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Abstract

In this thesis we consider the development of algorithms for two very basic -lasses of problems in
combinatorial optimization: deterministic machine scheduling and network ,ptimization. Most
of the scheduling problems we consider are A*P-Complete and therefore we study approxima-
tion algorithms for these problems. The network problems are all knowkn to be polynomial
time-solvable; we will be interested in parallel algorithms for these problims. An important
connection between the two topics of this thesis is that the scheduling problems we consider
are related to problems that arise in the design of parallel computers; they are also, however,
basic building blocks in the theory of combinatorial scheduling.

We consider the two basic environments for scheduling a set of machines: shop scheduling
and parallel machine scheduling. In the shop scheduling problem we are given m machines
and n jobs; a job consists of an ordered set of operations, each of which must be processed
on a specified machine. The aim is to complete all jobs as quickly as possible. This problem
is strongly A'P-hard even for very restrictive special cases, and very little was known about
approximation algorithms for it. We give the first randomized and deterministic polynomial-
time approximation algorithms that yield polylogarithmic approximations to the optimal length
schedule. We also give the first parallel approximation algorithms for shop scheduling. Most
of our results apply to the important generalization in which there are m' types of machines,
a specified number of machines of each type, and each operation must be processed on one of
the machines of a specified type.

In the parallel machine environment a job consists of one operation which can be processed
on any of the machines. Most of the basic questions about approximation algorithms for these
problems have already been answered, but the algorithms that have been developed are typically
off-line, meaning that they must be given the entire specification of a problem instance before
they begin to construct a schedule. This does not model many real-world problems, including
scheduling of jobs on a multiprocessor. We study the problem of scheduling jobs on parallel
machines in an on-line fashion, where the existence of a job is not known until an unknown
release date, and the processing requirement of a job is not known until the job is processed to
completion. Despite this lack of knowledge of the future, we wish to schedule so as to minimize
the completion time of the entire set of jobs.

We give two rather general techniques to convert algorithms that require more knowledge
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about the input data into algorithms that need less advance knowledge. As a result we are able
to give on-line approximation algorithms for all of the fundamental parallel machine models.
In most of these models we are able to show that our algorithms are asymptotically optimal.

In the second part of this thesis we consider both theoretical and practical issues in the design
of parallel algorithms for network optimization problems. We first consider the minimum weight
perfect matching problem, where the weights are input in unar'. All previous 21.'C algorithms
for this problem were Monte-Carlo algorithms, which produced a correct solution with high
probability but gave no indication when they failed. We give a. Las Vegas 1RNC algorithm for
the problem - one that certifies, with high probability, that its solution is correct - utilizing
reductions between minimum weight perfect matching and the T-join problem. We also show
how to apply the technique to a number of other combinatorial problems.

We then consider the problem of finding a minimum-cost maximum flow in a network. This
problem is known to be P-Complete, and therefore it is expected that there exists no J/C
algorithm for this problem. We prove that even approximating the value of the minimum-cost
maximum flow is P-Complete.

Finally we present an experimental study of implementations of algorithms to solve the
dense assignment problem on a real massively parallel computer, the Connection Machine CM-
2. We describe the implementations of five different algorithms for the problem, including
a new hybrid approach that we developed, and discuss other approaches which we did not
implement. We evaluate the implementations empirically; the best proves to be the hybrid
auction algorithm.

Keywords: Scheduling, Combinatorial Optimization, Network Algorithms, Parallel Compu-
tation, Connection Machine, Approximation Algorithms, On-line Algorithms.

Thesis Supervisor: David B. Shmoys

Title: Assistant Professor of Industrial Engineering and Operations Research, Cornell University
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Introduction

In many areas of human endeavor the problem arises of choosing the "best" of a large set of

possibilities. For example, an employer may want to choose a schedule for her employees that

maximizes their productivity, a trucking company may want to find the least expensive way to

tran;port good,. across the country, or a city planner may want to find the optimal places in

which to situate firehouses in order to maximize the safety of the city. These are all optimization

problems: problems which require the optimization of a function of some set of variables, subject

to certain constraints on the values of the variables. Combinatorial optimization refers to the

class of optimization problems that require the choice-of one solution from a finite set of discrete

solutions, where the constraints and the variables typically describe the combinatorial structure

of the problem.

There is a rich and longstanding relationship between combinatorial optimization and com-

puter science. The development of efficient algorithms tosolve basic problems in combinatorial

optimization has been a major component in the growth of the theory of algorithms. In ad-

dition, a number of the resource allocation problems that arise in the design and control of

computer systems can be modeled as problems in combinatorial optimization.

The introduction and growing popularity over the last decade of parallel computers has

motivated a large and important group of problems in both of these categories. There are a

variety of large optimization problems that would be desirable to solve in real time. One can

imagine using optimization techniques to direct traffic in a congested city during rush hour, or

to coordinate a large fleet of service people to respond to requests, or to dynamically schedule

airplanes so as to avoid collisions. It is therefore important to understand on what sorts of

optimization problems parallel computing will yield significant speedups and on which it will
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not.

Furthermore, the design and, control questions about parallel computing systems are quite

different than those about sequential machines, since they require the allocation of tasks and

resources to a large number of separate processors or processes, in contrast to just one or a few.

Therefore, questions about the scheduling of or the allocation of resources to multiple machines

take on a much greater importance.

In this thesis we will explore both aspects of the relationship between parallel computation

and combinatorial optimization by studying basic algorithmic questions in two fundamental

areas of combinatorial optimization: scheduling theory and network optimization. In the first

section we will study approximation algorithms for the tw,,classic models of scheduling a set

of machines: the parallel machine model and the shop model. These are in and of themselves

basic problems in-combinatorial optimization, but are particularly appealing to us because they

bear some relationship to scheduling questions about parallel computers. The former is closely

related to parallel computation since it models the scheduling of tasks on a multiprocessor

(8, 93], whereas the latter has found applications to packet routing in parallel and distributed

networks[25, 82, 88].

Before our work relatively little was known about approximation algorithms for shop scl,!dul-

ing. In Chapter 2 we give approximation algorithms for several variants of this problem that

achieve significantly better performance guar. ntees than previous algorithms. We also give the

best parallel approximation algorithms for several of these problems.

In contrast to shop scheduling, the state of the art in approximation algorithms for parallel

machine scheduling prior to our work was excellent. Almost all of the known approximation

algorithms, however, were off-line algorithms, in that they required the entire specification of

the problem in advance. This situation does not reflect that of many real world scheduling

problems, since often the scheduler does not have in advance complete knowledge of a job's

running time, or of what jobs will be created and require processing in the future. In Chapter 3

we study on-line algorithms for scheduling parallel machines, giving matching or near-matching

upper and lower bounds on how well an on-line scheduler can perform in each of the fundamental

models of parallel machine scheduling.

In the second section of this thesis we turn to the design and analysis of parallel algorithms
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for problems in network optimization. We focus on two basic problems: that of finding a

maximum weight matching in a graph, and that of finding a minimum cost flow in a network.

Both the minimum-cost flow problem and the simpler maximum-flow problem are P-Complete

problems, and therefore it is widely believed that there are no "fast" parallel aigorithms to solve

them. By "fast" we mean algorithms that, in a PRAM model of computation with a number

of processors polynomial in the size of the input, solve the problem in worst case time poly-

logarithmic in the size of the problem. In chapter 5 we give an interesting separatioa between

the parallel complexity of these two problems, showing that the minimum-cos: maximum flow

problem can not be approximated in NC unless P = AC. In contrast, it is known that the

maximum flow problem can be approximated arbitrarily closely in ZNVC.

In Chapters 6 and 7 we consider both theoretical and practical issues in the parallel solution

of weighted matching problems. Theoretically "fast" randomized parallel algorithms for the

minimum weight perfect matching problem, when the weights are input in unary, were given

by Karp, Upfal and Wigderson and by Mulmuley, Vazirani and Vazirani. These algorithms

produced a correct solution with high probability, but could not distinguish between success

and failure. In Chapter 6 we give a Las Vegas algorithm for the problem, one that with high

probability produces a correct solution and otherwise indicates it has failed. The technique is

fairly general and has applications to a number of other combinatorial problems.

The assignment problem is the special case of the minimum-weight perfect matching problem

when the graph is bipartite. In chapter 7 we study the design and implementation of algorithms

to solve this problem on the Connection Machine CM-2, a massively parallel computer. We

describe the implementations of five different algorithms and evaluate their performance exper-

imentally. The best proved to be a new hybrid approach which we developed that is able to

take advantage of two different levels of the parallelism of the Connection Machine. We also

discuss and attempt to evaluate the other approaches which we did not implement.

Chapter 1 of this thesis gives an introduction to scheduling theory, the scheduling models

we will be considering, and our results, which are presented in the following two chapters.

Similarly Chapter 4 gives an introduction to parallel network optimization and our results,

which are presented in Chapters 5, 6 and 7.



Chapter 1

Scheduling Theory: An Introduction

Scheduling theory is concerned with the optimal allocation of scarce resources to activities over

time (81]. The subject has been of interest to the human race since the first time two. human

beings wished to use the same resource and chose to settle the matter without bloodshed.

More recently, the industrial revolution and the invention of the computer have generated a

huge assortment of scheduling problems, arising in areas such as manufacturing, production
planning and computer control.

The most studied area in this discipline has been deterministic machine scheduling. By

deterministic we mean that all of the information that defines a problem instance is determined

with certainty in advance. By machine scheduling we mean that the resource to be scheduled

is either one or a set of machines, where a machine can perform at most one activity at any

time. There are a staggering number of different problems in this field: an expert system for

the classification of these problems recognizes 4,536 different scheduling problems, of which

3,817 have been proved jVP-hard, 416 are known to be solvable in polynomial time, and 303

are still open [78].

Despite its size, this huge collection of problems can be neatly organized according to the

following three criteria: the machine environment, the job characteristics and the optimality

criterion. An instance of a problem is specified by a machine environment, a set of jobs that

may have some specified characteristics, and an optimality criterion. Each job in the set has

specific processing requirements on one or several of the machines; the goal is to produce a

Vw
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schedule of jobs on machines that achieves the optimal value of the optimality criterion.

The different types of machine environments can be classified into three basic categories:

the single machine environment, the parallel machine environment and the shop environment.

In this thesis we will focus on the latter two environments. This focus is to a large extent

motivated by the connections between these environments and parallel processing. We will also

focus almost exclusively on the optimality criterion of "completion time"; i.e. the goal of the

scheduler will be to produce the "shortest" schedule - a schedule that minimizes the completion

time of the last job to complete. Other typical criteria that have been considered in the literature

are the sum of the completion times of the jobs, the weighted sum of the completion times of

the jobs, and the maximum lateness of a job, where each job has an associated due date.

Approximation Algorithms: Most of the scheduling problems we will be considering are

ANP-Complete, and therefore we will focus on obtaining polynomial-time algorithms for these

problems that give good approximations to the optimal solution. We will evaluate an

approximation algorithm in terms of its performance guarantee, or in other words, its worst-case

relative error. Let Cm8 . be the maximum-completion time of a job in the optimal solution. If

a polynomial-time algorithm always delivers a solution of maximum-completion time at most

PC .,x, then we shall call it a p-approximation algorithm.

1.1 The Shop Environment

Introduction

Shop scheduling refers to a large class of problems that typically arise in a shop, factory or

assembly line setting. The shop has m machines, and in the basic environment each machine

is different and performs a different function. Each job consists of a set of operations, each of

which must be processed on a particular machine; a job may have more than one operation on

a particular machine. We wish to produce a schedule which assigns a period of time to each

operation during which it is processed on the appropriate machine. The goal is to minimize

the completion time of the last operation to complete, while ensuring that no more than one

operation is assigned to a machine at any point in time and no two operations of the same job

are scheduled simultaneously.
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A variety of constraints may be introduced on the order of execution of the operations of

the job, and different sorts of constraints yield different well-known versions of the problem.

(Note that we only focus on order constraints between the operations of each job, and not

between operations of different jobs.) For example, if we impose a strict total order on the

order of execution of the operations of a job, the problem is a job shop scheduling problem. If

the total order is the same total order for every job, and each job has at most one operation on

each machine, we have a flow shop scheduling problem. If there is no order at all imposed on

the execution of any job's operations, we have an open shop problem. It is traditional in the

scheduling literature to focus, for the open shop problem, on the case when each job is processed

on each machine at most once (since operations on the same machine can be coalesced). We

will refer to the general shop scheduling problem that does not fall into one of the three above

categories as the dag shop problem.

In this thesis we will concentrate primarily on the job shop scheduling problem, for two

reasons. First of all, most of our results for other shop problems can be obtained as easy

corollaries of our results for the job shop problem. Secondly, the job shop problem is probably

the most famous and most difficult of all the versions of the problem. It is strongly NP-hard;

furthermore, except for the cases when there are two jobs or when there are two machines

and each job has at most two operations, essentially all special cases of this problem are A/P-

hard, and typically strongly NP-hard [44, 81]. For example, it is AP-hard even if there are 3

machines, 3 jobs and each operation is of unit length; note that in this case we can think of the

input length as the maximum number of operations in a job, p.

In addition to this theoretical evidence of the difficulty of the job shop problem, it is also one

of the most notoriously difficult N'P-hard optimization problems in terms of practical compu-

tation, with even very small instances being difficult to solve exactly. A striking example of this

is that a single instance of the problem involving only 10 jobs, 10 machines and 100 operations,

, hich first appeared in a book by Muth and Thompson in 1963, remained unsolved for 23 years

despite repeated attempts to find an optimal solution [81]. Today, due to better algorithms and

faster machines, instances with 10 jobs and 10 machines seem to be tractable - Applegate and

Cook solved ten different 10 x 10 problems, including the notorious instance mentioned above,

in times ranging from 90 seconds to 42 minutes. (It is interesting to note that the instance of
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Muth and Thompson was one-of the easier instances to solve using their technique). However,

slightly larger instances are still currently intractable; they report instances of size 10 x 15,

15 x 20, 15 x 15 and 10 x 20 that they were unable to solve [3].

Formal Definition and Previous Results

We formally define the job shop problem as follows. We are given a set Ml = {m, IM 2 ,.. ., m}

of machines, a set J = {J1,. .. ,J,,} of jobs, and a set 0 = {OijIi = 1,.. .,4jj 1,...,n}

of operations, where nij indexes the machine on which operation Oij runs. Thus m is the

number of machines, n is the number of jobs, yj is the number of operations of job J1 , and

A = max pi . Oij is the ith operation of Jj; it requires processing time on a:given machine

mk E Al, where k = tz,, for an uninterrupted period of a given length pij. (In other words, this

is a non-preemptive model; a model in which operations may be interrupted and resumed at a

later time is called a preemptive model.) Each machine can process at most one operation at a

time, and each job may be processed by at most one machine at a time. If the completion time

of operation Oqi is denoted by Cij, then the objective is to produce a schedule that minimizes

the maximum-completion time, Cm.x = maxij Cij; the optimal value is denoted by Cmax.

It is possible to extend this model by associating with each job Jj a release date rj, on which

J, becomes available for processing. This extension does not affect most of our performance

bounds, and therefore unless explicitly stated otherwise we assume that all jobs are available

for processing at time 0.

The formal definition of the flow, open or dag shop problems would be almost the same,

except for the following small differences:

* flow shop: ij = K ji, for all i,j,j', and ,ij # n,,j for all i,i',j.

* open shop: The Ozj can be proccssed in any order.

* dag shop: For each job j we define a partial order on the Oij and require that they be

processed in any total order consistent with that partial order.

There are two very easy lower bounds on the length of an optimum schedule. Since each job

must be processed, CL., must be at least the maximum total length of any job, maxi, Ei pij,
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which we shall call the maximum job length of the instance, Pmax. Furthermore, each machine

must process all of its operations, and so C,,. must be at least max, :,.-= Pij, which we

will call the maximum machine load of the instance, Imax. Note that these are lower bounds

regardless of whether we have a job, flow, open or dag shop problem.

There has been a tremendous amount of literature on shop scheduling problems over the

last thirty years [81]. We mentioned earlier that all but the most restrictive versions of the job

shop problem are NP-hard; this is also true of the other versions of the problem. When there

are at least 3 machines both the open and flow shop problems are ./P-hard [81]. When there

are just two machines both these problems are known to be in P [66, 50]. In contrast, the two

machine job shop problem is only known to be polynomial-time solvable if each job has at most

two operations, or if each operation is of unit size [81].

Despite all the attention, however, surprisingly little has been known about approxima-

tion algorithms for shop scheduling problems. In fact, all that was known was the following

observation by Gonzales and Sahni:

Theorem 1.1.1 [511 An algorithm A for the job shop problem that produces a schedule in which

at least one machine is running at any point in time is an m-approximation algorithm.

Proof: The length of the schedule produced by such an algorithm Cmax(A) is bounded above

by E;,j pip since some operation is always being executed. On the other hand, tile average

machine load, Ei,j pijim, is a lower bound on the maximum machine load, which is a lower

bound. The theorem follows directly. E

Little was also known in the way of negative results - results that indicate it is difficult

to approximate these problems. Recently, however, David Williamson has shown that unless

P = AP none of these problams can be approximated arbitrarily closely.

Theorem 1.1.2 [1241 Unless P = .NP,

* There is no polynomial time algorithm that approximates the job shop problem or the flow

shop problem within a factor of T'
12'

9 There is no polynomial time algorithm that approximates the open shop problem within a

factor of .
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Despite the lack of knowledge about approximation algorithms with good worst-case relative

error guarantees, there are two relevant results that are important to our work. The most

interesting approximation algorithms to date for job shop scheduling have primarily appeared

in the Soviet literature and are based on a beautiful connection to geometric arguments. This

approach was independently discovered by Belov and Stolin [6] and Sevast'yanov [108] as well as

by Fiala [39]. This approach typically produces schedules for which the length can be bounded

by Imax + q(m, /)Pmax, where -q(., -) is a polynomial, and Pmax = maxi pij is the maximum

operation length. For the job shop problem, Sevast'yanov [109, 110] gave a polynomial-time

algorithm that delivers a schedule of length at most flmax + O(mts)pmax. The bounds obtained

in this way do not give good worst-case relative error bounds. Even for the special case of the

flow shop problem, the best known algorithms delivered solutions of length fQ(mC ,8 ).

Since these results are not well known in the West, and are important tools for us, we

provide here a bit of information about the proof of the flow shop result, which is simpler than

the more general job shop result. This simpler presentation of the proof is due to David Shmoys

[114].

Theorem 1.1.3 There exists a polynomial time algorithm A for the flow shop problem which

yields a schedule of length bounded above by Cmax "+ m(m - 1)Pmax.

Proof:

The proof relies heavily on the following lemma.

Lemma 1.1.4 Let {v 1,v 2 .... ,v.} be a set of d-dimensional vectors such that E.?=__V i = 0.
There exists a polynomial-time algorithm that computes a permutation 7r such that for any k =

,..n, 11 visjll - dmax II sll, where we use Ilxll to denote the L1-norm of x.

Without loss of generality, we can assume that the load on each machine is equal to the

maximum machine load, namely l"max. In this case the completion time of the schedule is

IUmax + I, where I is the amount of idle time on the last machine before it starts processing

the last operation of the last job to complete on it. If we choose a permutation 7r of the n jobs

and schedule their operations in that order on every machine, it is not hard to see that the

condition J,(Ps,- ,x(p ) - PiT (i)) - (m - 1)Pmax would yield an upper bound of m(m - 1)pmax

on I.
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Now if we construct a set of n m-dimensional vectors vj, where vj = (Puj - p2j,P2j -

P3j,... - .Pm--,,jPm), the algorithm mentioned in the previous lemma will produce the necessary

permutation. U

Another important result on shop scheduling comes, somewhat surprisingly, from the litera-

ture on packet routing. Leighton, Maggs and Rao [821 have proposed the following model for the

routing of packets in a network: find paths for the packets and then schedule the transmission

of the packets along these paths so that no two packets traverse the same edge simultaneously.

The primary objective is to minimize the time by which all packets have been delivered to their

destination.

It is easy to see that the scheduling problem considered by Leighton, Maggs and Rao is

simply the job shop scheduling problem with each processing time pq = 1. They also added

the restriction that each path does not traverse any edge more than once, or in scheduling

terminology, each job has at most one operation on each machine. This restriction of the job

shop problem remains (strongly) AP-hard [81]. The main result of Leighton, Maggs and Rao

was to show that for their special case of the job shop problem, there always exists a schedule

of length O(llmx + Pmax). Unfortunately, this is not an algorithmic result, as it relies on a

nonconstructive probabilistic argument based on the Lovisz Local Lemma. They also obtained

a randomized algorithm that delivers a schedule of length O(Hlmax + Pmax log n), with high

probability.

Brief Statement of Our Results: We give a randomized O( log"o("'i )- approximation al-

gorithm and a deterministic O(log2(mrn))-approximation algorithm for the job shop schedul-

ing problem, and a 2-approximation algorithm for open shop scheduling. All of these sig-

nificantly improve on the previous best bounds of m. We also give two parallel algorithms:

a ZN'C 0(lo%'g'% )-approximation algorithm for job shop scheduling and an NC O(logn)-

approximation algorithm for open shop scheduling. Our results for job shop scheduling extend

to a number of important generalizations of the basic job shop problem.
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1.2 The Parallel Machine Environment

In contrast to the shop environment, where a job consists of multiple operations, each of which

must be processed by a particular machine, in the parallel machine environment each job has

only one operation, which may be processed by any machine. An instance consists of n jobs

and m machines. Each machine can process at most one job at a time, and each job must

be processed in an uninterrupted fashion on one of the machines. Typically one of three

assumptions is made about the relative powers of the machines. In the most general setting,

the machines are unrelated: job J takes Puj = pj/sjj time units when processed by machine

mi, where pj is the processing requirement (or size) of job J and sij is the speed of machine mi

on job Ji. If the machines are uniformly related, then each machine mi runs at a given speed

si for all jobs Jj, and the processing time pij is given by pj/si. Finally, for identical machines,

we assume that si = 1 for each machine mi. If Cj denotes the time at which job Ji completes

processing in a schedule, then the makespan or length of the schedule is Cmax = maxj C,. For a

given instance 2, our objective is, once again, to find a schedule of minimum length C ax(X).

In an off-line setting, these three types of parallel machine models have been studied ex-

tensively. The associated scheduling problems are all strongly AP-hard [44], and polynomial

approximation schemes are known when the machines are either identical or uniformly related

[60, 61]. For unrelated machines, obtaining a solution better than (3/2)C ,ax is N'P-hard,

whereas a schedule of length at most 2Cax can be found in polynomial time [83]. We will

be interested in on-line algorithms to solve these problems, algorithms that produce a good

schedule without knowing the size of a job until it is finished being processed and not knowing

what jobs will arrive in the future. We put off a discussion of the motivation for and precise

definitions of on-line algorithms until Chapter 3.

We will also consider the preemptive versions of these models, in which a job may be in-
terrupted on one machine and continued later (possibly on another machine) without penalty.

In each of these three models, there is a polynomial-time off-line algorithm to find an optimal

preemptive solution [89, 62, 79].

Brief Summary of Our Results: We introduce two rather general techniques for converting

scheduling algorithms that need more complete knowledge of the input data into ones that
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need less advance knowledge. Using these techniques we give deterministic on-line scheduling

algorithms for all the parallel machine models we have described. For all except the unrelated

machines models we can prove that these algorithms are asymptotically optimal. We also

give an on-line algorithm for the non-preemptive scheduling of uniformly related machines that

takes advantage of the structure of the distribution of speeds amongst the machines, and we

prove that this algorithm is asymptotically optimal as well. We also prove a surprisingly strong

lower-bound on the performance of any randomized on-line algorithm for the non-preemptive

scheduling of identical machines.

1.3 Scheduling Problems and Parallel Computation

Efficiently scheduling a set of tasks on a set of machines is a basic and important problem in

scheduling theory and in combinatorial optimization. It also, in some ways, captures the essence

of the challenge of parallel computation. The models we have discussed in this section are the

traditional models of combinatorial scheduling theory, but are simplifications of useful models

for real parallel machines. We therefore present here a small sample of scheduling models that

are related to those we consider but capture in more detail the problems involved in designing

parallel algorithms and systems. We have discussed earlier the relationship between the shop

scheduling model and packet-routing problems, so in this section we focus on the parallel

machine model.

