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for

Languages Beyond Ada and Lisp

1. Task Objectives

The Prism effort was born out of frustration with the current state of the art of
software engineering. Little progress has been made in language design in the
last thirty years; despite the innovations made along the way, Ada and Lisp are
basically very similar languages. The diffusion of software innovations through
the software economy is excruciatingly slow, due to the myriad barriers between
the pieces of the programming environment (languages, versions, operating
systems, &c.) The goal of Prism was to devise ways to extend programming
languages to encompass more of the total environment, permitting those barriers
to be bridged more easily. (See "Towards Full Spectrum Languages.")

2. Technical Problems

Early in the Prism project we concluded that a major source of the barriers in
software engineering is the formalist model underlying the entirety of current
language design. Although it was not until near the end of the project that we
coined the term "informalism," the major outlines of informalism were clear
from early on. In contrast to formalism, informalism is semantically-based, in
that it assumes that the transformations to be applied to symbols can depend in
an essential way upon the interpretation of those symbols; it is open-ended in
that the meaning of an expression is always open to change; and it assumes
that its data are intrinsically incomplete and inconsistent. The major technical
challenge faced by the project was to devise implementation mechanisms for
such a system. (See "A Conceptual Overview of Prism" and "Proceedings of the
Workshop on Informal Computing.")

3. General Methodology

The methodology pursued by the Prism team consisted of four major techniques:
1. A wide-ranging review of current thinking about the problems being tackled,
including attending conferences and talking with consultants. This review was
deliberately not limited to computer science research, but covered relevant
developments in the philosophy of language, cognitive science, and linguistics.
(See "A Bibliography for Prism.") 2. A series of white papers setting forth the
principle conclusions of the research effort. 3. A language design effort which
incorporated the innovations suggested by the research. 4. A workshop which
brought together like-minded members of the community and exposed the Prism
conclusions to a broader audience.



4. Technical results

The Prism effort produced three major technical results. First, an epistemic,
property-based type system which overcomes many of the limitations of
traditional, extensional type systems, and allows the treatment of intensionality,
a necessary first step towards raising the level of programming languages.
(See "Epistemic Type Systems.") Secondly, a representation mechanism which
generalizes all other known representations and permits a hybridization of
connectionist-style processing with symbolic-style processing (see "Ideographs.")
Finally, a language design which incorporates the property-based type system
into a programming language based on current advances in computational
linguistics (see "Unnatural Languages," "Reply to I. D. Hill," "Prism 0.5,"
"Prismatic Samples," and "Prism Primer.")

5. Important findings and conclusions

The Prism project has generated a wide variety of new ideas and approaches to
solving traditional problems along the whole spectrum of formal systems. Many
of these innovations are still in the formulative stage, but are already beginning
to find application. For example, property-based types provide a way to explain
other type systems, object-oriented inheritance, and derived types, all in a
common framework. The linguistic mechanisms of Prism can "e used to provide
more expressive and less cumbersome,.programming languages. The ability to
separate abstraction from representation satisfies akey requirement for design
reuse, and will likely be applied initially in a specification language. The
mechanisms employed in the effort can be refined to provide a common framework
that eliminates the duplicative developments in computational linguistics. The
methods developed for exploiting incompleteness and managing inconsistency
can be used as the foundations for scalable software, for reasoning about the
physical world, and for developing proof procedures with lower performance
cost for underconstrained systems.

The effort taken as a whole constitutes a vision of and a feasibility study for a
new domain of informal system$. Informal systems represent a new approach
to real-world problem solving using computers: one that recognizes that complete
descriptions of the physical things are impossible, that meaning must be
grounded with an interpretative semantics, that the requirement for
completeness drastically- restricts the applicability of formal methods, and that
there can be sound automated reasoning systems that support and exploit partial
descriptions, cope with inconsistent specifications, and distinguish between
formal models and the objects they represent.

The interdiciplinary nature of interest in informal systems arises from two
independent causes. First, informalism derives from shared frustrations over
the inherent limitations of formal methods, whether the field be software
engineering, linguistics, psychology, or philosophy. Secondly, informalism offers
a potential for interdiciplinary computational interoperability previously
obtainable only in nonautomatable human reasoning.

6. Significant Hardware Development
None
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Towards Full Spectrum Languages:
A New Approach to Software

Deborah A. Baker
David A. Fisher
David A. Mundie

Jonathan C. Shultis
Frank P. Tadman

Incremental Systems Corp.
319 S. Craig St.

Pittsburgh, PA 15213 USA

AbgraeL

There have been few if any revolutionary advances in practical programming
languages over the past 25 years. The key characteristics of languages today are for
the most part indistinguishable from those of the early 1960's. Despite apparent
advances in language design, compiler construction, development and maintenance
tools, software engineering practice, database technology, and hardware reliability
and performance, the development and maintenance of reliable and eificient
software for large, long-lived, continuously changing applications remains an
unachieved goal. This is the problem of programming-in-the-large.

As things stand, language technology is isolated from design technology,
which is isolated from environment technology, which is isolated from database
technology and so forth The requirements, design, implementation, analysis, and
testing of software are all specified using different tools which cannot communicate
and cooperate with each other.

The solution lies not so much in more or improved technology in any of these
areas, but in providing an integration framework which can be used to exploit
existing and emerging technology. We need mechanisms to give users (i.e.,
application developers and researchers alike) access to the best of existing
technology. In particular, we need an integration mechanism to allow the various
component technologies to cooperate and build on each others' strengths, and those
of their predecessors.

Languages have always been the most effective means of integration. We
therefore propose to extend programming languages to the full breadth of software

eCopyright, Incremental Systems Corporation. 1987.
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concerns. This effort will develop a language which goes far beyond the capabilities
of currently available programming languages. It will develop a full spectrum
language which encompasses not only implementation issues, but the
requirements, design, analysis, measurement, and environmental aspects of
software development and maintenance. It will develop a language capable of
absorbing new software technology dynamically as it becomes available.

Success in the effort will depend on our ability (1) to engineer a usable and
easily understood specification mechanism based on abstract types, (2) to identify a
small set of efficient and composable primitives adequate to encompass the full
intended scope of the language, and (3) to integrate these into a simple and practical
full spectrum language.

Success in the effort will mean that the entire life cycle of an application can be
managed without leaving the language. The effort has high likelihood of success
because the solution is much simpler than may first appear. The number of core
concepts in environments, for example, is actually quite small because many of the
concepts of extant environments are borrowed from (and therefore duplicative of) the
concepts of programming languages. By combining environments technology and
implementation languages in a single mechanism, we eliminate the duplication
and along with it much of the apparent complexity of current software technology.

L The Problem.

Over the years, the boundary between the automated and manual portions of
the software development task has been continually pushed to higher and higher
levels. This has always been done by capturing the best automatic implementation
technology of the day in a class of languages and related tools, which then define the
boundary. We contend that this process is fundamentally flawed, and is responsible
for many of the ills which beset the world of software today. To understand how we
reach this conclusion, consider the historical development of programming
languages.

When software was implemented in machine language, the mappings from
symbolic names to machine addresses were considered specifications. The
programmer had to correctly and reliably translate those specifications into a
formal implementation described in the machine language of the target computer.
It was soon realized that many aspects of the programmer's task of mapping
symbolic names of instructions, registers, and machine addresses to their machine
representations could be automated with considerable advantages in both
programmer productivity and reliability of the resulting implementation. Most
importantly, the programmer was freed from concerns of the details of address and
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operation code translation to concentrate on the more important aspects of software
design.

When software was implemented in assembly languages, the formulae to be
implemented were considered specifications. The programmer had to correctly and
reliably translate those specifications into a formal implementation described in the
assembly language. It was soon realized that many aspects of the programmers'
task of translating formulae into sequences of assembly language operations could
be automated with considerable advantages in both programmer productivity and
reliability of the implementation. Most importantly, the programmer was freed
from concerns of the details of the target machine instruction set architecture to
concentrate on the more important aspects of software design.

Throughout the 1960's and 1970's we learned how to automate more and more
aspects of the data, control, and algorithmic structure of program specifications
with corresponding enhancements in the level of programming languages. At one
end of the spectrum are a wide variety of very high-level special purpose languages
where, by specializing the language and limiting its breadth of application, it has
been possible to provide very high levels of automatic translation. At the other end of
the spectrum are broad-based languages such as Ada®1 and Common Lisp which
provide a variety of abstraction mechanisms which can be used to implement
software in a large number of application areas. The continued raising of the level of
both special purpose and general purpose languages has permitteci more and more
of the implementation decisions in applications to be assumed by the language
implementation with considerable advantages in both programmer productivity and
reliability of the resulting implementations.

Even more recently, logic and transformational programming have come to the
fore with the realization that many aspects of the programmer's task of translating
specifications into algorithmic processes could be automated with considerable
advantages in both programmer productivity and reliability of the implementation.
Most importantly, the programmer is freed from concern about the details of the
algorithmic processes required in the implementatcin to concentrate on the more
important aspects of software design.

The raising of the level of programming languages has been made possible by
first learaing how to formally specify more and more aspects of a software design,
and then learning how to automate the translation of more and more of those
specification mechanisms into operational computer programs. This process has
made programmers more productive by freeing them from those aspects of the
implementation which can be automatically translated from higher-level

1Ada is a registered trademark of the U.S. Government, Ada Joint Program Office (AJPO)



4

specifications, by significantly raising the level of implementation specification
required of them, and by allowing the implementation description to capture more of
the engineering abstractions ur~l by the designer.

Yet despite all these gains, the process of raising the level of programming
languages has been an increasingly slow, evolutionary process that has not led rand
will not lead to any revolutionary gains in productivity or reliability of software
design, implementation and maintenance. Most of the gains evident today had
already been accomplished by 1960. The languages of the mid 1980's are for the most
part characteristically indistinguishable from languages such as Fortran and
Algol-60. The limited gains of the past 25 years have been at great expense. Even the
slowest machines today are nearly 100 times faster than the fastest machines of
1960, and yet, in many applications, we are barely able to obtain 10 times the
throughput. Languages such as Common Lisp permit us to address problems that
were inconceivable 25 years ago, but only with such enormous consumption of
machine resources that the language can seldom be used other than for research
and prototyping purposes. Ada offers the potential for efficient use of machine
resources, but at the expense of very early binding times and a static run-time model
which greatly limit its applicability.

Even worse than the inability of this evolutionary process to make further gains
of great significance is the fact that the process itself holds down the level of
programming languages by limiting them to formal specification mechanisms and
techniques which compiler writers know how to implement (efficiently) at the time
of language design.

The assumption that a language must have a fixed definition leads to
programming languages (e.g., Common Lisp and Ada) which remove many
important aspects of the design of systems from the formal specification and places
them inside the compiler where they cannot be seen, controlled, or modified by the
application developer.

Furthermore, the rationale for this method of language design incorrectly
assumes that the existence of efficient implementation technology will result in its
incorporation in actual compilers. The latter point is most conspicuously illustrated
by the Ada community, where it is clear that the technology exists to provide better-
quality compilers (in terms of reliability of translation and execution performance)
than with any previous operational programming language, and yet the available
Ada compilers produce target code which is notoriously inefficient when compared
with compilers for most of Ada's predecessor languages.

Other facets of current language technology are conspicuously absent from
many widely used languages. For example, despite the long-standing recognition of
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the advantages of strong typing, user-defined types, information hiding and other
abstraction mechanisms, especially in large, complex, and continuously changing
applications, they are almost absent from Common Lisp. Much greater steps
backward are evident in C where no pretension of an abstraction facility is made.
Instead the world of computation is reduced to Fortran-level desciptions of
primitive machine operations acting on integere, and sequences of bytes.

The functional, rule-based and object-oriented programming language
paradigms have not provided the answer, either. Certain information, such as
inheritance rules in Smalltalk, or the resolution algorithm in Prolog, are fixed,
inaccessible, or only indirectly accessible.

Even the wide spectrum languages span a fixed range, from a fixed formal
specification language to the details of implementation. Moreover, they do so with a
fixed set of mechanisms; for example, multiple inheritance is not, and cannot be, a
concept in CIP-L [Mol84]. Worse yet, those fixed mechanisms are inadequate for
real applications; no existing wide spectrum language provides mechanisms for
dealing with such things as persistent data or distributed processing.

Thus we have seen enormous advances in software technology over the past
twenty years, but little of that technology is accessible in any usable form to
application developers and maintainers. Most of it represents research results that
have never been incorporated into practical tools. Practical tools that do exist are
inaccessible because they are tied to a particular language, machine or operating
system. What useful tools there are, are large monoliths which can seldom be used
in cooperation or combination with other tools.

2. Towards a Solution.

We believe that significant progress requires a comp) Aely new vision of
Goftware development. The key to achieving this vision is what we call a full
spectrum language, one which provides a base for technology development and
integration instead of fixed specification and implementation mechanisms. A
sketch of the goals of full spectrum languages and how they relate to wide spectrum
languages is presented in section 2.b. Jn section 2.c, we discuss the key technical
requirements for full spectrum languages. The emphasis is on showing how
integration of critical technologies is enabled by lifting some of the fundamental but
unnecessary restrictions of current languages. In section 3, we discuss the specific
activities we plan in pursuit of a practical full spectrum language.

2.a. The Vision.
A number of us have had a vision since the late 1960's that the world of



6

computation can be different. The vision is of a world in which all aspects of the
requirements, design, and implementation of an application are captured in an
automated system, and in which new technology can be gradually captured and
exploited by the system. We foresee a world in which limitations on our ability to
mechanize translations will not limit our use of effective specification mechanisms,
and in which the software designer is allowed to contribute to the design at all levels
of abstraction, but is required to contribute only at enough levels so that the
specifications, in combination with the automated system, are sufficient to produce
a correct solution. As a result, new software technology will actually be transferred
to practice, and new software tools will typically be better than their predecessors in
some way, and more importantly will be as good as their predecessors in all ways.

2.b. Full spectrum Languages.
Full spectrum languages offer the hope of ushering in such a world by

exploiting a variety of existing technologies as well as incorporating new technology
as it becomes available. They offer the potential for capturing requirements, design
and implementation in a common formal framework to the advantage of all manual
software activities and automated tools. Finally, they offer the potential for growth to
new applications, to new design and specification technology, and to new
implementation technology without having to develop additional languages.

Our concept of full spectrum languages rests on the hypothesis that all
languages can be composed from a relatively small number of semantic fragments
according to certain laws of combination. Soundness of a language stems
ultimately from the stability of its structure, according to those laws. Hence we see

language design as being akin to chemical engineering, or molecular physics.

A full spectrum language is one that is based on the semantic fragments and
laws of combination. More importantly, these elements are exposed and available
so that the language can be expanded and adapted in response to our increasing
understanding and knowledge of software processes. As with natural languages,
new notations and forms of abstraction can be incorporated in the language as
needed, thereby preventing needless complexity from crippling our ability to solve
problems. Also like natural languages, old concepts, notations, and results can be
reinterpreted in new contexts, leading to new unifying abstractions. The practical
consequence of this capability is dramatically increased potential for sharing and
reuse of software knowledge.

Our ideas about full spectrum languages have evolved from our attempts to
formalize and consolidate the software development techniques we have been using
for building a distributed Ada language system over the past three years.
Specifically, the Ada compiler is organized around a collection of knowledge bases
containing formal information about a set of abstraction mechanisms and
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specialized instances of those abstractions. Some of these define general concepts
and mechanisms of computation. Others define specific features of the Ada
language, in terms of these general concepts. Still others contain general
information about how to derive implementations (and, ultimately, target code) from
the combination of Ada source code and the compiler's knowledge of Ada, the target
machine, flow analysis, optimization, and so forth.

Our experience with characterizing all parts of the language system in this
uniform framework, although somewhat ad-hoc, gives us great confidence in the
soundness of the basic ideas of the full spectrum language approach to software
engineering. Moreover, we have witnessed many of the benefits which we are
projecting for full spectrum languages within the narrow confines of the Ada
project, including the continual generalization of mechanisms and concepts to
broaden their scope of applicability and consequently reduce the size and complexity
of the compiler. At the current stage of development, the compiler takes only around
20,000 lines of formal description, and produces code that is comparable to or better
than that produced by many commercial optimizing compilers for much simpler
languages, such as C and Pascal!

Full spectrum languages are quite different from wide spectrum languages as
we know them [DGL*79,DSS81,Che84,GLB*83,Mol84,SS83,Wil83]. A full spectrum
language is a vehicle for software technology integration. As such, it need not
initially implement any specific technology beyond what is required for a modest
core of primitives and integration mechanisms. It must also provide an adequate
set of abstraction mechanisms. even if their implementation cannot be fully
automated now. The primitives must be adequate for synthesizing the technology
required by any application, and the integration mechanisms must allow any
implementation technology to be absorbed by the language (without change to the
language) so that it can be shared and reused.

Wide spectrum languages have different, though complementary, goals. They
seek to integrate existing technology to allow specifications at a variety of levels,
together with means of analyzing and transforming such specifications both within
and between levels. Such technology is very promising, and may eventually lead to
significant gains in programmer productivity and reliability of implementations.
However, as long as such technology is couched in terms of fixed specification
languages, trans-)rmation technology, and implementation mechanisms, software
practice will not be able to absorb further advances, or economically exploit existing
implementation technology. If wide spectrum languages were developed within a
full spectrum language, however, each could be of great benefit to the other.

As a simple illustration of how a full spectrum language might be applied,
suppose a user wants to use equational program specifications, and suppose that the
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type "equation" already exists in the technology library, but there is no existing
means of processing a set of equations to get an implementation. The user extracts
the relevant algorithms from the literature on equational programming, and writes
a function taking sets of equations as input and yielding sets of functions as output.
Suppose now that another user has dev .loped an equatinal simplifier and installed
it in the library. The first user can then write applications uing equationo as the
source, and pass them through the simplifier to perform some optimizations bafore
translating them to operatiomil implementations. Still later, another user adds a
facility for verifying existing implementations against equational specifications,
thereby enabling existing applications to be optimized using the previously developed
equational optimization technology.

Notice that there is no language requirement that any exis.ing or future
application use any of this equational technology, nor would any user need to learn
about it in order to continue using the language as before. But afl of it would be
available to any programmer who needs it. Moreover, parts of an application might
use some of it, and other parts not, at the discretion of the application developer.
Most importantly, however, the language implementation is completely indifferent
to whether it gets the semantics of a function by compiling a function body or by
compiling a set of equations, or by any other means, because all it cares about is the
internal semantic representation of functions, which is independent of the surface
features used to generate them. The implementation is also indifferent to the source
of the transformation rules it applies during optimization, so the user's equational
transformations are readily integrated as part of the language implementation. The
implementation is also indifferent to the source of the program analysis procedures
it carries out to verify the semantic integrity of programs, so the equational
specification checker can be integrated as an extension of the usual type-checking
mechanism.

Insofar as a full spectrum language enables the formal expression of
programming knowledge and has some capacity for "learning", it is a knowledge-
based system. It differs from typical knowledge-based systems, however, in that its
knowledge is formalized within a strong type discipline. Of course, informal
knowledge can still be represented and manipulated by programs written in a full
spectrum language, but such knowledge cannot be fully integrated with the
language system itself. Put another way, the knowledge base of a full spectrum
language consists only of knowledge which is formally expressed and established.
There is also a big difference between representing knowledge about things which
cannot actually be manipulated and understanding those which can. For instance,
one can easily represent knowledge about concurrent processes in a knowledge
representation language like KL/ONE, but no amount of effort will enable a KJ/ONE
programmer to create a concurrent task, because concurrency is not a basic
component of KILONE.
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Full spectrum languages can also be contrasted with the extensibie language
developments of the late 1960's and early 1970's. Several of the extensible languages
(most notably PPL at Harvard) were quite successful as programming languages,
but none of them were successful as extensible languages. Their mistake was to
divide the programmer's task into two activities having a very differznt character
and set of concerns: defining syntactic and semantic extensions tailored to the
application domain, and writing the application, using those new featu-es in
combination with the preexisting ones. Because of this sharp division, the skills and
knowledge required for one task could not be readily applied to the other, and it was
found to be psychologically impossible to think effectively about both tasks
simultaneously. Consequently, the potential benefits of the meta-features were
ignored in favor of getting the job at hand done. In contrast, a full spectrum
language provides a uniform system in which there is no distinction between the
facilities for describing applications and those for describing the descriptions.

2.c. Technical Requirements for the Language.
Any effort to develop a full spectrum language will be primarily one of

understanding, interpreting, coordinating, and exploiting large amounts of existing
theory and practice from a variety of div.irse areas, so that that existing knowledge
can be integrated and engineered into the design of a sound and practical full
spectrum language. It will involve min'mal development of new theory, but will
require interpretation of results from a variety of domains including formal types,
programming languages, program analysis, design and requirements
specification, programming environments, configuration control, object-oriented
systems, compiler construction, operating systems, and databases. It will require
considerable analytical and empirical investigations of the effectiveness of various
technologies and of how they can be used in combination. The design effort will
require considerable engineering skill in both language design and compiler
construction.

In what follows, we begin by cla-fying the intended application environment of
our language, stating a number of ar: in, s we have made about that
environment. Following that, we discuss L.. general requirements of the language
design. Lastly, we enumerate some of the specific design goals dictated by the
application environment and the general requirements.

2.c.i. The Application Environment. We make the following assumptions about
the applications for which the language is intended. Applications are large and
may involve hundreds of thousands to many millions of lines of code when
implemented in conventional programming languages. Applications will involve
many people over many years in their design, implementation and maintenance.
Applications will continually undergo changes to their requirements, functionality,
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equipment configurations, and design throughout their lifetime. The domain of
concern for a full spectrum language, like that of its users, cannot be limited to the
internals of a single program or compilation unit, but instead must encompass the
entire environment of application development and execution. Neither can the
domain of concern be limited to a single stand-alone infinitely reliable uniprocessor,
but rather a dynamically changing world of heterogeneous multiprocessors often
without shared memory, connected through networks and removable media, and
geographically dispersed. It is assumed that the hardware and software
components of a system are often unreliable, that the data entering systems are
often erruneous, and that applications must function effectively in the presence of
such problems. It is assumed that applications do not end at the edges of a
program, and instead involve management and control of data and resources that
persist beyond the individual programs that manipulate and modify them. It is
assumed that applications may run forever, that they must be updated and modified
while they are running, and that system and data integrity must be maintained in
the presence of such change. Note that these assumptions are consistent with any
programming-in-the-large application, and are indistinguishable from what DoD
calls embedded computer application,.

2.c.iiL General Requirements for the Language. The technical requirements of
a full spectrum language are in many respects similar to those of any other
programming language, so in this section we limit ourselves to making an
observation and then propose a small set of specific goals for a full spectrum
language.

The observation is that a full spectrum language must be concerned not with
satisfying the requirements of any given application or set of applications, but
instead with ensuring that requirements of any application, whether foreseen or
not, can be expressed in the language by its users once its design is completed.
Thus, the requirements must reflect (a) the needs common to all applications and (b)
the need to encompass unforeseen user requirements. The requirements should not
dictate features specific to particular applications or extant technology.

Given our assumptions about the application domain, it must be possible to
develop the technology of wide spectrum languages in a full spectrum language.
When this is done, however, the width of the spectrum maust be limited only by our
ingenuity, not by the language itself. The demands of extendible wide spectrum
technology thus impose two broad requirements on the design of a full spectrum
language. The language must be simultaneously a specification language, an
implementation language, and a programming environment. It must also provide
binding mechanisms which allow it to be open-ended, permit incomplete
specifications at all levels, and enable the implementation to detect and exploit
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binding time information to gain efficiency.

A full spectrum language must be broad as well as wide. That is, not only
must it span many levels of abstraction, it must n:so cover all aspects of
applications. Current wide 3pectrum languages ignore or deal only inadequately
with issues of concurrent, real-time, and distributed processing, error detection and
recovery, and persistent data. These concerns impose a second ;et of requirements
on the design of a fl,1l spectrum language. Most prominently, to be practical and
usefu the language's domain of concern must include the entire environment of
apphation development ard execution. It must incorporate a pervasive concLrn for
the integrity of everything within that domain. And, he language must have a
generic organizational capability.

2.c.iii. Specification Mechanisms. A full spectrum language must be able to
capture the goals and intent of its users in a way that can be understood and
exploited by compilers and other automated tools for the language. Over and above
the implementation details of an application, a full spectrum language must be
adequate to describe its goals, abstract design decisions, and execution environment.

Goals include such things as performance constraints, reliability, and
optimization criteria, in addition to functionality.

Abstract design decisions include various kinds of commitments to such things
as the decomposition of t_e solution into components, Iheir logical properties,
representation, and the engineering rationale for thosc decisions, including
relevant analyses of alternatives.

Execution environment specifications include expected opersti Lg
characteristics, including target hardware and software properties, as well c
expncted ranges of external data, what action to take for out of range data, aurd 'he
exp¢ ted frequency of bad data. To take one example, a certain automated teller
systtm knew enough to check the validity of bank cards and to confiscate cards with
invalid numbers, but did not know enough about the application to recognize and
report, an exception when an iiordinate number of invalid cards appeared. Thus,
the machine confiscated 2000 cards in less than two hours [Neu85]. We need to be
able to describe enough of the expectations of an application's environment that a
compiler can automatically provide checking and reporting of statistically
unexpected situations.

The point is that the language must enable users to express information
serving a variety of purposes. Moreover, the variety and details of specifications are
likely to shift continually as new uses for specifications are recognized and the
corresponding technologies are invented. As a consequence, it is necessary to allow
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information that is usually kept together by syntactic conventions to be factored into
several related pieces and assembled as needed. It is also necessary to allow new
kinds of information to be introduced as factors in the description of applications.

The current practice in programming languages is to either force certain
information to be presented together or to force it to be presented separately. Such
restrictions are usually imposed by the concrete syntax of the language. In Ada, for
instance, a package is factored into a specification and a body, whereas the
declarative part of a package body cannot be separated from its sequence of
statements. The factorization of packages has great advantages, for instance in
allowing compilation units that depend on a package to be compiled before the
package body is defined, and making it unnecessary for them to be recompiled if the
body is changed.

However, Ada imposes some restrictions on packages which limits their
utility. For instance, there can be at most one body (i.e. implementation) for any
package, instead of multiple bodies which could be selected based on efficiency
considerations in the application. Ada does not allow additional information, such
as axiomatic specifications or performance characteristics to be attached to
packages. Instead, some external, difficult to integrate, mechanism such as Anna
[LV85] annotations must be used.

Thus the Ada package specification and body are simply two special syntactic
forms for specifying particular kinds of semantic information about a certain kind of
semantic object. Semantically, a package defines a collection of objects within a
scope which regulates their visibility and determines the access of the entities
defined within the package to each other and to entities defined in other scopes.
There are any number of alternative methods whereby a user could supply
additional semantic information to the implementation, and no technical reason for
limiting them to a predetermined set of mechanisms. For the user to exploit the
alternatives, however, the language must provide access to the basic operations -
constructors and selectors - on objects of type package. Following this line to its
logical conclusion, all semantic concepts of the language must be first class citizens.

When programmers are not restricted in the method of synthesizing semantic
components of a program, it becomes immediately possible for them to factor that
information in any way. In particular, applications can be specified using any
collection of specification languages and mechanisms, provided that these
mechanisms include the means of collecting and deriving the information required
to develop an implementation from those specifications.

By use of such specification mechanisms it becomes possible to specify
requirements, fnctionality, performance, design and optimization criteria and
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decisions, and any other information required to support automated or manual
ioftware development techniques. For instance, it should be possible to attach
complexity types to code fragments, composing them by the rules of order arittetic
to document and automate, insofar as possible, analysis of the asymptotic
performance of applications.

Put as simply as possible, a language can support arbitrary modes of
specification by not imposing any syntactic restrictions on the form of
specifications, while providing access to, and enforcing restrictions on, the semantic
structure of all concepts.

In order to relate specifications to computation, the core concepts of the
language must include basic implementation mechanisms such as function
application, assignment, and rendezvous. The essential requirement here is that
the language be operationally complete, in the sense that it must provide access to
all of the important operational capabilities of computing machines, now and for the
foreseeable future. In particular, there must be synchronous and asynchronous
mechanisms for concurrent programming, communications, access to hardware
exceptions and interrupts, and mechanisms for real-time programming, including
timeouts based on deadlines, in addition to the more common mechanisms of
sequential processing.

Finally, there must be mechanisms for managing and accessing information,
and controlling its definition and application; these are the underlying mechanisms
of programming environments. Semantically, what is required are the building
blocks underlying the visibility, extent, and inheritance rules of languages, but
broadened to include the needs of persistent data, in combination with the control
mechanisms cited above.

2.c.iv. Binding Mechanisms. The open-endedness of specification mechanisms
is only one example of the importance of binding mechanisms in a full spectrum
language. We discuss some others here.

A full spectrum language must support incomplete specifications. For
instance, it must be possible to compile and execute a program even if it is in some
respects incomplete. The desire for incomplete specification arises from three
sources. First, it must be possible to test and exercise applications before they are
fully designed and implemented.

Second, it must be possible to avoid overspecification when a design or
implementation decision is arbitrary. Existing programming languages require
that programs be complete. Consequently, it is impossible to leave decisions to the
compiler even though the compiler may be able to make a better choice.



14

Finally, as the level of languages grows, programs in a next generation
language can be viewed as incomplete specifications for programs in languages of
the previous generation. We wish to provide a language system in which the level of
use of the language can grow without having to invent a new language (or class of
languages) for each gain in level.

We view incompleteness merely as an extreme form of late binding. That is,
the language will not require anything to be bound unless and until it is needed by
some computation. When a demand is generated for an unbound entity, an
exception is raised which can be handled either by the user (perhaps responding by
creating an appropriate binding and continuing) or by a system default action.

The ability to defer commitments indefinitely is especially important for the
language qua programming environment. Not only do the details of
implementations change over time, but so do the characteristics of the devices they
are controlling, the machines on which they are implemented, the functional
requirements of the application, the general character of their execution
environment, and their performance goals. Not only must there be support for
orderly change, but the changes must often be accomplished while the
implementation remains operational. We cannot shut down an electric power
network, a nuclear power plant, a medical life support system, or the environ-
mental control system of a space station while software changes are being made.

