
AD-A24 1 200

A MODEL OF THE SELF-EXPLANATION EFFECT

Technical Report AIP - 138

Kurt VanLehn, Randolph M. Jones
and Michelene T.H. Chi

The Artificial Intelligence
and Psychology Project DTIDTIC

fELECTE D
SEP-2 119911

Departments of B"
Computer Science and Psychology
Carnegie ellon I niersitv

l.(,arning Research and Development Center
n iversit, Of Pittsburgh

,0 91-11268



A MODEL OF '(HE SELF-EXPLANATION EFFECT

Technical Report AlP - 138

Kurt VanLehn, Randolph M. Jones
and Michelene T.H. Chi

Learning Research and Development Center
and Computer Science Department

University of Pittsburgh
Pittsburgh, PA

September 1991

This research was supported by the Computer Sciences Division Office of Naval Research,
under Contract Number N00014-86-K-0678 and the Cognitive Sciences Division of ONR under
Contract Number N00014-88-K-0086. We appreciate the help of Rolf Ploetzner, Janet
Kolodner, Renee Elio and an anonymous reviewer in clarifying the exposition. Reproduction in
whole or in part is permitted for purposes of the United States Government. Approved for
public release: distribution unlimited.

To appear in the Journal of the Learning Sciences.



Uncl assi fied
SEC'.RITY CLASS,"'(_TON OP 7-IS PAGE

REPORT DOCUMENTATION PAGE
*a REPORT SEC R TV CLASSF.CATON lb RESTRICTiVE MARKINGS

Unclassified I
'a SECL)RiTY CLASSiFtCATION AuTHORITY 3 DISTRiBUTiON, AVAILABILITY OF REPORT

Approved for public release;
2b DECLASSF CAT.ON DOWNGRADNG SCHEDULE distribution unlimited.

* PERFORMiNG ORGANIZATION REPORT NuMBER(S) S MONITORING ORGANIZATION REPORT NUMBERSI

AIP-138

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable) Computer Sciences Division

Carnegie Mellon University Office of Naval Research (Codc 1133)

6c ADDRESS City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
Department of Psychology 800 North Quincy Street
Pittsburgh, PA 15213 Arlington, VA 22217-5000

3a NAME OP =.-NDING, SPONSORING 8b OFFICE SYMbL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

same as monitoring organizat on N00014-S6-K-0678
5c ADDRESS (City, State, and ZIP (ode) 10 SOURCE OF FUNDING NUMBERS

PROGRAM I PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

Ni.A N/A I N/A N/A
1 TJTLE (Include Security Classitcaion)

A Model of the Self-Explanation Effect.
2 ERSONAL AUTHOR(S) Kurt VanLehn, Randy Jones, Michelene T.H. Chi

I 3a TYPE OF REPORT 1i3b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
FROM TO August 1991 78

'6 SUPPLEMENTARY NOTATION

In press The Journal of the Learning Sciences

'7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FiELD GROUP SUB-GROUP

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)

Several investigation have taken protocols of students learning sophisticated skills,
such as physics problem solving and Lisp coding, by studying examples and solving
problems. These investigations uncovered the self-explanation.effect: students who
explain examples to themselves learn better, make more accurate self-assessments of their
understanding and use analogies more economically while solving problems. This paper
describes a computer model, named Cascade, that accounts for these findings. Explaining
an example causes Cascade to acquire both domain knowledge and derivational knowledge.
Derivational knowledgp is used analogically to control search during problem solving.
Domain knowledne is acallirpri when the current domain knowledge is incomplete and causes
an impasse. If the impasse can be resolved by applying an overly general rule, then a
specialization of the rule becomes a new domain rule. Computational experiments indicate
that ascade's learning mechanisms are jointly sufficient to reproduce the self-

) ST 5,,B T ON, AVAILABIL!TY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

-').CASSiFPED/,JNJLMITED Ql SAME AS RPT E DTIC USERS

oAME O PESPONSiBLE NDIViDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Dr. Alan L. Meyrowitz (202) 696-4302 N00014

DD FORM 1473, 94 "MAP 83 APR edtor tray be us.E unti, exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other eaitions are ooso!2te Jnc 1 ass i f ied



19. explanation effect, but neither alone can reproduce it.



VanLehn, Jones & Chi

Abstract

Several investigations have taken protocols of students learning sophisticated

skills, such as physics problem solving and Lisp coding, by studying examples

and solving problems. These investigations uncovered the self-explanation

effect: students who explain examples to themselves learn better, make more

accurate self-assessments of their understanding and use analogies more

economically while solving problems. This paper describes a computer model,

named Cascade, that accounts for these findings. Explaining an example causes

Cascade to acquire both domain knowledge and derivational knowledge.

Derivational knowledge is used analogically to control search during problem

solving. Domain knowledge is acquired when the current domain knowledge is

incomplete and causes an impasse. If the impasse can be resolved by applying an

overly general rule, then a specialization of the rule becomes a new domain rule.

Computational experiments indicate that Cascade's learning mechanisms are

jointly sufficient to reproduce the :elf-expianation effect, but neither alone can

reproduce it.

Accession For

NT ' R A& I"r

'5 ~

2



VanLann, jones & Chi

Introduction

If you teach college courses, you have probably been visited by students who are bright,

work hard, and yet get lcw grades on the exams. They want to know what they are doing wrong.

if you suggest that they study harder, they ask you, "how?" Feeling slightly sheepish, you roll

out the litany of "good study habits" that your teachers and parents told you: study in a well-lit

place that is free from distractions; review the chapter for nain ideas both before - :2,-'-

reading it; take good notes and review them; etc. The students reply, with perhaps some

irritation, that they already do that. They want to know how to study in such a way that they can

extract the intormation from the textbook and homework problems that you, the teacher, expect

them to extract. They knew It is possible because their friends apparently have no trouble

extracting the requisite information. They want to krow how can they study as effectively as

their friends.

Cognitive science does not yet have a complete answer for these students, but it has made

steady progress toward understarding effective studying processes. Much research has involved

subject areas that involve extensive problem solving, such as science, mathematics,

engineering and computer science. In these task domains, studying wcrked examples appears to

play a key rc!e in effective learning. Several studies have shown that students attend more to

examples than other forms of instruction both in controlled experiments (LeFevre & Dixon,

1986) and in natural settings (Anderson, Farrell & Saurers, 1984; Chi, Bassok, Lewis,

Reimann & Glaser, 1989; Pirolli & Anderson, 1985; VanLehn, 1986). When students solve

problems, they often refer to examples (Anderson, Farrell & Saurers, 1984; Chi, Bassok,

Lewis, Reimann & Glaser, 1989; Pirolli & Anderson, 1985), but how much they learn from

such analogical problem solving appears to depend on how well they understand the examples

(Pirolli & Anderson, 1985), whicri probably depends on how they studied the examples. Some

studies compared the learning of students who were given worked example problems to the

!learning of students who were given the same problems and had to solve them themselves (Reed,

Dempster & Ettinger. 1985: Pirolli. in press: Pirolli & Eielaczyc. 1989: Sweller & Cooper,

1985: Ward & Sweller. 1990), often finding that examples are similar to problems in that the

samc factors predict transfer. but differ from problems in that less training time is needed to

achieve the same level of performance. Several studies compared examples that vary in the

3



VanLAhn. Jones & Chi

amount of explanation accompanying their solutions (Charney, Reder & Kusbit, 1990; Reed,

Dempster & Ettinger: 1985; Ward & Sweller, 1990), often finding that less explanation

actually leads to more learning.

Although experiments that compare instructional materials have shed some light on

studying processes, several studies have used a more direct paradigm for understanding which

studying processes are most effective. They compared the behaviors of effective and ineffective

learners as they study the same material. The students who learn more appear to study the

examples by explaining them to themselves (Chi et al., 1989; Fergusson-Hessler & de Jong,

199u; Pirolli & Bielaczyc, 1989). For instance, when Chi and VanLehn (1991) analyzed the

protocols of effective and ineffective tearners as they studied examples, they found that the good

learners made more comments about the conditions under which specific actions were advisable,

the relationships between actions and goals, the consequences of actions and the meanings of

mathematical expressions. This finding does not completely determine the good learners'

StLdying process, but it strongly suggests that they are somehow explaining the example to

themselves by filling in the details that the example left out and by highlighting the

rplationships between general pieces of domain knowledge and the specific actions taken in

solving the example. This process (or processes) was named "self-explanation" by Chi et al.

(1989). Bielaczyc and Recker (1991) showed that students can be taught how to self-explain,

and when they do, they learn more effectively.

The main goal of the research presented here is to specify precisely the processes of self-

explanation and to understand why they enhance learning. Protocols from the Chi et al. study

were reanalyzed and several learning processes were uncovered. They were modelled in a

machine learning system, called Cascade. Cascade is able to simulate all the Chi et al. findings,

which suggests that it is a fairly complete model of the studying processes employed by both

effective and ineffective learners.

In order to understand which learning processes were responsible for the self-

explanation effect, Cascade was run several times with various combinations ot its learning

processes turned off. We were surprised to find that a learning process that acquires search

controi knowledge is necessary for successful learning by the other processes, which acquire

domain rules and principles.

In Cascade. the only difference between effective and ineffective learners is their

4



VanLehn. Jones & Chi

strategies for studying examples. The good learner chooses to rederive the example's solution,

whereas the poor learner simply accepts the solution without trying to check it or regenerate it.

As expected, this strategy difference causes the ettective learner to learn more rules while

studying the example than the poor learner. However, we were surprised to find that it also

causes the good learner to learn more rules than the poor learner while solving problems even

though the problem solving strategies are the same for both good and poor learners. Thus,

studying examples pruperly raises the learning rate on subsequent problem solving. This is

consistent with Pirolli and Anderson's (1985) observation that the way students study

examples seems to influence how much the learn while solving problems.

A second goal of the research is to extend current theories of cognitive skill acquisition.

Most theories of skill acquisition propose two classes of learning mechanisms, which will be

called knowledge acquisition methods and knowledge compilation mechanisms. Knowledge

acquisition methods are responsible for acquiring an initial version of the skill from whatever

instructional material is available. Knowledge compilations mechanisms are responsible for

the slow changes in performance that accompany practice. Most theorists (e.g., Anderson,

1983; Neweil, 1990; Holland, Holyoak, Nisbett & Thagard, 1986) propose that there are only

a few knowledge ccmpilation mechanisms, such as chunking, proceduralization and

strengthening, and that they are part of the human cognitive architecture. That is, they are the

present in all individuals beyond a certain young age, and they are probably biologically

determined. In contrast, knowledge acquisition methods, such as studying a text effectively or

using examples to help guide one's problem solving, are held to be cognitive skills themselves.

They are not part of the cognitive architecture. That is, they are learned and not innate,

although they may be highly automatized if they have been practiced enough, so subjects may not

be aware of their habits for acquiring knowledge. Different training situations evoke different

methods, and different individuals may use different methods even in the same training

situation. It is impossible to precisely specify all knowledge acquisition methods, as novel

training methods may call lorth novel knowledge acquisition methods, and thus add new members

to the class. Sometimes it is not even possible to distinguish one method from another, as

variations among the methods as they are adapted to different situations make them blend into

one another.

Currently, there are much better theories of knowledge compilation mechanisms than

5



VanLenn. Jones & Chi

knowledge acquisition methods. For instance, ACT* (Anderson, 1983) has two knowledge

compilation mechanisms, proceduralization and strengthening, that model the power law of

practice, several kinds of transfer, the decreasing reliance on training materials during the

second stage, and other practice effects. Soar's chunking has also been thoroughly explored

(Newell, 1990). However, ACT* and Soar are intended to be models of the human cognitive

architecture, so according to theory, they should contain only knowledge compilation

mechanisms. Knowledge acquisition methods should be learned. Perhaps because of this

theoretical position less attention has been paid to simulating human knowledge acquisition

methods. On the other hand, machine learning has invented hundreds of knowledge acquisition

methods, -o there is no lack of hypotheses about what people could be doing to acquire knowledge.

The problem is that we know very little about what they actually do to acquire knowledge. For

instance, we all know that one can skim an example or one can siudy it intensely and try to

understand it deeply. What difference does that make, and what exactly is involved in

understanding an example deeply? Would one learn just as much by skimming the example on

its first presentation and studying it intensely only if necessary for solving a problem

encountered later? Despite all the wonderful methods of machine learning and the well-

wrouaht mechanisms of knowledoe compilation, little is known about human knowledge

acquisition methods. Advancing the field's understanding of this pedagogically crucial area is the

problem addressed by this research.

Two common criteria for evaluating computational models of skill acquisition are

computational sufficiency and empirical Adequacy. A to,- 's r" :,', irr - ufficient if it

can produce the observed changes in knowledge using only the kinds of information available to

the human student. Computational sufficiency is harmed if, for instance, the model's

programmer intervenes in order to guide the model back onto the right path when it gets lost.

Empirical adequacy is assessed by comparing the model's behavior to some kind of human

behavior. This article compares the models behavior with several findings, collectively called

the self-explanation effect. These findings in themselves are not constraining enough to

completely determine ihe knowledge acquisition methods students are using, so we also report

nformal analyses of the protocols that have motivated Cascades design. Ultimately, we would

like to simulate the protocols on a hine-by-line basis, as was done by Newell and Simon

(1972), Chlsson i990),. VanLehn 1991a) and a few others. Such a simulation is in

6



VanLenn. Jones & Ch!

progress, and we hope to report the results at a later time.

In addition to computational sufficiency and empirical adequacy, we believe a good model

should be supported by competitive argumentation (VanLehn, Brown & Greeno, 1984: VanLehn,

1990). The major hypotheses that define the model should be made explicit, plausible

alternatives to each should be articulated, and the alternatives should be shown to be

empirically inadequate or computationally insufficient. This article does not present a complete

competitive argument for Cascade, although it does Aplicate the major hypolheses and provide

some empirical evidence for them.

The next section presents the self-explanation effect. A description of the Cascade

system follows. The computational experiments that simulate the self-explanation effect are

presented next. Thereafter follows a long, optional section wherein each of the major

hypotheses embedded in Cascade is presented and motivated with protocol data. The article

concludes with a discussion of what was discovered by implementing and testing Cascade, a

comoarison of Cascade to two other models of the self-explanation effect, and a discussion of

CascadL Z vveaknesses and plans for its development.

The self-explanation effect

The task c ai ,r jsod in t::e Chi et al. (1989) study is Newtonian particle dynamics, the

first topic in a typical first-ycar college physics course. Figure 1 snows 3 lyp;cal problem and

its solution. Solving such problems generally involves finding relevant forces and drawing

thpm on a f~e,-body diagram, proje"'71g the forces onto axes, applying Newton's second law

(F=ma; the net force acting on a body equals its mass times its acceleration), and solving

systems of algebraic equations.

Insert ficure 1 about here

Although 'he study nad a complex format, the basic activities of the subjects are isted

below in order:

1 Take pretests.

7



VanLehn. Jones & Chi

2. Study each of the first 3 chapters of the textbook (Halliday & Resnick, 1981) until a

criterion test on the chapter is passed. This phase was intended to give subjects the

prerequisite knowledge needed for learning classical mechanics.

3. Study the first part of the textbook's chapter on class!cal mechanics. This part

introduced the concepts of force, mass and gravitational acceleration. It gave the history

and experimental evidence for Newton's laws. It ended with a five-step procedure for

solving mechanics problems. This part of the chapter is called the text henceforth in

order to distinguish it from the remainder of the chapter, which consists of worked

examples and exercise problems.

4. Take a test on declarative knowledge of the chapter. For instance, one question asked

students to state Newton's laws in their own words. Students who failed this test were

sent back to step 3 of the study.

5. Study the textbook's worked examples while talking aloud. Figure 1 is an example from

the textbook. The protocols collected during this phase were transcribed and classified to

determine, among other things, how many self-explanations were given by each subject.

6. Solve quantitative problems while talking aloud. Subjects were allowed to refer to the

textbook, and they often did. They referred mostly to the examples and not the text. None

referred to the chapter's five-step procedure, which is consistent with the findings

mentioned earlier that students prefer worked examples over other forms of instruction.

7 Take post-tests.

On the basis of the scores on quantitative problem solving (phase 6), Chi et al. divided their 8

subjects nto two groups. The 4 students with the highest scores were called the Good solvers;

the others Nere called Poor solvers.

Two similar studies have been performed. Pirotli and Bielaczyc (1989) used a similar

design. with Lisp coding as the task domain. Fergusson-Hessler and de Jong 19-0) had

sublects give protocols as *hey studied a manual on applications of principles of electric:ty and

magnetism 'o the Aston mass spectrometer. !n both studies, suojects were classified as Good and

Poor solvers on the oass of *heir !est scores.