In a theoretical result, Papdimitriou and Yannakakis proposed a scheduling model as a

tool for architecture-independent analysis of parallel algorithms [93]. They assert that the

performance analysis of a parallel algorithm for a problem consists of at least four stages:(1)

Choosing the algorithm, which is described by a directed acyclic graph (dag) that captures the

elementary computations and their interdependence. The constraints imposed by the dag are

often called precedence constraints. (2) Choosing a particular multiprocessor architecture. (3)

Finding a schedule whereby the algorithm is executed on that architecture, so that the necessary

data are available to the appropriate processor at the time of each computation. (4) At this

point it is appropriate to discuss the performance of the algorithm, which is characterized by

the makespan of the schedule.
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They introduce the parameter r, the communication delay between the time some informa-

tion is produced at a processor and the time that it can be used at another processor. Assuming

that there are enough processors to handle the width of the dag, they give an approximation al-

gorithm that for any r and any dag comes within a factor of 2 of the optimal makespan. Despite

the assumption that disregards the number of processors the technique does not necessarily pro-

duce unrealistic processor-wasteful algorithms. In fact they are able to derive asymptotic upper

and lower bounds on the parallel complexity of several algorithms that are processor-optimal

for fixed time, and yield quite intuitive algorithms.

Berger and Cowen considered a more general model of program dependence than a simple

dag. A dag captures only one sort of dependency: that computation i must be performed before

computation j. Draper [30] gives examples where the ability to require concurrent scheduling of

two computations or to require only that one computation is performed before or st. Iltaneously

with another operation would increase the ability to exploit the parallelism of a parallel system.

They therefore consider the problem of scheduling unit-size jobs on m identical machines when

the execution of the jobs can be constrained by all of the types of constraints they describe.

Their results apply to a problem that arises in practice on the Horizon architecture (8].

Feitelson and Rudolph (36, 37] argue that a central theme of parallel processing is the

existence of many interacting threads of control that cooperate to perform a single computation.

The threads can be created throughout the computation and execute for different amounts of

times. Since threads may need to interact there may be a need for synchronization; furthermore

if the number of threads exceeds the number of processors a naive approach may leave threads

sitting idle while they wait for other threads to be processed. A solution they suggest and are

implementing is gang scheduling, where one guarantees tnat a set of interacting threads executes

simultaneously. The model of gang scheduling is similar to our identical machine model, but

jobs now also have a width which is the size of the block of processors on which the job must

be executed. They argue that the scheduling must be done in an on-line fashion, and study a

number of different rules under various distributions.
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.4 Notation Summary

Due to the large number of different and important versions of scheduling problems, there is a

fair bit of notation associated with the field. We close this chapter with a list of the scheduling

notation used in this thesis, organized in such a fashion as to summarize the similarities and

differences between the different models.

List of Notation

Common to both environments:

" m: the number of machines.

" n: the number of jobs.

* Jj,1 < j < n: the jth job.

" mi, 1 < i < m: the ith machine.

" 1: I problem instance.

" A: an algorithm.

* Crax(Z) the length (makespan) of the shortest feasible schedule for instance 2.

• Cmax(A): length (makespan) of the schedule produced by algorithm A.

Shop Scheduling:

* Oij: ith operation of job j.

* p: the maximum number of operations in any job.

* ,icj: the machine on which operation Oij must be processed.

0 l'max: the maximum machine load.

* pij: the size of operation Oq.

• pmax: the maximum operation size.
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* Pmx: the maximum total job size.

Parallel Machine Scheduling:

9 pj: size of job j.

* si: speed of machine i (Uniformly related machines).

* siq: speed of machine i on job j (Unrelated machines).

* Pmax: the maximum job size.

As a final point of notation, except where otherwise specified log x will always refer to the

logarithm base 2 of x.



Chapter 2

Approximation Algorithms for Shop

Scheduling'

2.1 Introduction

As we have discussed in Chapter 1, despite over thirty years of work on shop scheduling, very

little has been known about approximation algorithms for these troblems. hi this chapter we

present the first nontrivial approximation algorithms for these scheduling problems. Our most

important contribution is the first randomized polynomial-time polylogarithmic approximation

algorithm for job shop scheduling. This algorithm builds on and generalizes the framework

established by Leighton, Maggs and Rao for the special case of unit operation sizes and at most

one operation per job per machine [82].

Theorem 2.1.1 There exists a polynomial-time randomized algorithm for job shop scheduling,

that, with high probability, yields a schedule that is of length O(o2(f.,) Cm).

We also give a deterministic version of this algorithm with almost the same performance

guarantee.

Theorem 2.1.2 There exists a deterministic polynomial-time algorithm for job shop scheduling

which finds a schedule of length O(log2 (m • / )C ax).

1This chapter describes joint work with David Shmoys and Cliff Stein [112].
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As a corollary, we also obtain a deterministic version of the randomized algorithm of

Leighton, Maggs and Rao. Our deterministic algorithm relies on results of Raghavan and

Thompson [102] and Raghavan [99] to approximate certain integer packing problems. Note

that if each job must be processed on each machine at most once, the factor of p can be deleted

for this, and all other performance guarantees in this chapter.

Our techniques are not only useful for the job shop problem, but can easily be extended to

the general problem of dag shop scheduling. Another important generalization is the situation,

where, rather than having m different machines, there are m' types of machines, and for each

type, there are a specified number of identical machines; each operation, rather than being

assigned to one machine, may be processed on any machine of the appropriate type. These

problems have significant practical importance, since in real-world shops we would expect that

a job need not follow a total order and that the shop would have more than one copy of many of

their machines. We will give approximation algorithms with the same performance guarantees

for this generalization as well.

When m and p are constants we can achieve much better approximation guarantees - we give

a (2 + )-approximation algorithm for this special case. Finally, we give parallel approximation

algorithms for all the scheduling models mentioned above, and some improved results for the

open shop problem.

While all of the algorithms that we give are polynomial-time, they are all rather inefficient.

Most rely on the algorithms of Sevast'yanov; for example, his algorithm for job shop scheduling

takes O((pmn)2 ) time. Furthermore, the deterministic versions rely on linear programming. As

a result, we will not refer explicitly to running times throughout the remainder of this chapter.

The rest of this chapter is organized as follows. In Section 2.2 we extend the basic technique

of Leighton, Maggs and Rao to the general job shop problem. In Section 2.3 we show how to

scale and reduce the input data so that the techniques of Section 2.2 yield good performance

bounds. In Section 2.4 we show how our techniques apply to more general problems, and in

2.5 we show how to make them deterministic. We conclude with a discussion of the open shop

problem in Section 2.6 and some open problems in Section 2.7.
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2.2 The Basic Algorithm

In this section we extend the technique due to Leighton, Maggs and Rao (82] of assigning

random delays to jobs to the general case of non-preemptive job shop scheduling. A valid

schedule assigns at most one job to a particular machine at any time, and schedules each job on

at most one machine at any time. Their approach, for the special case of unit-size operations

and at most one operation of each job on each machine, was to first create a schedule that

obeyed only the second constraint, and then build from this a schedule that satisfies both

constraints and is not much longer. The outline of the strategy follows:

1. Define the oblivious schedule, where each job starts running at time 0 and runs -ontinu-

ously until all of its operations have been completed. This schedule is of length Pmax, but

there may be times when more than one job is assigned to a particular machine.

2. Perturb this schedule by delaying the start of the first operation of each job by a random

integral amount chosen uniformly in [0, fimax /log n]. The resulting schedule, with high

probability, has no more than O(log n) operations assigned to any machine at any time.

3. Reschedule each unit of time t into O(log n) units of time during which each of the O(log n)

operations scheduled for time t is processed. The resulting (valid) schedule is of length

O(Pmax log n + Ilmax).

Our strategy builds upon this framework of Leighton, Maggs and Rao. Whereas Step 2

differs in only a few technical details, the essential difficulty in obtaining the generalization is

in Step 3.

2. Perturb this s.Aedule by delaying the start of the first operation of each job by a ran-

dom integral amount chosen uniformly in [0, IlmaxI. The resulting schedule, with high

probability, has no more than 0( Ioo(,')) jobs assigned to any machine at any time.

3. "Spread" this schedule so that at each point in time all operations currently being pro-

cessed have the same size, and then "flatten" this into a schedule that has at most one

job per machine at any time.
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For the analysis of Step 2, we assume that Pm.. is bounded above by a polynomial in n and

p; in the next section we will show how to remove this assumption. As is usually the case, we

assume that n > m; analogous bounds can be obtained when this is not true.

Lemma 2.2.1 Given a job shop instance in which Pm.x is bounded above by a polynomial in n

and p, the strategy of delaying each job an initial integral amount chosen randomly and uniformly

from [0, Ilma,] and then processing its operations in sequence will yield ;n (invalid) schedule that

is of length at most Hrm, + Pm.x and, with high probability, has no more than O( 10t.m)) jobs

scheduled on any machine during any unit of time.

Proof: Fix a time t and a machine mi; consider p = Prob[at ieast r units of processing are

scheduled on machine i at time t]. There are at most (n-") way0 to choose r units of processing

from all those required on mi. If we focus on a particular one of these r units and a specific

time t, then the probability that it is scheduled at time t is at most 1/imax, since we selected a

delay uniformly at random from among I1max possibilities. If all r units are from different jobs

then the probability that they are all scheduled at time t is at most (--)1 since the delays

are chosen independently. Other 'ise, the probability that all r are scheduled then is 0, since

it is impossible. Therefore

(eHmax~r 1r

T /Uimax)

If T = k 'ogl(-n) then p < (nu)-(-l). To bound the probability that any machine at any

time has more than k log(n',) jobs using it, multiply p by Pmax + Imax for the number of timetime as mre thn 'log log(n. )

units in the schedule, and by m for the number of machines. Since we have assumed that Pmax

is bounded by a polynomial in n and ps, Pmax + I.ax is as well; choosing k large enough yields

that, with high probability, no more tha n k 'og(") jobs are scheduled for any machine during

any unit of time.

In the special case of unit-lengtb operations treated by Leighton, Maggs and Rao, a schedule

S of length L that has at most c jobs scheduled on any machine at any unit of time can trivially

be "flattened- into a valid schedule of length cL by replacing one unit of S's time with c units
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time 1  2 3 1 2 3 4 5 6
machine j1 J3 J8 8 __ _

22 J4  J9 J1 J2 J3 J4

machine J3 J2 J4
2 J6 J1 7J3 J6 J2 J J4 J7

machine j5 J7 J13 J9 J8' J, J5 J9 J7 J8 J1 J6

Figure 2.1: Flattening a schedule in the case with unit length operations.

of time in which we run each of the jobs that was scheduled for that time unit. (See Figure

2.1.)

For preemptive job shop scheduling, where the processing of an operation may be interrupted,

each unit of an operation can be treated as a unit-length operation and a schedule that has

multiple operations scheduled simultaneously on a machine can easily be flattened into a valid

schedule. This is not possible for non-preemptive job shop scheduling, and in fact it seems to

be more difficult to flatten the schedule in this case. We give an algorithm that takes a schedule

of length L with at most c operations scheduled on one machine at any time and produces a

schedule of length O(cL log Pmax).

Lemma 2.2.2 Given a schedule So of length L that has at most c jobs scheduled on one machine

during any unit of time, there exists a polynomial-time algorithm that produces a valid schedule of

length O(cL log pm).

Proof: To begin, we round up each processing time pi, to the next power of 2 and denote

the rounded times by p -; that is, plj = 2[10g2P P. Let Pmax = max i p .. From So, it is easy to

obtain a schedule S that uses the modified p:, and is at most twice as long as So; furthermore,

an optimal schedule for the new problem is no more than twice as long as an optimal schedule
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for the original problem.

A block is an interval of a schedule with the property that each operation that begins during

this interval is of length no more than that of the entire interval. (Note that this does not mean

that the operation finishes within the interval.) We can divide S into f -AI consecutive blocks
P& x ,

of size P'm,' We will give a recursive algorithm that reschedules - "spreads" - each block of

size p (where p is a power of 2) into a sequence of schedule fragments of total length p log p; the

operations scheduled in a fragment of length T are all of length T, and start at the beginning

of the fragment. This algorithm takes advantage of the fact that if an operation of length p is

scheduled to begin in a block of size p, then that job is not scheduled on any other machine

until after this block. Therefore, that operation can be scheduled to start after all of the smaller

operations in the block finish.

To reschedule a block B of size P' x, we first construct the final fragment (which is of length

a) and then construct the preceding fragments by recursive calls of the algorithm. For each

operation of length p . that begins in B, reschedule that operation to start at the beginning of

the final fragment, and delete it from B. Now each operation that still starts in B is of length

at most fM../2, so B can be subdivided into two blocks, B1 and B2 , each of size p' .. / 2 , and

we can recurse on each. See Figure 2.2.

The recurrence equation that describes the total length of the fragments produced from a

block of size T is f(T) = 2f(T) + T; f(1) = 1. Thus f(T) = O(Tlog T), and each block B in S

of size p'.x is spread into a schedule of length P'max log p... By spreading the schedule 5, we

produce a new schedule S' that satisfies the following conditions:

1. At any time in 8', all operations scheduled are of the same length; furthermore, any two

operations either start at the same time or do not overlap.

2. If S has at most c jobs scheduled on one machine at any time, then this must hold for S'

as well.

3. S' schedules a job on at most one machine at any time.

4. 5' does not schedule the ith operation of job Ji until the first i - 1 are completed.
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(a) 314 3 5

J6  J 8 J9 J3

F -B I - C
Fi-B- F-B2- -CIA F-C2-1

J3 J1 J J

(b) Y2 J4 J5

J6 J 8 IJ9 IIIJ3

I-B -I C
S-- _---I '---C2

J3 '  J 1 J2 [J6

(C) J2 J4 J5

J6 J8 J jjJ 3

Figure 2.2: (a) The initial greedy schedule of length 8. l = 4. (b) The first level of
spreading. All jobs of length 4 have been put in the final fragments. We must now recurse on
B, and B 2 with Pmax = 2. (c) The final schedule of length 8 log 2 8 = 24.
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Condition 1 is satisfied by each pair of operations on the same machine by the definition

of spreading, and by each pair of operations on different machines because the division of time

into fragments is the same on all machines. To prove condition 2, note that operations of length

T that are scheduled at the same time on the same machine in the expanded schedule started

in the same block of size T on that machine. Since they all must have been scheduled during

the last unit of time of that block, there can be at most c of them.

To prove condition 3, note that if a job is scheduled by 3' on two machines simultaneously

that means that it must have been scheduled by S to start two operations of length T in the

same block of length T on two different machines. This means it was scheduled by S on two

machines during the last unit of time of that block, which violates the properties of S.

Finally we verify condition 4 by first noting that if two operations of a job are in different

blocks of size p ,x in S then they are certainly rescheduled in the correct order. Therefore

it suffices to focus on the schedule produced from one block. Within a block, if an operation

is rescheduled to the final fragment then it is the last operation for that job in that block.

Therefore S' does not schedule the ith operation of job J until the first i - 1 are completed.

The schedule S' can easily be flattened to a schedule that obeys the constraint of one job

per machine at any time, since c operations of length T that start at the same time can just be

executed one after the other in total time cT. Note that since what we are doing is effectively

synchronizing the entire schedule block by block, it is important when flattening the schedule to

make each machine wait enough time for all machines to process all operations of that fragment

length, even if some machines have no operations of that length in that fragment.

The schedule S' was of length Llog pax; therefore the flattened schedule is of length

Lclogp a.

We note in passing that the inclusion of release dates into the problem will not affect the

quality of our bounds at all. The release dates can either be directly included into probabilistic

analysis of lemma 2.2.1, or we can view each release date as one additional initial operation on

some (imaginary) machine.
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2.3 Reducing the Problem

In the previous section we showed how to produce, with high probability, a schedule of length

0 ((Imax + Pm.x) log(. "A) logpmax),

under the assumption that Pm,. was bounded above by a polynomial in n and p. Since

"max + Pmax = O(max{Ilmax, Pm.x})

this schedule is within a factor of log( ) log pma) of optimality. In this section, we will

first remove the assumption that Pmax is bounded above by a polynomial in n and p by showing

that we can reduce the general problem to that special case while only sacrificing a constant

factor in the approximation. This yields an 0(g( n )-approximation algorithm. Then we

will show that n need not be polynomially bounded in m and p. Combining these two results,

we conclude that we can reduce the job shop problem to the case where n is polynomially

bounded in m and p, while changing the performance guarantee by only a constant.

2.3.1 Reducing Pmax

First we will show that we can reduce the problem to one where Pmx is bounded by a polynomial

in n and p. Let w = 101 be the total number of required operations. Note that w < nit. Round

down each pij to the nearest multiple of P..ax/w, denoted by p'ij. Now there are at most w

distinct values of MY and they are all multiples of PmaxIW. Therefore we can treat the p'j as

integers in {0,...,w}; a schedule for this problem can be trivially rescaled to a schedule S' for

the actual p~,. (Note that assigning p'j = 0 does not mean that this operation does not exist;

instead, it should viewed as an operation that takes an arbitrarily small amount of time.) Let

L denote the length of S'. We claim that S' for this reduced problem can be interpreted as a

schedule for the original operations that will be of length at most L +Pmax. When we adjust the

pij up to the original p'l, we add an amount that is at most Pmax/w to each p .. Since the length

of a schedule is determined by a critical path through the operations and there are w operations,

we add a total amount of at most Pmax to the length of the schedule; thus the new schedule is
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of length at most L + pm,, L + C ,ax. Therefore we have rounded a general instance I of

the job shop problem to an instance I' that can be treated as having pm, = O(np); further, a

schedule for I' yields a schedule for I that is no more than C',, longer. Thus we have shown:

Lemma 2.3.1 There exists a polynomial-time algorithm which transforms any instance of the

job shop scheduling problem into one with Pmx = O(np) with the property that a schedule for

the modified instance of length kC,!, can be converted in polynomial time to a schedule for the

original instance of length (k + 1)Cmx.

2.3.2 Reducing the Number of Jobs

To reduce an arbitrary instance of job shop scheduling to one with a number of jobs polynomial

in m and p we divide the jobs into big and small jobs. We say that job Jj is big if it hLs an

operation of length more than llmax/(2M'p3); otherwise we call the job small. For the instance

consisting of just the short jobs, let H1max and Pm.. denote the maximum machine load and

operation length, respectively. Using the algorithm of [110] described in the introduction, we

can, in time polynomial in the input size, produce a schedule of length 11', + 2mp3 pX for
this instance. Since P max is at most l'max/(2m/t 3) and 'x < Imax we get a schedule that is

of length no more than 21Tmax. Thus, an algorithm that produces a schedule for the long jobs

that is within a factor of k of optimal will yield a (k + 2)-approximation algorithm. Note that

there can be at most 2m2p3 long jobs, since otherwise there would be more than mIImx units of

processing to be divided amongst m machines, which contradicts the definition of Imax. Thus

we have shown:

Lemma 2.3.2 There exists a polynomial-time algorithm which transforms any instance of the

job shop scheduling problem into one with O(m2A3) jobs with the property that a schedule for the

modified instance of length kCmax can be converted in polynomial time to a schedule for the original

instance of length (k + 2)C ax.

From the results of the previous two sections. we can conclude that:

Theorem 2.3.3 There exists a polynomial-time randomized algorithm for job shop scheduling,

that, with high probability, yields a schedule that is of length at most O(1oo(,n.) )Cmax).
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Proof: In Section 2 we showed how to produce a schedule of length

((limax + Pmax) loni) log &

under the assumption that Pm.. was bounded above by a polynomial in n and A. From Lemmas

2.3.1 and 2.3.2 we know that we can reduce the problem to one where n and Pmax are poly-

nomial in m and A, while adding only a constant to the factor of approximation. Since now

logpmax = O(log(ma)) and log n = O(log(m/4)) our algorithm produces a schedule of length
Olog2 '" g-MA) C" a')

Note that when y is bounded by a polynomial in m the bound only depends on m. In

particular, this implies the following corollary:

Corollary 2.3.4 There exists a polynomial-time randomized algorithm for flow shop scheduling,
l OR o mg C_ .•

that, with high probability, yields a schedule that is of length at most O( loglogmmax).

Except for the use of Sevast'yanov's algorithm, all of these techniques can be carried out

in 7Z VC2. We assign one processor to each operation. The rounding in the proof of Lemma

2.2.2 can be done in NlC. We set the random delays and inform each processor about the

delay of its job. By summing the values of Pij for all of its job's operations, each processor can

calculate where its operation is scheduled with the delays and then where it is scheduled in the

recursively spread out schedule. These sums can be calculated via parallel prefix operations.

With simple NC techniques we can assign to each operation a rank among all those operations

that are scheduled to start at the same time on its machine, and thus flatten the spread out

schedule to a valid schedule.

Corollary 2.3.5 There exists a 71V'C algorithm for job shop scheduling, that, with high proba-

bility, yields a schedule that is of length at most loo(n,) ma,"

2Since most of our discussion of parallel algorithms for combinatorial problems occurs in the latter chapters
of this thesis, we have put off a discussion of A'C, RMC and models of parallel algorithms until Chapter 4. We
refer the reader who is not familiar with these terms to that discussion.
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2.3.3 A Fixed Number of Machines

It is interesting to note that Sevast'yanov's algorithm for the job shop problem can be viewed

as a (1 + mj13)-approximation algorithm, so that when m and 1L are constant, this is a 0(1)-

approximation algorithm; that is, it delivers a solution within a constant factor of the optimum.

The technique of partitioning the set of jobs by size can be applied to give a much better

performance guarantee in this case. Now call a job Jj big if there is an operation Oij with

pgj > CIma/(Mrp 3 ), where c is an arbitrary positive constant. Note that there are at most

m2 A3/c big jobs, and since m, 1L and c are fixed, this is a constant.

Now use Sevast'yanov's algorithm to schedule all of the small jobs. The resulting schedule

will be of length at most (1 + E)Cx. There are only a constant (albeit a huge constant) number

of ways to schedule the big jobs. Therefore the best one can be selected in polynomial time

and executed after the schedule of the short jobs. The additional length of this part is no more

than C . .

Thus we have shown:

Theorem 2.3.6 For the job shop scheduling problem where both m and JL are fixed, there is a

polynomial-time algorithm that produces a schedule of length < (2 + c)Cnax.

2.4 Applications to More General Scheduling Problems

The fact that the quality of our approximations is based solely on the lower bounds ilmax and

Pm, makes it quite easy to extend our techniques to the more general problem of dag shop

scheduling. We define 11max and Pmax exactly the same way, and max{Ilm, Pmax} remains a

lower bound for the length of any schedule. We can convert this dag shop scheduling problem

to a job shop problem by selecting for each job an arbitrary total order that is consistent with

its partial order. Imax and Pmax have the same values for both problems. Therefore, a schedule

of length p. (Ilmax + Pmax) for this job shop instance is a schedule for the original dag shop

scheduling instance of length O(pC x).

A further generalization to which our techniques apply is where, rather than m different

machines, we have m' types of machines, and for each type we have a specified number of
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identical machines of that type. Instead of requiring an operation to run on a particular

machine, an operation now has to run on only one of these identical copies. Pmax remains a

lower bound on the length of any schedule for this problem. Hmax, which was a lower bound for

the job shop problem must be replaced, since we do not have a specific assignment of operations

to machines, and the sum of the processing times of all operations assigned to a type is not a

lower bound. Let Si, i = 1, ... i', denote the sets of identical machines, and let II(Si) be the

sum of the lengths of the operations which run on Si. Our strategy is to convert this to a job

shop problem by assigning operations to specific machines in such a way that the maximum

machine load is within a constant factor of the fundamental lower bounds for this problem. To

obtain a lower bound on the maximum machine load, note that the best we could do would be

to evenly distribute the operations across machines in a set, thus

rl(s,)
llavg = max -

Si iSi

is certainly a lower bound on the maximum machine load. Furthermore, we can not split

operations, so Pmax is also a lower bound. We will now describe how to assign operations to

machines so that the maximum machine load of the resulting job shop scheduling problem is

at most 2I1avg + Pm. A schedule for the resulting job shop problem of length p. (ilmax + Pmax)

yields a solution for the more general problem of length O(P. (avg + Pm x)). Sevast'yanov [110]

used a somewhat more complicated reduction to handle a slightly more general setting.

For each operation Oij to be processed by a machine in Sk, if pj lI(Sk)/ISI, assign Oi to

one machine in Sk. There are certainly enough machines in Sk to do this and this contributes

at most Pmax to the maximum machine load. Those operations not yet assigned are each of

length at most II(Sk)IISkI and have total length < II(Sk). Therefore, these can be assigned

easily to the remaining machines so that less than 2II(Sk)/Sk processing units are assigned to

each machine. Combining these two bounds, we get an upper bound on the maximum machine

load of 21 avg + Pmax which is within a constant factor of the lower bound of max{IIg, pmax}.

Theorem 2.4.1 There exists a polynomial-time randomized algorithm for dag shop scheduling

with identical copies of machines that, with high probability, yields a schedule that is of length at

most -(I ,g og(M.JM) Cmax)"
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Corollary 2.4.2 There exists an iZAIC algorithm for dag shop scheduling with identical copies of

machines that, with high probability, yields a schedule that is of length at most O( 10o(.) C;ax).