On the other hand, certain components of such systems often have severe
reliability and performance requirements, and are typically a critical part of a
larger system whose primary purpose is not computation, whence the term
"embedded computer system". To meet such performance requirements, we must
have compilers which can recognize and exploit early binding decisions so that the
application does not pay a performance penalty for unused generality (i.e. late
binding capability).

Good general techniques for recognizing early binding opportunities have
recently been developed [HY86,Jon87] though their applicability to realistic
languages has yet to be proved. However, it is clear that effective detection and
exploitation of early binding opportunities requires additional information to be
supplied to the compiler by the programmer, since without such information
binding time analysis is ineffective or intractable.

2.c.v. The Domain is the Environment. Probably the greatest impediment to
effective automated systems is lack of accessible information about the application
and its intended execution environment. Conventional programming languages
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limit their scope of concern to implementation issues that lie within a particular
compilation unit. Applications, on the other hand, must be concerned with data
objects that persist beyond the invocations of the programs that create and
manipulate them, and must deal with execution environments having unreliable
hardware, software, and communications. They must cope with multiple
processors, distributed networks, and dynamic changes in their requirements,
design, functionality, equipment configurations, users, data characteristics, and
implementation hardware. These aspects of applications are currently managed
outside the program with only the resulting implementation decisions presented
within the program. A full spectrum language must encompass the entire
environment of the development and operation of applications.

We can identify certain semantic requirements dictated by these concerns,
such as mechanisms for concurrency, persistent data, and distribution. Others,
such as describing hardware configurations or the role of users, are less clear, as
are the ways that such information can be used. An important goal of our research
is therefore to clarify the issues in this domain and understand their implications
for language design and implementation.

2.c.vi. Pervasive Concern for Integrity. Integrity of all aspects of applications
must be a pervasive goal for a full spectrum language. It matters little how good the
other aspects .of an application are, or how fast it runs, or how much it
encompasses, if it produces results that are incorrect or unreliable.

By integrity here we mean something akin to the metaphor of "authentication"
with regard to type systems [Mor73]. Specifically, the language must provide a
strong, enforced, typing mechanism which applies not only within individual
programs, but among programs. Type integrity must be maintained even when
data is shared among programs and persists beyond the invocation of the program
which created it.

Another form of authentication applies to the integrity of implementations. We
take the position that all hardware and software systems are inherently unreliable,
and that applications must be designed, implemented, and executed with that
understanding. Thus languages and compilers must provide effective error
detection and recovery mechanisms. Although a variety of execution errors can be
detected and handled by default mechanisms, full integrity of application data
cannot in general be guaranteed in such recovery. Consequently, applications must
not be denied access to information about any detected errors, and applications must
be informed of any errors which may have corrupted their data.

Finally, a full spectrum language must allow mechanisms for authentication
(in its usual sense) to be built. It must be possible to provide useful and effective
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mechanisms which safeguard the system from deliberate or accidental corruption
to the application properties of protection and security.

2.c.vii. A Generic Organizational Capability. Any language which
encompasses the environment beyond the bounds of individual compilation units
and applications must support the organization and management of large
quantities of persistent data. There must be a mechanism for organization and
retrieval of such data from the persistent data store. The organizational
mechanism (i.e., a logical directory system) must be independent of the types of data
stored in it, must be capable of housing values of user-defined types, must be
independent of any physical organizational structure, and must be compatible with
disjoint and geographically distributed implementations whether of networks or
removable media. The directory mechanism must permit logical sharing with the
same data appearing in multiple directories. It must be adequate for supporting
user-defined organizational mechanisms, as well as a program library mechanism
for the language itself. It must provide mechanisms for efficient sharing of and
concurrent access to data. It must provide mechanisms for control and
management of the physical location of data on peripheral memory and removable
media.

Note that neither conventional file systems nor database management systems
satisfy these requirements. They tend to be very limited in the types they support.
Their logical organization tends to be bound to the physical organization of their
implementation, and is usually optimized for very specialized retrieval
characteristics which cannot be modified by the user. They often have inadequate
concern for data and type integrity. And, finally, they are not well integrated with
programming languages.

3. The Agenda.

Our agenda for exploring the realm of full-spectrum languages involves four
interrelated activities: a) investigation of key research issues, b) design of the
language, c) prototype implementation of the language, and d) review and
evaluation. The investigations into key research issues will answer the difficult
scientific and engineering questions required for the language design and prototype
implementation. The questions themselves will be iteratively refined as they become
better understood through feedback from the design and implementation processes.
The key research issues and language design efforts will both involve empirical
investigations. It is expected that many of the experimental results will be
incorporated either directly or with modification into the implementation. The
prototype itself will be the primary test of the feasibility, and measure of the cost, of
the language constructs.
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3.a. Investigation of Key Research Issues.
Most of the key research issues are fairly well understood in isolation, so we

expect a minimum of theoretical work ip this project. The difficulties arise when
the existing results are integrated with other issues in the design and
implementation of a language, when the simplifying assumptions of the original
work must be removed, and when the requirements are extended to include those of
generality and efficiency. On the other hand, we do expect a fundamentally new
concept of software development to emerge as a result of our efforts, one which will
undoubtedly raise many new theoretical questions.

Some of our current thoughts on several of the key research issues are given in
the following subsections. They arise directly from the language requirements set
forth above. In particular, research into abstract type mechanisms will help meet
the requirements for a specification/implementation language and for open-
endedness. Concurrency and real-time issues must be resolved to allow the system
to expand its domain into the environment. Error detection and recovery
mechanisms are needed to ensure system integrity. Finally, research into the
persistent data problem is needed if we are to meet the requirements for a generic
organizational capability and persistent type integrity.

3.a.i. Abstract Type Mechanism. A full spectrum language must deal with all
of the concepts involved in the engineering of a software product. The primary
purpos, of the abstract type mechanism is to facilitate the formal definition of
concepts and to ensure that concepts are composed in a coherent manner. The
formalization of concepts provides, among other things, important information that
can be exploited by the language system to optimize applications. We use the term
"concept" in this section to avoid the restricting connotations a reader might have
for any of the terms "type", "abstract type" or "abstract data type".

The design of a type system for a practical full spectrum language has to strike
a balance between formal power and elegance, on the one hand, and effective
exploitation of current technologies, on the other. Ensuring that we are not locked
into current technology requires certain essential features of a ra4her formal,
theoretical nature. Effective exploitation of current technology requires that these
key features be embodied in a set of core concepts which cater to the practical needs
of software engineering, language implementation, and computer architecture.

We expect that the core concepts will continually be supplanted and augmented
by newer ones, in a completely transparent way. Old applications need not be
modified or rewritten; new applications do not have to use the old technology.
Achieving this kind of unbounded upward compatibility is the driving force behind
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the design of the formal . pects of the type system.

The practical aspects of the design are informed by our experience as software
system designers and implementors. In practice, we take Ada as the starting point
for language design, because Ada deals with more important issues for
programming-in-the-large than any other current language.

The essential theoretical quality of the type system is that it must be reflective.
By this we mean that the core concepte are defined internally (i.e. within the
language, in terms of the other concepts of the language). It follows from this that
all concepts will be first class citizens (i.e. the type system will be higher-order). It
also follows that all of the rules of composition (type formation, computation,
deduction, etc.) must be first class (i.e., composition is itself an abstract concept; this
gives us a categorical outlook).

What is a concept? It is a collection of information. An Ada package, for
instance, is a concept. The package specification provides information about the
external interface to the package, and the package body provides information about
how the entities declared in the specification might be implemented.

All such packages are in turn examples of the higher-level concept package.
This concept defines the rules of formation for packages in general, including the
relationship between specifications and bodies.

The package concept is representative of the best technology for data abstraction
that was available at the time Ada was designed. However, we can now see that
several exciting capabilities are missing from the Ada language. There is no
technical reason why polymorphic type inference could not be applied to a package
body to automatically derive a package specification. There is no technical reason
not to allow more than one body for a given package, as long as the concepts used to
select representations when generating code can be extended appropriately. Nor is
there any reason to require a user-deimed body when it is possible to derive a
representation from an interface specification together with, say, an axiomatic
specification. Nor, for that matter, is there any technical reason not to allow
dynamic creation of packages and instances a la Smalltalk [GR831, perhaps with
multiple inheritance, too.

The point is that the concepts and information used to develop an application
should be constrained only by the available technology, not by the language. The
available technology is embodied in a collection of concepts, each of which is a
collection of related bodies of information. In a full spectrum language, the concepts
include the abstract notion of "concept", and ways of forming new concepts as
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integral extensions.

Our notion of concept is closely related to the Theory of Constructions (TOC)
[Coq85, Hue87], in that the formal properties of syntax (their "propositions") are
determined by a constructive semantics (their "proofs"). This is a very powerful, but
theoretical (read perhaps not practical) base. A similar notion underlies
realizability models in logic [Sco87]. However, our system is more powerful than
TOC in a number of important ways.

*The syntax of a concept can be any complex structured interface, not just a
proposition.

*All concepts are internalized; in TOC, the basic rules of construction are fixed
externally.

*As a result, new techniques for defining and manipulating concepts can be
introduced by the user.

*We provide a core of concepts which a. e important for practical software
development. Some of these, such as tasking and exceptions, have no place in the
simplified world of TOC. Others, such as assignment statements and control
structures, make the capabilities of real machines available to the user (TOC is
restricted to X-calculus to make it theoretically tractable). Still others, such as
packages and subprograms, are essential tools for managing the complexity of
large, long-lived, continuously changing applications. A possible list of core
concepts follows.

declarations types time
functions tasks scopes
packages exceptions discrete types
booleans arrays records
sets variables pointers
lists persistent data bindings (in, out, in-out)
numbers (integer, real, complex)

The concept concept2 described in this section will guide our research in
other areas. In particular, our investigations into concurrency, error recovery, and
persistent data are best viewed as type-theoretic investigations into the most
prominent concepts of the full spectrum system.

21t is well known that any system with a type "type" is logically inconsistent [Coq86,MR86].
This does not particularly bother us, however, since we do not impute any logical content to concepts
in general. Rather, logic is itself a concept, one which has many uses in software development. But it
does not rule us.
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3.a.i. Concurrency, Real Time, and Distribution. Concurrent execution is
required in many applications; it is also an increasingly important programming
paradigm, whereby a large task can be decomposed into smaller, communicating,
tasks. With concurrency come the issues of real-time behavior and the distribution
of applications across a collection of physical processors.

Most research in concurrent language constructs has concentrated on
operational mechanisms for synchronization and communication. These range
from low-level mechanisms like semaphores to higher-level mechanisms like
rendezvous. Abstraction and encapsulation of interacting agents have also been
studied, in a number of guises, among them monitors[Hoa74], extended CLU
classes[LAB*811, Ada tasks [ALRM83J, and CCS [Mil80].

As usual, new technology in these areas cannot be integrated into our current
languages because those few languages that have concurrency at all are limited to a
fixed set of primitives. In our full spectrum language we will have concurrency
types which can be composed and manipulated like all other concepts. With
concurrency types a programmer can specify the abstract temporal properties of
components, and type checking will ensure that temporal concepts are composed
only in meaningful ways. This will benefit concurrent programming by drastically
reducing the amount of analysis and testing required to validate concurrent
software.

A theoretical base for concurrency types is suggested in the recent work of
Girard on Linear Logic [Gir86]. We plan to cast these ideas in practical form,
drawing heavily on our own experience in the design, analysis, and implementation
of a distributed run-time system for Ada.

Our experience with distributed Ada has led us to formulate a number of core
concepts for concurrency. These include the separation of tasks and services
(entries); extending rendezvous to full traneactions (thereby allowing
communication between tasks engaged in a rendezvous); asynchronous
communication; task abstraction (similar to system abstraction in CCS); and
generalized mechanisms for task dynamics and sharing. Early versions of some of
these ideas are elaborated in [FW86, FM86].

In the area of real-time behavior, we have developed concepts of observation,
time, and reaction which can be used to specify arbitrary protocols for real-time
interactions. These concepts are the basis for our current implementation of Ada's
real-time components. We believe that most of the current confusion surrounding
the real-time features of Ada (cf. [VM86b]) can be eliminated through the use of
these concepts.
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In the area of distributed systems, the major issues are resource allocation and
sharing, error detection and recovery, and persistent data (including removable
media). These issues have all been discussed in the foregoing sections, with the
exception of resource sharing, which we shall discuss presently. The
generalization of these issues to distributed systems and integration into the
language will be the focus of our research in these areas.

In this effort we can draw on previous work in distributed databases and
operating systems for such things as deadlock detection, extended transactions,
rollbacks, dynamic reconfiguration, and so forth. The problem, as always, will be to
find the right basic concepts and integrate them into the language core.

The problems of resource sharing in a distributed system have never been
adequately addressed in a language. The mapping of software to hardware
components is constrained by the operating environment requirements of the
software. In particular, the patterns of resource sharing within the software
determine how the software can be partitioned.

If two tasks share a variable, for instance, they should be allocated on
processors that share a memory, because the only justification for shared variables
is high performance, which can never be the result of simulating shared memory.
(On the other hand, if two tasks communicate but happen to be placed on the same
processor, the runtime system should exploit that fact and use shared memory to
&pesd the communications.) Similarly, subsystems which share a file should be
allocatec on the same local network as the file server.

Such considerations have led us to the concept of virtual processors as basic
building blodks of distributed software. Integrating this concept into the language
will make it a nore effective tool for distributed software design.

3.a.iii. Error I ,-tification, Analysis, and Recovery Mechanisms. A system is
reliable to the extent is correct, makes proper use of computing resources, behaves
predictably and appropriately when hardware or software components fail, and can
be operated reliably by ita usrs. As in any other engineering discipline, reliability is
achieved by applying scientific design principles, by including safeguards and
contingency mechanisms in the design, and by testing. Each of these activities
contributes to our confidence in a system in different ways, and makes up for some
weaknesses of the others.

Each activity has its own style of detecting, analyzing, and recovering from
errors. Type checking and related static analysis mechanisms are the tools of
scientific design. Exceptions and exception handling mechanisms are used to
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safeguard against possible flaws in the design or problems in the operating
environment. Various forms of instrumentation (debuggers, performance
monitors, psychological experiments) are used for testing operational systems and
their components.

In each of the three reliability activities, the same five language issues arise:
control, visibility, binding, resource allocation, and abstraction. Moreover, all five
language issues relate to all three aspects of error handling: detection, analysis, and
recovery.

In instrumentation, for example, control issues arise in each aspect of error
handling: the triggering of probes (detection), the ability of probes to alter the control
flow of the system being measured (during analysis), and the transfer of control
from probes back to the system, when this is meaningful (recovery).

Here are some illustrations of how the language issues of visibility, binding,
and resource allocation arise in the context of instrumentation. The environment in
which a probe executes determines what user-defined types and data it can access (if
any), or whether certain run-time system information is visible. Binding time
determines such things as whether breakpoints can be installed interactively, or
have to be "compiled in". In performance instrumentation, resources must be
apportioned among the observed system, data collection, data reduction and
analysis, and presentation and user interaction (if any) so as to minimize
intrusiveness.

The most difficult problems here are in the area of abstraction. Ideally, one
would like to say "measure the X of system Y', and have any necessary probes, data
reduction facilities, etc., generated, installed, and run automatically. Or, better yet,
"determine how well system Ys behavior matches hypothesis Q", thereby tying
testing back to design specifications. The realization of these ideals requires
mechanisms for defining and manipulating abstract properties of systems.

In particular, we need mechanisms for detecting, analyzing, and recovering
from abstract errors. The bank card system which confiscated too many cards
provides a good illustration of what we mean by an abstract error. We cannot
reasonably expect to anticipate every possible misbehavior of a system at every point
in its execution and install (often redundant and wasteful) safeguards at each point
manually. We can hope to describe deviations from a system's expected behavior at
the application level, and have safeguards generated and installed at appropriate
points automatically.

Clearly, the mechanisms we envision for abstract error definition, detection,
analysis, and recovery can and should be defined in terms of the control, visibility,
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binding, resource allocation, and abstraction concepts provided by the language
core. That is, we should not have to reinvent these concepts. Nor should we have to
duplicate the design efforts of those who have already created some good error
handling technology [AW85,Cou8l,Joh83,KC86,KP82a,LS79,MY86,RLT78,YB85].
Rather, we see these concepts as the key to an unprecedented systematic
formalization of error handling ideas, and as the avenue for integrating them into
our language.

3.a.iv. Persistent Data and Type Integrity. The full spectrum language will
support the production of reliable, efficient and reusable software over a range of
applications and will act as a cooperative element in an integrated software
development environment. A sophisticated type system such as the one discussed
above is needed to formalize the properties of such diverse tools as compilers,
compiler generators, debuggers, analyzers and project management assistants,
which act on the types comprising languages, programs, specifications, designs,
test plans, PERT charts and so forth. The type(s) of a datum determine what tools
can create or manipulate it and the relationships in which it can participate.

The concept of object allows instances of values to be named. The object
naming mechanism assigns a unique, universal, location independent name to a
value to create an object. Thus, persistence is a property (concept) of a particular
kind of datum, namely objects. An object is persistent if it outlives the particular
invocation of the program or tool that created it. It is the responsibility of object
management mechanisms of the full spectrum language to ensure the type integrity
of persistent objects and to oversee their creation, destruction and access, both
through space (since the environment may be distributed over multiple networks
and include removable media) and through time (because some data will be
persistent).

Traditional file systems and databases have each addressed some aspects of
object management, but each has shortcomings with respect to either persistence or
typing. File systems provide persistence, but have no way to enforce type integrity
over invocations of tools and manipulations by human users. Programming
languages more closely approximate object management typing needs, but provide
little support for persistence. Databases achieve typed persistence, but their type
systems are inadequate for the variety and complexity of data needed in software
applications and software development environments. They especially do not satisfy
the need for the typing system to evolve over time and to be self-describing.

The object management aspects of the full spectrum language include a
number of requirements, concerns and assumptions beyond those of persistence and
typing. The language must provide support for these concerns, of which a sample
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follow.

* Persistent data is the key mechanism that -underlies the entire lifecycle. There
must, therefore, be support of change and the ability to define spheres of activity.
Partial information must be tolerated. There roust be support for both consistency
(e.g. invocation of tools to establish or re-establish some relation among a given set of
objects) and inconsistency.

* Persistent data is the key mechanism that underlies a software development
environment and variety is the most striking characteristic of the objects in such an
environment. This is perhaps especially true when considering object granularity.
The object management mechanisms must expect, and remain viable for, objects of
a wide range of both physical and logical granularity from the very small to the very
large.

" The objects will include active, passive and concurrent entities.

* There will be pre-existing tools and objects for which migration paths must be
established, whenever feasible.

3.b. Language Design.
Naturally, good language design practice is required in the design of any

language [Wei7l, Hoa73, Iron76]. What constitutes good design depends in part on
how, by whom, and for what purposes the language will be used. Some design
guidelines for full spectrum languages are the following.

Because the applications are varied and many, it is necessary to provide a
small number of highly composible mechanisms, instead of a large number of
mechanisms specialized to the intended applications. To retain simplicity in the
language each primitive mechanism must isolate some unique functionality which
is easily composible with the other primitives. Every effort should be made to avoid
language features that will lead to psychological ambiguities in programs. The
design should emphasize readability over ease of writing programs. It should
emphasize the semantic integrity and completeness of the language. It should
provide redundancy without duplication. It should avoid default mechanisms that
obscure the meaning of programs. It should use syntactic and semantic features,
wherever possible, which are compatible with the traditional notations and
intuitions of mathematics, engineering, and computer science. The syntax should
be conservatively extensible, to allow syntactic extensions that cannot cause
confusion by redefining the parsing rules for familiar phrases. And, finally, the
design must strive in every way possible to provide features that will in their use
(during program execution) be only as expensive as is inherent in the generality of
their use.
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We can identify four major sources of inspiration and guidance: Ada,
functional languages, object-oriented languages, and foundational theory. We look
to each of these for specific contributions, as follows.

Ada will influence many of the practical aspects of syntax and program
structure. This influence is both positive and negative; we seek to take the best from
Ada and avoid its mistakes. Ada is currently the most complete compendium of
features needed for practical application development. As such, we can use it as a
baseline of capabilities for our full spectrum language; anything which exists in
Ada should either be in the new language or preferably be easily defined and
integrated. If this goal is achieved, it should be easy for programmers familiar with
Ada to switch to the new language with a minimum of retraining.

Ada also contains the echoes of some very good ideas, both in its syntax and
semantics. For instance, its near-unification of the syntax of record literals and
actual parameter lists reveals an underlying commonality which should be
recognized and exploited to make the language smaller and cleaner. The question
is: how?

For an answer to this particular question, we turn to functional languages
such as IL [GMW79], Amber [Car86a], Ponder[Fai83], and Miranda (Tur85l, which
have explored a number of alternatives for unifying data and parameter structures.
Other desirable aspects of functional languages are the use of highly composable,
small-grained components; ease of formal analysis and transformation; the
functorial character of abstract data types and modules; and an extensive body of
interactive/incremental implementation technology. The most important
contribution of functional languages, however, is higher-order programming.

Programmers often face the dilemma of not knowing a good general solution to
a problem, though a good solution can be generated for any particular case, given
some additional information. Higher-order programming, in a language like
common Lisp, enables the designer to implement an algorithm for deriving a good
solution, but at the cost of getting an unacceptably inefficient implementation of that
solution. A static language like Ada, on the other hand, provides efficient
mechanisms which can be combined to obtain an efficient implementation, but at
the loss of the general solution.

The problem is that the common Lisp programmer can't convey enough
information about the application to the compiler for it to obtain an efficient
implementation, while the Ada programmer must convey so much information
about the details of a particular solution that the compiler is unable to abstract the
general solution. In a full spectrum language, the programmer should be able to
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communicate to the compiler, as part of the program, any information it needs to
derive au efficient implementation of a specialized solution.

Typed functional languages enable more efficient implementations by
including type information in programs. Types constrain the application, promote
checking and representation decisions to an earlier point in the computation, and
enable a wide class of optimization transformations.

The more intricate a type system is, the more information can be expressed.
For instance, dependent types can be used to inform the compiler to represent a list
as an array if the length of the list is known to depend on a numeric parameter. In
the extreme, virtually any logical property that has constructive significance can be
embodied in type information (at which point we say we are doing "logic
programming").

The information a compiler needs isn't restricted to functionality, however. To
cite a few examples, the criteria to be used in optimization, expected statistical
characteristics of input data, and complexity measures of components can all be
used to guide the compiler's selection of algorithms and data structures.

As language implementors, we know how to make compiler components that
are driven by user-supplied information and are hence open-ended. What is less
clear, is what high-level syntactic mechanisms should be supplied to enable the
application designer to exprczs information and convey it to the portions of the
compiler that need it? Thik *, the most difficult syntax design challenge we face.

Object-oriented languages, operating systems, and databases are currently
expexiencing the greatest experimental activity in the areas of inheritance
mechanisms and persist.ent data issues, and so we look to them to supply
perspectives and me' hanisms in these areas. In particular, these languages
contribute a third baseline of features, in addition to those found in Ada and
functional languages.

The fourth source of inspiration for our design comes from the formal
foundations of semantics, type theory, logic, and category theory as they relate to
program development. These formal foundations we see as giving the formal
outlines to such things as the type system, notions of component composability,
computing with semantic components, and the functors relating the various
concepts in the language. They give us insight into what is theoretically possible, as
well as warnings about potential difficulties. Most importantly, the formal
foundations tell us what properties the language as a whole must have in order to
assimilate the mechanisms required by tools for formal program manipulation. It
is through the application of such tools that we expect the real gains in software
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productivity and reliability to be achieved.

Our thesis is that the features we include in the language core should be
adequate for any application. As a partial validation of this thesis, the language will
be completely self-defining. As a further validation, portions of this self-definition
may be incorporated in the prototype implementation. In particular, use of the
language to implement its own run-time system could test its ability to support
systems programming, and use of the language to support its own development
could test its ability to support software engineering. It should be noted that we
already have experience with this approach, since we use it in our existing Ada
language developments.

3.c. Prototype Implementation.
The purpose of a prototype implementation is twofold. First, it provides an

operational description of the language, showing in greater detail than the language
reference manual how the primitives of the language behave, how they interact, and
how they can be composed. Secondly, it furnishes an existence proof of the
language's implementability. As a functioning embodiment of the language's
semantics, it confirms that there are no inconsistencies in the design, and gives
some indication of the costs associated with implementing the language.

One possible scenario for a prototype implementation is to use common Lisp as
a starting point. As more of the features of the full spectrum language become
operational, we would hope and expect that parts of the prototype implementation
effort would shift into the fall spectrum language. However, we insist that the full
spectrum language be used appropriately; we would not want to establish the bad
precedent of writing Lisp-style programs in the new language, merely in order to
obtain a complete bootstrap. The result would be an experimental facility suitable
for a wide range of demonstrations of the principles of full spectrum language
design.

3.d. Review of Preliminary Language Design.
Formal review by the community can help to raise confidence in the integrity of

the language design and to raise confidence that the language meets its
requirements. We expect such a review, involving a small number of highly
qualified experts representing academia, industry and government, to be a vital part
of any full-spectrum language effort. We do not, however, foresee the need or
desirability of soliciting comments from the computer science community at large.
The comments and suggestions of the reviewers would be incorporated, as
appropriate, into the final language design. It is likely that a small number of
reviewers would also assist in evaluating the reviews and in weighing comments
that have opposing points of view.



28

Bibliography

Selected Papers by Members of Incremental Systems Technical Staffi

[BFS87a] Baker, D.A., Fisher, D.A. and Shultis, J.C., "Persistence and Type Integrity in a Software
Development Environment", in Persistent Object Systems: their Design, Implementation
and Use, Carrick, R. and Cooper, R., eds., Univ. of Glasgow and Univ. of St. Andrews.,
August 1987.

[BFS87b] Baker, D.A., Fisher, D.A. and Shultis, J.C., "A Practical Language to Provide Persistence
and a Rich Typing System", Proc. Workshop on Database Programming Languages, Roscoff,
September 1987 (available as technical report from Univ. of Pennsylvania).

[BH86] Baker, D.A. and Heimbigner, D.M., Design Possibilities for Zeus: The Tool/Object
Manager for Arcadia, Technical Report CU-CS-318-86, University of Colorado, February 1986.

[BHS861 Baker, D.A., Heimbigner, D.M. and Sutton, S.M. Jr., Providing Programmable Relations
over Software Objects in Aspen, Technical Report, September 1986, University of Colorado.

[BS861 Baker, D.A. and Sutton, S.M. Jr., Exception Flow Analysis in Ada, Technical Report CU-CS-
319-86, March 1986.

[BB841 Baker, D.A. and Baxter, A.Q.," Computer Science Fundamentals II", lecture notes and
annotations, instructor's guide, exercises and solutions, IBM IS & CG University Program
course, 1984.

[B084] Baker, D.A. and Osterweil, L.J. "Critics: An Active Approach to Tools and Environments",
Technical Report CU-CS-285-84, University of Colorado, December 1984.

[Bak83] Baker, D.A., "EASE - An Extensible Abstract Structure Editor", Technical Report CU-CS-
250-83, University of Colorado, 1983.

[Bak82] Baker, DA., "The Use of Requirements in Rigorous System Design", Ph.D. Dissertation,
University of Southern California, 1982.

[CF82] Carlson, W.E. and Fisher, D.A., "First Complete Ada Compiler Runs on a Micro", Mini-
Micro Systems, September 1982.

[CK86] Choi, J.W.C. and Kimura, T.D.,"A Compiad Picture Language on Macintosh", Proceedings
of ACM Conference on Personal and Small Computers, San Francisco, California, December
1986.

[FFR72) Fisher, D.A., Faber, U. and Reigel, E., "The Interpreter: A Microprogrammable Building
Block System", Proceedings of the Spring Joint Computer Conferences 1972, AFIPS Vol. 40,
May 1972, pp. 705-723.

[Fis81] Fisher, D.A., "Design Issues for the Ada Program Support Environments, A Catalogue of
Issues", Science Applications, Inc. paper, SAI-81-289-WA.

[Fis80] Fisher, D.A., "Ada, The United States Department of Defense High Order Language",
AGARD-ograph on Guidance and Control Software, Advisory Group on Aerospace Research
and Development, North Atlantic Treaty Organization, May 1980, pp. 5.1-5.9.

[Fis78a] Fisher, D.A.,"DoD's Common Programming Language Effort", IEEE Computer, Vol. II,
No. 3, March 1978, pp. 24-33.



29

[Fis78b] Fisher, D.A., "Steelman", Department of Defense Requirements for High Order Computer
Programming Languages, High Order Language Working Group (HOLWG) Report, June
1978.

[Fis77a] Fisher, D.A., "A Common Programming Language for the Department of Defense-
Background, History, and Technical Requirements", IDA Paper P-1263, May 1977.

[Fis77b] Fisher, D., "Floating Point Computational Facilities for a Common Programming
Language for the DoD", Proceedings of the 1977 Army Numerical Analysis and Computers
Conference, March 1977, pp. 585-596.

[Fis77c] Fisher, DA, "The Common Programming Language Effort of the Department of Defense",
A Collection of Technical Papers from the AIAAINASAIIEEEIACM Computers in Aerospace
Conference, November 1977, pp. 297-307; Received Thomas R. Benedict Memorial Award for
best paper.

[Fis75a) Fisher, D.A., "A Common High Order Programming Language for the Department of
Defense", Proceedings of the 10th Anniversary Symposium, Computer Science Department,
Carnegie-Mellon University, October 1975.

[Fis75b] Fisher, D.A., "Bounded Workspace Garbage Collection in an Address-Order Preserving
List Processing Environment", information Processing Letters, July 1975, pp. 29-32.

[Fis75c6 Fisher, DJ.A, "Copying Cyclic List Structures in Linear Time Using Bounded Workspace",
Communications of the ACM, Vol. 18, No. 5, May 1975, pp. 251-252.

[Fis75d] Fisher, D.A., "Programming Language Commonality in the Department of Defense',
Defense Management Journal, Vol. 1 No. 4, October 1975, pp. 29-33.

[Fis74] Fisher, D.A., "Automatic Data Processing Costs in the Defense Department", IDA. Pap !r F-
1046, October 1974, AD-A004841.