The first main result of 'he Chi et al study was derived by classifying each of the

3ulolects commenrts during examcle studying as either self-exqlanations or other kinds of

comments e.g.. oaraphrases, mathematical maniculations, meta-comments). Good solvers



VanLern. "ores &

uttered a significantly arger number of seif-explanations ,15.5 per exampie) than the Pcor

solvers )2.7 self-exoianatkns -er example). P~rolli and Bielaczyc (1989) corroborated :ne

Chi et al. finding when they found that their Good solvers made significantly more domain-

related explanations than :heir Ooor solvers while studying examples. Fergusson-Hessier and

de Jong (1990) found that in the categories most representative of deep processing, Good

solvers had more than twice as many episodes as the Poor solvers \45% vs. ,8%). whereas tfe

Poor solvers had almost wice as many episodes of superficial study processes as Gooc solvers

191% vs. i0%). In short, there is evirlonce from all three studies that the students who 'earn

more utter more self-explanations while studying examples.

While studying examples, students often say whether or not they understcod wnat .hey

have lust read. Chi et al. classified such self-monitoring statements as either positive e.g..

'Okay, that makes sense.") or negative ke.g., "Wait. How did they get that?"). They found that

the Good solvers were more accurate in their self-monitoring statements in that 53% of their

statements were positive and 46% were negative. The Poor students were significantly less

accurate, saying 85% of the time that they understood when they obviously had not on the basis

of their problem-solving performance. Thus, students who learn more make more accurate self-

monitoring statements during example studying. Fergusson-Hessler and de Jong (1990) made

a similar finding. The statement "everything is clear" was scored three times more often for

Poor solvers than for Good solvers.

When Chi et al. analyzed protocols from the subjects' quantitative problem solving, they

found that both Good and Poor students referred to examples on most problems (75% for Good:

833% for Poor). However, they found that the Good solvers referred to the examples less often

cer problem '2.7 times) and more briefly (reading on average only 1.6 lines per reference)

than the Poor solvers, who referred to the examples more frequently 16.7 times per problem)

and tended to start at the beginning of the example and read many lines fon average. 13.0 lines

Per -eference). Thus, students ,vho learn more refer less frequently and more specifically to

examples durinc analogical problem solving.

To summarize, tne Good solvers differed from the Poor solvers in four major vays:

* They uttered more self-explanations during example studying.

2. Their self-monitoring statements during example studying were more accurate.

3. They made tewer references to examples during problem solving.



VanLehn, Jones & Chi

4. Their references to examples during problem solving wer. more targeted.

These four findings constitute the self-explanation effect.

The Cascade Model

Cascade has two basic abilities. It can explain examples and it can solve problems. These

two processes are discussed in separate subsections.

Exolaining Examoles

An example consists of a problem and a solution. Figure 1 shows an example studied by

subjects in the experiments. The solution consists of a list of lines. The lines clearly follow

fror,. one another, but the reasoning connecting them is not completely specified. For instance,

the example says, "Fa, Fb and Fc are all the forces action on the body," but it does not say why

those are the only forces acting on the body, nor does it say how they were derived. When

Cascade is simulating a Good student, it tries to derive each line. When it is simulating a Poor

student, it does not try to derive lines. This is the key difference between Good and Poor

solvers, according to the Cascade model.

Deriving a line is a two-stage process. The first stage is to match the line to equations

stored in memory. The example line "Fbx = -Fa cos 30" in figure 1 is represented as follows:

projecticon(force(knot,string_A), axis(knot,x,0)) =

-1 * nagnitude(force(knot,stringA)) * apply(cos, 30)

The variables, Fbx and Fa, have been replaced by their meanings. From the comments of both

Good and Poor solvers, it appears that all subjects figure out the meanings of the variables, so

Cascade does not model this process, because it would be the same for both the Good and Poor

solver simulations.

Equations are represented as Prolog rules. The conclusion (to the left of the :- symbol)

is an equation and the antecedent (following the :- symbol) contains conditions that must hold

for the equation to be applicable. Capitalized words are Prolog variables. For instance, the

following rule matches fine "Fbx = -Fa cos 30":
:onstrain< 'croection '/,A) =

sizrnQcrcc-(', AH ' mamnitude(V trifn(proi(V,A)))-

insz -arce ', vec::Dr)

instance (A, axIs)

10



VanLehn, Jones & Chi

origin (A, ),

ve --Iex (V,C)

This rule says that if V is a vector, A is an axis and the origin of the axis is the vertex of the

vector, then the projection of V onto A is the magnitude of the vector multiplied by a sign and a

trigonometric function that depends on the geometric relationship between the vector and the

axis.

Matching the line to the equation pairs four quantities from the equation with four values

from the line (see table 1). The second stage in the derivation is to prove that each of the

quantities has the value that it is paired with. In the case of quantities 1 and 3, this is trivial,

as they are equal. The other two quantity-value assertions are proved by backwards chaining

through equations. For instance, to prove the fourth assertion, Cascade uses the following

conditioned equation:

constraint (trigfn (pro- (V,A)) =

apply (name (trigfn (proj (V,A) ) ,angie (triqfn (proj (V,A))) )) -

instance (V, vector),

instance (A, axis),

orqin(A,O),

ver-ex (V,O) .

The sought quantity, trigfn, matches the quantity on the left side of the equation. Its value,

apply(cos,30), is matched to the right side of the equation, which sets up two pairings (see

table 2). Cascade recurses to prove each of these quantity-value assertions. The recursion

terminates when the value of a sought quantity is provided in the problem statement. For some

reasoning, such as the geometric reasoning required for proving the second quantity-value

assertion of table 2, we only care about the outcome and not the process, so that reasoning is

represented with tables and ad-hoc Prolog code. This kind of reasoning also "terminates" the

recursive reasoning.

Place tables 1 and 2 about here

As a side eff. ct of deriving a line, Cascade stores the derivation in memory for later use

during analogical problem solving. For each quantity-value assertion it proves, Cascade stores

a tuple consisting of the name of the example, the quantity and the rule used to derive the

11



VanLehn, Jones & Chi

quantity's value. Storing all the derivational tuples is an idealization. Even the best students

cannot recall every step in their derivation of a line. However, if they need to know which rule

was used to derive a certain goal in order to carry out some kind of analogy, they can probably

recover that fact by examining the line and perhaps even rederiving it. Thus, the information

recorded in Cascade's tuples is available to Good solvers, albeit sometimes not directly from

memory. In the Poor student simulation, lines are not derived so no derivational tuples are

stored.

If Cascade cannot prove a quantity-value assertion, it first tries to backtrack and find

another way to derive the line. When Good solvers reach an impasse, they often do exactly that,

as well as checking to see if they made any careless mistakes (slips). Since Cascade doesn't

make slips, it only checks for alternative solution paths. If Cascade is missing some relevant

domain knowledge, then all alternative paths will also fail. It returns to the original failure

impasse and tries to ferret out the missing knowledge. The main method for constructing

missing knowledge is to try to resolve the impasse by using common sense physics (e.g., that

blocks sliding down inclined planes do not jump into the air or fall through the plane's surface)

or overly general rules (e.g., parts have the same property values as the whole, so the pressure

in a part of a container is equal to the pressure in the whole container). For instance, one

subject could not figure out how to prove one of the quantity-value assertions mentioned above,

that the sign of the projection was negative (quantity-value pair 2 in table 1). First the

subject tried looking for an appropriate explanation in a table of trigonometric identities. This

failed. She then looked up the value of cos(30) in a table of cosines. This also failed. (Notice

that the subject is trying multiple methods for acquiring the missing knowledge, which is just

what Cascade does, too.) Then she says,

S: Hmmm, negative cosine 30, why would they say ahhh, ummm.... The ohh, okay maybe

it's just because the A component is: the X component of force A is negative. So they

just.... Well okay I'll, I'll try that for a while. Let's see if that works, cause that makes

sense.

E: What makes sense?

S: The reason the negative is there is bec",,se the X component is in the negative direction

on the X axis.

The subject produces the correct rule for determining projection signs, but it is not clear from

12



VanLehn, Jones & Chi

this protocol how she does so. We believe that she notices that the vector is nearest the negative

portion of the X axis, and applies an overly general rule that says that signs are often carried

from one property to another during mathematical operations.1 Cascade's representation for

such a rule is:

constraint(sign(P(X,Y)) = sign(Q(X,Y)))

true.

Matching this equation to the sought quantity yields the following substitutions:

P = proj

X = force (knot, string_A)

Y = axis (knot,x, 0)
The variable Q is still unbound, so Cascade's subgoal is to prove that the -1 is the value of the

quantity

Q(proj(force(knot,string_A), axis (knot,x,0))

In English, the goal is to find a property of the projection whose value is a negative sign.

Finding that nearest-half-axis is negative in this situation achieves the subgoal, achieves the

goal, and thus resolves the impasse.

Whenever an overly general rule resolves an impasse, Cascade creates a specialization of

it by instantiating the rule then substituting variables for problem-specific constants, such as

physical objects and numbers. In this case, it creates the following rule:

constraint(sign(proj(force(K,S), axis(K,x,R))) =

sign(nearesthalf axis(force(K,S), axis(K,x, R))))

1Projection of vectors is reviewed in chapter 2 of the textbook, so it is possible that this

subject is recalling this rule rather than constructing it. However, four other subjects also had

problems with projections onto negative axes, so the textbook's review seems to have been

ineffective. Moreover, this particular subject had more problems with mathematics than others.

Given these prior probabilities and the fact that the subject spent several minutes looking in vain for

this rule producing it, we believe that the subject is not recalling the rule but is actually constructing

it. By the way, in the simulation runs discussed later, all relevant knowledge that is covered in the

textbook is included in the rules given to Cascade before it starts explaining the examples. Because

this rule is included as prior knowledge, this particular impasse does not occur and neither does the

learning described here. When we fit Cascade's behavior to individual subjects, the model of this

subject will not be given this rule as orior knowledge, and Cascade will have to learn it.

13



VanLehn, Jones & Chi

true.

The variables K, S and R have been substituted for knot, string_A and 0, respectively. The

new rule says that the sign of the projection of a fo,.e onto an x-axis is the same as the sign of

the half axis that is nearest that force.

This rule is added to the domain knowledge in a tentative way. If Cascade later succeeds

in deriving the line, then the rule i1 made a permanent part of the domain knowledge base;

otherwise, it is deleted. This is another idealization. Subjects' comments make ;k' .,;'3r they do

not always recall a newly invented rule, and even if they do, they remain suspicious of it until it

has been used several times (cf VanLehn, 1991a). In a later version of Cascade, levels of belief

may be added to rules to represent this growth in confidence in self-invented rules.

This particular method for resolving impasses and learning new rules is called

explanation-based learning of correctness (VanLehn, Ball & Kowalski, 1990).

Cascade has a second method for learning new rules by resolving impasses. When

neither domain knowledge nor overly general rules can prove that a certain quantity has a

certain value, Cascade gives up and just assumes that the example is right in assigning that

value to that quantity. It also builds a rule that sanctions analogies to this specific assumption.

For instance, a line in the example of figure 1 says, "Consider the knot at the junction of the 3

strings to be 'the body."' Upon reading this, one subject said, "Why this should be the body? I

thought W was the body. OK, let's see later." None of the 8 subjects was able to explain why the

knot was chosen as a body. Indeed, we do not think that there is a proper explanation for this

choice, even with overly general rules. Experts probably have many highly specific rules that

tell them the right choices for common problems. For unfamiliar problems, experts make a

tentative choice, plan a solution, and change their choice if a solution cannot be planned (Larkin,

1983). Probably the best that a learner can do in the knot situation is to form a rule that says,

"In problems like this one, choose the knot as the body." This appears to be what the subjects

do, for when they later try to solve problems that also have three strings converging on a knot.

they all refer back to the three-strings example then choose the knot as the body.

Cascade simulates this behavior with a type of abduction (Pople, 1973) that produces

rules that cause analogies. Normal abduction produces "P(a)" when given "Q(a)" and "P(a)

implies Q(a)." That is, if assuming P(a) explains why Q(a) holds, then we assume P(a).

Cascade's abduction is similar, except it produces a generalization of "P(a)" in the form of a

14



VanLehn, Jones & Chi

rule which says, "if X is analogous to a, then P(X)." For instance, when Cascade cannot prove

that the only body of problem sx is knot_sx (i.e., that bodies (sx) = [knot_sx] ), it builds the

rule

constraint(bodies(Problem) = V)

current situation(CurrentSit),

analogicalretrieval (CurrentSit, situationsx),

analogical mapping(CurrentSit,situation sx, Map),

apply map (Problem, sx,Map),

applymap(V, [knot_sx] ,Map).

This rule says that if an analogy can be built between the current situation and situation sx,

and the current problem is analogous to sx, then the current problem's bodies are analogous to

(knot sx] . This rule can be used to find bodies for other problems by finding objects

corresponding to knotsx. This method of learning new rules at impasses is called analogy

abduction, because it abduces analogy-producing rules.

Analogy abduction and explanation-based learning of correctness are just two of the

many methods that subjects use for resolving impasses and acquiring new rules. In a case

discussed earlier, a subject looked up information in trigonometric tables. Had she succeeded,

she probably would have build a new rule. In another case, a subject tested his memory of an

algebraic operation by generating a test problem and solving it. Cascade currently has just two

knowledge acquisition methods because these two seem to be the most popular in this particular

instructional situation.

To summarize, there are two major kinds of learning that occur when Cascade derives

example lines: (1) The derivation itself is stored in the form of tuples that pair sought

quantities with the rules used to derive their values. (2) New rules are created when an

impasse is resolved via explanation-based learning of correctness, analogy abduction or other

yet-to-be modelled methods.

Solvino Problems

Overall, problem solving is similar to example explaining. Explanation-based learning

of correctness can occur during both, and derivations are recorded in memory for both. A minor

difference is that analogy abduction only applies during example solving. It is based on

assuming that a specified quantity has a specified value, but the value part of the pair is only

15



VanLehn, Jones & Chi

available during example explaining and not during problem solving.

Solving a problem is most similar to the second stage in deriving an example line. In

that stage, the goal was to prove quantity-value assertions, and this was done by backwards

chaining through equations. In problem solving, the goal is to find a value for a quantity, and

this is also done by backwards chaining through equations. For instance, if the goal is to find the

value of

projection(force(knot2,string_l) ,axis(knot2,x,O))

then Cascade can use the same equation as before,

constraint (projection (V,A) =

sign(proj(V,A)) * magnitude(V) * trigfn(proj(V,A)))

nst ance (V, vector) ,

instance (A, axis),

origin (A,O),

vertex (V, O).

It matches the left side of the equation to the sought quantity and sets the quantities on the right

side as subgoals. When it has found values for each of the subgoals, it multiplies them together,

and returns the result as the value of the projection.

Usually there are several rules whose equitions match the currently sought quantity.

Cascade must choose one. This is a search control decision, for if Cascade's choice fails to yield a

solution to the problem, it can back up and try a different rule. Nonetheless, it should try the

rule most likely to succeed first. Cascade's main heuristic for making such choices is to select

the rule that was used to find a similar quantity in an analogous example. To implement this

heuristic, Cascade first etrieves an example wnose diagram is similar tu the curren,

problem's diagram. (This type of analogical retrieval is somewhat idiosyncratic to the

materials used in the Chi et al. study, so Cascade models it with a table look-up rather than an

actual visual indexing process.) It then forms an analogical mapping that pairs objects in the

problem with objects in the example. Using this mapping, it converts its sought quantity, say

pro-eczion(frceknot2,stringi),axis(knot2,x,0) )

into a quantity that uses the example's objects, say

Pro -ec- -n force (not, stringA) , axis (knt, x,))

Cascade looks this quantity up in the tuples that encode the example's derivations, and

determines what rule was used to find this quantitys value. This is the rule that it will try

16



VanLehn. Jones & Chi

first to achieve the probleui's goal. This process is called analogical search control

Usually, there are many times in the course of solving a problem when multiple rules

match the soughi quanLity and choices must be made. Cascade does analogical retrieval and

mapping only for the first one. It stores the map and reuses it for all the others. This is

consistent with subjects' behavior. If they haven't committed the example to memory, then

they flip through textbook pages until they find the right example and re-read it to refresil

their memory for its derivation. This usually occurs only on the first analogical reference

during an attempt to solve a problem, and not during other analogical references during the

solving of the problem. Even if they have committed the example to memory, when they start a

new problem they seem to spend a little bit longer on their first analogical reference to the

example than they do on the others. Perhaps they are forming a mapping, just as Cascade does

on its first encounter with a new example-problem pair. As mentioned earlier, the current

version of Cascade is an idealization, in that it assumes that the example and its complete

derivation are always held in memory.