2.5 A Deterministic Approximation Algorithm

In this section, we "derandomize" the results of the previous sections, i.e., we give a determin-

istic polynomial-time algorithm that finds a schedule of length O(log2(m. p)C;). Of all the

components of the algorithm of Theorem 2.3.3, the only step which is not already deterministic

is the step that chooses a random initial delay for each job and then proves that, with high

probability, no machine is assigned too many jobs at any one time. In particular, the reduction

to the special case in which n and P,ax are bounded by a polynomial in m and p is entirely

deterministic, and so we can focus on that case alone. We will give an algorithm which deter-

ministically assigns delays to each job so as to produce a schedule in which each machine has

O(log(mp)) jobs running at any one time. We then apply Lemma 2.2.2 to produce a schedule

of length O(log2(m. p)C;). Note that the O(log(mp)) jobs per machine is not as good as

the probabilistic bound of 0( ( ,') ); we do not know how to achieve this deterministically.

However, by a proof nearly identical to that of Lemma 2.2.1, we can show that in order to

achieve this weaker bound on the number of jobs per machine, we now only need to choose

delays in the range [0, Pmax/ log(m • p)]. In fact, the reduced range of delays yields a schedule

of length O(Pa log 2(mY) + IImax log(my)) which is within an O(log(mit)) factor of optimal if

Pmax = 0(I.nax/log(mp)).

Our approach to solving this problem is to frame it as a vector selection problem and then

apply techniques developed by Raghavan and Thompson [101, 102] and Raghavan [991 which

find constant factor approximations to certain "packing" integer programs. The approach is to

formulate the problem as a (0, 1}-integer program, solve the linear programming relaxation,

and then randomly round the solution to an integer solution.

For certain types of problems this yields provably good approximations with high probability

[101, 102]. Furthermore, for many of the problems for which there are approximations with

high probability, the algorithm can be derandomized. Raghavan [99] has shown how to do this

by essentially setting the random bits one at a time.
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We now state the problem formally:

Problem 2.5.1 Deterministically assign a delay to each job in the range [0, Pax/ log(m .'4) so

as to produce a schedule with no more than O(log(my)) jobs on any machine at any time.

Lemma 2.5.2 Problem 2.5.1 can be solved in deterministic polynomial time.

Proof: Since we introduce delays in the range [0, Pmx/ log(m •/p)], the resulting schedule has

length I = Pmax + I1ma,/log(m/a). We can represent the processing of a job j with a given initial

delay d by an (f. m)-length {0, 1}-vector where each position corresponds to a machine at a

particular time. The position corresponding to machine mi and time t is 1 if mi is processing

job Jj at time t, and 0 otherwise. For each job Jj and each possible delay d, there is a vector

V'.d which corresponds to assigning delay d to J.

Let Aj be the set of vectors {V,h,..., Vd.}, where dmax = flmax/log(mp), and let VIj,k(i)

be the ith component of Vjk. Given the set A = {A,...., A,,} of sets of vectors, our problem

can be stated as the problem of choosing one vector from each Aj (denoted Vj*), such that

E " = O(log(mn)),

j=1 10

i.e., at any time on any machine, the number of jobs using that machine is O(log(m/s)).

As in [99], we can reformulate this as a {0, 1}-integer program. Let xj,k be the indicator

variable used to indicate whether Vj, is selected from A,. Consider the integer program (IP)

that assigns {0, 1} values to the variables xjk to minimize W subject to the constraints:

dmax

k=1
n dmax

j=l k=l

Let WOPT be the optimum value of W, which is the maximum number of jobs that ever

use a machine at any time. We already know, by Lemma 2.2.1, that WOPT = O(log(mpU)), so

if we could solve this integer program optimally we would be done. However, the problem is
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.AfP-hard. Instead, we rely on the following theorem which is immediate from the results in

[99] and [102].

Theorem 2.5.3 [99, 102] A feasible solution to (IP) with W = O(WoPT + log(mra)) can be

found in polynomial time.

U

We then apply Lemma 2.2.2 and obtain the following result:

Theorem 2.5.4 There exists a deterministic polynomial-time algorithm which finds a schedule

of length O(log 2(m. / ) Cm".).

2.6 The Open Shop Problem

Recall that in the open shop problem the operations of a job can be executed in any order.

Fiala [40] has also shown that if I'max >_ (16mlogm + 21m)pmax, then Cm*ax is just Hmax, and

there is a polynomial-time algorithm to find an optimal schedule, but in general this problem

is strongly A'P-Complete. We will show that, in contrast to the job and flow shop problems, a

simple greedy strategy yields a fairly good approximation to the optimal open shop schedule.

Consider the algorithm that, whenever a machine is idle, assigns to it any job that has not

yet been processed on that machine and is not currently being processed on another machine.

Anni Racsminy [5] has observed that the greedy algorithm delivers a schedule of length at

most imax + (m - 1)pmax. We can adapt her proof to show that, in fact, the greedy algorithm

delivers a schedule that is no longer than a factor of two times optimal. We can also show that

this is essentially a tight bound.

Theorem 2.6.1 The greedy algorithm for the open shop problem is a 2-approximation algorithm.

This is true even when each job Jj has an associated release date rj on which it becomes available

for processing. Furthermore, this strategy can produce schedules that are as long as (2 - -) times

optimal.

Proof: Consider the machine mk that finishes last in the greedy schedule; this machine is

active sometimes, idle sometimes, and finishes by completing some job J,. Since the schedule
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is greedy, whenever mk is idle, Jj is either being processed by some other machine or has not

yet been released. Therefore, the idle time is at most Xm,,m& Pq +ri < P + r. Thus, machine

mk is processing for at most H,,, units of time and is idle for less than P + rj units of time;

hence Cmax < IImax + Pj + r. However, Pj + rj is a lower bound on the length of the schedule,

since no processing of job Jj could start until time rj. Therefore the schedule length is within

a factor of 2 of optimal.

To lower bound the worst-case performance of this algorithm, consider an open shop instance

with n = 2m - 1 jobs. Job J, has one operation of size I on each machine, job J2 has one

operation of size m - 1 on machine 1 and job J3 has one operation of size m - 1 on machine

m. Finally, for each machine i, 2 < i < m - 1, there are two jobs, each with one operation of

machine i. One job has an operation of size i - 1 and the other job has an operation of size

m - i. The optimal schedule is of length m but a greedy algorithm can produce a schedule of

length 2m - 1 (see Figure 2.6). N

Using a slightly different (non-greedy) strategy, we can derive another algorithm which

achieves a schedule of length O(lognC .. ). This algorithm will also be easily parallelizable,

thus putting the problem of finding an O(logn)-approximation to the open shop scheduling

problem in A/C.

We define the jobs graph, which is a bipartite graph that represents an instance of the open

shop problem. One side of the bipartition contains m nodes, one for each machine, whereas the

other side contains n nodes, one for each job. If job J, has an operation on machine i then the

jobs graph contains an edge between the respective nodes.

First consider the case when all the operations are of the same size, say e. Let A be the

maximum degree of any node in the remaining jobs graph. Then tA is a lower bound on the

length of the optimal schedule for this problem. However, since this is a bipartite graph with

maximum degree A, it can be edge-colored using exactly A colors. So we edge-color the graph,

and then schedule the operations in each color class separately. This produces a schedule of

length fA, which is optimal. As long as there is at least one processor per operation, this can

be done in NC using the edge-coloring algorithm of Lev, Pippinger, and Valiant [84].

We can extend this to solve the open shop problem by first using the techniques of Section

2.3.1 to reduce the problem to the case where all the operations have sizes polynomial in n, and
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Machine 1

Machine 2

(a)

Machine m-i

Machine m

Time: 0 m 2m-1

Machine 1

Machine 2

(b)
Machine m-1

Machine m

Time: 0 m-i 2m-1

Figure 2.3: Instance for lower bound on performance of greedy open shop algorithm. Black
squares represent the operations of job J1. Schedule (a) is the optimum schedule, but schedule
(b) is a greedy schedule in which J, is not started until after time m - 1.
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then by rounding the operation sizes so they are all powers of 2. Now there are only O'(log n)

different operation sizes. We schedule each one separately, using the edge-coloring strategy

above. The schedule we get for any particular I is optimal for that operations of that size;

hence each of the O(log n) schedules we produce is of length O(C,,). Concatenating these

schedules together, and observing that all the rounding can easily be done in ANC, we obtain

the following theorem:

Theorem 2.6.2 An open shop schedule of length O(lognCm.,) can be found in NIC.

2.7 Conclusions and Open Problems

We have given the first polynomial-time polylog-approximation algorithms for minimizing the

maximum completion time for the problems of job shop scheduling, flow shop scheduling, dag

shop scheduling and a generalization of dag shop scheduling in which there are groups of identi-

cal machines. Clearly the most basic question to be pursued is the development of approxima-

tion algorithms with even better performance guarantees. It is our belief that the O(logpmax)

factor that is introduced by the techniques of section 2.2 can be improved upon, perhaps even by

a simple greedy method. However, such methods have proved frustratingly difficult to analyze.

The other logarithmic factor in the performance bound seems much more difficult to improve

upon.

An interesting consequence of our results is the following observation about the structure

of shop scheduling problems. Assume we have a set of jobs which need to run on a set of

machines. We know that any schedule for the associated open shop problem must be of length

D(flma + Pmax). Furthermore, we know that no matter what type of partial ordering we impose

on the operations of each job we can produce a schedule of length O((II .a + Pm.x) 0g'2m)

Hence for any instance of the open shop problem, we can impose an arbitrary partial order on

the operations of each job and increase the length of the optimal schedule by a factor of no

more than 0 ( m-,2-
"log log m

An interesting combinatorial question is "Can this imposition of a partial order really make

the optimal schedule that much longer than O(llmax + Pmx)?" In other words, how good are

Umax and Pm, as lower bounds? We have seen that in two interesting special cases, job shop
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scheduling with unit-length operations and open shop scheduling, there is a schedule of length

O(Ilmax + Pm&x). Does there always exist an O(Ilmax + Proax) schedule for the general job, flow

or dag shop scheduling problem?

Beyond this, there are a number of interesting questions raised by this work, including

* Do there exist parallel algorithms that achieve the approximations of our sequential al-

gorithms? For the general job shop problem this seems hard, since we rely heavily on

the algorithm of Sevast'yanov. For open shop scheduling, however, a simple sequential

algorithm achieves a factor of 2, whereas the best AC algorithm that we have achieves

only an O(log n)-approximation. As a consequence of the results above, all one would

need to do is to produce any greedy schedule.

" Are there simple variants of the greedy algorithm for open shop scheduling that achieve

better performance guarantees? For instance, how good is the algorithm that always

selects the job with the maximum total (remaining) processing time?

" Our algorithms, while polynomial-time algorithms, are inefficient. Are there significantly

more efficient algorithms which have the same performance guarantees? Recent work

by Plotkin, Shmoys and Tardos [97] gives a significantly faster algorithm, which does

not use linear programming, to accomplish the derandomization described in Section 2.5.

Therefore the major remaining problem is to develop a faster version of the algorithm of

Sevast'yanov.



Chapter 3

Scheduling Parallel Machines

On-line'

3.1 Introduction

The scheduling of a set of tasks on parallel machines2 is a basic problem in combinatorial opti-

mization, with an number of increasingly important applications. As we discussed in Chapter 1

there is a rich literature on parallel machine scheduling, but the overwhelming majority of these

results assume that a complete specification of the instance is available before the algorithm

begins to construct a schedule. This fails, however, to capture many of the scheduling problems

that arise in practice. Consider, for example, the allocation of jobs to the processing units of a

multiprocessor: the scheduler does not in advance have complete knowledge of a job's running

time, or of what jobs will be created and require processing in the future. Or, consider the

owner of a garage, who muet schedule his group of car repairmen. The owner does not know

how many cars will arrive to be repaired on a given day, and also does not know how long it will

take to repair any particular car. In this chapter, we will study on-line algorithms - algorithms

that work without any clairvoyant assumptions - for the most basic types of parallel machine

scheduling models. Our algorithmic results are based on two rather general techniques that

1This chapter describes joint work with David Shmoys and David Williamson [113].2See Chapter 1 for the definition of the parallel machine model and the associated notation.

37



38 CHAPTER 3. SCHEDULING PARALLEL MACHINES ON-LINE

allow us to convert algorithms that need more complete knowledge of the input data into ones

that need less advance knowledge.

When on-line scheduling has been studied in the past, the models that have been considered

were typically of the following form: the existence of a job is unknown until a certain release

date, at which point the processing requirement for that job is completely specified. We will

consider more realistic models, where the processing requirement of a job is also unknown when

it starts processing, and can only be determined by processing the job and observing how long

it takes to be completed. In fact, our results show that the traditional sort of on-line scheduling

problem is provably not much harder than its off-line analogue, whereas the lack of knowledge

about job sizes can drastically affect the quality of solutions that can be obtained.

We shall evaluate on-line algorithms in terms of their competitive ratio [116]. Let Caax(1")

be the makespan of a deterministic on-line algorithm A on instance 11. Algorithm A is said to

have com~etitive ratio c (or is said to be c-competitive)'if Cmaa(") c. Cax(X") + 0(1) for all

problem instances 1. If A is a randomized algorithm, then A is said have competitive ratio c

(or is said to be c-competitive) if E[Cmax(")] < c. Cx(Z) + 0(1) for all instances 1, where the

expectation is taken over.all random choices of the algorithm A. Although these notions apply

to algorithms without any restrictions on their running times, we will focus on polynomial-time

on-line algorithms, rather than the purely information-theoretic analogue. Nonetheless, our

lower bounds are based on information-theoretic arguments.

In a non-preemptive model, it may be unrealistic to assume that once a job is started, it

must be run until its (unknown) completion time, without any form of recourse. A central

aspect of our models is that we introduce the notion of restarts: a job may be canceled and

later started again, but it is started again from scratch. For example, in the uniformly related

machine model, we may wish to cancel a job that is taking longer than "anticipated", and then

start it again on a faster machine.

The results of this chapter are as follows. We introduce two general techniques to convert

off-ine algorithms to algorithms that require less initial information. Using the first technique,

we show that we can focus on the case without release dates, since the situation in which there

are unknown job arrivals and unknown processing times can be reduced, with only a factor of

2 increase in the competitive ratio, to one in which there are only unknown processing times.
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This result also holds when comparing a model in which there are only unknown arrivals and its

off-line equivalent. As a consequence, we consider the situation in which all jobs (of unknown

size) are available to be scheduled from the start. For both uniformly related and unrelated

machines, we use our second technique to convert off-line algorithms into algorithms that need
not be given the processing time of each job. Nonetheless, the resulting on-line algorithms do

not suffer too great a degradation in the quality of the solution produced.

It is quite simple to obtain tight bounds for the identical machine model: one of the oldest
results in scheduling theory is an on-line algorithm of Graham [52], which produces a schedule

of length at most (2 - -)C" , ; we give a straightforward proof that this is exactly the best
possible ratio. We also give an identical tight bound on the competitive ratio obtainable in

the preemptive variant. This has the important consequence that, although complexity theory

shows that there is a fundamental difference between the preemptive and non-preemptive mod-

els, this difference disappears when scheduling jobs on-line. We also show that randomization

is of little help to the scheduler, proving that no randomized algorithm can achieve competitive

ratio better than (2 - 0(7'+)), even against an oblivious adversary. This result is in sharp
contrast to other recent work in on-line algorithms, in which randomness has been shown to

significantly increase the performance of the algorithms [71, 119].

We then show that on-line scheduling on uniformly related machines is much harder than
on identical machines. This is also quite different from the off-line setting, where results for

identical machines have typically extended to the case where machines run at different speeds. In

our on-line model, we show that this generalization does make the problem significantly harder:
we prove that the optimal competitive ratio is O(log in). We generalize this model to unrelated

machines "by assuming that for each job, the relative speeds of the machines are known, but

its size is unknown. lLi this setting, we can also obtain an on-line algorithm with an O(log n)

competitive ratio. Once again, we also give identical results for the preemptive variants of these

models. For uniformly related machines, we also show how to take advantage of the situation

when the relative speeds of the machines are not too different; we give an O(log R)-competitive

algorithm for the non-preemptive model, where R is the ratio of the fastest-to-slowest machine

speeds. Finally, we can show that this bound is tight, in the following sense: for any ratio of

machine speeds R < m we prove a lower bound of n(log R) on the competitive ratio of any
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deterministic on-ine scheduling algorithm.

3.1.1 Previous Work on On-line Algorithms

On-ine algorithms have been studied for a variety of problem domains. Some of the oldest of

these results are for the bin-packing problem, where the quality of an on-line algorithm was

similarly measured by the worst-case ratio of the performance of the on-line algorithm to the

best off-line algorithm. The idea to use this ratio as a measure of the quality of an on-line

algorithm was not utilized in other areas of computer science until the work of Sleator and

Tarjan, who studied several questions in paging and list maintenance [115]. These problems are

inherently on-line, since one must maintain the list or decide which pages should be in primary

memory without knowing what the future sequence of requests will be. Until the work of Sleator

and Tarjan, people typically evaluated strategies for these problems by asymptotic average-case

analysis. These analyses, however, were not always consistent with experimental evidence about

the performance of the various strategies. The idea of using the competitive ratio to evaluate

these algorithms proved exciting, since in certain cases their results lent theoretical support to

the superiority of the best strategies in practice.

The subsequent growth of work on on-line algorithms was explosive. An attempt to provide

a general theory of on-line algorithms was made by Borodin, Linial and Saks, who defined

the "metrical task system" and gave tight bounds on the performance of algorithms in this

framework [17]. The generality of the characterization led to pessimistic worst-case performance

bounds and therefore limited its usefulness.

A less general framework that quickly gained a great deal of notoriety is the k-server problem,

introduced by Manasse, McGeoch and Sleator [871. Given k "servers" in a metric space, the k-

server problem requires the service of a sequence of service requests, where a service request is a

point in the metric space and is served by moving a server to that point. The problem is on-line

in that the future sequence of requests is unknown. This problem generalizes several important

problems, including caching, paging and planning the motion of the heads of a two-headed disk.

The famous k-server conjecture is that there is a k-competitive algorithm for this problem;

it is known that no better competitive ratio is possible [87]. This conjecture has been proved to

be true in a number of special cases [87, 24, 23], and for the general case there exist algorithms
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whose competitive ratios are known to depend only on k, albeit exponentially [41, 54].

This flurry of work has motivated another stream of work in on-line algorithms, in which

people have studied how well one can solve basic problems in combinatorial optimization on-

line. Graph coloring [63, 119], matching [71], weighted matching [68], and the transportation

problem [72] have all been considered in a model where nodes of the graph (and incident edges)

are introduced one at a time and an irrevocable decision must be made about the color of the

node or which edge should be in the matching. A variety of path-finding problems have been

considered as well, where one tries to find the shortest path possible in an environment about

which one does not have total information [94, 29, 15].

The work in this chapter can be seen as in the spi- , ot,, of these directions of work in

on-line algorithms. Scheduling problems are, like paging and caching, basic issues in computer

control; they are also basic questions in combinatorial optimization.

3.1.2 Previous Work on On-line Scheduling

A model of on-line scheduling that is very different from ours is closely related to a variant of the

bin-packing problem. When the number of bins is fixed, on-line bin-packing can be interpreted

as a type of on-line scheduling, where the jobs are given in a list and scheduled in turn. The job

currently being scheduled is completely specified, but the jobs later in the list are completely

unknown. This model corresponds less to a dynamic environment and more to a first come first

serve reservation system for some date in the future. It also bears some similarity to the on-line

graph problems mentioned above. Recently Johnson [65] and Chandrasekaran and Narayanan

[91] have proved some lower bounds in this model.

In terms of previous work on our model of on-line scheduling, some attention has been

given in the past to the question of unknown release dates. In the preemptive model, Gonzales

and Johnson gave a polynomial time algorithm that optimally solves this problem on identical

machines. Sahni and Cho extended this result to apply to uniformly related machines. In the

non-preemptive model Gusfield considered a more general problem on identical machines, in

which each job has an associated due date, and the goal is to minimize the maximum lateness.

He proved a bound of (2 - m)Pmax on the difference between the maximum lateness produced

by an on-line heuristic and the minimum possible maximum lateness.
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Relatively little work has been done on the model of on-fine scheduling that we consider.

Chandra, Karloff, and Vishwanathan [21] proposed studying on-line scheduling with unknown

processing times, and analyzed the problem of minimizing the average completion time on a

single machine with preemption. In addition to the algorithms for identical machines given by

Graham [52], the only other work for parallel machines known to us prior to ours is that of Jaffe

[64] and Davis and Jaffe [28]. Davis and Jaffe show that in a restricted model without restarts,

an on-fine algorithm for non-preemptive scheduling of uniformly related machines cannot have

competitive ratio better than !?(vr/i). Jaffe gives an algorithm for this case with competitive

ratio O(v'm).

Recently Feldmann, Sgall and Teng [38] studied on-line scheduling on a mesh of identical

processors, where one must allocate a submesh of a specified size to a job, when the processing

time of that job is unknown. They prove a O( /log log m) bound on the competitive ratio in

this model. In addition, they study a number of other architectures such as hypercubes and

trees.

The rest of this chapter is organized as follows. In Section 3.2 we show that the introduction

of unknown release dates into a scheduling problem does not make the problem too much harder.

As a result we concentrate on the situation where all the jobs are available at time 0 but have

unknown processing requirements. In Section 3.3 we present our on-fine scheduling algorithms

for the various parallel machine models, and in Section 3.4 we give the corresponding lower

bounds. In Section 3.5 we discuss on-fine scheduling in several other scheduling models, and

we suggest some further directions for research in Section 3.6.

3.2 Unknown Release Dates

Our model of on-line scheduling includes both unknown release dates for jobs and unknown job

sizes. In this section we will show that, with respect to minimizing schedule length, the first

element is much less important than the second element. We will show that if the release dates

are unknown, then we can assume that all jobs are always available, and repeatedly use an

algorithm that works in this environment; the feasible schedules produced by this simulation

are of only somewhat lesser quality than can be obtained in the special case. This result does
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not depend on the remaining specifics of the scheduling environment; in particular, it allows

us to use off-line algorithms to obtain algorithms that can handle unknown release dates (but

where the processing times are known once released), as well as allowing us to focus on on-line

algorithms in the case when all jobs are released at time 0.

Theorem 3.2.1 Let A be a polynomial-time scheduling algorithm which works in an environment

in which each job to be scheduled is available at time 0 and always produces a schedule of length

at most pC;.. For the analogous environment in which the existence of a job is unknown until

its release date, there exists another polynomial-time algorithm A' that works in this more general

setting, and produces a schedule of length at most 2pCix.

Proof: Let Z be an instance including jobs with unknown release dates, and let So be the set

of jobs available at time 0. The scheduler applies algorithm A and schedules the jobs in So,

finishing at time F0. Let S, be the set of jobs released in time (0, F0]. The scheduler now, at

time F0 , applies algorithm A to schedule S1, finishing at time Fl. In general let Si+z be the set

of jobs released in (Fi- 1, Fi], and let F be the point in time when the schedule for 9i completes.

At time Fi, the scheduler uses algorithm A to schedule the jobs in Si+,. Let Fk be the finishing

point of the entire schedule. (See Figure 3.1.)

To analyze the length of the resulting schedule, consider the modified problem instance 1'

where the jobs in Sk are released at time F_2. Since these jobs are released at an earlier point

in time in 2" than in 1, certainly C ,ax(I') < Cma,8 (z).

Now note that Fk-2+ Fk - Fk-. pCmax(1"), since the jobs in Sk are not released until Fk-2

and the properties of algorithm A guarantee that Fk - Fk-I is within a factor of p of the shortest

schedule for Sk. Similarly, F-_I - Fk- 2 < pC,,x(Z). Therefore Fi. < 2pC ,ax(") < 2pC;,x(I).

This theorem is very general, in that it can be applied to a number of different types of

scheduling scenarios. In particular, it shows that to produce an on-line algorithm for our full

on-line model, we can modify an algorithm for the case in which all jobs are available at time

0 and processing times are unknown, increasing the competitive ratio of the algorithm by only

a factor of 2. Further, the theorem applies not only to problems of parallel machine scheduling

but also to the entire class of shop scheduling problems, including open shop, flow shop and job



44 CHAPTER 3. SCHEDULING PARALLEL MACHINES ON-LINE

Schedule for So Jobs SI schedule Ski schedule

Time: 0 F0  FI  Fk I Fk

SI jobs release times S2 release times

Figure 3.1: Using an algorithm for a scheduling environment without release dates to schedule
in an environment with release dates.

shop (112]. In addition it applies to the scheduling model of Feldman, Sgall and Teng mentioned

in section 3.1.2. They studied the on-line allocation of submeshes of a large mesh to different

jobs, but their algorithms only worked when all jobs-were available at time 0. Our theorem

generalizes their result to a O(v og logm) on-line algorithm even when jobs have unknown

release dates. Finally, our theorem yields the following corollary:

Corollary 3.2.2 If job release dates are unknown, but once a job arrives its size is known, there

is a polynomial-time on-line algorithm for scheduling uniformly related machines that comes within

a factor of (2 + c) of optimal and a polynomial-time on-line algorithm for scheduling unrelated

machines that comes within a factor of 4 of optimal.