[Fis72] Fisher, D.A., "A Survey of Control Structures in Programming Languages", SIC-PLAN
Notices, Special Issues on Control Structures, Vol. 7, No. 11, November 1972, pp. 1-13.

[Fis7Oal Fisher, D.A., "Control Structures", Computer Science Research Review 1970-1971,
Carnegie-Mellon University, September 1971, pp. 21-25.

[Fis70b] Fisher, D.A., "Control Structures for Programming Languages", Ph.D. Dissertation,
Carnegie-Mellon University, May 1970, AD-708 511.

[Fis67] Fisher, D.A.,"Program Analysis for Multiprocessing', M.S.E. Thesis, Mc. e School of
Electrical Engineering, University of Pennsylvania, May 1967.

[FKRW*781 Fisher, DA., Kernigham, D.G.B., Reynolds, J., Wetherall, P., and Wulf, W., "Report
on the HOL Analyses Coordination Panel", DoD Common High Order Language, Phase I
Reports and Analyses, HOLWG Report, June 1978, AD-B950 587.

[FM86a] Fisher, D.A. and Mundie, DA., "Incremental Semantic Analysis and Overload Resolution
for Ada", Final Report, Phase I, SBIR, National Science Foundation Award ISI-8560535, August
1986.

[FM86b] Fisher, D.A. and Mwadie, D., "Parallel Processing in Ada", IEEE Computer, Vol. 19,
No. 8, August 1986, pp. 20-25.

[FS791 Fisher, D.A and Standish, T.A, "Initial Thoughts on the Pebbleman Process", Institute for
Defense Analyses (IDA) Paper P-1392, June 1979.

[FW86] Fisher, D.A. and Weatherly, R.M., Issues in the Design of a Distributed Opvrating System
for Ada", IEEE Computer, Vol. 19, No. 5, May 1986, pp. ,8-47.



30

[FW78] Fisher, D.&. and Wetherall, P.R., "Rationale for Fixed Point and Floating Point
Computational Requirements for a Common Programming Language, IDA Paper P-1305,
January 1978.

(Iron76] "Ironman", Department of Defense Requirements for High Order Computer Programming
Languages, HOLWG Report, June 1976.

[GMT*80] Gerhart, S.L, Musser, D.R.,Thompson, D.H., Baker, D.A., Bates, &LL, Erickson, R-W,
London, R.L., Taylor, D.G., and Wile, D.S, "An Overview of AFFIRM: A Specification and
Verification System", Proceedings iFIP 80, October 1980.

[Mun~l) Mundie, D.A., "The Integration of thre Comecon Computer Industries", A Report Prepared for
The National Council for Soviet and East European Research, Masteres Thesis, June 198L-

£Mun8OaI Mundie, D.A., "Pascal and the Great Race7, Byte, September 1980, p. 94.
[Mun8Ob] Mundie, D.A., "PrLOTIP: Implementing a High-level Language in a Hurry", By>te, July

1980, pp. 154-170.
[Mun79a] Mundie, DA., "A Computer-Assisted Dieting Program", The Byte Book of Pascal, pp. 197-

198.
(Mun79b] Mundie, DAL, "Supermetric: An Automatic Metric Conversion Prograr's, The Byte Boo

of Pa.cal, pp. 189-196. 
r ok

[Mun78] Mundie, D.A., "In Praise of Pascal", Byte, 1978. Reprinted in The Byte Book of Pascal,
Peterborough, New Hampshire, Byte Publications, 1979, pp. 7-12.

[PW83] Pervin, E.C. and Webb, JA, "Quaternions in Computer Vision and Robotics7, Carnegie-
Mellon University, Department of Computer Science CMU-CS-82-150, Proceedings of thre IEEE
Conference on. Computer Vision and Pattern Recognition, Washington, D.C., 1983, pp. 382-
383.

[Shu8GI Shultis, J.C., "The Design and Implementation of Intuit7, IEEE Conference on logic in
Computer SciEnce, June 1986.

[Sb-P85a] Shultis, J.C., On the Complexity of Higher-Order Programs, Technical Report CU.-05-288-
85, Universityf of Colorado, February 1985.

(Shu85b) Shultis, J.C., "What is a Model? A Consumes Perspective on Semantic Theory",
Proceedings Conference on the Mfathematical Foundations of Programming Semant ics;
Springer-Verlag, Lecture Notes in Computer Science *29,1985.

[ShuB3] Shultis, J.C., "A Functional Sheir, Pr-oceedings SIGPLAiV '& S-wmposiumn on
Programming Language Issue in Software Systems, June 1983., pp. 202-211.

[Shu82] Shultis, J.C., -Hierarchical Semantics, Reasoning, and Tmnslation,Ph.D- Dissertation,
Departrnrent of Computer Science, State University of New York at Stony Brook, August 1982.

[SK8L] Shultis, J.C. and ieburtz, R-B., 7'ransformations of FP Program Schemes", Proceedings of
the ACM Conference on Functional Programming Languages and Computer Arohitecture,
Octolber 10-81, pp. 41-48.

(TadB2J Tadxrran, F.P., "The Arcturus Programming Environmnent Program Design and Rapid,
Prototyping Language", Technical Report, Programming Environment Project, University of
California, Irvine, California, September 1982.

[WVP841 Webb, J-4 and Pervin, E.C., 'The Shape of Subjective Contoursr, Proceedings of the
Conference on Artificial Intelligence, Austin, Texas, 1984, pp. 342-343.



31

Papers in Preparation by Members of Incremental Systems Technical StaflM

[TBB*87] "Next Generation Software Environments: Principles, Problems, and Research
Directions", Taylor, R.N., Baker, D.A., Belz, F.C., Boehm, B.W., Clarke, L.A., Fisher, D.A.,
Osterweil, J., Selby, R.W., Wileden, J.C., Wolf, A.L., and Young, M, submitted for
publication.

[Shu85] "Imminent Garbage Collection", Shultis, J.C., Technical Report CU-CS-305i-85, University
of Colorado, Department of Computer Science, 1985.

[IRIS] "Iris: An Internal Form for Use in Integrated Environments", Baker, D.A., Fisher D.A., and
Shultis, J.C.

Journals and Proceedings Edited by Members of Incremental Systems Technical
StafE

Proceedings of the IEEE Computer Society Second International Conference on Ada Applications
and Environments, Fisher, DJ., General Chairman; Morris, D., Program Chairman, 1986.

"Special Issue on Ada Environments and Tools", IEEE Software, Urban, J.W. and Fisher, D.A.,
Guest Editors; Vol. 2, No. 2, March 1985.

Proceedings of the IEEE Computer Society 1984 Conference on Ada Applications and Environments,
Urban, J.E., General Chairman; Fisher, D.A., Program Chairman.

"Lecture Notes in Computer Science", Edited by Williams, J.H. and Fisher, DJ., Design and
Implementation of Programming Languages, Proceedings of a DoD Sponsored Workshop,
Ithaca, New York, October 1976; (Publisher: Springer-Verlag Berlin Heidelberg, 1977)

Other References.

[ALRM83] Ada Joint Program Office, U.S. Department of Defense, Ada Programming Languagz
Reference Manual, ANSI/MIL-STD- 1815A-1983, 1983.

[ABB*86] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A. and Young, M.,
"Mach: A New Kernel Foundation for UNIX Development", DRAFT, Computer Science
Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania, May 1986.

[ABC*83] Atkinson, M.P., Bailey P.J., Chisholm K.J., Cockshott, P.W., and Morrison, R., "An
Approach to Persistent Programming", The Computer Journal, 1983, 26(4), pp. 360-365.

[AL81] Anderson, T. and Lee, P.A., "Fault Tolerance: Principles and Practice", Prentice-Hall
International, 1981.

[AMC*83] Andrews, P.B., Miller, D.A., Cohen, E.L. and Pfenning, F., "Automating Higher-Order
Logic", Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania,
January 1983.

[And81] Andrews, G.R., 'The Distributed Programming Language SR: Mechanism Design and
Implementation", Software Practice and Experience, 12, No. 8, 1981.

[AW76] Ashcroft, E.A. and Wadge, W.W., "Lucid--A Formal System for Writing and Proving
Programs", Siam J. Comput., Vol. 5, No. 3, September 1976, pp. 336-354

[AW85] Avrunin, G.S. and Wileden, J.C., "Describing and Analyzing Distributed Software System



32

Designs", ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July
1985, pp. 380-403.

[Bac80] Back, R.J.R., "Correctness Preserving Program Refinements: Proof Theory and
Applications", Ph.D. Dissertation, Math. Cent., Amsterdam, 1980.

[Bae78] Backus, J., "The History of Fortran I, II, and II", ACM SIGPLAN Notices, Vol. 13, No. 8,
August 1978, pp. 16.-180.

[Bal8l] Balzer, R., Transformational Implementation: An Example", IEEE Transactions on
Software Engineering, SE-7, (1), 1981, pp. 3-14.

[Bar87] Barstow, D., "Artificial Intelligence and Software Engineering', Proceedings of the Ninth
International Conference on Software Engineering, Monterey, California, pp. 200-211.

[Bar77] Barstow, D., "Automatic Construction of Algorithms and Data Structures Using a Knowledge
Base of Programming Rules", Ph.D. Dissertation, Stanford University, Stanford, California,
1977.

[BBD77] Bell, T.E., Bixler, D.C. and Dyer, M.E., "An Extendable Approach to Computer-Aided
Software Requirements Engineering", IEEE Transactions on Software Engineering SE-3, 1,
January 1977, pp. 49-60.

[BBK*82] Bodwin, J.M., Bradley, L., Kanda, K, Litle, D. and Pleban, U.F., "Experience With an
Experimental Compiler Generator Based On Denotational Semantics", Proceedings of
SIGPLAN '82 Symposium on Compiler Construction, June 1982, pp. 216-229.

[BD77] Burstall, R.M. and Darlington, J., "A Transformation System for Developing Recursive
Programs", JACM 24,1, January 1977, pp. 44-67.

[Ber87] Bernstein, Philip A., "Database System Support for Software Engineering', Proceedings of
the Ninth International Conference on Software Engineering, IEEE Computer Society Press,
Monterey, California, March 1987, pp. 166-178.

[BG871 Becker, J. and Goettge, R., "Ada Performance Issues for Real-Time Systems", DRAFT,
Advanced System Technologies, 1987.

[BGN84I Balzer, R., Goldman, N. and Neches, B., "Specification-Based Computing Environments
for Information Management", Proceedings of the International Conference on Data
Engineering, Los Angeles, California, April 1984, pp. 454-458.

[BGW76I Balzer, R., Goldman, N. and Wile, D., "On The Transformational Implementation
Approach to Programming", IEEE Proceedings of Second International Conference on
Software Engineering, San Francisco, October 1976, pp. 337-344.

[Bir84] Bird, R.S., "The Promotion and Accumulation Strategies in Transformational
Programming", ACM Transactions on Programming Languages and Systems 6, (4) October
1984, pp. 487-504.

[Bjo87I Bjorner, D., "On The Use of Formal Methods in Software Development", Proceedings of the
Ninth international Conference on Software Engineering, IEEE Computer Society Press,
Monterey, California, March 1987, pp. 17-29.

[BKK*861 Bobrow, D.G., Kahn, K., Kiczales, G., Masinter, L., Stefik, M. and Zdybel, F.,
"CommonLoops: Merging Lisp and Object-Oriented Programming", OOPSLA '86: Object
Oriented Programming Systems, Languages, and Applications, SIGPLAN Notices 21(11),
1986, pp. 17-29.

[BL84] Burstall, R. and Lampson B., "A Kernel Language for Modules and Abstract Data Types",



33

Report #1, Digital System Research Center Reports, September 1984.
[BM79] Boyer, R. and Moore, J., "A Computational Logic", Academic Press, 1979.
[BMS80] Burstall, R.M., McQueen D.B. and Sannella, D.T., "HOPE: An Experimental Applicative

Language", Internal Rep., Department of Computer Science, Edinburgh University, Scotland,
1980.

[Boe85] Boehm, B.W., "A Spiral Method of Software Development and Enhancement", Proceedings
of the Second International Software Process Workshop, Wileden, J.C. and Dowson, M.
editors, IEEE Computer Science Press, Coto de Caza, Trabuco Canyon, California, March 1985,
pp. 22-42.

[Boe76] Boehm, B.W., "Software Engineering", IEEE Transactions on Computers 25, December
1976, pp. 1226-1241.

[BP81] Broy, M. and Pepper, P., "Program Development as a Formal Activity", IEEE Transactions
on Software Engineering, Vol. 7, No. 1, January 1981, pp. 14-22.

[BPP81] Britton, KJ., Parker, R.A. and Parnas, D.L., "A Procedure for Designing Abstract
Interfaces for Device Interface Modules", Proceedings of the Fifth International Conference
on Software Engineering, San Diego, California, March 1981, pp. 195-204.

[Bro85] Brookes, S.D., "On the Axiomatic Treatment of Concurrency", CMU-CS-85-106, Department
of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1985.

[But83] Butler, KD., "DIANA Past, Present and Future", Lecture Notes in Computer Science Ada
Software Tools Interfaces, Ed. G.Goos and J.Hartmanis, Workshop, Bath: Springer-Verlag,
1983, pp. 3-22.

[CAIS85] Ada Joint Program Office, U.S. Department of Defense, Common Ada Programming
Support Environment Interface Set, Proposed MIL-STD CAIS, 1985.

[Car86a] Cardelli, L., "Amber", Combinators and Functional Programming Languages, Lecture
Notes in Computer Science #242, Springer-Verlag, 1986.

[Car86b] Cardelli, L., "The Amber Machine", Combinators and Functional Programming
Languages, Lecture Notes in Computer Science #242, Springer-Verlag, 1986.

[Cat80] Cattell, R.G.G., "Automatic Derivation of Code Generators from Machine Descriptions",
ACM Transactions on Programming Languages and Systems 2, (2), April 1980, pp. 173-190.

[CC83] Ceri, S., and Crespi-Reghizzi, S., "Relational Data Bases in the Design of Program
Construction Systems", SIGPLAN Notices 18,11, November 1983, pp. 34-44.

[CC77] Cousot, P. and Cousot, R., "Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints", Principles of
Programming Languages IV, ACM, January 1977, pp. 238-252.

[CDF*86] Carey, M.J., DeWitt, D. J., Frank, D., Goetz, G., Richardson, J.E., Shekita, E. J., and
Muralikrishna, M., 'The Architecture of the EXODUS Extensible DMBS: A Preliminary
Report", Technical Report CS-644, Computer Science Department, University of Wisconsin-
Madison, Madison, May 1986.

[Che84] Cheatham, T.E., Jr., "Reusability Through Program Transformations", IEEE
Transactions on Software Engineering, Vol. 10, No. 5, September 1984, pp. 589-594.

[Che83] Cheatham, T.E., Jr., "Harvard Programming Development System (PDS)", Software
Engineering Notes 8, (5), October 1983, pp. 49-50.



34

[Che8l] Cheatham, T.E., Jr., "Overview of the Harvard Program Development System", Software
Engineering Environments, Hiinke, H. editor, 1981.

[CHT81] Cheatham, T.D., Jr., Holloway, G.H. and Townley, J.A., "Program Refinement by
Transformation", IEEE Proceedings of Fifth International Conference on Software
Engineering, San Diego, California, March 1981, pp. 430-437.

[CK84] Cooper, K.D. and Kennedy, K., "Efficient Computation of Flow Insensitive Interprocedural
Summary Information", Proceedings of the ACM SIGPLAN '84 Symposium on Compiler
Construction, SIGPLAN Notices 19, 6, June 1984, pp. 247-258.

[CKT86] Cooper, K.D., Kennedy, K. and Torczon, L., "The Impact of Interprocedural Analysis and
Optimization in the Rn Programming Environment", ACM Transactions on Programming
Languages and Systems, Vol. 8, No. 4, October 1986, pp. 491-523.

[Cle84] Clemm, G.M., "ODIN - An Extensible Software Environment Report and User's Manual",
University of Colorado at Boulder, Computer Science Department Technical Report CU-CS-262-
84, May 1984.

[C086] Clemm, G.M. and Osterweil, L.J. , A Mechanism for Environment Integration. Technical
Report CU-CS-323-86, University of Colorado, Boulder, January 1986.

[Coc83] Cockshott, W.P., "Orthogonal Persistence", Thesis CST-21-83, Department of Computer
Science, University of Edinburgh, February 1983.

[Con86l Constable, R.L., etal, "Implementing Mathematics in the NuPrl System", Prentice-Hall,
1986.

[Coq86] Coquand, T., "An Analysis of Girard's Paradox", First Conference on Logic in Computer
Science, Boston, June 1986.

[Coq85] Coquand, T., "Une Thorie des contructions", T~se de Troisi~me Cycle, Universitd Paris
VII, January 1985.

[Cou81] Cousot, P., "Semantic Foundations of Program Analysis", Program Flow Analysis: Theory
and Applications, Jones, N.D. and Muchnick, S.S. editors, Prentice-Hall, Englewood Cliffs,
1981.

[Cur83] Curien, P.L., "Combinateurs Categoriques, Algorithmes Sdquentiels et Programmation
Applicative", Th~se de Doctorat d'Etat, Universit6 Paris VII, December 1983.

[CW851 Cardelli, L. and Wegner, P., "On Understanding Types, Data Abstraction, and
Polymorphism", ACM Computing Surveys 17, December 1985, pp. 471-522.

[CWW86] Clarke, L.A., Wileden, J.C. and Wolf, A.L., "Graphite: A Meta-tool for Ada Environment
Development", Proceedings of the IEEE Computer Society Second International Conference on
Ada Applications and Environments, IEEE Computer Society Press, Miami Beach, Florida,
April 1986, pp. 81-90.

[CZ84] Constable, R.L. and Zlatin, D.R., "The Type Theory of PIJCV3", ACM Transactions on
Programming Languages and Systems, Vol. 6, No. 1, January 1984, pp. 94-117.

[DB73] Darlington, J. and Burstall, R.M., "A System Which Automatically Improves Programs",
Proceedings of Third International Joint Conference on Artifical Intelligence, Stanford,
California, SRI, Menlo Park, California, 1973, pp. 479-485.

[deB80] de Bruijn, N.G., "A Survey of the Project Automath", H.B. Curry: Essays on Combinatory
Logic, Lambda Calculs and Formalism, Seldin, J.P. and Hindley, J.R., editors, Academic
Press, 1980.



35

[Der85] Dershowitz, N., "Program Abstraction and Instantiation", ACM Transactions on
Programming Languages and Systems, Vol. 7, No. 3, July 1985, pp. 446-447.

[Der81] Dershowitz, N., "The Evolution of Programs: Program Abstraction and Instantiation",
IEEE Proceedings of Fifth International Conference on Software Engineering, San Diego,
California, March 1981, pp. 79-88.

[DF80] Davidson, J.W. and Fraser, C.W., "The Design and Application of a Retargetable Peephole
Optimizer", ACM Transactions on Programming Languages and Systems 2 (2), April 1980,
pp. 191-202.

[DK76] DeRemer, F. and Kron, H.H., "Programming-in-the-Large Versus Programming-in-the-
Small", IEEE Transactions on Software Engineering, June 1976, SE-2, pp. 80-86.

[DR791 Davis, A.M. and Rauscher, T.G., "Formal Techniques and Automatic Processing to Ensure
Correctness in Requirements Specification", Proceedings of the Specifications of Reliable
Software Conference, April 1979, pp. 15-35.

[DR781 Davis, A.M. and Rataj, W.J., "Requirements Language Processing for the Effective Testing
of Real Time Systems", Proceedings of the Software Quality and Assurance Workshop,
November 1978, pp. 61-66.

[DS87] Dietzen, S.R. and Scherlis, W.L., "Analogy in Program Development", The Role of
Language in Problem Solving 2, Boudreaux, J.C., Hamill, B.W. and Jernigan, R. editors,
North-Holland, 1987, pp. 95-117.

[DGL*79] Dewar, R.B.K., Grand, A., Liu, S.-C., Schwartz, J.T., and Schonberg, E., "Programming
by refinement, as exemplified by the SETL representation sublanguage", ACM Trans.
Program. Lang. Syst., vol. 1 no. 1 (July 1979), 27-49.

[DSS81I Dewar, R.B.K., Schonberg, E., and Schwartz, J.T., "Higher Level Programming:
Introduction to the Use of the Set-Theoretic Programming Language SETL", Courant Inst. of
Mathematical Sciences, New York Univ., New York, 1981.

[EP87] Elliott, C. and Pfenning, F., "A Family of Program Derivations for Higher-Order
Unification", Extended Abstract, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, April 1987.

[Ers82] Ershov, A.P., 'Mixed Computation: Potential Applications and Problems for Study",
Theoretical Computer Science 18,1982, pp. 41-67.

[Fai83] Fairbairn, J., "Ponder and Its Type System", Polymorphism, Vol. 1, No. 2, The
ML/LCF/Hope Newsletter, April 1983.

[Fea82] Feather, 14.S., "A System for Assisting Program Transformation", ACM Transactions of
Programming Language Systems 4, (1), January 1982, pp. 1-20.

[Fel79] Feldman, S.I., "Make--A Program for Maintaining Computer Programs", Software -

Practice & Experience, April 1979, 9(4):255-265.
[Gan86) Ganziner, H. and Jones, N.D., editors, "Programs as Data Objects", (Workshop

Proceedings), LNCS 217, Springer-Verlag, April 1986.
[Gan85] "Special Issue on the Gandalf Project", The Journal of Systems and Software, May 1985, 5:2.
[GG78] Glanville, R.S., Graham, S.L., "A New Method for Compiler Code Generation (Extended

Abstract)", Proceedings of the Fifth Annual Principles of Programming Languages, January
1978, pp. 231-240.

[GHW85a] Guttag, J.V., Horning, J.J. and Wing, J.M., "Larch in Five Easy Pieces", Report #5,



36

Digital System Research Center Reports, July 1985.
[GHW85b] Guttag, J.V., Homing, J.J., and Wing, J.M., "The Larch Family of Specification

Languages", IEEE Software, September 1985,2:5, pp. 24-36.
[Gir86] Girard, J.Y., "Linear Logic", UniveritA Paris, October 1986.
[Gir70] Girard, J.Y., "Une extension de l'interprdtation de Gidel & l'analyse, et son application A

l'6imination des coupures dans I'analyse et la thdorie des types, Proceedings of the Second
Scandinavian Logic Symposium, Fenstad, J.E. editor, North Holland, 1970, pp. 63-92.

[GLB*83] Green, C., Luckham, D., Balzer, R., Cheatham, T. and Rich, C., "Report on a Knowledge-
Based Software Assistant", Technical Report KES.U.83.2, Kestrel Institute, June 1983.

[GMW79] Gordon, M.J., Milner, A.J. and Wadsworth, C.P., "Edinburgh LCF ', Lecture Notes in
Computer Science, No. 78, Springer-Verlag, Berlin, 1979.

[Go186] Goldberg, A.T., "Knowledge-Based Programming- A Survey of Program Design and
Construction Techniques", IEEE Transactions on Software Engienering, SE-12 (7), July
1986, pp. 752-768.

[Go185] Goldsack, S.J., editor, Ada for Specification: Possibilities and Limitations, Cambridge
University Press, 1985.

[Goo76] Goodenough, J.B., "Exception Handling Issues and a Proposed Notation", Communications
of the ACM 18,12, December 1975, pp. 683-696.

[GR831 Goldberg, A. and D. Robson, Smalltalk-80 : The Language and its Implementation, Addison
Wesley, 1983.

[Gre77J Green, C., "A Summary of the PSI Program Synthesis System", Proceedings of Fifth
International Joint Conference on Artificial Intelligence, M.I.T., Cambridge, Massachusetts,
1977, pp. 380-381.

[Gut77I Guttag, J., "Abstract Data Types and the Development of Data Structures", Communications
of the ACM, June 1977.

[GT79] Goguen, J.A. and Tardo, J.J., "An Introduction to OBJ: A Language for Writing and Testing
Formal Algebraic Program Specifications", Proceedings of a Conference on Specifications of
Reliable Software, IEEE Computer Society, April 1979, pp. 170-189.

[Hai86] Hailpern, B., ' Multiparadigm Languages and Environments", IEEE Software, 3(1),
January 19786.

[Hec77I Hecht, M.S., "Flow Analysis of Computer Program", North-Holland, New York, 1977.
[HM851 Heimbigner, D. and McLeod, D., "A Federated Architecture for Information Management",

ACM Transactions on Office Information Systems, July 1985, 3(3):253-278.
[HN80] Habermann, AN. and Nassi, I.R., "Efficient Implementation of Ada Tasks", CMU-CS-80-

103, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania,
1980.

[HN86] Habermann, AN. and Notkin, D., "Gandalf: Software Development Environments", IEEE
Transactions on Software Engineering, December 1986, 12(12):1117-1127.

[H0821 Hoffmann, C.M. and O'Donnell, M.J., "Programming with Equations", ACM
Transactions on Programming Languages and Systems", 4,1, 1982, pp. 83-112.

[Hoa84] Hoare, C.A.R., Occam Programming Manual, Prentice Hall, London, 1984.'
(Hoa73] Hoare, C.A.R., "Hints on Programming Language Design", SIGACTISIGPLAN

Symposium on Principles of Programming Languages, October 1973.



37

[Hoo84] Hook, J.G., "Understanding Russell, a First Attempt", Semantics of Data Types, Lecture
Notes in Computer Science 173, Springer-Verlag, 1984, pp. 51-67.

[How80] Howard, W.A., "The Formule-As-Types Notion of Construction", Unpublished manuscript
1969. Reprinted in H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, Seldin, J.P. and Hindley, J.R. editors, Academic Press, 1980.

[Hue87] Huet, G., "A Uniform Approach to Type Theory", INRIA, 1987.
[Hue72] Huet, G., "Constrained Resolution: A Complete Method for Type Theory", Ph.D. Thesis,

Jennings Computing Center Report 1117, Case Western Reserve University, 1972.
[HY86] Hudak, P. and Young, J., "Higher-Order Strictness Analysis in Untyped Lambda Calculus",

Thirteenth Annual ACM Symposium on Principles of Programming Languages, St.
Petersburg Beach, Florida, January 1986, pp. 97-1 09.

[HZ76] Hamilton, M. and Zeldin, S., "Higher Order Software - A Methodology for Defining
Software", IEEE Transactions on Software Engineering SE-2, (1), March 1976, pp. 9-32.

[Joh83] Johnson, M.S., editor, Proceedings of the ACM SIGSOFT7/SIGPLAN Software Engineering
Symposium on High-Level Debugging, Pacific Grove, California, March 1983.

[Jon87I Jones, N., 'The Theory and Practice of Automatic Program Specification", Third Workshop
on the Mathematical Foundations of Programming Language Semantics, New Orleans,
Louisiana, April 1987.

[Jon86I Jones, N.D., "Flow Analysis of Lazy Higher Order Functional Programs", DIKU,
Universitetsparken 1, Copenhagen, 1986.

[Jon80] Jones, N.D., editor, "Semantics-Directed Compiler Generation (LNCS94), Springer-Verlag,
1980.

[JR86] Jones, M.B. and Rashid, R.F., "Mach and Matchmaker: Kernel and Language Support for
Object-Oriented Distributed Systems", Proceedings of the Conference on Object-Oriented
Programming Systems, Languages and Applications, Ed. N. Meyrowitz, Association for
Computing Machinery, Portland, Oregon, IEEE, November 1986, pp. 67-77.

[JS86] Jorring, U. and Scherlis, W.L., "Compilers and Staging Transformations", Thirteenth
Annual ACM Symposium on Principles of Progamming Languages, St. Petersburg Beach,
Florida, January 1986, pp. 86-96.

[JSS85] Jones, N.D., Sestoft, P. and Sondergaard, H., "An Experiment in Partial Evaluation: The
Generation of a Compiler Generator", Rewriting Techniques and Applications, Lecture Notes
in Computer Science 202, Springer-Verlag, 1985, pp. 124-140.

[KC86] Khoshaflan, S.N., and Copeland, G.P., "Object Identity", Object-Oriented Programming
Systems, Languages and Applications Conference Proceedings, October 1986, (also SIGPLAN
Notices, November 1986), pp. 406-416.

(Kin85] King, R.M., "Knowledge-Based Transformational Synthesis of Efficient Structures for
Concurrent Computation", Ph.D. Thesis, Rutgers University, Kestrel Institute Report,
KES.U.85.5, April 1985.

[KNS77] Kibler, D.F., Neighbors, J.M. and Standish, T.A., "Program Manipulation via an Efficient
Production System", Proceedings of Symposium on Artifical Intelligence and Programming
Languages, Rochester, New York, SIGPLAN Notices (ACM) 12, 8, August, SIGART
Newsletter ACM 64, August 1977, pp. 163-173.



38

[KP82a] Kieras, D.E. and Poison, P.G., "An Approach to the Formal Anlysis of User Complexity",
Working Paper No. 2, University of Arizona and University of Colorado, October 1982.

[KP82b] Kieras, D.E. and Poison, P.G., "An Outline of a Theory of the User Complexity of Devices
and Systems", Working Paper No. 1, University of Arizona and University of Colorado, May
1982.

[Kur86] Kurki-Suonio, R., "Towards Programming with Knowledge Expressions", Thirteenth
Annual ACM Symposium on Principles of Programming Languages, St. Petersburg Beach,
Florida, January 1986, pp. 140-149.

[LAB*811 Liskov, B., Atkinson, R., Bloom, T., Moss, E., Schaffert, J.C. and Snyder, A., CLU
Reference Manual, Springer-Verlag, 1981.

[Lam83] Lamport, L., "Specifying Concurrent Program Modules", ACM Transactions on
Programming Languages and Systems, Vol. 5, No. 2, 1983, pp. 190-222.

[Lan66] Landin, P.J., 'The Next 700 Programming Languages", ACM Communications, Vol. 9,
No. 3, March 1966, pp. 157-166.

[LC84] Leblang, D.B. and Chase, R.P., Jr., "Computer-Aided Software Engineering in a Distributed
Workstation Environment", Proceedings of the ACM Symposium on Practical Software
Development Environments, Pittsburgh, April 1984, pp. 104-112.