As Chi et al. (1989) noted, the analogical references of the Poor solvers are

qualitatively different from those of the Good solvers. The Poor solvers often start at the

beginning of an example and read the whole thing, while the Good solvers start in the middle and

read only a line or two. The latter behavior is consistent with analogical search control,

because most of its references occur after the initial mapping is made, so the major purpose in

rereading the example is to refresh one's memory of a specific line whose derivation is likely to

contain the sought quantity. However, analogical search control is not consistent with

,cnstantly rereading the solutions from top to bottom, so the Poor solver's behavior seems to

represent a different kind of analogy. Their comments make it clear that they are hunting for a

line that contains a quantity similar to the currently sought quantity. They do not seem to care

how the line is derived. For instance, as long as it contains a tension and they are seeking a

tension, then they are happy to use it just as if it were a valid equation from the domain. We

implemented this kind of analogy in Cascade and named it transformational analogy, after a type

of analogy studied by Carbonell (1983: 1986) that also ignores derivations. Cascade uses

transformational analogy whnever an impasse cannot be resolved ', ,AYianat1I-Uased

learning of correctness.

In principle, we could have transformational analogy learn new (probably incorrect)

17



VanLehn. Jones & Chi

rules, just as Carbonell did. However, the subjects often comment that they hate hunting

randomly for equations, so we doubt that thay would believe that they had discovered a new rule

of physics even if they did resolve an impasse using transformational analogy. Thus, Cascade

does not create new rules when it uses transformational analogy.

Table 3 presents the main loop of the Cascade interpreter. On the first pass, Cascade

uses only domain knowledge and not the overly general rules of explanation-based learning of

correctness. If it fails to find a solution path, it makes a second pass using the overly-general

rules as well as the domain rules. If this fails, then a third pass is made and impasses are

settled by analogy abduction. The "create" statements (e.g., step 1 g) indicate storage of new

information in long-term memory. All such additions to the knowledge base are undone if back

tracking goes through them. Thus, only the information created along the solution path

survives.

Insert table 3 about here.

The current version of Cascade does not adequately model the difference between

retrieving information from memory and from the external world (e.g., the worksheet with the

problem written on it). It is not difficult to add such a distinction, so table 3 shows the main

loop as if the distinction were already embedded in Cascade. The added code, shown in italics,

specifies strategies for retrieving information from the external world whenever a memory

retrieval fails. For instance, step l a claims that subjects attempt to retrieve an analogous

example from memory, and if that fails, to flip through pages of the textbook looking for an

example whose diagram matches the problem's diagram. At this point in Cascade's development,

we do not want to defend any particular memory model. One has been included here in order to

clarify the relationship between Cascade's activities and the subjects' activities.

Modelling the Self-explanation Effect with Cascade

A simple hypothesis for exolaininq the difference between Good and Poor solvers is that

Good solvers chose to explain more example lines than Poor solvers. This in turn causes more

18



VanLehn, Jones & Chi

learning, and hence better performance and all the other differences between the Good and Poor

solvers. This hypothesis is nearly vacuous unless one specifies exactly how explaining

examples causes learning. Cascade is such a specification, so this section reports on a test of the

conjoined hypotheses (1) that Cascade models learning in this study and (2) that the root cause

of the self-explanation effect is that Good solvers explain more example lines than Poor solvers.

Several simulation runs were made, varying the number of example lines explained and

turning on and off various learning mechanisms. All these simulations began with the same

initiai knowledqe state. Before describing the runs, the initial knowledge state will be described

along with the method used to determine it.

Initial Knowledae

Cascade represents knowledge in many ways. Much of the knowledge is provided initially

rather than learned. The algebraic knowledge which is built into the interpreter is of course

provided initially. Common sense knowledge about classes of objects is provided initially as

Prolog code. Initial knowledge of physics was encoded as 29 rules (conditioned equations) that

were derived as follows. First, an extensive task analysis and simulation conducted with the aid

of Bernadette Kowalski and William Ball. Starting with the ,ask analyses of Bundy, Byrd,

Luger, Mellish and Palmer (1979), Larkin (1981; 1983) and Novak and Araya (1980), a set

of rules and a representation of physics problems was developed that were simple and yet

sufficient for solving all but 2 of the 25 problems in the Chi study. (Solving the 2 problems

would require a type of mathematical reasoning that we did not bother to implement). During

this time, extensive informal analyses of the Chi protocols were conducted in an effort to align

the proposed knowledge representations with the subjects' comments. The resulting target

knowledge base contained 62 physics rules. Next, two people who were not involved in

developing the target knowledge base were asked to judge each rule and determine whether it was

mentioned anywhere in the textbook prior to the examples. There was 95% agreement between

the judges. Disagreements were settled by a third judge. Of the 62 rules in the tarqet

knowledge base, only 29 (47%) were judged to be present in the text prior to studying the

examples. These rules were given to Cascade as its initial knowledge of physics for the runs that

sirmuiated tle self-explanation effect.

The remaining Cascade knowledge consists of 44 rules used by explanation-based

19



VanLehn, Jones & Chi

learning of correctness (EBLC). There are three kinds, which will be described in turn (see

table 4).

Place table 4 about here

Eleven rules are over-generalizations of common patterns of scientific inference. For

instance, rule 1 says that the property of a whole often has the same value as the property of a

part. Cascade used this rule to learn a new domain rule that says that the pressure in a whole

container is equal to the pressure in one of its parts.

There are 28 rules t;tat encode knowledge about common sense physics (not shown in

table 4). Most of these rules describe common sense forces (i.e., pushes and pulls). Some of

these rules, for instance, state that a compressed spring pushes and a stretched spring pulls.

There are 6 overly general rules that link common sense physics to proper physics.

EBLC uses these rules to relabel common sense quantities as proper physics quantities. Because

only a specialized version of the relabelling rule is kept, Cascade converts common sense

quantities to formal physics quantities one at a time. It does not learn the sweeping (and

incorrect) generalization that all common sense quantities are also formai physics quantities.

In the process of relabeling common sense concepts, EBLC also gives them a more mathematical

formulation. For instance, when a common sense force is turned into a formal physics force,

EBLC gives it explicit vectorial properties, namely magnitude and direction. This approach to

learning scientific concepts seems plausible on the view that many scientific concepts, such as

"force" or "acceleration," are modifications of lay concepts. 2

2 There is a whole literature on the development of scientific concepts (see Chi, in press, for a

recent discussion). Some theorists (e.g., Carey) believe that acquisition of scientific concepts like

"force" require a complete restructuring of the subject's belief system, similar to the Kuhnian

paradigm shifts that supposedly accompanied the historical development of such concepts. Other

theorist (e.g, di Sessa) believe that acquisition of scientific concepts results from gradual modification

of naive concepts. Cascade shows that the gradual-acquisition account is computationally sufficient, at

least for physics concepts such as force and acceleration. provided that the learner has already

distinguished between formal and naive physics and has erected an equation-based representation for

20



VanLenn. Jones & Chi

The Simulation Runs

Run 1 was intended to simulate a very good student who explains every line of every

example. Cascade first explained the 3 examples n the study, then it solved the 23 problems

(The 2 problems that are not solvable by the target knowledge were excluded). It was able to

correctly solve all the problems. It acquired 23 rules: 8 while explaining examples and 15

while solving problems. Table 5 lists the rules acquired. The number of times each was used

appears in square brackets. All these rules were acquired by EBLC except rule 23, which was

acquired by analogy abduction. The new rules are correct physics knowledge, allowing for the

simplicity of the knowledge representation. Moreover, they seem to have the right degree of

generality in that none were applied incorrectly and none were inapplicable when they should

nave been. However, some of the rules dealt with situations that only occurred once in this

problem set, so they were never used after their acquisition.

Insert table 5 about here

Run 2 was intended to simulate a very poor student who explains none of the example

lines. To simulate a student who merely reads an example without explaining it, the lines from

the 3 examples were made available for transformational analogy but they were not explained.

Thus, there was no opportunity for EBLC and analogy abduction to learn new rules nor were any

derivations 'eft behind to act as search control for later problem solving. Cascade was given the

same 23 problems given to it in run 1. It correctly solved 9 problems. As it solved these

problems, it acquired 3 correct rules via EBLC. On 6 problems, Cascade found an incorrect

solution, during which time no rules were acquired. On the remaining 8 problems. Cascade

either failed to find a solution or its search went on for so long that it was cut off after 20

formal onysics. According to Chi (in oress), seeing forces. accelerations. etc. as 'ormai cuantities

-ather than suostances oossessed oy objects rs the crucial steD that iays the founcation uoon wnicn

gradual acouisition mecnanisms, such as Cascade's, can ouild.

21



VanLenn. Jones & Chi

minutes. Althougn EBLC was used extensively, the rules produced were always incorrect. Cn

the assumption that a poor student would not believe a rule unless it led to a correct solution,

rules acquired during failed solution attempts were deleted.

Run 2 was intenoed to separate the benefits of EBLC from the benefits of analogy.

Cascade studied the examples as in run 1, learning the same 8 rules as on run 1. During

problem solving, both analogical search control and transformational analogy were disabled. As

expected, it answ2red only 19 of 23 problems correctly. A large interaction was found with

EBLO. When analogy is not used during problem solving, EBLC learned 10 rules, only 6 of

wnich were correct. Moreover, three of the 6 were the same three that it learned on run 2.

Thus, of the 15 rules learned during problem solving on run 1, 3 can be learned without benefit

of the rules learned during example studying, 3 others require the example studying rules but

can be learned without analogy, arid the remaining 9 require both analogy and the example-

studying rules. This finding makes sense. Analogical search control and. to a lesser extent,

transformational analogy influence the exact location of impasses, which in turn determine the

rules learned by EBLC. Their influence is strong enough that analogy is necessary for EBLC to

learn 9 of the 15 rules (60%) acquired during run i's problem solving.

In order to determine whether this effect is due to transformational analogy or analogical

search control, a fourth run was conoucted that was similar to run 3 except that only analogical

search control was disabled. Cascade still used transformational analogy. This allowed it to get

*wo more problems correct, raising its score to 21 of 23 problems. More importantly, EBLC

acquired the same 6 correct rules as on run 3. The fact that no further correct rules were

acquired implies that I is analogical search control and not transformational analogy that helped

EBLC during run 1. Thus, it appears that analogical search control (or some other kind of

searcn control) is necessary during problem solving if ESLC is to learn successfully.

-able 6 summarizes the resijitc -)f 'hie .1 iir'. Th? proc sses turned on during each run

3re ;sted oesice the un s name.

nser* !acle 5 accut here

-. ciaininr a , he Self-eyoianaticn c;ndrcs



VanLerin, jones & Chi

Cascade should oe able to explain the four differences between Good and Poor solvers

observed by Chi et al. (1989). Assuming that the number of belf-explanatory utterances is

directly proportional to the number of lines explained during example studying, the job facing

Cascade is to demonstrate that explaining more lines causes better scores on problem solving

1finding 1), more accurate self-monitoring (finding 2), less frequent reference to the

examples (finding 3) and more specific reference to the examples (finding 4).

The contrast between runs 1 and 2 indicates that Cascade can reproduce the positive

correlation between the number of example lines explained and the number of problems solved

correctly. On run 1, it explained all the example lines and got all 23 problems correct; on run

2, it explained none of the example lines and got 9 of the problems correct. Knowing the

operation of Cascade, it is clear that having it explain an intermediate number of lines would

cause it :o correcty answer an intermediate number of problems. So the two extreme points

(runs 1 and 2) plus Cascade's deterministic design are sufficient to demonstrate the main

correlation of the self-explanation effect.

Several mechanisms contributed to this result, nnd eacil will be examined in turn.

First, when more lines are explained, Cascade is more likely to stumble across a gap in its

domain knowledge. Such missing knowledge causes impasses, which causes EBLC and analogy

abduction to construct new rules during example explaining. Of the 20 rules that were learned

during run 1 and not run 2, 8 (40%) were learned while explaining examples. As the domain

knowledge becomes more complete, performance on problem solving rises. Thus, the more self-

explanation, the more rules learned during example studying, and hence the more improvement

in problem solving.

The acquisition of rules during example studying helps produce contexts that allow EBLC

to learn more rules during problem solvir" even without the aid rif analogical search control.

For instance, one rule learned during example studying selects a body f, resolving forces

about. This rule is necessary for traversing the correct solution path for some problems.

Nhich in turn is necessary for acquiring certain rules. Learning this rule during example

studying ailows E~eLC to 'earn new rules during problem solving, and some of these new rules

can be :earned even wNithout the guidance of analogical search control. Of the 20 rules, run 3

snows that 3 5% Nere acquired in this fashion. These new rules also contributed to the

morovement in problem solving.

23



VanLehn, Jones & Chi

Analogical searcn control raises the test scores both directly and indirectly. When more

lines are explained, more derivational tuples are stored and available for analogical search

control. Because analogical search control prevents Cascade from going down some dead ends, it

directly raises the score during problem solving. There is an indirect effect as well.

Analogical search control causes impasses to occur at places where knowledge is truly missing,

rather than at local dead ends in the search space, so derivational completion is more often

applied to appropriate impasses, and thus more often generates correct domain rules. The

remaining 9 of the 20 rules (45%) require analogical search control for their acquisition.

There is a simple explanation of the finding that Good solvers make more accurate self-

monitoring statements. We assume that negative self-monitoring statements (e.g., "I don't

understand that") correspond to impasses, and that positive self-monitoring statements (e.g.,

"Ok, got that.") occur with some probability during any non-impasse situation. When more

example lines are explained, there are more impasses, and hence the proportion of negative self-

monitoring statements will be higher. In the extreme case of run 2, where no example lines are

explained, all the self-monitoring statements during example processing would be positive,

which is not far off from Chi et al.'s observation that 85% of the Poor solver's self-monitoring

statements were positive.

Chi et al. observed that during problem solving, the Good solvers make fewer references

to the examples than the Poor solvers (2.7 references per problem vs. 6.7). These were mostly

physical references, wherein the solver turned to the example and reread part of it. Currently,

Cascade does not distinguish memory references from physical references. However, it does

have two different kinds of analogical references. Analogical search control searches for a

sought quantity in the derivation of a problem, while transformational analogy reads

consecutive lines in an example looking for one tiat contains the sought quantity. Suppose we

assume that all of the transformational analogy references are physical and that a small

proportion, say P, of the references due to analogical search control are physical. On the Good

solver run, Cascade made 551 referrnces for analogical search control and 40 for

transformational analogy, so using the assumption, Cascade would make 551P + 40 physical

references. On the Poor solver run, Cascade could not use analogical search control because no

derivations were available from explaining examples. However, it made 91 references for

transformational analogy. If P < .092, then 551P+40 < 91 and Cascade correctly predicts that

24



VanLehn, Jones & Chi

the Good solvers make fewer physical references than Poor solvers.

Chi et al. observed that the Good solvers read fewer lines when they referred to examples

than the Poor solvers (1.6 lines per reference vs. 13.0 lines per reference). Cascade can

model this effect, although an assumption is again needed about the percentage of analogical

search control references that are physical. Suppose we assume that P of the analogical search

control references are physical, and furthermore, that a physical reference by analogical

search control reads only one line. On the Good solver run, Cascade read 340 lines during

transf.,rnational analogy and 551"P lines during analogical search control, for a total of

(551P+340)/(551P+40) lines per reference. On the Poor solver run, Cascade read 642

lines, for 692/71=7.1 lines per reference. If P > .017 then (551P+340)/(551P+40) < 7.1

and Cascade correctly predicts that the Good solvers read fewer lines per reference than the

Poor solvers.

Notice that the lower bound (.017) on P does not have to be beneath the upper bound

(.092). If tne P had to be above, say .1 in order to get the lines-per-reference finding correct

and below .05 in order to get the reference frequency finding correct, then Cascade could not

model both these findings. Thus, these findings jointly have the power to test Cascade, and yet it

passed their test.

Figure 2 summarizes the various arguments given above. It shows the major processes

and effects in the Cascade model, and how they acuount for the self-explanation correlations.

Insert figure 2 about here

Testina Cascade

Because Cascade was built to simulate the self-explanation effect, it is probably

unsurprising that it succeeded. In this section, we argue that it should be surprising because

Cascade could easily have failed to simulate the study's findings.

The hardest test to pass was to get Cascade to learn as much as the Good students learn.

One subject got all the problems right, so it is likely that she learned all 23 to-be-learned

rules. To get Cascade to learn as much required overcoming two hurdles. The first was to get

EBLC to occur on the right impasses. This is not so hard to achieve during example studying, but

it is very hard to achieve during problem solving. We were surprised and relieved to see that

25



VanLehn, Jones & Chi

analogical search control sufficed. The second hurdle is to supply overly general rules that

create the right sort of domain rules when they are specialized. The new rules must neither be

too specific nor too general. We were surprised to find that appropriate transfer was obtained

with an obvious generalization heuristic: instantiate the rule then substitute variables for

constants that are specific to problems.

The next hardest test to pass was to get Cascade to learn as little as the Poor solvers did.

Two-thirds of the to-be-learned rules occur in the problems, and the Poor students work just

as hard as the Good students when they solve problems, yet they do not seem to learn as much

during problem solving as the Good students. Why do two sets of student learn different amounts

from the same training material? To put it in terms of the Cascade model, the Poor solver

simulation reaches even more impasses than the Good solver simulation during problem solving,

so why doesn't it learn more than the Good solver simulation? In fact, the Poor solver learns

lots of rules during problem solving, but most of them were deleted because the Poor solver

failed to answer most problems. The Poor solver simulation spent most of its time floundering

because it lacked key rules that were acquired by the Good solver during example studying and

because it lacked analogical search control. As it floundered about, it reached many impasses,

but they were not the right impasse in that the rules learned at these impasse were not correct.