Proof: Direct from the theorem and previously known results on the approximability of these

problems [61, 83].

For identical machines this result yields a (2 + )-approximation algorithm; however, some-

thing slightly better was already known. In 1966 Graham showed that list scheduling was

a (2 - -)-approximation algorithm for scheduling identical machines. In list scheduling, the

scheduler takes any list of jobs and, whenever a machine becomes available, places the next job
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on the list on that machine. It is not hard to see thatif this strategy is extended so that newly

arriving jobs are added to the end of the list, then list scheduling is a (2 - )-approximation

algorithm for scheduling identical machines with release dates. See, for example, [56].

Despite the fact that unknown release dates do not make a scheduling problem much more

difficult, we can show that they sometimes do make it more difficult to schedule machines

near-optimally.

Theorem 3.2.3 There is no on-line algorithm for non-preemptive scheduling of identical machines

with unknown release dates but known processing requirements with competitive ratio better than

10/9, even if restarts are allowed.

It is interesting to note that this is not the case when preemption is allowed; Sahni and Cho

have shown that there is a polynomial-time algorithm to solve that problem optimally [103].

Intuitively this is not surprising, since preemption allows you to adjust to new information

without losing work done beforehand.

Proof: Consider the machine environment that consists of two identical machines. At time 0

there are two jobs of size 3 (A and B) released and one job of size 2 (C). We consider several

cases.

* The scheduler initially schedules A on machine 1 and B on machine 2 at time 0, and

restarts neither until (possibly) time 2, In this case the adversary introduces a job (D)

of size 4 at time 2. If the scheduler does not interrupt A or B and start D at time 2 the

minimum schedule length will be 7; if the scheduler does interrupt one to run job D then

the minimum schedule is of length 8. The optimal schedule would have been of length 6:

C and D on machine 1 and A and B on machine 2. In this case the performance ratio is

at least !

* The scheduler initially schedules A on machine 1 and B on machine 2, and interrupts at

least one of them at time 1. At time 2 the adversary releases a job of size 2; the optimal

schedule for this example is of length 5, but we've forced a schedule of length 6, therefore

the performance ratio is at least 6.
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" The scheduler only schedules one job to begin at time 0. In this case the adversary

introduces a job of size 2 at time 1; the resulting performance ratio is at least -.5.

" The scheduler schedules A and C at time 0. The adversary then introduces a job of size

7 at time 1. If the scheduler does not interrupt A or C at time 1, the minimum length

of the produced schedule is 9, whereas the optimal schedule would be of length 8; hence

the performance bound is at least 9. If the scheduler preempts A or C at time 1, the

introduces a job of size 3 at time 3. The optimal schedule fir this instance is of length 9,

and the algorithm produces a schedule of length at least 10. Therefore the performance

bound in this case, and in general, is at least L. N

In light of the results in this section, for the remainder of this chapter we shall focus on

scheduling environments in which all jobs are available to be scheduled at time 0.

3.3 Algorithms for On-Line Scheduling

In this section we will present on-line scheduling algorithms for the basic parallel machine mod-

els. We first note that in the case of identical machines, the well-known list scheduling algorithm

of Graham [52] always comes within a factor of (2 - 1) of the optimal length schedule, and

comes within the same bound of the optimal, preemptive schedule length. Since list scheduling

does not depend on the sizes of the jobs, list scheduling is aft on-line algorithm with a (2 - -L)

competitive ratio.

Theorem 3.3.1 [Graham] There is an on-line algorithm for scheduling identical machines that

achieves competitive ratio (2 - L) in both the preemptive and non-preemptive models.

For the other machine models, we will present a general technique which yields an O(log n)-

competitive algorithm for each of them. We will then show how to convert this general algo-

rithm to an O(log m)-competitive algorithm for both preemptive and non-preemptive uniformly

related machines. We will also present an algorithm for non-preemptive uniformly related ma-

chines which has a competitive ratio of O(min(log m, log(si/sm)), assuming s, _ s2> .. > 8.
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3.3.1 The General Technique

Our general algorithm depends on the existence of either polynomial-time algorithms or polynomial-

time p-approzimation algorithms for scheduling in the various machine models.

Theorem 3.3.2 Suppose that there is a p-approximation algorithm A for the [non-preemptive/preempt

[uniformly related/unrelated] machine problem, and let Z be an instance of this problem. Then there

is an on-line scheduling algorithm which produces a schedule no longer than

(4plogn + 4plog2p + 1)C ,ax(").

Proof: The on-line algorithm works by repeatedly applying algorithm A to the jobs, after

guessing the size of each job. Given a schedule produced by the algorithm A, our on-line

algorithm will run each job at the particular time interval and on the particular machine

specified by the schedule. In the preemptive model, the job may not have finished all its

processing by the end of the schedule, in which case we preempt the job. In the non-preemptive

model, we cancel the job if it is not completely processed in the time allotted. In either case,

if the job does not complete we will be able to update our estimate of the size of that job.

For the sake of simplicity, we will assume that the data is normalized so that the fastest

machine for each job Jj has speed sij = 1. One result of this assumption is that any job of size

pj takes time pj to complete on the machine that processes it fastest.

The complete on-line algorithm is below.

Step 1 Pick any job Jj and rn it to completion on a machine mi, such that si,, = 1. Let the

time that this takes be denoted by A.

Step 2 Let q = A/pn.

Step 3 Use algorithm A to construct a schedule for all jobs that have not yet completed,

setting pj +- q for all remaining jobs J.. Run the jobs in this schedule, preempting or

canceling all jobs that do not complete in the time allotted to them by the schedule.

Step 4 If any jobs have not yet completed, set q +- 2q and go to Step 3.

Let C;a be the length of the optimal schedule. We will now analyze the algorithm and the

length of the schedule it produces. First, in Step 1, the time A taken by job Jp, on machine
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mi, is at most C,,, since the optimal schedule can be no shorter than the time taken by any

job running on the machine which processes it the fastest.

Next, we show that the first iteration of Step 3 produces a schedule no longer than A < C x.

One way to construct a schedule is to assign each of the n jobs to the machine that processes

it the fastest. In the worst case, all n jobs would be assigned to the same machine, and this

schedule would have length nq = A/p. Since the schedule produced by algorithm A is no longer

than p times optimal, it must produce a schedule of length no longer than A < C.ax.

In addition, future iterations of Step 3 must produce schedules of length no longer than

2pC ,,x . Suppose the algorithm performs an iteration of Step 3 in which the jobs are assigned

size q. Since the algorithm did not finish processing all jobs in the previous iteration, we know

that the instance being scheduled must have some jobs Jj such that pj > q/2. An optimal

schedule for this subset of jobs must take time no greater than C ... Ensuring that each of

these jobs gets processed for q units can increase the length of the optimal schedule for these

jobs by no more than a factor of 2. Finally, the algorithm A will find a schedule for these jobs

that is no more than p times as long as the optimal schedule, so that the schedule can be no

longer than 2pC.x.

To derive our O((log n)C ax) bound on the length of the schedule, we show that we essen-

tially need to consider only the last log(2pn) iterations of Step 3.

Lemma 3.3.3 Suppose there are f iterations of Step 3. Then the length of the schedule produced

in iteration f - i is at least 2 ' times as long as the length of the schedule produced in iteration

f - i - t log(2pn).

Proof: Assume that the (estimated) job size in iteration f - i is q; then the (estimated) job size

in iteration f-i- log(2pn) is q/(2pn)'. If a job with size q exists, then the schedule containing

it must take time at least q. As we showed earlier, a schedule produced by algorithm A for jobs

with size q/(2pn)l has length at most pnq/(2pn)'. Thus the length of the schedule produced

when the job size is q/(2pn)l is at most (1/ 2 )t times the length of the schedule produced when

the job size is q. U

Since every log(2pn) iterations the length of the schedule produced doubles, we can "charge"

iterations f - i - Ilog(2pn), 1 < e < (f - i)/log(2pn), to iteration f - i. Since each of the
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last log(2pn) iterations has length no longer than 2kC~,ax, and each gets charged no more than

+ + .. . + ()r1i,1 times its length, the overall length of the schedule is at. most

A + (log2pn)(2pCax(1 + +...+ &7 4pC logn + 4plog2kC~ax + Cm,

which is O((logn)C .). N

Since there exists a polynomial-time algorithm for the optimal scheduling of preemptive

unrelated machines due to Lawler and Labetoulle [79], and there exists a 2-approximation algo-

rithm for scheduling non-preemptive unrelated machines due to Lenstra, Shmoys, and Tardos

[83], we have the following corollaries.

Corollary 3.3.4 There is an on-line algorithm for scheduling preemptive unrelated machines that

has competitive ratio 4(logn) + 5.

Corollary 3.3.5 There is an on-line algorithm for scheduling non-preemptive unrelated machines.

that has competitive ratio 8(logn) + 17.

We can do somewhat better with uniformly related machines. As the following lemma

shows, by applying a list scheduling algorithm until there are at most m unfinished jobs we can

quite easily reduce the number of jobs from n to m.

Lemma 3.3.6 The number of jobs in any uniformly related machine problem instance can be

reduced on-line from n to m, while increasing the competitive ratio by 1.

Proof: We simply place jobs on machines arbitrarily. Whenever a job completes and a machine

falls idle, we assign it a new, unprocessed job. When no new jobs are available, at most m jobs

have not yet finished processing. Furthermore, the length of the schedule to this point in time

can be no greater than Zj pj/ i si, which is a lower bound on the length of the optimal

preemptive and non-preemptive schedules. U

Since there is a polynomial-time algorithm for preemptive uniformly related machines due

to Horvath, Lam, and Sethi [62], and also a (1+ E)-approxmation algorithm for non-preemptive

uniformly related machines due to Hochbaum and Shmoys [611, the preceding theorem and

lemma yield the following corollaries.
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Corollary 3.3.7 There is an on-line algorithm for scheduling preemptive uniformly related ma-

chines that has competitive ratio 4(log m) + 6.

Corollary 3.3.8 There is an on-line algorithm for scheduling non-preemptive uniformly related

machines that has competitive ratio (4 + E)(log m) + (4 + e) log(2 + E) + 2.

How many preemptions/restarts does this general algorithm perform? In each iteration it

is possible that no job finished and therefore there are n preemptions/restarts at the end of

the iteration. If Pmin is the minimum job size and r = Pmx/Pmin, the on-line algorithm does

O(log(rpn)) iterations. This is because the A established in step 1 can be no smaller than pr,;

we then set q = A/pn and successively double it until we reach Pmax. Therefore the algorithms

for unrelated machines do O(n log(npr)) preemptions/restarts, and those for uniformly related

machines do O(mlog(mpr)).

3.3.2 An Improved Algorithm for Non-Preemptive Uniformly Related Ma-

chines

T' the case of non-preemptive uniformly related machines, we can obtain an even better bound

when the ratio between the speeds of the fastest and slowest machines is less than m. Let R =

8/s,,. We will give an algorithm with competitive ratio O(min(log R, log m)). This algorithm

uses a new and simple off-line 2-approximation algorithm for uniformly related machines.

A Simple (Off-Line) 2-Relaxed Decision Procedure for Uniformly Related Machines

First we give a new (off-line) 2-relaxed decision procedure for uniformly related machines that

will be the basis of our on-line algorithm. The notion of a p-relaxed decision procedure was

used by Hochbaum and Shmoys [60]: given a deadline d, such a procedure either produces a

schedule of length pd or verifies that there exists no schedule of length d. By using binary

search, a p-relaxed decision procedure can be converted into a p-approximation algorithm.

The 2-relaxed decision procedure is as follows. Each machine has an associated queue. Each

job is placed into the queue of the slowest machine mk such that pj S skd; that is, the slowest

machine that can complete the job within the given deadline. If for some job there is no such

machine it is clear that there does not exist a schedule of length d. To construct a schedule,
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whenever a machine is idle, it starts processing a new, unprocessed job from its queue. If

a machine's queue is empty, it takes a job'to process from the queue of the fastest machine

that is slower than it and that has a nonempty queue. If all such queues are empty, then the

machine remains idle. If the schedule constructed has Cm > 2d, output no. Otherwise we

have produced a schedule of length at most 2d.

In order to prove that this is a 2-relaxed decision procedure, we must prove that when the

procedure outputs no there is no schedule of length d. Consider a job j that was not finished

by time 2d. Since jobs are only processed by machines on which they take less than d units of

time, this job must have started after time d; thus it was on the queue of some machine mk

until time d. This implies that until time d machines ral,..., mk were all busy processing jobs

that could not have completed on machines nk+ 1,..., m. Therefore in a schedule of length d

it is impossible to process all of these jobs and job j, and so there exists no schedule of length

d.

The On-line Algorithm for Non-preemptive 'Uniformly Related Machines

In this section we will first give an O(log R)-competitive on-line algorithm for non-preemptive

uniformly related machines. We will then prove that any problem instance can be reduced,

on-line, to an instance where R < m while only causing a slight increase in the competitive

ratio of an on-line algorithm on that instance. Hence we will have an on-line algorithm for all

instances with competitive ratio O(min(log R, log in)).

First we present the main algorithm.

Theoreni 3.3.9 Let I be an instance of the scheduling problem for non-preemptive uniformly

related machines. Then there is an on-line scheduling algorithm which produces a schedule no longer

than 16(log R)Cm.,(").

Proof: We round machine speeds down to the nearest power of two: when a machine finishes

processing a job it pretends to keep processing it long enough so that it seems to have been

processed at the lesser speed. When we interpret the schedule for this rounded problem instance

as a schedule for the actual problem instance, the competitive ratio can be increased by at

most a factor of two. Since the si are all powers of two, and all the si are within a factor
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of R of sl, it immediately follows that there are at most log R different machine speeds. Let

M, = {mIs = s}, M 2 = {mls, = si/2},...,M10 R = {mils, = 8 1 2IgR}

Our strategy will be to first convert the off-line 2-relaxed decision procedure into an on-line

2 log R-relaxed decision procedure, and then build from that an on-line algorithm. The off-line

decision procedure does not immediately lend itself to an on-line procedure, since the criterion

it uses to assign jobs to machine queues utilizes knowledge of the job sizes. To convert this

to an on-line decision procedure we will repeatedly run the off-line relaxed decision procedure

to either schedule a job or else update the estimate of its size. Note that given the rounded

machine speeds, instead of queueing jobs on machines ml,..., m., we can instead queue jobs

on sets of machines Mi, ..., MIogR.

A formal description of an on-line 2 log R-relaxed decision procedure is as follows. The

procedure either outputs no if there is no schedule of length d or it produces a schedule of

length 2dlog R. Note that even if it answers no the procedure may have completely processed

some of the jobs in that time.

Input A set of jobs and a deadline d.

Step 0 Put all jobs into the MI10gR queue.

Step 1 Run the off-line 2-relaxed decision procedure, with the modification that no jobs are

started after time d (that is. when a machine is idle it takes a job to process off of its

queue, or, when its queue is empty, off of the first slower machine that has a non-empty

queue; etc.)

Step 2 1. If all jobs finish processing by time 2d stop.

2. If any machine in M, is still processing a job at time 2d then there is no schedule of

length d. Output no; return.

3. If any set of machines Mk has a job j in its queue at time d then there is no schedule

of length d. Output no; return.

4. If there are jobs that are being processed at time 2d, on machines in Mi, i > 1,

cancel these jobs and put them on the queue of Mi- 1. Go to Step 1.
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To prove that this is an on-line 2 log R-relaxed decision: procedure notice-first that the length

of the schedule or partial schedule produced by this procedure is no longer than 2d log R, since

the off-line relaxed decision procedure produces a schedule of length at most 2d and it is -run at

most log R times. Furthermore, despite the fact that the pj are unknown, the on-line relaxed

decision procedure maintains the invariant that a job is only on the queue of Mk if it could not

complete in time d on any machine in Mk+,..., MogR. This is certainly true initially, since

all the jobs are put in the queue of MogR. Furthermore, since the procedure does not start

new jobs after time d, any job that is still being processed at time 2d on some machine in M

must take more than time d to process on any machine in Mi. Therefore any such job does not

belong on the queue of Mi or any slower set of machines, and is placed on the queue of Mi-.

Now we will show that if the procedure outputs no then there is no schedule of length d.

If condition 2 is true then a machine in M1 ran a job for more than d units of time; therefore

this job could not have been processed in d units of time on any of the machines, since no other

machine runs at a faster speed. If condition 3 is true, then up until time d all machines in the

sets M1,.. .Mk aust have been busy processing jobs that could not have been processed in d

units of time on machines in Mk+l,..., MogR. Therefore, machines in M1,..., Mk could not

have processed all of these jobs and job j as well by time d.

We have given an on-line 2 logR-relaxed decision procedure; we now show how to use it to

develop an on-line O(log R)-approximation algorithm.

The on-line algorithm initially establishes a lower bound A on C .x by running an arbitrarily

chosen job on the fastest processor. Let A be the time taken to complete this job; certainly

A < C a. Next, the on-line algorithm calls the procedure on the set of all jobs with d = A. If

the procedure returns no, then we will call it again with d = 2A and the set of jobs that were

not completely processed in the first iteration. In general, if the ith iteration fails to produce a

schedule, then we will call the procedure again for the (i + 1)st time with d = 2iA and all jobs

that have not yet been completely processed. Observe that if the ith iteration fails to produce

a schedule when called with d = 2i-'A, then it proves that 2"-A < C ,,. Suppose that we

finally finish processing all jobs in iteration f. Then the total length of the schedule produced

is
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2. (A+ (1 + 2 +...+ 2f')(2AlogR)) <2 1+2AlogR.

Since the procedure failed to produce a schedule in iteration f -I, we know that 2f -2A < Cm .

Therefore the total length of the schedule produced is no greater than 16(log R)Cax.

If we consider only the k fastest machines, where k is defined as the smallest k such that

such that E= sIi > .1 I s, then R = 81/k < m. We now show that we can assume that that

the above algorithm uses only the k fastest machines. In time 2Cn we can process on-line all

but k of the jobs by processing jobs arbitrarily on machines ml,..., mk until the first moment

in time at which at most k jobs have not yet been completely processed. The amount of time it

takes until this point is sounded above by (E'"= pi)/Gl ET, sj) < 2Cax, since none of the k

machines is idle. We will only need machines m,..., mk to process these last k jobs. If we then

produce a schedule of length I for the last k jobs on these machines, the entire schedule will

be of length 2C;, + I. Therefore, without loss of generality, we can assume that the machine

speeds satisfy R < m.

Corollary 3.3.10 There is an on-line algorithm for scheduling non-preemptive uniformly related

machines that has competitive ratio min(1 log R, 16logm + 2).

To bound the number of restarts of this on-line algorithm, observe that in any itera-

tion of the on-line relaxed decision procedure at most O(m) jobs will be restarted O(logR)

times. The on-line relaxed decision procedure is run at most 0(log(CaxSi/Pmin)) times, since

the initial candidate deadline is at least Pmi,/Isl and we successively double the deadline un-

til we reach a feasible deadline, which Cm*.x certainly is. Therefore this algorithm performs

0(m log R log(C, xsl /pmin)) restarts.

3.4 Lower Bounds

3.4.1 Identical Machines

As with other on-line algorithms, on-line scheduling can be viewed as a game against an adver-

sary who is allowed to determine the information that is revealed incrementally to the algorithm.



3.4. LOWER BOUNDS 55

Therefore, our lower bound arguments will often be phrased in terms of a strategy for an ad-

versary, who attempts to reveal information in such a way as to force the competitive ratio to

be as large as possible. We will consider two possible types of adversaries. The stronger is an

adaptive adversary, who knows in advance the scheduling algorithm and also knows in advance

the result of any coin tosses of the algorithm. The weaker is an oblivious adversary, who knows

only the algorithm but not the coin tosses [100, 7]. Note that for deterministic algorithms this

distinction is clearly irrelevant.

The oblivious adversary models the situation where a randomized algorithm receives a

problem instance and must produce a solution; the random choices it makes have no effect

on the input it sees. On the other hand, the adaptive adversary models the situation where

there is some feedback between the choices the algorithm makes and future input it sees. A

good example of this latter situation is paging: depending on what random choices a paging

algorithm makes it may or may not itself cause page faults, in addition to those caused by other

elements of the operating system.

We begin our lower bounds with a lower bound on the competitive ratio of any on-ine

algorithm for scheduling identical machines.

Theorem 3.4.1 The competitive ratio of any deterministic on-line algorithm for scheduling iden-

tical machines, with no preemption allowed, is at least (2- 1).

Proof: For any m, let n = m(m - 1) + 1. Each of the first m(m - 1) jobs is of size 1, while tic

last job is of size m; that is, pi = ... = pn-i = 1,p,, = m. This instance is due to Graham [52].

The optimal schedule is of length m, and consists of scheduling the last job on a machine by

itself, and scheduling m of the single unit jobs on each of the remaining m - 1 machines. The

length of a schedule for this instance is determined by the starting time of the job of size m;

therefore the adversary wishes to make it start as late as possible. Each of the first n - 1 jobs

that the scheduler allows to run for at least one unit of time will be fixed by the adversary to

be jobs of size 1. Given this strategy of the adversary, it is not difficult to see that by time i,

1 < i < m - 1, at most im jobs are either completely processed or currently being- processed.

Hence by time m - 1 there must be one job that has not been completely processed and is not

currently being processed. The adversaiy sets this job to be of size-m. If this job starts at time
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m - 1 the fastest the schedule can complete is by time 2m - 1, which is (2 - -) times as long

as the optimal schedule. U

In contrast to the nonpreemptive model an optimal preemptive schedule can be found off-

line in polynomial time [89]. Interestingly enough, an argument similar to the previous proof

shows that the on-line worst-case characterization of both models is the same.

Theorem 3.4.2 Any deterministic on-line algorithm for scheduling identical machines with pre-

emption allowed has competitive ratio at least (2 - -).

Proof: Consider an instance with n = m+ 1 jobs. The adversary allows the scheduler to begin

scheduling, and waits until either the scheduler preempts a job for the first time, or I time unit

has passed, whichever comes first. Call this time t. By time t, at most m jobs can have been

started (since scheduler didn't preempt anything until time t). Let job n be a job that was

not started. At time t, the adversary sets Pi = ... = Pn-i = t, and sets p, = tm/(m - 1).

The scheduler can clearly complete the entire schedule no sooner than time t + tm/(m - 1).

The length of the optimal preemptive schedule is known to be max(pn,, E pj/m). In this case

max(pm Ex, pj/m) = tm/(m- 1). Therefore the adversary has competitive ratio [t + tm/(m-

1)]/[tm/(m - 1)] = (2 - 1). U

The essence of these deterministic lower bounds is that there is one large job whose starting

time determines the length of the schedule, and the adversary can force the scheduler to start

that job late in the schedule. When we move to randomized algorithms it is true that an adaptive

adversary can force the randomized scheduler to do as poorly as the deterministic scheduler.

One might imagine, however, that a randomized algorithm A working against an oblivious

adversary might, with significant probability, select and schedule the large jobs earlier, thus

doing better. (It is known, for example, that an algorithm that schedules jobs in nonincreasing

size order produces a schedule of length no longer than !C.SX [53].) A randomized algorithm

can clearly gain something over a deterministic algorithm: consider, for example the algorithm

that randomly chooses an ordering of the jobs and then list schedules according to that ordering.

Since each list schedule is at most (2 - 1) times optimal in length, and at least one of the list

schedules will be the optimal schedule, this randomized algorithm has expected performance

strictly less than (2 - 1). We will prove, however, that randomness is ultimately of little help
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to a non-preemptive on-line. scheduler of identical machines.

Theorem 3.4.3 Any randomized on-line algorithm for non-preemptive scheduling of identical

machines, working against an oblivious adversary, has worst case expected value of at least

(2 - 0('+"T))'m,.

Our strategy to prove this theorem is as follows. We will first define the notion of a reasonable

randomized algorithm for scheduling identical machines. We will then show that for any c-

competitive unreasonable algorithm, there exists a reasonable algorithm that has a competitive

ratio no greater than c and that always chooses the next job to schedule uniformly. Finally,

we will provide an instance for which the competitive ratio of such a strategy has worst case

expected value (2 - 0(- + o "r))C a.

Definition 3.4.4 A reasonable randomized algorithm for scheduling identical machines is an

algorithm that does not restart any job and does riot leave any machine idle so long as there is some

job that has not yet been started.

Lemma 3.4.5 For any unreasonable algorithm A there is a reasonable algorithm A' whose worst-

case expected performance is at least as good as that of A.

Proof: First we argue that the introduction of idle time into a schedule cannot help the

scheduler. Assume that job j is to be started at time t2 on machine i which is idle from time

tl to t2. Now if job j is available at time t1, it is clearly to the advantage of the scheduler to

start job j on machine i at time ti. If job j is not available at time ti then it is running on

another machine i. In this case there is no point in restarting job j on machine i; since the two

machines are of identical speed we can switch the future schedules of the two machines without

increasing the total length of the schedule. Now restarting a job j after it has run for t < pj

units of time is equivalent, in terms of the effect on the length of the schedule, to introducing

t units of idle time, and thus does not help the scheduler either.

Lemma 3.4.6 A reasonable randomized algorithm A is equivalent to an algorithm that, whenever

a machine becomes idle, picks one of the unstarted jobs with a certain probability distribution which

may depend on the schedule constructed up to that point.
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Proof: Since a reasonable randomized algorithm constructs a schedule with no restarts and no

idle time, it must be the case that it schedules some unstarted job whenever a machine becomes

idle. The probability distribution for its next choice cannot depend on information that the

algorithm does not have at that point; thus, it can depend only on the schedule constructed

until that particular choice of a job. N

We will now argue that the adversary can always force the scheduler to do as poorly as it

would have done had it always made its choices according to the uniform distribution.

Lemma 3.4.7 The competitive ratio of a reasonable randomized algorithm A can be no less than

that of the reasonable algorithm U that always picks the next job to process uniformly from among

the remaining jobs.

Proof: We note that the adversary's strategy can be described as choosing the sizes of the

jobs and then choosing some permutation of the jobs. If the adversary chooses the permutation

randomly and uniformly, then the probability of the algorithm A selecting any particular job

is uniform over all remaining jobs, no matter what probability distribution A uses. Let £ be'

the expected performance of algorithm A against this adversary, where the expectation is taken

over the random choices of both A and the adversary. Note that the adversary can always

choose some permutation of jobs such that the expected performance of A, taken over just the

choices of A, is no better than .. Since the expected performance of the algorithm U that

chooses uniformly is £ no matter which permutation is used, algorithm A can have competitive

ratio no better than algorithm U. U

We complete the proof of theorem 3.4.3 by showing that scheduling by choosing the next

job uniformly can do quite poorly.

Lemma 3.4.8 There is a problem instance for scheduling identical machines on which a uniform

choice of the next job to process produces a schedule with expected length (2 - O( --- ))Cmax.

Proof: We will consider the problem instance with k jobs of size m ("big" jobs) and m(m - k)

jobs of size 1 ("small" jobs). The optimum length schedule for this instance is of length m.

The expected length of the schedule is then m + E,, where E, is the expected start time of

the last big job in the schedule. To bound E,, we can think of the problem as a "shell game",
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where there are n = m(m - k) + k shells, under k of which there are peas. If one searches

for the peas by choosing among the remaining shells randomly and uniformly, the expected

place of the last pea to be found is A+(n). Therefore we expect the kth largest job to be the
k+

k1 [m(m - k) + k]th chosen overall. This will happen no earlier than time - k), since

at most m jobs are completed during every unit of time. Therefore E, _'- -4(m - k) = F(k).

To derive the strongest lower bound possible, we maximize F(k) by setting the first derivative

to 0.

F(k) = (m - 2k)(k + 1)- (k(m - k))
(k + 1)2

so we wish to solve

(m - 2k)(k + 1) - (k(m - k)) = -k 2 - 2k + m = 0.

This implies that k = VG -- 1; plugging into F(k) we see that

F(k)=

m(V+ )-M( + ) + VM + I- m + /m+ I- i

mv T + 2v/ +I - 2m - 2

= M i + M -m( )

-_ ( 21+ o('-))C which implies the

stated result. U

3.4.2 Uniformly Related Machines

In the case of uniformly related machines -the situation becomes significantly more difficult

for the scheduler. We will show that the adversary can force any deterministic scheduler to

construct a schedule of length Q(log m) times the length of the optimal schedule, whether or
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not the scheduler is allowed to preempt- jobs.

Theorem 3.4.9 The competitive ratio of any deterministic on-line scheduling algorithm for uni-

formly related machines, whether or not preemption is allowed, is fl(log m).

Our proof will be in terms ofa preemptive scheduler, but it is not hard to see that a similar

argument will work when no preemption is-allowed.

To prove this theorem we use a family of instances Zk for uniformly related machines given

by Cho and Sahni [22] in a somewhat different context. Let k = (log 2(3m - 1) + 1)/2. We

restrict ourselves to values of m such that k is integral. The instance A has k sets of machines

Gi and k sets of jobs T, 1 < i < k. Each machine in Gi has a speed of 2i and each job in Ti,

has size 2i. Finally, IGi[ = ITi[ = 2 2k- i - for 1 < i < k, and IGkI = ITkI = 1. It is easy, to see

that C.ax = 1, since each job of size pj can be scheduled by itself on a machine of speed pj.

Let Xi be the time when, in a-schedule for 1 k, the last job-in Ti finishes.

Lemma 3.4.10 The adversary can always force the scheduler to construct a schedule for A'L in

which X1 X _ ... < Xk.

Proof: Assume that the adversary- is competing against a scheduler who somehow knows

the job sizes in advance, but doesn't know which size belongs to which job. Certainly if the

adversary can force this type of scheduler to do badly, the adversary can force a scheduler with

no knowledge of job sizes to do badly. We introduce the idea of the adversary committing to a

set of jobs. At time t, let J(t) be the set of jobs that have not yet completed. The scheduler has

a-corresponding set L(t) of the sizes of the jobs which have not yet completed. The adversary

is not committed to any job in J(t) if, given the amount of time that the jobs in J(t) have been

running, the scheduler cannot infer any information about which job in J(t) is associated with

which size in L(t). More formally, the adversary is not committed to any job in J(t) if, at time

t, any bijective mapping from J(t) to L(t) is valid given the schedule thus far. Let R(i, t) be

the total amount of processing that has been done on the job that is running on machine i at

time t. If the adversary is not committed to any job in J(t) at time t then

R(i, t)<: min pj, 1< i<m
W ~(t)"
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The adversary's strategy is to avoid being committed to any job in J(t). The adversary can

do this, if, at any point in time t' such that R(i, t') - minhjEy(t) pj for some i, the adversary

allows the smallest job in J(t') to complete on machine i. If the equality holds true for more

than one machine i or more than one job j, then the smallest indexed job j completes on the

smallest indexed machine i and so forth. The adversary continues to complete jobs until the

inequality R(i, t') < minjEj(t,) pj holds again. It is clear that this strategy yields a schedule

satisfying the condition of the lemma. U

Lemma 3.4.11 The adversary can always force the scheduler to produce a schedule for 1 k in

which Xi - Xi-1 >, 1 < i < k, X0 = 0.

Proof: The adversary uses the same strategy as in the previous proof. Consider the status of

the jobs in Ti+1 at time Xi. None of them have been completed; in fact, no more than V of

the 2i+1 units of each job have been processed. This is because until all the jobs in T were

completed (at time Xi), any job that had 24 units processed was designated by the adversary

to be in T and was thus finished. Therefore there are ITi+ 1I jobs, each with remaining work of

at least 2' units each. How quickly might these all complete?

Since there are more than ITi+11 machines in the sets Gi+,Gi+ 2 ,.. .Gk, in an optimal

schedule there is no need to run one of the jobs in Ti+1 on a machine in Gi, or slower. At

best, processing all the jobs from T+1 on all the machines in Gi+1 and faster must take time

at least the sum of the remaining processing requirements of the jobs in Ti+1 over the sum of

the processing speeds of processors in Gi+1 or faster.

So the time taken is at least

2 jET,+, ps/2 2'i1T+ 11

G, St - s IGI

2 k-i-3

=i1 21. 22k-21-1 +

2 2k-i-3
2k Ek-i-2 2r + 2k

2 2k-i-a
2k(2 k- i- I - 1) + 2k
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2 2k-i-3

1

The fl(log m) lower bound follows directly from these lemmas.

Theorem 3.4.12 The competitive ratio for any deterministic on-line algorithm for scheduling

uniformly related machines with R = 81/a.m < m is Q(log-R), whether or not preemption is allowed.

Proof: We modify our previous proof slightly. Let R' be the largest power of 2 less than or

equal to R. We again let k = (log(3m - 1) + 1)/2, and restrict ourselves to values of m such

that k is integral. The instance :4k has k sets of machines Gi and k sets of jobs Ti, 1 < i < k.

IG,I = i= 21" ik2- for 1 _ i < k, and IGk = ITkJ = 1. Once again each job in T has

size 2 i; the only difference is that each machine in Gi has a speed of 2i for i > k - log R'; the

machines Gj, i < k - log R', all have the same speeds as the machines in Gk-logR,, namely

2k/R ' . Thus sl/sm for this instance is R'. Again, the optimal schedule length is 1. By using

the same strategy as in the previous proof, the adversary can force the scheduler to construct a

schedule for Ik in which X, < X 2 < ... Xk, and in which Xi -Xi-z 1 , k- logR' < i < k,

Xo = 0. All of the "small" jobs may finish quite quickly, but those in Tk-.ogR,..., T will each

take at least 1 unit of time to complete. •
4

3.5 On-line Algorithms for Other Scheduling Models

3.5.1 Shop Scheduling

The juxtaposition of the results in this and the last chapter raises the question of how well can

one schedule shop problems on-line; specifically, how well can one schedule if the processing

time of each operation of a job is unknown until the completion of that operation, but the

number of operations of each job and the order constraints on their execution are known in

advance?

The most naive on-line strategy for shop problems is to arbitrarily choose jobs to process,

subject to the condition that no machine sits idle when there is some operation of a job which
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it could be processing. We have already noted that for the flow shop and job shop problems

such a strategy yields a m-approximation algorithm, and furthermore that this bound is tight.

For the open shop problem we have proved that such a strategy is a 2-approximation algorithm,

and have shown that it can do as badly as (2 - ' ). Our belief is that these bounds are close to

the the best one can do on-line; we give one small theorem in that direction.

Theorem 3.5.1 No deterministic on-line algorithm for open shop scheduling has a competitive

ratio better than 3

Proof: First consider a simple example with two machines and three jobs, and let A be a

deterministic on-line open shop scheduling algorithm. Each job has -an operation on both

machines; the adversary will determine the sizes of these operations based on the strategy of

A.

Assume A begins by starting two jobs on machines I and 2, without loss of generality job

I on machine 1 and job 2 on machine 2. Let t be the first point in time at which A interrupts

a job; if A never does let t = 1. We define job 1 to have an operation of size t on machine 1

and an operation of size 0 on machine 2; similarly job 2 is defined to have an operation of size

t on machine 2 and an operation of size 0 on machine 1. Job 3 is defined to have an operation

of size t on each machine. The optimal schedule length is 2t, but A will not start job 3 until

time t and will produce a schedule of length 3t.

If A does not start two jobs at time 0 let t be the point at which it starts a job on the second

machine. Let job 1 have an operation of size I on machine 1; let job 2 have an operation of size

t on machine 2; let all other operations 6e of size 0. Then A produces a schedule of length at

least 2t when the optimal length is t.

To extend this example to any even number m of machines, just duplicate the 2-machine

example m times. U

We can also give the same lower bound in the on-line scheduling scenario where jobs have

unknown release dates but once they arrive they are fully specified.

Theorem 3.5.2 No deterministic algorithm for open shop scheduling with unknown release dates

but fully specified jobs (on arrival) has competitive ratio better than 2
2'
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Proof: We again give a simple two machine example that can bedupicated 1 times. At time2

0 there is just one job released, that has an operation of size 1 on each of the two machines.

At time 1 release a job which has one operation of size 1 on whichever machine the scheduling

algorithm left idle from time 0 to 1. The optimal length of a schedule for this instance is 2, but

the algorithm will produce a schedule of length at least 3. U

3.5.2 Precedence Constraints

As we discussed in section 1.3, an important element in a model of parallel processor scheduling

is precedence constraints between the jobs, that form a partial order (dag) reflecting the logical

flow of information in the program. We refer to the levels of the dag, where level 0 contains

jobs that are not preceded by any other jobs. A reasonable on-line model of this element is

that when a job arrives, despite the fact that its size is unknown, the precedence constraints

between it and any other previously known-about job are known as well. Further, we must

assume that when a job in level i of the dag arrives, the jobs in levels 0,..., i - 1 of the dag

have already arrived.

Graham proved in 1966 that list scheduling is a (2--)-approximation algorithm for schedul-

ing identical machines even with precedence constraints. Since we have proved a lower bound

of (2- -) without precedence constraints, (2 - 1) is a tight bound. For uniformly related ma-

chines, the current situation is much bleaker, since the best off-line approximation algorithm

for uniformly related machines with precedence constraints is only an O(VrAi)-approximation

algorithm; this algorithm, however, happens to be an on-line algorithm as well.

3.6 Conclusions and Open Problems

The most obvious open problem raised by our work is to close the gap between the upper

bound of O(log n) and the lower bound of Q(log m) for unrelated machines. All that would be

necessary to do this would be a "preprocessing algorithm" that reduced the number of jobs to

a number polynomial in m. For uniformly related machines, we showed that list scheduling

of the first n - m jobs accomplishes this goal. It is not clear, however, that a similar naive

approach will be of use for unrelated machines.
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Other issues we have not fully resolved are the usefulness of randomization in uniformly

related and unrelated machines, and an exact characterization of the power of the on-line shop

scheduler. Another direction would be average case analyses of on-line algorithms for these

problems. With regard to scheduling of parallel identical machines, Bruno and Downey [18]

proved that when the pj are independently and uniformly distributed over the interval [0, 1],

firn Prob[mx pj pj > n] = 0.
n-co -] n 0

This implies that when n grows faster than m, list schedules are asymptotically optimal with

probability that goes to 1. Coffman and Gilbert refined and extended these results to other

distributions [35]. However, in contrast to the relative error, the absolute error does not tend

to 0 as n --. co, with m fixed. This stronger criterion of optimality is satisfied by the (off-

line) algorithm that schedules jobs in order of longest processing time. It would be interesting

to prove that no on-line algorithm can do better than list scheduling in this regard; it would

also be interesting to carry out similar analyses of on-line algorithms for uniformly related and

unrelated machines.

We mentioned earlier, in the context of paging and list maintenance, that the conclusions

drawn from average-case analysis of on-line algorithms do not always correspond to the con-

clusions of experimental studies and practical experience. If this proves to be the case for

parallel machine scheduling, then the design and analysis of a model that is less pessimistic

than the worst-case competitive ratio but has more structure than expected performance on

randomly-selected instances might be a valuable endeavor.



Chapter 4

Parallel Network Optimization: An

Introduction

In the last decade there has been much interest in harnessing the power of parallel computers to

solve large complex problems in real time. The first step in any such effort must be to understand

how efficiently the most basic problems can be solved by parallel computers, and to then

construct more complex systems out of these building blocks. Accordingly both theoreticians

and practitioners have put much effort into the study of parallel algorithms for a large variety

of basic problems.

In the field of combinatorial optimization one can hardly find more basic problems than the

matching, maximum flow and minimum-cost flow problems. Many of the important concepts

that arose out of the study of these problems - augmenting paths, scaling, relaxed optimality,

strong polynomiality - have been used widely in other areas of combinatorial optimization.

Each has a large number of important applications in and of itself; furthermore these problems

serve as building blocks for a wide variety of more complex applications, such as the traveling

salesman problem [80], cyclic staff scheduling, machine scheduling [83] and vehicle and crew

routing [16]. We therefore expect that the study of parallel algorithms for these problems will

yield important insights into the theory of parallel computation while also providing useful

building blocks for the parallel solution of harder problems.

In the next three chapters of this thesis we consider several practical and theoretical issues

67
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about parallel algorithms for these problems. In this chapter we introduce this topic by formally

defining the problems and our theoretical model of parallel computation, and by discussing

previous theoretical work on parallel algorithms for these problems.

4.1 Definitions and Models

In the matching problem we are given an undirected graph G = (V, E), possibly with an

associated weight function w : E -+ Z+ U {0}. Let Wmax = maxEE w(e), n = IVI and m = tEl.
Given S C E, define degs(v) to be the degree of v in the graph (V, S). A matching in a

graph G is a set of edges M C E such that no two edges in il share a common endpoint; i.e.,

degM(v) < 1, Vv E V. A perfect matching is a matching of cardinality l. A minimum weight

perfect matching is a perfect matching M that minimizes eEM w(e). If G is bipartite then

a perfect matching is known as an assignment. In various forms of the problem one is asked

to produce, for example, a maximum cardinality matching, a maximum-weight matching or a

minimum-weight perfect matching.

In the maximum-flow problem we are given a flow network G = (V, E), which is a directed

graph with two distinguished vertices, s and t, where s is called the source and t the sink. With

every edge e = (ij) of a flow network is associated a capacity u(ij) > 0. A flow is a real

valued function f : E -- , R+ U {0) that satisfies the following two constraints:

Capacity Constraint: For all ij E V, we require f(ij) < u(ij).

Flow conservation: For all v E V, v {s, t},

E f(i,v)- Z f(v,j)
,EV EV(s,v)EE (.)EE

The value of a flow is defined as

Zf(i,t);
SEV

a maximum flow is simply a flow of maximum value.

The minimum-cost flow problem is the weighted generalization of the maximum-flow prob-

lem. We assign a cost function c: E -* R to the edges of G; the cost of a flow f is defined as
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the sum

f(ij)c(ij).

We can then ask for the "minimum-cost flow" or the "minimum-cost maximum flow."

Models of Parallel Computation

Our theoretical model of parallel computation will be the CRCW PRAM [73]. A PRAM.

consists of a number of sequential independent processors, each with its own private memory,

communicating with one another through a global memory. In one unit of time, each processor

can read one global or local memory location, execute a single RAM operation, and write

into one global or local memory location. In the CRCW PRAM we allow concurrent reads of

the same memory location, and concurrent writes to the same location; conflicts in writes are

resolved by a a priority mechanism: the write of the processor with the lowest number succeeds.

We mention the details of the PRAM here for the sake of completeness; when we describe our

parallel algorithms in chapter 6 we will do so at a fairly high level of detail.

The complexity classes which correspond to our notion of easy to parallelize are ANC and

TZVNC. AC is the class of decision problems for which there exist algorithms that run in time

O(log n) on a CRCW PRAM with O(nC) processors, where c and k are constants and n is

the size of the input. RAC is the corresponding class of decision problems with randomized

algorithms that run in time O(log k n) on a CRCW PRAM with O(n) processors and produce

the correct answer with probability at least 3.

By a decision problem we refer to a set of instances of a problem, all of whom satisfy some

property. For example, the perfect matching decision problem would be the set of all graphs

G that contain a perfect matching; the decision question would be "Does G contain a perfect

matching?" Another example is the maximum-flow problem; the decision problem might be the

set of all flow networks N for whom the value of the maximum flow is odd; the decision question

would be "Is the value of the maximum flow in the flow network N odd?" The optimization

versions of these problems would not ask for a True/False answer, but rather a value, such as

the size of the maximum matching or the value of the maximum flow. We will at times blur

the distinction between the two. For example, in chapter 6 we give randomized algorithms to

actually find minimum (unary) weight matchings. Since these algorithms run in time O(logk n)
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on a CRCW PRAM with O(nc) processors, where c and k are constants andre is the size of the,

input, we will say the problem is in T1VC; it is clear how to use the optimization algorithm as

a decision algorithm. For a fuller discussion of the classes NAC or 1ZNC, see the survey of Karp

and Ramachandran [73].

The complexity class that corresponds to our notion of difficult to parallelize is the class of

P-Complete decision problems [73]. Analogous to the AP-Complete problems in their role as

the "hardest" problems in the class P, no C or R C algorithm for any P-Complete problem

exists unless P is equal to, respectively, N'C or 7RA(C.

4.2 Previous Work

The parallel computational complexity of the matching problem is one of the most interesting

open questions in the theory of parallel computation today. The first major progress was made

by Karp, Upfal and Wigderson, who gave an RANC algorithm to find a maximum matching with

an O(log3 n) worst-case time bound in the PRAM model [70]. Mulmuley, Vazirani and Vazirani

improved this result to an 7ZNC algorithm with an O(log2 n) worst case time bound. These

algorithms were Monte Carlo randomized algorithms, meaning that with high probability they

produced a correct answer, but could not indicate when they produced an incorrect answer. A

desirable goal is a Las Vegas algorithm: an algorithm that with high probability produces a

correct solution and otherwise outputs the word FAILURE. In this case one can try again and

eventually arrive at the optimal solution.

Karloff [69] gave a Las Vegas 7ZAC algorithm for the maximum matching problem by

utilizing a "min-max" duality relation, the Tutte-Berge formula [104], that characterizes the

size of a maximum matching. Karloff showed that the minimum side of the relation could

be calculated in RNJVC; if this is equal to the size of the candidate maximum matching the

Tutte-Berge formula guarantees that they are both optimal.

The results of Karp, Upfal and Wigderson and of Mulmuley, Vazirani and Vazirani both

yielded algorithms for the weighted versions of the problem as well. Since the number of

processors is proportional to n 3"5 mWmx, where Wmax is the maximum edge weight, these are

only 7 jNC algorithms if the edge weights are input in unary. No 71AZC algorithm is known
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for the maximum weight matching problem or the minimum weight perfect matching problem

when the weights are input in binary; nor are these problems known to be P-Complete. Further,

no Monte Carlo RNC algorithms for unary weighted matching problems were known until our

work.

Although no deterministic AC algorithms are known for matching problems, some progress

has been made on deterministic sublinear time parallel algorithms. We say that an algorithm

runs in 0*(f(n)) time if it runs in 0(f(n) logk n) time for some constant k. Goldberg, Plotkin

and Vaidya [46] gave a parallel algorithm to find a maximum matching in a bipartite graph that

ran in 0(n) time using BFS(n, m) processors, and a parallel algorithm to find a minimum-

weight assignment that ran in 0*(ni log(nC)) time using SSP(n, m) processors. Here C = Wmax

is the maximum edge cost, BFS(n, m) denotes the maximum of n + m and the number of

processors required to find a breadth-first search tree in 0(log2 n) time, and SSP(n, m) denotes

the maximum of n + m and the number of processors required to find a single-source shortest-

path tree (with non-negative weights) in 0(log2 n) time.

Goldberg, Plotkin, Shmoys and Tardos [481 used interior point methods to give an 0((v/'log C)

time parallel algorithm for the assignment problem and an O(vrmi) time algorithm for the un-

weighted version. Both of these algorithms used O(m 3 ) processors.

Besides the running time, another way to measure the performance of a parallel algorithm

is the total work performed, where we define work as the product of processors x time. The

best results for bipartite matching and the assignment problem in this regard are those of

Gabow and Tarjan, who for a large range of numbers of processors p give parallel algorithms

for p processors with total work within a factor of 0(logp) of the work of the best sequential

algorithm [43].

As a consequence of the 7WC matching algorithms, the maximum-flow problem with the

edge capacities input in unary is also in 7ZAC. The maximum-flow problem and the minimum-

cost flow problem are known to be P-Complete, however, when the edge capacities are input

in binary [49]. Therefore it is believed that there exist no A/C or RA/C algorithms for these

problems. Nonetheless parallel computation can yield speedups in the running time; for example

the Goldberg-Tarjan maximum-flow algorithm can be implemented so as to give an 0(n 2 log n)

time, 0(n) processor algorithm [45]. For the minimum-cost flow problem they give a parallel
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algorithm that takes O(n 2(logn) log(nC)) time on 0(n) processors [45].

In the next three chapters we present three results about parallel algorithms for these prob-

lems. In Chapter 5 we give a simple but interesting separation between the parallel complexity

of the maximum-flow problem and the minimum-cost maximum flow problem, showing that

the minimum-cost maximum flow problem can not be approximated in A/C or iZj/C unless P

is equal to, respectively, NC or ?.WC. In contrast, it is known that the maximum-flow prob-

lem can be approximated quite closely in 1ZAZC, and that by a very recent result of Fischer,

Goldberg and Plotkin, that the maximum matching problem can be approximated arbitrarily

closely in A/C [42].

In Chapters 6 and 7 we consider both theoretical and experimental issues in the parallel

solution of weighted matching problems. In chapter 6 we give Las Vegas 7RAVC algorithms to

find a minimum-weight perfect matching when the edge weights are input in unary. We also

show how to apply the technique to a number of other problems as well.

