
August 1991

AD-A240 603 us 191
, fECMU/SI-91-TR-24

Capability Maturity Model
for Software

m

° Mark C. Paulk
L) . . Bill Curtis

. ,-L E. Mary Beth Chrissis

%~SEP231991~
Edward L. Averill

- VV. Judy Bamberger
Timothy C. Kasse
Mike Konrad
Jeffrey R. Perdue
Charles V. Weber
James V. Withey

Approved for public release
Distribution unlimited

91-11242 Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

9



This document was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The iedas and findigs in tiis document shouid not be construed as an
official DoD position. It is published in the interest of scientific and
technical information exchange.

Review and Approval

This document has been reviewed and is approved for publication.

FOR THE COMMANDER

hanreJ RIaM or, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the Department of Defense.

Copyright 0 1991 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer ofscientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information onordering, please contact NTIS directly: National Technical Information Service, U.S. Department of Commere,
Springfield, VA 22161.
'L-z , ay it-sademarks in this document is not intended in any way to infringe on the rights of the trademark holder.

- ~ -



_Carnegie Mellon UniversitySoftware Engineering Institute

September 12,1991

Permission to reproduce, in whole or in part, the volume of materials released by the Software
Engineering Institute under the title Capability Maturity Model for Software is granted under the
following conditions:

1. This letter must be reproduced with each copy.

2. All copies must include the copyright notice.

3. The materials are not to be used for commercial gain.

4. The matcia;a are n.: to be distributed beyond your organization. Refer such requests to the
SEI.

5. The materials are to be used in a manner consistent with the framework and methodology
advanced by the SEI.

6. Carnegie Mellon University and the Software Engineering Institute are not to be construed as
responsible for the results of analyses conducted as a result of this permission. In other words,
neither CMU nor the SEI is to be held liable for your use of this material.

Sincerely,

Purvis M. Jackson
Sr. Editor and Manager
SEI Information Management

L

Carnegie Mellon University
-ttsburm1, r-nnsytvanwa 15213-3890
(412) 268-7700



Table of Contents
A cknow ledgem ents ................................................................................................ v

T o th e R ead er ................................................................................................................ v ii
What is the Purpose of This Paper? .................................................................... viii
Who Should Read This Paper? ............................................................................ viii
How is This Paper Organized? .............................................................................. ix
What Are the Other CMM Products? ................................................................. x
How Do You Receive More Information? .................................................... xi

1 The Process Maturity Framework ........................................................................ 1
1.1 Immature Versus Mature Software Organizations .................................. 1
1.2 Fundamental Concepts Underlying Process Maturity ....................... 3
1.3 Overview of the Capability Maturity Model ....................................... 4

2 The Five Levels of Software Process Maturity ............................................ 7
2.1 Behavioral Characterization of the Maturity Levels .......................... 9

2.1.1 Level 1 - The Initial Level .............................................................. 10
2.1.2 Level 2 - The Repeatable Level ..................................................... 11
2.1.3 Level 3 - The Defined Level .......................................................... 11
2.1.4 Level 4 - The Managed Level ........................................................ 12
2.1.5 Level 5 - The Optimizing Level ..................................................... 13

2.2 Understanding the Managed and Optimizing Levels ....................... 14
2.3 Visibility Into the Software Process ....................................................... 15
2.4 Process Capability and the Prediction of Performance ........................ 18
2.5 Skipping Maturity Levels ......................................................................... 20

3 Operational Definition of the Capability Maturity Model ........................ 23
3.1 Internal Structure of the Maturity Levels ............................................ 24
3.2 Maturity Levels ......................................................................................... 26
3.3 Key Process Areas ....................................................................................... 26
3.4 K ey Practices ................................................................................................. 29
3.5 Key Indicators .............................................................................................. 32
3.6 Maturity Questionnaire ............................................................................. 32

CMU/SEI-91-TR-24 Capability Maturity Model a i



Table of Contents

4 U sing the C M M ................................................................................................... 35
4.1 Software Process Assessment and Software Capability

Evaluation M ethods .................................................................................. 36
4.2 Differences Between Software Process Assessments and

Software Capability Evaluations .............................................................. 41
4.3 Other Uses of the CMM in Process Improvement .................... 42

5 Future D irections of thc CM M ............................................................................. 45
5.1 What the CMM Does Not Cover ............................................................ 45
5.2 N ear Term A ctivities ................................................................................. 45
5.3 Long Term A ctivities ................................................................................. 46
5.4 C onclusion ................................................................................................... 46

6 R eferen ces ................................................................................................................. 49

Appendix A: Goals for Each Key Process Area ................................................. 53
A.1 The Key Process Areas for Level 2 - Repeatable ................................. 53
A.2 The Key Process Areas for Level 3 - Defined ....................................... 55
A.3 The Key Process Areas for Level 4 - Managed ..................................... 57
A.4 The Key Process Areas for Level 5 - Optimizing ................................. 58

ii a Capability Maturity Model CMU/SEI-91-TR-24



List of Figures

Figure 2.1 The Five Levels of Software Process Maturity .................... 8
Figure 2.2 The Juran Trilogy Diagram: Quality Planning, Quality

Control. and Quality Improvement ...................................... 15
Figure 2.3 A Management View of Visibility into the Software

Process at Each M aturity Level ................................................. 16
Figure 2.4 The Capability as Indicated by Maturity Level ..................... 19
Figure 3.1 The CM M Structure ................................................................... 25
Figure 3.2 Building the CMM Structure: An Example of a Maturity

L ev el ........................................................................................... . . 26
Figure 3.3 The Key Process Areas by Maturity Level ............................ 28
Figure 3.4 Building the CMM Structure: An Example of a Key

Process A rea ................................................................................. 29
Figure 3.5 Building the CMM Structure: An Example of a Key

Practice .......................................................................................... 31
Figure 3.6 Building the CMM Structure: An Example of a Question

in the Maturity Questionnaire .............................................. 34
Figure 4.1 Common Steps in Software Process Assessments and

Software Capability Evaluations ............................................ 37
Figure 4.2 The Key Process Area Profile Template ................................ 40

CMU/SEI-91-TR-24 Capability Maturity Model a iii



List of Figures

v 0 Capability Maturity Model CM UISEI-91 -TR-24



Acknowledgements
The description of the Capability Maturity Model for Software was produced by a
dedicated group of people who spent many hours discussing the model and its
features and then trying to capture it in this paper. This group consisted of Mark
Paulk, Bill Curtis, Mary Beth Chrissis, Edward Averill, Judy Bamberger, Tim Kasse,
Mike Konrad, Jeff Perdue, Charlie Weber, and Jim Withey.

This paper is based on the vision of Watts Humphrey, first director of the SEI's
Software Process Program. It took several drafts to evolve this paper into the final
product. Jim Withey, Mark Paulk, and Cynthia Wise produced an early draft in
1990. Watts Humphrey provided a second draft of the document, and Mark Paulk
then took over the paper and remained book boss until the end. Mary Beth Chrissis
and Bill Curtis helped Mark in his efforts and took over in his absence.

At various stages, several people made contributions to this paper. They include
Mary Merrill, George Pandelios, Anita Carleton, Marty Carlson, Richard Kauffold,
Steve Masters, Jim Over, and Jane Siegel. These people attended meetings that
helped the group formulate and come to consensus on the meaning of software
process mattirity.

Joe Besselman and Betty Deimel provided comments and suggestions as reviewers.
We appreciate the administrative help from Dorothy Josephson, Debbie Punjack,
Carolyn Tady, Marcia Theoret, Andy Tsounos and Todd Bowman; and the editorial
assistance from Mary Beth Chrissis and Bill Pollak. Renne Dutkowski from the
American Institutes for Research provided suggestions for the design of the
document.

CMU/SEI-91-TR-24 Capability Maturity Model m v



Acknowledgements_________

v i m Capability Maturity Model CMUISEI-91 -TR-24



To the Reader

In November 1986, the Software Engineering Institute (SLI) with assistance
from the Mitre Corporation began developing a process maturity
framework that would assist organizations in improving their software
process. This effort was initiated in response to a request to provide the
federal government with a method for assessing the capability of their
software contractors. In September 1987, the SEI released a brief description
of the process maturity framework and a maturity questionnaire
(Humphrey87b). The SEI intended the maturity questionnaire to provide a
simple tool for identifying areas where an organi7ation'c software process
needed improvement. Unfortunately, the questionnaire was too often
regarded as "the model" rather than as a vehicle for exploring process
maturity issues.

After four years of experience with the software process maturity framework
and the preliminary version of the maturity questionnaire, the SEI has
evolved the software process maturity framework into a fully defined
model. This model will be used in a systematic, principled way to derive a
maturity questionnaire. By fully elaborating the maturity framework, a
model has emerged that provides organizations with more effective
guidance for establishing process improvement programs than was offered
by the maturity questionnaire. Using knowledge acquired from software
process assessments and extensive feedback from both industry and
government, an improved version of the process maturity framework has
been produced called the Capability Maturity Model for Software (CMM).
This paper is an introduction to the revised model.