Moreover, resolving these impasses let the Poor solver continue along a garden path that never

terminated in a solution. When the Poor solver finally quit (actually, runs were halted by the

experimenter after 20 minutes), the rules it learned were deleted. This behavior is consistent

with a preliminary analysis by Chi, VanLehn & Reiner (1988), who analyzed the protocols of a

Good solver and a Poor solver as they solved the same problem. The Poor solver's protocol was

divided into 77 episodes, and of these, 30 resulted in impasses. (An impasse was identified as an

outcome of an episode whenever the student believes that the next step that should be executed

cannot be performed. Ninety-eight percent of the impasses were identified by explicit

statements such as "I don't know what to do with the angle, " or "So that doesn't work either.")

Many of these impasses seemed to result in acquiring incorrect beliefs. In contrast, the

protocol of the Good solvers was divided into 31 episodes, of which only 7 resulted in impasses.

In 6 of these, the Good solver seemed to learn a correct piece of knowledge. This preliminary

analysis indicates that the Poor solvers have proportionally more impasses (39%) than the

Good solvers (23%) while problem solving, and that the resulting knowledge is more often

26



VanLehn, Jones & Chi

incorrect. This is just what Cascade does, too.

The third test to pass was to get Cascade to simulate findings on analogical reference. As

Cascade lacks a model of memory, only partial success can be claimed here. However, the

calculations in the preceding subsection show that it had a chance of failing the test, but

succeeded nonetheless.

Although Cascade passed these tests, it is clear that that the amount of testing is small

relative to the number of assumptions that underlie Cascade's design. It is not at all clear from

these tests whether all the assumptions are necessary. The next section delineates the major

hypotheses upon which Cascade is built and tries to give empirical support to each one.

Whenever possible, Cascade's hypotheses are compared to alternative hypotheses. Thus, the

next section forms a partial competitive argument for Cascade. Although one can skip reading it

and go directly to the article's final section, it reveals much more of the model and its empirical

support than any of the material presented so far.

27



VanLehn, Jones & Chi

Major Hypotheses

This section presents the major hypotheses that together constitute our account for the

self-explanation effect. They also function as design principles for the implementation of

Cascade. Thus, this section has the dual task of introducing the major assumptions about

cognition that underlie the design of Cascade as well as arguing on the basis of the protocol data

that these assumptions are reasonable ones to make for this study. Unfortunately, many of the

hypotheses that could be supported with quantitative protocol analysis have not been. We are

frequently reduced to making statements like "There are many cases of such-and-such" or "No

subject said such-and-such." Such statements should be supported by coding the protocols and

counting the number of codes. Since there are about 3,000 pages of protocol, we have only done

this in a few cases and relied on our memory of the protocols for the others. The memory-

based statements should be understood as disclosing our motivations for choosing the hypotheses

rather than providing solid empirical warrants for them. So far, the major formal empirical

support for the hypotheses comes from the demonstration that Cascade can model the self-

explanation effect findings, although this too is not as constraining as one would ideally like.

The final section of this article describes plans for further testing.

This section has one subsection for each Cascade hypothesis. The first subsection

introduces and justifies the hypothesis that the self-explanation effect is due to knowledge

acquisition methods that occurs during both example explaining and problem solving. The next

subsection argues that the acquired knowledge is small relative to the size of the problems being

solved. That is, the students learn rules rather than cases. This opens two issues, which are

addressed in the subsequent subsections. First, how do students detect when a rule is missing

and needs to be learned? Second, what methods are used to acquire the new rule? The last few

subsections considers important details about the representation of rules and the explanation

processes used by Good and Poor solvers.

Hypothesized Sources of the Self-explanation Effect

Cascade is based on the hypothesis that the self-explanation effect is caused by knowledge

acquisition that occurs as the students explain examples and solve problems. This section

introduces the hypothesis by first examining competing hypotheses. (This subsection is an

instance of a competitive argument, by the way.)

28



VanLehn, Jones & Chi

A plausible hypothesis is that the two groups of students had accumulated different

knowledge of physics just prior to studying the examples. This difference could be due to

reading the text of the chapter more carefully or to prior knowledge of physics. The students

who had more prior knowledge solved more problems correctly, and thus were classified as Good

solvers. Under this prior knowledge hypothesis, all subjects try to explain the text and the

example lines, but those with more prior knowledge are better "'ble to explain the example and

so produce more self-explanations (finding 1 in the earlier list). Moreover, because they

produce more derivations during example processing, they use fewer references (finding 3) and

more specific references (finding 4) during analogical problem solving. Thus, the prior

knowledge hypothesis is consistent with 3 of the 4 findings. There are, however, three sets of

evidence against the prior knowledge hypothesis.

1. The prior knowledge hypothesis predicts that Poor subjects would utter more negative

self-monitoring statements because they more often fail to explain a line. In fact, they

utter fewer negative self-monitoring statements (finding 2).

2. After reading the text of the target chapter, the students in the Chi et al. study took a test

on their knowledge of Newton's laws (phase 4 in the earlier description). The mean

scores of the Good and Poor students on this test were exactly the same (Chi et al.,

1989). Although affirming the null hypothesis with so few subjects is risky, taking ne

results at face value suggests that both groups of students had roughly the same prior

knowledge.

3. Chi and VanLehn (1991) conducted a finer-grained analysis of all the self-explanations

in the protocols, reducing them to a set of 173 distinct propositions. For each

proposition, they attempted to determine whether it was inferred (a) from the example

line, (b) from common sense knowledge, (c) from knowledge acquired from previous

example lines, or (d) from the text. If the Good students had more prior knowledge at

the time they began studying the examples. more of their propositions would be encoded

as coming from the text. However, the proportion of text sources (category d) was the

same for both Good and Poor students, which is inconsistent with the prior knowledge

hypothesis.

Although it is unlikely that all students had exactly the same prior knowledge, the .bove

difficulties indicate that variations in prior knowledge cannot be the sole source of the self-

29



VanLehn, Jones & Chi

explanation effect. There must be some kind of learning going on.

Because the subjects are explaining examples, a plausible type of learning is explanation-

based learning (Mitchell, Keller & Kedar-Cabelli, 1986). Like proceduralization (Anderson,

1983) and chunking (Newell, 1990), EBL is a kind of knowledge compilation, in that all the

knowledge is assumed to be present in some form before the learning begins. Learning consists

of making the knowledge more efficiently usable. However, the hypothesis that self-explanation

is caused by knowledge compilation has four difficulties.

1. When the subjects took an untimed test on Newton's laws after reading the text (phase 4

above), their mean score was only 5.5 out of a possible 12. This suggests that students

did not know much physics after studying the text. After studying the examples and

solving the problems, the Good solvers' score increased to 8.5 and the Poor solvers'

score remained at 5.75. This suggests that additional knowledge was acquired by the Good

solvers from studying the examples and working the problems.

2. The text does not contain all the information needed by the subjects to explain the

examples or solve the problems. As explained earlier, a target knowledge base of 62

rules was developed and two judges determined which of the rules were covered in the

text. Of the 62 rules, only 29 (47%) were judged to be present in the text prior to

studying the examples. Thus, 33 rules representing more than half the knowledge

required for explaining the examples and solving the problems are not presented in the

text, and presumably are not known by the subjects prior to explaining the examples and

solving the problems.

3. Students took the same test on Newton's laws after studying the examples and solving the

problems. Chi and VanLehn (1991, table 6) showed that the aspects of Newton b iaw

that were learned were also the ones emphasized in the examples. This result is difficult

to explain if students are merely recalling aspects of Newton's law learned during text

processing, but is quite consistent with acquiring knowledge of Newton's laws via

example studying.

.4 When Chi and VanLelhn (1991) classified each of the 173 propositions found in the

stucents' self-explanations as coming from text or from non-text sources. they found

that at most 31.5% could be deduced from information presented in the text. This result

is hard to explain given the knowledge compilation hypothesis, which predicts that

30



VanLehn, Jones & Chi

propositions would be deduced from prior knowledge, of which the most important

component is information presented in the text.

These results suggest that the major prerequisite of knowledge compilation is not met, for the

students did not seem to have complete knowledge before the example studying and problem

soiving began. Thus, some kind of knowledge acquisition must be going on during the explanation

of examples and the solving of problems.

The text presents universal laws of mechanics, such as F=ma. Solving problems

requires more than these laws, however. It requires many specific rules (or constituent

knowledge pieces, as they are called in Chi and VanLehn, 1991), such as

When a string pulls on an object, there is a force on the object. The force is

parallel to the string at the point of contact and directed away from the object.
The magnitude of the force is equal to the tension in the string.

The text only discusses a few of these rules, and only in a cursory manner. The others must be

acquored somehow from the examples an o;4ercises. One might view this as a rare defect, an

omission in this edition of the textbook that will surely be corrected in the next edition.
However, this textbook was already in its third edition. Other science and engineering textbooks

follow the same conventions for what to explain in the text and what to leave unsaid.

Mathematics textbooks are even less complete. They often make no attempt to prcsent informal
rules necessary for solving word problems. We believe that knowledge acquisition during

example studying and problem solving is endemic in formal schooling, and not at all

idiosyncratic to this particulai experimental study.

Because the examples contain more information than the problems, a plausible

hypothesis is that all knowledge acquisition occurs during the explanation of examples.

However, using the 33 rules that did not occur in the text, we estimate that only 11 of the rules
were used during the examples. The other 22 were first used during the problems because they

deal with situations and objects (e.g., springs) that do not appear in the examples. This suggests

that two-thirds of the rules are acquired during problem solving. Thus, it appears that some

kind o' knowledge-level learning is going on during both example explaining and problem

soiving. This is the hypothesis upon which Cascade is based.

Derivation Completion

31



VanLehn, Jones & Chi

A prototypical knowledge acquisition task is concept formation wherein the learner is

presented with examples and is expected to generate a concept that describes them. For

instance, a learner might be presented with examples of a certain species of flower and be asked

to form an operative definition of the species (e.g., has 4 blue petals, a 5 mm stamen, etc.). In

concept formation, the piece of knowledge to be learned is about the same size as the elaborated

example. However, in learning physics, the knowledge to be learned while studying an example

is much smaller than the example's derivation. (We use "derivation" to stand for all the

reasoning required to produce a correct answer to an example or a problem. We use "example

lines" to stand for that part of the derivation that is printed as the example's solution.) A

derivation might involve hundreds of rules, most of which are quite familiar to the learner

because they were used in earlier derivations. A derivation may require only one or two new,

unfamiliar rules.

Even though the knowledge to be learned is much smaller than the example's derivation,

the learner could in principle use a conceot formation approach and generate a description that

covers the whole example. For instance, a physics student might say, "Not all of that solution

makes sense, so I'll just remember that whenever the problem has two blocks attached to a rope

that goes over a pulley, the solution is to write down those equations and solve them." Although

we never saw such a statement in the protocols, this approach to learning appears

computationally viable.

The Good solvers rarely take such an approach. Instead they rederive each line of the

solution from the preceding lines. When they encounter a line that they cannot derive, they try

to find the gap in their knowledge that is causing them trouble. For instance, one subject, P1,

cannot explain the line, Fax = -Fa cos 30. Although she knows Fax is the projection of force Fa

onto the x-axis and she knows that the cos 30 is due to projecting a 150 degree vector onto the x-

axis, she cannot explain the negative sign. She says, "Ohhh, how did they get that negative in

there?" After much work, she eventually concludes, "The reason the negative is there is

because the x-component [of force Fal is in the negative direction on the x-axis." This bit of

explanation allows her to finish explaining the line and eventually the whole example. Subject

P1 is typical of the other Good subjects. They try to localize the defect in their knowledge, then

invent as small a piece of knowledge as necessary for overcoming the defect and completing the

explanation.

32



VanLehn, Jones & Chi

Earlier work has also shown this approach to be computationally viable, and it has been

independently invented many times (Ali, 1989; Anderson, 1977; 1990; Bergadano, Giordan &

Ponsero, 1989; Berwick, 1985; Danyluk, 1989; Fawcett, 1989; Genesereth, 1983; Hall,

1988; Lewis, 1988; Martin & Redmond, 1988; Pazzani, Dyers & Flowers, 1986; Pazzani,

1990; Schank, 1986; Sleeman, Hirsch, Ellery & Kim, 1990; Smith, 1982; VanLehn, 1987;

VanLehn, Ball & Kowalski, 1990; Widmar, 1989; Wilkins, 1988). The approach has no

standard name, so we suggest derivation completion, because the essential similarity is that the

learner guesses a new piece of knowledge that allows a derivation to be completed. 3 We

hypothesize that derivation completion is the major approach used by our physics students for

acquiring new knowledge, and thus have built Cascade to embody it.

There are two major steps in derivation completion. First the learner must locate a gap

in a derivation that warrants filling, and then the learner must find a new piece of knowledge

that will bridge the gap. The next two subsections discuss, respectively, these two steps.

Locating a Knowledge Gap

Localizing a gap in one's knowledge is difficult. The first sign of missing knowledge is an

impasse: A goal cannot be achieved with any rule in the knowledge base. For instance, subject

P1 could not achieve the goal, "show that the sign of the projection formula is negative." The

3 VanLehn (1987) used "learning by completing explanations" and Hall (1990) used "learning by

failing to explain" for roughly the same class of learning systems. However, Cascade can learn from

problem solving as well as from example explaining, so the broader term "derivation completion" is

more appropriate. The terms "impasse-driven learning" (VanLehn, 1986) and "failure-driven learning"

(Schank, 1982) have similar extensions, but exclude systems such as Sierra (VarLehn. 1987), which

collect several incomplete derivations and compare them before deciding how to complete them.

Although some derivation completion systems use Plausible reasoning to fill in the gaps in an

explanation, the term in meant to exclude systems, such as Cohen's (1990), DeJong & Oblinger's (in

press) and Eskey and Zweben's (1990). that build an explanation with plausible reasoning then convert

the whole explanation into new domain knowledge. These system would be derivation completion

systems if they located the weakest links in their chain of plausiL:c ,asoning and built small pieces of

knowledge that are relevant to just those gaps, but this is not what they do.

33



VanLehn, Jones & Chi

existence of an impasse always indicates that some knowledge is missing, namely the rules

needed for achieving the goal. However, it is not immediately clear whether this defect is worth

fixing. It could be that one has wandered off the solution path or made an unintentional error (a

slip), which would make this impasse occur even if one had complete knowledge of the domain,

in which case the right response to the impasse is to back up and try again. P1 entertains this

possibility explicitly. Just after she reaches the minus sign impasse, she goes back and checks

her earlier work. Only when she has assured herself that there were no slips and no other ways

to explain the line does she proceed with hunting for a new rule. In principle, there is no way to

know whether a given goal is part of the derivation of a correct answer until one has actually

generated the whole derivation. Thus, one can never tell in principle whether an impasse is

worth inventing a rule for until one has tried it and obtained a derivation. All learners,

computational as well as human, must use heuristics for guessing whether to back up at an

impasse or invent a new rule.

We hypothesize that all subjects use the same heuristic as P1, so we built Cascade to use

this heuristic exclusively. Whenever Cascade encounters an impasse, it backs up and explores

all alternatives for generating a solution. (Currently, Cascade does not make slips, so it does

not check for them.) Only when it fails to find an alternative route to a solution does it return

to processing the impasse. Notice that Cascade returns to the original impasse. In trying to find

alternative routes, Cascade may have encountered other impasses. If one of these alternative

routes was the correct solution path, then its impasse should be the one to resolve. But Cascade

has no way to know with certainty which of all the routes it explored is most likely to be the

correct solution path. It guesses that the first route it explored is most likely to be correct, so

the first impasse it encountered is the best one to resolve.

Computational experiments show that this heuristic works well during example

explaining, but only works well during problem solving if search control heuristics insure that

the first path explored is likely to be a solution path. When explaining an example, the lines of

the printed solution tend to keep Cascade on a correct solution path even without the help of

search control heuristics. When solving a problem, there are no solution lines, so without

search control, Cascade tends to wander off the solution path rather quickly. The first impasse
reached is usually caused by being on a wrong path. Nonetheless, Cascade resolutely applies its

heuristic, finds that all other paths are blocked, and sets about fixing the impasse by inventing a

34



VanLehn, Jones & Chi

new rule. At best, this is a waste of effort. At worst, the newly acquired rule is not a correct

rule of physics even though it caused the derivation to jo through. Subjects do not run amok like

this, so some kind of search control is needed to keep Cascade on the solution path. Such search

control is only needed when solving problerns because the example lines provide equivalent

constraint during example explanation.

We hypothesize that the missing search control during problem solving is provided by

analogies with examples' solutions. The protocols provide ample evidence of the use of analogy.