In Chapter 7 we describe an experimental study of various parallel algorithms for the as-

signment problem on a real massively parallel computer, the Connection Machine CM-2'. We

consider in detail one special case, that of the fully dense assignment problem, where the graph

is a complete graph. We implemented a number of different algorithms for this problem, and

developed a new hybrid approach similar to the algorithm of Goldberg, Plotkin and Vaidya.

This proved to be the most successful by a considerable margin. We also discuss the viability

of the other major approaches which we did not implement.

1This is a trademark of Thinking Machines Corporation.



Chapter 5

The Parallel Approximability of a

Flow Problem'

Once a problem is proved to be P-complete, it is generally believed that there exists no NVC

or 1?iC algorithm to solve it exactly2. Therefore, the next important question becomes how

well can it be approximated in N'C or IZAC? In this chapter we show that despite the fact that

one can approximate the value of a maximum flow arbitrarily closely in 7JN'C, approximating

the value of the minimum-cost maximum flow, within a factor of the maximum cost in the

network, is P-Complete. Our proof also shows that this is true for networks with maximum

cost polynomial in the size of the network. The chapter consists of two short sections. In

Section 5.1 we discuss previous work on the AC-approximability of P-complete problems and

flow problems in particular. In Section 5.2 we prove our result.

5.1 Background

There has been some amount of work on N/C-approximation algorithms for P-Complete prob-

lems. For example, Anderson and Mayr considered the Iigh Degree Subgraph Problem: Given

a graph G and an integer k, find the maximum induced subgraph of G that has all nodes of de-

1This chapter describes joint work with Cliff Stein (117].
2 Despite the fact that P-Completeness is usually defined in terms'of decision problems, in this chapter we

will often refer to the optimization versions as well. This has no effect on our results.

73
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gree at least k. They prove that this problem is P-Complete, and further that it is P-Complete

to approximate within any factor better than .1 [2]. In other words, it is P-Complete to produce

a subgraph that is of size greater than 1 of the maximum induced subgraph with the appro-

priate connectivity constraints. In contrast to this result they give an A'C algorithm that can

approximate the solution within a factor arbitrarily close to 1. Subsequently Hochbaum and

Shmoys showed how to approximate it within a factor of exactly 1 [59]. A similar result was

obtained by Kirousis, Serna and Spirakis [76], who investigated the High Edge-Connectivity

Subgraph Problem, and showed it could be approximated in A/C within any factor < , but

producing a better approximation was P-Complete. They also demonstrated the same type of

behavior for the vertex-connectivity version of the problem.

There have also been several results that show that a certain P-complete problem can not

be approximated in N/C within any factor unless P = A/C [77, 107]. The most interesting of

these is a recent result by Serna, who proved the P-Completeness of approximating Linear

Programming within any factor [106]. This raises the question of whether the same is true

for other P-Complete problems, such as maximum flow or minimum-cost flow, that can be

described -as combinatorial linear programs.

It is unlikely that such a result is true for the maximum-flow problem, since it is known

that it can be approximated arbitrarily closely in 7Z,.C. This is a consequence of the unary

capacity version of the problem being in RZAfC. A binary capacity problem instance IQ can be

approximated within a factor of (1 + y) by using the unary capacity algorithm
polynomial(n)

on a scaled version of T whose capacities are only the high order O(log n) bits of the binary

capacities. It is also true that the minimum-Gost maximum flow problem is in 7RA/C when both

the capacities and the costs are in unary. Therefore one might imagine that it might be possible

to approximate the minimum-cost maximum flow problem with binary capacities and unary

costs in 7ZjVC; we prove that this is not the case unless P = RXC.

5.2 Proof

Definition 5.2.1 AMCF(p) is the problem of approximating the value of the minimum-cost

maximum flow in a network to within a factor of p, where the capacities are expressed in binary and
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,the costs are expressed in unary.

Theorem 5.2.2 AMCF(p) is log-space complete for P.

We will prove this theorem by reducing a form of the monotone circuit value problem

(MCV2) to AMCF(p). The reduction is-a simple generalization of the proof of Goldschlager,

Shaw and Staples [49] that the problem of determining the exact value of the maximum flow

in a network is log-space complete for P. Before we begin the proof we give several necessary

definitions and known results.

Definition 5.2.3 A monotone circuit a is. a sequence (a,,... ,ao) where each ai is either an

input, in which case its value of either 0 or 1 is given explicitly, or a gate. A gate ae is either an

AND gate AND(j,k) or an OR gate. OR(j,k) where j > k > i. The fan-out of a gate a is the

number of gates ak, k < j, to which a. is an input.

Definition 5.2.4 MCV2 is the problem of determining the value of a monotone circuit such

that each input has fan-out at most one, each gate has fan-out at most 2, and the last gate is an

OR gate.

Theorem 5.2.5 [49] MCV2 is log-space complete for 'P.

We are now ready to begin the proof of our theorem.

Proof of Theorem 5.2.2: Let A = (an,...,a ) be an instance of MCV2, and let di be the

fan-out of gate (or input) aj. We will demonstrate a log-space transformation of A into a flow

network GA = (V, E). The vertices of GA are s, t, and i, 0 _< i < n. The edges of GA, and their

capacities and costs, are as follows.

Type 1 Cost 0 edges:

* For each input ai include an edge (s, i) of capacity 0 if ac is false, or of capacity 2'

if ai is true. Also include an edge (i, s) of capacity 2i.

* For every OR gate ai = OR(j, k) include an edge (j, i) of capacity 2j, (k, i) of

capacity 2k, and (i, s)-of capacity 2J + 2k - dj2'.
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* For every AND gate ai = AND(aj,cak), include an edge Jj,i),with capacity 2i, an

edge (k, i) with capacity 21, and an edge (i, t) with capacity 2j + 2k .- di2i.

Type 2 An edge (O,t) with capacity 1 and cost p.

Type 3 An edge (s, t) with capacity 1 and cost 1.

Goldschlager, Shaw and Staples showed that in the flow network composed of the edges

of type 1 and 2, the maximum flow value is odd if and only if the circuit A outputs true.

Furthermore the maximum flow value is odd if and only the edge (0,t) has one unit of flow.

Therefore to determine the output of circuit A we merely have to de termine the flow on edge

(0, t) in a, maximum flow. We will show how to prove this momentarily. Assuming for the

moment that it is true, we first complete the proof of our theorem.

Notice that given our cost assignment, the-cost.of a maximum flow is p + 1 if there is one

unit of flow on edge (0, t) and is otherwise 1. The edge (s, t) will be have ore unit of flow in any

maximum flow and this edge will therefore contribute a cost of 1. Edge (0, t) will contribute p

units to the cost if edge (0, t) has one unit of flow on it.

Therefore if we could approximate the minimum-cost maximum flow problem within a

factor of p we could determine whether the value for this network was 1 or p thus determine

the parity of the maximum flow in the underlying network which gives the output of circuit A.

This reduction is certainly in logspace as long as p is polynomial in the size of the circuit n. If

we wish to,;allow edge costs to I- expressed in binary, p can be expofiential in the size of the

network.

We will now explain the proof that circuit A outputs true if and only if the value of the

maximum flow in the flow network that contains the edges of type (1-) and (2) from GA. Call

that network GA,. We will exhibit a flow f in GA, and then prove that it is a maximum flow.

We denote the flow on edge (x, y) by f(x, y) and the capacity of edge (x, y) by u(x, y).

Im flow f, for 0 < i < n,

* For aj an input of circuit A, f(s, i) = u(s, i). If ai is not an input to any other gate,

f(i, s) = u(i, s); otherwise it is zero.

e For 0 < j :5 n, f(i,j) = 2i if gate ai outputs true, otherwise I(i,J) = 0.
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* If ai = AND(j, k) then f(i, t) = u(i, t) if both aj and ck output true. Otherwise f(i, t) =

f(j, i) + f(k, i). The intuition here is that the node representing aj, in a maximum flow,

will only have di2 i units of flow to send from i if it receives 2i and 2k as inputs. Since

this is a'maximum flow, all flow will be directed onto (i, t) until that arc is saturated.

Only if both gates ak and a, output true will there be flow "left-over" after (i, t) has been

saturated.

e If a, = OR(j, k) then f(i, s) = f(j, i) + f(k, i) - d,2' if either ay or ak outputs true. The

intuition here is that in a maximum flow flow will go anywhere before going back to s, so

if any flow is input from jor k it will become the output of i before returning to s.

* f(0, t) = if a0 computes true; otherwise f(0, t) = 0.

The parity of the value of f is odd if and only if the circuit A outputs true. This is because

f assigns an even amount of flow to every edge except perhaps (0, t), which is 1 if and only if A

outputs true. It remains to prove that f is a maximum flow. This can be proved in the standard

way, by showing there is no augmenting path. If there is an augmenting path from s to t then

the first edge must be a back edge, since each forward edge (s, i) out of s has f(s, i) = u(s, i).

It must end with a forward edge since there are no edges out of t Therefore somewhere on

the path there must be a back edge followed by a forward edge. A simple case analysis shows

however that thisis impossible. U



Chapter 6

Las Vegas 7ZA/C Algorithms

6.1 Introduction

In this chapter we present a Las Vegas 7RWC algorithm for the problem of finding a minimum-

weight perfect matching in a graph when the weights of the edges are input in unary. We

utilize a transformation of minimum-weight perfect matching to the T-join problem, and use the

structure theory of T-joins as developed" by Seb6 [105] to develop an optimality condition that

can be computed in 7N'C. Easy consequences of this result are Las Vegas 1?A'C algorithms for

finding a maximum weight matching, a half-integral planar multicommodity flow, a minimum

weight T-join. a maximum 1-packing of T-cuts in a bipartite graph and the T-join structure of

a graph.

6.2 Background

6.2.1 T-joins

We are given an undirected graph G = (V, E) with an associated weight function w : E

Z + U {O}. Let T C V with ITI even. A set F C E is called a T-join if deg(x) = 0(mod 2)

for x 0 T, and degF(x) = 1(mod 2) for x E T. A minimum T-join is a T-join of minimum

cardinality. We define T(G,T), ITI even, to be the size of the minimum T-join for G. A

minimum weight T-join F is a T-join which minimizes CE,'F w(e).
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T-joins can be viewed as generalizations of matchings, Chinese postman tours, and paths.

For example, an s to t path is a T-join with T = {s, t} and a perfect matching M is a V-

join. Or, consider the Chinese postman .problem: find a minimum length tour that traverses

every edge of a graph at least once. In an Eulerian graph this is just an Eulerian tour; in a

general graph there is a clear one-to-one correspondence between minimum postman tours and

minimum T-joins, where T is the set of all odd degree nodes in G [105].

The following well-known facts will be important; therefore, we present their proofs here.

Fact 6.2.1 [86, 1051 The problem of finding a minimum weight perfect matching in an arbitrary

graph whose edge weights are input in unary can be reduced in A'C to finding a minimum cardinality

T-join in a bipartite graph.

Fact 6.2.2 [86] The problem of finding a minimum cardinality T-join can be reduced in YC to

finding a minimum weight perfect matching in a graph whose edge weights are represented in unary.

Proof of Fact 6.2.1

We first reduce finding a minimum weight perfect matching to finding a minimum weight

T-join in an arbitrary graph. Let T = V, iv(e) = w(e) + nwmax, and let G be G with edge

weights t. Note that @(e) > 0 Ve. If ( has a perfect matching, it has a T-join of weight not

exceeding a(wmx + nwm,,). Any other T-join has weight exceeding (a + 1)lwma, so if (G has

a perfect matching, the minimum weight T-join in , is a minimum weight perfect matching in

G.

Finding a minimum weight T-join in a graph G can be reduced to finding a minimum

cardinality T-join in a graph G2, where we'replace an edge e = pq of weight w(e) by a path

pV1 V2 *. vw(e)-lq. None of the vi are included in T. It is easy to see that there is a one-to-one

correspondence between minimum cardinality T-joins in G" and minimum weight T-joins in G.

Given a non-bipartite graph G, we can construct a bipartite graph G' whose T-joins easily

correspond to those of G, by inserting a vertex v, in the middle of each edge e and not including

v, in T.0

Proof of Fact 6.2.2:

Compute the shortest paths between each pair of vertices in T; it is well known this can

be done in A/C [73]. Now consider the complete graph with vertex set T where the weight of

- - - - - - - - - -



6.2. BACKGROUND 81

edge ij is the length of the shortest path from-i to j in G. If we find a minimum weight perfect

matching M in this graph, the set of edges of G that correspond to the paths represented by

the edges of M form a minimum cardinality T-join. Note that if G has n vertices the maximum

edge weight arising from this shortest-paths computation is n and therefore can be represented

in unary while increasing the size of the problem by a most a polynomial in its original size;

therefore the reduction can be carried out in NVC. n

6.2.2 T-cuts

In this section we describe a dual to the T-join, and min-max relations that will allow us to

certify when both are optimal.

For X C V let 6(X) = {xy E E :x EX, y 0 X}. The subset K C E is a cut if K = 6(X)

for some X C V. If IT n Xj - 1(mod 2), then 6(X) is called a T-cut.

A k-packing of T-cuts, where k is a positive integer, is a multiset Q of T-cuts such that each

edge in the graph appears in no more than k of the cuts. We define

Vk = vk(G,T) = max{I'I : T is a k-packing of T-cuts}.

It is not hard to see that 7 > -> vj. The following minimax theorems are known.

Theorem 6.2.3 [85] Let G be a graph; then r(G, T) 2

Theorem 6.2.4 [111] Let G be a bipartite graph; then r(G,T) = vl(G,T).

6.2.3 Sketch of Algorithm

Theorem 6.2.4 implies that if we are given a T-join F and a 1-packing of T-cuts Q in a bipartite

graph such that IFI = IQI, then F is a minimum T-join and Q is a maximum 1-packing of T-

cuts. It is this property we use in our algorithm, which we now sketch.

1. Given G, use the reduction of Fact 6.2.1 to reduce the problem of finding a minimum

weight perfect matching in G to that of finding a minimum cardinality T-join in bipartite

G. Then use Fact 6.2.2 and the randomized matching algorithm of Mulumuley, Vazirani

and Vazirani to find a minimum unweighted T-join F in 0. With high probability F is a

minimum cardinality T-join in 0, but with low probability it is not. (We actually have to
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test that it is a T-join at all, since if the algorithm fails the result need not be a T-join.

We ignore this detail for the rest of the chapter.) Call F the candidate minimum T-join.

2. Calculate v((,T) in 7?hXC. How this is done will be discussed below, but the important

point is that if v, is the returned value with high probability it is indeed v1((G,T) and

with low probability it is not. Call the packing that is found the candidate maximum

packing.

3. If IFI is the size of our candidate T-join, and v, is the size of our candidate 1-packing

of T-cuts and IFI = vi, then each was calculated correctly and is optimal. Reverse the

reductions to produce a certified minimum-weight perfect matching.

We need to explain how to do Step 2 in 7Z.'C. In order to calculate v,(0,T), we need to

understand the structure theory of Seb6.

6.3 A Structure Theorem of Seb6

In this section we will present a theorem of Seb6 that will enable us to construct a maximum

1-packing of T-cuts in a bipartite graph G = (V, E) by calculating IVI different T'-joins. Given

a graph G and a set T C V, a necessary condition for G to possess a T-join is that ITI be even.

For all x E V, define the set Sx C V as follows

x SU{x} if x s

S-{x} ifxES.

Note that when S C V, ISI odd, the 9- are all of even cardinality. A set of minimum

cardinality SI-joins fur all x E V is called the S - join structure of the graph. It is such a set

of S-joins we will use to construct a maximum 1-packing of T-cuts.

Theorem 6.3.1 [1051 Let G = (V, E) be a bipartite graph, S _ V, IS odd. For each node x E V

let F' be a S-join. For all x E V define r(x) = IF I. Let G' be the graph induced by the set of ver-

tices x such that r(x) < i. Let D(2r) = {D : D is the vertex set of a connected component of G' for some i}.

Then F- is a minimum cardinality S-join for all x E V if and only if
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1. Ir(y) - r(x)I = I for all zy E E(G).

2. For all X E V and D E V('),

IF- n 6(D )l 
- {

1 ifxgD.

We will in a moment explain part of Seb6's proof of this theorem in order to explain how

to construct the packing of T-cuts. We note first, however, that merely the statement of this

theorem is enough information to yield our main result, a Las Vegas 1?.VC-algorithm for the

mininum (unary) weight perfect matching problem'. We have already reduced this problem

to finding a minimum-cardinality T-join in a bipartite graph. A Las Vegas 7RNC algorithm for

that problem is as follows,

* If T # 4 choose v E T arbitrarily and let S = T. If T = choose v E V arbitrarily and

let S = {v}. In either case, note that Sv = T.

* Find IVI (candidate) minimum Sv-joins, one for each v E V, using Fact 6.2.2 and the

RA'C weighted matching algorithm.

e Apply Theorem 6.3.1 to verify that all the S' are simultaneously optimal.

If the probability of failure in the calculation of each Sv-join is suitably small then this will

be a Las Vegas .A/'C-algorithm for a minimum cardinality T-join in a bipartite graph. This

algorithm requires no explicit knowledge of T-cuts and is therefore conceptually simpler, but

it is no more efficient than our main algorithm, and it also does not yield the the algorithmic

results on packings of T-cuts in Corollary 6.4.2 nor the results of Section 6.5. Therefore we

next give the proof that conditions 1 and 2 imply that each F is a minimum S'-join in order

to describe how a 1-packing of Sx-cuts is constructed.

Condition I implies that no edge connects two vertices that have the same 7r value. There-

fore, every edge in E is in some cut 6(D), D E D(7r). Furthermore, since Iir(y) - 7r(x) = 1,

zy is in only one cut 6(D); therefore, {6(D) : D E D(7r)} is a partition of E. This enables

'We would like to thank the anonymous referee who made this observation.
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us to express F' as the union of its intersection with the members of D(7r), and therefore

IFt'I = EDEV(,) IFn 6(D)I = I{D E V(7r) :x 0 D}I.

We claim that if x 0 D then D contains an odd number of nodes in S , and that therefore

6(D) is a SX-cut. This is true since a S'-join is the union of cycles and simple paths between

nodes in S1. Therefore, if 16(D) n F-I = 1, there must be exactly one of these simple paths

that crosses the cut 6(D), and no cycles. Let w E T be the endpoint of that path in D. Since

the degree of any node v E S' must be odd in a S-join, there must be an even number of

nodes in D besides w that are in S', since they must be paired up by simple paths that do

not leave D. Thus there are an odd number of nodes of S- in D, and 6(D) is a Sx-cut. Thus

the set {(D)ID E E, x D} is a 1-packing of S'-cuts, which we showed earlier has cardinality

IF'I. By Theorem 6.2.4 each of the F' is a minimum S-join and {f(D)ID E Tx D} is a

maxi'mum 1-packing of S-cuts. This completes the proof that conditions 1 and 2 imply that

each F' is a minimum S'-join; furthermore, it shows how, from a complete set of FX, x E V,

we can calculate v,(G, Sx) for any x.

6.4 An Algorithm for Certifying a Minimum Weight Perfect

Matching

The one step of the algorithm from Section 6.3 still to be explained is the calculation, with

high probability, of v(0,T). Let S = T - {x} for some arbitrary x E T, and let S be the odd

cardinality set referred to in Theorem 6.3.1. Let G have h nodes and ?h edges. The parallel

algorithm to calculate vl(O,T) is as follows:

1. Calculate, with high probability, 7r(v) for all vertices t in G.

2. Calculate the connected components of Gi for each i.

3. Calculate I{D E D(r) : x D)I.

If the calculation in Step 1 succeeded, by the proof of Theorem 6.3.1 we know that ]D E

D(r) : x DI is the size of the minimum cardinality S'-join (T-join) in G. If this is equal to

the size of the candidate minimum T-join, we know the candidate is optimal as is our original

minimum weight perfect matching.
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Each ir(v) can be calculated by finding a minimum cardinality Sv-join, Which by Fact

6.2.2 can be done by a shortest paths computation and by finding a minimum weight prefect

matching. Therefore Step 1 is in IZA'C. Steps 2 and 3 are well known to be in AC [73], so the

calculation of v1(G, T) can be carried out in 1Z./'C.

Now consider the time and processor requirements in a CRCW PRAM model of computation

[73]. In the reduction of finding a minimum weight perfect matching in G to finding a minimum

cardinality T-join in d we increase the size of the graph considerably. If G had n nodes, m

edges and maximum edge weight Wmax, we increase the edge weights to 0(nwm.,x) and then

expand each edge of weight w into an unweighted path of length w. Thus the number of nodes

in G, i, is O(nmwmx) and the number of edges, in- is O(nmwmax) as well.

In Step 1 we must find i Sv-joins in 0. In order to find each of these 0(nmwmax) S"-

joins we compute a minimum weight perfect matching in a graph with n nodes, 0(n2 ) edges,

and maximum edge weights of O(nm. Wmax). This is because ITI = n both in G and in

G, and the length of a path in G is bounded by ri. The algorithm of Mulmuley, Vazirani

and Vazirani requires O(N'MW) processors and 0(log2 N) time to find a minimum weight

perfect matching in i graph with N nodes, M edges and maximum edge weight W. A factor

of NM in the processor bound comes from scaling up the edge weights by NM in order to

ensure that the probability of success is at least 1. In our reduction to the T-join problem

we have already scaled up the edge weights by a factor of n. Since we are doing O(nmwmax)

calculations, however, we require a smaller probability of failure for each calculation, specifically

at most O(nmw,=), so that the overall probability of success will be at least 1. Therefore we

must scale up the weights by an additional factor of nmwmax, and the entire algorithm will

require O(log2 n) time and O(n 2 -n(nmwmx)3 ) 0(n 75M3 W3 'J processors.

This processor bound can be reduced at the expense of a logarithmic factor in running time

if we note that the values of 7r(v) for a subset of the vertices of 0 determine ir(v) for all the

vertices of 0. We will show that 0(log max(n, Wmax)) rounds of finding 0(m) Sv-joins will

suffice to determine all the 7r(v).

To prove this observe that if, in the construction of d from G, an edge pq was expanded

into a path pvIv 2 ... vkq, then a minimum Sli-join will either include the entire path from p

to vi or from vi to q. Further, there is a unique vertex v, on the path such that for j < I
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the edges of the path from p to v, are in the minimum Sui-join (and thus the path from Vj

to q is not), and for j > 1 the path from vj to q is in the minimum Svi-join (and the path

from p to vy is not). This vertex v, can be found by binary search on the vertices of the

path from p to q. Further, we can carry out the binary search for each expanded edge of G

in parallel. Each such path is of length O(nmwm,,x); therefore, executing the binary search

requires O(log max(n, wMnx)) rounds of finding 0(m) Su-joins. We have replaced one round of

finding O(nmwmnx) Su-joins with O(log max(n, Wmax)) rounds of finding O(m). This algorithm

will be a factor of 0(logmax(n, Wmx)) slower and require nl(nwmax) fewer processors.

Thus we have proved the following theorem.

Theorem 6.4.1 There exists a Las Vegas 1ZavC algorithm for unary-weighted perfect matching

that requires O(log 2 n) time and 0(n"5 (mWmax)3) processors on a CRCW PRAM, and a Las Vegas

?,NC algorithm that requires O(log2 n log max(n, Wmax)) time and 0(n615M3 WI x) processors.

Corollary 6.4.2 There exist Las Vegas 7ZAvC algorithms for the following problems with the

indicated time and processor requirements on a CRCW PRAM.

1. O(log 2 n) time and O(n"5m) processors:

" Finding a minimum T-join in an arbitrary graph.

" Finding a maximum cardinality 1-packing of T-cuts in a bipartite graph.

" Finding the T-join structure of an arbitrary graph.

2. O(log2 n) timeand 0(n 5 (mwmax) 3) processors or 0(log' nlogmax(n, wmax)) time and O(n5 s m2Wmax)

processors:

* Finding a minimum weight T-join when the edge weights are given in unary

Proof: Immediate using the arguments given above. U

Note that certifying that a perfect matching in a bipartite graph is of minimum weight is

much simpler, even when the edge weights are given in binary. It is well known that optimal dual

variables for the minimum weight perfect matching problem can be found via a shortest paths

computation, which can be carried out in ArC [47, 118]. Therefore, given a candidate minimum

weight perfect matching, we can attempt to find optimal dual variables via this shortest paths
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computation. If we fail, we know that the candidate perfect matching is not of minimum weight.

This approach does not seem fruitful in the general non-bipartite case; finding dual variables

does not appear to be any easier than finding the minimum weight perfect matching itself [27].

6.5 Planar Multicommodity Flow

We define the multicommodity flow problem as follows. Let G = (V, E) be an undirected graph,

with a set of demand edges F C E with demand q(f) associated with each edge f E F. Let

each non-demand edge have an associated capacity w(e), and specify that w and q are integral.

When does there exist for each f E F a flow function of in (V, E- F) between the two endpoints

of f and of value q(f) such that Ve E E - F

E 1I(e)l _< w(e)?
fEF

Such a set of flow functions is called a multicommodity flow.