[Lei83] Leivant, D., "Reasoning About Functional Programs and Complexity Classes Associated
with Type Disciplines", Twenty-fourth Annual Symposium on Foundations of Computer
Science, Tucson, Arizona, 1983, pp. 460-496.

[LF82] London, P.E. and Feather, M.S., "Implementing Specification Freedoms", Science of
Computer Programming, 2(2), November 1982, pp. 91-131.

[LHG86] Liskov, B., Herlihy, M. and Gilbert, L., "Limitations of Synchronous Communication with
Static Process Structure in Languages for Distributed Computing", Thirteenth Annual ACM
Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida,
January 1986, pp. 150-159.

[LHL*771 Lampson, B.W., Homing, J.J., London, IL., Mitchell, J.G. and Popek, G.J., "Report on
the Programming Language Euclid", SIGPLAN Notices 12, (2), 1977.

[Lin84] Linton, M.A., "Implementing Relational Views of Programs", Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, Ed. P. Henderson, Association for Computing Machinery, Pittsburgh,
Pennsylvania, ACM, May 1984, pp. 132-140.

[Lis84] Liskov, B., 'The ARGUS Language and System", Advanced Course on Distributed Systems,
Munich, April 1984.

[LP80] Luckham, D.C. and Polak, W., "Ada Exception Handling: An Axiomatic Apprach", ACM
Transactions on Programming Languages and Systems 2, 2, April 1980, pp. 225-233.

[LS83] Lampson, B.W. and Schmidt, E.E., "Organizing Software in a Distributed Environment",
Proceedings of the ACM Symposium on Programming Languages Issues in Software
Systems, San Francisco, June 1983, pp. 1-13.

[Les75] Lesk, M.E., "Lex - A Lexical Analyzer Generator", Computer Science TR #39, Bell
Laboratories, Murray Hill, New Jersey, October 1975.

[LS79] Liskov, B.H. and Snyeer, A., "Exception Handling in CLU", IEEE Transactions on Software
Engineering SE-5, 6, November 1979, pp. 546-558.



39

[LSG82] Landwehr, R., St. Jansohn, H. and Goos, G., "Experience with an Automatic Code Generator
Generator", Proceedings of SIGPLAN '82 symposium on Compiler Construction, June 1982,
pp. 56-66.

[LV85J Luckham, D., and von Henke, F.W., "An Overview of Anna, A Specification Language for
Aa", IEEE Software, March 1985, 2:2, pp.24-33.

[Mac7l] MacLane, S., "Categories for the Working Mathematician", Springer-Verlag, 1971.
[Mac86] MacQueen, D., "Using Dependent Types to Express Modular Structure", Thirteenth Annual

ACM Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida,
January 1986, pp. 277-286.

[Man87] Manes, E., "Program Expressions in a Category", Third Workshop on the Mathematical
Foundations of Programming Language Semantics, New Orleans, Louisiana, April 1987.

[Mar84] Martin-Lif, "Intuitionistic Type Theory", Studies in Proof Theory, Bibliopolis, 1984.
[Mar79] Martin-L~f, P., "Constructive Mathematics and Computer Programming", Sixth

International Congress for Logic, Methodology, and Philosophy of Science, August 1979.
[Mau86] Maule, R., "Run-Time Implementation Issues for Real-Time Embedded Ada",

Proceedings of First International Conference on Ada Programming Applications for the
NASA Space Station, June 1986.

[MB81] MaecQueen, D.B. and Burstall, R.M., "Structure and Parameterization in a Typed Functional
Language", MSS, August 1981.

[Mey86] Meyrowitz, Norman, editor, Object-Oriented Programming Systems, Languages, and
Applications Conference Proceedings, ACM SIGPLAN, ACM, Portland, Oregon, September
1986. SIGPLAN Notices, 21(11), November 1986.

[Mi80] Milner, R., "A Calculus of Communicating Systems", Lecture Notes in Computer Science,
No.92, Springer-Verlag, 1980.

[Mit86] Mitchell, J.C., "Representation Independence and Data Abstraction", Thirteenth Annual
ACM Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida,
January 1986, pp. 263-276.

[MK83] Magee, J. and Kramer, J., "Dynamic System Configuration for Distributed Real-Time
Systems", IFAC/IFIP Workshop on Real-Time Programming, Hatfield, March 1983.

[MN86] Miller, D.A. and Nadathur, G., "Higher-Order Logic Programming", Third International
Conference on Logic Programming, Imperial College of Science and Technology, London,
July 1986.

[MNR83] McLeod, D., Narayanaswamy, K. and Rao, K.V. B., "An Approach to Information
Management for CAD/VLSI Applications", Proceedings of the ACM SIGMOD International
Conference on Databases for Engineering Design, San Jose, May 1983, pp. 39-50.

[Mo184] Moller, B., "A Survey of the Project CIP: Computer-Aided, Intuition-Guided Programming",
Technical Report TUM-18406, Institut fur Informatik der TU Miinchen, Munich, West
Germany, 1984.

[Mor73] Morris, J.H., Jr., "Protection in Programming Languages", Communications of the ACM,
Vol. 16, No. 1, January 1973.

[MR86] Meyer, A.R. and Reinhold, M.B., "'Type' Is Not a Type", Thirteenth Annual ACM
Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida,
January 1986, pp. 287-295.



40

[MSOP86] Maier, D., Stein, J., Otis, A., and Purdy, A., "Development of an Object-Oriented DBMS",
Object-Oriented Programming Systems, Languages and Applications Conference
Proceedings, October 1986, (also SIGPLAN Notices, November 1986), pp. 472-482.

[MW80] Manna, Z. and Waldinger, R., "A Deductive Approach to Program Synthesis", ACM
Transactions of Programming Language Systems 2, (1), January 1980, pp. 90-121.

[MW77] Manna, Z. and Waldinger, R., "The Automatic Synthesis of Recursive Programs",
Proceedings on Artificial Intelligence and Programming Languages, Rochester, New York,
SIGPLAN Notices (ACM) 12, (8), SIGART Newsletters (ACM) 64, August 1977, pp. 29-31.

[MY86] Miller, B.P. and Yang, C.Q., "IPS: An Interactive and Automatic Performance
Measurement Tool for Parallel and Distributed Programs", Technical Report 613, Computer
Science Department, University of Wisconsin-Madison, Madison, Wisconsin, December
1986.

[Nau63] Naur, P., editor, "Revised Report on the Algorithmic Language ALGOL 60",
Communications of the ACM, Vol. 1, No. 17, January 1963.

[Nei80] Neighbors, J.M., "Software Construction Using Components", Ph.D. Dissertation, Technical
Report 160, University of California, Irvine, California, 1980.

[Neu85] Neumann, P. G., "Letter from the Editor; Risks to the Public", Software Engineering Notes
10 (5), October 1985, pp. 4-14.

[Nie85] Nielson, F., "Program Transformations in a Denotational Setting', ACM Transactions on
Programming Languages and Systems, Vol. 7, No. 3, July 1985, pp. 359-379.

[OSD86] Orenstein, Jack A., Sarin, Sunil K., and Dayal, U., "Managing Persistent Objects in Ada",
Technical Report CCA-86-03, Computer Corporation of America, Cambridge, Massachusetts,
May 1986.

[Ost87] Ostorweil, L., "Software Processes Are Software Too", Proceedings of the Ninth
International Conference on Software Engineering, Monterey, California, March 1987, pp. 2-
13.

[Ost861 Osterweil, L., "A Program-Object Centered View of Software Environment Architecture",
University of Colorado, Department of Computer Science Technical Report CU-CS-332-86, May
1986.

[PC86] Parnas, D.L. and Clements, P.C., "A Rational Design Process: How and Why to Fake It",
IEEE Transactions on Software Engineering SE-12, 2, February 1986, pp. 251-257.

[Phi83] Phillips, J., "Self-Described Programming Environments", Ph.D. Thesis, Stanford
University Computer Science Department, Kestrel Institute Report, KES.U.83.1, March 1933.

[Per87a] Perry, D.E., "Software Interconnection Models", Proceedings of the Ninth International
Conference on Software Engineering, Monterey, California, March 1987, pp. 61-69.

[Per87b] Perry, D.E., "Version Control in the Inscape Environment", Proceedings of the Ninth
International Conference on Software Engineering, Monterey, California, March 1987, pp.
142-149.

[PL83] Powell, M.L., and Linton, M.A., "Database Support for Programming Environments",
Proceedings of the ACM SIGMOD International Conference on Databases for Engineering
Design, San Jose, May 1983, pp. 63-70.

[Pre86] Pressburger, T., "An Environment Supporting the Automation of Software Development",
Kestrel Institute, KES.U.86.7, September 1986.



41

[Ras86] Rashid, R.F., "From RIG to Accent to Mach: The Evolution of a Network Operating System",
Proceedings of the Fall Joint Computer Conference, November 1986, pp. 1128-1137.

[Rei87] Reiss, S.P., "A Conceptual Programming Environment", Proceedings of the Ninth
International Conference on Software Engineering, Monterey, California, March 1987, pp.
225-235.

[Rei85] Reiss, S.P., "PECAN: Program Development Systems That Support Multiple Views", IEEE
Transactions on Software Engineering SE-i1, 3, March 1985, pp. 276-285.

[Rei84l Reiner, A., "Cost-Minimization in Register Assignment for Retargetable Compilers", CMU-
CS-84-137, Department of Computer Science, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, 1984.

[Rep82] Reps, T., "Generating Language-Based Environments", TR82-415, Cornell Computer
Science Department, August 1982.

[Rey85I Reynolds, J.C., "Three Approaches to Type Structure", TAPSOFT Advanced Seminar on the
Role of Semantics in Software Development, Berlin, March 1985.

[Rey72] Reynolds, J.C., "Definitional Interpreters for Higher Order Programming Languages",
Proceedings ACM National Conference, Boston, August 1972, pp. 717-740.

[RLT78] Randell, B., Lee, P.A. and Treleaven, P.C., "Reliability Issues in Computing System
Design", ACM Computing Surveys 10, No. 2, 1978.

[Rob79] Robinson, J.T., "Some Analysis Techniques for Asynchronous Multiprocessor Algorithms",
IEEE Transactions on Software Engineering, Vol. SE-5, No. 1, January 1979, pp. 24-31.

[Roc75] Rochkind, M.J., "The Source Code Control System", IEEE Transactions on Software
Engineering, SE-1, 1975, pp. 364-370.

[RR77] Robinson, L. and Roubine, 0., "SPECIAL - A Specification and Assertion Language", CSL-
46, SRI International, June 1977.

[RS82] Reif, J. and Scherlis, W.L., "Deriving Efficient Graph Algorithms", Carnegie-Mellon
University Technical Report, Pittsburgh, Pennsylvania, 1982.

[RS77] Ross, D.T. and Schoman, KE., Jr., "Structured Analysis for Requirements Analysis", IEEE
Transactions on Software Engineering SE-3, (1), January 1977, pp. 6-15.

[RSW79] Rich, C., Shrobe, H.E., Waters, R.C., "Overview of the Programmer's Apprentice",
Proceedings of Sixth International Joint Conference on Artificial Intelligence, Tokyo,
August, 1979.

[RTD83I Reps, T., Teitelbaum, T. and Demers, A., "Incremental Context-Dependent Analysis for
Language-Based Editors", ACM Transactions on Programming Languages and Systems 5,
(3), July 1983, pp. 449477.

[SB83] Smoliar, S.W. and Barstow, D., 'ho Needs Languages, and Why Do They Need them? or,
No Matter How High the Level, It's Still Programming', SIGPLAN Notices 18, (6), June 1983,
pp. 149-157.

[SB781 Stone, H.S. and Bokhari, S.H., "Control of Distributed Processes", IEEE Computer, July 1978,
pp. 97-106.

[Sch85] Scherlis, W.L., "Adapting Abstract Data Types", Carnegie-Mellon University, Pittsburgh,
Pennsylvania, September, 1985.

[Sch81] Scherlis, W., "Program Improvement by Internal Specialization", Eighth ACM Symposium



42

on Principles of Programming Languagues, ACM, Willamsburg, Virignia, January 1981, pp.

41-49.
[Sco87] Scott, D., "Domains in the Realizability Universe", Third Workshop on the Mathematical

Foundations of Programming Language Semantics, New Orleans, Louisiana, April 1987.

[ScoS0] Scott, D., "Relating Theories of the Lambda-Calculus", H.B. Curry: Essays on Combinatory
Logic, Lambda-Calculus and Formalism", Seldin, J.P. and Hindley, J.R. editors, Academic

Press, 1980.
[Sco70] Scott, D., "Constructive Validity, Symposium on Automatic Demonstration, Lecture Notes

in Mathematics No. 125, Springer-Verlag, 1970, pp. 237-275.

[SHK*76] Standish, T.A., Harriman, D.C., Kibler, D.F. and Neighbors, J.M., "The Irvine Program
Transformation Catalogue", Department of Information and Computer Science, University of
California, Irvine, California, 1976.

[Sin80] Sintzoff, M., "Suggestions for Composing and Specifying Program Design Decisions",
International Symposium on Programming, Springer-Verlag, Lecture Notes in Computer

Science, 1980.
[Spe87] Spector, Alfred Z., Distributed Transaction Processing in the Camelot System, Technical

Report CMU-CS-87-100, Computer Science Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, January 1987.

[SR86] Stonebraker, M. and Rowe, L.A, 'The Design of Postgres", Proceedings of the ACM
SIGMOD '86 International Conference on Management of Data, Washington, D.C., June

1986, pp. 340-355.
[SS83] Scherlis, W.L. and Scott, D.S., "First Steps Towards Inferential Programming", Carnegie-

.Mellon University Technical Report CMU-CS-83-142, July 1983.
[ST84] Standish, T.A. and Taylor, R.N., "Arcturus: A Prototype Advanced Ada Programming

Environment", Proceedings of the ACM SIGSOFTISIGPLAN Software Engineering
Symposium on Practical Software Development Environments, Software Engineering Notes,

May 1984, 9(3):57-64.
[ST78] Stevens, S.A. and Tripp, L.A., "Requirements Expression and Verification Aid",

Proceedings of the Third International Conference on Software Engineering, May 1978, pp.

101-108.
[Sza78] Szabo, M.E., "Algebra of Proofs7, North-Holland, 1978.

[SZBH86] Swinehart, D.C., Zellweger, P.T., Beach, R.J. and Hagmann, R.B., "A Structural View of
the Cedar Programming Environment", ACM Transactions on Programming Languages
and Systems, Vol. 8, No. 4, October 1986, pp. 419-490.

[TCO*861 Taylor, R.N., L.A. Clarke, L.J. Osterweil, J.C. Wileden, and M. Young., "Arcadia: A
Software Development Environment Research Project", Second International Conference on

Ada Applications and Environments, April 1986, pp. 137-149.
[Tei85) Teitelman, W., "A Tour Through Cedar", IEEE Transactions on Software Engineering,

1985, SE-11(3):284-302.
[Tic86] Tichy, Walter F., "Smart Recompilation", ACM Transactions on Programming

Languages, July 1986, 8:3, pp. 273-291.
[Tic85] Tichy, Walter F., "RCS - A System for Version Control", Software - Practice and Experience,

July 1985, 15:7, pp. 637-654.



43

[Tic82] Tichy, W.F., "Design, Implementation, and Evaluation of a Revision Control System",
Proceedings of the Sixth International Conference on Software Engineering, Tokyo, Japan,
September 1982, pp. 58-67.

[Tic79] Tichy, W.F., "Software Development Control Based on Module Interconnection", Fourth
International Conference on Software Engineering, Munich, September 1979.

[Tha82] Thall, Richard M., "The KAPSE for the Ada Language System", Proceedings of the
AdaTEC Conference on Ada, ACM, October 1982, pp. 31-47.

[TM81] Teitelman, W., and Masinter, L., 'The Interlisp Programming Environment", Computer
14, 4, April 1981, pp. 25-33.

[TRS1] Teitelbaum, T. and Reps, T., "The Cornell Program Synthesizer: A Syntax-Directed
Programming Environment", Communications of the ACM 24, 9, September 1981, pp. 563-573.

[Tur85] Turner, D.A., "Miranda: A Non-Strict Functional Language with Polymorphic Types",
Functional Programming Languages and Computer Architecture, Jouannaud, J.P. editor,
Springer-Verlag LNCS 201, 1985 pp. 1-16. "

[VM6a] Volz, R. and Mudge, T., "Instruction Level Mechanisms for Accurate Real-Time Task
Scheduling", Proceedings of Real-Time Systems Symposium, December 1986.

[VM86b] Volz, R.A. and Mudge, T.N., "Timing Issues in the Distributed Execution of Ada
Programs", IEEE Transactions on Computers, Parallel and Distributed Processing, 1986.

[War77] Warren, D., "Applied Logic - Its Use and Implementations as a Programming Tool", Ph.D.
Thesis, University of Edinburgh, 1977.

[Wat82] Waters, R.C., "The Programmer's Apprentice: Knowledge Based Program Editing", IEEE
Transactions on Software Engineering SE-8, 1, January 1982, pp. 1-42.

[Wat8l] Waters, R.C., "A Knowledge-Based Program Editor", Proceedings of Sevenfh
International Joint Conference on Artifical Intelligence, 1981.

[WE82] Winchester, J. and Estrin, G., "Requirements Definition and Its Interface to the SARA
Design Methodology for Computer-Based Systems", National Computer Conference, 1982, pp.
369-379.

[Wei7l] Weinberg, G.M., 'The Psychology of Computer Programming", Van Nostrand Reinhold,
New York, 1971.

[Wel86] Wells, M.B., "General Purpose Languages for the Nineties", Frontiers of Supercomputing,
University of California Press, 1986.

[Wie86] Wiebe, D., "A Distributed Repository for Immutable Persistent Objects", Object-Oriented
Programming Systems, Languages and Applications Conference Proceedings, October 1986,
(also SIGPLAN Notices, November 1986), pp. 453-465.

[Wil83] Wile, D.S., "Program Developments: Formal Explanations of Implementations",
Communications of the ACM, 26(11), November 1983, pp. 902-911.

[Win87] Winkler, J.F.H., 'Version Control in Families of Large Systems", Proceedings of the
Ninth International Conference on Software Engineering, Monterey, California, March 1987,
pp. 150-161.

[Win79] Winograd, T., "Beyond Programming Languages", Communications of the ACM 22, (7),
July 1979, pp. 391-401.

[WPSK86] Wasserman, A.I., Pircher, P.A., Shewmake, D.T. and Kersten, M.L., "Developing
Interactive Information Systems with the User Software Engineering Methodology", IEEE



44

Transactions on Softwar? Engineering SE-12, February 1986, pp. 326-345.
[YB851 Yemini, S. and Berry, D.M., "A Modular Verifiable Exception-Handling Mechanism",

ACM Transactions on Programming Languages and Systems 7,2, April 1985, pp. 214-243.
[Zad84] Zadeck, F.K, "Incremental Data Flow Analysis in a Structured Program Editor",

Proceedings of the ACM Sigplan '84 Symposium on Compiler Construction, SIGPLA4
Notices 19,6, June 1984, pp. 132-143.

[Zav82] Zave, P., "An Operational Approach to Requirements Specification for Embedded Systems7,
IEEE Transacations on Software Engineering SE-6, (3), March 1982, pp. 2&'0-269.

[ZCL86] Zadeck, K, Cytron, R. and Lowry, A., "Motion of Control Structures in High-Level
Languages", Thirteenth Annual ACM Symposium on Principles of Programming
Languages, St. Petersburg Beach, Florida, January 1986, pp. 70-86.

[Zdo86] Zdonik, S. B., "Maintaining Consistency in a Database with Changing Types", Object-
Oriented Programming Workshop, June 1986, (also SIGPLAN Notices, October 1986), pp. 120-
127.

[ZS86] Zave, P. and Schell, W., "Salient Features of an Executable Specification Language and Its
Environment', IEEE Transactions on Software Engineering, February 1986, SE-12(2):312-
325.

,ZW86] Zdonik, S.B. and P. Wegner, "Language and Methodology for Object-Oriented Database
Environments', Proceedings of the Nineteenth Annual Hawaii International Conference on
System Sciences, January 1986, pp. 373-387.

[ZW85] Zdonik, S.B. and P. Wegner, "A Database Approach to Languages, Libraries and
Environments", Proceedings of the Workshop on Software Engineering Environments for
Programming-in-the-Large, Harwichport, Massachusetts, June 1985, pp. 89-112.



A Conceptual Overview of Prism

Deborah A. Baker
David A. Fisher

David A. Mundie
Jonathan C. Shultis
Frank P. Tadman

Incremental Systems Corporation
319 South Craig Street

Pittsburgh, Pennsylvania 15213

February 22, 1991

1 Abstract

Artificial barriers which partition and isolate software activity are inherent in current software
development environments. Deliberate and explicit partitioning is evident ii, the separation of
programming languages from operating systems from databases, but more subtle barriers are
manifested as limitations to expressiveness forcing overspecification and over-specialization, and
barriers to sharing, access, and reuse caused by failure to represent and maintain semantic infor-
mation about the artifacts produced and maintained by our tools.

The goal of the Prism effort is to produce a common persistent framework in which we can
express, capture, "euse, improve, and build on anything that might be reiktant to computational
activity. Our means of achieving this integrated framework is a language emphasizing expressivity
and serving as a medium for dialogue, rather than one-way communication, between user and
machine. Highlights of the language include the' ability to express and manage incomplete and

'This work was supported in part by DARPA under contract number MDA 972-88-C-0076.
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inconsistent specifications, and a view of semantics that replaces fixed and rigid interpretation of
syntactic forms with interpretations that can be imprecise, dynamic, and strongly influenced by
history and context.

Though we are sormewhat surprised by the seeming radicalness of our approach, we are both
convinced that such a departure from tradition is necessary, and encouraged that the goals continue
to appear achievable. It is important to recognize, however, that this effort does not expect to
solve any particular recognized software problem, but only to characterize an enabling technology
that will remove the traditional obstacles to their solution.

2 Why Not Another Programming Language?

Reflection on the history of computer languages reveals a disturbing pattern. Languages are both
generated and abandoned at a very high rate. A few languages, like FORTRAN, sh, and SQL,
persist, though they are revised periodically in an attempt to improve them. These remarks apply
to computer languages invented for a wide variety of purposes, such as operating system and
database interfaces, specification languages, requirements languages, and prototyping languages,
as well as programming languages. In all cases, the primary cause of longevity in a computer
language seems to be not so much that the language has some intrinsic qualities that make it
superior, but that there is so much invested in systems written in the language, not to mention
the costs of language and environment implementation, and the even higher costs of training
and supporting a workforce that has the competence and experience required to use a language
effectively. As new paradigms and technologies .ipear, the number and variety of languages
i icreases, and cults are formed around the idea that one or another family of languages is ultimately
superior to all others, which will eventually pass into heathen oblivion, leaving the world of
languages a smaller and cleaner place. History, however, tells another story.

Conventional wisdom, as preached by language moderates, is that the diversity and evolution
of languages in punctuated equilibria is a natural, perhaps even inevitable, consequence of the
diverse and often conflicting demands of their application niches. But is it inevitable? And is it
desirable? Although the current situation in computer language engineering bears a strong analogy
to biological evolution, the latter does not seem to us to be the best model for an engineering
strategy. For one thing, it is slow and inefficient. Perhaps more importantly, it is not directed
towards any goals, but merely pldys off the (dis)advantages of one mutation against those of others.

Experimental research and innovation are necessary for technological progress, and there is
bound to be much trial and error. Edison tested ? materials before finding a satisfactory filament
for the electric light bulb. At the end of his experimentation, though, he had a solution to a
problem - an answer. Experimentation with computer languages is often seen as being analogous,
but the nature of the problem has never been very clearly articulated. If we look closely, we
see that each language, or family of languages, is really directed toward a solution to a limited
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problem, such as how to specify queries in a language that is psychologically natural and supports
efficient retrieval, or how to express algorithms in a language that enhances clarity and reliability.

This kind of activity is very different from an effort to solve some kind of overall "language
problem". Instead, it produces many solutions to many problems. What we find disturbing about
this is the proliferation of highly duplicative efforts to solve limited problems at great expense,
resulting in fragmentary and incohesive interfaces between people and computer systems as a
whole. The typical computer user employs several languages for each of a wide variety of tasks,
with little uniformity among them, and less ability to share or integrate what is done in one
language with what is done in another.

Is there a language problem? Clearly, there is. The problem is to find an effective way of
communicating with computer systems. We hypothesize that the problem has a solution because
we are equipped with several solutions to the related problem of effective communication among
people, namely English, Japanese, Dutch, Swahili, etc. These examples of real solutions differ
markedly from computer languages generally. Though there is diversity in natural languages, it is
unlike the diversity of computer languages. Natural languages evolve gradually, and are infinitely
capable of assimilating new paradigms, techniques, and ideas. There are relatively few natural
languages, they are relatively stable, and their rates of generation and extinction are extremely
low.

At a deeper level, we observe that people have the capacity to be multilingual in a way that
transcends translation, because the nature of understanding is universal across all human tongues,
including our artificial ones. Thus, despite diversity, the things we do in one language are easily
shared and integrated with those we do in another. This is true even when what is done in one
language cannot possibly be translated into another, as is the case with poetry and punning.

Have there been any experiments aimed at solving this problem? There has been one, based on
formal semiotics as embodied in our books and articles about language design and implementation,
and our formal theories of syntax, semantics, and pragmatics. Over the years, this experiment
has led to the invention of a great many filaments that are good for special purposes, but none of
which sheds the full-spectrum light we need. The general characteristics of artificial and natural
languages cited above suggest that this is no accident; that there is something fundamentally
flawed in our entire approach to the language problem. It is time for a second experiment.

3 The Goals of Prism

The Prism project is aimed at laying the conceptual and practical foundations for a new kind of
language for communicating with computers. The hallmark of Prism is its open-endedness in all
dimensions. In the past, languages have tried to overcome various limits by being comprehensive
and complete in some respect. The Prism goal is not to be complete, but rather to expunge from
the language all varieties and degrees of absoluteness and finality, theieby permitting unbounded
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expressiveness.

During the initial phase of the project, which officially started in the Fall of 1988, it became
increasingly clear to us that the problem we had set out to solve required some change to the basic
structure of language systems, while preserving and accomodating existing language features and
implementation techniques. At the most basic level, this has meant replacing the conventional
model of language as a means of expressing (naming, identifying, denoting) objects in some se-
mantic domain with a model in which language is used in a more relative and oblique fashion for
the mutual orientation of the parties to a dialogue. Thus Prism is a language for conversing with
a system that happens to inhabit a computer, 2 and which has access to and control over the
computer's resources. The primary object of a conversation with the system is to have it employ
those resources on your behalf.

Some potential misconceptions must be dispelled at once. First and foremost, Prism will not,
all by itself, solve any of the specific problems alluded to in the introduction. It will only remove
the obstacles to their solution implicit in the platforms on which current languages and systems
are designed and implemented.

Secondly, Prism is not a programming language, though it can be used to express and discuss
programs. It can also, however, be used to communicate about specifications, designs, versions,
analyses, requirements, failures, time, problem domains, implementation techniques, notations,
representations, transformations, goals, hardware characteristics, operating environments, persis-
tent data, expected behaviors, user models, formal deductive systems - in short, anything that
bears on the technical aspects of the development, maintenance, or operation of computer systems.

The ambition is for Prism to be a "full spectrum" language, in a variety of dimensions. First
off, it permits specification at arbitrary levels of abstraction. In this it extends the ambition of
so-called "wide spectrum" languages, which have attempted to bridge gaps between particular
specification languages and implementations. It is not our aim to build any particular bridge or
set of bridges, but to design a language in which bridges like these can be built and extended
indefinitely.

In another dimension, Prism accomodates incomplete and incorrect specifications as well as
complete and correct ones. Tolerance for incompleteness is important not only for incremental
refinement, but is a key to, avoiding overspecification. Forced overspecification is rampant in
current languages, making it difficult to determine which design decisions are important, and which
are arbitrary. Many of the difficult and expensive analyses performed by optimizing compilers are
aimed at recovering a less committed design so that the compiler can make its own commitments,
based on information that is not relevant or readily available to the programmer. As long as
the information supplied by the user is sufficient, in combination with the automated system, to
obtain the results desired, nothing further is requiied. Nor is the user prevented from specifying
any information that might improve the efficiency or utility of an application. The system's

2The use of the singular should not be construed as limiting the system to a single box. A global network is as
much a computer as is an isolated PC.
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is to eliminate limits wherever they are found in the existing language framework, and avoid
introducing new ones. This is much easier said than done, however, and the number and kind
of limits that exist is not always apparent. Moreover, there are strong arguments in favor of
limitations, which can serve to guarantee certain degrees of consistency, completeness, or simplicity
a priori. These advantages, and the technology that goes along with them, can be preserved in
the Prism framework, in the guise of contexts within which certain overarching assumptions can
be made. In contrast to the current situation, however, sharing and propagation are enabled by a
common underlying language, semantic representation, and persistent context.

The most troublesome puzzle is how a common language can be created which not only acco-
modates all of the useful paradigms, modes of expression, and technologies which currently exist,
but also those which have yet to be invented. The current language framework would require us
to define a single comprehensive language right now which somehow merges existing languages
and anticipates all future developments, and this is clearly not possible. Even if we limit ourselves
for the moment to formal logic, the problem, as G~del's incompleteness result makes abundantly
clear, is that one cannot have a single fixed system for any significant purpose which is simulta-
neously consistent and complete. This seems to force upon us a choice between completeness and
consistency, and most reasonable people opt for consistency.

The choice, however, is not forced. There is the option, which seems to have gone unnoticed,
of having an open-ended, variable, system. Yet it is easy to see that any kind of systematic,
parametric, variability will not suffice, because all one can obtain in that way is a fixed system of
higher order. Something more basic has to give.

Natural languages apparently have the kind of open-endedness and flexibility required, but
to reduce the problem to that of natural language understanding would be to trivialize it, and
quite probably to doom oneself to failure. It is nonetheless reasonable to look to natural language
for clues. What one finds is that natural language belies the formal language framework at
virtually every point. Even the most basic ideas, that a language is a set of strings, that it has
a grammar, and that meaning is compositional, are blasted, to an extent not widely recognized,
and often denied, by computational linguists following the lead of such luminaries as Chomsky
and Montague.

The surface features of a natural language are in fact merely the expression of a capacity to
communicate, shaped by the cultural and personal experiences of each speaker. A language like
English is a collective, a posteriori, phenomenon that is generated and sustained by a community
of speakers.

An analogy with biological taxonomy may help to clarify this idea. Early taxonomists such as
Linnaeus classified organisms on the basis of their features, or morphology, leading to a definition
of species as a set of features, corresponding to the definition of language as a set of strings, or
grammatical structures.

The advent of genetics and population biology provided an alternative definition of species, as
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'olerance for incompleteness and inconsistency is due to a semantics based on intensional objects
and supporting intensional reasoning. This support for intensionality implies absolute conceptual
freedom, allowing fictives, nonexistents, counterfactuals, and abstractions of all kinds and levels
to be expressed.

In yet another dimension, all of the functions ordinarily assigned to operating systems, file
systems, and databases are absorbed into the Prism system. All persistent data are contained in
the persistent context, which includes all machines, networks, and removable media. When we say
the persistent context, we mean it; there is only one. (At least, for any given Prism system. There
is always the possibility of having multiple systems, much as there are multiple people, but each
has its own unique and subjectively comprehensive context.) The system is also responsible for all
aspects of control, including resource management and scheduling, requiring all of the elements of
the system's grounding in the physical world of the computer to be predefined in the persistent
context.

To avoid giving the impression that we regard Prism as some kind of panacaea, we must
hasten to point out that the system's representations of its users' intent, and the real semantic
content of their utterances, is inherently imperfect and limited. The system will blindly accept
any inputs that are consistent with what it has received before, according to whatever tests it has
been organized to undertake to verify consistency. We believe these limitations are inherent in
all uses of language, even among people. They become even more acute in the case of computer
languages, including Prism, because no computer system has any potential for contact with the
reality of human concerns such as aesthetics and hunger, which are not part of the natural context
of machines. These things can only be reflected in abstract models which necessarily fall short
of genuine contact with the human world. Thus the design of systems which are responsive to
human desires and needs will remain a human task, requiring great skill and sensitivity, and the
responsibility for making decisions that affect human welfare must ultimately remain with people.

The need for a language of Prism's intended scope is clear; we cannot seriously hope to enlist
computers as effective partners in computer system engineering without it. The practical impos-
siblity of creating such a language within the tradition of formal languages as we know them is
equally clear, and this is the source of a second potential misconception: that a language must be
unimaginably complex to achieve our stated goals. In order to respond to this, quite legitimate,
concern, we have to explain the basic difference between Prism and conventional computer lan-
guages, and how it may solve the problem of fragmentation without being crushed under its own
complexity.

4 The Prism Approach to Language

If the fundamental problem with existing languages is that they erect barriers and impose limits
restricting our ability to propagate technology and share results, then the solution to the problem



a freely interbreeding populatior. In this view, what identifies a species is genetic compatibility,
which is expressed in a set of similar phenotypes. Phenotypic variation arises from a combination
of genetic variation and individual history and environment.

The approach to language we are advocating here corresponds more closely to this latter
theory. On this account, English is the (somewhat accidental and ephemeral) expression by a
community of speakers of a basic communicative capacity. Differences in capability, errors in
transmission, "interbreeding", drift due to cultural isolation, and happenstance account for much
of the variability of natural language, but changes may also be stimulated by the appearance
of new things in the cognitive landscape. Thus language adapts to changing circumstances and
assimilates new ideas.3

Now, a conventional formal language is a closed system, in that its semantics, and in particular
its semantic domain, is fixed at the outset by the language definition. As a rule, the more complex
the semantic domain, the more complex the syntax that is needed to cover it.4

Prism, on the other hand, is an open-ended system, in that its semantics is determined by the
contents of the persistent context in which the system is embedded, and the interpretation given
to those contents. The persistent context can be viewed as a kind of "knowledge base", which may
become arbitrarily complex, incorporating objects from arbitrary domains. For an object from a
previously unknown domain to be brought into the context (immigrate), all that is required is to
name it, thus entering in the persistent context an ideograph consisting of nothing but the identity
of the object, i.e., a reference to it. The system may become informed of additional properties of
an object in a variety of ways, the most basic of which is to be told about them.5 Thus Prism
can be used for arbitrarily complex purposes while remaining small and uniform as a language,
because it can accomodate semantic extensions without accompanying syntactic extensions.

Actually, the situation with regard to semantic and syntactic extension is more complicated
than the rhetoric here would suggest. For one thing, most implementations of programming lan-
guages, such as FORTRAN, permit a great deal of semantic extension through externally defined
subroutines, and some languages, such as Ada, even include such facilities explicitly in their def-
inition. However, these things can be used to "break" the semantics of the language, as when
multitasking is added to FORTRAN by this means. The problem is that the new objects are

3At the risk of drawing the analogy too far, the adaptation of language in direct response to its "environment" is
a kind of Lamarckian mechanism, far exceeding in efficiency and appropriateness random mutation, recombination,
and natural selection. The extent to which the success of genus homo can be attributed to this more effective mode
of adaptation cannot be overstated.

4As a simple example, consider Scott's LAMBDA [Sco76], in which the product type is "defined" by a term of
LAMBDA. What one really gets, of course, is a retract of P.), i.e., a set of elements of Pw which serve to represent
ordered pairs. This is fine as far as it goes, but if one wanted to denote objects from some other domain and use
them to represent ordered pairs, it would be necessary to add syntax to LAMBDA to denote them, because all of
the existing syntax has already been exhausted on Pw.

5Common Lisp exhibits some open-endedness, in that there is a uni%.ersal type of all objects, and some predefined
types, but there is no restriction of types to compositions of predefined types, nor of objects to the objects of the
predefined types.
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accessed using the syntax of subroutines, but do not conform with the semantics of FORTRAN
subroutines, so that the semantics of such things as assignment statements and even simple ex-
pression evaluation may be disrupted. In Prism, the use of an extension in a syntactic combination
such as function application would be permitted only after establishing either that the extension
conforms with the semantics of application (in this case, that it is of type function), or making an
appropriate extension to the semantics of application. What Prism permits, that other languages
do not, is both of these alternatives, as well as the means to express them. Moreover, it demands
that one or the other, or a combination, be accomplished, so that consistency is assured.

The ability to adjust the semantics of operators in Prism hinges on severing the rigid binding
of semantics to syntax. This is the primary motivation for introducing the idea of interpretation,
whereby the properties associated with an operator, and its scope of applicability, can be modified
in response to changing circumstances. Two important kinds of interpretation shift are gener-
alization and restriction. A mathematical example of the former is the generalization of power
series on R to formal power series. An even more striking example is provided by MacLane's ac-
count of the genesis of the concept of category, aided by a shift in notation from the set-theoretic
f(X) C Y for the signature of a function to the less commital f: X -i Y [Mac7l]. Restrictions are
equally important, for example when something new shows up on the horizon that violates a for-
merly general law, which must now be hedged. For example, the unrestricted rule of fl-conversion,
(Ax. el)e 2 --+ el[e2/x], has to be restricted when a nondeterministic choice operator is introduced.
(In the long run, one would also like a new general rule covering the choice operator, but in the
interim the restricted rule justifies retaining results obtained before the disruptive extension was
made.)

Of course, the vocabulary and concepts of the language may grow well beyond the capacity
of any one person, or machine, to grasp them all, but this is to be expected. Nobody knows all
the words in English, nor more than a handful of the concepts that are found in our libraries and
the combined minds of all our experts. As the complexity of the persistent context grows, we
may expect limitations on the speed and capacity of individual machines to lead to some kind
of division of labor amongst them. Burgeoning complexity will also create constant pressure to
generalize and abstract knowledge, so that large volumes of specific facts may be replaced by
methods for recomputing them on demand.

As remarked earlier, the historical continuity and inLerpretive sensitivity of Prism allows the
system to assimilate new concepts and techniques, and thus become increasingly useful. Assim-
ilation is the key to a cumulative software technology, in which the benefits of new technology
may be propagated to existing applications, and the benefits of past technology are automati-
cally conferred on all future applications. This cumulative platform stands in sharp contrast with
existing platforms, which are fragmented, duplicative, and lack the ability to propagate existing
technology forward, or new technology backward.

The central importance of historical continuity underlying the cumulative strategy forces the
language/system designer to focus on conversations instead of isolated utterances. A conversation

8



users - nothing can be left "outside" the persistent context. This includes inconsistent and
incomplete utterances, fictives, and other flavors of nonexistents, such as round squares and
flying horses, the reason being that it is impossible to discuss and reason about partial or
incorrect specifications if they are excluded from the language.6

Although in some respects the Prism system is a kind of "epistemic engine", and takes some
of its inspiration from natural language, it is neither a project in "machine learning", nor in
"natural language understanding". We have no plans to incorporate, nor contribute any advances
to, specific technologies aimed at enabling systems to learn, nor are we attempting to develop a
system which converses with the user in natural language. Rather, Prism seeks to enrich formal
language with features that have some of the more powerful descriptive capabilities of natural
language.

On the other hand, the predefined syntax and notations of Prism exploit a number of features
from natural language, complementing and enriching a style of mathematical notation which has
some novel aspects of its own. To some extent, the features of natural language are better suited to
open-ended, incomplete, and distributed specifications than are their formal counterparts, which
are designed to eliminate lexical, syntactic, and semantic ambiguities by restricting expressions
to highly stylized syntactic forms. The goal here is to develop a syntax in which one can write
in the style of a good mathematical text, in which formulaic notation and English description are
intermixed. More will be said about syntax in §10.

Beyond any particular syntax, we require that it be possible for machine learning, natural
language, and other Al technology to be programmed and integrated with the system through
its use. This requirement obliges us to anticipate and provide the potential for such things in
the basic design. After all, the limitations on the dimensions and degrees of language extension
imposed by existing languages is at the heart of the problem we are trying to solve.

5 Basic Organization of the Prism Language System

The central focus of the Prism language system is the persistent context, in which all information
available to the system is recorded and organized. This includes all information about the system
and language itself, as well as all information about applications and the tools used to develop
them.

Superimposed on the persistent context is a conversational context, which supplies a parser,
generator, and interpretation for the basic constituents of utterances. The parser and interpreter

'Programming languages guarantee consistency by excluding inconsistent utterances. This makes consistency
into a kind of language property. In Prism, consistency (or lack thcreof) is expressly not a language property -
it is a property of utterances, which they may or may not possess. The problem, as we see it, is not to exclude
inconsistency, but to manage it.
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typically have to interact as coroutines because parsing may depend on the interpretations given
to proper names, anaphoric references, and indexicals generally. Moreover, the parser may contain
internal references to parsing rules which may, in principle, vary with context.

Interpretations are synthesized from three basic sources of information: the global persistent
context, the local context, and external channels. The local context is structured according to a
dialogue model, which determines both how information is gathered and made accessible during
the course of a conversation, and what the possible continuations for a conversation are at any
given point, including the intent, or role, of a given utterance. In other words, the dialogue model
determines a set of possible histories, and the way in which past and future events condition the
interpretation of present utterances.

External channels constitute the coupling of the system to its "environment", which is to
say, the interface provided by the physical computer. This includes all hardware operations and
data representations, including clocks and counters, and access to devices, including processors,
memories, networks, and i/o devices interacting with sensors, effectors, storage devices, and users.
These things ultimately supply the grounding of all information in the system regarding its "real-
ity". For example, the system's notions of time, which are involved in the specification, analysis,
and implemention of concurrent and real-time applications, are grounded in the locally sequential
behavior of processors, channels, and clocks, both internal and external.

An important aspect of the system is that all components and concepts of the system itself
are represented in the persistent context. These representations provide the necessary "hooks" for
reasoning about and enhancing the system, and also provide access to the system components for
reuse in arbitrary applications. For example, an application which needs a parser could use the
system parser, or derive a new one starting with the system parser as a base.

A necessary consequence, and benefit, of self-description is that nothing in the system, or
language, is primitive in the sense of being an unanalyzed, externally defined concept. The ad-
vantages of being primitive-less are striking, and first came to our attention when we invented
a primitive-less internal representation for programs, known as IRIS, and used it to develop an
Ada compiler. IRIS is basically an abstract syntax tree representation, except that there is only
one nonterminal class, instead of one for each primitive operator or construct of a particular lan-
guage. Initially, each nonterminal in a program has an associated operator symbol, and semantic
analysis is responsible for replacing each operator symbol with a reference to the declaration of
an operator. This analysis is performed in the context of an IRIS tree in which the basic opera-
tions of the programming language have been declared, along with any operations used to make

7The syntactic arrangement of programs into sections like declarative regions and bodies, or the simple parse-
evaluate loop of interactive languages like ML, are rudimentary examples of dialogue models. In these models, past
history results in a simple binding environment for names, interpretation of current utterances is purely a matter
of looking up the binding of a name, or supply ing the fixed interpretation of a sy mbol or construction, and current
interpretations can be related to future e-entb by suspending them and posting an obligation for completion, as in
the case of incomplete type declarations in Ada.
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those declarations.' This obliterates any distinction between applications of language constructs
and applications of user-defined functions, so a single simple, uniform algorithm can be used to
resolve and check the semantic composition of the entire program, with no special processing for
the basic constructs of the language. Similar simplifications were realized in every phase, resulting
in an optimizing Ada compiler which has only a tenth the number of source lines as compilers of
comparable speed and code quality. Moreover, the compiler can essentially be used to compile
programs in any language whose semantic composition rules are consistent with those of Ada. The
only additional information needed is a grammar, and declarations of any constructs which are
not specializations or trivial compositions of the generalized Ada constucts defined in the existing
language definition package.

Similarly, Prism's persistent context includes a collection of predefined concepts and mech-
anisms. A relatively small subset of the predefined concepts are essential in that they form a
spanning set of concepts, but even these are not to be regarded as primitive. These essential con-
cepts must simply suffice to establish the lowest-level linkage of the system with its environment,
and to enable the definition of all other concepts. All other predefined concepts of the language
may be regarded more as standard library packages. In selecting and designing standard library
packages, we have attempted to confine ourselves to things which are frequently used, and which
are too expensive to define from scratch, or for which there are clear advantages to standardization.
An example of the former is the type array; an example of the latter is the type Boolean.

Prism includes a variety of abstraction mechanisms, one of which is context abstraction. This
can be used to define subcontexts of any context, thereby allowing information about some topic
to be packaged and treated as a unit. As with all other concepts in Prism, contexts are semantic
entities, which have no fixed relationship to syntax. Hence there are no syntactic primitives,
such as syntactic nesting of scopes, which limit the ways in which contexts can be specified and
composed. In particular, contexts may overlap lexically, or be entered and exited intermittently.

Another important abstraction mechanism is embodied in the notion of type, which enables
general reasoning in the system, divorced from the specific details of any particular object or
objects. The most prominent features of the Prism type system are outlined in §9.

6 Persistent Ideas

IRIS is a good generalization of abstract syntax that integrates the representation of syntactic
and semantic information in a language-independent form. We have found it inadequate as an
internal form for Prism, however, because it assumes that all compositions are functional, or at
least categorial. The need to handle partial structures, the frequent lack of operator/operand

8Thus all information about every operation that is used either in a program or in the language definition is
represented uniformly in IRIS form. Mathematically, an IRIS language definition can be v ieied as a set of mutually
recursive definitions %ith no ground terms. Taken in isolation, therefore, the IRIS structure constrains the class of
possible interpretations, but does not determine a unique interpretation.
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asymmetry, and the breakdown of compositional semantics all contribute to the inadequacy of the
functional form of IRIS.

As it turns out, many computational linguists have abandoned trees for similar reasons, re-
placing them with feature structures. [Kni89] is an excellent survey which explains the basic ideas
and (for us) the important advantages of feature structures and unification on them. For those
unfamiliar with the idea, suffice it to say that a feature structure replaces the rather rigid idea of a
distinguished operator dominating some fixed list of operands with an unrestricted list of features,
and has much in common with Minsky's frames and related "knowledge representations". Each
feature structure represents some partial collection of information, and unification of feature struc-
tures requires only that the common parts be reconciled, consistent with any constraints among
the parts.

Unfortunately, feature structures, frames, and the like suffer from the same deficiencies that
led to the invention of IRIS, namely that the features are labelled with tokens denoting primitive
concepts and relations which are externally defined, and about which no information is represented
in the system itself. Happily, the remedy is the same: to replace the labels with references to
structures of the same kind which represent the semantics of the intended relations. We call these
generalized feature structures ideographs, with the somewhat immodest and perhaps misleading
implication that they are structures representing ideas.

Formally, an ideograph x is a (non well-founded!) set of pairs < r, v > where r is an ideograph
representing a binary relation, and v is an ideograph representing something that stands in the
relation (represented by) r to (the interpretation of) x.

An abstractly equivalent formulation is that ideographs are the nodes of a directed multigraph
equipped with a mapping p of edges to nodes. An edge e =< x, y > represents a binary relation
between x and y, where the relation is represented by the ideograph pe. This provides a convenient
way of depicting ideographs as directed graphs with arcs from edges to nodes representing p, as
shown in the figure below. This sample ideograph represents the number three, which has the
properties of exemplifying the types prime and odd (":" is the "exemplifies" relation), and of
being less than the square root of ten.
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In practice, a wide variety of ideograph representations may be used in the Prism system,
providing greater efficiency or convenience for various ideograph types. For example, direct repre-
sentations may be provided for n-place relations instead of forcing everything to be decomposed
into binary relations, or representations may be provided for special composition forms, such as
function application, for which a trivial adaptation of IRIS will do.

From an abstract perspective, the persistent context is a network of ideographs. Intuitively,
an ideograph is a kind of mental entity having identity and a set of associated properties. The
properties need not be consistent, or correspond to any real or even possible object, as in an
ideograph combining the contradictory properties of bcing round and square, which intuitively
represents the idea of the round square, a classic nonexistent.

Ideographs play the role in Prism that S-expressions play in Lisp, in that a rudimentary "pure
Prism" system can be built exclusively in terms of some standard representation of ideographs,
togethcr with an interpreter for a small initial context. As with pure Lisp, an extremel simple
syntax can be used to specify ideographs in the standard representation.

The notion of identity in the persistent context is universal, in that no two distinct ideographs
can ever have the same identity, anywhere. Nor can the idea of identity be reduced to inde-
pendent notions, such as location or proper name, because these things are subject to change.
In practical terms, this imposes a requirement for each ideograph to have a unique, universal,
location-independent identity (see [KCS6]). This is one of the fundamental factors in our treat-
ment of persistent object management in Prism, of which more will be said in §S. Another is the
degree to which an ideograph is mutable (subject to diange).

There is a logic of ideographs which determines when certain ideographs follon- from others,
leading to notions of type and subtyping. At the most basic level, the logic is consistent with
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structural unification, in that the unifier of a set of ideographs implies each of them. Beyond this,
there are ;mplications which have to do with the content of individual ideographs, such as that
every prime number great-. than two is odd. When unification is extended to the whole logic,
ideographs ar" -en ,, generalize Ait-Kaci's 0 terms, as well [AK84].

Of course, a network of ideographs in isolation doesn't represent anything; it is just a complex
structure. Ideographs are infused with meaning by interpretation, which projects the universe
onto them. We have very little to say in general about the universe, what its internal structure
might be, or even if it has internal structure in any meaningful sense. All we can say is that
;decgraphs and their logic are supposed to form an abstract model of the universe, which ignores
many distinctions and details, and is thus an approximation at best. We don't even want to claim
th- ' every interpreted ideograph, like an ideograph representing the idea of the Statue of Liberty,
corresponds to some real object, because that would lead u. to puzzle over whether the Statue of
Liberty is the same object now as it was before its restoration, and similar conundrums. What is
constant is the ideograph, and an ideograph has significance in the universe if some aspect of the
universe is projected onto it. The round square ideograph, by contrat to an ideograph representing
the Statue of Liberty, has no significance in the universe, though its component properties do.

7 Language and Ideas

We have stated briefly that interpretation projects the universe onto ideographs, but how are
ideographs related to language? Considered simply as consitituents of the universe, linguistic
phenomena give rise to ideographs through interpretation just as other phenomena do. These
ideographs represent only the linguistic phenomena themselves, however, and not their interpre-
tation. In plainer jargon, the direct projection of an utterance is its abstract syntax, and the
interpretation process is parsing. Other, less common, interpretations include the analysis of spo-
ken language as a sequence of phonemes, or more crudely as a sound wave, or the interpretation
of a written text as a pattern of glyphs.

However, the important featurc of linguistic phenomena, which distinguishes them and gives
them their power, is that they are supposed to stand for something else; they signify. For example,
the ideograph of the exp:ession "3 + 4" is a structure having three major featurt. Ln operator
and a left and right aperand. This ideograph, ii1 turn, signifies the sum of two numbers, namely
three and four.

The interpr.tation of linguistic phenomena in these two stages is the source of the use/mention
di,.tirction, and motivates *he factorization of language processing into semantics and syntax.
Pragmatics is supposed to compleW, the semiotic picture by explaining the interpretation and role
of utterances in an overall context.

The scmioic factorization is only approximately correct, however, because the -oncerns of
pragmatics are manifested also in the parsing and semantic phases. That is, both the parsing
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of an utterance and the interpretation of its significance are influenced by context. Consider the
sentence "He is taller than he is old", which most English speakers accept. The interpretation one
gives to "taller" in this context is not the usual ordering on heights, but rather a relation between
heights and ages according to some unspecified scale. The interpretation is best explained as a
context-induced perturbation, or mutation, of a standard interpretation supplied by a lexicon. A
more standard, but less satisfying, explanation is that the lexicon supplies a denotation which is
somehow parameterized by context in such a way that the meaning in this situation can be derived.
The difference between the two views hinges on the question of whether the interpretation in every
possible situation has to be anticipated when making entries in the lexicon.

To some extent, the intuition that pragmatics is not separable from syntax and semantics un-
derlies Kamp's discourse representation theory (DRT) of natural language understanding [Kam88],
but DRT does not take it far enough. The fact that large parts of the context of English speakers
are relatively uniform and stable over time accounts for our ability to communicate, and in fact
"the English language" is nothing but this shared context. On this account, the notion of "a
language" is not a priori, but empirical and derivative.

These considerations led to the novel conceptualization of language which underlies Prism.
The basic theme is that the purpose of language is not to denote, but to stimulate ideas. That
is, we see language not so much as a vehicle for naming and transmitting semantic objects from
one speaker to another, but more as a way for one speaker to provoke a certain kind of reaction
from the interpretive capacity of another. The difference is that the response elicited by a given
stimulus depends intimately on the recipient's orientation, making meaning relative instead of
absolute. As further support for this view we remark that a great deal of conversation is aimed at
orientating the participants relative to one another so that a system, or community, is established
with a set of regularities and invariants that permits more efficient communication. 9

At the center of the language process lies the interpreter, which has as its goal the reconciliation,
or unification, of linguistic data with its interpretation of the universe. That is, the meaning of
an utterance is a unifying ideograph which is simultaneously an interpretation of the utterance,
and a partial picture of the universe.

To obtain this unifier, the interpreter first "parses" the utterance to obtain a relatively un-
committed abstract structure, with no interpretation. Interpretations for individual components
of the initial ideograph are offered by the context, and the interpreter attempts to choose a com-
bination of these which together form an interpretation which is congruent with its interpretation
of the rest of the universe.1" Some of the component interpretations may require that the initial
structure be refined, making some features subordinate to others. When ideographs conflict, they
may be reconciled by dropping or relaxing some of their features as necessary. Meanings may be
inferred for previously unknown words or phrases because they are essentially variables which are

9How often have you gotten into a heated debate with someone only to discover after much discussion that you
had no real disagreement, but merely misundersto. d one another?

l0The astute reader will recognize this as the Prism analogue of overload resolution in Ada!
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filled in by unification. By symmetry of the unification process, new information about some part
of the system's world model may be inferred. In this way metaphor, analogy, and oblique uses of
language become possible. Moreover, because interpretation is naturally partial, overspecification
is avoided, and the amount and kind of information that may be supplied to refine an ideograph
or its interpretation is not restricted in any way.

8 Persistent Object Management

There are several important requirements for the management of persistent data in Prism. These
requirements are concerned primarily with the integrity and efficiency of creation, destruction,
storage and access of the persistent data through both space and time. The primary requirements
we place on persistent object management in Prism are discussed in the next several paragraphs.

As explained earlier, the persistent data items in Prism are ideographs; th, y are the "objects"
to be managed. From an object management perspective, an object is a container for a data value
of arbitrary type (including other objects). There must be no restrictions on the types of values
that can be made persistent. Each object must have an identity which is unique (to avoid confusing
it with other objects), universal (so that knowledge of an object's identity is not invalidated in
one part of the system when changes are made elsewhere) and location-independent (because the
location of an object may change in the course of its lifetime).

Integrity is a pervasive goal for Prism; type and identity integrity are central to persistent
object management. It matters little how good other aspects of a system are (e.g. how fast it
runs, or how much it encompasses), if it produces results that are incorrect or unreliable. Because
types are used to express the formal properties of data and because of the nature of identity, the
persistent object management mechanisms must enforce the typing and identity mechanisms.

Users and developers of software systems must be given control (though not required to exercise
it) over the placement of persistent objects as they move between peripheral memories (including
removable media) and main memory, as they move across nodes of a network and indeed between
networks, and as they are replicated for reasons of efficiency and backup. Controlling the granu-
larity of the data that can be independently placed is essential in achieving performance. Users
and developers must have access to mechanisms that remain efficient over the full range of object
granularity.

Traditional programming languages, operating systems and databases have addressed some
aspects of persistent information management, but each has its shortcomings. The underlying as-
sumptions of operating systems and databases are not valid for the data in a software environment.
In violation of the operating systems assumptions, correct and effective management of software
development objects requires intimate knowledge of their types, which are expressed (implicitly
or explicitly) in the objects themselves, in order to ensure type integrity across tool invocations
and manipulations by human users. In violation of the database assumptions, the types of data in
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a software development environment at any time are specified by that data, the number of items
of information of any given type may range from one to millions, and some objects are virtual
(and are only instantiated dynamically). Furthermore, both the user-defined names relied upon by
operating systems and the value-oriented names of databases compromise the integrity of object
identity.

High-level programming languages are better at managing this kind of complex information.
Unfortunately, programming language designers and implementors have never really addressed the
problems of managing resources beyond local memory. Instead, they have relied on databases and
the file systems of operating systems to manage persistent data.

More recently, research on managing the persistent objects of the entire software activity
has been conducted. Much of this work (in areas such as software development environments,
CAD/CAE systems, object orientation, databases, database programming languages and perbis-
tence) is relevant to the Prism effort in many ways, especially by providing basic techniques for
instantiating and realizing our goals.

We should emphasize that similar remarks apply to many other areas of language and systems
research and technology, on which the success of the Prism effort depends, and without which its
success would be pointless. It is the barriers to accessing and integrating the vast array of existing,
potentially useful technology which we decry, not the technology itself!

9 Types

Types in Prism are partial information structures used for general reasoning about Prism programs.
A Prism processor's facility at manipulating types is one measure of its "intelligence", or of how
well-educated it is. Similar remarks apply to Prism programmers. From this point of view, the
Prism type system refracts into two parts: information structures, and the associated logic(s).
The issues here are foundational: what are the partial information structures; what and how do
they mean; what is the role of logic; and so forth.

From a different angle, the type system appears as a collection of basic abstractions, such as
arrays, tasks, and interpretations, together with mechanisms for generalization and specialization.
This is the view traditionally used to describe the type systems of programming languages such
as Ada and Common Lisp. It is important and useful because it conveys the higher-level syn-
tactic features available for type specification, and the interrelations among those features (e.g.,
subtype/supertype relations).

A third angle reveals a number of fundamental relationships among types, and strategies for
exploiting those relationships. For example lification is a basic strategy for deriving subtypes
(exploiting the supertype/subtype relatior and class abstraction is a basic strategy for deriv-
ing metatypes (exploiting the metaty.,- j'pe or so-called class/instance relation). These basic
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strategies are reflected in the generalization and specialization mechanisms alluded to earlier.

From another perspective we perceive a logical spectrum, with varying degrees of richness,
complexity, specificity, and intensionality. These reflect the infinite variety of purposeful interpre-
tations. For example, one logic is germane to considering a procedure as a constructive witness
of a functional specification; another logic addresses it as a consumer of resources; yet others may
be used to evaluate its potential for reuse, or its lack of covert channels. Along the specificity
axis we see a tradeoff, between the level of detail and the complexity of automation. Thus a sim-
ple propositional logic of functional specifications corresponds to the familiar automatic signature
analysis of programming languages like Pascal and Miranda, while the more detailed constructive
logic of PRL demands more sophisticated, and necessarily incomplete, automation, and defers to
the programmer for many difficult insights.

A fifth point of view regards types in terms of representation and implementation. All too
often in progiamming languages, the notion of type is anchored to these, rather special, relations.
The most common mechanism for specifying an "abstract data type" in programming languages
is through an isomorphism to some quotient, or, in the vernacular, encapsulated representation.
In practice, though, the fact of isomorphism is not taken as an incidental fact used to specify
the abstraction, but binds the abstraction inexorably to that representation, to the exclusion of
all others. This is a state of affairs which we deplore. Still worse, these mechanisms invariably
confound abstraction with presentation [sic], so that two "abstractions" which are mathemati-
cally isomorphic, but which are specified using different representations, axiomatizations, or even
merely different names, are considered distinct! In Prism, we recognize a fundamental relation
of representability between types, which may be used to specify a type, but which has none of
the (over-)committing force of curre: ")rogramming language constructs. We also distinguish
between effective and noneffective rep,.sentations, depending solely on the computability of the
representation functor. An implementation is an effective representation in terms of a physically
realized type, i.e., the operations and resources of some physical system, such as a computer. To
illustrate the distinction, note that many types which are effectively representable are not imple-
mentable. In any event, mechanisms for specifying, composing, and deploying representations and
implementations are of obvious importance for practical programming.

This brief list of aspects of the Prism type system is by no means exhaustive, but it highlights
those issues which have most influenced its design. In order to give a somewhat more instantiated
impression of some aspect of Prism, we now provide a few details of Prism types. For more infor-
mation about the theoretical properties of Prism types, see [Shu89b]. For more information about
the standard library types and abstraction mechanisms initially planned for practical applications
of Prism, see [Shu89a].

A type is a set of properties closed under entailment. That is, if tt=o (0 a unary predicate) then
0 E t. In order to specify types finitely, we adopt the notation X1 for the closure of X under 1.

For example, let us define oddprimc to be the type Qx{x is prime, x is odd}K. " oddprime

't The notatior 3x is meant to identify the -ariable over which the predicates in thc immediately following type
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includes the properties "0x(x+1 is even)", "Ox(x > 2)", and "Ox(Vy,m. y < x A mx A mly
m = 1)" along with infinitely many other consequences of the two properties originally specified.

The subtype relation is defined as follows: x _ y if V¢ E y. x1¢-O. That is, subtypes specialize
their supertvpes. An equivalent, if initially counterintuitive, characterization is that x - y if
yCx.

0x{x is prime, x is odd, x2 < 10}1 is a subtype of oddprime. Similarly, Ox{x is odd} is a
supertype of oddprime.

To a first approximation, an individual (description) is an example of a given type if it satisfies
all of the properties of that type. 12 Formally, x: t if V¢ E t. O(x). Actually, we need to refine this
definition somewhat, but let us adopt it for the moment, to show what is right and wrong about
it. A few important Prism types are the following.

<> = ¢

type = 0t{t is an I-- closed set of properties}

metatype = (type U 0x{Vy: x. y: type})'

The reader can easily verify that these satisfy the following "axioms".

Al) 0: type

A2) type: metatype

A3) metatype: metatype

A4) type -< 0

A5) metatype -< type

It is also easy to show that the following are consequences of A1-A5.

Ci) 0: <

C2) type: type

C3) type: <

specification range. In this regard it serves the same purpose as the bound variable in a set specification {sIx},
but the two notations mean quite different things!

121 use the word "example", instead of "member", because the members of a type are properties. For example,

"0x(x > 2)" is a member of oddprime; "3" is not. What "3" is is an example of oddpriine,
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C4) metatype: type

C5) metatype: >

C6) metatype - 0

Proof: C1 follows from Al and A4 by subsumption. C2 follows from A2 and A5 by subsumption.
C3 follows from C2 and A4 by subsumption. C4 follows from A3 and A5 by subsumption. C5
follows from C4 and A4 by subsumption. Finally, C6 follows from A4 and A5 by transitivity.
0

Unfortunately, the type system as presented so far admits the familiar paradoxes. For example,
we can define an analogy to the Russell type R = Ot{-(t: t)}', and draw the usual contradiction.
The problem, alluded to earlier, lies with our notion of examplehood.

The source of the problem is with the requirements for examplehood, which are too loose.
Before something can be subject to the general reasoning applicable to a type, it must already
exist as an example of some more specific type. Technically, we have the rule

x:y
V¢ E y. O(x)

but the converse of this rule does not hold. Instead, we have the following axiom of unit

examplehood, which explains how we come to have any examples at all.

a: x{x- a}l

Using these rules, one can prove that the assumption R: R leads to a contradiction, but the
assumption that -(R: R) leads only to the conclusion that VO E R. O(R), which is insufficient to
establish the contradictory R: R.

10 Language and Notation

The goals of Prism impose a number of constraints a the syntax of the language. Although
the design of the syntax is far from finished, the requirements for it are clear, and a number
of syntactic mechanisms contributing to meeting those requ:ements have suggested themselves.
The fact that Prism is a two-way language, with the system itself generating large portions of the
program text, means that readability is at a premium. The user will be obliged to understand
and maintain large bodies of code that he did not write, so that traditional write-once syntax
becomes much more undesirable. Moreover, it is not enough just to allow the user to say what
he needs to about a computation; he must also be able to say it easily, and not have to shoehorn
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it into s-expressions or function form. The goal of expressivity requires a notation that is at once
powerful and natural.

Exploiting today's display technologies promises to go a long way toward achieving this ex-
pressivity. The use of graphical representations directly manipulable by the user will reduce the
asymmetry of the system, since the same zepresentation can be used on input as on output.
Improved typography, the use of multiple typefaces and stylistic variants, and possibly even a
two-dimensional syntax, will contribute to readability. Coupled with such use of graphics, lexical
extensibility will make the notation more natural by allowing it to conform to existing traditions.

Prism's property-based type system and its use of a generalized feature-structure formalism
impose a requirement for a simple and convenient mechanism for talking about properties. This
can best be achieved by elevating adjectives and prepositional phrases to first-class status in the
language, so that complex compositions of properties can be expressed coilveniently.

Prism's view that interacting with a computer is a kind of dialogue, its commitment to sup-
porting intensionality and incompleteness, and its avoidance of overspecification, all require a
language quite different from the purely extensional languages of the past. The most promising
approach is to integrate a number of features from natural language. For example, the use of
anaphora, including both pronouns and anaphoric descriptions, is a natural way of expressing
context dependency. The use of variable-free quantification provides a convenient way of avoiding
overspecification. The advances made in computational linguistics over the last ten years make us
optimistic that these features can be adopted at reasonable cost.

11 Related Work

Although the Prism model of language has been influenced by reading and reflection on linguistics
and the philosophy of language, it took shape independent of any particular tradition or set of
ideas. At the outset, our goal was simply to remedy a number of shortcomings of conventional
programming languages which we saw as standing in the way of significant long term progress in
software engineering. What we have ended up with is a fundamental revision of the computer
language framework. It is curious to note that our conceptualization was developed in ignorance
of the philosophical and critical traditions of phenomenology and hermeneutics, which have only
recently come to our attention. The language problems we identified and struggled with were
the demons of Brentano, and we are discovering much in common between our conclusions and
those of tIusserl, Meinong, Heidegger, and others. We also find much that is sympathetic in the
more recent work of Zalta [Zal88] and Winograd and Flores [WF87]. A complete discussion of the
relationship of our ideas to these others is well beyond the scope of this overview, but . sketch of
the main points may help to place the current work in perspective.

Programming languages, modelled after the formal languages of analytic philosphy and math-
ematical logic, represent a respectable and coheient tradition of thought about the nature of
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language that has been remarkably successful in explaining the use of language for such things
as mathematical expressions, proofs, and encodings of algorithms and data structures. It has
been less successful, however, in explaining natural language, Montague to the contrary notwith-
standing. Situation semantics [BP83] was stimulated by the shortcomings of the model-theoretic
account of language, even when augmented to handle modality, temporality, and all other forms
of intensionality. Unfortunately, situation semantics has problems of its own.

Our concept of language is more in accord with the traditions of phenomenology and hermeneu-
tics, which hold that meaning cannot be attached objectively to words but is to be found in their
interpretation and use by a community of speakers. The case for this tradition is made quite
eloquently by Winograd and Flores, who conclude that computers cannot understand human lan-
guage. Although we don't dispute their conclusion, we take issue with its relevance. The question
for us isn't whether computers can understand human language, but rather, what kind of language
is possible in a community composed of people and computer systems?

Among rival theories, Zalta's seems to offer the most complete account of several intensional
phenomena, though he doesn't have much to say about others, such as indexicality and time. We
have carefully examined each of the issues that Zalta's theory covers and demonstrated to ourselves
that our accounts are at least as good in all cases. Unfortunately, the detailed exposition of these
results has proved far too lengthy for the current paper, and its publication will have to be deferred.

12 Conclusions and Prospects

Prism seeks to eliminate the barriers inherent in current software technology which inhibit sharing,
reuse, and long-term progress. To date, our primary accomplishments are a clear understanding
and statement of the problem and its causes, and a clear understanding of what needs to be
done to solve it. We have outlined the requirements for a solution, and designed the high-level
architecture for a system, namely Prism, which meets those requirements. We have also partially
instantiated this design in several areas.

As of this writing, the focus of the project has shifted toward greater instantiation of our ideas,
and we expect to accompany this instantiation with some prototype implementations so that we
can gain a better understanding of the technical prerequisites of a production implementation.
These experiments are also aimed at establishing what is feasible within the limitations of our
time, expertise, and other resources. Our findings will influence the initial instantiation of Prism,
but of course wherever that initial instantiation lies it will not be the end of the story. Once Prism
has been sufficiently primed, it can be enhanced indefinitely.
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Prism -- Design Notes -- 890109 -- DAF

Design Goals

Property based type system encompassing persistent as well as program data.
Ability to predict behavior of programs.
Full spectrum language encompassing all aspects of a computation.
Distributed specification of computations.
All concept of computation and language first class citizens of language.
Separation of behavioral specification from inplementation.
Support for incomplete and inconsistent programs.
Ability to specify efficient implementations independent of a particular program.

Summary of Language

Design Principles

Objects and Values

An object is anything subject of a computation, that is, anything that can be computed,
described, communicated, queried, modified, shared, or mentioned in a computation.
Objects are also called data structures.

Atomic objects do not have subcomponents. Compo'ite objects have subcomponents. All
objects are either atomic or composite, but never both.

atomic: type
composite : type

Assignment is the only operation that modifies objects. It can be applied only to objects
that are assignable. Each assignable object has an associated target object. The
assignment operation replaces the target object. Assignable objects also have a target type
that restricts the target objects that may be assigned. The target type of an assignable object
may be specified with its type, but becomes a property of each object. If the target type is
sharable, the target object will be second argument to the assignment. Otherwise it will be
a copy of the secord argument.

assignable: function (t: type) return type
assign: (Vt : type) procedure ( x : assignable t; y : t) return statement

The dereference operation returns the target object that was last assigned. Dereference often
can be implicit in a program's syntax. In particular, if some number of derefenences of an
actual argument will produce an object of the required type, then explicit dereferences are
not required. Any ambiguity that might be introduced by dereferencing different numbers
of levels, is resolved by chosing the solution with the minimal number of dereferences.

dereference: (Vt : type) function ( x: assignable t) return t

Immutable objects cannot be modified; that is, they are not assignable and cannot have
assignable subcomponents. Immutable objects are also called vauhtes. Values can be



atomic or composite. Atomic values are called scalars. Mutable objects can be modified.
That is, they are either assignable or have assignable subcomponents. Most objects are
values, but much of the complexity in programs arrises from mutable objects.

immutable: type
mutable : type

(should be moved to type section) Two operations are defined on objects of any type.
Equality is used to distinquish objects. A copy of a value is, or is indistinguishable from,
the value itself. When applied to a mutable object, copy creates a new object similar to its
argument except it and all of its nonshared subcomponents have been replaced in a way
distinguishable by equality.

eq : function ( x, y: <>) return boolean
copy: function ( x: <>) return type_of x

A copy of an assignable object is also distinguishable because assignment to one will not be
reflected in the others. It is sometimes useful to be able to specify whether an assignable
object can be shared. Specifically, a shared object is one that can be referenced
simultaneously by multiple tasks, or that can be simultaneously multiple subcomponents of
a composite data structure. All subcomponents of shared objects must be shamble. That
is, each subcomponent of a shared object may be immutable or shared, but cannot be a
variable. Objects that may have shared subcomponents are called list structures. Objects
that cannot have shared subcomponents are called tree structures.

An assignable object that cannot be shared is called a variable. Subcomponents of variables
are not restricted; :iey may be immutable, variable, or shared in any combination. Each
assignable object is either a variable or shared, but never both. The type constructors for
variables and shareds take a single type valued argument specifying the target type for
assignment.

variable : function ( t: type) return type
shared : function shared( t: type) return type

The new operation creates an object of the variable or shared type. New also assigns its
second argument to the newly created object. The first argument to new specifies the type
of the new object. The second argument must be a assignable type, and must designate
whether variable or shared. The new object is distinguishable from all previously created
objects.

new : (Vs : type) function ( t: typeof assignable s; y : s) return assignable s

Read only is a special property that can be used to prevent assignment to an object and to
its subcomponents. The read only operation produces a read only copy of its argument that
execpt for assignment and the read only predicate is indistinguishable from the original. In
particular assignments to the original or to subcomponents of the original are reflected in
the copy and other non modifying operations produce the same results. Assignment to the
read only copy or to any of its subcomponents through the read only copy is illegal. The
read only predicate is used to distinguish the copy from the original; immutables are always
read only.

readonly: (function ( x : <>) return z : typeof x) where is_read_only z
is.r.ead_only : function ( x : <>) return boolean



Types

A type defines a set of objects. Each type has a set of properties that distinguish the
objects of the type. A type need not be finite or enumerable. The unconstrained type is the
set of all objects and is designated by <>. Each type is an object. Metatype is the type of
all objects that are types, including metatype. Also, metatype is a subtype of type and type
is a subtype of <>.

<> : type
type: metatype
metatype : metatype

Scopes and Declarfions

A visibility scope is a region of a program's execution where certain declarations made
within the region can be directly referenced. Visibility scopes can be dynamically
embedded in a program's execution and must be lexographically embedded in the
prog-arn's syntax. The visibility scope operation specifies some of the declarations tlocal
to the scope and a computation to be evaluated within the scope. There are other operations
that create visibility scopes.

scope: function (dl: list_of declaration; body: <>) return type-of body

Declarations are used to give temporary names to objects within specified regions of a
program and to subcomponents of composite dam structures. Each declaration has a name
and an associated object. Both must be specified at the point of the declaration. The name
must be a literal token. Most declarations are on declaration lists, but there is also a
declarator for naming other places including statements, scopes, and assertions. Declare
operations makes the name visible throughout the most local enclosing scope of the
declaration. If the second argument is of a shared type, the assaciated object as the
declaration will be the secord argument, otherwise it will be a copy of the second argument.

declare: function (name: literal token; x: c>) return declaration
declare : function (name : literal token; x : <>) return type-of x

The target object of a declaration is normally recomputed upon each reentry to its most local
enclosing visibility scope. It is sometimes desirable to retain the target object throughout a
scope broader than its visibility scope; declarations of this kind are called own declarations.
Own declarations have an own scope that can be any enclosing visibility scope of the
declaration. The target object of an own declaration is recomputed only if the own scope
has been reentered since the declaration's visibility scope was last entered. The own
specification operation is declaration modifier. It -an be applied to single or multiple
declarations.

own : function ( s : any recordt.ype; d : declaration) return declaration

It is illegal to have two declarations of the same name with idenitcal scopes. If the visibility
scope of a declaration is embedded in the visibility scope of another declaration of the same
name, then the outter declaration is hidden within the visibility scope of the inner
declaration. A declaration can be directly referenced at any place in a program where it is



visible but not hidden. Direct reference requires only the declarations name. The direct
reference operation returns the object associated with the only declaration of tile name that
is visible but not hidden at the point of the reference.

reference: function ( name: literal token) return <>

Declarations are elaborated in order of their appearance, but there is minimal dependency on
the order. There is no requirement that a declaration appear before its references, although
such placement often improves readability. It is illegal to elaborate a reference to a
Z'heclration before elaborating the declaration. Note, however, that elaboration of recursive

declarations (i.e., onerations or data types) does not involve elaboration of their bodies. It
is also illegal for the elaboration of declarations, including initilization of assigable values,
to cause side effects; but the elaboration of declarations may depend on global variables and
non pure functions.

In out is a special declarator operation for shared objects. The second argument to an in out
declaration must be sha e. The object associated with the declaration will be a copy of the
second argument. In addition, at each exit from the visibility scope of the declaration, the
target value of the object associated with the declaration will be assigned to the shared
second argument to inout.

inout : function (name : literal token; x: shared) return declaration

Program Compositio /

The abstract syntax of a program is a composition of calls Ii operations defined by the
lanuguage or its users.

Compositions are partitioned into three classes by their result type: declaration, statement,
and other types which are called expressions. Declarations e elabora,.d, statements a
executed, and expressions are evaluated.

declaration : type
statement: type
expression : type 4

Each operation has a signature specifying restrictions on th type of each of its arguments.
The restrictions specified in the signature for an argument is called the formal parameter
type. The signature may also specify a type of its result. A composition is legal only if the
actual result of each call is an element of the corresponding formal parameter type of the
operation to which it is an argument. The signature is part of the type of an operation. A
si.nature is an open scope.

operation : function ( fpl : listof fp.decl; result : declaration) return type

Unlike other declarations, formal parameters are initialized by calls on the operraion.
Consequently, the declarator operation for formal parameters specifies only the type of the
object being declared and not the object itself. The rules for deriving a formal parameter
object from its specified object, are the same as for any other declaration.

fpspec : function ( name : literal token; t : type) return fp.decl



A side effect occurs when a computation modifies an object whose life time (i.e., own
scope) is not (dynamically) embedded in the computation. An operations that never causes
side effects and whose result depends only on its arguments is called afunction. An
operation that never causes side effects, but whose result may depend on assignable objects
with life times broader than its calls, is called a routine. An operation that can cale side
effects is called a procedure. Only statements may have side effects. Thus, the result type
of a procedure is always statement and thus need not be specified.

function : function ( f-p : listof fp_decl; result: fp declaration) return type
routine: function (fpl: ist_of fp.decl; result : de tion) return type
procedure : function ( fpl : list._of tpdecl) return e

Declarations immediately within a given visibility scope are laborated in order of their
appearance, but there is minimal dependency on the order., declaration need not appear
before its references, although such placement often improN s readability. It is illegal,
however, to elaborate a reference to a declaration before elaborating the declaration. Note
that elaboration of recursive declarations (of operations or data types) does not involve
elaboration of their bodies. It is illegal for the elaboration of declarations, including
initilization of assignable values, to cause side effects; but the elaboration of declaradons
may depend on global variables and routines.

Statements are executed in their order of appearence within tlist of statements. Statements
are executed only to obtain the side effects they cause. The tesult often depends on the
order of execution.

No evaluation order is specified among arguments that are expressions. Because
expressions cannot cause side effects, the result cannot depend on their evaluation order.

Assertions 141-0 v.e +.c

Control Structures

Persistent Data

Tasks and Communication
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Atomic Data Types

Record Types

A record type defines a set of composite data structures of similar structere. Each call on
the record type constructor creates new, not necessarily distinct, record types. Each call on
the record type constructor is a visibility scope. Each subcomponent must be declared
within the scope. The argument to the record type constructor is the list of immediate
subcomponent declarations.

record type : metatype
record: function (di: listof declaration) return recordLtype



Each object of a record type is a composite object. It is also a visibility scope. The
subcomponent declarations of a record type are replicated for each object of the type. Each
call on the record object constructor, new, creates a new object of the record type. The
object will be distinct unless it is immutable. New requires a record type and an aggregate
with components corresponding one to one with the declared subcomponents of the record
type. New returns an object of the record type with subcomponents as specified by the
aggregate. The details of aggregate construction and of the correspondence rules are given
in section ****. Each subcomponent, x, of the resulting record is derived from the
corresponding subcomponent, y, of the aggregate by the following rules. If x in shared
and (typeof x) = (type-of y), then x = y. If x not in shared and (type-of x) = (type-of
y), then x = copy( y). If (type-of x) = (assignable typeof y), then x = new( typeof x,
y). All other combinations of y and type..of x are illegal.

new : function ( t : recordtype; a : aggregate) ret/rn t

The own scope of a record object created by a new operation is normally the visibility
scope of the call on the record type constructor that created its type. It is sometimes
desirable to further restrict the own scope of a record object. The own scope of a record
object may be specified as any visibility scope enclosing the call on the new operation that
created the record object.

new : function ( t : recordtype; x : aggregate; s : any record-type) return t

Whether by global assignment, by parameter passing, or as dn operations result, it is illegal
to pass an object out of its own scope. Because bodies of operations are dynamically
embedded, objects can be passed to operations declared more globally then the object's
own scope.

[move to scope section) It is illegal to declare two record subcomponents of same name
unless at least one of them is within an assignable subcomponent of the record. The
declaration of a subcomponent of a record object can be selectively referenced at any place
in a program where the record object is known, the declaration's name is visible, and the
declaration is not within a shared subcomponent of the object. Selective reference requires
the record object and the name of the declaration. It returns the object associated with the
declaration. Selective reference is also called dot qualification.

reference : function ( x : any record-type; name : literal token) return <>
I

(move to scope section) The use operation specifies that certain declarations within a
record object are to act, for purposes of direct reference, as if they had been declared at the
point of the call on use. The declarations can be referenced by selective reference from the
record object and would not cause a name conflict were they declared at the point of use.
The latter does not preclude the same declaration being made visible by several uses in the
same immediate scope.

use : function ( x : any recordLtype) return declaration

(move to scope section) The open scope operation creates a single record object as a
program component. Open scopes are visibility scopes. Like record objects and unlike
scopes created using the scope operation, subcomponents of open scopes can lx ferenced
from outside using dot qualification. All declarations within an open scope, but not within
a more local enclosing visibility scope, are components of the record object created by the
open-scope operation. They may be refenenced by dot qualification on the open scope.



Open scopes are particularly useful for referencing local declarations of assertions when
speifying implementations. Open scopes often must be named so that they can be .2 -

selectively referenced or used. -- ~---~--

open-scope: function (d1 list_of declaraion; body rtn Wobcd



Outline of a Type System for Prism

Jon Shultis

March 7, 1989

1 Goals

The overall purpose of types in Prism is to facilitate reasoning about the properties of computaticns and
their elements. Consistency checking, bounds checking, verification, derivation, performance and effect
analysis are examples of program processing involving types. However, the type system is not beholden
to any of these kinds of processing; in particular, we do not require at the outset that any kind of type
processing be "static", or even decidable.

At the same time, we acknowledge that most useful processing of type information is made possible by
constraints. For example, efficient algorithms for inferring principal types are enabled by the restriction
of subtyping to substitutions in type terms. In ML, int is a subtype of tau by the substitution of int
for r, because it serves to specialize the type - provide more information. prime is also a subtype of
,r, but is not an MI -pe term. This is why ML types the expression "3" as "int", instead of "prime",
"odd prime", or eve- . just "f3}". In sum, the principal type of an expression is the strongest assertion
of its properties that can be made when subtyping is limited to substitution.

Historically, designers of formal systems generally and programming languages in particular have set
their priorities and developed type systems which are good compromises. In doing so, they have made
the tacit assumption that language design and specification are completed by the designer, after which
programmers can use it to write software. This assumption forces commitment to a particular set of
constraints which achieve the best compromise given the goals and priorities of the language and the
available technology.

In Prism, the development of linguistic tools is viewed as an integral part of the process of designing
and communicating a software system. This is accomplished by leaving many aspects of the language
design incomplete, and providing users with the means to complete them as they see fit. Simultane-
ously, language features which are traditionally included in order to impose structure and discipline
on programmers as well implementation requirements on compilers are demoted to the status of library
packages - possible language design extensions that impose constraints in exchange for practical benefits,
like static type checking. By the same token, quaeified programmers can augment the stock of linguistic
tools by contributing their innovations and improvements to the library.

For this reason, the broad outline of the Prism type system is highly ecumenical, but it raises many
issues of practical import that will not be addressed in detail here. Suffice it to say that the development



of library extensions which limit the power of the full type system in order to harness it is an important
problem which will be taken up elsewhere.

The ensuing exposition serves both as an introduction to the basic ideas of the Prism type system,
and as an example (in mathematical English) of Prism programming style. In section 2, we give a partial
specification of some of the basic elements of the type system, and proceed to reason about them. What
we discover are some apparent difficulties in our prototype type system, which must be rectified. In
section 3 additional information is provided about the elements in question; this is an example of what
we call "distributed specification". The result is still incomplete, but it solves the problem raised during
the analysis of the earlier prototype.

2 A Problem

Having decided that types are supposed to express the properties of things, let us say a bit more about
what that entails. To begin with, we need some notation. Let rx: tji signify that x is an example of the
type t; i.e., roughly speaking, it has the properties expressed by t. The notation ft, : t2_ will signify
that tj is a subtype of t 2 , whatever that means.

Although we haven't specified exactly what we mean by these notations, we can state some minimal
properties we expect them to have. One is that the two notions are related by the rule of subsumption:
if x is a y and y is a subtype of z, then z is a z. Another is that the subtype relation is transitive.
Formally,

z:y y-< z -4 y y - z
X" :Z X --4 Z

Let us turn now to some common sense examples. To begin with, there should be a type of all things,
which we shall designate by "0" (box), such that the assertion 'z : 0"' conveys no nontrivial information
about x. Informally, "C" corresponds to the English word "anything".

And so we come to our first real assertion, namely, that C is a type, notated thus: > : type. It
follows from this that 0 has all of the properties of a type. But what is a type? More directly, is type
an example of type, or does it have some conflicting properties? Let us defer the question as too difficult
to answer at present, and assert instead that type is certainly an example of some type, which for lack
of a better name we will call "metatype". Formally, type : metatype.

But what is a metatype? We could defer the question again, claiming that metatype : metametatype,
and continue in that fashion indefinitely. The alternative is to cut off the infinite regress at some
point t, say by asserting t : t. Let us explore the consequences of the latter course, tentatively asserting
met atype : metatype. This amounts to saying that, in whatever sense type is a 'type of types", metatype
is also a "type of types".

What about subtypes? Clearly, any example of type is something, i.e., is an example of C, so it
should be the case that type -< 0. Similarly, metatypes seem to be specialized types, though we have
been carefully noncowmital to this point about what meaning we should attach to the informal notion of
a "type of types". Suppose we take it at face value. Then, every example of metatype is also an example
of type, and hence Meitztype -< type. The foregoing is summarized in the following "axioms".

Al) 0 : type.

A2) type : netatype

2



A3) metatype : metatype

A4) type -<>

A5) metatype "< type

The problem is to explain these notions formally in such a way that they both harmonize with our
intuitions and give a logically consistent interpretation to the relations stated above. Here are some of
the consequences which, according to these rules, follow from the "axioms" A1-A5.

Cl) 0: 0

C2) type type

C3) type: 0

C4) metatype type

C5) metatypc :

C6) metatype -< 0

Proof: Cl follows from Al and A4 by subsumption. C2 follows from A2 and A5 by subsump":on. 03
follows from C2 and A4 by subsumption. C4 follows from A3 and A5 by subsumption. - follows
from C4 and A4 by subsumption. Finally, C6 follows from A4 and A5 by transitivity. 1i

Remark: It does not follow that > : metatype, nor is the negation of this statement provable. Hence
the axioms admit models in which either > is or is not a metatype, and in fact models of both
kinds exist.

Now, a number of familiar difficulties arise if we take types to be sets, with" : being set membership,
and "-<" being the subset relation. For one thing, we would have situations where two sets belong to
each other, as in 0: type and type : 0. Intuitively, type contains a copy of 0, which contains a copy of
type, which contains a copy of 0, and so forth ad infinitum - not your garden-variety set. (Technically,
this violates the axiom of regularity, 1 which is usually included in any axiomatization of set theory to
disallow a number of well-known anomalies.) To make the problem concrete, the reader is challenged to
exhibit three sets that satisfy the relations A1-A5 and C1-C6.

Note that without regularity or some other means of restricting the principle of comprehension, 2

we can apparently form the Russell type R = {fx-,(z : z)). In set theory, membership in a set is
equivalent to satisfaction of the characteristic predicate of the set, so we arrive at the contradiction that

The axiom of regularity disallows infinite regress in the formation of sets. In short, - {-- is allowed, but not

2 The principle of comprehension xtates that for any predicate q5 then exits & set coasisting of those things which satisfy

qS, usually written {JI,). Russell's original theory of types made peace with the principle of comprehension by imposing an
order on predicates, and restricting the memobership predicate E so that the type of the left operand be strictly less than
the type of the right. Thus ruled out are locutions such as x E x, thereby makling the troublesome Russell class indefinable.
This avenue is, however, closed to us because it would banish axiom A3, along with C1 and C2.

3



3 A Solution

We adopt a subtler interpretation, in which types are sets of unary predicates (equivalently, "properties")
closed under entailment. That is, if t I- 0 (0 a unary predicate) then 4 E t. In order to specify types
finitely, we adopt the notation X' for the closure of X under I-.

For example, let us define oddprime to be the type {z is prime, : is odd}i . oddprime includes the
properties "x + 1 is even", "x > 2", and "Vy,m. y < z A ml: A mly * m = 1" along with infinitely
many other consequences of the two properties originally specified.

The subtype relation is defined as follows: x -< y if VO E y. x F- . That is, subtypes specialize their
supertypes. An equivalent, if initially counterintuitive, characterization is that x -< y if y g x.

{x is prime, x is odd, X2 < 10) is a subtype of oddprime. Similarly, { is odd}' is a supertype of
oddprime.

To a first approximation, an object is an example of a given type if it satisfies all of the properties of
that type. ' Formally, x : t if VO E t. O(z). Actually, we need to refine this definition somewhat, but let
us adopt it for the moment, to show what is right and wrong about it.

We can now give a comprehensible semantics to our trio of entities.

type = {t is an F - closed set of properties}

metatype = (type U {Vy. :. y: type})"

It is easy to check the properties A1-A5 and 01-06 against these definitions. Al states that 0" is
an F-- closed set of unary predicates; A2 and A3 state that {t is an F - closed set of properties}' and
(type U {Vy : x. y : type})' are F- closed sets of properties specifying F- closed sets of properties; and so
forth, all of which statements are obviously true.

The interpretation of metatype is motivated by the intuition that a metatype is a type of types. Note
that, with this interpretation, 0 is not a metatype provided that something is not a type. In Prism, we
fully expect there to be things which are not types, though it is possible to construct systems consistent
with everything that has been said so far in which everything is a type.

Although the proposed interpretation makes the axioms and their consequences seem sensible, it
doesn't prevent the paradoxes. We can still define an analogy to the Russell type R = {-(t : t)) ' , and
draw the usual contradiction. The problem, alluded to earlier, lies with our notion of examplehood.

I propose to correct the situation by imposing more stringent requirements for examplehood, to wit:
examples of a type must be drawn from the examples of its subtypes. This rule seems to me to convey
the important part of regularity, which is that types (sets) be populated synthetically. This gives us an
analytic theory of synthetically populated types.

Technically, my proposal is that satisfaction of the properties of a type be necessary, but not sufficient,
to establish examplehood. Formally,

z:y
v_ E y. O(z)

31 use the word "example, instead of "member", because the members of a type are properties. For example, "x > 2"
is a member of oddprime; "3" is not. What "3" is is an example of oddprime.
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but the converse of this rule does not hold. Instead, we have the following axiom of unit examplehood,

which explains how we come to have any examples at all.

a {X a)

Using these rules, one can prove that the assumption R: R leads to a contradiction, but the assump-
tion that -(R : R) leads only to the conclusion that VS E R. O(R), which is insufficient to establish the
contradictory R : R. 4 So if we are Platonists we can conclude, quite comfortably, that R is not an
example of itself. If intuitionists we be, we can remain comfortably agnostic.

The metamathematical status of the foregoing argument is crucial. I did not claim that -,(R : R)
is a theorem within the system; I only claimed that R not being an example of itself is consistent with
what can be proved in the system. If we could prove -(R : R) in the system, then we would have that
{X = R}' F -(z : x), and hence that {z = R}' -< R, which would enable us to conclude the contradictory
R:R.

To be precise, the metamathematical assertion is {z = R}' V/ -,(z : z). If we could internalize this
fact, we would have {x = R} F -,-(z : z). If this is provable, we can still avoid contradiction if--, is not
an involution (which, of course, is the case in intuitionistic logic).

Note to selves: Remark on tolerance of inconsistent types. Include proof that there are no orphans
(i.e., no examples are excluded by the proposed rules). Add some stuff about minimal conditions on
entailment. Sharpen it up: what is bound and free in properties; references to context.

4 Prism Categories

We turn now to an application of the ideas presented so far to the problem of explaining modifiers of
various kinds, especially adjectives, and their role in specifications. For example, we wish to understand
how the use of "odd" in the phrase "odd prime7 differs from the use of "red" in the phrase "red seven".
The former is taxonomic; some primes are odd. The latter is not; no seven is red. In talking about things
like colored numbers we are referring to attributes of objects which are neither colors nor numbers.
Nonetheless, we use the same part of speech and the same syntactic structure to specify both types.
Our goal is a theory of modifiers which would allow us to use them for type specification in Prism. A
rudimentary theory will be presented in section 6. But first, we need to explore some of the structure of
the type system and define some new concepts.

A Prism category, or Pcategory, s is a slight generalization of the usual notion of category [MacLane].
It is essentially what MacLane calls a "metacategory". s

Pcategory A 0c{ Obe, Are : 0,
dome,cod, : Ar, - Ob,
11 : Obc - Are,
domclc = a,
codcle = a,

4By unit examplehood, R: { = R11", but without further rules { = RJ1 :6 R.
5 The initial "P" is silent, as in "Pneumonia!.
"The notation rexl is meant to identify the variable over which the predicates in the immediately following type

specification range. It is on trial.
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Vf, g, h : Ar, < f o g : Are 4* codf = domcg,
f o(goh) Are = f o(goh)= (fog) o h,
fo1c :Arc =*fol =f,
lco :Ar :,. I'og=g>}'

An ordinary category is just a Pcategory in which the Arrows and Objects are Sets.

Category A ec{ c : Pcategory,
Obc, Are: Set}'-

In a similar manner, we lift the set-theoretic restrictions usually imposed on mathematical structures.
For example, a monoid is a set equipped with an associative binary multiplication and an identity; a
Pmonoid is anything equipped with an associative binary multiplication and an identity. We do this
because sets in Prism do not have the primacy accorded to them in classical mathematics. 7

We intend that operations in Prism can be applied to objects of any type. Informally, this means that
when something is supplied as an argument, something (perhaps divergence, or an exception) results. A
bit more formally, f : 0 - 0 for any f. Because there are no restrictions on the domain of an operation,
everything is composable with everything else; ie., f o g is always defined.

The design of Prism also stipulates the existence of an identity on 0. Intuitively, you can leave
anything alone. Thus, C is a Pmonoid.

A Pfunction is a C-automorphism, i.e. Pfunction != 0f{Vz : 0. fz : 0 1 '. A partial Pfunction is
the restriction of a Pfunction to a specified domain t, notated f[t]. If X : t, then f(z) = f[t](z).

The codomain of a Pfunction can be specified using the notation - t. That is, f -- t specifies that
the result type off is t. Combining these notations, we can write f[t] --+ t2 to indicate that f takes t1 's
to t 2 's. I

There is no overloading in Prism, so a given name can refer to at most one Pfunction in any context.
However, a Pfunction can be specified piecewise, using restriction. For example,

f[x : integer; y: integer] - Boolean -4 z < y-.
f z : integer] -- color 1--< 1 ,-- red;2 2-. yellow; 3 P-- blue;... > ..

Ada-style overloading would treat these as two different functions with the same name, and would
allow the definition of a third function named "' with domain integer and codomain Ascii. The
expression f(3) would then be ambiguous unless its context dictated an expected result type of either
color or Ascii, which would serve to disambiguate the reference of "f". In Prism, such ambiguity is
impossible, because all we have are distributed specifications of segments of a single function, which
cannot have conflicting results on overlapping parts of the domain.

In Prism, t1 -- t 2 is the type of partial Pfunctions from t to t2 , defined as follows. t1 -+ t2 = {Va
t1. 4(a) : t2}'. As with most objects, Pfunctions can be examples of many types. For example, the
following are true assertions of the f partially described above.

'The elimination of a central role for sets %nd set theory in Prism is not without precedent; Lawvcre did so as early as
1964 [ret]. The key to the current approach is that types are simply specifications, not the extensions of those specifications.
In Prism, "x: t" is an assertion of knowledge about z, that it is an example of the specification (type) t. This says nothing
about the collection of all such examples, which (if it exists) is an example of the type Or{= is a set , Vy. E z * Y: t* .
Accord;ng to this view, we never have to contemplate or account for such things as the extension of 0, though it is easy to
show in the standard way that if it exists it is nether a set, nor a class, nor even a mecalcass.
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f : integer x integer - Boolean
f : (integer x integer) V integer -- (Boolean V color)
f : integer --+ <

5 Type Pcategories

There are a number of ways to make Prism types into a Pcategory. One is the logical Pcategory, type.<,
in which the arrows are given by the subtype relation, -<. It is bi-Cartesian closed, with products,
coproducts, and exponents given by the following.

tiA2 " mAmXt1,t 2  t

tl V t2 Mint -< t1,t2
A

tj =; ' t2 Maxt A t 1 -< t 2t

In words, A forms the greatest common subtype (gcs), V forms the least common supertype (Ics), and
= forms the least sufficient constraint (on ti to verify t2 ). The terminal object is 0, and the inconsistent
type -,- is initial.

Another type Pcategory is the partial Pfunction Pcategory, type-, in which the arrows are the
partial Pfunctions. This Pcategory is also bi-Cartesian closed, with products, coproducts and exponents
as follows.

tl xt 2  _ 0X{Vf: t.tl,g:t .-. t 2 .3or:t 3 .z=< f,g>aArlz=faA r 2x=ga)
tl WJ t2 ( Oz{Vf : tl -- 13, g : t2 -- t3

((3& t:1 . &,a = z A (f, g))z = fa)
V(3fl: t2 .-2 = A ((f,g))z = gf

ti - t2 = O z {Va : t1 .Xza : t2V -"

These are aualogous to the usual Cartesian product, coproduct, and function space types on Set.
Here, the type with no examples, - , is initial, and any singleton type is terminal.

Fact 5.1 type.< is a subcategori. of type-, under the obvious identification of arrows in type.< with
the corresponding inclusion Pfanctions.

Fact 5.2 Every arrow in type.< is a bimorphism (i.e., epi and mono).

Fact 5.3 In type.<, sections = retractions = isomorphisms = identities.

Fact 5.4 type.< is not a topos.
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Proof Counterexamples abound. 0

Theorem 5.1 type. is a topos. That is, for each type A there is a power object PA and a membership
relation L :EA >-- A x ?A such that, for any relation p: R i- Ax B there is a pair of partial Pfunctions
/, P such that the following diagram is a pullback.

R - EA

1' 1,
AxB Ax'VA

Proof The required players are defined as follows.

?A = 1z : type,Vy : x- y : A} "

EA Oz{x : A x PA,rIz : r 2z}I

L = [EA
,6 E b-3- 3: _pr =<x, b> "

A =(Po0(1 X fl))

Given a : S -- ,EA, & : S - A x B making the square commute, the required unique partial
Pfunction u : S --+ R is given by the correspondence s .-!r : R. pr = as, where7 existence of r is
guaranteed by A and uniqueness by p being monic. 0

6 Modifiers

In English, properties are often expressed by m,-ifiers of various sorts, especially adjectives and adverbs.
In some cases, the properties are conjunctive, as in "odd prime", where "odd" serves to identify a subtype
of "prime". We could express this formally as Oz{odd(z),prime(z)}).

In other cases, modifiers serve to derive one type from another. For example, a "placeable integer" is
not an integer, but an object that has a position and a value, which is an integer. Formally, 0z{val(z):
integer, place(z) : position}'.

Modifiers correspond to Pfunctors on type-. Examples include x,&, and - and the obvious
generalizations of A, V, and =:, as well as Placeable, Colorable, and so forth. Thus our analysis of "odd
prime" is that "odd", acting as a modifier, is really the Pfunctor oddA.... When used to modify "prime",
it yields the type odd A prime.

By contrast, the use of "placeable" in "placeable integer" more closely resembles the Pfunctor
place x-, yielding the Cartesian product type place x integer with two components, viz. a place and an
integer value.

However, the order of "independent properties" shouldn't matter, a colorable placeable thing is the
same as a placeable colorable thing. Define - to be equivalence under permutation (e.g., A x
B '--rpcrr B x A). The independent combination of properties (P1,61 can then be represented by their
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product modulo permutation equivalence, rl, P.1-perm- A more appropriate way to eliminate order-
dependence is to use an unordered set of names for the component properties, instead of an initial
segment of the na'ural numbers, and treat the independent combination as a context in which eachA

name is bound to a value of the appropriate type, e.g. < val = 3, place = var position >. Although it
may be appropriate for some purposes, this rendition of independent combination is still not abstract
enough to handle placeability, because a placeable placeable thing is the same as a placeable thing, i.e.,
placeability is idempotent.

What I have tried to do in the preceding two paragraphs is to pick out some of the abstract properties
of placeability by contrasting our intuition with various possitle representations. So far, my conclusions
can be summarized by saying that the placeability functor (as applied to integers) is a commutati-e and
idempotent projective lim:t (in type-), called orthogonal com6ination and denoted -h.

David Mundie has pointed out that a given adjective can be used both conjunctively and orthogonally,
depending on what it modifies. For example, the use of "placeable" in "placeable thing" is clearly
conjunctive: placeableA, while in the previous example of "placeable integer" it means placeable h.
The differencc is that things in general can be clasoified as placeable or not, but in this (conjunctive)
sense there are no placeable integers. Hence we construe the latter use of "placeable" as orthogonal.

The obvious hypothesis is that all adjectives are used in one of these two senses, depending on whether
the modifier can properly be predicated of the type being mod:fied. If it can, the modifier is conjunctive,
if not, it is orthogonal. The obvious question is: is there some similarily between the two classes of
Pfunctor which might motivate the use of adjectives for both? Yes, indeed! Both are commutative,
idempotent projective limits, one in type_, the other in type-.

These are not the only kinds of modifier, or Pfunctor. Prepositional phrases often signal adjunctions,
such as "free ring over", "completion of", "quotient of", and "inclusion of". Non-mathematical examples
include "school of fish", 'network of computers", and "architecture of the houser - What these have in
common is that they all name structural abstractions which can in some sense be "reversed". We can
forget that a house is an integrated structure and treat it as just a bunch of bricks and boards, just as
we can forget that Z/17 is a ring and treat it as just a bunch of functions on a partition of Z.

The point is that Pfunctors (modifiers) come in a large assortment of flavors. commutative, idempo-
tent, associative, invertible, adjunctive, and so on and so forth. The study and classification of Pfunctors,
and the invention of mechanisms for specifying, combining, and manipulating them, can be expected to
constitute a large part of the Prism programmer's stock in trade.

To be continued ...
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Versions, Configurations and Object Deletion

dab

June 5, 1989

Configurations and versions as well as the problems of controlling them exist in many domains
of information acquisition and maintenance. Do.cuments, databases, and the artifacts of software
development (source code, test cases, documentation, specifications, designs and so forth) all evolve
through multiple versions and both populate configurations and exist as configurations.

1 Versions

Versions arise in information in a variety of ways. Revisions of a piece of information are made
as mistakes are corrected and missing portions of the information are addecd. Farae! or alternate
versions arise as :he same piece of information is readied for different constimers. Paralel versions
of software :mplementations, for instance, arise when a system, or some portion of it. is developed
for multiple environments, in multiple languages and,'or using multiple algorithms. Deri:ations are
generated automatically. DVI or Postscript versions, outlines and tables of contents, for e-xample.
can be derived from the source of text documents.

What each related "version7 has in common is that it i--concrete embodimento fsome abstract
object. Thus, from the same abst.act concept of semantic analysis, there could be

" parallel versions for incremental process'ng, for nonincremental processing, and for expository
purposes,

" revisions of each of the parallel versions representing various stages of development, and

" derivations consisting of object code, a datafiow diagram and a cross reference.

2 Configurations f vw .fk.

Some pieces of information are complex enough that they are built rom smaI:er pieces. A large
document, for example, is constructed from some (more or less shallow) hierarchy of chapters,
sections, subsections and so forth, as well as the actual text, figures, and tables that populate the
sections, and perhaps a style specification to tell the text processor how these pieces fit togeth - and
how they should appear when viewed. A computer program is constructed from the source code
for its various modules (subprograms, packages or whatever your favorite programming language
provides) as well as modules extracted from libraries.

A configuration then is the set of specific versions of the various constituent subcomponents.
Configurations, being information, can themselves have versions.



3 Version and Configuration Control

Version control includes knowing when two pieces of data are versions of the same abstraction,
knowing when a piece of data is a revision or derivation of another piecce of data, and retrieving
the "latest" version of a piece of data in some context.

Configuration control includes remembering which versions of which things comprise a configu-
ration, allowing common versions to be shared among configurations, and facilitating the gathering
together of the actual components of a configuration.

4 Relative Versioning

Consider the following situation. In a large, ongoing software development project, there are many
m dules which exist in various revisions, alternates and derivations. Some of the modules are
(re)used in multiple software products. In this sort of situation, the "latest" version of a particular
software module might be different for the developers of the module, developers of other modules
that use it, and actual users (customers). This is equally as true for the version previous to the
latest. We maintain that version history is relative.

Figure 1 shows a typical version hierarchy. The circles represent versions ,id the arrows
represent the parent-child relationship. Version a is actually a virtual version. It represents the
abstract concept for which each of the others is a version. Versions b, c and d are parallel versions
as are versions e and f. Versions e and f are revisions of version b, version g is a revision of version
c and so forth.

The important thing to recognize about any version hierarchy is that it is seldom used, or
useful, in its entirety. The developers of a parallel version of a module have no need for information
concerning experimental versions (revisions) of the other alternatives. The other essential thing to
recognize about a version hierarchy such as that in Figurel is that it is misleading. For example, for
the middle alternative, the "latest" version is k for the developers of that version. For the builders
of a program that incorporates the module, however, the experimental revision k is not the "latest"
version at all. And, of course, customers probably see yet another "latest" version. Figure 2 shows
a more accurate (possible) set of version histories, focusing on just the middle branch of the version
hierarchy of Figure 1.

An advantage of relative versioning is that a version hierarchy can be edited without adverse
effect on any other view of the hierarchy. For instance, in the situation depicted in Figure 2,
perhaps the module users need to delete version c from their version hierarchy. This can be done,
as in Figure 3, without the comparable change in the hierarchy of the module developers.

For example, version a in Figures 1 to 3 might be semantic analysis. Parallel version b could
then denote an implementation incorporating an incremental algorithm. Parallel version c could
denote an implementation incorporating a nonincremental algorithm. Finally, parallel version d
could denote an implementation developed for expository purposes. In an ongoing project, we
could envision various versions of the semantic analysis module being incorporated into compilers,
incremental semantic editors and source- to-internal- representation translators. For the developers
of the nonincremental semantic analyzer, the latest version is k. For the developers of the compiler,
the latest version is the latest "released" version. And for the users of a particular released version
of that compiler, there is probably yet a third version that is the latest.
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Figure 1: A naive version hierarchy
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Figure 2: More accurate version hierarchies as seen by ...
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Figure 3: Edited version hierarchies
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5 Deletions

There is a question about when objects can be removed from the persistent object system. Tradi-
tional reference count mechanisms do not work in the presence of distributed systems, networking
and removable media. What we propose is that an object can be deleted only when "someone
says that it can be. The authority and intelligence to initiate object deletion can reside both in
human users and in automatic processes. For instance, a human user can elect to delete any object
for which the proper permissions are present. need to discuss permissions somewhere. The obvious
analogy is to file system deletions. There can also be automatic processes (i.e. computer programs)
that are allowed to delete objects. A program of this sort will operate under a set of rules such
as "there is no need to keep the derived versions of a piece of source code that is obsolete". This
is similar to the deletion rule employed in Odin [CO89]. There are obvious tradeoffs in deleting
derived versions (such as object code) to make space available when they can be rederived at the
cost of some computation.
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Untyped A in Prism 0.4

Jon Shultis

June 8, 1989

1 English

A A-expression is either a variable, an application, or an abstraction. An application has a rator and a
rand, each of which is a A-expression. An abstraction has a bound variable and a body, each of which is
a A-expression.

The rator and rand of an application are subexpressions of that application. The body of an abstrac-
tion is a subexpression of that abstraction. The subexpression relation is a partial order.

A binding of a variable x in an expression e is any subexpression of e which is an abstraction having
x as its bound variable.

The scope of a binding of a variable is its body, excluding any binding of that variable.

An occurrence of a variable is free if it is not in a binding of that variable. Otherwise, the occurrence
is bound.

The quasi-free substitution of e2 for x in el is the same as el except that all free occurrences of x
are replaced by e2. A quasi-free substitution is free if no free occurrence of x in el lies in a binding of a
variable that occurs free in e2.

An abstraction with bound variable x and body e is a-convertible with any abstraction with bound
variable y and body efy/x] a free substitution. Two A-expressions are a-convertible if they are the same
modulo a-conversion of bindings.

Let e be an application with rator f and rand a, where f is an abstraction with bound variable x and
body b. e is fl-convertible with any A-expression b'[a/x a free substitution, where b' is a-convertible
with b.

. sectionMLish

This following is an annotated rendering in MLish of some parts of the preceding English text.

In ML, structural types are fairly easy to define, although they must be overspecified. In particular,
a representation type is required. Here, for example, variables are represented by type symbol, and
applications and abstractions are pairs. Other things that are troublesome are that every abstract type
specification has to be closed (that's what the double semicolon is for), and all of the clauses relating to
the type specification have to be contiguous.

abstype A-expression '# [I variable:symbol;



appliction:A-expression xA-expression;
abstraction:symbol xA-cxpression f]

with rator(application(el,e2)) = el;
and rand(application(el,e2)) = e2;
and bound.variable(abstraction(x,e)) =x;
and body(abstraction(x,e)) = e;;

t t.

The subexpression predicate is easily defined, but the property of beinj a partial order has to be
inferred.

syntax infix'«';

let rec el << e2 = (el=e2) or
case e2 is
I application(e2i,e22): (el << e21) or (el << e22)
I abstraction(e2x,e2b): (el << e2b)
I otherwise: false
end case;;

in the English version, tue phrase "any subexpression of e" introduces a type determined by a
predicate. ML doesn't have such types, because they disrupt things like type inference for which ML is
famous. Common Lisp does have predicate-restricted types, and I shall pretend that ML does, too, for
the sake of this exercise. Another limitation of ML that has to be overcome is the lack of dependent
types, where the type is a function of some value. (In ML, types can only be parameterized by other
types). With these extensions, we can define the type of subexpressions of an expression as follows.

abstype subexpression(e:A-expression) = se:A-expression satisfying (se << e);

Incidentally, property-restricted types provide some of the capability needed to define a type of partial
orders, of which we might then specify, or prove, that << is an example. However, there is no way to
write an effective procudure to test whether an ML function satisfies a predicate if its domain is infinite,
which is the case here. The reason is that one doesn't have access to the function definition, which might
be analyzed, and barring that all one can do to test a universal property of the function is to apply it
to its entire domain. (Another way of classifying functions is by construction. That is: if there is a set
of methods for constructing functions of a particular class, one can define an abstract type with thcse
methods as its constructors. Polynomials are a good example. Unfortunately, I don't know how to do
that for partial orders. Even ifl did, I would have to specify and verify my construction of partial orders
outside of ML. This is the main limitation overcome by constructive type systems.)

The definition of binding is straightforward.

let type bindings-of x e = asubexpression(e) satisfying is-abstraction(a) and bound-vriable(a)=x

The notion of scope is traditionally defined and then used in the definitions of free and bound
occurrence, and free substitution. However, I found that it was more trouble than it was worth when it
came to giving pure specifications of these latter things. Its main utility seems to be heuristic, aiding in
the formulation of algorithms for performing a- and fl-substitution. In any event, I left the definition in for
the sake of tradition, and because it h;ghlights a shoitcoming of existing type specifica;tion mechanisms.

Scope is a supertype of A-.xpression, where the English specification uses an exclusionary clause to
accomplish the generalization. ML does not support this idea, nor have I seen any proposals discussing
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it. One approach, not too far removed from current state of the art, would be to specify the supertype
from scratch, and ther- redefine the A-expression subtype usIng inheritance, along the following lines.

abstype scope 4* (1 hole:trivial;
nonhole;[1f variablesYmbol;

apphcation:scope x scope;
abstracion:symbol x scope II

with 'rator(application(el ,e2)) =el;
and rand(application(ei,e2)) =e2;

and bound..variable(abstractionl(x,e)) = x;
and body(abstraction(x,e)) =e:

abstype A-expression = scope without hole;

The "without" operator eliminates one or more variants5 of a type, in this case the hole variant. A
roughly equivalent formulation would be

abstype A-expression = sc:scope satisfying noholes(sc),

where "noholes" is the predicate

let rec noholes s = if s is-nonhole then
caset s is

variable(x): true
Iabstraction(si,s2): noholes(si) and nohoiLes(s2)
Iapplication(sx,sb): noholes(sb)

end case
else false;;

Although this works, it is unsatisfactory. It should be as easy to derive a supertype from a subtype
as it is to derive a subtype from a supertype. In any event, having defined the notion of scope, we can
proceed to define the scope of a bound variable, as fellows.

iet rec exclade-bindings x e=
case e is

variable(y): y
abstraction(el,e2): abstraction(exclude-bindings x el, exclude-bindings x e2)

Iapplication(yb): if y=x then hole() else application(yexclude-bindings x b;

let scope-of~abstraction(x,e)) =applicatioii(x,exclude-bindings x e;

The notion of occurrence is that of a corespondence between position and value. Positions are
designated by sequences of co&dinates (or paths, like [12,3,-41, cdaddaddr, .foo.bar.baz.foo, and ra-
tor(body(rator(rand(rand. When applied to an object, a path selects the subobject lying at the des-
ignated position within the object. Although programming languages typically provide for selection of
subobjects, they doa't generally support representatio)n of occurrences, which requires pairing objects
and paths without applying them. In order to do this, there has to be a first class concept of paths,
wbich doesn't exist in current progrruring languages in other than rudimentary ways. For example, if
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unctions are first-class objects then we czan use the'z to represent arbitrary paths, such as Aa(a[12,3,4]),
(functioa cdaddaddr), Ar(r.foo.bar.baz.foo), and randorandoratorobodyorator.

Unfortunately, the function representation only allows fo: composition and application of paths; we
/ also need decomposition, so that we can traverse the path step by step. To accomplish this, we want

sequences of paths. That, is, given a path p =< cl, c2,.. , c-,e >, the path sequence p. is the sequence of
prefixes of p, i.e., p* =<<>,< cl >, < c >, 2 < C, ... # c, >>. Without further lamentation,
assume that we have such things as first-class objects in the language. Let us represent occurrences as
pairs < p, o > where p is a path, and o is an object. Define an occurrence < p, o > to be an occurrence
of some subobject so if oLv] = so, where I have used square brackets as a universal path traverser.
With these preliminaries settled, we can now give the MLish specification of free and bound variable
occurrences.

let free <p,o> =let x = p[o] in

exists binding p*
where binding path - path[o]:(bindings-of x o);;

let bound = not o free;;

Moving right along,

let rec quasi-free-substitution e2 x el -

case el is
variable(y): if x=y then e2 else el
abstraction(yb): if x=y then el else abstraction(yquasi-free-substitution e2 x b)

I application(op,arg). application(quasi-free-substitution e2 x op, quasi-free-substitution e2 x arg),;

At this point, things become a mite hazy, because the English constructs a type of function appli-
cations, a concept which doesn't have any meaning at all in MLish. In particular, it involves reference
to the arguments applications and their properties, while in MLish all we have are two values, both A-
expressions. Put another way, I decided to define a function which computes the quasi free substitution,
instead of specifying it. This is the norm in MLish, but the English pulls the other way.

Enough. Suffice it to say that this just isn't the way one goes about doing A-calculus in MLish.
Instead, one tends to define some types and some algorithms, and then use them to manipulate things.
The specification side is left almost entirely out of the picture.

( sectionPrism 0.4

A A-expression is a. vAri' .-- appl.ication, xor an abstraction.
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Descriptive Processes I

Jon Shultis

17 November 1989

I Introduction

Numerous forms may be used to represent descriptive information. Among forms currently being
used are such things as a1 stract syntax trees, feature structures, and IRIS. Though the theories of
each of these descriptive forms are more or less well developed, we lack any kind of general theory
of description which would serve to unify them and support analysis and comparison.

The theory of descriptive processes is an attempt at a unifying theory of description, taking
as its starting point an unusual, dynamic, view. The basic idea is that descriptions are static
representations of descriptive processes. Descriptive processes, in turn, represent objects. When
a query is submitted to a descriptive process, another descriptive process, representing an -answer
to the query, is returned. A descriptive process models an object x if its behavior is consistent
with that of x. That is, if each query is interpreted as some operation on the object x, then the
process(es) returned from each query should model the results of the corresponding operation on
X.

Note that I have turned the traditional semantic paradigm on its I-ead, in that the descriptive
process models the object, not the other way around. An important consequence of this reversal
is that an object may have many properties which are not described, i.e., not contained in the
model. Moreover, a given object may have any number of distinct descriptive models, each of
which captures some aspect of the object. The usual semantic view would require either that
we equate ll of the descriptions, on the grounds that they refer to the same object, or that
we populate our semantic domain with distinct objects, one for each distinct description. This
distinction is not too important it we restrict our attention to formal languages with well-defined
mathematical semantics, and is meaningless when the semantics is fully abstract. However, when
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Figure 1: Description of a hyperset

language is used to talk about objects in domains about which we have only partial or imperfect
information, such as the real world, the distinction is crucial.1

For the most part, it is assumed that descriptions are finite, though this is not universal.
For example, the possibility of infinite descriptions is entertained in the study of infinitary logic.
Another common assumption is that sensible descriptions cannot be circular, though again this is
not universal. For example, a tagged circular graph may be regarded as a description of a hyperset,
as in figure 1. Moreover, experience with IRIS suggests that circular de'-riptions have significant
engineering advantages over non-circular ones. In any event, I make neither assumption at the
outset, though of course I will have to show how the theory works out in these cases.

It is somewhat misleading to call the diagram in the middle of figure I a process, because it isn't;
it is merely a description of the trace of a process. The static representation can only be tnderstood
dynamically by some process of interpretation, and in fact some such process of interpretation
is involved in explaining how the description on the left "unfolds" into the description in the
middle. Note also that we could give several interpretations to either diagram. The one which
results in a model of the hyperset is a "parallel" interpretation., in which all arrows are traversed
simultaneously. A different dynamic interpretation of the diagrams is the "indeterministic" one,
in which any one arrow can be traversed at any branch point, but it is not specified which one.

'Of course, if one insists on it then the tail can be made to wag the dog by interposing a dornin of senses
between expressions and what they denote, but at bist there is indexical explosion, and at worst one has to
postulate senses which are parameterized by every possibly relevant feature, even though the latter are unknown,
which is psychologically implauib'e in the extreme. What is worse, one has to postulate that the world is in fact
describable, i.e., that there are enough properties around to cdassiv things, which is errant nonsense, because the
class of properties required to describe all classifications of a set of properties is stricti) larger than the original
class of properties by Cantor's theorem.
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Using that interpretation, the dynamic process is one which makes some indeterminate number
of silent transitions, delivers a single "a, and halts.

Note: communicating descriptive processes = dialogue? (Think of the "transition diagrams"'
used to describe dialogue in Winograd and Flores.)

2 Basic Definitions

For any set-valued function f:A - P(A), define its finite powers recursively for any a E A as
follows. fo(a) = 0. and f-' 1 (a) =-

A preprocess is a function p: S --+ P(S) having the property that Vs E S3n E N(so E p's).
Note that so beloags to S unless S is empty. The set S U {so} is called the set of states of the
preprocess, denoted Ep, and s0 is called the initial state.

The motivation for having an initial state which roots the process is the intuition that any
descriptive process has to start at some time, and at that time it is in some determinate state.
The motivation for having every state be at most finitely removed from the initial state is that
an infinitely removed state can never be observedand hence is indistinguishable from the process
with that state deleted.

A process is an isomorphism class of preprocesses. Formally, let PI: S -'- '(SL) and P,: S2 --
?(S 2 ) be preprocesses with initial states So.: and so2, respectively. Define p1 i p 2 if and only if
there is a bijection a: - r,, on the states such that p1 o o = or o p2, where the occurrence
of a on the left is the usual extension to sets (=map in programming language terminology).
The reader can readily verify that is an isomorphism. In practice, we shall blur the distinction
between preprocesses and processes, using a representative preprocess p to denote its ismorphism
class

3



Descriptive Processes H

Jon Shultis

28 November 1989

This is an internal working document on Prism, and is not intended for distribution
outside IncSys.

2 Basic Definitions, Cont'd

(Recall the basic definitions of preprocess and ilr~cess from 17 Nov.)

A number of properties of processes are immediate, e.g., that every state in a process is the
initial state of a subprocess.

The set of transitions of a process p is given by AP A {< s, S > Is E p(A)}. The set of transitions
originating at state s is denoted by s I S; the set of transitions terminating at s is denoted S 1 s.

In terms of transitions, the definition of process asserts that every state can be reached from
the initial state in a finite number of transitions. This does not, however, rule out the possibility
of processes having infinite sequences of transitions between the initial state and other states, as
the following example shows.

Example 2.1 Consider the process p: P(N) -- P(P(N)) where p(X) = {0} U {YI IX - Y = 1}.
This process arrives at a given set of numbers X hy first selecting an arbitrary subset of X in one
step, and then building up the rest of X cne element at a time. Any sequence of transitions to an
infinite set X which starts by choosing a subset which is missing infinitely many elements of X
will be an infinite sequence.

A labelled process is a process p together with a function A: Ap --+ L. The elements of L are
called labels, and A is called a labelling function or, more simply, a labelling. Elements of S n L,
if any, are called internal labels.

'These n'nations are borrowed from category theory; in the skeletal category generated by taking the reflexive
transitive closure of AP, s I S generates the comma category of objects under s.



Intuitively, labels provide a means of focussing queries, or, equivalently, of guiding processes.
If a query can be expressed as a composition of labels, where each label is taken as representing a
property (component, feature, ... ), then the process can respond to the query by simply traversing
the indicated path, and returning the subprocess it finds there (if any). This basic idea can
be instantiated in various ways, and has been by various authors. For example, labels can be
treated as modal operators in a logic, where processes are taken to represent prcpositions. The
intuition of focus accords with the intuition that modalities serve to constrain the scope, or
domain, of a proposition, for example with respect to time, place, type, or number. (Q: what
about bisimulation?)

A labelled process < p, A > is said to be deterministic if AIoes is 1-1 for every state s. That
is, a process is deterministic if there is at most one transition with a given label leading from any
state. Finite deterministic processes correspond to feature structures with shared substructures.

A tree is a process in which p is functional. That is, Ipsl = 1 for every state s. When dealing
with trees, we abuse notation slightly and use p to denote the corresponding function, for example
writing ps = instead of ps = 19}.

A record is a finite, deterministic, labelled tree. Records correspond to what Rounds and
Kasper call "trees" in their treatment of propositional feature structure specifications, but we
prefer to reserve that term for the more general'concept.

Finally, an ideograph is a finite labelled process.

Exercise 2.2 Define IRIS.
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Languages Beyond
Ada and Lisp

( Prism )

° Language

mechanism for communication
between user and system

* User

- requirements
- conflict resolution
- design decisions
- advice on implementation

* System

- language processing
- maintaining database
- consistency checking
- design analysis
- guided implementation
- optimization
- measurement
- substitution & transformation

7hIcremental
SYSTEMS CORPORATION



Technology

* Formal Methods -- Precision

" Natural Language Mechanisms
Avoid Overspecification

* Symbolic Execution

- partial
- lazy

- anticipatory

° Optimization

- analysis & transformation
- constraint propagation
- representation selection
- abstraction & generalization

SEIncremenA
SYSTEMS CORPORATION



Concept

° Single Language

- requirements 1
- design specification
-implementation

• Single System

- analysis
- compilationr
- measurement
- persistence

• Design Goals

- expressiveness
- amiable to formal methods
- discourage overspecification
- self reflective
- executable sublanguage
- interactive

. icremental
SYSTEMS CORPORATION



Key Language
Characteristics

• Expressiveness

- distributed specification
- all features first class
- self reflective

• Amiable to Formal Methods

specification mechanisms
-property-based type system
- strong typing
-no escape hatches
- automated mechanics

• Discourage Overspecification

- natar, kziguage features
- incompleteness support
- separation of implementation

Incremental
SYSTEMS CORPORATION



Key Language
Characteristics

- us.'r definable types
- fe%., primitive abstractions

- aL1L-raction mechanism emphasis

* Persistence

- all of language with full integrity
- integrated with language
- universal identity
- location-independent names
- access control
- inconsistency management
- placement control
- granularity control
- update without locking

..... "'ISYSTEMS coRPOnArnON



Reply to I.D. Hill

David A. Mundie
1991 Aug 2

How would one communicate with a Prism system? In some sense
this is not an interesting question. What matters above all is the
internal functionality of the system, the representations it can
manipulate and the way in which it manipulates them. Entirely too
much time hLas been spent on the detailed design of the concrete
syntax of programming languages- such issues as whether "if' should
be balanced by "fi" or "end" or "endif" or "end if'.

Nevertheless, we feel there are good reasons for providing a
sophisticated interface to Prism. The principle one is efficiency:
constructing ideographs by hand would be a tedious, mind-numbing
exercise. The throughput of the system can be magnified many fold by
an interface that gives the user a reasonable way of communicating
info:mation without descending to the level of internal representation.
Because we anticipate that a large portion of the programs in a Prism
system will be generated automatically by the system, but will have to
be understood by the user, an interface which facilitates human
understanding is at a premium.

We take natural language as pointing the wa, as the prototypical
example of an intensional language with flexibie control over
commitment. We do not aim for a natural-language understaidin-rg
system; rather we aim to incorporate those features in natural ' -..- !age
which make it such a good vehicle for open-ended, context-dep .ndent
communication.

Before we describe the main features of the Prism interface as we
see it, we must pause to consider the arguments put forth by I. D. Hill,
a leading criLic of natural language as a model for programming
languages. In a wide-ranging and droll essay entitled "Natural language
versus computer language," Hill claims that natural-language interfaces
are not only unachievable, but also undesirable. His basic premise that
the meaning of computer languages should not be dependent on
context strikes at the heart of the Prism effort, with its insistence that
meaning must be decoupled from expression.

Hill makes 11 arguments, some of which we actually agree with.



Key Language
Characteristics

Execution Model

- consistency checking
- incremental
- partial evaluation
- lazy evaluation
- anticipatory evaluation

Other Language Concepts

- scope and visibility
- control mechanisms
- arithmetic
- composite data
- tasks & concurrency

exceptions
- time
- communication delay

Incremental
* SYSTEMS CORPORATION
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Property-Based
Type System

* Definitions

- a property is a unary predicate.
- a type is a set of properties

that is closed under entailment.
- an example is a value of a type.

* Some Examples:

even {( x I x mod 2 =)}.

( x I x # 177) e even.

8 is an example of type even.

2 is an even and a prime.

small red dogs = red small dogs.

-Incremental
SSEMS CORPORATION



Noun Phrases
Quantifiers
Anaphora

[quantifierl{premodifier}type-name
[postmodifier] [aplicative]

abc
(2 x f(abc, 8))

all integers

each integer in (1.. 8)

some prime integer that is (> 10)

an integer such that (2 x it = it+8)

the blue box on the table

the odd integer 7
7

SIncrementa
SYSTEMS CORPORATION



Declarative s

*Denotational

f( any integer) A- the integer + 3.
pi A circumferLence( any circle) Idiameter( it).
fido 9 the large cat under the table.

*Assertional

3 x (a+ 2) -a =2X ( a+ 3)
all prime integers that are (>2) are odd.
car( cons( any thing, any thing) the first thing.
cdr( cons( any thing, any thing)) =the second thing.

*Axiomatic

close t.

0 Operational

+ Iany integer -= I
s A var integer.
S4-0.
for each x,s 4s +it.
Is].

SYSTEMS CORPORATION



Imperatives

verb [name] [to name]

verb 'C exp { ',' exp ')

name '4m-' name

rotate the wheel.

assign fRx) to y.z.

move a to the b of c.

print(a, b+c, "xyz").

a 4- a+3.

Interrogatives

2+ abc?
x<y?

the integer such that it + 3 = 8 ?

the box is on the table ?

44



The Eight Queens Problem

eight queens problem :[

a board A an array( 8, 8) of squares.

a solution A 8 queens and 1 board
such that

each queen has, 1 square of the board

and not attack( any queen, any queen).

attack( a : any queen, b : any queen) ±

a~b and

(a.square.x = b.square.x or

a.square.y = b.square-y or

abs(a.square. -b.square.x) =

abs(a.square.y-b.square. y)).

/ Incremental
SYSTEMS CORPORATION



a .olution?
a solution = C

depict( any square) i.
order the queens.
depict( any queen) _ depict( pos the queen). I

1

2

3
4

5
6

7
8

,- - -

implementation a solution ?
a solution Iml

for each queen,
assign the queen to some square.

if attack( any queen, any queen) then fail.
cost = 64t8 Z 2.818l 4.

,- Incrementa1



(a: a queen) # (b: a queen) and

(a.square = b.square)
implies attack(ab)

implementation a solution ?
a solution "

for each queen,
assign the queen to some square such that

not (it has a queen).
if attack( any queen, any queen) then fail.
cost = permutations(64, 8) 1.81 14.

Incrementa
SYSTEMS CORPORATION



depict( any queen) = depict(, any queen).

implementation a solution ?

a solution _'

order the queens.

order the squares.

for each queen in order,

assign the queen to some square such that

(the queen = the first queen or

the square > the square of pred the queen)

and pos the square < pos the last square-

(pos the last queen-pos queen).

if attack( any queen, any queen) then fail.

cost = combinations(64, 8) Z 4.4B9.

TIncryeMenb
0z 0



expand attack in that !

implementation a solution ?

a solution' ,ml

order the queens.

(a: a square)<(b : a square) a.x<b.x or

(a.x=b.x and a.y<b.y).

for each queen in order,

for each 1..8 in order,

assign the queen to

board(pos the queen, the integer).

if (a : (any queen that is

less than the queen).square).y

= (b : (the queen).square).y or

abs(a.x-b.x)=abs(a.y-b.y) then fail.

rnnst < factorial 8 = 40320.

that implementation.

, Incremental
SYSTEMS CORPORATION



depict( any square) A

case (square.x-square.y) mod 2,

when 0 => LZ.

when 1 =>

depict( any queen) A A.

a solution ?

a solution =

iU

Incremental
SYSTEMS CORPORATION
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Persistence with Integrity and Efficiency*.

Deborah A. Baker, David A. Fisher and Frank P. Tadnman

Incremental Systems Corporation
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(412) 621-8888

Abstract

Managing persistent data efficiently and conveniently is a difficult task. Per-
sistent object sizes vary from a single bit to many megabytes. The placement of
objects in both main memory and secondary storage must be controllable by tools.
The integrity of the objects must be maintained while allowing concurrent access.
Operating system file systems, databases and software development systems provide
partial solutions to the safe, efficient management of persistent data. An Iris-based
information management system provides solutions to key persistent data problems
heretofore solved only partially, unsatisfactorily, or inefficiently including type in-
tegrity for application-defined types, and safe data identification mechanisms.

1 Introduction

There have been many advances in research and development of technology, tools, and
environments for design, implementation, and maintenance of large scale software appli-
cations during the past 20 years. Even though many of these component technologies are
demonstrably effective for some limited aspect of the software process, there has not been
any practical way for them to work cooperatively.

*This work was supported in part by the Rome Air Development Center under contract F30602-88-C-
0115, the Defense Advanced Research Projects Agency (Arpa Order 5057) monitored by the Department
of the Navy, Space and Naval Warfare Systems Command under contract N00039-85-C-0126 and by the
Defense Advanced Research Projects Agency (Arpa Order 6487-1) under contract MDA972-88-C-0076.



in this paper we present a conceptual design and an instantiation of a suite of mech-
anisms that enable sharing and communication of imformation among the tools and tool
components populating a (possibly distributed) software environment. The mechanisms
ensure type and object integrity of all persistent information without advauce knowledge
of their types. They provide the primitive mechanisms required for the higher level imposi-
tion of user-defined policies such as those for version control, configuration control, release
control, and access control.

In Section 2, the problem is described in more detail, along with the requirements placed
on solutions. Section 3 contains a discussion of our model for providing persistence. In
Section 4, an Iris instantiation of our model is discussed. Finally, in Section 5, our findings
are reviewed and some future work is outlined.

2 Nature of The Problem

Some data may outlive the invocation of the tool or program which created them, in which
case they are said to be persisteut. Persistent data contain information which is important
to an application taken as a whole, and which may be needed by several components (or
invocations of components) of the application. There are several important requirements
for persistent data in distributed software development, maintenance and operational en-
vironments that have not been addressed by databases or by file and operating systems.
These requirements are concerned primarily with the integrity and efficiency of storage and
retrieval of information within such environments.

In software environments, the persistent data obviously includes the requirements, de-
signs, specifications, implementations and execution results of the programs being devel-
oped. It also includes representations of those programs in the form of source text, internal
representations, unlinked object code, and executable target code. The persistent data also
includes artifacts from, and inputs to, analysis, documentation, testing, project manage-
ment, and maintenance processes such as constraints, rules, histories, and decision trees.
All of these data items may exist simultaneously in a variety of versions and configurations.
It is also crucial in software environments that the various tools and tool generators of the
environment themselves be data objects of the environment.

Integrity for the data in software environments requires that all data be strongly typed
with the type protection enforced throughout the persistent object base, not only for a few
built-in types, but for those defined later by application developers and by tool builders
as well. As in any distributed system, distributed software development, maintenance and
operational environments must provide safe mechanisms to either maintain consistency
among multiple copies of data objects that are replicated throughout the distributed system
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or to detect inconsistency..

Efficiency is critical to the feasibility of any system including distributed software envi-
ronments. Efficiency issues arise primarily in three areas: delay in accessing data, efficiency
in handling inter-object references, and the cost of maintaining the type, version, and con-
figuration integrity of the persistent data. For instance, for our compilation systems, the
semantic analyzer must process 3,000 lines per minute if the compiler is to process 1,000
lines per minute. The semantic analyzer for the Ada programming language will make
approximately 25,000 access of small grain objects while processing 3,000 lines.

Traditional solutions, whether drawn from operating systems, databases, or software
development environments, have typically been inefficient and seldom safe. They assume
that the primary location of data does not change, that cross-reference among objects is
infrequent or is the responsibility of the user, that type integrity is the responsibility of
the user, or that inconsistency can be tolerated when the number of resulting erroneous
computations is statistically low.

The Knowledge Based Software Assistant Program is exploring the use of a formally
based paradigm, which involves mediation from the software assistant, in the full range
of activities associated with software development and maintenance. The functionality
associated with each activity is captured in a facet, or sub-assistant.

The information that is involved in the KBSA paradigm to date (by virtue of the facets
under development) includes such things as requirements, specifications, design history,
assumptions, reasons, and rationales[Ele89]. Another vital aspect of the KBSA paradigm
is the reuse of th;s information [Go1891. For instance, the requirements and specifications
developed under their respective facets should be rcused by the program development facet
to assure that they are satisfied and by the project management facet to assist in scheduling
and cost estimation. The most effective way to facilitate this cooperation among the KBSA

facets via s' . -"g and reuse of information is to provide efficient mechanisms whereby
the information can be identified, stored, accessed, maintained, shared and reused in a
distributed eavironment. It is exactly a substrate of this nature that is the subject of this
paper.

Extant Partial Solutions Traditional programming languages, operating systems
and databases have each addressed some aspects of persistent information management,
but each has shortcomings with respect to our requirements.

Operating systems address problems of resource management and security, providing
mechanisms and policies for allocating and sharing basic computing resources. Of concern
here are the storage systems provided by operating systems (i.e., file systems); they do not
typically ensure type integrity. This is true for both abstract and representation types and
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for invocations of tools as well as manipulations by human users. Furthermore, operating
systems rely on user-defined names, which compromise identity integrity.

Databases capture some knowledge of the characteristics of the information they man-
age, and exploit that knowledge to make better use of resources. This knowledge is repre-
sented in a variety of ways (e.g. schemata and dependencies) and is used to optimize repre-
sentation and access to information, to improve the convenience, reliability, and efficiency
of maintaining important relationships between items of information, and to drastically
reduce the time required to design and implement applications. The success of databases
depends on certain assumptions such as there are relatively few schemata and relatively
many items per schemata, the schemata are fixed, or change only infrequently, the types
of information are closely circumscribed (for instance, relation is not a type in a relational
databace and therefore a relation can not itself participate in a relation) and they are not
dynamic (i.e., types cannot be added arbitrarily), and the granularity of the information is
known and fairly uniform. Information in traditional databases is most often distinguished
on the basis of some key; such value-oriented names compromise identity integrity.

Unfortunately, the underlying assumptions of operating systems and databases are not
valid for the information in a software environment. Software development environments
are characterized by a wide variety of objects, with dynamically varying types and rela-
tionships. Correct and effective management of these objects requires intimate knowledge
of the policies and relationships which are specified (implicitly or explicitly) in the objects
themselves. The types of information in the system at any time are specified by that in-
formation, and the number of items of information of any given type may range from one
to millions. Moreover, some objects are virtual, and are only instantiated dynamically, by
applying one body of information to another.

Related research includes databases [Ber87], persistence [AB87, BB87, Coo87], soft-
ware development environments [SDE88, CAI88, TBC+88], and object orientation [KC86,
Mey89]. Much of this work is relevant in many ways. However, we have not entirely
accepted the requirements, implicit or explicit, of these other projects, and there are, con-
sequently, significant differences between most of the other projects and our own.

The models in object oriented systems are quite specific (e.g., a regime in which the data
in an object include methods for responding to messages); furthermore, these systems are
typically single user and/or single machine and the efforts to allow sharing among users and
distributed machines are not altogether satisfactory. The use of a persistent programming
language or a database programming language may be fine, but is not a useful approach for
organizations that have mandates to use specific languages, or for organizations that have
pre-existing software that they wish to use with as little modification as possible. Unlike
many of the research projects on persistence, our system has requirements for strong typing
and against restrictions on the types of persistent data. Also, research projects in these
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areas have, of necessity, concentrated on attainment of functional requirements, often at
the expense of performance or reliability. Successful commercial systems have typically
achieved their performance goals by focusing on important but limited application domains.

3 A Model for Providing Persistence

Ensuring integrity and enabling efficiency are design features of our substrate for the man-
agement and sharing of information. Wc present a three layer conceptual model. The first
layer provides general mechanisms for large- and small-grain object management. The next
layer is implemented in terms of the first and provides attributed information structures.
The third layer is Iris: a special kind of attributed information structure that instantiates
the design.

Integrity Error-proneness of traditional operating and file systems and databases
arises because data can be referenced only by symbolic name, directory structure locatior,
or value. In particular, it is impossible to guarantee integrity of reference as the physical
location of data changes and to retain integrity of reference to data located on removable
media. Our solution provides location-independent internal names that uniquely identify
each data object.

The mechanisms developed for this project provide and maintain an identity for each
type and each data object. The requirements for these identities are dictated by the nature
of persistent data. The identity of an object much be unique to avoid confusing it with
other objects. The identity of an object must be universal (i.e., must never change) to
avoid invalidating the knowledge of an object's identity in one part of the system when a
change is made elsewhere. The identity of an object must be location-independent because
the location of an object may change in the course of its lifetime.

Integrity is a pervasive goal of an integrated software environment and type integrity
is central to persistent object management. It matters little how good other aspects of
a system are (i.e., how fast it runs, or how much it encompasses), if it produces results
that are incorrect or unreliable. Because types are used to express the formal properties
of data, object management must include enforcement of the typing mechanisms to ensure
integrity. Software applications use such a wide variety of data that it is impossible or
impractical to build the complete spectrum into their persistent data system; they are
forced to map their types onto the few supported by a database, with loss of integrity and
increased error-proneness as the result.

The mechanisms developed for this project support an open-ended type system in which

5



types can be added at .ny time and in which individual type properties need not be known
to the persistent data system. However, the only way to guarantee type integrity for a
piece of information is to have absolute control over all manipulations of the information.
This includes deternining exactly what operations can be applied to the piece of informa-
tion. Partial type integrity can be provided when data is being manipulated by the object
management mechanisms and by requiring that users of a piece of data have knowledge of
its type.

Efficiency Obviously, many characteristics vary with an object's granularity. Exam-
ples include expected frequency of access, the complexity and nature of interrelationships
with other objects, lifetime, flexibility of the access function set, and the performance
requirements on the access functions. The most successful current object managers uti-
lize granularity-based knowledge to tune the overall system performance. As an example,
consider the problem of providing complete control over small-grained objects. Allowing
them to be independently placeable, independently identifiable, and controlling access to
them on an individual basis would be prohibitively expensive and unnecessary for most
applications. Different mechanisms, then, are appropriate for different levels of granular-
ity. Careful selection of appropriate granularity for the persistent data of an application is
essential in achieving performance.

Current state-of-the-art approaches to object management all distinguish between large
and small-grained objects. The distinction is not simply size. Large-graiL.ed objects are
independent entities, whereas related small-grained objects are groupied into collections
which are often represented as a single large-grained object. A file system may be viewed
as a structure of large-grained objects (files). Each file is composed of small-grained objects
(records or characters), in a certain organization scheme. Object0 management systems
attempt to support these types of relationships in a more generai manner.

Conceptual Model The remainder of this section will outli. , the conceptual model
upon which the Iris mechanisms for providing persistence efficiently and with integrity are
based.

Figure 1 shows object management from an Iris perspective. The vertical dotted line
shows the division between large-grained and small-grained object management compo-
nents. The two horizontal dotted lines separate general .!rpose object management (the
lowest level), attributed information structures (in the n.ddle), and Iris based persistence
(the highest level).

At the lowest level, an object manager (left) provides a general set of operations needed
to manage large-grained objects and each item manager (right) implements a particular
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form of small-grained object management. The item manager exports a data abstraction,
the segment, which serves as a container for an indexed collection of small-grained objects
called items. A segment is itself a large-grained object. Operations on (large grain) objects
include translations between peripheral storage and main memory. The operations on items
include fetch, store and space allocation, all within a segment. Objects (i.e., segments) are
independently placeable and identifiable. Items are uniquely identifiable within a segment.

Items can be organized into collections (i.e., segments) in a variety of ways, depending
on the properties of the attributed infornation structure they represent. The designer of
a tool must be able to choose a representation for the attributed infoimation structure
that exhibits storage utilization and item access times that are appropriate for the appli-
cation. Item managers vary in the organization of items in a segment because attributed
information structures vary in characteristics such as attribute density. attribute size, and
uniformity of attribute size.

An attributed information structure is a collection of entities and information, called
attributes, about them. The middle level in Figure 1 corresponds to the management of
attributed information structures. An entity is a carrier of information. Each entity has an
identity and a set of attributes. Each attribute of an entity is a piece of information relevant
to the entity; taken as a whole, the attributes of an entity contain all the information
concerning it. A unit is a collection of entities. The concepts at this second level are built
upon those at the lower level.

Every entity is a member of an entity type. An entity type includes a list of attribute
definitions. Each attribute definition specifies the name and value type of an attribute of
members of that entity type. If the type of a particular entity has an attribute definition,
the entity may or may nct actually have that attribute. If it does not, the attribute is said
to be missing. When a new attribute definition is added to an entity type, the attribute
defined is missing for all existing entities of that type, but can be added to some or all
members of that type by appropriate attribute manager operations.

Tools do not need to know the entire set of definitions of an entity type, but only
about those that are relevant to the function of the tool. A tool's view of an entity type
is therefore a subset of attribute definitions contained in that entity type. The attribute
manager should support views ir. such a way that changes to the an entity type should affect
only those tools which have a view in which that change is visible; tools which have a view
in which the change is not visible should not require modification or even recompilation.

An entity collection is an indexed collection of entities of the same type. Entity collec-
tions are independently placeable and identifiable. Notice that both objects and entities
nave unique, universal, location independent identity. Objects are an implementation mech-
anism; their identities serve to distinguish various chunks of physical storage. Entities are
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an abstract mechanism; there is no single cAunk of storage that corresponds to an entity.
Their identities also distinguish serve to them

The highest level provides Iris-based persistence, discussed in Section 1. Iris unit and
Iris attribute management are instantiations of the more general unit and attribute-man-
agement at the attributed information structure level.

4 Iris Based Persistence

The data objects of a software environment include both composite and atomic objects.
They can, therefore, be can be thought of as utterances in various formal languages. The
languages represented include implementation, specification, design, requirements, proto-
typing, process programming, and constraint languages. Iris' provides solutions to the
information managements problems of distributed software environments. It is a semanti-
cally based system for representing and managing pieces information that can be viewed
as utterances in some formal language(s). An Iris system includes a common information
structure as well as both small- and large-grain object management. Iris based persistence
has been used in an Ada-to-Iris tool, where Iris unit management is equivalent to Ada pro-
gram library management. An analysis of this design combined with measurement data on
earlier prototypes indicates that performance in excess of 50,000 item accesses per second
on a Sun 3/60 is achievable. This is well within the performance goals set out in Section 2.

The Iris Information Structure The Iris information structure is a language inde-
pendent form for representing the sentences of any formal language. It serves as a medium
of information exchange and sharing among the tools of a software environment. It is
an extensible and open-ended system with respect to the information it can capture and
represent.

At an abstract level, the Iris information structure is a tree. Each Iris tree represents a
composition or expression consisting of references and applications. Corresponding to this,
an Iris tree is composed of two kinds of nodes: reference nodes and application nodes. For
example, the expression f(x, g(y, z)) consists of references to entities named f, x, g, y, and
z and applications of f and g. Reference nodes are interpreted as references to declarations
that appear elsewhere in the Iris structure. The first child of an application node is its
operator. The operator identifies an operation which is applied to the remaining children,
which are called arguments. Frequently, the operator is a reference to the declaration of a
named operation, but it can be any operation-valued expression represented as an Iris tree.

lIris was the Greek goddess of the rainbow and messenger of the gods.
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If the reference nodes of Iris are viewed as leaves (terminals) then the Iris representation can
also be viewed as an abstract syntax tree with the application nodes acting as nonterminals.
Each reference node does contain, however, a reference to a declaration which is itself an
application node appearing earlier in (a preorder walk of) the Iris structure.

Iris is unique in that all operators are described within its own structure. It has no
primitives. This means that individual tools need recognize and provide special case pro-
cessing for only those operations that related directly to the functionality of the tool. For
example, a semantic analyzer need recognize only operations that are declaration, scope,
or type valued but does not have to distinguish between control structures and arithmetic
operations. This contributes to the simplicity and small size of Iris based tools.

Iris is also a higher order system in that it provides full support for computed oper-
ations. A computed operation may appear either in place at the point of its application
(i.e., as another application node which is the operator of the application) or as the value
of a declaration which is referenced at the point of call (i.e., as a reference node which
is the operator of the application). The combination of internal and higher order specifi-
cation means Iris can be used to represent any formal language and that Iris based tools
can be reconfigured for multiple and evolving languages with little or no change to their
components.

To specify the representation of any language L, two things are needed: a grammar and
a set of L-standard declarations. The grammar describes the correspondence between the
concrete syntax of the language and its abstract syntax represented as Iris expressions. The
L-standard declarations specify the built-in operations of the language, i.e., those opera-
tions which are available within the language but are not declared within programs of the
language (e.g., control structures in implementation languages or invariants in specification
languages).

Iris Attributes: Small Grain Object Management Small grain object man-
agement in Iris includes item and attribute management. Iris trees are implemented as
collections of attributes. Each node in an Iris tree, along with its attributes, is an entity.
Each attribute value of each entity is an item.

Units: Iris Large Grain Object Management Figure 2 depicts an entity collec-
tion. Each row is an entity and each column is an attribute of the type of the entities in the
collection (i.e., an attribute collection). Each square is an attribute of a particular entity
in the entity collection, and is represented as an item.

There are two ways to group Iris attributes for storage, as shown in Figure 2. The
first is to group all the attributes of a single entity into a unit. This is called horizontal
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Figure 2: Organization of Iris Attributes for Storage

partitioning. The second is to group a single attribute for a collection of related entities
into a unit. This is called vertical partitioning. While either partitioning is adequate,
Iris uses vertical partitioning. The advantages of vertical partitioning over horizontal are
twofold: new attributes can be added without impacting existing attributes or tools and
attributes not needed by a tool need not be loaded into memory. The disadvantage of
vertical partitioning over horizontal is that accessing attributes is more complex.

5 Summary and Future Work

Integrity and Inconsistency Information in a software environment is generated
from many sources (some human interactions, some computations). It is frequently up-
dated, and is subject to change from multiple, independent sources. Consistency of the
information is difficult to maintain in such volatile situations. Furthermore, in distributed
systems and in the presence of removable media, communication delays necessitate repli-
cation of frequently accessed data and preclude complete consistency among all copies.

There are several commonly used approaches that attempt to eliminate inconsistency
by periodic, controlled update of changed data. The first, which might be called "lock the
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world", is simple in concept and is formally sound, namely: when it is necessary to update
a data structure (or set of related data structures) place a lock on the entire database that
will prevent both access and reference from any source other than the updating process
until the update (of all copies) is complete. Such an approach, of course, can have extremely
high cost in performance.

There are several variations that can significantly improve performance. The most
obvious is to lock only those portions of the world that are directly affected by the update,
thus allowing independent activity to continue in parallel. Another is to select a very small
granularity of data for locking in order to maximize the number of independent parallel
activities that can be accommodated simultaneously with an update. Such methods can
work quite well in small, highly localized databases, but are prohibitively expensive in
distributed systems because of the inherent communications delays.

An alternative which overcomes some of the communications delay is to partition the
database itself into disjoint partitions (typically the nodes of the distributed network) and
then to prohibit interpartition accesses. Locking and update can then be accomplished
one partition at a time and propagated throughout the network. This approach reduces
the delay as seen by any one node by accomplishing the communication outside the lock.
This solution tends to increase the amount of mutable data that must be replicated and
imposes a strict requirement for independently managed partitions. The former restriction
complicates sharing of data stored at a central location; the latter precludes the use of
removable media as a means of sharing and moving mutable data. In any case practical
systems based on this approach have generally been those in which update propagation
times of the order of one day are acceptable. It then is possible to do local updating within
each partition during the day and propagate all the changes at night when there is little
or no use of the systems.

The cost that cannot be tolerated in most systems is not the communications delays,
but rather the delays imposed by locking. Solutions must either tolerate delays in general
system response time caused by the locking, accept the one day update delays that are a
consequence of updating only at night, or find a way to update without locking.

Locking, then, is prohibitively expensive and techniques to overcome these expenses
are not uniformly applicable. While careful design reduces the adverse consequences of
the remaining inconsistency, there are no guarantees against inconsistency nor even that
adverse consequences are detectable.

The traditional method of updating without locking is simply to remove the lock for
purposes of access or for both access and update. