is a 1.2% deformation for the 150 foot truss and should
have negligible effect on the system dynamics.

However, thermal flutter could occur if the period of the
thermal loading coincides with the natural frequencies of the
spacecraft.

The first bending mode has a natural frequency of .02163
Hz. The thermal loading from the sun occurs over a long period
and is on the order of 10%, The thermal loading is two orders

of magnitude lower than the fundamental frequency and as a

result should not interact with any natural frequencies.
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effects resemble 1st bending mode
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Figure 31b. Close~up view of thermoelastic effects
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VI. BMULTI-BODY DYNAMICS

A. COMPCNENT MODE SINTHESIS

in the previous chapter, £finite element technigues were
used to formulate a model of the LACE spacecraft for use in
structural dynamics analysis. This section discusses a class
of reduction methods known as component mode synthesis, or
substructure coupling for dynamic analysis. These methods are
useZul for amalysis of large structural dynemics problems.

The basic idea of component mode synthesis is to treat the
complex structure as an assemblage of substructures. Each
substructure is analyzed independently and then their dynamic
characteristics (mode shapes and natural freguencies) are
synthesized to analyze the complete structure. There are many
variations of the method of component mode synthesis and
extensive iitera.ure is available {Ref. 14, 15, 16, 17].

Hurty (Ref. 14) developed a procedure for analysis of
structural systems using a displacement method which used
three types of generalized coordinates, namely: 1) rigid body
coordinates, 2) constraint coordinates, and 3) normal mode
coordinates. Hurty used Rayleigh-Ritz approach in his
formulation. The Craig-Bampton method [Ref. 15]) is similar to
the treatment due to Hurty, except that it simplifies the

treatment of rigid-body modes of substructures by eliminating
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the separation of boundary forces into statically determinate
ané statically indeterminate reactions ([Ref. 15]. MacNeal
[Ref. 16]) introduced residual flexibility modes to retain the
static contribution of a higher frequency truncated modes.
Rubin {Ref. 17} developed a new method which adds residual
inertial and dissipative results to the method introduced by
MacNeal [Ref. 17].

This section will present the basics of component mode
synthesis.

Craig (Ref. 18) provides a good overview of component mode
synthesis methods. His notation and examples will be used
extensively in this discussion.

A substructure 1is generally connected to one or more
adjacent components and is composed of interior degrees of
freedom and boundary degrees of freedom. Figure 32 illustrates
a substructure connected to other components and shows
boundary and interior coordinates.

The equation of motion for a component is given by

MY+ CR+KX=f (45)
where M is the mass matrix, C is the damping matrix and K is
the stiffness matrix.

The total set of physical coordinates of the component is
defined as P, while interior and boundary points will be
defined as I and B respectively. Boundary coordinates are

further subdivided into statically determinate (rigid body)
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Figure 32. Unrestrained truss component

support of the component and its complement, redundant
(excess) boundary coordinates designated as R and E
respectively. These designations are used throughout this
analysis.

Figure 33 shows a beam divided into several components and
will be used to to illustrate mode sets in the following
discussion.

The two fundamental steps of component mode synthesis are
to: 1) define component modes, and 2) to define coupling of
components to form a system.

The physical coordiaates, x, can be represented by

component generalized coordinates, P by the transformation

X =¢P (46)
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Figure 33. Beam model divided into components

where ¢ consists of component modes of specified type ({Ref.
14). These include:

normal modes of free vibration

attachment modes

constraint modes

rigid body modes

inertia relief modes
These modes are defined as follows. [Ref. 17)

1. Normal Modes

Normal modes are classified as fixed interface normal

modes, free-interface normal modes or hybrid-interface normal
modes depending on how the interface coordinates are

restrained when the component normal modes are obtained using
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(K - wm)dp = 0 (47)

The modes are normalized with respect to the mass matrix m.

pamd, = I, bk, = Ay, = diag(Wp)?
where ¢, is component normal modes. The notation ¢ will be
used for normal modes, while¥y will be used for assumed modes.
2. Constraint Modes
A constraint mode is defined by statically imposing a
unit displacement on one coordinate of a C set of physical
coordinates. Let C=E and define a constraint mode by placing
a unit displacement on one coordinate of the C set and zero
displacement on the remaining C set. The matrix of constraint

nodes, ¥, is defined by the eguation:

Kyy Kie Kie| [Wye o

Koy Keo Ker Tee| = Rec (48)
Kxi ch Ku o ch
This equation may be simplified to yield
-1
¥ie
=Ky k.
W= |1 = 11 Kie (49)
0 ICC
o}

3. Attachment Modes
Attachment mode is defined by applying & unat force of
the coordinates of an A set [Ref. 15). In this case,
attachment modes will be defined for A = E. The matrix of

attachment modes ¢, is shown by the equation
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Kiy Ky Kiel [03] [0
Koy Kpa Ky Yool = Tor (50)
Kn‘. Km er o Rzu

Using the first two rows of equation {(50), ¥, may be

represented by

Vi) |91a
¥, = [Vaa| = |Gas (51)
(o} (o]

where g = K'! is the flexibility matrix.
4. Rigid Body Modes
The boundary conditions are depicted in Figure 45, where
the R set will restrain the component from rigid body motion
and the E set contains redundant boundary condations. By
defining the’ rigid body modes relative to the R set, the

equation is given by

Kys Kio Kiz| |Vie 0
Ko Koo Koz 'IIJ,, =10 (52)
Kzi Kn Kzz I:r o

which simplifies to
Ky Ky 'er] _ _{Kx:] (53)
Ko:‘. Keo ll"ar Kor

The §, matrix is given by
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(54)

911 Fio| [1
1r

¥, = Yerf = Fei Fee, K
er,

I_.: Ix:

5. Inertia-Relief Modes
This method defines attachment modes for a component
with rigid body freedoms. This method was presented by Rubin
{Ref. 16) and MacNeal {Ref. 17}. By letting D’Alembert force
vectors associated with rigid-body modes be applied statically

to a component which is fully constrained on the boundary, ¥,

can be defined as follows.

Kis Kyg Kpr| [y [Ma3 Mio Myo| [¥srf [ O
Kot Koo Karl| O] = Moy My, Hyr| |Wer] + [Fer (55)
le Ku Kz: % Mxi Mxo Mxx I R“

T,

Vio| KMy, = M, = M)
= (o]

o (56)
o (o}

¥y, =

6. Coupling of Components
This section describes generalized substructure coupling
as applied to free vibration analysis. [Ref. 18)
Assuming two components ¢ andf having a common boundary

interface, compatibility of interface displacement requires

x¢ = xb (57)

The interface forces are related by
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gg=1£=0 (58)
By representing the physical coordinates x, by

generalized coordinates p, the following equations are derived
%% = gepe , xb = ybpP (59)

where ¢ and y# contain assumed static and dynamic modes.
The constraint equations can be written in generalized

form to form a single constraint equation
CP=0 (60)

where

PG
P { } (61)
pp
Let P be rearranged and partitioned into dependent P, and

independent, P|, coordinates. Then,

P
[cvpcm] {PD} = 0 (62)
p¢

where Cy, is nonsingular square matrix and equation

P, - -1
p= {n} - Cpn Cpy P, = 5¢ (63)
pI Iy

defines S and g, where

_ot
. [ Cob Coz] (64)
IX!

The p and ¥ corresponding to P are given by
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_iet o] B x® 0 (65)
: [Ou°"‘ [Ox']

The coupled system of equations for an undamped system

is given by
Mg+ Kg =0 (66)

where

M=5Tws, K=8%%s (67)

B. DYNAMICS OF FLEXIBLE BODIES IN TREE TOPOLOGY
1. Overview of Multibody Systems
Spacecraft and large spacecraft structures are typical
multibody systems. Large strides have been made in the last 20
years in the efficient formulation and solution of multibody
systems. Particular interest in multibody dynamics has risen
in spacecraft dynamics. Initially, space vehicles were
idealized as rigid bodies or elastic beams. In the mid-1980s
equations of motion were published for a point-connected set
of interconnected rigid bodies in a topological tree. A model
containing rigid bodies and elastic appendages was eveloped in
the 1970s. The next major step was the incorporation of body
flexibility in the topological tree model. (Ref. 19]
2. Multibody Computer Program - TREETOPS
TREETOPS is a computer program developed to deal with

multibody structures in an open-tree topology. It is a time
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history simulation of a complex multibody flexible structure
with active control elements. Some of the features include: 1)
any or all bodies can be rigid or deformable, 2) hinges can
have zero to six degrees of freedom, 3) the dimension of the
problem equals the number of degrees of freedom, 4) individual
body deformation can be described by any set of modal vectors,
5) an interactive program, and 6) extensive control simulation
capability. {Ref. 18)

The computer simulation consists of three parts:
defining a tree topology of flexaible structures, define a
controller and a set of sensors and actuators.

The structure of the TREETOPS model consists of bodies
and hinges with sensors and actuators included for interfacing
with the control system. Figure 34 shows a typical structure.

a. Body Types
The program simulates a set of bodies in a tree
topology. Each body is defined independently. Sensors,
actuators and hinges are connected to specific points called
node points. Each body may be defined as rigid or flexible.
Each body is to be defined with an ID number, mass
properties, center of mass and all its pertinent node points.
(Ref. 20)
b. Hinges
Hinges interconnect two adjacent bodies. One body
is called the inboard body and the other is called the

outboard bady. The inboard body is the one on the side closest
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Figure 34. Structure composed of boedies and hinges

to the inertial reference frame. Figure 35 shows a hinge

representation.
The functions of the TREETOP hinges are to
[Ref.207:
1. define topology of the structure
2. define kinematic variables of the multibody system

3. define relative orientation between adjacent bodies.

c. Sensors and Actuators
A set of 16 sensors have been buil:c into the

simulation. They include rate gyros, resolvers,
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Figure 35. General representation of jth hinge

accelerometers, position and velocity sensors, tachometer, sun
and star sensors, etc. The actuators serve as a way to apply
force and torque inputs. Inputs may be control or disturbance
inputs. Disturbance inputs can be applied with £function
generators to the actuators. Actuator types include reaction
jets, hydraulic cylinder, moment actuator and torgue motor.
d. Orbit Environment

TREETOPS has the capability to model the orbit
environment of a spacecraft to include gravity gradient and
aerodynamic drag. A magnetic field model is included which
produces a force through interaction with magnetic actuators.

In computing the atmospheric drag, TREETOPS uses atmospheric
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VIi. CHAOTIC VIBRATIONS

A. HOW TO IDENTIFY CHAOTIC VIBRATIONS

Chaos is defined as a motion that is sensitive to initial
conditions [ReZ. 21)}. Chaos can occur only in nonlinear
systems, but all nonlinear systems do not exhibit chaos. Chaos
can be observed in many physical systems. A partial list is

shown:

. Vibrations of buckled elastic structures

N
%
[t
(4]
2
by
o
8
[¢]
o
V-

systems with play

3. Large, three-dimensional vibrations of structures

4. Rhereoelastic problens

5. Systems with sliding Zriction

6. Feecback control devices

In order to identify chaotic motions, several procedures
are suggested [ReZ. 21], such as

1. Identify nonlinear elements in the system

2. Check for sources of random input in the system

3. Observe time history of the measured signal

4. Observe phase plane history

5. Examine Fourier spectrum of the signal

6. Determine Poincaré map of the signal

7. Vary system parameters
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Quantizative characteristics of chaotic vibrations and the
diagnostic tools used are summarized as follows:

1. Sensitivity +to changes 3in initial conditions
(Lyapuncv exponent and f£ractal basin boundaries)

2. Broad band spectrum of Fourier transform when motion
is generated by a single f£requency

3. Fractal properties of the motion in phase space which
indicate a strange attractor (Poincaré maps, fractal
dimpension)

4. iIncreasing complexity of regular motions as
experimental parameters are changed

5. Transient or intermittent chaotic mo
nonperiodic bursts of irregular motionm or i
random-like motion that settles into reguiar motion.

1. Nonlinear System Elements
A linear system does not exhibit chaotic vibrations.

Typical nonlinear effects from mechanical systems iaclude
nonlinear stiffness, material nonlinearity, nonlinear damping,
free-play, and nonlinear boundary conditions. Nonlinear
elastic effects can be due to large deformation. A good
example of material nonlinearity is the stress-strain
relations of materials modeling rubber or elastomers.

2. Random Inputs
There are no assumed random inputs in chaotic

vibrations. Applied forces and excitations are assumed to be
deterministic. By definition, chaotic vibrations arise from
deterministic physical systems. A large output signal to input
noise ratio is required if nonperiodic response is to be

attributed to a deterministic system behavior. [Ref. 21)
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3. Observation of Time History

The first indication of chaos may be indicated in the
tine history. The motion observed shows no visible pattern or
periodicity and may be chaotic or randos.

This method is not conclusive, since motion could have
a2 long-period behavior that is not detected or quasiperiodic
motion where two or more periodic signals are present.

4. Fourier Spectrum

The presence of a broad band Fourier spectrum in the
output 1is another clue that may be used to suspect chaotic
vibrations. A precursor to chaos is the presence of w,/n
subharmonics. However, multiharmonic outputs do not always
imply chaotic vibrations as hidden degrees of freedom may be
present.

5. Phase Plane History

in the phase plane, complete information about a
dynamical system is represented by a point. At the next point
in time when the system dynamics change, the point is
displaced.

This moving point gives the history of the dynamical
system. The coordinates chosen for the study of dynamics,
typically, are the amplitude and velocity of motion. Figure 36
shows the phase plane of a simple pendulum. The circle on the
phase plane represents the motion over one cycle and is called
the trajectory. It should be noted that a periodic motion is

a closed orbit in the phase plane and is called a limit cycle.
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Figure 36. Phase plane of a pendulum [Ref. 21]

Chaotic motions have orbits that never close or repeat. As a
result, the trajectory of the orbits will tend to £i11 up the

phase plane.
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6. Pseudo-Phase-Space Method

This method is used when only one variable is available,
as in typical flight tests where measurements are Irom a
strain-gage or accelerometer. In order to do the 2-D phase
plot <from strain-gage measurements, the signal must be
differentiated. In the case of accelerometer data, the signal
has to be integrated twice.

However, by integrating or differentiating, the signal
is filtered [Ref. 22). Differentiating the signal will amplify
high frequencies and attentuate low frequencies. Integration
will have an opposite effect. As a result, phase plane plots
obtained from experimental data will be inaccurate. This
resulted in the development of the pseudo-phase-space method
or embedding space method. For a one degree system with a
measurement x(t), the signal is plotted against itself but
delayed or advanced by a fixed time constant: [(x(t), x(t+T)].
This plot yields properties similar to the classical phase
plane. The closed trajectory in the classical phase plot will
be closed in the pseudo-phase method and chaotic motion appear
chaotic in both phase planes.

When the state variables are greater than three
(position, velocity, time), higher dimension pseudo-phase-
space may be constructed using multiple time delays, i.e.,
(x(t), X(t+T), x(t+2T)).

The advantage of the pseudo-phase plane method is that

a single observable variable can be used to construct the
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pseudo phase picture and portray the system dynamics without
distorting the response through integration or
differentiation.

7. Poincaré Section

The Poincaré section can be coanstructed by placing a
two-dimensional surface in a three-dimensional phase space and
noting where the points of the trajectory penetrate this
surface. This slice will reveal the internal structure of this
location.

If the Poincaré section does not consist of a finite set
of points or a closed orbit, the motion may be chaotic. For
some lightly damped systems, the Poincaré section of chaotic
motion apbears as a set of unorganized points. This motion is
called stochastic and is shown in Figure 37a. In damped
systems, the Poincaré section appears more organized with
parallel lines as shown in Figures 37b and 37c. The Poincaré
sections can be enlarged to observe further structure (Figure
38). Aafter several enlargements, if the structured sets
continue to exist, the motion is defined as a strange
attractor. This embedding of structure within the structure
indicates fractal nature of the behavior, which is a strong

indicator of chaotic motions.

B. QUANTITATIVE TESTS FOR CHAOS
The previous section summarized gualitative methods that

require experience to evaluate chaotic systems. There are some
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Figure 37. Poincaré maps chaotic motion

quantitative measures to study chaotic motions. Two well-known
methods are the Lyapunov exponent and fractal dimension [Refs.
22, 25}. Trese methods are described below. The Lyapunov
exponent will not be used in this analysis and will be
discussed summarily.
1. Lyapunov Exponent

The Lyapunov exponent measures how sensitive the system

is to changes in initial conditions. It measures the

exponential attraction or separation, of two adjacent
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Figure 38. Poincaré map of chaotic vibration

trajectories in phase space with different initial conditions.

It is defined as
d(t) = deer (68)
or

L= log, (ggi) (69)

where d is the initial distance between two trajectories.
d(t) is the distance at a later time.

L is the Lyapunov exponent.
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B positive exponent implies d(t), the later distance
will be larger than the initial distance and indicates chaotic
dynamacs.

2. Fractal Dimension

The fractal dimension is another quantitative test for
chaos and gives a lower bound on the number of essential
variables needed to model the dynamics of the system. Non-
integer values for a fractal dimension indicates presence of
a strange attractor. [Refs. 22,25]

There are six ways to classify fractal dimensions. The
dimension that will be discussed in this analysis 1is the
correlation fractal dimension.

The correlation fractal dimension is defined as
clr) = r¢ (70)
where: C(r) is the probability of the attractor within a
circle, sphere or hypersphere of radius r, and d is the
fractal dimension.

By taking the natural logarithm of both sades of

equation (70) and solving for d, following equation results:

d = 1im

r~0

(e o

The procedure adapted in Sarigul-Klijn ({Ref. 22] is
described below:

1. Start with a point on the attractor and calculate the
number of points inside a circle of radius r.
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2. Calculate probability C(r) by dividing this number of
points by total number of points in the attractor.

3. Repeat this for several points along the attractor.
4. Compute C(r) for several values of r.

5. The slope of log (C(r)) versus log (r) gives d, the
correlation fractal dimension.

To obtain the correlation dimension of the attractor of
a given system, the procedure must be applied in the pseudo
phase space for several embedded dimensions. The asymptotic
value of the correlation dimension is the fractal dimension of

the attractor and is given by

N N
1
c = jim — H(z-|x,~ (72)
(r) 122 = Z:; (r-|x, = x,)

where: H(s) = 1 if s>0 and H(s) = 0 if s<0.

|%, - xJ is the Euclidean distance between the points.

N is total number of points.

If the fractal dimension is approximately equal to the
phase space used for the calculation, the attractor lies in a
higher dimensional phase space. If the fractal dimension is
non-integer and 1is independent of the dimension of phase

space, the signal is characterized as chaotic. [Ref. 22)

C. LACE SPACECRAFT BOOM AS A NONLINEAR SYSTEM
The booms for the LACT spacecraft have a constant EI
distribution [Ref. 0] and the respont~e would appear to be

linear. However, at each bay, battens are joined to the
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longerons by joints. Freeplay introduced at the joints tend to
intreduce nonlinearities. In this section, the spacecraft boom
clope is modeled and a parametric study to simulate the
influence of monlinearities introduced by the freeplay at the
joints on the system response is presented. The resulting
behavioer of the motion is studied using the methods of chaos
(Ref. 217,

Tiie LACE spacecraft boom is modeled as a nonlinear single-
degree of freedom system. The equation of motion for such a

system is described by
mu+f(u, U, t) = 3,coswt (73)
where £(u,u,t) contains nonlinear damping and stiffness terms.
The stiffness of the boom is modeled as
£ =AUt +B, ut+C, u+d,

and the damping as

o0 = AU + BU + G,
For the present analysis, the damping is assumed to be linear
and contains only the linear term corresponding to equivalent
viscous damping. The nonlinear stiffness contribution due to
the joints is modeled by the cubic term, Aju3. The linear term
representing the boom stiffness distribution is determined

from the experimental stiffness properties of the beam using

the relation
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K = 73

(14)

The coefficient for the cubic term is treated as a parameter
and as part of the parametric study, is varied as a function

of the linear term as follows
A, = C +nC (75)

where n .aries from .1 to t.5. The equation of motion reduces

to Duffing’s equation in the following form:

mu + By + Aud + CQu = Acoswt (76)

The response of this nonlinear system to a forcing function is
determined by approximating the derivatives as shown in the
equation of motion. A solution based on step-by-step
integration is used to generate the time response. A FORTRAN
program was developed based on the “linear acceleration
method" and is presented in Appendix I. The recursion formulas
used for the numerical integration is derived in the following
analysis.

in the linear acceleration method adopted here, the
acceleration is approximated for a given step by the following
relation:

(77)

. Ad
KJ(") = Uy + —A—ti'c

Integration of equation (77) yields
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(Ady) 52 (18
At 2

Ug,y = Uy + Ut +

and

2 Ad, 3 ’

Ug,y = Uy + UyT + ﬁ,fz— + -K-E’-% (79)

By using incremental quantities, Ap, Au, AY, and Aq, the
computational algorathm 1s set up. Equation (79) may be solved

for b and eguations (78) and (79) are be combined to give A\,

as follows:
6 L6 .
Ad; = —Sohug - Fou, - 3y, (80)
3 At
Aul = EAU: - 31}1 - ﬂ,-—z— (81)

Since equation (73) is satisfied at both t, and t,,,, it may be

written as
mAdy + C AU, + kAu, = Ap; (82)

Combining equations (80), (81), and (82) yields the

incremental equation of motion

KiAu, = Ap} (83)

where
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X=X - (30‘] (84)

i
8.