Construct the graph G" by replacing f E F with 2q(f) parallel edges and e E E - F with

2w(e) parallel edges. Denote the image of F under this transformation as P. Seymour proved

[111] that if a multicommodity flow exists in G, it can be constructed from a maximum packing

of T-cuts in the (bipartite) planar dual of G*, where T is the set of nodes in the dual of Go

that are adjacent to an odd number of edges of F0. An easy consequence of this construction

is that the resulting flow values are half-integral.

Since we have demonstrated an 1ZATC Las Vegas algorithm for producing a maximum packing

of T-cuts in a bipartite graph, this yields immediately a 1?A'C Las Vegas algorithm for planar

multicommodity flow when the demands and capacities are given in unary.



Chapter 7

Parallel Algorithms for the

Assignment Problem'

7.1 Introduction

In this chapter we move to a more practical perspective on parallel algorithms for network

problems. We present a computational comparison of five different implementations of parallel

algorithms to solve the assignment problem, the problem of finding a minimum-weight perfect

matching in a bipartite graph. We focus on solving the problem in a dense graph, where there

is an edge between every two nodes. All of the algorithms are implemented on the Connection

Machine CM-2, a massively parallel SIMD Computer manufactured by Thinking Machines

Corporation. We also have attempted to evaluate other algorithmic approaches that we did not

implement.

We have implemented three versions of Bertsekas' auction algorithm [9, 10, 13]: the standard

Jacobi and Gauss-Seidel versions and a hybrid combination of the two that seems not to have

been considered before. This implementation is particularly interesting since it uses two different

levels of the potential parallelism of the Connection Machine. We have also implemented two

versions of the method of multipliers [57, 98, 32, 31]. We compared these implementations on

dense assignment problems with costs generated uniformly and randomly. Of the five algorithms

'This chapter describes joint work with Stavros Zenios [123, 122].



90 CHAPTER 7. PARALLEL ALGORITHMS FOR THE ASSIGNMENT PROBLEM

the hybrid algorithm proved definitively to be the best in these tests, and was, on 1000 x 1000

problems, an average factor of 5 - 10 faster in Connection Machine time than the Jacobi code,

the previous best algorithm implemented on the machine. This comparisons were on a 16,384

processor Connection Machine. The factor of improvement depended on the cost range and

increases with problem size. The computational results on a 32,768 processor machine were

also competitive with the best results achieved by other researchers on MIMD machines on a

similar distribution of problem instances.

In the computational studies we have seen of algorithms for dense assignment problems

the problem instances have been generated with costs chosen uniformly and randomly. We

discuss the implications of such test data and compare our implementations on other sorts of

distributions as well.

Mofivation for this Study: The principal/initial motivation for this study is as follows. Gold-

berg implemented the Goldberg-Tarjan maximum flow algorithm on the Connection Machine

CM-1, and tested it thoroughly. This implementation yielded excellent results and excellent

parallel speedups [45]. However Goldberg points out that

... many maximum-flow problems that appear in practice are much smaller

and much simpler than the examples we have generated, and most network-flow

algorithms produce satisfactory results.... we have seen, however, that minimum-

cost flow problems can be solved by iterating a generalized version of the maximum-

flow algorithm. Since large and hard instances of the minimum-cost flow problem

do appear in practice, fast maximum-flow algorithms are very important in this

context (451.

We initially implemented and studied the algorithm to which Goldberg refers on the Connec-

tion Machine CM-2. The algorithm is due to Goldberg and Tarjan and computes a minimum-

cost flow by successive approximations, where each approximation is computed by an algo-

rithm that is quite similar to the maximum-flow code. However, despite the similarity between

the improve-approximation routine of the minimum-cost flow algorithm and the Goldberg-

Tarjan maximum-flow algorithm, the Connection Machine version of this minimum-cost flow

algorithm performed quite poorly on netwoiks generated by the standard random-network gen-
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erator-of Kempka and-Kennington [121], The basic problem is that, at least on these instances,

the algorithm does not achieve-good parallelism and leaves most of the machine idle most of the

time. This phenomenon arose in several combinatorial applications on the machine, including

shortest paths algorithms [55] and traveling salesman problem heuristics [96]. It also arose in an

initial implementation of Bertsekas' Jacobi auction algorithm for the dense assignment problem.

The auction algorithm and the Goldberg-Tarjan minimum cost-flow algorithm discussed above

are quite similar, especially since the assignment-problem is just a special case of minimum-cost

flow.

We therefore decided to study alternative approaches to an auction-like strategy in order

to try to understand how processor utilization might be increased in combinatorial algorithms

on the Connection Machine. We focused on the assignment problem since it was a special

case of the minimum-cost- flow problem that nonetheless captured many of the same issues

with regard to parallel algorithms. We focused on the dense problem since it yielded a very

communication-efficient representation on the Connection Machine, whereas communication for

sparser problems is comparatively slow. Furthermore, almost all of the other studies on parallel

implementations of algorithms for the assignment problem concentrate on the dense problem,

and thus we can use the results of this paper as benchmarks against the work reported by

others. Finally, we believe that many of the techniques that we developed will prove useful in

developing better implementations of algorithms for the sparse assignment problem and both

sparse and dense minimum-cost flow problems.

The implementations of the methods of multipliers were motivated by the success of Eckstein

in using these methods on sparse assignment problems [32, 31]. These methcds also have

tremendous potential to take advantage of the massive parallelism of the Connection Machine;

however, they proved to be ineffective on dense problems. The discussion of these methods and

the evaluation of other possible algorithms are included in an attempt to give a clearer picture

of the possibilities of developing an algorithm superior to our hybrid algorithm.

The rest of this chapter is organized as follows. In Section 7.2 we describe other work on

implementations of parallel algorithms for the assignment problem. In Section 7.3 we describe

the relevant details about the algorithms we implemented, and in Section 7.4 we describe the

implementations on the CM-2. In Section 7.5 we describe our computational results on the
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problems with costs chosen randomly from a uniform distribution on integers, and in Section

7.6 we describe the results on other distributions. In Section 7.7 we discuss the possibilities of

other approaches to the problem and we give our conclusions in Section 7.8.

7.2 Previous Studies

A number of researchers have studied parallel solutions to large dense assignment problems on

smaller scale MIMD parallel machines. These studies have concentrated entirely on the auction

algorithm of Bertsekas and the Shortest Augmenting Paths Approach [67]. They have also

concentrated entirely on costs that are generated randomly and uniformly.

Kennington and Wang [75] developed a parallel version of the shortest augmenting path

(SAP) code of Jonker and Volgenant [67], which they tested on the Symmetry S81, with up to

ten Intel 80386 cpus. They report solutions to dense 1200 x 1200 assignment problems with

cost range [0 - 1000] in approximately 15 seconds and cost range [0 - 10000] in an average

of under 20 seconds. They also report that the auction algorithm did not achieve results

comparable to the shortest augmenting path in a serial implementation, and hence it was not

parallelized. Zaki [1251 continued this study on an Alliant FX/8, parallelizing and vectorizing

both algorithms. He confirmed the observations of Kennington and Wang, for certain problem

categories. However, his results show that the auction algorithm achieves much better speedups

than the SAP code and also vectorizes very well. As a result, the auction algorithm outperforms

SAP by a large margin when implemented on a vector/parallel architecture. lie reports solutions

of 2000 x 2000 problems with cost range [0-10000] in approximately 30 seconds with the auction

algorithm, ana 2 minutes with SAP.

Kempka, Kennington and Zaki [74] tested the auction algorithm on the Alliant FX/8 without

the c-scaling that typically makes the algorithm computationally effective and more stable.

They report, nonetheless, solutions to a 1000 x 1000 dense problem with cost range [0,100] in

under one second and a 4000 x 4000 problem in just over a half minute. Since they do not use

scaling, their results are unpredictable: a 1000 x 1000 problem takes 12 seconds for cost range

[0, 1000], while a 2000 x 2000 problem with the same cost range takes over 255 seconds. For

cost range 10000 they achieve an average of 33 seconds for 2000 x 2000 problems.
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Balas, Miller, Pekny and Toth [4] implemented a parallel shortest augmenting path algo-

rithm on the Butterfly Plus computer, with 14 processors. They were able to solve dense

1000 x 1000 problems with cost range [0 - 1000] in an average of 9.39 seconds, and cost range

[0 - 10000] in 11.70 seconds. They also solved dense 2000 x 2000 problems with cost range

[0 - 10000] in 30 seconds, 3000 x 3000 in a minute, and a dense 30000 x 30000 problem with

900 million variables in less than an hour.

Bertsekas and Castanon [11] did an extensive ,study of several variants of the algorithm

on 20% dense problems on the Encore Multimax. They tested both Jacobi and Gauss-Seidel

versions and a block-Jacobi implementation. An interesting feature of this study is that they

develop asynchronous, as well as synchronous, parallel implementations. The asynchronous

algorithm has a substantial advantage over its synchronous counterpart. They were able to

solve problems of size 1000 x 1000 in under 10 seconds.

Castanon, Smith and Wilson [19] studied the effectiveness of different synchronous imple-

mentations of the Gauss-Seidel auction algorithm and the shortest augmenting paths code of

Jonker and Volgenant [67] for solving both dense and sparse assignment problems on a variety

of architectures. They demonstrated speedups of up to 60 for the Gauss-Seidel implementation

of the auction algorithm for problems of size 1000 x 1000.

There are two studies of Connection Machine algorithms that are relevant to our work.

Cindy Phillips wrote the first version of the Jacobi auction algorithm on the Connection Machine

[95, 96]. Most of the important details of the Jacobi implementation were developed by her,

however she was not able to thoroughly test the code and solves only one example for most cost

ranges.

Eckstein did an empirical study of h0c alternating direction method of multipliers for general

linear cost sparse networks on the Connection Machine CM-2 [32, 31]. The computational

results were encouraging for sparse assignment problems.

There has been a variety of recent related work on Connection Machine algorithms for net-

work optimization. We have already mentioned that Goldberg implemented a fast ma.dmum

flow algorithm [45]. Zenios and Lasken [127] solved nonlinear network problems; Zenios [126]

developed algorithms for multicommodity transportation problems; Nielsen and Zenios [128]

developed algorithms for stochastic network optimization models arising in financial applica-
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tions. Eckstein [32, 31] has extensively studied the alternating step method for transportation

problems. As stated above, his results for linear cost networks are not encouraging, but the

results for sparse quadratic transportation problems are-quite good and arecompetitive with

the massively parallel row-action algorithm of Zenios and Censor [20]. Furthermore, his method

appears to be the able to solve~problems with mixed linear and quadratic objective terms with

little additional difficulty.

7.3 Algorithms for the Assignment Problem

The assignmeit problem is to find the minimum-weight perfect matching in a bipartite graph.

At times in this chapter we will phrase the problem in terms of-n people and n objects, with a

benefit a~i associated with the assignment of object i to person j. We seek an assignment A of

objects to people (A(i) j means that object i is assigned to person j) so that Z(i)=j a~i is

maximized. In a globally optimal solution any given person may not be assigned to his most

valuable object. However, for a globally optimal assignment it is possible to assign a price iri

to each object i, so that if each person j views the profit associated with object i as aij - ri

then each person is assigned to his most profitable object. This fact can be understood as a

consequence of linear programming duality.

7.3.1 The Auction Algorithm

The auction algorithm finds the optimum assignment by finding such prices for all the objects.

It produces an assignment A and prices 7ri such that

aAc, - 7r()> max (a A(i) -

The algorithm starts with each object assigned an arbitrary price; prices are adjusted upwards

as people bid for their most profitable object. Each iteration of the algorithm consists of one

or several .currently unassigned people choosing the object that is most profitable to them and

submitting a "bid" on the object. Each object that has been bid upon is assigned to the highest

bidder, adjusts its price to the bid, and deassigns the person to whom it was previously assigned

(if anyone).
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Formally, each person bidding calculates the profits pb,,, -and pn,,t associated with his two

most profitable objects, and then bids 7'i + pb,,t - p,,,t on his best object i. A bid-upon object

then is assigned to the highest bidder and sets its price to that bid.

Epsilon Scaling

Epsilon-scaling is used in the auction algorithm in order to improve upon the worst-case time

bounds and computational behavior. We relax the condition that an object bids upon and is

assigned to its favorite object:

aiA(i) - 7ri max (aiA(i) - 7i).

Instead we merely require that

aiA(i) - 7ri 2: max (aJA(i) - 7rj) - C

Such an assignment is called E-optimal. The algorithm runs in a series of phases, each

phase taking an -optimal assignment and returning a set of prices and an assignment that is

c' = (/c)-optimal, for some user-specified constant c. Bertsekas proved that if an assignment

is c-optimal with c < 1, and the aij are all integers, then the assignment is globally optimal

[9]. Define Al. = maxij aij. Since any assignment is Ai-optimal, we can start with c = Ma and

in O(log(M,,n)) phases we will produce an assignment that is (-'-)-optimal and thus globally

optimal. Each phase of the algorithm is a mini-auction as described in the previous section,

except that instead of bidding Pbet - Pnxt, a person can bid Pbest - Pnext + c. Each phase

produces a c-optimal assignment, and by successively lowering c in this fashion we obtain an

optimal assignment. The worst-case sequential complexity of the algorithm on dense problems

is O(n 3 x log(M~n)), and there is no known proof of worst-case parallel speedup. A summary

of the algorithm is as follows.

Step 0 (Initialization) c +- maxij ali, 7rj 4-- 0.

Step 1 Auction:
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1.1 Some subset of the set of unassigned people determine and bid on, their favorite

object.

1.2 Each bid-upon object determines its highest bidder, raises its price to that bid, and

assigns itself to that person, deassigning the person to whom it was previously as-

signed (if~anyone).

1.3 If any person is unassigned goto 1.1.

Step 2 If e < - Stop; else c +- e/2. People whose assignments are no longer c-optimal deassign

themselves.

Step 3 Goto Step 1.

Jacbbi vs. Gauss-Seidel

Note that in the most general form of the algorithm any subset of those people unassigned can

bid simultaneously. The two traditional parallel variants of the auction algorithm are the Jacobi

version and the Gauss-Seidel version. By the Jacobi version we refer to an algorithm in which

all unassigned people bid simultaneously on their favorite objects before the prices-are adjusted,

whereas in Gauss-Seidel only one person bids at a time. Since in the Gauss-Seidel version each

bid takes advantage of the updated price information of the previous bids, it usually takes

fewer total bids to produce an optimal assignment. The Jacobi method, however, has greater

potential for a massively parallel implementation.

In general the terms "Jacobi" and "Gauss-Seidel" are not used solely with regard to the

auction algorithm. "Jacobi" is used to refer to a method where the prices (dual variables) at

time t + 1 are updated only with respect to the information at time t, whereas a "Gauss-Seidel"

iteration updates a dual variable with respect to the most recent information. Thus a Jacobi

method allows the updating of all prices in parallel, whereas a Gauss-Seidel method allows two

prices to be updated in parallel only if the update of one does not depend on the relevant values

of tge other. This Jacobi/Gauss-Seidel distinction is one of the primary differences between the

two methods of multipliers we discuss.
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7.3.2 The Method of Multipliers Algorithm

The method of multipliers (MOM) is a general method for a variety of problems in convex

programming [57, 98]; we summarize here a specialization of the method to assignment problems

suggested in [12] and we refer the reader there for a full development and explanation of the

algorithm. Since the methods of multipliers we describe here are specializations of multiplier

methods for linear programs, we first formulate the assignment problem as a linear program,

and without loss of generality as a minimization problem. We let E denote the set of edges of

the network; in our dense case E contains an edge (i, i) between every person i and object j.

minimize aliifj

subject to

{ fi j = l Vi = 1,...n,

fij- lVj - .n,

{i(ii)EE)

0O_ fij _ 1 V(i,j) EA.

We assign dual prices ri and p; to the equality constraints. The method of multipliers for

this problem results in a Gauss-Seidel iteration to minimize the Augmented Lagrangian. the

iterative step has the form

Step 0 fij +- 0, ri - 0, pj - 0.

Step 1 Update the values of f as follows

i = [fij + --L [ri(t) +pj(t) - ai + c(t)(yi(t) + wj(t))] ,Vedges(i,j)

where yi(t) and wj(t) are given in terms of fij(t) by

yi(t) = (1 - f(t)) Vi = n
{iI(i~i)GA}
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Wi(t) = 1- ,(t) Vi= 1,...,n,
{il(Qi)eA)

c(t) is a nondecreasing sequence of of positive constants and [x]+ indicates the projection

of z onto [0,1].

Step 2 At the end of the minimization yielding fi1(t + 1), yi(t + 1) and wj(t + 1) for all i,j,

update the prices ri and pj according to

rp(t + 1) = ri(t) + c(t)yw(t + 1),Vi = 1,...,n

Step 3 Check for convergence; if iteration has not converged goto Step 1.

7.3.3 The Alternating Direction Method of Multipliers

The alternating direction method of multipliers(ADMOM), due to Eckstein [32], takes a Jacobi

approach to updating the augmented Lagrangian This method as well has a variety of appli-

cations to convex programming, [12, 32, 31, 33, 34]. The application of this method to the

assignment problem results in a Jacobi-type algorithm which is more suitable for massively

parallel computation than the method of multipliers. The iteration proceeds as follows.

Step 0 fj +- 0, ri - 0, pj +- 0.

Step 1 Update the fij as follows

AIi1 t + 1) = [f1 (t) + 1 [r (t) + p1(t) - a~i + c(yi(t) + wj(t')] Vedges(i,j),
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r,(t + 1)= ri(t) + cyi(t + 1), Vi =1,..., n,

Pj (t + 1) = j P(t) + cwj (t + 1), Vj ='1...,

where yi(t) and wj(t) are given in terms of fij(t) by

yi(t) = 1 (1 - 1: fij(t)), Vi = 1,... -n,
{jil(ij)EE)

wj(t) = 1(1 - 1 fj(t)),Vj = 1,...n,

and c is a constant.

Step 2 Check for convergence: if iteration has not converged goto Step 1.

Note that in ADMOM all fij can be updated simultaneously while MOM relies on y and

w being up to date, and therefore only one value fij can be updated in each row and column

at a time. Therefore we can only do n updates at a time for MOM while we can do n2 for

ADMOM; however, due to the Gauss-Seidel nature of the minimizing iteration in MOM, we

would expect that the algorithm would converge much more quickly. Furthermore the price

updates for ADMOM are divided by the number of arcs incident to that node, which for dense

problems is n. Therefore for large dense problems the prices will only change a small amount

in each iteration and therefore the number of iterations has the potential to be large. Note that

neither of these algorithms has been proved to be a polynomial-time algorithm, although they

have been proved to converge to the correct answer in a finite amount of time.
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7.4 Designs for Massively Parallel Implementation

In this section we discuss the issues involved in implementing efficiently the algorithms of the

previous section on a Connection Machine CM-2.

7.4.1 The Connection Machine CM-2

The Connection Machine CM-2 is a massively parallel computer with up to 65,536 processors.

Each processor has a single-bit processing unit and 64K or 256K bits of local RAM. The

processors run in SIMD mode and are connected in an n-cube topology. The system software

provides global maximum operations as well as scan and spread operations that are parallel

prefix operations [14]. The CM-2 uses a front end such as a SUN-4, VAX or Symbolics Lisp.

Machine. Parallel extensions to the programming lant-ages LISP, C and FORTRAN, via the

front-end, allow the user to program the Connection Machine and the front-end system. For

further information see [26] and (58].

A Connection Machine can emulate a large xiumber of processors by having each physical

processor simulate a number of virtual processors. The ratio of the number of virtual processors

to the number of physical processors is referred to as the virtual processor ratio, or vp-ratio.

Using standard Gray coding the processors of the CM can be configured as a k-dimensional

grid; to represent a n x n assignment problem we configure the CM a a N x N grid, where N

is n rounded up to the nearest power of two. Row i is associated with object' i and column j is

associated with object j. In particular, processor (i,j) stores the value aij of object i to person

j, local variables applicable to person j such as the most profitable object to that person, and

local variables applicable to object i, such as its price. A specified number of virtual processors,

along with a configuration of the machine, is called a vp-set, and it is possible to use several

different vp-sets in the same computation and to switch between them when desired.

A mapping of virtual processors in a grid to the physical processors of the CM is known

as a geometry. The user has the freedom to dictate a variety of the features of this mapping.

In particular we exploit the ability to specify which axes or directions of the grid shou.,i have

more physical processors representing them, and which should have more virtual processors.

In other words, we can specify that virtual processors that are adjacent along one axis are on
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different physical processors, and that processors that are adjacent on another axis are on the

same physical processor. The mapping of the N x N grid onto the physical CM will differ

among our implementations, and we will use alternate representations as well, but this is the

basic representation common to all the codes.

7.4.2 Massively Parallel Implementations of the Auction Algorithm

In this section we discuss the implementation of the Jacobi and Gauss-Seidel variants of the

auction algorithm, together with a new version that we refer to as a "hybrid" algorithm.

The Jacobi Algorithm

In the implementation of the Jacobi 2 algorithm we have one N x N vp-set which is used both to

store the data and for computation. It is mapped onto the physical CM processors in the default

fashion, which balances the two axes so that they have a comparable physical processor/virtual

processor makeup. A detailed summary of the Jacobi implementation is as follows.

Step 0 We keep a copy of c in each processor. Using a global maximum operation and a

broadcast, set E - (n + 1)M,. In each processor set r -- 0. We keep two boolean

variables in each processor: assigned-here, which is True in processor (i,j) if object i is

assigned to person j, and person-assigned, which is True in all processors of column j
if person j is assigned to an object. In all processors set person-assigned +- False and

assigned-here + False. Also scale all values of a by n + 1.

Step 1 Determine if everyone is assigned (a global or operation of person-assigned). If a

person is unassigned proceed to Step 2. If every person is assigned to an object and E < 1

the algorithm terminates. If c > 1 reduce its value, deassign everyone whose current

assignment is no longer c-optimal for the new c, and proceed to Step 2.

Step 2 Select all the processors associated with unassigned people. Set profit +- a - r.

Within each column j find the row index ii of the most profitable object by forming

2Preliminary experiences with this algorithm have already been reported on in [95]; it is included here for
completeness and in order to present additional computational results. The description of the algorithm is
adapted from that paper.
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Number of Bidders Fraction of iterations
1 38.60%
1-10 82.35%
1-100 95.95%
1-500 98.78%

Table 7.1: Statistics on Number of Bidders active

the concatenation of the profit and column number j in each processor and doing a grid

spread-with-max. Set best +- i. Turning off processor (best, j) do~another grid spread-

with-max to find the profit p of the next-best object and set next-best - p. Person j

bids on object best by setting the variable bid in processor (best, j). The value of the

bid is computed as follows: Let Wbestj be the maximum profit from all objects except

best. The bid from j to best is abest~j - Wbestj + E.

Step 3 Using a grid spread-with-max along the rows, determine the maximum bid on each

object and update the prices ir within the columns. For all objects bid upon, assign the

object to the highest bidder by setting assigned-here. Update person-assigned using

or-grid-scans within the columns. Go to Step 1.

The CM has the ability to potentially perform thousands of bids at once; therefore, this

seems to be a very attractive method for this architecture. However, this approach leads to

a large sequential tail. Most people are assigned to objects very quickly, and the bulk of Zhe

computational time is spent in establishing the last few assignments, hence greatly reducing the

amount of parallelism. Table 7.1 gives a typical breakdown of processor utilization encountered

in a 1000 x 1000 problem with cost range [0 - 1000].

Two optimizations were implemented to minimize this tail effect. The first was to optimize

the case when only one bidder was active: the preferred object for that sole bidder was found by

a global maximum over all the processors as opposed to the more powerful but slower max-scan

operation. The latter was unnecessary for the case of one bidder.

The second optimization was the truncation of the tail: instead of running each phase until

a complete E-optimal assignment was achieved, the auction was terminated when k% of the
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Problem Size Maximum Cost Speedup(its.) Speedup(Time)
128 100 5.62 4.61
128 1000 4.30 3.70
256 100 3.23 328
256 1000 7.37 6.35

Table 7.2: Improvements in iterations and time gained by truncation of the tail. Each entry
is an average over five randomly generated examples.

people have been matched. k increases as epsilon decreases, so that k = 100 in the last phase.

This optimization resulted in substantial speedups. An implementation that initially matches

only 80%, and matches progressively more in successive phases does an average of 5.1 times

fewer iterations than an implementation that completes each phase, on randomly uniformly

generated problems of size 128-256. (See Table 7.2.)