CMU/SEI-91-TR-24 Capability Maturity Model *vii



To the Reader

What is the Purpose of This Paper?

This paper provides a technical overview of the Capability Maturity Model
for Software and reflects the most current version. Specifically, this paper
describes the process maturity framework, the structural additions that
comprise the CMM, how the CMM is used in practice, and future directiont
of the CMM. This paper serves as one of the best sources for understanding
the CMM, and it should clear up some of the misconceptions associated
with the earlier model and questionnaire.

The SEI's goal in working with industry and government to refine and
expand the model is to encourage software organizations to focus on the
CMM rather than on the maturity questionnaire. The SEI has developed a
series of new products to encourage this focus. This paper, in combination
with the "Key Practices of the Capability Maturity Model," is intended to
help software organizations use the CMM as a guide to improve the
maturity of their software process.

Who Should Read This Paper?

This paper presents an introduction to the CMM and all its associated
products. Therefore, anyone who is interested in learning about the CMM
should read this paper. However, this paper assumes that the reader has
some knowledge of and experience in developing and/or maintaining
software, as well as an understanding of the problems that the software
community faces today.

viii a Capability Maturity Model CMU/SEI-91-TR-24



To the Reader

How is This Paper Organized?

This paper has five chapters.

Chapter 1 Defines the concepts necessary to understand
the CMM and the motivation and purpose
behind it.

Chapter 2 Describes the five levels of the CMM and the
principles that underlie them.

Chapter 3 Describes how the CMM is structured into
key process areas, refined into key practices,
and used to construct the ma~llrity
questionnaire.

Chapter 4 Provides a high-level overview of how the
CMM provides guidance for software process
assessments, software capability evaluations,
and process improvement programs.

Chapter 5 Concludes by providing a description of
future directions for the CMM and its related
products.

CMU/SEI-91-TR-24 Capability Maturity Model n ix



To the Reader

What Are the Other CMM Products?

Although this paper can be read in isolation, it is designed to be the

launching point for other products. This paper and the products listed

below help you understand and use the CMM. All of these products have

been systematically derived from the model.

"Key Practices of the Identifies the software practices for each

Capability Maturity Model" level of the CMM.

Maturity Questionnaire Used by software process assessment and
software capability evaluation teams to
identify strengths and weaknesses in an
organization's software process.

Respondent Questionnaire Used to collect information on the
individual completing the maturity
questionnaire.

Project Questionnaire Used to collect information about the
project for which the maturity
questionnaire is being completed.

The users of these products form a CMM community dedicated to
improving the maturity of their software process. The SEI will continue to
work with the CMM community to enhance the model and its associated
products.

x * Capability Maturity Model CMU/SEI-91-TR-24



To the Reader

How Do You Receive More Information?

This paper and the "Key Practices of the Capability Maturity Model" will be
available directly from the Defense Technical Information Center (DTIC) or

the National Technical Information Service (NTIS) by the end of 1991.
Several versions of the maturity questionnaire will enter a pilot test phase

beginning in Fall 1991. When a final version has emerged from this phase,
it will be available from DTIC and NTIS. These documents can be obtained
by writing to:

Defense Technical Information Center
Attn: Cameron Station
Alexandria, VA 22304-6145

National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161

Other requests regarding the CMM and its associated products can be made
to:

CMM Info
Software Process Program
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-7700
Internet:cmm-info@sei.cmu.edu

CMU/SEI-91-TR-24 Capability Maturity Model * xi



To the Reader

xii m Capability Maturity Model CMU/SEI-91-TR-24

0 ..m



1 The Process Maturity
Framework

After two decades of unfulfilled promises about productivity and quality
gains from applying new software methods and technologies, industry and
government organizations are realizing that their fundamental problem is
the inability to manage the software process. The benefits of better methods
and tools cannot be realized in the maelstrom of an undisciplined, chaotic
project. In many organizations, projects are often excessively late and
double the planned budget (Siegel90). In such instances, the organization
frequently is not providing the infrastructure and support necessary to help
projects avoid these problems.

Even in undisciplined organizations, however, individual software projects
produce excellent results. When such projects succeed, it is generally
through the heroic efforts of a dedicated team, rather than through
repeating the proven methods of an organization with a mature software
process. In the absence of an organization-wide software process, repeating
results depends entirely on having the same individuals available for the
next project. Success that rests solely on the availability of specific
individuals provides no basis for long-term productivity and quality
improvement throughout an organization. Continuous improvement can
occur only through focused and sustained effort at building a process
infrastructure of effective software engineering and management practices.

1.1 Immature Versus Mature Software
Organizations

Setting sensible goals for process improvement requires an understanding
of the difference between immature and mature software organizations. In
an immature software organization, software processes are generally
improvised by practitioners and their management during the course of the

CMU/SEI-91-TR-24 Capability Maturity Model a 1



The Process Maturity Framework

project. Even when a software process has been specified, it is not rigorously
followed or enforced. The immature software organizati - is reactionary
and managers are usually focused on solving immediate crises. Schedules
and budgets are routinely exceeded because they are not based on realistic
estimates. When hard deadlines are imposed, product functionality and
quality are often compromised in order to meet the schedule.

In an immature organization there is no objective basis for judging product
quality or for solving product or process problems. Therefore, product
quality is difficult to predict. Activities intended to enhance quality such as
reviews and testing are often curtailed or eliminated when projects fall
behind schedule.

On the other hand, a mature software organization possesses an
organization-wide ability for managing software development and
maintenance processes. The software process is accurately communicated to
both existing staff and new employees, and work activities are carried out
effectively. The processes mandated are consistent with the way the work
actually gets done. These defined processes are updated when necessary,
and improvements are developed through controlled pilot-tests and/or cost
benefit analyses. Roles and responsibilities within the defined process are
clear throughout the project and across the organization.

In a mature organization, managers monitor the quality of the software
product and customer satisfaction. There is an objective, quantitative basis
for judging product quality and analyzing problems with the product and
process. Schedules and budgets are based on historical performance and are
realistic; the expected results for cost, schedule, functionality, and quality of
the product are usually achieved. In general, a disciplined process is
consistently followed.

2 * Capability Maturity Model CMU/SEI-91-TR-24



The Process Maturity Framework

1.2 Fundamental Concepts Underlying Process
Maturity

Capitalizing on these observations about immature and mature software
organizations requires construction of a software process maturity
framework. This framework describes an evolutionary path from ad hoc,
chaotic processes to a mature, disciplined software process. Without this
framework, improvement programs may prove ineffective bccau.- the
necessary foundation for supporting successive improvements has not been
established. The software process maturity framework emerges from
integrating the concepts of software process, software process capability,
software process performance, and software process maturity, all of which
are defined in succeeding paragraphs.

According to Webster's dictionary, a process is "a system of operations in
producing something ... a series of actions, changes, or functions that
achieve an end or result." Thus, a software process can be defined as a set of
activities, methods, practices, and transformations that people use to
develop and maintain software and the associated products (e.g., project
plans, design documents, code, test cases, user manuals, etc.). As an
organization matures, the software process becomes better defined and more
consistently implemented throughout the organization.

Software process capability describes the range of expected results from
following a software process. The software process capability of an
organization provides one means of predicting the most likely outcomes
that are expected from the next software project the organization
undertakes.

Software process performance represents the actual results achieved from
following a software process. Thus, software process performance focuses

CMUISEI-91-TR-24 Capability Maturity Model E 3



The Process Maturity Framework

on the results achieved while software process capability focuses on results
expected. Based on the attributes of a specific project and the context within
which it is conducted, the performance of the project may not reflect the full
process capability of the organization. For instance, radical changes in the
application or technology undertaken may place a project' s staff on a
learning curve that causes their project's performance to fall short of the
organization's full process capability.

Software process maturity implies a potential for growth in capability.
Maturity indicates both the richness of an organization's software process
and the consistency with which it is applied in projects throughout the
organization. The CMM is based on the premise that maturity is an
indicator of capability. Software process maturity implies that the
productivity and quality resulting from an organization's software process
can be improved over time through consistent gains in the discipline
achieved by applying its software process.

As a software organization gains in software process maturity, it
institutionalizes its software process via policies, standards, and
organizational structures. Institutionalization entails building a corporate
culture that supports the methods, practices, and procedures of the business
so that they endure after those who originally defined them have gone.