A—

+ 3Cu, + [’m + C'ZA:] G (85)

OnceAv, is determined Zrom eguation (83), AL, is obtained Zzom
equation (81) asnc A%, from equation (80). The updated values

of v, &, and T at step (i+1) is computed froa

U,,. = Uy + Aug
= ﬁ£ + Al’: (86)

oy = Ug + Al

»a

This step by step procedure described determines the
response of the LACE spacecraft boom modeled as a nonlinear
system. The numerical integration provides a time history of
the response, namely deflection, u, velocity, v, and
acceleration, a.

Since experimental data for a 23-foot LACE-model boom is
available from AEC-ABLE Engineering, the length of the boom
analyzed is taken to be 23 feet. In the parametric study, the
parameters varied are the excitation amplitude, frequency and
the coefficient of the cubic stiffness term. The excitation
amplitudes used gives deflections of 2.5%, 5%, 10%, 20%, and

25% of the length of the spacecraft boom. The frequencies used
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are 1/3w, and 3x,n. These frecuencies are chosen based on the
cubic term of the stiffpess that cemerates subharmonic and
superharmonic respoase at one-third and three times the
excitation frecuency, respectively. The coefficient of the
cubic stiffness term is varied from 2.1 to .5 of the lipneac
stifiness tern.

The constant terms used in the equation o motion are as

follows:

»

= 3.02 1bs/in

m = .1475 slugs

c .177 slugs/sec

w, = 4.6 rad/sec
where ¢ = 2/km{ - The damping factor{ was obtained from AEC-
ABLE Eangineering using the Logarithmic Decrement method. A 23
foot boom mounted in its deployment cannister rigidly attached
to a wall yields {=.039 and a 23-foot boom rigidly mounted to
a wall yields {=.001. The first case approximates the LACE

spacecraft configuration. Both damping cases are considered in

the present simulation.

D. CHAOTIC VIBRATION ANALYSIS

A comprehensive FORTRAN program called CHROS was ieveloped
by Sarigul-Klijn {Ref. 22} to analyze chaotic vibratiuns. The
time history data from the numerical simulation prgram is
used by the CHAOS program for the chaotic vibration analysis.

The program CHAOS currently has 12 analysis options. They are
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1. 2Plot the tize kistory

2. Plot onto toroidal phase space

3. Take Poincaré section of toroidal phase space
4. Plot onto 2-D phase space

5. Plot onto 2-D Van der Pol plane

6. Plot onto 3-D phase space

7. Take Poincaré section of 3-D phase space

8. 3-D Poincaré section of a 4-D hyperspace

9. Compute fourier power spectrum

10. Compute statistics

11. Compute Lyapunov exponent

12. Compute fractal correlation d.mension

As discussed earlier, the stiffness term is modeled as a
combination of linear and cubic terms. The coefficient of the
cubic term is varied as a percentage of the linear term from
10% to 50%, and is seen to yield no significant changes in the
response. Therefore, an average value of 30% is used in all
subsequent numerical simulation.

In order to focus the present study within the scope of
this research, the study is divided into four specific groups.
Each group is identified by excitation frequency and damping.
In each group, the excitation amplitudes are 20.8 lbs, 41.7
lbs, 83.4 lbs, 166.7 1lbs, and 208.4 1lbs respectively. This
yields a deflection of 2.5%, 5%, 10%, 20%, and 25% of the
length of the beam, respectively. Table VI contains the group

identification.
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Table VI GROUP IDENTIFICATION

] GROUP ’ 0 C
1.53 .77
E] 13.8 -177
C 1.53 .0454
D 13.8 .0454

The initial analysis consists of studying four qualitative
indicators of chaos. They are time history, fourier power
spectrum, pseudo-phase plane and Poincare section
respectively. Then, quantitative measures of the motion are
computed.

Figures 39-43 and 44-48 present the qualitative indicators
for cases A and B respectively. The time history is initially
transient and then becomes periodic in both cases. The fourier
power spectrum indicates a broad-band frequency spectrum, with
the number of spikes increasing with an increase in amplitude.
The pseudo-phase plane plot indicates that the motion settles
to a single limit cycle for case A and a double limit cycle
for case B. The Poincaré section is very sparse and indicates
a periodic system. The periodic time history also indicates a
non~chaotic response.

Figures 49-53 and 54-58 present the qualitative indicators
of chaos for groups C and D. In all cases, the time history is
seen to be non-periodic and the Fourier power spectrum ig
observed to be broad-band. In both cases, there appears to be

two limit cycles in the pseudo-phase plot. The Poincaré
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sections appear more dense than the previous groups and has
the appearance of a strange attractor. These systems appear to
be chaotic.

To ascertalin the guantitative nature of the response, the
fractal correlation dimension is computed for each group and
is shown in Table VII. Figures 59 and 60 show the fractal
dimension for increasing phase space dimension for two cases
of damping with F=20.8 and Q=1.53 respectively. The plots
for the other cases are given in Appendix J.

A non-integer fractal dimension is indicative of the
presence of chaos in a system [Refs. 22,23,24,25). This is
consistent with the qualitative indicators of groups C and D.
The inconsistency with groups A and B indicate that the
fractal dimension by itself does not confirm the strangeness
of the strange attractor as believed in the reported
literature and must be used in conjunction with other
indicators of chaos. Additional results pertaining to this

parametric study are reported elsewhere [Ref. 26].
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Table VII. FRACTAL DIMENSION

T i) c FRACTAL
DIMENSION

a) 20.8 1.53 .177 1.7
£1.7 i.53 .177 i.6
83.4 3.53 .177 1.7
166.7 1.53 .177 1.7
208.4 1.53 .177 1.7

5) 20.8 13.8 .177 3.2
41.7 13.8 .177 1.2
83.4 13.8 .177 1.3
165.7 13.8 .177 1.6
208.4 13.8 .177 1.4

) 20.8 1.53 .0454 2.05
51.7 1.53 0454 2.4
83.4 1.53 .0454 2.05
166.7 1.53 .0454 2.1
201.4 1.53 .0454 2.6

d) 20.8 13.8 .0454 2.1
41.7 13.8 .0454 2.4
13.4 13.8 .0454 1.95
166.7 13.8 .0454 2.1
208.4 13.8 .0454
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VIII. CONCLUSIONS AND SCOPE FOR FURTHER RESEARCH

A. CONCLUSIORS

A detailed finite-element rmodel of the LACE spacecrait has
been developed using the £finite element program GIFTIS. A
dynanic analysis was perZormed on the model to determine the

natural frequencies and mode shapes. This model will provide

e

a basis £for comparison when actual orbital test data is
avaiiable.

Thermoelastic effects of the LACE spacecrait boom were
investigated for a worst case temperature scenario. The
results indicated that the deflections induced would have
negligible effect on the cystems dynamics and would not affect
the on-orbit systems 3identification or induced thermal
flucter.

A preliminary study was conducted on a 23-foot section of
the LACE spacecraft boom to investigate the possibility of
chaotic wvibrations occuring by varying the excitation
amplitude and freguency. The system was modeled as a single-
degree-of-freedom system with arbitrary nonlinear stiffness,
and nonlinear damping excited by a sinusoidal function. A
numerical integration program was developed to determine the

system response using various excitation amplitudes and

frequencies. Four qualitative methods, time history, fourier
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power spectrum, pse.do-plane, and Poincaré section methods
vere used to evaluate chaotic vibrations. In addition,
quantitative amalysis aiacluded computation of correlation
fractal dimension. It was evidenced that a combination of ail
appoaches was needed to determine the nature of vibrations.
Chaotic vibrations were present .for the low-damped system
while periodic response was indicated £or highly damped
systems.

A non-integer correlation fractal dimension, which is
believed to be a guantitative indication of chaos in a systen,
was evidenced for both periodic and non-periodic responses of
the system. This important result, which 1is further bein
confirmed from analysis of £light test data [Ref. 21] shows
that the fractal dimension by itself is not enough to
characterize the attractors found in nonlinear dynamical
systems. Modeling the "looseness" of joints for triangular
space trusses by Moon & Li [Ref. 27}, who report interesting
chaotic behavior, was brought to the attention of the author
during the write-up of this report, which reveal the
importance of understanding the nonlinear dynamic behavior of

large flexible structures.

B. SCOPE FOR FUTURE RESEARCH
Future research may be beneficial in two main areas.
The first is the development of a multi-body dynamics model

of the LACE spacecraft. A structural model using GIFTS has
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already been developed. The results generated may be used to
rodel the flexibility effects, while other effects introduced
due to on-orbit, such as gravity gradients effects,
atmospheric drag, etc., may be evaluated. These models may be
used as baselines for comparison when the orbital test data
Zrom LACE becomes available. This comparison will provide an
opportunity for improvements and adequacy of these computer
models.

The availability of the orbital test data will provide
information needed to conduct a more detailed study of chaotic
vibrations on the fully deploved LACE spacecraft boom and
assess the sensitivity of the highly flexible boom structure
to accidental or intentional e2xcitation. Assessing the exact
nature of the response of large flexible space structures is
important for missious that require accurate pointing

accuracies and in suppression and control of vibraticns.
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APPENDIX A

! COM FILE TO GENERATE SIMPLE MODEL OF LACE SPACHCRAFT AND
! DERIVE %HE NATURAL FREQUENCIES.

L2 R L 7

! FILENAME IS LACE.COM
DEL LACE.*;*

$ BEAMCS

LACE

OLB/LACECS

QuIT

$ BULXM

LACE
OLB/X&CEBYM

$ GENERATES SOLID CIRCULAR BEAM USING PROCESSOR BEAMCS
$ FILENAME IS LACECS.SRC

CIRCS/1/.9585/

END

$ SIMPLE FINITE ELEMENT MODEL OF THE LACE SPACECRAFT USING
BULKM




$ FILENAME IS LACEBM.SRC
$ ESTABLISH THE KEYPOINTS OF THE MODEL

KPOINT/1/0,0,0/2/0,1800,0/3/0,~900,0/
KPOINT/4/0,0,1800/5/50,0,0/

$ DEFINE MATERIAL PROPERTIES
ELMAT,4/1/3.E3,8.E6,.29,.000014752/
$ DEFINE BEAM CHARACTERISTICS

S GENERATE THE BEAMS
SLINE,10/112/1,2,31/5/113/1,3,16/5/114/1,4,31/5/
END

$ GENERATES POINT MASSES FOR THE SPACECRAFT
$ FILENAME IS LACEBC.SRC
MASS/MASSP/1/6.4078E/2/.0906/3/.0906/4/.517/
END
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APPENDIX B

The following calculations model structural honeycomb
panels as aluminum panels with equivalent thickness and

weight. The stiffness for a honeycomb panel is given as

D= _f':thz

2(1 -v)

and the eguation for an aluminum plate is

Et3
D = e
12(1 -v?)
where
E=9.9 x 10° lbs/in?
v = .33
h = core thickness of honmeycomb panel
t = face thickness

Throughout this appendix the following notation is used.
p = density
V = volume
W = weight
where subscripts h indicates honeycomb core and f refers to

aluminum face skins. A panel size of 54" x 90" is assumed.