The Gauss-Seidel Algorithm

In this version, where we do one bid at.a time, we must continue to store the n x n problem

on the CM, which will necessarily be configured at a high vp-ratio. We would like, however, to

perform the computations at a lower vp-ratio, and therefore more quickly, on a grid of reduced

dimension. We introduce a mapping of the N x N grid to the physical machine that will enable

us to extract the information necessary for one bid, and compute the bid in a vp-set with

vp-ratio 1. We do this in a fashion that requires no communication between the two vp-sets.

We define the geometry of the N x N vp-set, which we will call data-vp-set, so that the y

axis is physical. Processors (i,j) and (i, k) are on different physical processors for all j 0 k.

All of the virtual bits are along the x axis; processors (0,j),(1,j),..., (vp-ratio - 1,j) will all

be mapped to the same physical processor, as will all processors (q,j), where q E [vp-ratio *

k, vp-ratio*(k+l)-1]. We define a second vp-set, compute-vp-set, of vp-ratio 1 that has N rows

and (Number of Physical CM processors)/N columns. For example, if N = 1024 and we are

working on a Connection Machine with 16,384 processors, compute-vp-set will be a 1024x 16 vp-

set (1024 rows, 16 columns). A processor in compute-vp-set shares the same physical processor

with 64 processors in the data-vp-set. Note that an entire column in data-vp-set shares the same
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Column 2 of compute-vp-set mapped to same
physical CM processors as 128-191 of data-vp-set

4-,,

o ~11

U0

0

2 128-191
16 columns 1024 (people)

Figure 7.1: The two vp-sets for the Gauss-Seidel algorithm, compute-vp-set and data-vp-set
for a 1024 x 1024 problem on a 16K CM. Each vertical block of data-vp-set represents 64 virtual
columns that all reside on the same physical column. Only 8 blocks are portrayed here.

physical processors with one of the columns of compute-vp-set. We will transfer the information

we need for one bid from data-vp-set to compute-vp-set by having a processor in compute-vp-set

just point to the relevant data in data-vp-set. See Figure 7.1.

To execute the bid for the ith person we select his column Cdata in data-vp-set, and identify

the column in compute-vp-set with which it is coincident: Ccompu?. = lp-#tioJ Eahprle

variable has a pointer to the physical location where its data resides; we simply change the

pointer of the parallel variable in compute-vp-set to point at the data in the data-vp-set. For

example, in our 1024 × 1024 problem on a 16,384 processor machine, suppose person 303 is

bidding. All the relevant information resides on the same physical processors as does column 4

of the compute vp-set. Pointers are changed so that column 4 points to the data of column 303
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in, data-vp-set, and the bid is carried out. Note that the price information need only be stored

in compute-vp-set. The Gauss-Seidel algorithm is thus as follows:

Step 1 Pick an unassigned person and calculate with which physical column he is associated;

set the appropriate pvars in compute-vp-set to point to his values. (Need to change only

one pointer per pvar.)

Step 2 In compute-vp-set, calculate his bid. (This requires two global maximum computations:

one to calculate the best object and one for the next best.)

Step 3 Update the price information, which only need be kept in compute-vp-set.

Step 4 Goto step 1.

In contrast to the Jacobi implementation, where all information is kept on the CM, it is

more efficient here to keep track of who is assigned, and to what object, in front-end lists and

arrays. This avoids significant amounts of communication. In fact we utilize a copy of the- aij

that is kept on the front end as well to calculate the bid and in this way avoid CM to front-end

communication time.

Note that from the end of one phase to the start of the next, when epsilon is decreased

to c', often many of the c-optimal assignments from the previous phase are c'-optimal as well,

and need not be recomputed in the next phase. In the Jacobi code these assignments are

identified and preserved for the next phase; this is easy with a Jacobi representation since each

assignment can be checked in parallel. In the Gauss-Seidel case, when this information is stored

on the front end, it is a sequential computation to determine who is c'-optimal and thus we do

not check. Not preserving these assignments does increase the total number of Gauss-Seidel

bids, since we are throwing away information, but the gain in computation time outweighed

the increase in iterations; thus we chose not to preserve them. We tested our Gauss-Seidel

implementation against a sequential Gauss-Seidel implementation that we obtained from D.P.

Bertsekas on problems of size 64 - 256 and found that the number of bids they performed was

comparable.
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The Hybrid Jacobi/Gauss-Seidel Algorithm

The Jacobi code is very efficient when a large number of people are unassigned and are bidding

and the Gauss-Seidel code makes effective use of the machine when there are few active bidders.

It can do one bid at a time very quickly and also decreases the total number of bids needed.

These characterizations suggest that a better use of the CM is a hybrid combination of these

approaches. Execute the Jacobi algorithm early in the phase when large numbers of people

are unassigned. When most are assigned, switch to Gauss-Seidel. Note that the deterministic

algorithm with the best worst-case running time bound O(ni log(nM.)) uses a very similar

two-phase approach with the second phase being a shortest paths algorithm [46]. Ahuja and

Orlin devised a sequential two-phase auction algorithm with an improved running time over a

standard vanilla auction algorithm [1].

Making the transition from Jacobi to Gauss-Seidel will require a certain amount of com-

munication of the data during a phase, since the way that the grids are mapped onto the

Connection Machine is different for Jacobi and Gauss-Seidel. This cost is far outweighed by

the gains in computation time.

The hybrid algorithm uses two thresholds, threshl and thresh2. threshl determines in

which phases we employ both methods; thresh2 determines when in the phase we switch to

Gauss-Seidel. If a phase is aiming to assign k%, k% > threshl then we switch to Gauss-Seidel

when thresh2 x k% of the people are assigned. Computational testing showed that for problems

of size 1000 x 1000 and 2000 x 2000 with uniformly randomly generated costs the best setting

of these parameters, although different for different cost ranges, was threshl = thresh2 = 97

or 98. Interestingly, for both problems this is close to the ,fn- turning point used theoretically

in [1].

7.4.3 Massively Parallel Implementations of the Methods of Multipliers

In contrast to the auction algorithm, which only has the potential to do n bids at a time, MOM

always does n updates at a time and ADMOM does n2. Therefore these methods are very at-

tractive for parallel computation. The description of the Connection Machine implementations

of these algorithms is relatively straightforward given our previous discussion. We configure the
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Size cost Jacobi Bids Jacobi Iterations Average Parallelism GS Bids

128 100 3837 147 26.49 1567
128 1000 4114 215 20.77 2099
256 100 10210 813 14.56 5102

256 1000 9054 264 40.56 6244

Table 7.3: Jacobi vs. Gauss-Seidel Statistics

Connection Machine as an N x N geometry, with equal preference given to the physical makeup

of each axis, (as we did with the pure Jacobi auction algorithm). Each processor (i, j) stores the

current value of fij, pi, rj, yi, and wj. For the ADMOM algorithm, we need merely to do one

spread-with-add operation along each axis in order to calculate E{jI(i,)E}E fij(t), Vi = 1, n.. ,

and E{I(ij)EEI fij(t),Vj - .... n; then all that is required is several arithmetic operations that

all happen within each processor with no further communication required. For the MOM algo-

rithm we must select groups of n processors such that only one processor is selected in each row

and column. The strategy that we use is, to select processors (i, j) such that i + j - k(mod n),

and loop over k = 0,..., n - 1.

7.5 Computational Results and Discussion

In this section we discuss the performance of the two algorithms on dense problems. All the

problem data was generated by generating integer costs randomly and uniformly using the

Connection Machine random number generator. This is a very specialized distribution and

problems drawn from this distribution are generally understood to be easy, in that most of the

lower weight edges are not necessary. In fact, one can usually solve these problems by removing

75% of the edges, those with smaller costs, and solving the remaining problem. If the result is

not optimal it can usually be patched up quickly [92].

Despite these considerations, we believe that computational results on this distribution still

are meaningful, for several reasons. First of all, all computational studies which we know of

test only on this distribution; therefore testing such problem instances provides some ability to

compare different implementations and architectures. Secondly, removing the "bottom" 75%
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Size cost Jacobi Time, Gauss-Seidel Time Hybrid Time
1024 100 197.5/106.2 585.5/124.8 105.1/25.5
1024 1000 414.2/219.5 242.7/46.5 58.6/22.1
1024 10000 276.7/146.0 222.2/44.3 92.3/20.8

Table 7.4: Running times of the algorithms, in seconds, averaged over fiye random examples.
Both total and CM time are given.

of the arcs is not particularly useful on the Connection Machine. Although it would allow

the machine to be configured at a lower vp-ratio, the resulting sparse communication pattern

that would result would be significantly slower than that available when one has a fully dense

problem [311. Finally, despite the fact that these problems are understood to be easy, they

seem "not to be easy at all for a massively parallel architecture due to the tail phenomenon we

have discussed. Their "easiness" may in some sense cause this difficulty, since most of the

assignments are easy to compute and it is the computation of~the last few that takes a great

deal of time. Nonetheless, it is important to understand if a massively parallel architecture can

achieve good results on these sorts of instances.

In the next section we discuss computational results on instances drawn from different

distributions.

7.5.1 The Performance of the Auction Algorithm

The auction algorithms were initially implemented in a combination of *Lisp and Lisp/Paris

and were run with a SUN4 front end. A comparison of the number of bids done by the Jacobi

and Gauss-Seidel codes on problems of moderate size is given in Table 7.3. We see that the

Gauss-Seidel code can d& significantly fewer bids than Jacobi, by as much as a factor of two

or greater. We also see that, as expected, the average number of people bidding in the Jacobi

code is much less than n.

Table 7.4 gives data on the running times of the algorithms on fully dense problems of size

n = 1024, on a 16,384 processor CM2. Each running time is given in seconds and is the average

of five problems. The Hybrid algorithm is faster than both the Jacobi and Gauss-Seidel codes

in all cost ranges; this was true as well for a number of smaller problem sizes. Further, this
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also held true for a variety of settings of the parameters of the code, such as factor by which we

divide epsilon in each iteration, the initial percentage matched, etc. This led us to believe that

the superiority of the hybrid approach was fairly robust with respect to modest modifications

to the algorithms.

The parameter settings that proved to work best are 80% for the initial percent to be

matched and a factor of 2 to divide epsilon, except for the Gauss-Seidel code where a factor of

4 seemed superior. In joint work with Vu Lephan that is reported on in [120], we discovered

that the same parameter settings were the best for a sparse implementation of a Jacobi auction

algorithm, over a wide range of problem sizes and degrees of sparsity.

It is interesting and not intuitive that the Gauss-Seidel code would often do as well or better

than the Jacobi code, especially when one considers Connection Machine time alone. However,

one must take into account the fact that the time of one Gauss-Seidel bid is 70 - 80 times faster

(in Connection machine time) than a Jacobi parallel bid on a 1024 x 1024 problem running

on a 16K machine. The total times are significantly larger than the CM times. This partially

reflects the strategy of letting the front end execute as much of the inherently sequential part of

the problem as possible, but mostly reflects the Lisp front end code. Upon recoding in C/Paris

this discrepancy basically disappeared.

Based on this testing we chose the hybrid algorithm as the most successful and recoded it

in C/Paris. The C front end code runs much faster, and this led to significant improvements in

the overall running times; the discrepancy between front end times and CM time became very

small. In Tables 7.5 and 7.6 we give results on the performance of the algorithms on both 16K

and 32K machines, for problems of size 1000-2000, over various cost ranges. Both the total

number of iterations and the number of Jacobi iterations are reported. Each number is the

average of ten randomly generated examples; we used different sets of examples for the 16K

and 32K machine in order to give some idea of the variation possible in algorithm performance

over two similar sets of problems of the same size and cost range.

The number of Jacobi iterations is surprisingly small, but during these iterations hundreds

of bids are carried out at once. Another interesting fact is that for a specific problem size and

cost range the number of Jacobi iterations is always about the same; for almost all size and

cost ranges it was never more than five away from the average.
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Size cost Time Total Iterations Jacobi Iterations
1000 100 34.6 16252 128
1000 1000 22.2 13637 119
1000 10000 15.4 5031 141
1000 100000 15.3 4923 144

Size cost Time Total Iterations Jacobi Iterations
1000 100 28.7 21850 126
1000 1000 17.5 10141 120
1000 10000 8.1 2000 141
1000 100000 9.8 3578 144

Table 7.5: Running times of the C/Paris hybrid auction algorithm on 1000 x 1000 problems.
The top table is for a 16K machine, the bottom table for a 32K machine. Time is in seconds,
averaged over ten random examples. 5 of the 20 examples with cost range (1 - 100] tested ran
for more than 100000 iterations, and their running times are not included.

We note that the cost range 100 for size 1000 problems is particularly difficult for our

implementation; this is reflected both in the increased number of iterations and in the fact

that on approximately 25% of the random instances we generated the code ran for more than

100,000 iterations, although it always terminated. After initial testing we ran each code only

up to 100000 iterations and thus those examples of size 1000 and cost 100 that ran longer are

not included in the averages.

We also note that given our vp-ratio 1 implementation of a Gauss Seidel bid, the time for

one bid is not dependent on problem size or machine size as long as -u is smaller than the size

of the machine. Our code averages 1000 Gauss-Seidel bids per second on both a 16K and 32K

CM-2. This of course is not the case for the Jacobi phase, e.g. one Jacobi parallel bid for a

1000 x 1000 problem on a 16K CM-2 takes .07 seconds, whereas on a 32K machine one parallel

bid takes .04 seconds. Therefore, as bigger problems are solved and the vp-ratio increases, the

factor by .which the hybrid approach outperforms the Jacobi approach will increase. We were

limited to 2000 x 2000 problems only because of memory constraints of the Connection Machine

we were using. Currently Connection Machines exist with a factor of 16 more memory than the

machine to which we had access; on such a machine with 16384 processors we would be able to

solve 8000 x 8000 problems; with a fully-configured machine with 65,536 processors we should
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Size cost Time Total Iterations Jacobi Iterations
2000 100 60.2 2817 242

2000 1000 96.3 60936 148
2000 10000 60.4 23657 152

2000 100000 '57.9, 18004 156

Size cost Time Total Iterations .Jacobi Iterations
2000 100 33.5 2368 241
2000 1000 50.3 22955, 150
2000 10000 45.3 26739' 151
2000 100000 36.3 15263 157

Table 7.6: Running times of the C/Paris hybrid auction algorithm on 2000 x 2000 problems.
The top table is for a 16K machine, the bottom table for a 32K machine. Time is in seconds,
averaged over ten random examples.

be able to solve a 16000 x 16000 problem.

7.5.2 The Performance of the Multiplier Methods

We began by testing the methods of multipliers on small problems in order to understand their

behavior. The performance of MOM and ADMOM on randomly generated problems of size

64 x 64 and 256 x 256 is recorded in Tables 7.7, 7.8, and 7.9. In Table 7.8 the entry (x, y) means

that ADMOM ran for an average of x iterations before converging, and that it converged within

10000 iterations for y/l0 examples. We imposed an arbitrary cutoff here of 10000 iterations.

An asterisk indicates that the methods never converged with that parameter setting on that

cost range; an X means that we did not test that combination fully since initial testing indicated

it would not converge. Based on our experience with ADMOM and some preliminary testing

of MOM we chose a reduced set of c on which to carefully test MOM. Table 7.8 gives the

results; here we imposed an larger arbitrary cutoff of 20000 iterations, since due to the Gauss-

Seidel nature of the algorithm the number of iterations is expected to be larger. Ten random

examples were considered for each cost range; again, I should be interpreted as meaning none

of the random examples converged.

The tests on the size 64 problems indicate that indeed the number of minimizations of the
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Cost c=1 c=5 c=10 c=25 c=00 c=500
100 (1000,2) (400,2) (400,2) (550,2) (1400,2) (5150,2)
1000 (8130,3) (2880,10) (1540,10) (690,10) (620,10) (3450,8)

10000 * * (9800,1) (6040,10) (1740,10) (730,10)
100000 X X X X (7750,10) (2720,10)

Table 7.7: Performance of ADMOM on dense problems of size 64. each combination of cost
and t was tested on 10 randomly generated problems. The entry (X, y) = average of x iterations
on the y/10 problems that converged within 10000 iterations. A * indicates that none of the
tested examples in that category converged within the limit, and an X indicates that that
category was not tested fully since preliminary testing indicated it was sure not to converge.

augmented lagrangian is much smaller for MOM than for ADMOM, but the tests on size 256

problems, given in Table 7.9, indicate that total number of iterations of MOM gets unmanage-

able for size 256 problems, since one minimization requires 256 iterations of the inner loop. A

further feature of MOM is that fairly frequently it returns non-integral but very close to optimal

solutions; this behavior was not observed with ADMOM. The number (out of 10) of solutions

that were integral is recorded in the Table 7.8 as well.

Both methods were highly sensitive to choice of c, and different values of c were preferable

for different cost ranges.

Given this preliminary data we deemed it unnecessary to test IOM on 1000 x 1000 problems,

due to its disappointing behavior on smaller ones. We did test ADMOM on dense problems

of size 1000 x 1000, for c equal to each of 25, 100,500, 1000. We tested all 4 cost ranges with

each c, on five randomly generated examples. None of the examples converged within 10000

iterations, which was approximately 2 minutes of time on a 32K CM-2. We thus conclude that

for problems of this size MOM and ADMOM are inferior to a hybrid auction approach and in

general not practical ways of solving large dense problems.

7.5.3 Comparisons With Other Codes on the Uniform Distribution

In Table 7.10 we compare our computational results with those reported by [41, [74] and [75] on

uniformly randomly generated cost ranges. Our algorithm seems to be comparable or superior

at cost ranges where the maximum cost is at least 10 times the problem size, and compares
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Cost c=25 # Integral c=100 # Integral c=560 # Integral
100 (9850,10) 0 (18430,1) 0 (13300,9) 0
1000 (5766,10) 7 (11460,9) 5 (16410,10) 1
10000 (7360,10) 10 (3827,10) 9 (5887,10) 4
100000 * 0 (12460,9) 9 (4530,10) 8

Table 7.8: Performance of MOM on dense problems of size 64 of various cost ranges.

Cost c=25 c=25 c=100 c=100 c=500 c=500

1000 (26.5,2) * (58.5, 2) * (196,1) *

10000 (86,7) (181.7,2) (39.9,7) * (67.8.8) *

100000 * * * * (57.7,10) *

Table 7.9: Data on 256 x 256 problems. We imposed an arbitrary cutoff of 20000 iterations.
First column for each value is ADMOM, second is MOM.

particularly poorly in small cost ranges. To the best of our knowledge most of the computa-

tional studies on the auction algorithm started from a well-developed and tested code authored

by Dimitri Bertsekas and Paul Tseng, and thus incorporates their experience in testing this

algorithm. Due to the different architecture on which we were working it was not, possible

to directly adapt this code, and we were interested largely in the issues involved in creating

an efficient massively parallel implementation of this algorithm. We believe that some of the

heuristics developed by Bertsekas and Tseng could be incorporated into our code in modified

form and potentially significantly improve the number of iterations required.

7.6 Other Input Distributions

We also tested our hybrid auction algorithm on dense problems with costs generated from a

Cauchy distribution. For each edge we randomly and uniformly chose an integral x E [0,1000],

and set the cost of the edge to be C(x), where

C(X) =
1+ (x-0)2
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Cost Hybrid Balas et. al Kempka Kennington Zaki Zaki Kennington Wang

100 28.7 2.01 .758 .56 5.22
1000 17.5 9.39 12.083 12.49 8.27
10000 8.1 11.70 11.48 11.98 11.34

100000 9.8 - - - 13.61

Cost Hybrid Balas et. al Kempka Kennington Zaki Zaki Kennington Wang
100 33.5 5.52 3.813 1.55

1000 50.3 23.20 255.56 257.2

10000 45.3 30.09 32.96 32.8
100000 36.3 -.. .

Table 7.10: Comparison of the hybrid auction code on a 32K machine with other paraUel
codes. Times are given in seconds; the top table is n = 1000 and the bottom is n = 2000. We
compare with the Jacobi auction code results of Kempka, Kennington and Zaki, the Gauss-
Seidel auction code results of Zaki, and two SAP codes: These codes are discussed in the
introduction. An entry with a -- indicates those researchers do not report results for that
range.

We ,e::ted dense problems of size = 128,256 and 512. For each of these we tested three

different settings of the bi: (1) b, = 10000,b 2 = 500, (2) bi = 10000,b 2 = 100 and (3) b1 =

1000,b 2 = 500. We ran the hybrid algorithm with thresh1 = thresh2 = v/n, and compared

it to the Jacobi algorithm. For each setting of the bi and each problem size we generated ten

examples. We also ran the hybrid code on problems with uniformly generated costs in the same

cost ranges, for the sake of comparison.

The results of these experiments are essentially identical to those from experiments on the

uniform distribution. Since we ran these experiments on a 8192-processor Connection Machine,

we ran somewhat smaller problems and can not compare our results directly, but (1) the running

times of the hybrid algorithm on the Cauchy distribution were comparable to those on the

uniform distribution, and (2) the qualitative behavior that led to the success of the hybrid

algorithm, namely the large sequential tail, was observed as well. Average speedups observed

on the 512 x 512 problems were in the range of 5 - 10.
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7.7 Other Possible Approaches

In this section we discuss several other possible approaches to designing Connection Machine

algorithms for dense assignment problems.

Matching by Matrix Inversion

From a theoretical perspective, the fastest algorithm for the assignment problem is the ran-

domized algorithm of Mulmuley, Vazirani and Vazirani [90]. This algorithm is quite simple

conceptually, requiring only the calculation of a matrix inverse and a matrix determinant. Un-

fortunately, in order to guarantee with probability 1 that the algorithm will succeed the edge

weights must be scaled up by a factor of n3 . Since the entries of the matrix to be inverted are

exponential in the edge weights, this computation is impossible for the cost ranges we consider.

When the costs of the edges are generated randomly and uniformly in a large enough cost

range, the techniques of [90] indicate that even if the edge weights are not scaled up further the

algorithm wili succeed with high probability. Even the unscaled edge weights, however, lead to

unmanageably large matrix entries. We experimented with computing only with the first digit

or two of the edge weights; these computations yielded close approximations to the optimal

assignment value but never in our experiments yielded the optimum value. Therefore we could

find no way to convert the algorithm of [90] into a reasonable Connection Machine algorithm.

Shortest Augmenting Paths

In its most basic form the shortest augmenting paths algorithm solves the assignment problem

by finding n shortest paths. Each of these shortest paths computations would require at least a

few spread operations; several thousand spread operations would be much slower than a hybrid

auction algorithm on a 1000 x 1000 or 2000 x 2000 problem.

A modified form of the shortest paths approach involves an initial auction-like phase that

accomplishes a large number of assignments; the last assignments are established by shortest

paths computations [67]. Such an approach has potential to be competitive with the hybrid

auction algorithm; however, the fact remains that the shortest paths computations require

spread operations at a high vp-ratio, in contrast to the hybrid algoritb which processes the
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tail with global maximum operations at vp-ratio 1. Since these can be up to a factor-of 100

faster than a spread for the problem and machine sizes we have discussed, it is very unlikely

that a shortest-paths based approach can outperform the hybrid auction algorithm.

Network Simplex

It is the general consensus of the computational optimization community that the network

simplex algorithm is inferior to both the auction algorithm and the shortest paths algorithm

as a sequential algorithm for the assignment problem [75]. It may be possible to do one pivot

quickly in parallel, in which case the performance of the algorithm depends on the number of

iterations. To do one pivot quickly in parallel one would have to be able to quickly find the

path between two vertices of a tree; the tree only changes by one arc from iteration to iteration.

Doing 0(n) or even O(log n) spreads to find this path would be too slow, since spreads at high

vp-ratios are slow in comparison. Therefore just using a standard path-finding algorithm would

be ineffective. We do not see how to do this in a constant number of Connection Machine

operations, although we have not studied the problem in great depth.

7.8 Conclusions

We have seen that for large dense problems the two methods of multipliers take good advantage

of the massive parallelism of the Connection Machine, but are not computationally effective

methods for dense problems due to the large number of iterations required for convergence. The

auction algorithm is more difficult to implement efficiently on the Connection Machine, but we

have presented several methods to achieve an implementation of a variant of this algorithm

that is competitive with the best MIMD algorithms on large problems.

Massive Parallelism is best exploited algorithms which use little complex communication

and must process a huge amount of data processed at every moment. Our experiences with the

auction algorithm as a method to solve the assignment problem indicate that it does not fall into

this paradigm. This is not an isolated phenomenon, but appears in a number of combinatorial

approaches to optimization problems (121]. We have, however, established several methods

that can bring combinatorial techniques closer to fast implementations on massively parallel
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architectures. It would seem that currently the best approach is to utilize massive parallelism

while the problem continues to be massively parallel, and then to switch to another technique

that is better suited to the tail of the problem. We have yet, however, to produce CM techniques

for this problem that are significantly better thanthose implemented on smaller scale MIMD

machines. It is a challenging open problem to m'-re fully exploit massive parallelism in this

field.
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