1.3 Overview of the Capability Maturity Model

Although software engineers and managers often know their problems in
great detail, they often disagree on which improvements are most
important. Without an organized strategy for improvement, it is difficult to
achieve conseisus between management and the professional staff on what
improvement activities to undertake first. To achieve lasting results from
process improvement efforts, it is necessary to design an evolutionary path
that increases an organization's software process maturity in stages. These
stages must be ordered so that improvements at each stage provide the

4 a Capability Maturity Model CMU/SEI-91-TR-24



The Process Maturity Framework

foundation on which to build improvements undertaken at the next stage.
Thus, an improvement strategy drawn from a software process maturity
framework provides a roadmap for organizations embarking on the journey
of continuous process improvement. It guides advancement and identifies
deficiencies in the organization; it is not intended to provide a quick fix for
projects in trouble.

The Capability Maturity Model for Software provides software
organizations with guidance on how to gain control of their process for
developing and maintaining software and how to evolve toward a culture
of software engineering excellence. The CMM was designed to guide
software organizations in selecting process improvement strategies by
determining current process maturity and identifying the few issues most
critical to software quality and process improvement. By focusing on a
limited set of activities and working aggressively to achieve them,
organizations can steadily improve their organization-wide software process
to enable continuous and lasting gains in software process capability.

The staged structure of the CMM is based on product quality principles that
have existed for the last sixty years. In the 1930s Walter Shewart, a physicist
at AT&T Bell Laboratories, promulgated the principles of statistical quality
control. His principles were further developed and successfully
demonstrated in the work of W. Edwards Deming (Deming86) and Joseph
Juran (Juran88, Juran89). These principles have been adapted into a
maturity framework that establishes the project management and
engineering foundation during the initial stages and during the more
advanced stages of maturity to quantitatively control the process.

The maturity framework into which these quality principles have been
adapted was first inspired by Philip Crosby of ITT in his book Quality is Free
(Crosby79). Crosby's quality management maturity grid describes five
evolutionary stages in adopting quality practices. This maturity framework
was adapted to the software process by Ron Radice and his colleagues
(Radice85) working under the direction of Watts Humphrey at IBM.
Humphrey brought this maturity framework to the Software Engineering

CMU/SEI-91-TR-24 Capability Maturity Model * 5



The Process Maturity Framework

Institute in 1986, revised it to add the concept of maturity levels, and
developed the foundation for its current use throughout the software
industry.

Early versions of Humphrey's maturity framework were described in SEI
technical reports (Humphrey87a, Humphrey87b), papers (Humphrey88), and
in his book, Managing the Software Process (Humphrey89). A preliminary
maturity questionnaire (Humphrey87b) was released in 1987 as a tool to
provide organizations with a way to characterize the maturity of their
software process. Two methods, software process assessment and software
capability evaluation, were developed in 1987 to help organizations use
previous versions of the CMM in appraising software process maturity.
During 1990-1991 the SEI, with the help of many people from government
and industry, has further expanded and refined the model based on several
years of experience in its application to software procPss improvement.

ISoftware process assessments help software organizations identify their most important
improvement needs. Software capability evaluations help acquisition agencies identify the risks
associated with awarding business to contractors, as well as manage on-going contracts.

6 a Capability Maturity Model CMU/SEI-91-TR-24



2 The Five Levels of Software
Process Maturity

Continuous process improvement is based on many small, evolutionary
steps rather than revolutionary innovations (Imai86). The CMM provides a
framework for organizing these evolutionary steps into five maturity levels
that lay successive foundations for continuous process improvement.
These five maturity levels define an ordinal scale for measuring the
maturity of an organization's software process and for evaluating its
software process capability.

A maturity level is a well-defined evolutionary plateau on the path toward
becoming a mature software organization. Each maturity level provides a
layer in the foundation for continuous process improvement. Each level
comprises a set of process goals that, when satisfied, stabilize an important
component of the software process. Achieving each level of the maturity
framework establishes a different component in the software process,
resulting in an increase in the process capability of the organization.

Organizing the CMM into the five levels shown in Figure 2.1 prioritizes
improvement actions for increasing software process maturity. The labeled
arrows in Figure 2.1 indicate the type of process capability being
institutionalized by the organization at each step of the maturity
framework.

CMU/SEI-91-TR-24 Capability Maturity Model 0 7



The Five Levels of Software Process Maturity

Continuously
improving I (5)iJ
process

Predictable ~ e
proc ess :H4J

Standard, D e
consistent (3)
process (

Disciplinedr Repeatable

process L (2)

Figure 2.1 The Five Levels of Software Procens Maturity

The following characterizations of the five maturity levels highlight the
primary process changes made at each level.

1) Initial The software process is characterized as ad hoc, and
occasionally even chaotic. Few processes are defined, and
success depends on individual effort.

8 n Capability Maturity Model CMU/SEI-91-TR-24



The Five Levels of Software Process Maturity

2) Repeatable Basic project management processes are established to
track cost, schedule, and functionality. The necessary
process discipline is in place to repeat earlier successes on
projects with similar applications.

3) Defined The software process for both management and
engineering activities is documented, standardized, and
integrated into an organization-wide software process. All
projects use a documented and approved version of the
organization's process for developing and maintaining
software.

4) Managed Detailed measures of the software process and product
quality are collected. Both the software process and
products are quantitatively understood and controlled
using detailed measures.

5) Optimizing Continuous process improvement is enabled by
quantitative feedback from the process and from testing
innovative ideas and technologies.

2.1 Behavioral Characterization of the Maturity
Levels

Maturity Levels 2 through 5 can be characterized through the activities
performed by the organization to establish or improve the software process,
by activities performed on each project, and by the resulting process
capability across projects. A behavioral characterization of Level 1 is

CMU/SEI-91-TR-24 Capability Maturity Model a 9



The Five Levels of Software Process Maturity

included to establish a base of comparison for process improvements at
higher maturity levels.

2.1.1 Level 1 - 'lhe Initial Level

At the Initia1 level, the organization typically does not provide a stable
environment for developing and maintaining software. When sound
management practices are lacking within an organization, the benefits of
software engineering practices are undermined by ineffective planning and
reaction-driven commitment systems.

Project- typically abandon planned procedures and revert to coding and
testing during a crisis. Success depends entirely on having an exceptional
manager and a seasoned and effective software team. Occasionally,
unusually capable and forceful software managers can withstand the
pressures to take shortcuts in the software process, but when they leave the
project their stabilizing influence leaves with them. A strong engineering
process cannot overcome the instability created by the absence of sound
management practices.

The process capability of Level 1 organizations is unpredictable because the
software process is constantly changed or modified as the work progresses
(ad hoc). Schedules, budgets, functionality, and product quality are generally
unpredictable. Performance depends on the highly variable individual
capabilities of the staff with their innate skills, knowledge, and motivations.
There are few stable software processes in evidence, and performance can
only be predicted by individual rather than organizational capability.

10 * Capability Maturity Model CMU/SEI-91-TR-24



The Five Levels of Software Proce-ss Maturity

2.1.2 Level 2 - The Repeatable Level

At the Repeatable level, software project management policies and
procedures are established by the organization. Planning and managing
new projects is based on experience with similar projects. An objective in
achieving Level 2 is to stabilize software project management processes,
which allows organizations to repeat successful practices developed on
earlier projects.

Projects in Level 2 organizations have installed basic software management
controls. Realistic project commitments are established from results
observed on previous projects. Project managers track software costs,
schedules, and functionality; and problems in meeting commitments are
identified when they arise. Software requirements and the artifacts
developed to satisfy them are baselined, and their integrity is controlled.
Project standards are defined, and the organization ensures they are
taithfully followed. Project teams work with their customers, and their
subcontractors if any, to establish a stable, managed, working environment.

The process capability of Level 2 organizations can be summarized as stable
for planning and tracking the software project, because a disciplined
management process provides a project environment for repeating earlier
successes. The process is under the effective control of a project
management system, following realistic plans based on the performance of
previous projects.

2.1.3 Level 3 - The Defined Level

At the Defined level, the standard process for developing and maintaining
software across the organization is documented, including both software

CMU/SEI-91-TR-24 Capability Maturity Model mi



The Five Levels of Software Process Maturity

engineering and software management processes, and they are integrated
into a coherent whole. Processes established at the Defined level are used by
both management and staff and are changed as appropriate to help them
perform more effectively. The organization exploits effective software
engineering practices when standardizing software processes for the
organization. There is a permanent organizational focus on the software
process; a software engineering process group (SEPG) facilitates process
definition and improvement efforts (Fowler90). An organization-wide
training program is implemented to ensure that all practitioners and
managers have the knowledge and skills required to carry out their tasks.

Projects use the organization-wide standard software process for developing
and maintaining software as a basis for creating their own defined software
process that encompasses the unique characteristics of the project. Each
project uses a peer review process to enhance product quality. Because the
software process is well defined, management has good visibility into
technical progress on all projects. Management and engineering activities
are coherently integrated on each project.

The process capability of Level 3 organizations can be summarized as stable
for both management and engineering activities. Within established
product lines, cost, schedule, and functionality are under control and
software quality is tracked. This capability is based on a common
understanding of processes, roles, and responsibilities in a defined process.