Subjects often turn to the page with the example on it or mention the example as they work. All

8 subjects used analogy some of the time (Chi et al., 1989). Example-exercise analogies are
heavily used by subjects in other task domains as well (Anderson, Farrell & Saurers, 1984;

Pirolli & Anderson, 1985). Most models of analogical problem solving divide the process into

three phases: retrieving an example, forming a mapping between the example and the problem,

and applying information from the example to the problem. These phases will be discussed in

turn.
Retrieving an example seems to be governed by visual processing. All the examples in

this study have a diagram, such as the one shown in figure 1. All but five of problems have a

diagram as well. Subjects seem to use these diagrams to help them locate an appropriate

example for the problem they are working on. For instance, one subject s.,d, "This looks '.'c.'

much like the one I had in the examples. Okay. Should I just go right to the problem (example],

which I distinctly remember? I mean, even the angle is the same here. Or should I try to do it

without looking at the example?" The subject said this before reading the text of the problem,

so apparently her retrieval of the example was based solely on the diagrams. Even when a

subject's memory for the diagrams fails, it is not difficult to find an appropriate example

because there are only three examples to search through and they have very distinct diagrams.

In all of the protocols, there is only one case where a subject tried and failed to find an

appropriate example. Thus, it is not the case that Good subjects were better at analogical

retrieval than Poor subjects, because they were all at ceiling. Cascade does not model the

processes involved in retrieval because they seem somewhat specific to this study and the
resulting retrievals were not a source of differences between Good and Poor subjects. Cascade

was simply given a function, analogical_ re revai, which takes the name of a problem as

input and delivers one or more example names as output.

35



VanLehn. Jones & Chi

Forming a mapping between an example and a problem means deciding which objects in

the example correspond to which objects in the problem. We noticed that the subjects' first

look at an example is more extended than other references to the example during the same

problem. We believe that during the first reference, the subject builds an analogical mapping

as well as checking to see if the example is analogous enough with the problem to warrant using

it. The mapping is used during this initial reference to the example and all subsequent ones

during the solution of the current problem. Because the problems are often quite similar to the

examples, the subjects always found the same, correct mapping. The lack of individual

variation made it difficult to infer the heuristics used by subjects to select mappings. Cascade

uses a set of heuristics based on the types of the objects (e.g., physical objects can only be

paired with other physical objects' quantities with quantities; etc.). These yield the mappings

that subjects chose, but there is no way to tell from these data whether they are the ones

actually used by the subjects.

The retrieval and mapping processes can be used to import many kinds of information

from the example to the problem. In this case, the subjects need search control information:

which rule should be used to achieve the current goal? We hypothesize that they use the

mapping to convert the goal from the problem into an equivalent goal for the example, then

search the example's derivation for that goal. They might say, for inq'tance, "My goal is to find

the tension of string A, and string 1 in the example is analogous to string A, so I'll look for the

tension of string 1 in the example." The search for an equivalent goal requires recall or

reconstruction of the example's derivation because the example's printed solution does not

contain goals, although perusal of the printed lines may stimulate the recall of the derivation.

Having found an equivalent goal, subjects next need to recall which rule was used (o achieve it.

If they succeed in this, then they are nearly done, for no further analogical mapping is required.

The rule is presumably a generic structure whose variables can simply be instantiated in order

to apply it to the current goal of the problem.

This whole process amounts to a search control heuristic: To achieve a goal. it is wise to

use a rule that achieved an equivalent goal in a example that is analogous to this problem. We

call this heuristic mechanism analogical search control (cf. Jones, 1989).

Methods for Fillina Gacs in Derivations

36



VanLenn. Jones & Chi

After learners have located a gap in their knowledge, the next step in derivation

completion is to find a piece of knowledge that will bridge the gap. Our hypothesis is that finding

an appropriate niece of knowledge becomes a goal in itself, that subjects have multiple methods

for achieving such goals, and that if a method succeeds in acquiring an appropriate piece of

knowledge, the knowledge is stored in memory. P1 provides a clear illustration of this process.

After she detected that she could not explain the minus sign in Fax = -Fa cos 30, she still had to

figure out how to bridge that gap by recalling or constructing knowledge that would produce the

minus sign in this particular case. First she consults a table of trigonometric identities.

because, as she put it, "1 remember them doing strange things with the trig functions being

negative and positive for no apparent reason." When this approach fails. she next looks up cos

30 in a table, hoping that it comes out to be a negative number. When this fals. she begins her

third approach. The protocol reads:

P 1: Hmmm, negative cosine 30, why would they say ahhh, ummm.... The ohh. okay maybe

it's just because the A component is the X component of force A is negative. So they

just.... Well okay I'll, I'll try that for a while. Let's see if that works, cause that makes

sense.

E: What makes sense?

P1: The reason the negative is there is because the X component is in the negative direction

on the X axis.

P1 does produce the correct rule, but it is not clear how she does it. Although she could be

recalling it from her mathematics courses, we believe she is constructing it. She probably

notices that the vector lies above the negative part of the x-axis, then applies an overly general

rule for mathematical calculations, which could be called "conservation of negativity.' When a

negative quantity is transformed, the resulting quantity is often negative even though the

negativity might be expressed somewhat differently than it was in the original quantity. In this

case, the negativity of the x-location of the vector is preserved as it is prolected and becomes a

formula. The negativity changes from a locative encoding to an explicit negative sign. The point

here is that P1 bridged the gap by adopting an explicit goal of finding knowledge that would

complete the derivation. She tried three methods, and the last one succeeaed. This allowed her

to complete the derivation. Evidence is presented !ater showing that she actually learned a new

rule from the experience.

3-



VanLehn, Jones & Chi

The hypothesis is that subjects seek knowledge when they detect that they are missing

some, and that they use multiple methods to achieve their knowledge acquisition goals. This

hypothesis is hardly novel as virtually all the derivation completion learning models use it (op.

cit.). The models differ primarily in the knowledge acquisition methods they use. For the sake

of exposition, methods found in the literature are grouped into several broad categories and

discussed below.

Acauiring knowledge by reading.

One way to acquire knowledge is to seek it in the textual part of the instructional

materials. For instance, one subject could not explain the units in an example's equation

because she didnt know the British unit of mass. She looked it up in the text and presumably

stored a rule in memciy stating that slugs are the British unit of mass. This method of filling

gaps in one's knowledge is the main method of knowledge acquisition in early versions of ACT*

(Anderson, 1983).

To find out how much our subjects used it, we counted all references to the text or the

examples by the subjects. Of 433 references, 129 (30%) were to the chapter's text. Few of

these 129 references were as focussed and successful as the aforementioned slugs episode. Most

frequently, students hunted through the textbook for an equation containing the currently sought

quantity. Any equation containing a quantity of that type will do. It can occur in the middle of

an apparently irrelevant example or even in a different chapter of the textbook. Most of the

subjects seem to know that this method for bridging gaps is not likely to yield correct

knowledge. They often make comments such as, "I hate doing this." We doubt that they believe

the rules acquired from this activity (if any) are correct rules of physics. Because searching

the textbook for equations. occurs rather frequently in the protocols, Cascade has a model of it,

called transformational analogy. Transformational analogy does not produce new rules when it

occurs.

Acquiring knowledae by syntactic induction.

A common technique for concept formation is to compare multiple instances of the

concept and conjecture that thcir common features are the defining properties of the concept.

This and related techniques construct concepts by syntactic comparisons of the instances, and so

38



VanLehn, Jones & Chi

they are often called syntactic induction or similarity-based learning. Syntactic induction can

be used for constructing knowledge to fill gaps. The basic idea is to collect several instances of

the same gap and compare them. For instance, P1 could have found several cases where a minus

sign appeared in a projection formula, compared them, and discovered that they possess a

common feature: the vector being projected is over the negative part of the axis onto which it is

being projected.

Syntactic induction techniques for filling gaps have been used by many derivation

completion programs (Ali, 1989; Danyluk, 1989; Fawcett, 1989; Hall, 1988; VanLehn,

1987; Wilkins, 1988). Often the basic mechanisms ot syntactic comparison are supplemented

by syntactic heuristics, such as preferring the smallest rule that will fill the gap. In some

derivation completion programs, syntactic heuristics alone induce a rule from a single instance

of the gap (Anderson, 1977; Berwick, 1985; Genesereth, 1983; Martin & Redmond, 1988;

Sleeman, Hirsh, Ellery & Kim, 1990; Smith, 1982).

A version of syntactic induction was implemented in an early version of Cascade, but it

did not perform well. At an impasse, the inducer sees if there is a new rule whose conclusion

matches the current goal, but whose antecedent is false in the current situation. If so, the

mismatching parts of its antecedent are dropped, thus generalizing it. This allows it to achieve

the current goal and thus resolve the impasse. If no such rule is found, a new rule is created by

making its conclusion be the current goal and its antecedent be the current situation, with

variables substituted for problem-specific constants (objects and numbers).

We had not even fully implemented this methoc of knowledge acquisition before it became

clear that it would have severe problems. First, most of the new rules are learned during

problem solving, but this technique can only invent a new rule during example explaining.

Second, the rules it invents are limited in the kind of conclusions they can draw. For instance,

if the goal is to find the tension of stringA and the example shows that string_A has a tension of

5, then the new rule's conclusion will have the form tension(X)=Y, because variables X and Y

have been substituted for the object and number. However if 5 does not appear anywhere in the

given situation because it is the result of some arithmetic calculation, then the variable Y will

not appear in the rule's antecedent. Thus, the rule draws a nearly useless conclusion: the

tension of an object is something (but I do not know what). Although there are ways to

syntactically induce arithmetic formulas (e.g., VanLehn, 1987), they require many more

39



VanLehn, Jones & Chi

examples than the one or two available for formulating the new rules in this instructional

situation.

The conclusion is that there do not appear to be enough examples of new rule applications

for syntactic induction methods to work in this instructional situation.

Acquirina knowledae by goal/oroduct analoaies.

Another knowledge acquisition method is based on drawing analogies between problems

and worked examples. Anderson's latest model of skill acquisition is typical of this technique

(Anderson, 1990; Anderson & Thompson, 1989). Anderson assumes derivations of examples

are available in memory, and in particular, that every goal in the derivation is paired with the

external product generated by achieving it. Most of Anderson's examples involve Lisp

programming, so the external products of most goals are small pieces of Lisp code. During

problem solving, if the learner cannot find a rule to achieve a goal, it seeks a similar goal in the

derivation of an example. If a goal is found, the learner converts the old goal's product into the

terms of the current problem, thus creating a product for the current problem's goal.

Proceduralization then creates a rule that summarixes the results of this analogical knowledge

acquisition process. Similar knowledge acquisition methods have been used in other models

(e.g., Lewis, 1988; Pazzani, 1990; Pazzani, Dyer & Flowers, 1986). They all map a

goal/product pair from an example to a current problem. They ignore the derivation of the

product from the goal. The difference betwee-n this technique and Cascade's analogical search

control is that this technique imports the external product generated by processing a goal, while

analogical search control imports the name of the rule used to achieve a goal.

A version of goal/product analogy was implemented in Cascade, but proved to have

limited utility. As with syntactic induction, this technique fails when the to-be-learned rule

first appears during problem solving. Because there is no earlier application of it during

example studying, there is no early goal/product pair to refer to. Even when the technique finds

an appropriate goal/product pair, it often fails anyway. In physics, the most common goal is to

seek the value of a quantity. The external product of such a goal is usually a number or a vector,

and such atomic entities do not usually map successfully. For instance, suppose the problem's

goal is to find a tension for string A, and the example's derivation says that string l's tension is

5 Newtons. An analogical map can pair the two strings, the two goals, and the units (Newtons),

40



VanLehn, Jones & Chi

but what should it pair with the 5? The 5 was calculated by simplifying an arithmetic

expression, weight(blockl) / [sin(30) - cos(30)/sin(45)], where weight(block1)=10

Newtons appears in the example's givens. This expression can be mapped from the example to

the problem by substituting the problem's block for block1 and the problem's angles for 30 and

45. However, after the expression is simplified to 5 Newtons, there is nothing left to map.

Simplification destroys information that is needed for analogical mapping. We conjecture that

goal/product analogy works adequately only when the external product of a goal is nearly

isomorphic with the derivation used to produce it (cf. Carbonell, 1986). That is why it works

so well for Lisp but not for physics.

Explanation-based learnina of correctness.

Another knowledge acquisition technique, which we call explanation-based learning of

correctness (VanLehn, Ball & Kowalski, 1990), fills a gap by applying an overly general rule,

which is not normally used during reasoning. If this application leads ultimately to a successful

derivation, then a specialization of the rule is created and inserted into the set of rules that is

normally used during reasoning. The analysis of P1 presented at the beginning of this section is

an illustration of explanation-based learning of correctness, where "conservation of

negativity" is the overly general rule. The same basic idea appears in many forms in the

literature. Schank's (1986) explanaticn patterns are a kind of overly general rule used to

bridge gaps in explanations of human interest stories. Causal attribution heuristics are used by

many theorists to explain how subjects bridge gaps in explanations of the physical world

(Anderson, 1990; Lewis, 1988; Pazanni, 1990). Several authors uses determinations (Davies

& Russell, 1987) as constraints on learning (Bergadano, Giordana & Ponsera, 1989; Widmar,

1989).

Any version of this method for filling gaps requires distinguishing between knowledge

that is normally used and knowledge that is reserved for bridging gaps. Explanation patterns

and causal attribution heuristics are expressed in a different format from the knowledge used

normally in making explanations. Explanation-based learning of correctness uses the same

representation for both types of knowledge, but keeps them distinct by marking the rules that

are normally used for solving problems in the task domain with the name of the domain (e.g..

"physics"). This will make it easier to augment Cascade with a module that acquires overly

41



VanLehn, Jones & Chi

general rules by syntactic generalization of normal rules (VanLehn & Jones, in press; Ram,

1990).The hypothesis that domain rules are marked seems necessary to account for some

common aspects of school-house problem solving. It students acquire an incorrect rule then

later learn that it is incorrect, they probably do not forget the rule even though they stop using

it. Thus, there must be some way of indicating which rules should not be used even though they

are potentially applicable. This could be represented by removing that task domain's mark

from the rule. Similarly, subjects rarely use rules from other task domain even when they are

potentially applicable. For instance, while explaining an example where a block was sliding on

a surface, one subject apparently knew from common sense that the block will not jump up or

sink into the surface, but she could not prove it with her current physics knowledge. After

trying several approaches, she gave up and commented, "The only way you could have known that

there's no acceleration in the y-direCtiOn is not from equations but from just knowing

something about the situation." We believe that subjects prevent themselves from considering

such knowledge by marking only some of the knowledge they have about blocks, surfaces, etc. as

formal physics knowledge. We suspect that this system of marking is only used for task domains

taught in school. It may be something that students learn to do early in school because the

resulting reduction in search makes their problem solving more efficient and more often

correct. Non-school problems can be solved with knowledge of any kind.

As the preceding section documented, explanation-based learning of correctness works

quite well. In particular, it is able to fill gaps that occur during problem solving, which is

something that syntactic induction and goal-product analogy cannot do. However, it is unable to

handle one learning event, wherein a knot is declared to be the body, so analogy abduction was

added. Analogy abduction is similar to goal/product analogy.

The following list indicates which of the learning methods considered above are modelled

n Cascade:
Reading: searching the textbook for equations is modelled, but produces no new rules

Syntactic induction: Was model)ed, but currently turned off.

Goal/product analogies: Modelled, but rarely used.

42



VanLehn, Jones & Chi

Explanation-based learning of correctness: Modelled, and frequently used.

There are other methods for bridging gaps in derivations, such as scientific discovery

(VanLehn, 1991a), that do not appear in this list because we see no signs of them in the

protocols.

The Goal-specif icity of New Knowledae Pieces

Most of the goals in physics reasoning are to find a value for a quantity, and most of the

inferences involve equations. Thus, a typical goal might be to find the tension in a certain

string, and an equation to achieve that goal is tension(S)=magnitude(force(B,S)), which says

that the tension in a string S is equal to the magnitude of a tension force acting on a body B due to

the string S. Suppose that a student acquires this rule at an impasse where s/he is trying to

achieve the tension goal. Would this piece of knowledge be invertible, so that the student can

use it to achieve a goal of finding the magnitude of a tension force? Although the protocols are

silent on this point, we think that students are able to invert new pieces of knowledge. That is,

we believe that when subjects have learned an equation, they can use it to find any of the

quantities that the equation mentions. For instance, if they learn F=ma in a context where net

force is sought, they can nonetheless apply it in a context where mass is sought. Although this

particular claim is untested, there are some related transfer findings that provide indirect

support.