A. PRIMARY STRUCTURE

h=.9

n

t .05
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1. Determine Stiffness of Honeycomb Panel

o

I aé <
p= £2:2:600 C.OSV K907 . 5 55 4105 Ips./in
2(1-.33)°

2. Determine Equivalent Aluminum Plate Thicknessu

3 3 3
D= —EE _ o3 250x105 = {2:2x109) &
2(1-v) 2(1-.339)

t = .624 in
3. Determine Honeycomb Panel Mass
py* = 6 lbs/ft? = 3.47 x 107 lbs/in’

Pt = 9.81 x 10 lbs/in’
= .9 x 54 x 96 = 4665.6 in’

<<
o
I

.1 X 54 x 96 = 518.4 ind

=
*
1

W, = 4665.6 x 3.47 x 10 = 16.2 lbs

W = 518.4 x 9.81 x 10 = 50.8 lbs

casterik items remain constant throughout
calculations

Total weight = 67 1lbs

Total mass = _L.;_Zg_a_'__ = ,1734 (lbs-sec?)/in (GIFTS units)
386.4 in/sec?

4. Determine Equivalent Density

Volume of aluminum panel = .624 x54 x96 = 3234.8 in®

the

Equivalent density = ~2135(1b8~88C%) /N o ac4 105 (1bs ~sec?) /int

3234.8 in®

PP




B. SECONDARY STRUCTURE
1. Fixed and Deployable Solar Array Substrate
h = .4
t = .05

(9.9 x10%) (. 05) (.42 _ 4 44 x120%1bs-in
2(1-.33%)

D=
a. Determine Equivalent Aluminum Thickness

4.44 %104 Ibs-in = w
12{1-.332%)
t = .3634 in

b. Determine Honeycomb Panel Mass

.4 % 54 x 96 = 2073.6 in?

n

Yy

W. = 2073.6 x 3.47 x 103 = 7.195 1bs

h
Total weight = 58 1bs
Potal mass = 58/386.4 = .15 ibs-sec’/in
c. Determine Equivalent Density

Volume of aluminum panel = 1884 ind

Equivalent density = . 1224 =7.96 x10°3 1bs-sec?/in*

2. Deployable Sensor Panels
h = .65
t = .05

(9.9 x20% (.05) {:65)% _ 3 173 x10° lbs-in
2(1-~.33%)

D=

122
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C.

Determine Equivalent Aluminum Thickness

1.273 x10° = {2:2%209 £

12(1-.33%)
t = .502 in

Determine Honeycomb Mass

v, = .65 x 54 x 96 = 3369.6 in’

W, = 3369.6 x 3.47 x 10° = 11.7 1lbs

Total weight = 62.5 lbs

Total mass = .1617 lbs-sec®/in

Determine Equivalent Density

Volume of aluminum panel = .502 x 54 x 96 = 2602.4 in’

.1617

Bquivalent density = ———=— =6.22 x 1075 (Ibs-sec?®) /in*

2602.4
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APPENDIX C o

$ ! COM FILE TO GENERATE THE MAIN SPACECRAFT BODY
$ ! FILENAME IS XLACE.COM

DEL LACE.*;*

$ BEAMCS ,
LACE ?j
OLB/LACECS

QUIT

$  BULKM

LACE

OLB/LACEBM

QUIT

S EDITM

LACE

OLB/LACEM

QUIT

$ LOADBC

LACE

MASS

OLB/MASS

QUIT .

$ GENERATES THE BEAM CROSS SECTIONS FOR THE LACE SPACECRAFT

$ GENERATES THE FILE USING THE PROCESSOR BEAMCS '
$ SOURCE FILE NAME IS LACECS.SRC .
ANGLE,11/1/2.875,3/.25,.25/0,1.938/90/

TBEAM, 10/2/2.75,3/.25,.25/0,1.938/

CHANNEL/3/7.75,3/.125,.125/

CIRCH,1/9/5.605,5.5/0,5.5525/

END

$ GENERATES LACE SPACECRAFT MAIN STRUCTURE
$ GENERATES THE FILE USING THE PROCESSOR BULKM ’ i
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$ FILENAME IS LACEBM.SRC

$ ELEMENT MATERIAL DEFINITIONS

$ FRAME ELEMENTS

ELMAT,4/1/1.8E4,9.9E6,.33,2.5382E-4/

$ PRIMARY STRUCTURE

ELMAT,4/2/1.8E4,9.9E6,.33,5.364E~5/

$ SECONDARY STRUCTURE-FIXED AND DEPLOYABLE SOLAR ARRAY
SUBSTRATE

ELMAT,4/3/1.8E4,9.986,.33,8.1915E-5/

$ SECONDARY STRUCTURE-DEPLOYABLE SENSOR PANELS
ELMAT,4/4/1.8E4,9.9E6,.33,6.22E-5/

$ SECONDARY STRUCTURE-DEPLOYABLE SENSOR ARMS AND BOTTOM PANEL
ELMAT,4/5/1.8E4,9.9E6,.33,2.5382E-4/

$ DEFINE ELEMENT THICKNESS

$ PRIMARY STRUCTURE PANELS

ETH,1/4/.624/

$ SECONDARY STRUCTURE PANELS- SOLAR ARRAY SUBSTRATE
ETH,1/5/.3634/

$ SECONDARY STRUCTURE PANELS-DEPLOYABLE SENSOR PANELS
ETH,1/6/.502/

$ SECONDARY STRUCTURE PANELS~ DEPLOYABLE SENSOR ARMS AND
BOTTOM

$ PANEL

ETH,1/7/.125/

$ ESTABLISH THE KEYPOINTS FOR THE PRIMARY STRUCTURE
KPOINT/1/26,26,0/2/~26,26,0/3/26,-26,0/4/-26,-26,0/

KPOINT/5/26,26,41.75/6/-26,26,41.75/7/26,-26,41.75/8/-26,-26
141,75/
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KPOINT/9/26,26,68.375/10/-26,26,68.375/11/26,-26,68.375/
KPOINT/ 12/-26,~26,68.375/13/26,26,96/
KPOINT/14/-26,26,96/15/26,-26,96/16/-26,-26,96/

$ ESTABLISH KEYPOINTS FOR THE CIRCULAR ARCS

$ SIDE C+Y
KPOINT/17/13,26,68.375/18/13,26,76.5/19/13,26,87.5/20/13,26,
96/

KPOINT/21/18.5,26,82/22/7.5,26,82/

$ SIDE C-Y

KPOINT/23/-13,~26,68.375/24/-13,~26,76.5/25/~13,-26,87.5/
KPOINT/26/-13,-26,96/27/-7.5,~26,82/28/-18.5,-26,82/

$ SIDE +2

KPOINT/29/26,0,96/30/5.5,0,96/31/-5.5,0,96/32/-26,0,96/
KPOINT/33/0,-5.5,96/34/0,5.5,96/

$ GENERATE VERTICAL ANGLE BEAM MEMBERS FOR C~SECTION PANELS
LETY/BEAM2/1,1/
SLINE,10/L913/9,13,6/10/L1014/10,14,6/9/L1216/12,16,6/10/
SLINE,10/L1115/11,15,6/9/

$ GENERATE VERTICAL ANGLE BEAM MEMBERS FOR B-SECTION PANELS
?giNE,10/L59/5,9,3/6/L610/6,10,3/5/L812/8,12,3/7/L711/7,11,3

$ GENERATE VERTICAL ANGLE BEAM MEMBERS FOR A-SECTION PANELS
SLINE,10/L15/1,5,3/2/L26/2,6,3/1/L48/4,8,3/3/L37/3,7,3/1/

$ GENERATE HORIZONTAL ANGLE BEAMS FOR TOP AND BOTTOM MEMBERS
$ BOTTOM MEMBERS
SLINE/L12/1,2,6/L34/3,4,6/L13/1,3,5/L24/2,4,5/

$ TOP MEMBERS

SLINE/L1320/13,20,2/L1420/14,20,5/L1432/14,32,3/L1632/16,32,3/
SLINE/L1626/16,26,2/L1526/15,26,5/L1329/13,29,3/L1529/15,29,3/

$ GENEKATE HORIZONTAL T-SECTION BEAM MEMBERS
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$ B-SECTION PENZLS

LETY/BERM2/1,2/ _
SLINE,10/L56/5,6,6/1/%18/7,8,6/5/151/5,1,5/6/68/6,8,5/5/
$ C-SECTION PRNEL
SLINE,10/L917/9,17,2/13/L1017/10,17,5/14/51012/10,12,5/9/
SLINE,10/L1223/12,23,2/10/L1123/11,23,5/9/1911/9,11,5/30/

$ GENZRATE LINES ASSOCIATED WITHE CIRCULAR RRCS

&

SLINE/L1718/17,18,2/11920/19,20,2/12324/23,24,2/L2526/25,26,2/
SLINE/L2930/29,30,2/L3332/31,32,2/

$ GENERRTE CIRCULRR ARCS

$ C+Y¥ SIDE PRNEL
CARRC/C1819/18,22,19,4/C1918/3:9,21,18,4/
$ C-¥Y SIDZ PANEL
CARC/C1819/18,22,19,4/C1918/19,21,18,4/

$ C-¥ SIDE PAN

L

tn

CARC/C2425/24,28,25,4/C2524/25,27,24,4/

$ TOP PANEL +2

CARC/C3031/30,33,31,4/C3130/31,34,30,4/

$ GENERATE COMPLINES
COMPLINE/L1314/L1320,L1420/L1416/L1432,L1632/1-1315/L1329,L15
29/

COMPLINE/L1516/L1526,L1626/L1720/L1718,C1819,L1920/
COMPLINE/L2017/L1920,C1918,L1718/L2326/12324,C2425,L2526/
COMPLINE/L2326/L2324,C2425,L2526/L2623/1L2526,C2524,L2324/
COMPLINE/L910/1917,L1017/L1112/L1123,L1223/
COMPLINE/L2932/L2930,C3031,L3132/L3229/L3132,C3130,L2930/
$ GENERATE GRID ELEMENTS

GETY/QB4/2,4/

$ A-PANELS

GRID4/A+Y/L12,L56,L15,L26/A-X/L24,L68,L26,L48/
GRID4/A-Y/L34,L78,L48,L37/A+X/L13,L57,L15,L37/
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S B-PENZLS

ZRID%/B+¥/L56,1910,L59,5L610/3-%X/5L68,L1012,L610,L812/
GRID4/3-¥/L78,L1112,1812,5711/3+%/L57,L911,L59,5232

Sy

$ GENERZIE C-DPRNELS
GRID%/C+YL/1917,12017,51320,1913/C+¥R/L1017,01014,53426,L2720/
GRID%/C-¥ J/L1223'L2326’d1626,D 216/C-~-¥R/L13123,1L1115,51526,12
giféé/c—xl 1913,11315,L1115,1911/C-¥%/L1014,L1416,101216,L2022/
$ GENERATE TOP PANEL
GRID4/ZL/L1529,L1516,11632,52932/2R/11329,L3229,51432,L1314/
$ GENERATE RT PANEL