2.1.4 Level 4 - The Managed Level

At the Managed level, the organization sets quantitative quality goals for
software products. Productivity and quality are measured for important
software process activities across all projects in the organization. An
organization-wide process database is used to collect and analyze the data
available from a carefully defined process. Software processes have been
instrumented with well-defined and consistent measures at Level 4. Th( ;e

12 n Capability Maturity Model CMU/SEI-91-TR-24



The Five Levels of Software Process Maturity

measures establish the quantitative foundation for evaluating project
processes and products.

Projects achieve control over their products and processes by narrowing the
variation in their performance to within acceptable quantitative boundaries.
Meaningful variations in performance can be distinguished from random
variation (noise), particularly within established product lines. In order to
reduce the process variation due to constant shifts among new application
domains, there is a strategic business plan describing which product lines to
pursue. The risks involved in moving up the learning curve of a new
application domain are known and carefully managed.

The process capability of Level 4 organizations can be summarized as
measured and operating within measurable limits. This level of process
capability allows an organization to predict process and product quality
trends within the quantitative bounds of these limits. When these limits
are violated, action is taken to correct the situation. Software products are of
predictably high quality.

2.1.5 Level 5 - The Optimizing Level

At the Optimizing level, the organization is focused on continuous process
improvement. The organization has the means to identify weak process
elements and strengthen them, with the goal of preventing the occurrence
of defects. Statistical evidence is available on process effectiveness and is
used in performing cost benefit analyses on new technologies. Innovations
that exploit the best software engineering practices are identified.

Project teams analyze process performance to determine the causes of
defects. Software processes are evaluated to prevent known types of defects
from recurring, and lessons learned are disseminated to other projects.

CMUISEI-91-TR-24 Capability Maturity Model N 13



The Five Levels of Software Process Maturity

Level 5 organizations are continuously striving to raise the upper bound of
their process capability. Improvement occurs both by incremental
advancements in the existing process and by innovations using new
technologies and methods.

2.2 Understanding the Managed and Optimizing
Levels

Maturity Levels 4 and 5 are unknown territory for the software industry in
1991. There are a few examples of Level 4 and 5 software projects, but none
for Level 4 and 5 software organizations (Humphrey89b). Unfortunately,
these projects are too few to draw general conclusions about characteristics
of Level 4 and 5 organizations. The characteristics of these levels have been
defined by analogy with other industries and the few examples in the
software industry exhibiting this level of process capability.

Many characteristics of Levels 4 and 5 are based on the concepts of statistical
process control as exemplified in Figure 2.2. This Juran Trilogy Diagram
illustrates the primary responsibilities of process management. The first
responsibility, and the focus of Level 4, is process control: the software
process is managed so that it operates stably within a zone of quality control.
There is ine . tably some chronic waste, and there may be spikes in the
measured results that need to be controlled, but the system is stable overall.
The second responsibility, and the focus of Level 5, is continuous process
improvement: the software process is changed to move the zone of quality
control; that is, to establish a new baseline for performance and reduce
chronic waste. The lessons learned in improving such a process are applied
in planning future processes.

It is anticipated that organizations reaching the highest maturity levels of
the CMM would have a process that is capable of producing extremely

14 n Capability Maturity Model CMU/SEI-91-TR-24



The Five Levels of Software Process Maturity

reliable software within predictable cost and schedule limits. As
understanding of the higher maturity levels grows, the existing key process
areas will be refined, and others may be added to the model.

Quality Planning Quality Control (during operations)

Sporadi
spike

Original zone of
quality control

o N""ew zone o

J.M. Juran Wilon, CT Used with the expross permission of the Juran Institute, Aug, 1990.

Figure 2.2 The Jura Trilogy Diagram: Quality Planning, Quality Control,
and Quality Improvement

2.3 Visibility Into the Software Process

Software engineers have insight into the state of a project because they have
first-hand information on project status and performance. However, on
large projects their insight usually is drawn from their experience with a

CMU/SEI-91-TR-24 Capability Maturity Model N 15



The Five Levels of Software Process Maturity

particular subsystem. Those outside the project without first-hand
exposure, such as senior managers, lack visibility into project processes and
rely on pe-iod-_ reviews; for the information they require to monitor
progress. Figure 2.3 illustrates the level of visibility into project status and
performance afforded to management at each level of process maturity.
Each succeeding maturity level incrementally provides better visibility into
software processes.

1 In .-- Out

2 In

Figure 2.3 A Management View of Visibility Into the Software Process at

Each Maturity Level

At Level 1, the software process is an amorphous entity, and visibility into
project processes is difficult. Since the staging of activities is ambiguous,
managers have an extremely difficult time establishing the status of projectprogress and activities. Requirements flow into the software process in an

uncontrolled manner, and a product results. Software development is

16 a Capability Maturity Model CMU/SEI-91-TR-24



The Five Levels of Software Process Maturity

frequently viewed as black magic, especially by managers who are
unfamiliar with software.

At Level 2, the customer requirements and product artifacts are controlled,
and basic project management practices have been established. These
management controls allow visibility into the project only on defined
occasions. The process of building the product can be viewed as a succession
of black boxes that allows management visibility only at transition points as
activity flows between boxes (project milestones). Even though
management may not know the details of what is happening in the box, the
products of the process and checkpoints for confirming that the process is
working are identified and known.

At Level 3, the internal structure of the boxes - the subprocesses in the
software process defined by the project - are visible. The internal structure
represents the way the organization-wide standard software process has
been applied to specific projects. Both managers and engineers understand
their roles and responsibilities within the process and how their activities
interact at the appropriate level of detail. Individuals external to the project
can obtain accurate and rapid status updates because defined processes afford
great visibility into project activities.

At Level 4, the defined software processes are instrumented and controlled
quantitatively. Managers are able to measure progress and problems. They
have an objective, quantitative basis for making decisions. Their ability to
predict outcomes grows steadily more precise as the variability in the
process grows smaller.

At Level 5, new and improved ways of building the product are continually
tried, in a controlled manner, to improve productivity and quality.
Inefficient or defect-prone activities are identified and replaced or revised.
Insight extends beyond existing processes and into the effects of potential
changes to processes. Managers are able to estimate and then track
quantitatively the impact and effectiveness of change.

CMU/SEI-91-TR-24 Capability Maturity Model * 17



The Five Levels of Software Process Maturity

2.4 Process Capability and the Prediction of
Performance

The maturity of an organization's software process helps to predict a
project's ability to meet its goals. Projects in Level 1 organizations
experience wide variations in achieving cost, schedule, functionality, and
quality targets. As illustrated by the example in Figure 2.4, three
improvements in meeting targeted goals are observed as the organization's
software process matures.

First, as maturity increases, the difference between targeted results and
actual results decreases across projects. For instance, if ten projects of the
same size were targeted to be delivered on May 1, then the average date of
their delivery would move closer to May 1 as the organization matures.
Level 1 organizations often miss their scheduled delivery dates by a wide
margin, whereas Level 5 organizations should be able to meet targeted dates
with considerable accuracy. This is because Level 5 organizations use a
carefully constructed software process operating within known parameters,
and the selection of the target date is based on the extensive data they
possess about their process and on their performance in applying it. (This is
illustrated in Figure 2.4 by how much of the mass under the curve lies to
the right of the target line.)

18 * Capability Maturity Model CMU/SEI-91-TR-24



The Five Levels of Software Process Maturity

5

0

4 Time/$/...

LU.0

o00 I-
3 Time$1...

CLo

Time/S/...

.0

,J Time/$/...
CL0 

-

TTime/S/...

Figure 2.4 The Capability as Indicated by Maturity Level

Second, as maturity increases, the variability of actual results aroundtargeted results decreases. For instance, in Level 1 organizations deliverydates for projects of similar size are unpredictable and vary widely. Similarprojects in a Level 5 organization, however, will be delivered within amuch smaller range of dates. This narrowed variation occurs at the highestmaturity levels because virtually all projects are performing withincontrolled parameters approaching the organization's process capability for

CMUISEI-91-TR-24 Capability Maturity Model m 19



The Five Levels of Software Process Maturity

cost, schedule, functionality, and quality. (This is illustrated in Figure 2.4 by
how much of the mass under the curve is concentrated near the target line.)

Third, targeted results improve as the maturity of the organization
increases. That is, as a software organization matures, costs decrease,
development time becomes shorter, and productivity and quality increase.
In a Level I organization, development time can be quite long because of
the amount of rework that must be performed to correct mistakes. In
contrast, Level 5 organizations use continuous process improvement and
defect prevention techniques to increase process efficiency and eliminate
costly rework, allowing development time to be shortened. (This is
illustrated in Figure 2.4 by the horizontal displacement of the target line
from the origin.)