Singley and Anderson (1989) review experiments from the Anderson group that suggest

that there are two kinds of transfer, procedural transfer and declarative transfer. Procedural

transfer is use-specific, but develops only after practice. That is, when a person uses a piece of

knowledge in one context several tires and thus gets faster and more accurate at using it, this

practice does not make it easier for them to use it in a new context. In terms of Cascade's task

domain, suppose one group of subjects is taught w=mg with examples and exercises where

weight is always the sought quantity. Another group of subjects is taught w=mg where mass is

the sought quantity. They are given an hour of practice, during which time their performance

(speed and accuracy) increases. After the practice period, the group's tasks are switched and

their performance is measured. Singley and Anderson would predict that the group that

practiced seeking weights would do as poorly on seeking masses as the mass-seeking group did at

the beginning of their practice period. Similarly, the mass-seeking group would look like

43



VanLehn, Jones & Chi

we~gm-.u,; ,iny ac':Es. -' "-s, su'stt!i._f nrntir r.a,;s procedural transfer, W"'Ch is

specific to the particular goals for which a piece of knowledge (w=mg, in this case) is put.

Declarative transfer is not use-specific nor does it require practice to develop. As an

illustration of declarative transfer, suppose the practice periods of the two groups is reduced to

about a minute or two, so that each group uses w=mg only once or twice before being switched to

the transfer task. Singley and Anderson would predict that both groups would perform about the

same on their transfer task as their opposites did during training, and moreover, both would do

better on their transfer tasks than a control group that received no practice at all on w=mg

before being tested. This illustrates declarative transfer: Knowledge of the equation w=mg,

regardless of whether one learned it in the weight-seeking condition or the mass-seeking

condition, is necessary and sufficient for the initial few uses of the equation for any purpose.

Cascade's derivation completion methods are knowledge acquisition methods, rather than

knowledge compilation mechanisms. Thus, Singley and Anderson's results suggest that the

knowledge constructed by these methods can be declaratively transferred. This suggests that

they be represented as equations, because equations are not specific to the goal that was present

at the time the knowledge was acquired. Thus, instead of representing w=mg as three production

rules,

If body(B), problem(P), mass(B)=M and gravconstant(P)=G then weight(B)=M*G.

If body(B), problem(P), mass(B)=M and weight(B)=W then gravconstant(P)=W/M.

If body(B), problem(P), grav constant(P)=G and weight(B)=W then mass(B)=W/G.

Cascade should use one equation:

weight(B)=mass(B)*grav_constant(P).

However, this drops the condition that B be a body and P be the current problem, so

applicability conditions must be added. Thus, w=mg should be expressed as

If body(B) and problem(P), then weight(B)=mass(B)*gravconstant(P).

Cascade's interpreter must be more complex than a typical rule interpreter in order to use

knowledge expressed in this form because it must use algebraic transformations. As an

illustration, suppose that Cascade is given the goal of finding mass(block4). To apply the

conditioned equation above, it first shows that body(block4) and problem(prob3) hold, then it

sets the subgoals of finding the other quantities in the equation, weight(block4) and

grav constant(prob3). Achieving these subgoals means that the values of the two quantities

44



VanLehn. Jones & Chi

become k,, ,,,. Supposa ',a weight is 98 avd the gi.':a;.tna: uuisian: is 9.8. The inteiprater

must combine the values for the subgoal quantities to form a value for the goal quantity.

Substituting the subgoals' values into the equation yields 98 = mass(block4)*9.8. Solving the

equation yields mass(block4) = 98/9.8 = 10. Cascade has found a value for the sought quantity,

thus achieving the goal. Notice that it was necessary to use algebraic transformations to solve

the equation. This is inevitable when the knowledge is expressed in a format, such as

conditioned equations, that allows the same piece of knowledge to be used for achieving multiple

goals. When the knowledge is expressed as multiple single-goal rules, such as the three

production rules mentioned earlier, then algebraic knowledge is not needed during

interpretation. For instance, in ACT*, conditioned equations would be represented as structures

in declarative memory, and production rules would implement an interpreter for them. The

production rules would embed the algebraic knowledge necessary for utilizing the conditioned

equations.

In short, in order to obtain the type of declarative transfer that we believe is common in

this task domain, it is useful to represent knowledge as conditioned equations and to embed

algebraic knowledge in the interpreter. Because procedural transfer develops only with

practice, modelling it would require a model of memory, which will be added to later versions of

Cascade (see step ld in table 3).

Local Explanation

Cascade explains each line of an example individually, but it does not try to find a plan or

schema that spans all the lines. That is, it does local explanation but not global explanation

(plan recognition). This design is motivated by examination of the protocols. Of the 204 self-

explanation statements analyzed by Chi and VanLehn (1991), only 13 (6%) related goals to

groups of actions. Plan recognition appears not to be a common process in this instructional

situation.

Good vs. Poor Explanation of Examoles

The simulation rules are based on the hypothesis that the only difference between Good

and Poor solvers is that the Good solvers explain more example lines than the Poor solvers.

This assumption is consistent with several observations that show that the contents of Good and

45



VanLehn, Jones & Chi

Poor selt-explanatiuons aia nut signfcty difforen! (see Chi & VanLehn, 1991, tables 4 and

7). The Good solvers just produced more self-explanations than the Poor solvers.

Summal~j
The argument presented above ran as follows. First, we argued that students were

inventing new knowledge during example studying and problem solving, rather than. recalling

and operationalizing knowledge acquired by reading the text. Moreover, much of this knowledge

was acquired during problem solving, and not just during example explaining. Next we noted

that when a derivation utilizes previously unpresented knowledge, only a few small pieces of

knowledge are new. Although students could simply store a whole derivation whenever they

detect that it involves some new knowledge, they instead try to find the gap in their own

derivation and infer a piece of knowledge that fills it. This technique is called derivation

completion. Next we noted that detecting a gap is difficult, because some impasses are caused by

poor search control decisions or slips. We claimed that subjects usually check their partial

derivation for slips and to determine if an alternative solution path exists. Only when they are

satisfied that the impasse is inevitable given their current knowledge do they proceed to search

for knowledge to fill it. Computational experiments showed that this was insufficient in itself to

account for subject's' behavior during problem solving, so we conjectured that subjects use the

derivations produced while explaining examples to constrain their generation of derivations

while problem solving. This technique is called analogical search control. Next we argued that

subjects have multiple methods for finding new knowledge. The most productive one for our

subjects seems to be explanation-based learning of correctness (EBLC), wherein new domain

knowledge is created by specialization of overly general knowledge. We conjectured that

subjects can perform a type of declarative transfer, to use Singley and Anderson"s (1989)

term, wherein an equation acquired while seeking one quantity can be used later when another

quantity in the equation is sought. This suggests that knowledge be represented as conditioned

equations and that algebraic equation-solving knowledge be built into their interpreter. We

argued that when students explain an example's solution, they redervive each line but they do

not try to find an overall plan that spans all the lines. This same process is used by both Good

and Poor solvers. The Good solvers merely choose to explain more example lines than the Poor

solvers.

46



VanLehn, Jones & Chi

Disci iss ion

What Was Discovered while Developing Cascade

We had originally thought that EBLC and analogical search control were completely

independent. However, in trying to simulate the Good solvers, we discovered (1) that most of

the rules that need to be learned were fir.t used during problem solving, and (2) that Cascade

tended to learn at the wrong impasses when analogical search control was turned off during

problem solving. In retrospect, this result is an obvious, inevitable, general principle of

machine learning. If missing knowledge is required to solve a problem or explain a&- example,

then all paths from the initial state are blocked -- they terminate in an impasse. There is no

way in principle fo the !carnpr to know which of these impasses, if resolved, would lead to a

solution. However, if the learner is explaining an example, the example lines often permit only

crnc partial sQlution path and thus only one impasse. Since the example's problem is solvable,

resolving the impasse will probably lead to a solution. Thus, this impasse probably is caused by

a missing piece of knowledge, so inventing a rule that resolves it is likely to (re-)construct a

correct domain rule. On the other hand, if the learner is solving a problem, there are no

printed solution lines to guide generation of a derivation, so there tend to be many partial

solution paths terminating in impasses. In order to increase the probability that a correct rule

will be learned, the learner needs some way to intelligently select one of these partial solution

paths/impasses. Thus, ample search control knowledge must be learned prior to encountering

the impasse. Thus, we arrive at the novel result that search control learning is required for

all kinds of derivation completion, including EBLC and analogy abduction, that occurs during

problem solving. Derivation completion during example studying requires less search control

knowledge, if any. This is consistent with the finding that examples cause faster learning than

equivalent problems (e.g., Pirolli, in press; Sweller & Cooper, 1985). This line of argument

is backed by computational experiments with Cascade. It learned 15 rules during problem

solving with analogical search control turned on, but only 6 with it turned off. Thus, 60% of

the rules learned during problem solving required analogical search control.

Another major surprise was that the increased learning of the Good solvers was not due

to a single learning mechanism, but rather to a variety of interacting mechanisms. According to

Ihe Cascade analysis, the Good solvers learned 23 rules and the Poor solvers learned 3. The 20

rules that were learned by the Good solvers and not by the Poor solvers came from several

47



VanLehn, Jones & Chi

SOUres:

* 8 rules were learned as the examples were explained. Since the Poor solvers did not

explain the examples, they did not learn these rules.

* 3 rules were learned during problem solving simply because the 8 rules learned during

example studying set up contexts that allowed them to be learned by EBLC, even without

the aid of analogical search control.

* 9 rules were learned by EBLC during problem solving using analogical search control.

Since the Poor solvers did not generate derivations for the examples, they could not use

analogies to them and thus could not learn these 9 rules.

We had originally expected that all rules would be learned during example studying, but this

turned out to be the source for only 8 of the 20 rules.

Another major surprise was that self-explanation raises the learning rate during

problem solving. This result is consistent with the conjecture by Pirolli and Anderson (1985)

that the way students study examples causes some students :o learn more while solving

problems than other students. Cascade provides an explicit model of this. As fcr as we know,

this is the first computational model to show how one kind of training can increase learning

rates on a different kind. Most models predict only additive interactions, where the amount

learned by the combined training is the sum of the amounts learned by each training in isolation.

This unusual prediction of a nonlinear interaction warrants further empirical testing.

Since we invented overly general rules whenever Cascade encountered an impasse that it

could not resolve with the existing overly general rules, we feared that the resuliig collection

of overly general rules would be terribly ad hoc with no interesting themes or patterns.

Fortunately, the result was otherwise. The class of overly general rules fell neatly into two

classes. Rules in the first class (rules 1-10 in the appendix) relate property values of two

objects whenever those two objects are assigned compatible property values by the example and

the objects themselves have some intrinsic relationship. As described in VanLehn and Jones (in

press), these rules fall into an interesting hierarchy which could be learned by simple

generalization and strengthening techniques, and thus predict a learning-to-learn phenomena.

The second class of overly general rules (rules 39-44 in the appendix) implements the basic

idea that it is okay to substitute common sense quantities (e.g., pulls and pushes, accelerations

and decelerations) for formal quantities, but only if one is really stuck and the resulting

48



VanLehn, Jones & Chi

Substitution leads to a successful derivation. In short, computational modelling taught us that

most rules in this instructional situation could be learned by using two basic assumptions:

property-value coincidences are sometimes not accidental, and common sense quantities can

sometimes be treated as formal physics quantities.

We had a surprisingly hard time finding a way to transfer knowledge from the knot-is-a-

body impasse to later problem solving situations. Our first attempts used syntactic induction

techniques, but the resulting rules either were too specific and did not apply where we saw

subjects applying their rules, or they were too general and applied inappropriately. Eventually

we discovered that a rule could call the analogical problem solving machinery directly. This

rather unusual type of rule gave us the right combination of selectivity and generality. As far

as we known, this analogy abduction technique is unique in machine learning.

We did not initially realize that memory plays an important role in explaining the

findings on analogical references. The protocols show that the Good solvers refer to the

examples less than the Poor solvers, and yet analogical search control requires that they refer

often to the derivations of examples. The only way to resolve this apparent conflict is to assume

that the Good solvers can retrieve most of the derivational information from memory and thus do

not need to look at the examples as often as the Poor students.

Analogical search control solves a nagging problem in the expert-novice literature.

When the subjects solve a problem whose diagram appears in figure 3a, they draw analogies to

two earlier problems whose diagrams are shown in figures 3b and 3c. In some schema-based

problem solving systems, it is difficult to get the solver to use more than one schema to solve

the problem. The tendency is for one schema to dominate the problem solving and call the other

schema as a subordinate. This does not reflect the quality of human problem solving, according

to several investigators (Holland, Holyoak, Nisbett & Thagard, 1986; VanLehn, 1989). So the

problem, supposedly, is to form a compound schema from two component schemas of equal

stature. When Cascade solves the problem of figure 3a, it is told that the diagram is similar to

two examples' diagrams. It retrieves both examples during analogical search control, and

refers to goals from both of them. This produces the mixture of inferences that seems required

for simulating human problem solving. We were surprised that analogical search control solved

the so-called schema compounding problem. This suggests that a collection of derivational

tuples plays the role of a schema.

49



VanLehn, Jones & Chi

Insert figure 3 about here

Other Models of the Self-explanation Effect

Two other models of the self-explanation effect are under development. Reimann (in

press) is developing a case-based model of the self-explanation effect. Example studying is

modelled as plan recognition. Existing schemas/plans are used to analyze an example and create

an annotated case that explains how the various parts of the example fit together to form a

whole. During problem solving, such cases are adapted and replayed. Students who make more

self-explanations acquire better annotations, which permit better adaptation during problem

solving. Like Cascade, the Reimann model is based on the assumption that study habits and not

prior knowledge are the source of the self-explanation effect. The main difference between the

two models is the grain size of their knowledge representations, which in turn governs how they

acquire knowledge during example study and use it during problem solving. The Reimann model

learns example-sized units of knowledge (cases), while Cascade learns smaller units (rules).

There are both computational and empirical reasons for using the smaller grain-size.

Computational experiments suggest that transfer is increased by storing knowledge as parts of

cases (snippets) rather than whole cases (Hinrichs, 1988; Kolodner & Simpson, 1984;

Redmond, 1990). The Chi et al. (1989) protocols suggest that subjects attend more to

individual lines than the overall plan of an example, and their attention becomes especially

focused when they detect that they need to learn new knowledge. For instance, when P1 could not

explain a minus sign, after a brief review of her work to this point, she concentrated almost

exclusively on finding a rule or rules that would explain the minus sign.

On the other hand, schemas have often been used to explain phenomena in the expert-
novice literature. Cascade does not have schemas, so it is not immediately clear how it can

explain, for instance, the finding by Chi, Feltovitch and Glaser (1981) that experts classify

problems according to the solution method while novices classify problems according to their

surface characteristics. However, we believe this finding can be explained within the Cascade

framework if one assumes that experts have a vast store of derivations that they use to quickly

plan a solution to the given probiem. This allows them to determine the main solution method

50



VanLehn, Jones & Chi

and to use that as a basis for classification. Novices cannot determine solutions quickly enough

to do this, so they use surface features for classification. Consistent with this explanation, Chi,

Feltovitch and Glaser (1981) found that experts actually took longer than novices to classify

problems (45 seconds per problem vs. 30 seconds). Perhaps other phenomena that have been

explained with schemas can also be explained in the Cascade framework.

Pirolli and Recker (1991) are developing a model that can understand text as well as

examples. Following Kintsch (1986), they model understanding as a process that may invoive

many levels of elaboration and abstraction. Poor students do verbatim processing of the text and

examples, leading to memory traces that are retrieved and used in a rote fashion during problem

solving. Good students make deeper explanations. For instance, a model of a Good student might

explain a sample Lisp program by constructing a mental model of how the program satisfies its

specifications, which would in turn involve constructing mental models of program

abstractions, computations and functions.

The Pirolli and Recker model is similar to Cascade in that both are built on the

assumption that the self-explanation effect is caused by the students' study habits rather than

their prior knowledge. Moreover, both models use small-grained representations of knowledge

rather than cases or schemas. There are two main differences. Although Pirolli and Recker are

grounding their model's development on data collected from a study of students learning to code

Lisp by reading chapters from a textbook, studying examples and solving problems, their text,

which is based on a cognitive task analysis of Lisp coding, is probably more complete and easier

to understand than the pnysics text used in the Chi et al. (1989) study. Because the Lisp text

clearly states almost all the to-be-learned rules, the primary knowledge acquisition method in

the Pirolli-Recker model appears to be interpretation of text, whereas most rules in Cascade

are acquired during example studying because they are not mentioned in the text. In this

respect, the models are complementary rather than antagonistic. A second difference between

the models is that the Cascade model currently has no model of memory, whereas the Pirolli-

Recker model has a detailed model of the encoding, indexing and retrieval of mental information.

It uses Soar's data-chunking facility (Newell, 1990) to implement a version of :ho ACT*

declarative/procedural distinction. Much of the learning during example studying and problem

solving appears to be knowledge compilation wherein knowledge is reformatted and reindexed to

make it more useful. Again, the two projects are complementary rather than antagonistic.