GRID4/RF/L56,168,L78,1L57/

$ GENERATE BOTTOM PANEL

GETY/QB4/5,7/
GRiD4/30TTOM/L12,L24,L34,L13/

$ GENERATE XEYPOINTS FOR SENSOR PANELS AND SENSOR ARMS

XPOINT/35/19,26,0/36/19,75.25,0/37/-19,26,0/38/~19,75.25,0/
KPOiINT/39/-26,19,0/40/-75.25,19,0/41/-26,-19,0/42/-75.25,-19
0/
KPOINT/43/-19,-26,0/44/-19,-75.25,0/45/19,-26,0/46/19,~75.25
:0/
XPOINT/47/26,-19,0/48/75.25,-19,0/49/26,19,0/50/75.25,19,0/
KPOINT/51/79.03,79.03,0/52/-79.03,79.03,0/53/-79.03,-79.03,0/
KPOINT/54/79.03,-79.03,0/

$ GENERATE LINES FOR SENSOR PANELS
SLINE/L3536/35,36,5/1L3738/37,38,5/L3537/35,37,4/L3638/36,38,4/
SLINE/L4344/43,44,5/L4546/45,46,5/1L4345/43,45,4/14446/44,46,4/
SLINE/L4748/47,48,5/L4950/49,50,5/L4749/47,49,4/14850/48,50,4/
$ GENERATE GRID ELEMENTS

GETY/QB4/4,6/

GRID4/+Y/L3536,L3738,L3537,L3638/-X/1.3940,L4142,L3941,L4042/
GRID4/-Y/L4344,L4546,L4345,L4446/+X/L4748,L4950,1L4749,L4850/

$ GENERATE CHANNEL BEAM ELEMENTS FOR SENSOR ARMS
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LETY/2ERM2/3,1/
SLiNZ2,10/L151/1,5%,6/52/5252/2,52,6/51/3453/4,53,6/5%4/
SLINE,10/L354/3,54,5/53/

$ GENERATE XKEYPOINTS FOR SOLER PRNEL FOLDOUTS
KPO0IKT/55/24,26,96/56/24,68.5,96/57/-24,26,96/58/-24,68.5,96/
KPOINT/59/-26,24,96/60/-68.5,24,96/61/-26,-24,96/62/-68.5,-2
4£,9¢/
XPOINT/63/-24,-26,96/64/-24,-68.5,96/65/24,-26,96/66/24,-68.
5,95/
XPOINT/67/26,-24,96/68/68.5,-24,Y6/69/26,24,96/70/68.5,24,96/
$ GENERATE LINES FOR SOLAR PANEL FOLDOUTS
SLiINE/L5556/55,56,3/1L5758/57,58,3/L5557/55,57,3/L5658/56,58,3/
SLINE/L5960/59,60,3/L6162/61,62,3/1L5961/59,61,3/1L6062/60,62,3/
SLINE/L6364/63,64,3/L6566/65,66,3/1.6365/63,65,3/16466/64,66,3/
SLINE/L6768/67,68,3/16970/69,70,3/1L.6769/67,69,3/L6870/68,70,3/
$ GENERATE GRID ELEMENTS

GETY/QB4/3,5/

GRID4/D+Y/L5556,1L5758,L5557,L5658/D-X/L5960,L6162,L5961,L6062/
GRID4/D-Y/16364,L6566,L6365,L6466/D+X/L6768,L6970,16769,L6870/

$ GENERATE KEYPOINTS FOR SOLAR FIXED PANELS
$ A+Y PANELS

XPOINT/71/-26,26,20/72/-26,26,46/73/-14,26,46/74/-14,26,60/
KPOINT/75/14,26,60/76/14,26,46/77/26,26,46/78/26,26,20/

$ A-Y
KPOINT/79/26,-26,20/80/26,-26,46/81/14,-26,46/82/14,-26,60/
gg?INT/83/—14,—26,60/84/-14,—26,46/85/-26,—26,46/86/-26,—26,
$ C4+X
KPOINT/87/26,26,30/88/26,26,45/89/26,14,45/90/26,14,56.01/
KPOINT/91/26,26,56.01/92/26,26,88.5/93/26,-26,88.5/94/26,~-26
éggi3%;95/26,—14,56.01/96/26,-14,45/97/26,-26,45/98/26,-26,30/
$ C-X
EPgi?T/99/-26,26,30/100/—26,26,45/101/—26,14,45/102/—26,14,5
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) XPOINT/103/-26,26,56.01/104/-26,26,88.5/105/-26,-26,88.5/
KPOINT/106/-26,-26,56.01/107/-26,-14,56.01/108/-26,-14,45/
KPOINT/109/-26,-26,45/110/-26,-26,30/

END

$ EDIT THE MODEL-GENERATE VERTICAL ANGLE BEAM ELEMENTS
$ GENERATES THE FILE USING THE PROCESSOR EDITM
$ FILE NAME IS LACEM.SRC

PTRM/1/PTRTH/1

$ GENERATE TOP ANGLE MEMBERS
BEAM2/13,55,29/20,55,29/20,57,32/14,57,32/
BEAM2/14,59,20/32,59,31/32,61,31/16,61,26/
BEAM2/16,63,32/26,63,32/26,65,32/15,65,29/
BEAM2/15,67,26/29,67,26/29,69,30/13,69,20/

$ GENERATE BOTTOM ANGLE MEMBERS
BEAM2/1,35,3/35,37,3/2,37,4/
BEAM2/2,39,1/39,41,1/4,41,3/
BEAM2/4,43,2/43,45,2/3,45,1/

BEAM2/3,47,4/47,49,4/1,49,2/
BEAM2/419,422,1/411,414,1/135,139,1/138,142,1/

$ GENERATE HOLLOW CIRCULAR BEAM CROSS SECTION FOR CYLINDRICAL

$ CANNISTERS
PTRTH/9/
BEAM2/19,364,9/25,352,9/31,405,9/

END

GENERATES THE FILE USING THE PROCESSOR LOADBC
SOURCE FILE NAME IS MASS.SRC

GENERATE MASS DISTRIBUTIONS FOR A-PANELS

7. R 7 R 72 B 7 S ¥ ]

MASS LOADING FOR A-Y PANEL
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¥ASSP/8/6.31E~3/166/1.54E-2/165/1.652-2/
MASSP/164/1.65E-2/163/1.198-2/7/2.87E~3/
MASSP/133/9.76E-3/325/2.48E-2/324/2.25E~2/
MASSP/323/2.25E-2/322/1.65E-2/134/7.4E-3/
MASSP/4/6.31E~3/142/1.23E-2/141/8.88E-3/
MASSP/140/8.882-3/139/7.4E-3/3/7.4E-3/

$ HASS LOADING FOR A+Y PANEL

MASSP/5/2.87E-3/159/1.37E-2/160/2.03E-2/
MASSP/161/1.61E-2/162/9.47E-3/6/2.87E-3/
MASSP/131/5.27E-3/315/1.61E-2/316/2.69E-2/
MASSP/317/2.93E-2/318/1.61E-2/132/2.87E-3/
MASSP/1/5.27E-3/135/5.27E-3/136/9.47E-3/
MASSP/137/1.61E-2/138/9.47E-3/2/2.87E-3/

$ MASS LOADING FOR A-X PANEL

MASSP/6/7.01E-3/170/1.86E-2/171/3.07E-2/
MASSP/172/2.36E-2/8/7.97E-3/
MASSP/132/2.55E-2/319/5.57E-2/320/7.22E-2/
MASSP/321/4.66E-2/133/7.97E-3/
MASSP/2/2.2E-2/146/4.05E-2/147/4.48E~2/
MASSP/148/2.64E-2/4/3.44E-3/

$ MASS LOADING FOR A+X PANEL
MASSP/7/3.44E-3/169/1.88E-2/168/2.3E-2/
MASSP/167/7.66E-3/5/3.44E-3/
MASSP/134/1.32E-2/328/4.7E-2/
MASSP/327/6.0E-2/326/3.89E-2/131/1.62E-2/
MASSP/3/1.32E-2/145/3.16E-2/144/4.03E-2/
MASSP/143/3.46E-2/1/1.62E-2/

$ GENERATES MASS DISTRIBUTIONS FOR B-PANELS
$ MASS LOADING FOR B+Y PANEL
MASSP/5/8.4E-3/127/8.4E-3/329/8.4E-3/159/8.4E-3/
MASSP/160/1.92E-3/330/1.92E-3/161/3.4E-2/
MASSP/331/3.4E-2/162/1.59E-2/332/1.59E-2/

$ MASS LOADING FOR B-X PANEL
MASSP/170/7.47E-3/171/7.47E-3/172/7.47E-3/
MASSP/333/7.47E~3/335/7.47E-3/
MASSP/334/8.9E-3/177/2.16E-3/

$ MASS LOADING FOR B+X PANEL
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MASSP/11/4.27E-3/184/8.83E-3/183/9.81E-3/
MASSP/182/1.7E-2/9/1.24E-2/130/4.27E-3/
MASSP/342/1.34E-2/341/1.89E-2/340/3.48E-2/
MASSP/127/2.57E-2/7/6.91E-4/169/5.25E-3/
MASSP/168/9.81E-3/167/1.79E-2/5/1.39E~2/

$ GENERATES MASS DISTRIBUTIONS FOR C-PANELS
$ MASS LOADING FOR C+Y PANEL

MASSP/344/3.96E~3/345/3.96E-3/347/3.96E-3/
MASSP/348/3.96E-3/174/3.96E-3/175/3.96E~3/

$ MASS LOADING FOR C-Y PANEL

MASSP/181/4.84E~3/357/4.84E-3/360/9.68E-3/
MASSP/363/4.84E-3/366/4.84E-3/
MASSP/180/4.84E-3/356/4.84E-3/359/9.68E-3/
MASSP/362/4.84E-3/365/4.84E-3/

$ MASS LOADING FOR C-X PANEL

MASSP/379/8.67E~3/380/8.67E~3/383/8.67E-3/
MASSP/384/8.67E-3/387/8.67E-3/388/8.67E-3/

$ MASS LOADING FOR C+X PANEL

MASSP/158/3.35E~3/378/3.35E-3/368/3.08E-3/
MASSP/369/3.08E-3/372/3.08E-3/373/3.08E-3/
MASSP/371/3.81E-3/

$ GENERATES MASS DISTRIBUTIONS FOR THE TOP PANEL

MASSP/16/5.29E-3/153/4.21E-3/32/3.56E~3/
MASSP/152/9.7E-4/14/2.06E-3/15/2.06E~3/
MASSP/158/9.7E-4/29/9.7E-4/157/9.7E=4/
MASSP/13/2.06E-3/26/5.71E-3/156/3.77E-3/
MASSP/155/3.77E-3/154/2.47E-3/149/2.47E-3/
MASSP/150/3.44E~3/151/3.44E-3/20/2.47E-3/
MASSP/394/4.21E-3/393/2.26E-3/392/2.26E=-3/
MASSP/391/9.7E-4/30/9.7E-4/193/9.7E~4/
MASSP/194/9.7E-4/31/9.7E~4/195/9.7E-4/
MASSP/196/9.7E-4/398/9.7E-4/397/1.94E-3/
MASSP/396/1.94E-3/395/9.7E-4/

$ GENERATE MASS DISTRIBUTIONS FOR THE RF PANEL
MASSP/8/2.16E-3/172/2.16E~3/171/2.52E-3/

MASSP/170/2.16E-3/6/2.16E-3/166/5.49E-3/
MASSP/410/1.29E-2/406/8.34E-3/402/2.16E-3/
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MASSP/162/2.16E-3/165/6.0E-3/409/1.18E-2/
14ASSP/405/1.66E-2/401/1.07E-2/161/1.07E-2/
MASSP/164/6.0E-3/408/9.88E-3/404/2.32E-2/
MASSP/400/1.93E-2/160/1.93E-2/163/5.49E-3/
MASSP/407/9.37E-3/403/1.46E-2/399/1.07E-2/
MASSP/159/1.07E-2/7/2.56E-3/169/6.03E-3/
MASSP/168/6.32E-3/167/2.16E-3/5/2.16E-3/

$ GENERATES MASS DISTRIBUTION ON THE BOTTOM PANEL

MASSP/4/5.85E-3/148/9.65E-3/147/1.06E-2/
MASSP/146/8.36E-3/2/5.85E-3/142/3.19E-2/

MASSP/422/3
MASSP/138/1
MASSP/417/6.
MASSP/140/2.
MASSP/412/3.
MASSP/419/3

.77E-2/418/1
.28E-2/141/2

07E-2/413/4
57E-2/420/5
3%E-2/136/5

.78E-2/415/1

.73E-2/414/2.23E-2/
.83E-2/421/5.5E~2/
.34E-2/137/1.15E-2/
.8E~-2/416/6.21E~2/
.91E-3/139/2.94E-2/
.9E-2/411/1.56E~2/

MASSP/135/7.
MASSP/144/8.

14E~-3/3/5.85E~3/145/7.14E-3/
62E-3/143/1.1E~2/1/5.85E-3/

$ GENERATES MASS DISTRIBUTIONS ON THE SENSOR PANELS AND SENSOR
ARMS

$ GENERATE MASS LOADINGS FOR THE SENSOR ARMS

MASSP/1/8.16E-3/283/7.89E-3/284/1.12E~2/
MASSP/285/7.89E-3/286/8.16E-3/51/7.89E-3/
MASSP/2/8.16E-3/287/7.89E-3/288/1.12E-2/
MASSP/289/7.89E-3/290/8.16E-3/52/7.89E~3/
MASSP/3/8.16E-3/295/7.89E-3/296/1.12E-2/
MASSP/297/7.89E-3/298/8.16E-3/54/7.89E-3/
MASSP/4/8.16E-3/291/7.89E-3/292/1.12E~2/
MASSP/293/7.89E-3/294/8.16E-3/53/7.89E-3/

$ GENERATE MASS LOADINGS FOR THE SENSOR PANELS
$ GEWERATE MASS LOADINGS FOR +Y PANEL

MASSP/37/7.83E-3/246/6.47E-3/247/5.56E-3/
MASSP/248/5.63E-3/38/6.02E-3/
MASSP/250/4.66E-3/426/1.22E-2/
MASSP/427/1.22E-2/428/7.18E-3/252/4.66E-3/
MASSP/249/4.66E-3/423/1.22E-2/424/1.22E-2/
MASSP/425/7.18E-3/251/4.66E-3/
MASSP/35/6.02E-3/243/6.47E-3/
MASSP/244/5.56E~3/245/5.63E-3/36/6.02E-3/

$ GENERATE MASS LOADINGS FOR -X PANEL
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MASSP/41/3.49E-3/256/4.66E-3/257/3.49E-3/
MASSP/258/4.14E-3/42/5.43E-3/
MASSP/260/1.87E-2/431/1.93E-2/
MASSP/432/6.66E-3/433/6.28E-3/262/4.08E-3/.
MASSP/259/1.87E-2/429/2.11E-2/430/6 .66E-3/
MASSP/431/6.28E-3/261/4.08E-3/39/5.3E-3/253/2.85E-3/
MASSP/253/2.85E-3/254/3.49E-3/255/4.14E~-3/40/5.43E~3/

$ GENERATE MASS LOADINGS FOR -Y PANEL

MASSP/44/6.3E-3/265/5.91E~3/264/5.85E-3/
MASSP/263/6.75E-3/43/8.11E-3/271/4.94E-3/
MASSP/437/7.47E-3/436/1.25E-2/435/1.25E-2/
MASSP/269/4.94E-3/272/4.94E-3/440/7.47E-3/
MASSP/439/1.25E-2/438/1.25E-2/270/4.94E~3/
MASSP/46/6.3E-3/268/5.91E~3/267/5.85E-3/
MASSP/266/8.57E-3/45/6.3E~3/

$ GENERALE MASS LOADINGS FOR +X PANEL

MASSP/48/5.14E-3/275/4.79E-3/274/3.45E-3/
MASSP/273/2.55E-3/47/4.79E-3/281/3.78E-3/
MASSP/443/5.98E-3/442/8.18E-3/441/3.78E-3/
MASSP/279/4.79E-3/282/3.78E-3/446/5.07E-3/
MASSP/445/8.18E-3/444/3.71E~-3/280/3.78E=-3/
MASSP/50/5.14E-3/278/4.79E-3/277/3.84E=-3/
MASSP/276/2.48E-3/49/3.78E-3/

$ GENERATES GRID MASS FOR SOLAR PANELS
$ SURFACE MOUNT SOLAR PANELS

MASSG/A+Y/1.531815E-5,1.531815E-5,1.531815E~5,1.531815E-5/
MASSG/A-Y/1.531815E-5,1,.531815E-5,1.531815E~5,1.531815E-5/
MASSG/B+Y/2.402E-5,2.402E-5,2.402E-5,2.402E~5/
MASSG/B-Y/2.402E-5,2.402E-5,2,.402E-5,2.402E-5/
MASSG/A+X/1.196E-5,1.196E-5,1.196E~5,1.196E-5/
MASF3/A-X/1.196E-5,1.196E-5,1.196E-5,1.196E~5/
MASSG/B+X/1.8755E-5,1.8755E-5,1.8755E-5,1.8755E-5/
MASSG/B-X/1.8755E-5,1.8755E-5,1.8755E~5,1.8755E-5/
MASSG/C+X/1.8076E~5,1.8076E-5,1.8076E-5,1.8076E-5/
MASSG/C-X/1.8076E-5,1,8(76E~5,1.8076E~5,1.8076E-5/

$ DEPLOYED SOLAR PANELS

MASSG/D+X/6.343E-6,6.343E-6,6.343E-6,6.343E~6/
MASSG/D-X/6.343E-6,6.343E-6,6.343E-6,6.343E-6/
MASSG/D+Y/6.343E-6,6.343E-6,6.343E-6,6.343E-6/
MASSG/D-Y/6.343E-6,6.343E-6,6.343E~6,6.343E~6/

$ DETERMINES MISCELLANEOUS UNACCOUNTED MASS
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$ DISTRIBUTED OVER SPACECRAFT PANELS
$ A-PANELS
MASSG/A+X/1.4691E-5,1.4691E-5,1.4691E~5,1.4691E~5/
MASSG/A-X/1.4691E-5,1.4691E~-5,1.4691E-5,1.4691E~5/
MASSG/A+Y/1.4691E-5,1.4691E-5,1.4691E~5,1.4691E~5/
MASSG/RA+Y/1.4691E-5,1.4691E-5,1.4691E-5,1.4691E~5/

$ B-PANELS
MASSG/B+X/2.303662E-5,2.303662E-5,2.303662E-5,2.303662E-5/
MASSG/B-X/2.303662E-5,2.303662E-5,2.303662E-5,2.303662E-5/
MASSG/B+Y/2.303662E-5,2.303662E-5,2.303662E~5,2.303662E-5/
MASSG/B-X/2.303662E-5,2.303662E-5,2.303662E-5,2.303662E-5/
$ C-PANELS

MASSG/C+X/2.2202728E-5,2.220272E~5,2.220272E-5,2.220272E-5/
MAS3G/C-%/2.220272E-5,2.220272E-5,2.220272E-5,2.220272E-5/

$ TOP PLNEL

MASSG/2L/5.897597E-6,5.897597E-6,5.897597E-6,5.897597E-6/
MASSG/ZR/5.897597E-6,5.897597E-6,5.897597E-6,5.897597E-6/

$ RF PANEL
MASSG/RF/1.226228E-5,1.226228E-5,1.226228E-5,1.226228E-5/

$ BOTTOM PANEL
MASSG/BOTTOM/1.179519E-5,1.179519E-5,1,179519E-5,1.179519E-5/

END
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APPENDIX E

0’ TRUSS 2

S k
DY OF THE SPRCECRATT

OL3/TRUSCS
QUIT

$ BULRM
TRUS150
OL3/TRS1503x%
QUIT

$ LORD3C
TRES1ISO0
OL3/TRUSBC
OLB/TRSMAS1S

$ DEFC
TRUS15
6

S
0

TRUS150
$ STASS
TRUS150
$ DECOY
TRUS150
$ REDCS
TRUS150

! FILENAME IS TRUSCS.SRC

SUBSTRUCTIURE 7O 3=

! GENERATES CROSS SECTION TYPE AND DIMENSION OF BEAM ELEMENTS

CIRCS/8/.075/END
! BULKM FILE THAT GENERATES 150’ TRUSS

! FILENAME IS TRUS150BM.SRC

156




ELMRT,£/6/6.0E4,8.056,.29,1.940994E-4/
XP0ix7T/1/0,0,4£.763/2/0,8.25,0/3/0,0,-4£.763/4/1800,0,4.763/
XPOI NT/5/1800 8.25,0/6/1800,0,-4.763/7/90,0,50/
LETY/BERM2/6,8/
SLINE,10/L14/1,4,301/7/1L36/3,6,301/7/L25/2,5,301/8/L12/1,2,3
/17/
SLINE,10/1.23/2,3,3/7/L13/1,3,3/7/545/4,5,3/7/L56/5,6,3/1/
SLINE,10/146/4,6,3/7/

END

[}

DITH FILE TO ADD BATTENS AND DIAGONALS TO THE 150’ TRUSS

3]

ILENAME IS TRS150EM.SRC

!
PTRTH/8/PTRTM/6/

$ VERTICRL MEMBERS

BEAM2/9,307,7,149/157,455,7/158,307,7,149/306,455,7/

$ BOTTOM MEMBERS

BEAM2/9,158,7,149/157,306,7/

$ DIAGONAL MEMBERS

ETH,1/9/.001963/

DTRTH/9/

ROD2/9,159,148/156,306/10,158,148/157,305/9,308,148/156,455/

ROD2/10,307,148/157,454/158,308,148/305,455/159,307,148/306,

454/

ROD2/1,307/2,9/3,9/1,158/3,307/2,158/4,455/5,157/5,306/6,455/

ROD2/6,157/4,306/

END

! GENERATES POINT MASSES FOR THE 150’ TRUSS

! FILENAME IS TRSMAS15.SRC

MASSP/1/2.71E-5/2/2.71E-5/3/2.71E-5/
MASSP/4/2.71E~-5/5/2.71E-5/6/2.71E-5/
MASsp/9,307,299/2.71E-5,2.71E-5/308,606,299/2.71E~5,2.71E-5/
MASSP/6C7,905,299/2.71E-5,2.71E-5,

END
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POINT
440
441
442
443
444
445
4456
447
448
449
450

b O b b (D beh Ol b CD

MASS X

.234E-02
.650E-03
.305E-02
.085E-92
.980E-03
.305E-02
.940E-03
.842E-02
.842E-02
.583E-03
.842E-02

b b b b D b QO peh e CD e

1ASS ¥

.234E-02
.G50E-03
.305E-02
. 085E-02
.580E-03
.907E+00
.994E~-02
.842E-02
.842E-02
.842E-02
.842E-02
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1ASS 2

.234E-02
.650E-03
.300E-02
.085E-02
.980E-03
.305E-02
.940E-03
.383E-03
.842E-02
.842C-02
.B42E-02




APPENDIX F

$ ! CO¥ FILE TO GENERATE AND CONNECT SPACECRAFT TRUSSES
$ ! FILENAME IS TRUSS.COM
DEL TRUSS.*;*

$ BEAMCS
LACE
OLB/TRUSCS
QUIT

$BULKM

LACE
OLB/TRUSSBM
QUIT

$ EDITM
LACE
OLB/TRUSSEM
QUIT

$ LOADBC
LACE
OLB/TRUSMASS
QUIT

$ GENERATES THE FILE FOR THE THREE TRUSSES OF THE LACE
$ SPACECRAFT USING THE PROCESSOR BULKM

$ BULKM FILE TO GENERATE 150 FOOT TRUSS IN +Y DIRECTION
$ ELEMENT MATERIAL

ELMAT,4/6/6.0E4,8.0E6,.29,1.94099E~4/

KPOINT/451/8.237,26,79.25/452/8.237,1826,79.25/
KPOINT/453/13,26,87.5/454/13,1826,87.5/
KPOINT/455/17.763,26,79.25/456/17.763,1826,79.25/
KPOINT/457/67.763,926,79.25/

LETY/BEAM2/6,8/
SLINE,10/LTR12/451,452,301/457/LTR34/453,454,301/457/
SLINE,10/LTR56/455,456,301/457/LTR13/451,453,3/457/
SLINE,10/LTR35/453,455,3/457/LTR15/451,455,3/457/
SLINE,10/LTR24/452,454,3/457/LTR46/454,456,3/457/
SLINE,10/LTR26/452,456,3/457/

$ FILE TO GENERATE 150 FOOT TRUSS IN +Z DIRECTION
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$ ELEMENT MATERIAL
ELMAT,4/6/6.024,8.026,.29,1.94099E-4/

XPOINT/458/2.75,4.763,96/460/-5.5,0,96/
KPOINT/462/2.75,-4.763,96/459/2.75,4.763,1896/
XPOINT/461/-5.5,0,1896/463/2.75,~4.763,1896/
KPOINT/470/52.75,0,996/

LETY/BEANM2/6,8/

SLINE,10/LTR89/458,459,301/470/LTR6263/462,463,301/470/
SLINE,10/LTR01/460,461,301/470/LTR5860/458,460,3/470/
SLINE,10/LTR6062/460,462,3/470/LTR5862/458,462,3/470/
SLINE,10/LTR5961/459,461,3/470/LTR6163/461,463,3/470/
SLiINE,10/LTR5963/459,463,3/470/

$ GENERATES A FILE TO CONNECT 75 FOOT -Y-TRUSS BOOMS TO
$ MAIN SPACECRAFT

KPOINT/464/-17.763,-26,79.25/
KPOINT/466/-13,-26,87.5/
KPOINT/468/-8.237,-26,73.25/
KPOINT/465/~17.763,-926,79.25/
KPOINT/467/-13,-926,87.5/
KPOINT/469/-8.237,-926,79.25/
KPOINT/471/67.763,-463,79.25/

LETY/BEAM2/6,8/
SLINE,10/L46869/468,469,151/471/1.46465/464,465,151/471/
SLINE,10/L46667/466,467,151/471/L46567/465,467,3/471/
SLINE,10/L46769/467,469,3/471/L46569/465,469,3/471/
SLINE,10/L46466/464,466,3/471/L46668/466,468,3/471/
SLINE,10/L46468/464,468,3/471/

END

$ GENERATES BATTENS AND DIAGONALS FOR SPACECRAFT TRUSS
$ USING THE PROCESSOR EDITM

$ FILENAME IS TRUSSEM.SRC

$ THIS FILE MERGES THE TRUSSES TO THE SPACECRAFT
MERGEP/546/451/19/453/549/455/

MERGEP/557/548/31/461/553/462/
MERGEP/550/464/25/466/553/468/
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$ GENERATES VERTICAL,BOTTOM,DIRGONAL MEMBERS FOR 150 FT TRUSS
$1I

$ VERTICAL/BOTTOM MEMBERS
BEAM2/974,1273,457,299/1272,1571,457/
BEAM2/675,974,457,299/973,1272,457/
BEAM2/675,1273,457,299/973,1571,457
$
$
$

GENERATES BATTENS AND DIAGONALS FOR SPACECRAFT TRUSS
USING THE PROCESSOR EDITM

FILENAME IS TRUSSEM.SRC
$ THIS FILE MERGES THE TRUSSES TO THE SPACECRAFT
MERGEP/546/451/19/453/549/455/
MERGEP/557/548/31/461/553/462/
MERGEP/550/464/25/466/553/468/

$ GENERATES VERTICAL,BOTTOM,DIAGONAL MEMBERS FOR 150 FT TRUSS
$ IN THE +Y DIRECTION

PTRTH/8
PTRM/6

$ VERTICAL/BOTTOM MEMBERS
BEAM2/974,1273,457,299/1272,1571,457/
BEAM2/675,974,457,299/973,1272,457/
BEAM2/675,1273,457,299/973,1571,457

$ DIAGONAL MEMBERS

ETH,1/10/.001963/

PTRTH/10/
ROD2/455,675/451,1273/455,974/453,1273/453,675/451,974/
ROD2/975,1273,298/1272,1570/974,1274,298/1271,1571/
ROD2/675,975,298/972,1272/676,974,298/973,1271/
ROD2/675,1274,298/972,1571/676,1273,298/973,1570/
ROD2/456,973/452,1571/456,1272/454,1571/452,1272/454,973/

$ GENERATES VERTICAL,BOTTOM,DIAGONAL MEMBERS FOR 150 FT TRUSS
$ IN THE +2Z DIRECTION

PTRTH/8
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PTRM/6

$ VERTICAL/BOTTOM MEMBERS
BEAM2/1578,1877,464,299/1876,2175,464/
BEAM2/1578,2176,464,299/1876,2474,464/
BEAM2/1877,2176,464,299/2175,2474,464

$ DIAGONAL MEMBERS

ETH,1/10/.001963/

PTRTH/10/
ROD2/463,1876/459,2175/461,1876/459,2474/461,2175/463,2474/
ROD2/1877,2177,298/2174,2474/1878,2176,298/2175,2473/
ROD2/1579,1877,298/1876,2174/1578,1878,298/1875,2175/
ROD2/1579,2176,298/1876,2473/1578,2177,298/1875,2474/
ROD2/462,2176/462,1578/460,1877/460,1578/458,2176/458,1877/

$ GENERATES VERTICAL,BOTTOM,DIAGONAL MEMBERS FOR 75 FT TRUSS
$ IN THE -Y DIRECTION

PTRTH/8
PTRM/6

$ VERTICAL/BOTTOM MEMBERS
BEAM2/2630,2779,470,149/2778,2927,470/
BEAM2/2481,2779,470,149/2629,2927,470/
BEAM2/2481,2630,470,149/2629,2778,470/

$ DIAGONAL MEMBERS

ETH,1/10/.001963/

PTRTH/10/
ROD2/464,2779/466,2630/464,2481/468,2630/468,2779/466,2481/
ROD2/2630,2780,148/2777,2927/2631,2779,148/2778,2926/
ROD2/2482,2630,148/2629,2777/2481,2631,148/2628,2778/
ROD2/2481,2780,148/2628,2927/2482,2779,148/2629,2926/
ROD2/465,2927/467,2778/465,2629/469,2778/469,2927/467,2629/

END

$ GENERATES MASS FOR THE COMPLETE TRUSS MODEL

$ GENERATES MASS FOR THE 150 FOOT TRUSS IN +Y DIRECTION
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MASSP/451/8.8846E-5/452/8.8846E-5/453/8.8846E-5/
MASSP/454/8.8846E-5/455/8.8846E-5/456/8.8846E-5/
MASSP/1273,1571,299/8.8846E-5,8.8846E-5/
MASSP/675,973,299/8.88465-5,8.8846E-5/
MASSP/974,1272,299/8.8846E-5,8.8846E~5/

$ GENERATES MRSS FOR THE 150 FOOT TRUSS IN +Z DIRECTION

MASSP/464/8.8846E-5/465/8.8846E-5/466/8.8846E-5/
MASSP/467/8.8846E-5/468/8.8846E-5/469/8.8846E-5/
MASSP/2779,2927,149/8.8846E-5,8.8846E~5/
MASSP/2630,2778,149/8.8846E-5,8.8846E-5/
MASSP/2481,2629,149/8.8846E-5,8.8846E-5/

$ GENERATES MASS FOR THE 75 FOOT TRUSS IN -Y DIRECTION
MASSP/458/8.8846E-5/459/8.8846E-5/460/8.8846E-5/
MASSP/461/8.8846E-5/462/8.8846E-5/463/8.8846E-5/
MASSP/1578,1876,299/8.8846E-5,8.8846E-5/
MASSP/1877,2175,299/8.8846E-5,8.8846E-5/
MASSP/2176,2474,299/8.8846E-5,8.8846E-5/

$ GENERATES TIPMASS FOR EACH TRUSS
MASSP/459/1.72533E-1/461/1.72533E-1/463/1.72533E-1/
MASSP/452/3.0193E-2/454/3.0193E-2/456/3.0193E-2/
MASSP/465/3.0193E-2/467/3.0193E-2/469/3.0193E-2/

END
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\ APPENDIX G

‘ Before the LACE spacecraft was in its fully deployed state,
‘ it underwent three different configurations. Figures Gl to G4
show the natural frequencies and mode shapes of the LACE
spacecraft in its initial configuration with the gravity
gradient extended to 75 feet. Figures G5 to G8 show LACE with
the gravity gradient extended to 150 feet. Figures G9 to Gi2
show the LACE spacecraft in its final configuration before
full deployment with the lead and trail booms extended to

119.5 feet.
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Figure Gl. Mode 1, v = ,01365 Hz, GIFTS COMPLEX MODEL
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Figure G2, Mode 2, v

.01379 Hz, GIFTS COMPLEX MODEL




.04325 Hz, GIFTS COMPLEX MODEL

Figure G3. Mode 3, u
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Figure G4. Mode 4, v = .04579 Hz, GIFTS COMPLEX MODEL
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Figure G5. Mode 1, v = .01217 Hz, GIFTS COMPLEX MODEL
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Figure G6. Mode 2, v = .01226 Hz, GIFTS COMFLEX MODEL
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Figure G7. Mode 3, v = .03535 Hz, GIFTS COMPLEX MODEL
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Figure G8. Mode 4, v = .03552 Hz, GIFTS COMPLEX MODEL
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Figure G9. Mode 1, v = .02322 Hz, GIFTS COMPLEX MODEL
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Figure G10. Mode 2, v

.04294 Hz, GIFTS COMPLEX MODEL
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Figure Gll. Mode 3, u = .04302 Hz, GIFTS COMPLEX MODEL
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Figure G12. Mode 4, v = .1349 Hz, GIFTS COMPLEX MODEL
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APPENDIX H

A. MAXIMUM TEMPERATURE FOR DIAGONALS

442 Btu/sq ft hr

€e=.8
ag=1.0

e=.8 70 Btu/sq ft hr
*R= 8 160 Blu/sq it br

og = 1.0

Earth

Figure 1. LACE Boom Perpendicular to the Sun

The heat balance equation is

a,sa = esT*D

where s is solar flux intensity, a is surface area and o is

Stefan Boltzman constant.

Heat ir = 442 x 1.0 x ¢ + (160 x 1.0 + 70 x .8) x nd/2

o




= 781.3 d
Heat out = 0.8 xnd xo6 x T*
781.3 = 0.9 xn xo x T = 4.305 x 10797¢

T 652 R = 193 F

B. MINIMUM TEMPERATURE FOR THE DIARGONAL

Direct solar
442 cos 90°= 0 Btu/sq ft hr

Earth reflected Earth emitted
160 Btu/sq ft hr 70 Btu/sq ft hr
Earth

Figure H2. LACE Beam Parallel to the Sun

Fyo = -256
i i ) .256
Reciprocity Fy,dA, = F, A, # —EAT‘ e
Qa1 = AyFaqi(Ey)
- - F,
Divide by da, 2;11 = A, d-‘;dl By,
1
Substitute ‘;;: = 3, '25;’5 E,; = 0.28 E,

= (0.256) [160 + 70] Btu/sq ft hr
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Figure H3. Viewing Factor
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APPENDIX I

I L2224 22 523223228 S A0 & 00

EE N

*
WALTERS, W *
THESIS RESEARCH *
6 JUNE 1990 *
NONLINEAR SYSTEMS *

*

*

Akkrkhk Xk khkkkhkkhkhkhhkhd

***DURPOSE** *

THIS PROGRAM COMPUTES DISPLACEMENTS, VELOCITIES,AND
ACCELERATION
USING LINEAR ACCELERATION METHOD

*%*UARIABLE DEFINITIONS***

T=
A=

FS=
KSTAR=
PSTAR=
DELT=
DELU=
DELV=
DELA=
DELP=
AQ=
Omega=
Al=

Bl=

Cl=

Time

Acceleration

Velocity

Displacement

Mass

Spring constant

Damping

Force

Spring force

Delta K*

Delta P*

Time interval, delta t

Change in displacement

Change in velocity

Change in acceleration

Change in force

Coefficient of amplitude for force function
Frequency for force function
Coefficient for X**3 term for stiffness
function

Coefficient for X**2 term for stiffness
function

Coefficient for X term for stiffness function
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a0 O o000 O

Dl=

coefficient for constant term for stiffness
function

A2= Coefficient for X**2 term for damping function

B2=
c2=

FRAC=

***VARIAB

Real*16 T

Coefficient for X term for damping function
Coefficient for constant term for damping
function

Fraction of linear stiffness term used for
coeff. of cubic term

LE DECLARATIONS***

(A,V,U,M,K,C,FS,KSTAR, PSTAR, DELT, DELU, DELV,

*DELA,DELP,A0,Omeqga,Al,B1,C1,D1,A2,B2,C2,FRAC,MASS,P(5000)

o

c

ao

DIMENSION
Integer I

CHARACTER
CHARACTER
***INITIA

T=0.0
0

4
[

***MAIN P

=== CREATE A
OPEN (UNI

WRITE (6,
RERD (5,’
FN = NAME
OPEN (UNI
WRITE (6, *
0=YES, 1=N
READ(5, *)
IF (IYES.

PRINT *,
PRINT *,
READ *, U
PRINT *,

P(5000)
N

*7 DUMMY
NAME*8,FN*8
L DATA***

ROGRAM***

FILE FOR CHAOTIC COMPUTAIONS
T=1, FILE='ACC.INP’, STATUS='OLD’)

*) "INPUT THE FILE NAME’
(A)’) NAME

T = 12, FILE = FN, STATUS = 'NEW’)
) 'DO YOU WANT INTERACTIVE INPUT FILE,
OI
IYES
GT.0) GO TO 500

"ENTER INITIAL CONDITIONS’
"INITIAL DISPLACEMENT =’

"INITIAL VELOCITY =

READ *, V

Print *,
Print *,

'F(X)=A0*COS(Omega*T)’
'Enter value for A0’

Read *, A0

Print *,

'Enter value for Omega’

Read *, Omega

Print *,
Print *,

'RX)=RAI*X**3+B1*X**24CL*X+D1'
'Enter value for Al’
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500

550

Read *, Al

Print *, ’‘Enter value for Bl'

Regd *, Bl

Print *, ’Enter value for Cl'

Read *, C1

Print *, ‘Enter value for D1’

Regd *, D1

Print *, ’C(X)=A2*V**2+82*V+C2’

Print *, ’‘Enter value for A2’

Re§d *+, A2

Print *, 'Enter value for B2’

Read *, B2

Print *, 'Enter value for C2’

Read *, C2

Print *, ’Enter value for maes’

Read *, M

Print *, ’‘Enter value for delt’

Regd %, DELT .
Print *, 'Enter value for n, number of time steps’
Read *, N

GO TO 5E0
CONTINUE
READ(1,*) A0
READ(1,*) Omega
READ(1,*) Al
READ(1,*) Ci
READ(1,*) D1 }
READ{1,*) A2
READ(1,*) B2
READ(1,*) C2
READ(1,*) M

WRITE(*,*) A0,Omega,Al,Cl,DY,A2,B2,C2,M

PRINT *, ’'NONLINEAR STIFF TERM Bl IS FRACTION OF LINEAR
TERM D1’

PRINT *, ‘INPUT FRACTION DESIRED’

READ *, FRALC

Bl= FRAC*D14D1

PRINT *, 'ENTER INITIAL CONDITIONS'

PRINT *, ‘INITIAL DISPLACEMENT =’

READ *, U

PRINT *, ’INITIAL VELOCITY =’

READ *, V

Print *, ’‘Enter value for delt’

Read *, DELT

Print *, ‘Enter value for n, number of time steps’
Read *, N

CONTINUE
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OO0 OO0 OO0 000 000 000 ona0

a0

6000

20

DTMMT="KRLIERS’

Do 20 I=3i,X%

Call Force(r0,0zeca,Z,I,?)

Cal: pa=>(R2,32,C2,Y,C)

Call FSPRiING(R1,31,C:,D1,0,%,X,TS)
CALi DFORCE(Z,DP2I2,%,9)

Solve Zor B

B=(1/%)*(2(I)-(C*¥)-FS)

Solve for KSTER
KSTAR=RK+((3*C)/DZLT)+({6%¥K) /DELT**2)
Solve for PSTAR

DSTAR=DELP+( ((6*M)/DELT)+(3*C))*V+({3*K)+C*(DELT/2))*2
Solve for DELU

DELU=PSTAR/KSTER

Solve for DELV

DELV={3/DELT)*DELU- (3*V}-A*(DELT/2)
Solve for DELA
DELA=(6/DELT**2)*DELU-((6/DELT)*V)~(3*2)
Write output file

OUTPUT TO THE CHAROTIC FILE
WRITE(11,6000) DUMMY,T,U,V,A
FORMAT(A7,F6.3,E11.4,4E12.4)

Update U,V,T for next iteration
U=U+DELU

V=V+DELV

T=T+DELT

Continue

Write(*,*)T,U,V
CLOSE(UNIT-1)
CLOSE(UNIT=11)
Stop

End
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Subroutine Force(i0,0zece,T,I,P)

Bssigas a value to force based oa tice
Input argusent

A0-Coeificient,Ozega-freguency,T-Tize, I-Counter
itput arcuszent
P-Force

Real*1l6 RO,Ozege,T,?
Integer I
DIMENSION 2(5000)

Define results

P(1)=R0*COS(Omega*T)
Write(*,*)1,2(1)
Return

nd

w

KK AR AT AR AR A AR A A A AR A RR AR AR TR A AR A KR A TR AT AL AL I AR AT A AR

Subroutine Damp(A2,82,C2,V,C)

Assigns a value for damping

Input argument

A2,82,C2 - Coefficients of damping function
U-Displacement

Output argument

C-Damping

Real*16 A2,382,C2,V,C
Define results

C=A2*V*%*2+B2*V+C2
Return
End

LER AR S SRS SRS RS SRS RS s st i s i s b s Rl NN INE &4

Qa0 O

Subroutine FSPRING(Al,B1,C1,D1,U,I,K,FS)
Calculates the value for FS

Input arguments
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a00

QOOO0O00 O*x00

Qa0

C

U-Displacezents
R1i,31,C1,D1- CoeZiicients Zor stiffness function
I-counter

Output a-gumeats
FS-Force oI spring

Real*16 31,31,C1,D1,U0,FS,K

Integer I
Define results

K=A1xU**3+31*y**2+C1*U+D1
FS=K*U

Return

End

AR A AT AR A AR R AR AR A AR LI A KA AT ARE A A AN A A AN A AR A AR A ALK

Subroutine DFORCE(T,DELP,I,P)
Defines the value for the change in force

Input argument
T-Time,P-Force

Output argument
DELP-Change in force
Real*16 T,DELP,F,P(5000)
INTEGER I

DIMENSION P(5000)

IF (I.EQ.1) Then

DELP =0
ELSE
DELP=P(I)~-P(I-1)
Endif
Return
End

L2 RS SA R RS RS RS2 R TR TSRS SR SRR S SSR TR SRS R SRS
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