The improvements in predicting project results represented in Figure 2.4
assume that software project outcomes become more predictable as noise,
often in the form of rework, is removed from the software process. Even in
the case of unprecedented systems, the management and engineering
practices characteristic of more mature organizations help identify and
address problems earlier in the development cycle than they would have
been detected in less mature organizations. Earlier detection of defects
contributes to project stability and performance by eliminating the rework
during later phases. Continuous process improvement allows Level 5
organizations to continually improve on their targeted performance.

2.5 Skipping Maturity Levels

Because of their impatience for results, senior management occasionally
attempts to reach Level 5 without progressing through Levels 2, 3, and 4 in
sequence. This is counterproductive, however, because each level forms a
necessary foundation from which to construct the next level. The CMM
identifies the levels through which an organization must evolve to
establish a culture of software engineering excellence. Processes without the

20 * Capability Maturity Model CMU/SEI-91-TR-24



The Five Levels of Software Process Maturity

proper foundation fail at the very point they are needed most - under stress
- and they provide no basis for future improvement.

A Level 1 organization that is trying to implement a defined process (Level
3) before it has established a repeatable process (Level 2) is usually
unsuccessful because project managers are overwhelmed by schedule and
cost pressures. This is the fundamental reason for focusing on management
processes before engineering processes. It may seem easier to define and
implement an engineering process than a management process (especially
in the eyes of technical people), but without management discipline, the
engineering process is sacrificed to schedule and cost pressures
(Humphrey88).

An organization that has not established a defined process (Level 3) and is
trying to implement a managed process (Level 4) is usually unsuccessful
because without defined processes, there is no common basis for
interpreting measurements. While data can be collected, few of the metrics
have significant meaning across projects, and they do not increase the
understanding of the software process. It is difficult to identify meaningful
metrics in the absence of defined processes because of the variation in the
processes being measured.

An organization that has not established a managed process (Level 4) and is
trying to implement an optimizing process (Level 5) is likely to fail.
Without controlling the process within statistically narrow boundaries
(small variations in process measures), there is too much noise in the data
to objectively determine whether a specific process improvement has an
effect. Decisions can degenerate into religious wars because little
quantitative foundation exists for making rational, informed decisions.

CMU/SEI-91-TR-24 Capability Maturity Model * 21



The Five Levels of Software Process Maturity

22 a Capability Maturity Model CMLI/SEI-91-TR-24



3 Operational Definition of the
Capability Maturity Model

The CMM is a framework representing a path of improvements
recommended for software organizations that want to increase their
software process capability. In order to use the CMM to guide improvement
programs, it must be defined to describe improvement actions in terms of
software activities. This operational elaboration of the CMM must be
designed to support the many ways it will be used in improvement
programs. There are at least four uses of the CMM that must be supported.

-1 Assessments teams will use the CMM to identify improvements
needed in the organization.

Z Evaluation teams will use the CMM to identify the risks of selecting
among different contractors for awarding business and as a tool to
monitor contracts.

:J Managers will use the CMM to understand the activities necessary to
implement an improvement program across their organization.

J Process improvement groups will use the CMM as a guide to help
them define and improve the software process in their organization.

The diversity in use of the CMM requires that it be decomposed in sufficient
detail that actual process recommendations can be derived from the
structure of the maturity levels. This decomposition also makes it possible
to determine which among these recommended processes are the most
salient indicators of software process maturity and software process
capability.

CMUISEI-91-TR-24 Capability Maturity Model N 23



Operational Definition of the Capability Maturity Model

3.1 Internal Structure of the Maturity Levels
Each maturity level has been decomposed into constituent parts. With the
exception of Level 1, the decomposition of each maturity level bridges from
abstract summaries of each level down to their operational definition of the
items composing the maturity questionnaire as shown in Figure 3.1. Thus,
a maturity level is composed of several key process areas. Each key process
area consists of numerous key practices that, when addressed collectively,
accomplish the goals of the key process area. Some of the key practices are
selected as key indicators of whether the goals of a key process area are
accomplished. These key practices will be selected to become questions in
the maturity questionnaire.

24 * Capability Maturity Model CMU/SEI-91-TR-24



Operational Definition of the Capability Maturity Model

0MM
Maturity Level

indicates cnan

Process

Capabiity C Key Process Area

achieves cnan

describes

Implementation or
Institutionalizationsecfs

Activities

candidate for

ceions

Figure 3.1 The CMM Structure

CM UISEI-91 -TR-24 Capability Maturity Model 8*25



Operational Definition of the Capability Maturity Model

3.2 Maturity Levels

Each maturity level indicates a level of process capability, as illustrated in
Figure 3.2. For instance, at Level 2 (the Repeatable level) the process
capability of an organization has been elevated by establishing a disciplined
process under sound project management control.

Maturity Level:

Level 2, Repeatable

indicates

C Process Capability:
disciplined process

Figure 3.2 Building the CMM Structure: An Example of a Maturity Level

3.3 Key Process Areas

Except for Level 1, each maturity level is decomposed into several key
process areas that indicate the areas an organization should focus on to
improve their software process. Key process areas identify the issues that
must be addressed in order to achieve a maturity level.

26 N Capability Maturity Model CMU/SEI-91TR-24



Operational Definition of the Capability Maturity Model

Although other issues affect process performance, the key process areas were
identified because of their effectiveness in improving an organization's
software capability They may be considered the requirements for achieving
a maturity level.

Figure 3.3 displays the key process areas for each maturity level. In order to
achieve a maturity level, the goals of each key process area at that level
must be satisfied.

The key process areas have been defined to reside at a single maturity level
as shown in Figure 3.3. The specific practices to be executed in each key
process area will evolve in content as the organization achieves higher
levels of process maturity. For instance, many of the project estimating
capabilities described in the Software Project Planning key process area at
Level 2, must evolve to handle additional project data available at Levels 3,
4, and 5. For example, at Level 3, the Integrated Software Management key
process area was defined to capture the evolution from managing a project
according to a plan to managing a project using a defined software process.

Each key process area represents a cluster of related activities that, when
performed collectively, achieve a set of goals considered important for
enhancing process capability. An example of a goal to be achieved by the
Software Project Planning key process area is presented in Figure 3.4. The
path to achieving the goals of a key process area may differ across projects
based on differences in application domains or environments. Neverthe-
less, all the goals of a key process area must be achieved in order for the
organization to satisfy that key process area.2 When the goals of a key
process area have been accomplished on a continuing basis, the
organization can be said to have institutionalized the process capability
characterized by the key process area.

2 For a listing of the goals for each key process area, refer to Appendix A.

CMU/SEI-91-TR-24 Capability Maturity Model R 27



Operational Definition of the Capability Maturity Model

Optimizing (5)
Process change management

Technology innovation
Defect prevention

Managed (4)

Quality management
Process measurement and analysis

Repatbned ))

Peer reviews

Intergroup coordination
Software product engineering

Integrated software management
Training program

Organization process definition
Organization process focus

2Repeatable (2

Software quality assurance |::
Software subcontract management |,:

Software project tracking and oversight il
Software project planning

Requirements management ,

Figure 3.3 The Key Process Areas by Maturity Level

28 •Capability Maturity Model CMUISEI-91-TR-24



Operational Definition of the Capability Maturity Model

Moiurlty Level-

( Level 2, Repeatable

indicates contains

.... Key Process Area;

disciplined process Software Project Planning

7
achieves

Each ke A plan is devefoped bhat hao
iappropriately and realistically a

act covers the software activities ean commitment../

Figure 3.4 Building the CMM Structure: Am Example of a Key Process Area

3.4 Key Practices

Each key process area is defined by the key practices that contribute to
satisfying its goals. The key practices are the policies, procedures, and
activities that most contribute to the effective institutionalization and

implementation of the key process area. At the highest level of abstraction,
the goals themselves represent the key practices of a key process area.

CMU/SEI-91-TR-24 Capability Maturity Model * 29



Operational Definition of the Capability Maturity Model

However, in order to provide guidance for improving an organization's
performance in a key process area, more detailed practices must be
presented. Therefore, each key process area was broken down into the
common features listed in italics below.

1 Practices such as establishing policies and procedures demonstrate an
organization's commitment to perform in the key process area.

" Practices such as providing training, sufficient resources, and
appropriate tools support an organization's ability to perform in the
key process area.

1 Practices that are required to make effective product building
decisions describe the activities performed in the key process area.

1 Practices such as collecting measures and tracking data allow an
organization to monitor the implementation of the activities
constituting a key process area.

J Practices such as management reviews allow an organization to
verify the implementation of the activities constituting a key process
area.

The practices in the common feature, activities performed, describe what
must be addressed in a project to improve the process capability. The other
practices, taken as a whole, form the basis by which an organization can
institutionalize and reduce the variance in the gains achieved by addressing
the practices included in the activities performed common feature.

Each key practice consists of a single sentence, often followed by a more
detailed description, which may include examples and elaboration. Figure
3.5 illustrates a top-level key practice for the Software Project Planning key
process area.

30 * Capability Maturity Model CMU/SEI-91-TR-24



Operational Definition of the Capability Maturity Model

Level 2, Repeatable

indicates contains

Proces Capabislitya

disciplined Software Project Planning

achieves contains

Apaisdeveloped that
appropriately and realistically Estimates for the size of
covers the software activities software products are

and commitments, derived according to a
documented procedure.

describes

C plementation or

Insiulonalization DActlvity.:

Figure 3.5 Building the CMM Structure: An Example of a Key Practice

In order to ensure consistent accomplishment of the goal of developing
plans that appropriately and realistically cover the software activities and
commitments, the organization must establish a documented procedure for

CMU/SEI-91-TR-24 Capability Maturity Model N 31



Operational Definition of the Capability Maturity Model

deriving estimates of software size. If these estimates are not developed
from a documented procedure, they may vary wildly as differences in sizing
assumptions are never surfaced. The detailed description of what would be
expected in such a procedure includes using historical size data,
documenting assumptions, and reviewing estimates. These criteria guide
appraisal of whether a reasonable size estimating procedure is followed;
simply documenting that "George does our size estimation" is inadequate.

The key practices describe what is to be accomplished, but they should not be
interpreted as mandating how the key practices should be performed. An
important consideration is whether an alternative process accomplishes the
goals of the key process area. The key practices should be interpreted
rationally in the project environment to judge whether the goals of the key
process area are effectively, although perhaps differently, achieved. The key
practices for all key process areas are contained in the "Key Practices of the
Capability Maturity Model," along with guidance on their interpretation.

3.5 Key Indicators

Key indicators are those key practices, or components of a key practice, that
offer the greatest insight into whether the goals of a key process area have
been satisfied. Key indicators were determined through a lengthy process
involving workshop recommendations, industry comments, software
process assessment and software capability evaluation findings, statistical
evaluation of the preliminary questionnaire, and the professional
judgement of the SEI staff.

3.6 Maturity Questionnaire

The maturity questionnaire presents a set of yes/no questions about the
software process that sample the practices in each key process area of the

32 * Capability Maturity Model CMU/SEI-91-TR-24



Operational Definition of the Capability Maturity Model

CMM. Key indicators provide the basis for developing the maturity
questionnaire. The maturity questionnaire is used by an assessment or
evaluation team to initiate the investigation of an organization's software
process capability.

An example of a question developed from the CMM is presented in Figure
3.6. The key practice indicating that estimates for the size of software
products are derived according to a documented procedure has been selected
as a key indicator of the Software Project Planning key process area. One
question corresponding to this key indicator is: "Do you use a documented
procedure to estimate software size (e.g., lines of code, function points,
etc.)?" This question is included in the pool of candidate questions that will
be evaluated in pilot testing of the maturity questionnaire to ensure that the
wording is not confusing and that the question is a good discriminator of
whether the goals of the Software Project Planning key process area have
been satisfied.

Other questions might be developed to investigate an organization's size
estimating procedure at a more detailed level than described in the
statement of the key practice. For example, one element of a size estimating
procedure is that historical sizing data are used. Accordingly, the question,
"Do you use historical size data to help derive software size estimates?" may
prove to be a good indicator of whether an effective software planning
process for the project is in place and is being used. In fact, there are many
questions that could be asked to determine whether an effective software
planning process has been established. The goal in selecting candidate
questions for the maturity questionnaire from among the key indicators is
to identify those that best reveal the true state of an organization's process.

CMUISEI-91-TR-24 Capability Maturity Model E 33



Operational Definition of the Capability Maturity Model

Mstur+ t e777: 7

C Level 2, Repeatable

indicates contains

ProKes Cracesility:Picipality Software Project Planning

achieves contains

Goal:
A plan is develop

appropriately and realistically Estimates for the size of
covers the software activities software products are

dderived according to a

documented procedure.

describes
, specifies

Actviy:Key Indicator:.

candidate for

Do you use a documented prodedure to JJestimate software size (e.g., lines of code,
function points, etc.)?

Figure 3.6 Building the CMM Structure: An Example of a Question in the
Maturity Questionnaire

34 * Capability Maturity Model CMU/SEI-91-TR-24



4 Using the CMM

The CMM establishes a set of public criteria describing the characteristics of
mature software organizations. These criteria can be used by organizations
to improve their process for developing and maintaining software, or by
government or commercial organizations to evaluate the risks of
contracting a software project to a particular company.

This chapter focuses on two SEI-developed methods for appraising the
maturity of an organization's execution of the software process: software
process assessment and software capability evaluation.

" Software process assessments are used by organizations to help
identify the status of their software process and to identify a
prioritized list of areas to address for process improvement.

"J Software capability evaluations are used by acquisition agencies to
identify contractors who are qualified to build high-quality roftware
and also to monitor contract performance.

The information presented here is not sufficient for readers to conduct
either an assessment or a capability evaluation. Anyone wishing to apply
the CMM through these methods should receive training, since an
undisciplined application of the model may serve an organization poorly.

The CMM is a common foundation for both software process assessments
and software capability evaluations. The purpose of the methods are quite
different and there are significant differences in the specific methods used.
However, both are based on the model and the products derived from it.
The revisions made to the 1987 software process maturity framework that
are reflected in the CMM will not cause structural changes in the software
process assessment or software capability evaluation methods. Rather, these
changes will enable the methods to be applied more reliably and lead to
more effective results.

CMU/SEI-91-TR-24 Capability Maturity Model 8 35



Using the CMM

4.1 Software Process Assessment and Software
Capability Evaluation Methods

Software process assessments are conducted by an organization and focus on
identifying improvement priorities within its own software process.
Assessment teams use the CMM as a yardstick to guide them in identifying
and prioritizing findings. These findings, along with guidance provided by
the key practices in the CMM, are used by staff members (e.g., a software
engineering process group) to plan an improvement strategy for the
organization.

Software capability evaluations are conducted by acquisition agencies and
are focused on identifying contractors who represent the lowest risk for
building high-quality software on schedule and within budget. During the
acquisition process, software capability evaluations may be performed on
bidders. The findings of the evaluation, as structured by the CMM, may be
used to identify the risks in selecting a particular contractor. Evaluations
may also be performed on existing contracts for contract monitoring
purposes, with the intent of identifying improvements in the software
process of the contractor.

The CMM establishes a common frame of reference for performing software
process assessments and software capability evaluations. Although the two
methods differ in purpose, the methods use the CMM as a foundation for
appraising software process maturity. Figure 4.1 provides a summary
description of the common steps in assessments and evaluations.

36 * Capability Maturity Model CMU/SEI-91-TR-24



Using the CMM

Maturity
Questionnaire

Team Rsos

Selection samples
the

(1) (2) (3)

KPA
Findings Profile

Inevesbased -- 41- i

on the

practices

(4) (5) (6)

Figure 4.1 Common Steps in Software Process Assessments and Software
Capability Evaluations

The first step in both of these methods is to select a team. This team should
attend a multi-day training course that presents the fundamental concepts
of the CMM as well as the specifics of the assessment or evaluation method.

CMUISEI-91-TR-24 Capability Maturity Model N 37



Using the CMM

The second step is to have representatives from the site to be assessed or
evaluated complete the maturity questionnaire. These representatives are
typically project or software managers from ,various projects. Once this
activity is completed, the assessment or evaluation team performs a
response analysis (step 3), which tallies the resnonses to the questions and
identifies those areas where further exploration is warranted. Since each
question in the maturity questionnaire was derived directly from the key
practices in the CMM, the areas to be investigated correspond to the CMM
key process areas. In order to develop an initial maturity profile, the key
process areas for each maturity level are listed and the degree of satisfaction
is arpraised for each based on the initial responses to the maturity
questionnaire. This profile focuses the attention of the assessment or
capability evaluation team on the maturity level and key process areas
deserving investigation.

The team is now ready to visit the site being assessed or evaluated (step 4).
Beginning with the results of the response analysis, the team conducts
interviews and rev.ews documentation to gain an understanding of the
software process followed by the site. The key process areas and key practices
in the CMM guide the team members in questioning, listening, reviewing,
and synthesizing the information received from the interviews and
documents. The CMM provides guidance and examples of practices from
mature software organizations; the CMM is not a prescription for the "one
right way" to a mature software process. The team applies professional
judgement in deciding whether the site's implementation of the key process
areas satisfies the relevant key process area goals. When there are clear
differences between the key practices in the CMM and the site's practices, the
team must document their rationale for appraising that key process area.