51



VanLehn, Jones & Chi

Weaknesses of Cascade and Plans for Further Research

The current version of Cascade, Cascade 3, models knowledge acquisition and not

knowledge compilation. Like most theorists, we believe that knowledge compilation is

intimately related to human memory mechanisms. Clearly, Cascade needs to be augmented with

a model of human memory in order to be a more complete model of learning We are not

interested in neurologically or computationally plausible mechanisms of memory, but only in

creating a model that will yield pedagogically useful predictions about initial knowledge

acquisition, transfer and practice (a "pseudo-student," see VanLehn, 1991b). Therefore, we

plan to use a "black box", mathematical model of memory that delivers an external

performance that is an accurate description of human memory. Table 3 shows where the black

boxes go.

Another area where Cascade is weak is its model of Poor solvers' explanation of

examples. The protocols do not reveal much, as the subjects just paraphrase the lines, perhaps

adding, "Ok, that makes sense." When they do explain a line, they say the same kinds of things

as Good solvers (Chi & VanLehn, 1991). Currently, Poor solvers' processing of examples is

modelled by making the lines available for transformational analogy but not rederiving the

lines. However, this fails to explain why the subjects think that they understand the lines. We

suspect their explanation is just like the Good student's explanation, but they "take the

example's word" about the details. For instance, in explaining the line Fax = -Fa cos 45, the

subject would use the rule that recognizes that this is a projection equation and produces the 4

correspondences shown in table 1. The Good solvers go on to explain each of these 4 assertions,

whereas the Poor solvers may just stop at this point and assume that each of the 4 assertions

holds. Thus, their explanation just does not go as deep as the Good students, but is otherwise the

same. This version of Poor student behavior explains why Poor students think they have

successfully explained the example. With this addition to the model, our hypothesis about the

key difference between Good and Poor solvers is twofold: the Good solvers rederive more lines

than Poor solvers, and their derivations are more complete.

Cascade's sharp distinction between domain rules and other rules is an idealization.

When a new rule is acquired, subjects probably do not immediately believe that the rule is just

as valid as rules they have been using successfully for many problems. In the next version of

52



VanLehn, Jones & Chi

Cascade, rules will be bear a degree of belief that increases whenever the rule is used in a

successful derivation (cf. Rosenbloom & Aasman, 1990). The initial degree of belief given to a

new rule will be a function of the amount of backing up that has gone on prior to the rule's

creation. This should capture the following intuition: Suppose problem solving has beer, going

smoothly when one encounters a resolvable impasse. For instance, one might say, "1 don't know

of any kind of force here, but if there were one, that would balance the other two forces and

explain why the object is at rest." In such circumstances, one might believe one has discovered

something about physics and form a new rule. On the other hand, if one has been floundering

about for some time and feeling utterly lost, one is unlikely to react to impasses in the same

way. Cascade should keep a running count of the number of impasses, especially ones that could

not be resolved and required backing up. As these counts get higher, the degree of belief

accredited a new rule is reduced. When the counts pass some threshold, rules are no longer

formed. The type of derivation completion used to induce a new rule should also affect its initial

degree of belief. EBLC should produce higher degrees of belief than analogy abduction.

Transformational analogy, which currently does not produce rules, should produce rules with

even lower degrees of belief. As discussed in VanLehn and Jones (in press), representing

degrees of belief plays a key role in a syntactic induction method for learning overly general

rules, which may also be added to Cascade. In fact, adopting an explicit representation of degrees

of belief has many implications for the overall design of Cascade that require thorough

exploration.

The next milestone for the Cascade project will be to fit Cascade's behavior to the

protocols of each individual subject. Cascade will be made to explain exactly the example lines

that the subject seems to have explained, as indicated in the protocol, and to explain them to

roughly the same depth. When given problems to solve, Cascade should reach impasses in the

same places that the subject does. However, the subject will probably display more impasses

than Cascade. Currently, Cascade's initial knowledge contains every rule mentioned anywhere in

the text prior to the examples. Because subjects probably have a less thorough understanding of

the text, they will probably reach more impasses than Cascade. Therefore, Cascade's initial

domain knowledge will be adjusted to fit the impasses that it cannot explain as deficiencies in

example processing. This computational experiment should help us understand how much of the

self-explanation effect is due to missing prior knowledge and how much is due to shallow self-

53



VanLehn, Jones & Chi

explanation.

At places where Cascade does EBLC, the subjects generated pauses and other signs of

intensive processing, but their comments are too vague to indicate whether they are actually

using overly general rules to resolve their impasses. For instance, in the protocol from P1

quoted earlier, EBLC seems to have occurred while the subject was saying, "Hmmm, negative

cosine 30, why would they say ahhh, ummm.... The ohh, okay maybe it's just because the A

component is the X component of force A is negative. So they just.... Well okay I'll, Ill try that

for a while." This is typical of other places in the protocols where EBLC is supposedly

occurring. Clearly, something is happening here, but it is far from clear that EBLC is a good

characterization of it. It could, for instance, be syntactic induction of some kind. The only good

argument for EBLC over other proposals for processes that handle these impasses is that EBLC

is computationally sufficient and our implementations of the others were not. It would be better

to settle the issue empirically. For instance, training materials could be designed so that

several gaps can be spanned by one overly general rule and several others can be spanned by a

second. EBLC would predict a specific pattern of rule learning events because the subject either

learns all or none of the rules corresponding to each overly general rule.

We are currently working on modelling learning in two other task domains: conceptual

physics problems (e.g., which direction does a pendulum bob fall when you cut its string at the

apex of its swing?), and combinatorics word problems (e.g., If a professor has four graders to

grade eight exam questions, how many different ways can she assign graders to questions so that

each grader grades two exam questions?). These efforts have already revealed inadequacies in

the equation-based representation used in Cascade 3, but it is not yet clear how serious they

are.

The processes of derivation completion and anaiogical search control may be the key to

learning in many kinds of situations. For instance, Palinscar and Brown (1984) showed that

reciprocal teaching increases learning. Results from 19 published studies on small peer groups

indicate that giving explanations almost always improves learning whereas receiving

explanations is seldom correlated with increased learning (Webb, 1989). Since reciprocal

teaching increases the amount of explanation-giving, and explanation-giving is similar to self-

explanation, reciprocal teaching may succeed just because it encourages EBLC and the other

processes modelled by Cascade.

54



VanLehn, Jones & Chi

A Final Comment

A good theory of knowledge acquisition methods could improve the design of instructional

situations and the training of teachers because teachers and instructional designers need to know

how students will react to the examples, exercises, explanations and other information they are

exposed to. Research on knowledge compilation mechanisms is useful too, but primarily for

determining how much and what kinds of practice to assign. The Cascade project is one of a

small but growing number of efforts aimed at providing descriptive theories of knowledge

acquisition (e.g., Badre, 1972; Glidden, 1991; Mayer, 1990; Neves, 1981; Martin &

Redmond, 1988; Ohlsson, in press; Pirolli & Recker, 1991; Reimann, in press; VanLehn,

1990). Because people use many different knowledge acquisition methods, we expect these

efforts to be complementary rather than competitive accounts of cognition, and we look forward

to some distant future when they can all be unified to provide an encompassing model of human

knowledge acquisition.

55



VanLehn, Jones & Chi

References

All, K.M. (1989). Augmenting domain theory for explanation-based learning. In A. M. Segre

(Ed.) Proceedings of the Sixth International Workshop on Machine Learning. Los Altos, CA:

Morgan Kaufman.

Anderson, J.R. (1977). Induction of augmented transition networks. Cognitive Science, 1, pp.

125-157.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369-406.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University

Press.

Anderson, J.R. (1989). The analogical origins of errors in problem solving. In D. Klahr & K.

Kotovosky (Eds.) Complex Information Processing: The impact of Herbert A. Simon. Hillsdale,

NJ: Erlbaum.

Anderson, J.R. (1990). The Adaptive Character of Thought. Hillsdale, NJ: Erlbaum.

Berwick, R. (1985) The acquisition of syntactic knowledge. Cambridge, MA : MIT Press.

Anderson, J.R., Farrell, R.G. & Saurers, R. (1984). Learning to program in LISP. Cognitive

Science, 8, 87-129.

Anderson, J.R. & Thompson, R. (1989) Use of analogy in a production system architecture. In

S. Vosniadou & A. Ortony (Eds.) Similarity and analogical reasoning. Cambridge: Cambridge

University Press.

Badre, N.A. (1972). Computer learning from English text. Berkeley,CA: University of

California at Berkeley, Electronics Research Laboratory.

56



VanLehn, Jones & Chi

Bergadano, F., Giordana, A. & Ponsero, S. (1989). Deduction in top-down inductive learning. In

A. M. Segre (Ed.) Proceedings of the Sixth International Workshop on Machine Learning . Los

Altos, CA: Morgan Kaufman.

Berwick, R. (1985). The acquisition of syntactic knowledge. Cambridge, MA: MIT Press.

Bielaczyc, K. & Recker, M.M. (1991) Learning to learn: The implications of strategy

instruction ;n computer programming. In L. Birnbaum (Ed.) The International Conference on

the Learning Sciences. Charlottesville, VA: Assoc. for the Adv. of Computing in Ed.

Bundy, A., Byrd, L., Luger, G., Mellish, C. & Palmer, M. (1979) Solving mechanics problems

using meta-level inference. Proceedings of the Sixth IJCAI. Los Altos, CA: Morgan-Kaufman.

Carbonell, J. G. (1983). Learning by analogy: Formulating and generalizing plans from past

experience. In R. S. Michalski, J. G. Carbonell & T. M. Mitcheil (Eds.), Machine Learning: An

artificial intelligence approach. (pp. 137-161). Los Altos, CA: Morgan Kaufmann Publishers.

Carbonell, J. (1986). Derivational analogy: A theory of reconstructive problem solving and
expertise acquisition. In R.S. Michalski, J.G. Carbonell & T.M. Mitchell (Eds.) Machine

Learning, An Al Approach: Vol. 2. Los Altos, CA: Morgan-Kaufman.

Charney, D., Reder, L., and Kusbit, G. (1990) Goal setting and procedure selection in acquiring

computer skills: A comparison of tutorials, problem-solving, and learner exploration.

Cognitive Science, 7(4), 323-342.

Chi, M.T.H. (in press). Conceptual change across ontological categories: Implications for

learning and discovery in sciences. In R. Giere (Ed.) Cognitive Models of Science: Minnesota

Studies in the Philosophy of Science. Minneapolis, MN: University of Minnesota Press.

Chi, M.T.H., VanLehn, K. & Reiner, M. (1988, Nov.) How are impasses resolved while learning

to solve problems. Paper presented at the 29th meeting of the Psychonomics Society, Chicago,

57



VanLehn, Jones & Chi

IL.

Chi, M.T.H., Bassok,M., Lewis, M.W., Reimann, P. & Glaser, R. (1989). Self-explanations:

How students study and use examples in learning to solve problems. Cognitive Science, 13, 145-

182.

Chi, M.T.H., Feltovitch, P.J. & Glaser, R. (1981). Categorization and representation of physics

problems by experts and novices. Cognitive Science, 5, 121-152.

Chi, M.T. H. & VanLehn, K. (1991) The content of physics self-explanations. The Journal of the

Learning Sciences, 1(1), 69-106.

Cohen, W.W. (1990) Learning from textbook knowledge: A case study. Proceedings of AAAI-90.

Los Altos, CA: Morgan Kaufman.

Dietterich, T.G. (1986). Learning at the knowledge level. Machine Learning, 1, 287-316.

Danyluk, A.P. (1989). Finding new rules for incomplete theories: Explicit biases for induction

with contextual information. In A. M. Segre (Ed.) Proceedings of the Sixth International

Workshop on Machine Learning. Los Altos, CA: Morgan Kaufman.

Davies, T.R. & Russell, S.J. (1987) A logical approach to reasoning by analogy. Proceedings of

IJCAI-87, Los Altos, CA: Kaufman.

DeJong, G. & Oblinger, D. (in press) Steps toward a theory of plausible inference and its use in

continuous domain planning. In S. Minton & P. Langley (Eds) Title Unknown, Los Altos, CA:

Morkan Kaufman.

Elio, R. & Scharf, P.B. (1990) Modeling novice-to-expert shifts in problem solving strategy

and knowledge organization. Cognitive Science, 14, 579-639.

58



VanLehn, Jones & Chi

Eskey, M & Zweben, M. (1990) Learning search control for constraint-based scheduling.

Proceedings of AAAI-90. Los Altos, CA: Morgan Kaufman.

Fawcett, T.E. (1989). Learning from plausible explanations. In A. M. Segre (Ed.) Proceedings

of the Sixth International Workshop on Machine Learning. Los Altos, CA: Morgan Kaufman.

Ferguson-Hessler, M.G.M. & de Jong, T. (1990). Studying physics texts: Differences in study

processes between good and poor solvers. Cognition and Instruction, 7, 41-54.

Genesereth, M. R. (1982). The roie of plans in intelligent teaching systems. In D. Sleeman &

J.S. Brown (Eds.) Intelligent Tutoring Systems. New York, NY: Academic.

Glidden, P.L. (1991) Towards developing a model of mathematics learning: Modeling knowledge

restructuring in learning school algebra. In R. Lewis & S. Otsuki (Eds.) Advanced Research on

Computers in Education. Amsterdam: Elsevier Science Publishers.

Hall, R.J. (1988). Learning by failing to explain: Using partial explanations to learn in

incomplete or intractable domains. Machine Learning, 3, 45-78.

Hailiday, D. & Resnick, R. (1981). Fundamentals of physics. New York: Wiley.

Hinrichs, T.R. (1988) Towards an architecture for open world problem solving. In

Proceedings of a Workshop on Case-Based Reasoning. Los Altos, CA: Kaufman.

Holland, J. H., Holyoak, K. J., Nisbett, R. E. and Thagard, P. R. (1986) Induction: Processes of

Inference, Learning and Discovery. Cambridge, MA: The MIT Press.

Jones, R. (1989). A model of retrieval in problem solving. PhD. Thesis, Information and

Computer Science, University of California at Irvine.

Kintsch, W. (1986) Learning from Text, Cognition and Instruction, 3, 87-108.

59



VanLehn, Jones & Chi

Kolodner, J.L. & Simpson, R. Jr. (1984) A case for case-based reasoning. In Proceedings of the

Sixth Annual Conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.

Larkin, J. (1981) Enriching formal knowledge: A model for learning to solve textbook physics

problems. In J.R. Anderson (Ed.) Cognitive Skills and Their Acquisition. Hillsdale, NJ:

Erlbaum.

Larkin, J. (1983) The role of problem representation in physics. In D. Gentner & A. Collins

(Eds.) Mental Models, Hillsdale, NJ: Lawrence Erlbaum Associates.

LeFevre, J. & Dixon, P. (1986). Do written instructions need examples? Cognition and

Instruction, 3, 1-30.

Lewis, C. (1 98E Why and how to learn why: Analysis-based generalization of procedures.

Cognitive Science, 12, 211-256.

Martin, J.D. & Redmond, M. (1988). The use of explanations for completing and correcting

causal models. In V. L. Patel & G.J. Groen (Eds.) Proceedings of the Tenth Annual conference of

the Cognitive Science Society. Hillsdale, NJ: Erlbaum.

Matz, M. (1982). Towards a process model for high school algebra errors. In D. Sleeman & J.S.

Brown (eds) Intelligent Tutoring Systems, New York: Academic Press.

Mayer, J.H. (1990) Explanation-based knowledge acquisition of schemas in practical

electronics. (TR-90/ONR32) Technical Communications Program, University of Michigan.

Mitchell, T.M. , Keller, R.M. & Kedar-Cabelli, S.T. (1986) Explanation-based Generalization:

A unifying view. Machine Learning, 1(1) 11-46.

Neves, D. M. (1981) Learning procedures from examples. Ph.D. dissertation. Department of

60



VanLehn, Jones & Chi

Psychology, Carnegie-Mellon University, 1981.

Newell, A. (1990) Unified Theories of Cognition. Cambridge, MA: Harvard University Press.

Newell, A. & Simon, H.A. (1972) Human Problem Solving, Englewood Clifts, NJ: Prentice-Hall.

Novak, G.S., Jr. & Araya, A. (1980) Research on expert problem solving in physics.

Proceedings of AAAI-90, Los Altos, CA: Morgan-Kaufman.

Ohlsson, S. (1990) Trace analysis and spatial reasoing: An example of its implications for

testing. In N. Frederiksen, R. Glaser, A. Lesgold & M. Shafto (Eds.) Diagnostic Monitoring of

Skill and Knowledge Acquisition. Hillsdale, NJ: Erlbaum.

Ohlsson, S. (in press-b). Artificial instruction: A method for relating learning theory to

instructional design. ro appear in P.H. Winne & M. Jones (Eds.) Foundations and frontiers in

instructional computing systems. New York, NY: Springer-Verlag.

Ohlsson, S & Rees, E. (in press). An information processing analysis of the function of

conceptual understanding in the learning of arithmetic procedures. Cognition and Instruction.