At the end of the on-site period, the assessment or evaluation team
produces a list of findings (step 5) that identifies the strengths and
weaknesses of the organization's software process. In a software process
assessment, the findings become the basis for recommendations for process

38 * Capability Maturity Model CMU/SEI-91-TR-24



Using the CMM

improvement; in a software capability evaluation, the findings become part
of the risk analysis performed by the contracting agency.

The findings are grounded in key practices, which is a shift in emphasis
from the questions in the maturity questionnaire to the key practices in the
model underlyinq the questions. Responses to questions on the maturity
questionnaire provide a point of departure for investigating whether a
project has developed realistic processes for satisfying key process area goals.
If the goals of a key process area have not been satisfied, an assessment or
capability evaluation team may report a finding against that area, regardless
of how many questions were answered yes.

Also, a key process area profile (step 6) that shows tht areas where the
organization has, and has not, satisfied the goals of the key process areas is
completed (see Figure 4.2). Each key process area is rated as not satisfied
(NS), partially satisfied (PS), or fully satisfied (FS). Each key process area
within a mat,.rity level must be fully satisfied for the organization to be
designated as functioning at that maturity level. A key process area can befully satisfied and still have associated findings, provided the findings do

not identify major problems that inhibit achieving any goals of the key
process areas.

CMU/SEI-91-TR-24 Capability Maturity Model 0 39



Using the CMM

Level 5
Optimizing

Level 4 DP
Managed __

LeveI3 PA NS PSlFSDefined _MI I I
PF INSIPSIFS
PD

Level 2 TP
Repeatable IM,

PE

PR
RIV.. NS! PSI FSJ

PP

Level 1 PT
Initial

OA

CMUS

Figure 4.2 The Key Process Area Profile Template

In summary, the software process assessment and software capability

evaluation methods both:

J use the maturity questionnaire as a springboard for the on-site visit
Z use the CMM as a map that guides the on-site investigation
" develop findings that identify software process strengths and

weaknesses in terms of the key process areas in the CMM

" derive a profile based on an analysis of the satisfaction of the goals
within the key process area

0 present their results, to the appropriate audience, in terms of a key
process area profile and findings

40 n Capability Maturity Model CMUISEI-91-TR-24



Using the CMM

4.2 Differences Between Software Process
Assessments and Software Capability
Evaluations

In spite of these similarities, the results of a software process assessment or
software capability evaluation may be quite different, even on successive
applications of the same method. One reason is that the scope of the
assessment or evaluation may vary. First, the site being investigated must
be determined. For a large company, several different definitions for a site
are possible. These definitions may be based on common senior
management, common geographical location, designation as a profit and
loss center, common application domain, or other considerations. Second,
even in what appears to be the same site, the scope may differ depending on
the selection of projects. A division within a company may be assessed, and
the team arrives at findings based on a division-wide scope. Later, a product
line may be evaluated, and that team arrives at its findings based on a much
narrower scope that is based on the product. When the process has not been
institutionalized, as in the case of Level 1 organizations, there may be
dramatic differences between projects in the same organization.
Comparison between the results then becomes an apples-versus-oranges
problem.

Software process assessments and software capability evaluations differ in
motivation, objective, outcome, and ownership of the results. These factors
lead to substantive differences in interview dynamics, scope of inquiry,
information being gathered, and formulation of the outcome. The
assessment and evaluation methods are quite different when the detailed
procedures employed are examined. Assessment training does not prepare
a team to perform evaluations, or vice versa.

CMU/SEI-91-TR-24 Capability Maturity Model * 41



Using the CMM

Software process assessments are performed in an open, collaborative
environment. Their success depends on a commitment from both
management and the professional staff to improve the organization. The
objective is to surface problems and help managers and engineers improve
their organization. While the questionnaire is valuable in focusing the
assessment team on maturity level issues, the emphasis is on structured
and unstructured interviews as tools for understanding the organization's
software process. Aside from identifying the software process issues facing
the organization, the buy-in to improvement, the organization-wide focus
on process, and the motivation and enthusiasm in executing an action plan
are the most valuable outcomes of an assessment.

Software capability evaluations, on the other hand, are performed in a more
audit-oriented environment. The objective is tied to monetary
considerations, since the team's recommendations will help select
contractors or set award fees. The emphasis is on a documented audit trail
that reveals the software process actually implemented by the organization.
The interview and document review processes are used to validate the
responses to the maturity questionnaire, and therefore several types of
interviews are required during the site visit.

4.3 Other Uses of the CMM in Process
Improvement

For software engineering process groups (SEPGs) or others trying to
improve their software process, the CMM has specific value in the areas of
action planning, action plan implementation, and process definition.
During action planning, the software engineering process group members,
equipped with knowledge of their software process issues, can compare their
current practices against the goals in the key process areas in the CMM. The
key practices should be examined in relation to corporate goals,
management priorities, the level of performance of the practice, the value

42 E Capability Maturity Model CMU/SEI-91-TR-24



Using the CMM

of implementing this practice to the organization, and the ability of the
organization to implement this practice in light of its culture.

The software engineering process group must next determine which key
practices to address and obtain the necessary buy-in. The CMM aids this
activity by providing a starting point for discussion about process
improvement and by helping to surface disparate assumptions about
commonly accepted software engineering practices. In implementing the
action plan, the CMM and the key practices can be used by the process
groups to construct parts of the operational action plan and to define the
software process.

CMU/SEI-91-TR-24 Capability Maturity Model * 43



Using the CMM

44 m Capability Maturity Model CMUISEI-91 -TR-24



Ii

5 Future Directions of the CMM

Achieving higher levels of software process maturity is incremental and
requires a long-term commitment to continuous process improvement.
Software organizations may take ten years or more to build the foundation
for, and a culture oriented toward, continuous process improvement.
Although a decade-long process improvement program is foreign to most
U.S. companies, this level of effort is required to produce mature software
organizations. This time frame is consistent with experience from other
industries, such as the U.S. automotive industry, that have achieved
significant gains in process maturity (Gabor90).

5.1 What the CMM Does Not Cover

The CMM is not a silver bullet (Brooks87) and does not address all of the
issues that are important for successful projects. For example, the CMM
does not currently address expertise in particular application domains,
advocate specific software technologies, or suggest how to select, hire,
motivate, and retain competent people. Although these issues are crucial to
project success, some of these issues have been analyzed in other contexts
(e.g., Curtis90). However, they have not been integrated into the CMM.
Th, CMM was specifically developed to provide an orderly, disciplined
framework within which to address management and engineering process
issues.

5.2 Near Term Activities

In the near term, the CMM will be extensively tested through use in
software process assessments and software capability evaluations. Tutorials
will be presented at major conferences and seminars throughout the United
States to ensure that the software industry has ample opportunity for
contact and awareness with this new CMM and its associated components.

CMU/SEI-91-TR-24 Capability Maturity Model E 45



Future Directions of the CMM

SEI software process assessment and software capability evaluation training
courses will be revised to incorporate the new features of the CMM.

At least two cycles of course revision and field testing are anticipated during
1991 and 1992. During this training and field testing period many of the
CMM components may be refined. Users of the CMM can anticipate that
during this initial testing period, questions will change the most frequently,
followed by the key practices, the key process areas, and then the model
itself.

5.3 Long Term Activities

Following the initial testing and revision of the CMM, the SEI will turn its
attention to improving the overall model itself. While all levels of the
model may be revised, the emphasis will be on Levels 4 and 5. Currently
the key process areas for levels 2 and 3 have been the most completely
defined. Since no organizations have been assessed to be at levels 4 or 5
(Humphrey89b), less is known about the characteristics of such
organizations. The practices for these two levels will be refined as the SEI
works closely with organizations who are striving to understand and
achieve Levels 4 and 5. The CMM may become multi-dimensional to
address technology and human resource issues.

5.4 Conclusion

Continuous improvement applies to the maturity model and practices, just
as it does to the software process. The potential impact of changes to the
CMM on the software community will be carefully considered, but the
CMM, the maturity questionnaire, and the software process assessment and
software capability evaluation methods will continue to evolve as
experience is gained with improving the software process. The SEI intends

46 * Capability Maturity Model CMU/SEI-91-TR-24



Future Directions of the CMM

to work closely with industry, government, and academia in continuing
this evolution.

The CMM provides a conceptual structure for improving the management
and development of software products in a disciplined and consistent way.
It does not guarantee that software products will be successfully built or that
all problems in software engineering will be adequately resolved. The CMM
identifies practices for a mature software process and provides examples of
the state-of-the-practice (and in some cases, the state-of-the-art), but it is not
meant to be either exhaustive or dictatorial. While the maturity
questionnaire samples key indicators of an effective software process, the
CMM identifies the characteristics of an effective software process, the
mature organization addresses all issues essential to a successful project -
including people and technology - as well as process.

CMUISEI-91-TR-24 Capability Maturity Model * 47



Future Directions of the CMM

48 m Capability Maturity Model CMU/SEI-91-TR-24



6 References

Brooks87 F.P. Brooks, "No Silver Bullet: Essence and Accidents of
Software Engineering," IEEE Computer, Vol. 20, No. 4,
April 1987, pp. 10-19.

Crosby79 P.B. Crosby, Quality is Free, McGraw-Hill, New York, NY,
1979.

Curtis90 B. Curtis, "Managing the Real Leverage in Software
Productivity and Quality," American Programmer, Vol. 3,
No. 7, July 1990, pp. 4-14.

Deming86 W. Edwards Deming, Out of the Crisis, MIT Center for
Advanced Engineering Study, Cambridge, MA, 1986.

Fagan86 M.E. Fagan, "Advances in Software Inspections," IEEE
Transactions on Software Engineering, Vol. 12, No. 7, July,
1986, pp. 744-751.

Fowler90 P. Fowler and S. Rifkin, "Software Engineering Process
Group Guide," Software Engineering Institute, CMU/SEI-
90-TR-24, September, 1990.

Gabor90 A. Gabor, The Man Who Discovered Quality, Random
House, New York, NY, 1990.

Humphrey87a W.S. Humphrey, "Characterizing the Software Process: A
Maturity Framework," Software Engineering Institute,
CMU/SEI-87-TR-11, DTIC Number ADA182895, June 1987.

CMU/SEI-91-TR-24 Capability Maturity Model N 49



References

Humphrey87b W.S. Humphrey and W.L. Sweet, "A Method for
Assessing the Software Engineering Capability of
Contractors", Software Engineering Institute, CMU/SEI-
87-TR-23, DTIC Number ADA187320, September 1987.

Humphrey88 W.S. Humphrey, "Characterizing the Software Process,"
IEEE Software, Vol. 5, No. 2, March, 1988, pp. 73-79.

Humphrey89a W.S. Humphrey, Managing the Software Process,
Addison-Wesley, Reading, MA, 1989.

Humphrey89b W.S. Humphrey, D.H. Kitson, and T. Kasse, "The State of
Software Engineering Practice: A Preliminary Report,"
Software Engineering Institute, CMU/SEI-89-TR-01, DTIC
Number ADA206573, February, 1989.

Imai86 M. Imai, Kaizen: The Key to Japan 's Competitive Success,
McGraw-Hill, New York, NY, 1986.

Juran88 J.M. Juran, Juran on Planning for Quality, Macmillan,
New York, NY, 1988.

Juran89 J.M. Juran, Juran on Leadership for Quality, The Free
Press, New York, NY, 1989.

Radice85 R.A. Radice, J.T. Harding, P.E. Munnis, and R.W. Phillips,
"A Programming Process Study," IBM Systems Journal,
Vol. 24, No.2, 1985.

50 * Capability Maturity Model CMU/SEI-91-TR-24



References

Siegel90 J.A.L. Siegel, et al., "National Software Capacity: Near-
Term Study," Software Engineering Institute, CM-U/SEI-
90-TR-12, DTIC Number ADA226694, May 1990.

Weber9l C.V. Weber, M.C. Paulk, C.J. Wise, and J.V. Withey, "Key
Practices of the Capability Maturity Model," Software
Engineering Institute, CMU/SEI-91-TR-25, August 1991.

CMU/SEI-91-TR-24 Capability Maturity Model * 51



References

52 m Capability Maturity Model CMUISEI-91-TR-24



Appendix A: Goals for Each
Key Process Area

Goals for each key process area are listed by maturity level below.

A.1 The Key Process Areas for Level 2:
Repeatable

Requirements Management - The system requirements allocated to software
provide a clearly-tated, verifiable, and testable foundation for software
engineering and software management. The allocated requirements define
the scope of the software effort. The allocated requirements and changes to
the allocated requirements are incorporated into the software plans,
products, and activities in an orderly manner.

Software Project Planning - A plan is developed that appropriately and
realistically covers the software activities and commitments. All affected
individuals and groups understand the software estimates and plans and
commit to support them. The software estimates and plans are documented
for use in tracking the software activities and commitments.

Software Project Tracking and Oversight - Actual results and performance of
the software project are tracked against documented and approved plans.
Corrective actions are taken when the actual results and performance of the
software project deviate significantly from plans. Changes to software
commitments are understood and agreed to by all affected groups and
individuals.

CMU/SEI-91-TR-24 Capability Maturity Model E 53



*

Goals for Each Key Process Area

Software Subcontract Management - The prime contractor selects qualified
subcontractors. The software standards procedures and product
requirements for the subcontract comply with the prime contractor's
commitments. Commitments between the prime contractor and
subcontractor are understood and agreed to by both parties. The prime
contractor tracks the subcontractor's actual results and performance against
the commitments.

Software Quality Assurance - Compliance of the software product with
applicable standards, procedures, and product requirements is
independently confirmed. When there are compliance problems,
management is aware of them. Senior management addresses non-
compliance issues.

Software Configuration Management - Controlled and stable baselines are
established for planning, managing, and building the system. The integrity
of the system's configuration is controlled over time. The status and
content of the software baseline are known.

54 * Capability Maturity Model CMUISEI-91-TR-24



Goals for Each Key Process Area

A.2 The Key P-ocess Areas for Level 3: Defined

Organizational Process Focus - Current strengths and weaknesses of the
organization's software process are understood and plans are established to
systematically address the weaknesses. A group is established with
appropriate knowledge, skills, and resources to define a standard software
process for the organization. The organization provides the resources and
support needed to record and analyze the use of the organization's standard
software process in order to maintain and improve it.

Organizational Process Definition - A standard software process definition
for the organization is defined and maintained as a basis for stabilizing and
improving the performance of software projects. Specifications of common
software processes and documented process experiences from past and
current projects are collected and available.

Training Program - The staff and managers have the skills and knowledge
to perform their jobs. The staff and managers effectively use, or are
prepared to use, the capabilities and fedtures of the existing and planned
work environment. The staff and managers are provided with
opportunities to improve their professional skills.

Integrated Software Management - The planning and managing of each
software project is based on the organization's standard software process.
Technical and management data from past and current projects are
available and used to effectively and efficiently estimate, plan, track, and
replan the software projects.

CMU/SEI-91-TR-24 Capability Maturity Model 8 55



Goals for Each Key Process Area

Software Product Engineering - Software product and process issues are
properly addressed in the system requirements and system design. The
software engineering activities are well-defined, integrated, and used
consistently to produce a software system. State-of-the-practice software
engineering tools and methods are used, as appropriate, to build and
maintain the software system. Software engineering products that are
consistent with each other and appropriate for building and maintaining
the software system are systematically developed.

Intergroup Coordination - The project's technical goals and objectives are
understood and agreed to by its staff and managers. The responsibilities
assigned to each of the project groups, and the working interfaces between
these groups, are known to all groups. The project groups are appropriately
involved in intergroup activities and in identifying, tracking, and
addressing intergroup issues. The project groups work as a team.

Peer Reviews - Product defects are identified and fixed early in the life cycle.
Appropliate product improvements are identified and implemented early
in the life cycle. The staff becomes more effective through a better
understanding of their work products and knowledge of errors that can be
prevented. A rigorous group process for reviewing and evaluating product
quality is established and used.

56 U Capability Maturity Model CMU/SEI-91-TR-24



Goals for Each Key Process Area

A.3 The Key Process Areas for Level 4: Managed

Process Measurement and Analysis - The organization's standard software
process is stable and under statistical quality control. The relationship
between product quality, productivity, and product development cycle time
is understood in quantitative terms. Special causes of process variation (i.e.,
variations attributable to specific applications of the process and not
inherent in the process) are identified and controlled. Process performance
measures are used to quantitatively manage the software project.

Quality Management - Measurable goals and priorities for product quality
are established and maintained for each software project through
interaction with the customer, end users, and project groups. Measurable
goals for process quality are established for all groups involved in the
software process. The software plans, design, and process are adjusted to
bring forecasted process and product quality in line with the goals. Process
measurements are used to quantitatively manage the software project.

CMU/SEI-91-TR-24 Capability Maturity Model E 57



Goals for Each Key Process Area

A.4 The Key Process Areas for Level 5:
Optimizing

Defect Prevention - Sources of product defects that are inherent or
repeatedly occur in the application of the software processes are identified
and eliminated.

Technology Innovation - The organization has a software process and
technology capability to allow it to develop or capitalize on the best available
technologies in the industry. Selection and transfer of new technology into
the organization is orderly and thorough. Technology innovations are tied
to quality and productivity improvements of the organization's standard
software process.

Process Change Management - The organization's staff and managers are
actively involved in setting quantitative, measurable improvement goals
and in improving the software process. The organization's standard
software process and the projects' defined software processes continually
improve. The organization's staff and managers are able to use the
evolving software processes and their supporting tools and methods
properly and effectively.

58 * Capability Maturity Model CMU/SEI-91-TR-24