Palinscar, A.S. & Brown, A.L. (1984). Reciprocal teaching of comprehension-fostering and

monitoring activities. Cognition and Instruction, 1, pp. 117-175.

Pazzani, M. (1990). Creating a Memory of Causal Relationships. Hillsdale, NJ: Erlbaum.

Pazzani, M., Dyer, M. & Flowers, M. (1986) The role of prior causal theories in

generalization. Proceedings of AAAI-86. Los Altos, CA: Morgan-Kaufman.

Pirolli, P. (in press). Effects of examples and their explanations in a lesson on recursion: A

production system analysis. Cognition and Instruction.

61



VanLehn, Jones & Chi

Pirolli, P. & Anderson, J.R. (1985). The role of learning from examples in the acquisition of

recursive programming skills. Canadian Journal of Psychology, 39, 240-272.

Pirolli, P. & Bielaczyc, K. (1989). Empirical analyses of self-explanation and transfer

in learning to program. Proceedings of the 11th Annual Conference of the Cognitive Science

Society, Hillsdale, NJ: Erlbaum.

Pirolli, P & Recker, M. (1991) A model of self-explanation strategies of instructional text in

the acquisition of programming skills. Technical Report CSM-1, Berkeley, CA: University of

California, School of Education.

Pople, H.E. (1973). On the mechanization of abductive logic. Proceedings of the Third

International Joint Conference on Artificial Intelligence. San Mateo,'CA: Morgan Kaufmann.

Ram, A. (1990). Incremental learning of explanation patterns and their indices. In B. Porter &

R. Mooney (Eds). Machine Learning: Proceedings of the Seventh International Conference. Los

Altos, CA: Morgan Kaufman.

Redmond, M. (1990) Distributed cases for case-baed reasoning: Facilitating use of multiple

cases. In Proceedings of AAAI-90. Los Altos, CA: Morgan Kaufman.

Reed, S.K., Dempster, A. & Ettinger, M. (1985). Usefulness of analogous solutions for solving

algebra word problems. Journal of Experimental Psychology: Learning, Memory and Cognition,

11, 106-125.

Reimann, P. (in press). Modeling active, hypothesis-driven learning from examples. To

appear in De Corte, E., Linn, M., Mandl, H. & Verschaffel, L. (Eds.): Computer-based Learning

Environments and Problem Solving. Berlin: Springer.

Rosenbloom, P.S. & Aasman, J. (1990) Knowledge level and inductive uses of chunking (EBL).

Proceedings of AAAI-90. Los Altos, CA: Morgan Kaufman.

62



VanLehn, Jones & Chi

Schank, R. (1982). Dynamic Memory: A theory of learning in computers and people. Cambridge

University Press.

Schank, R. (1986). Explanation Patterns: Learning creatively and mechanically. Hillsdale, NJ:

Ertbaum.

Singley, M. K. & Anderson J. R. (1989) Transfer of cognitive skill, Cambridge, MA: Harvard

University Press.

Sleeman, D., Hirsh, H., Ellery, I. & Kim, I. (1990). Extending domain theories: Two case

studies in student modeling. Machine Learning, 5, pp. 11-38.

Smith, D.E. (1982). Focuser: A strategic interaction paradigm for language acquisition. (LCSR-

TR-36) Laboratory for Computer Science Research, Rutgers University.

Sweller, J. & Cooper, G.A. (1985). The use of worked examples as a substitute for problem

solving in learning algebra. Cognition and Instruction, 2, 59-89.

VanLehn, K. (1986) Arithmetic procedures are induced from examples. In J. Hiebert (Ed.),

Conceptual and Procedural Knowledge: The Case of Mathematics. Erlbaum, Hillsdale, NJ. pp.

133-180.

VanLehn, K. (1987). Learning one subprocedure per lesson. Artificial Intelligence, 31, 1-40.

VanLehn, K. (1989) Problem solving and cognitive skill acquisition. In M.I. Posner (Ed.)

Foundations of Cognitive Science, Cambridge, MA: MIT Press.

VanLehn, K. (1990) Mind Bugs: The Origins of Procedural Misconceptions. Cambridge, MA: MIT

Press.

63



VanLehn, Jones & Chi

VanLehn, K. (1991a) Rule acquisition events in the discovery of problem solving strategies.

Cognitive Science, 15 (1), 1-47.

VanLehn, K. (1991b) Two Pseudo-students: Applications of machine learning to formative

evaluation. In R. Lewis & S. Otsuki (Eds). Advanced Research on Computers in Education. New

York: North-Holland.

VanLehn, K. (in press' (Ed.) Architectures for Intelligence. Hillsdale, NJ: Erlbaum.

VanLehn, K., Brown, J.S. & Greeno, J.G. (1984) Competitive argumentation in computational

theories of cognition. In W. Kintsch, J. Miller & P. Poison (Eds.) Methods and tactics in

cognitive science. Hillsdale, NJ: Erlbaum.

VanLehn, K., Ball, W. & Kowalski, B. (1989) Non-LIFO execution of cognitive procedures.

Cognitive Science, 13, pp. 415-465.

VanLehn, K., Ball, W. & Kowalski, B. (1990). Explanation-based learning of correctness:

Towards a model of the self-explanation effect. Proceedings of the 12th Annual Conference of

the Cognitive cience Society. Hillsdale, NJ: Ernbaum.

Ward, M. & Sweller, J. (1990). Slructuring effective worked examples. Cognition and

Instruction, 7, 1-39.

Webb, N.M. (1989). Peer interaction and learning in small groups. International Journal of

Educational Research, 13, pp. 21-40.

Widma.. . 989) A tight integration of deductive and inductive learning. Proceedings of the

Sixth International Workshop on Machine Learning. Los Altos, CA: Morgan-Kaufman.

Wilkins, D.C. (1988). Knowledge base refinement using apprenticeship learning techniques.

Proceedings of the AAAI-88, Los Altos, CA: Morgan Kaufman.

64



VanLehn. Jones & Chi

Table 1 of VanLehn, Jones & Chi

Caption: Quantities (first line) paired with values (second line) by matching a rule to a line.

1. projection(force(k'ot,striflq_A),axis(knot,x,O))

projection(fforce(kflot,strifl_A),axis(knot,x,O))

2. sign(prcj(fforce(knot,striflgA),axis(klot,x,O)))

-4-

3. magnitude(force (knot,stringA))

magnitude (f'orce (knot, string__A))

4. c:rigfn(proj(force(knot, string__A), axis(knot,x,O))

apply (COS,30)

65



VanLehn. Jones & Chi

Table 2 of VanLehn, Chi & Jones

Caption: Quantities (first line) paired with values (second line) by apply a rule.

1. naxe(trigfn(projforce(knot,strirlg_A),axis(knot,x,O))))
Cos

2. arge(trigfn(proj(force(kflot,striflg_A),axis(knot~xC)))))

30

66



VanLehn, Jones & Chi

Table 3 of VanLehn, Jones & Chi

Caption: T;ie main loop of Cascade's rule interpreter

In problem P, to find a value V for quantity G or to show that V is the value of quantity G,

try these methods in order until one succeeds:

1. Analogical search control.

Do the following 5 steps in order, failing if any one fails and the failure can't be handled:

a. Retrieve an example E that is similar to P

If retrieval fails, then

flip pages looking for an example with a diagram that is similar to P's diagram.

b. Retrieve a mapping between E and P

If retrieval fails, then

reread problem statements of E and P, and

create a mapping.

c. Using the mapping, substitute terms in G to form a target goal T.

d. Retrieve a tuple (E T R), where R is bound by retrieval to a rule.

If retrieval fails, then

reread lines of E's solution to stimulate recall.

If rereading lines stimulates only partial recall, then

redo the derivation of the line that stimulated partial recall, and

retrieve a tuple from the new derivation.

If rereading lines fails to stimulate recall, then

redo the whole derivation, and

retrieve a tuple from the new derivation.

e. Show that R's conditions are met.

f. Apply R's equation to G and V.

g. Create a tuple, (P G R).

h. Return whatever step f returned.

67



VanLehn, Jones & Chi

2. Rule KB search

Do the following steps in order, failing if any one fails and the failure can't be handled:

a. Retrieve a domain rule (or any rule if this is not pass 1)

whose equation contains a quantity unifying with G and

whose condition is met by the current situation. Call the rule R.

b. Plant a back-up point so that a different rule can be

retrieved if R leads to failure.

c. Apply R to G and V.

d. If R is a overly-general rule, then

create a specific version of the rule by instantiating R

and substituting variables for problem-specific constants, and

call this new rule R, and

mark it as a domain rule.

f. Create a tuple, (P G R).

g. Return whatever step c returned.

3. Transformational analogy

If a problem is being solved, then

do the following steps in order, failing if any one fails and the failure can't be handled:

a. Retrieve an example (as in step 1 a)

b. Retrieve a map (as in step 1b)

c. Create a target goal T via mapping G (as in step 1c)

d. Retrieve a line of the example that contains T

If retrieval fails, then re-read each line to see if it contains T

e. Substitute terms in the line via the map to put it in terms of P

f. Apply the line's equation to G.

g. Return whatever step f returned.

4. Analogy abduction.

If this is the third pass, and

an example is being explained and a value V for G is known, then

68



VanLehn, Jones & Chi

do the following steps in order, failing if any one fails and the failure can't be handled:

a. Create an analogy rule R (see text), and

c. Mark it with P's task domain, and

b. Create a tuple, (P G R).

d. Return success.

5. Impasse: no rules apply to G

If there are backup points, then resume one,

else if this is pass 1, then start over with pass 2,

else if this is pass 2 and an example is being explained, then start over with pass 3,

else fail utterly. This problem/example cannot be solve/explained.

To apply an equation E to a quantity G when the value is unknown:

1. Let S be all quantities in E except G.

2. Recurse to find the values of each quantity in S.

3. Substitute values for quantities in E

4. Solve E for G.

5. Return the result as G's value.

To apply an equation E to a quantity G when the value V is given:

1. Solve E for G, obtaining expression X.

2. Match X to V, obtaining a set S of quantity/value pairs

2. Recurse to show that each quantity in S has the value it is paired with.

4. Return success.

69



VanLehn. Jones & Chi

4*4 of VanLehn. Jones & Chi

psw.'Overly general rules 'ed by Casc;,rie 3"

ooFWeneral Rules about Properties and Values

I- If P is a part of W, then the value of a property for W is the value of that property for P.

2. If P is a part of W, then the value of a property for P is the value of that property for W.

3. If P1 and P2 are parts of W, then the value of a property for W is the value of that property

for P1 and P2.

4. If P1 and P2 are parts of W, then the value of a property for P1 and P2 is the value of that

property for W.

5. If P is a part of W, then the value of a property for W is the perpendicular to the value of that

property for P.

6. If P is a part of W, then the value of a property for W is the opposite of the value of that

property for P.

7. If a structural predicate relates object A to object B, then there is a force from B on A.

8. If a structural predicate relates object B to object A, then there is a force from B on A.

9. If the value for a property P1 of object X is equal to the value for that property of object Y,

and property P2 can be derived from P1, then the value for property P2 of object X is equal to

the value for that property of object Y.

10. If the value for a property P1 of object X is equal to the value for that property of object Y,

and property P2 is derivable from P1, then the value for property P2 of object Y is equal to the

70



VanLehn, Jones & Chi

value for that property of object X.

11. A property P of an object is the magnitude of a force of type P from the object on a body.

Overly General Rules Linking Common Sense with Physics

39. If F is a common-sense force, then it is a physics force.

40. If a coi-ioio-a-seaise force F has a property P, then the analogous physics force has the same

property.

41. If A is a common-sense acceleration, then it is a physics acceleration.

42. If a common-sense acceleration A has a property P, then the analogous physics acceleration

has the same property.

43. If X is a set of common-sense axes, then it is a set of physics axes.

44. If F is a force from S on B, then the sense of the force depends on whether it "pushes" or

"pulls" on B.

71



VanLehn, Jones & Chi

Table 5 of VanLehn, Jones & Chi

Caption: "Rules learned by Cascade during run 1"

1. If X slides on Y then there is a normal force from Y on X. [9]

2. If there is a normal force from Y on X, then the sense of the force is the relative

position of X with respect to Y. [91

3. If there is a normal force from Y on X, then the incline of the force is

perpendicular to the incline of Y. [91

4. The axes can be chosen from any two perpendicular vectors in the free-body diagram. [2]

5. If X slides down Y then the sense of the acceleration of X is down. [9]

6. If X slides down Y then the incline of the acceleration of X is the incline of Y, [5]

7. If the magnitude of the displacement of X is equal to the magnitude of the

displacement of Y, then the magnitude of the acceleration of X is equal to the

magnitude of the acceleration of Y. [6]

8. If X floats in Y, then there is a buoyant force on X due to Y. [1]

9. If there is a buoyant force on X due to Y, then the incline of the force is 90

degrees. [1]

'1. If there is a buoyant force on X due to Y, then the sense of the force is up.

11. The "tension of X" means the magnitude of the tension force on something due to

X. [11

12. If Y is a pusher and tied to X, then there is a compression force on X due to Y. [1]

13. If there is a compression force on X due to Y, then the incline of the force is the

incline of Y. [1]

72



VanLehn, Jones & Chi

14. If there is a compression force on X due to Y, then the sense of the force is the

relative position of X with respect to Y. [1]

15. If X is an object and Y supports X, then there is a pressure force on X due to Y. [1]

16. If there is a pressure force on X due to Y, then ,we incline of the force is the

incline of Y. [11

17. If there is a pressure force on X due to Y, then the sense of the force is the

relative position of X with respect to Y. [1]

18. If Y is a piece of X, then the pressure of X is equal to the pressure of Y. [1]

19. The "pressure of X" means the magnitude of the pressure force on something

due to X. [1]

20. If an object X moves through the air Y, then there is a friction force on X due to

Y. Ill

21. If there is a friction force on X due to Y, then the incline of the force is the

incline of the velocity of X. [2]

22. If there is a friction force on X due to Y, then the sense of the force is opposite to

the sense of the velocity of X. [21

23. If the current situation is analogous to situation_sx, and the current problem is analogous

to sx, then the bodies of the current problem are analogous to [knotsx]. [31

73



VanLehn, Jones & Chi

Table 6 of VanLehn, Jones and Chi

Caption: Results of the simulation run

Run 1: Self-explanation, analogical search control, transformational analogy

8 Rules learned during example studying

15a Rules learned during problem solving

23 Total

23 Problems solved correctly

Run 2: Analogical search control, transformational analogy

0 Rules learned during example studying

__a Rules learned during problem solving (all correct)

3 Total

9 Problems solved correctly

Run 3: Self-explanation

3 Rules learned during example studying (same rules as run I)

Rules learned during problem solving

3 Same as rules learned during run 2

3 Other correct rules

__, incorrect rules

10 Subtotal

18 Total

74



VanLehn, Jones & Chi

19 Problems solved correctly

Run 4: Self-explanation, transformational analogy

8 Rules learned during example studying (same rules as run 1)

Rules learned during problem solving

6 Same as correct rules learned during run 3

_a Incorrect rules

9 9 Subtotal

17 Total

21 Problems solved correctly

75



Figure 1 of VanLehn, Jones & Chi
Caption: "A physics example"

Problem: Figure a shows an object of weight W hung by strings. Consider the knot at the

junction of the three strings to be "the body." The body remains at rest under the action of the

three forces shown in figure b. Suppose we are given the magnitude of one of these forces. How
can we find the magnitude of the other forces?

A///Z/ZZ///
Fa Fb
Fa

x

Fc

Figure a Figure b

Solution:

Fa, Fb and Fc are all the forces acting on the body. Since the body is unaccelerated,
Fa+Fb+Fc=0.

Choosing the x- and y-axes as shown, we can write this vector equation as three scalar
equations:

Fax+Fbx - 0
Fay+Fby+Fcy = 0

using eqn 5-2. The third scalar equation for the z-axis is simply
Faz - Fbz - Fcz = 0.

That is, the vectors all lie in the x-y plane, so that they have no z-components. From the figure
we see that

Fax - -Fa cos 300 = -0.866Fa,
Fay Fa sin 300 = 0.500Fa,

and

Fbx = Fb cos 450 = 0.707Fb,
Fby - Fb sin 450 = 0.707Fb.

Also,
Fcy = -Fc = -W,

because the string C merely serves to transmit the force on one end to the junction at its other
end. Substituting these results into our original equations, we obtain

-0.866Fa + 0.707Fb = 0
0.500Fa + 0.707Fb - W = 0

If we are given the magnitude of any one of these three forces, we can solve these equations for
the other two. For example, if W=100N, we obtain Fa-73.3N and Fb=89.6N.



0 nE (n_
cU :3 0 -)

0c( )0 0

70 E 0 C E
0 %-0 0 Cc

%.-c M (
0D

0 200.

CL

Q .0

cn LLQ

00

UC4



BIn 2

F'gu~ 3 f Vn~eh, Jnes Ch

3Ct~OfM: A 'r"eIovdbyaaoyt woohrpolm


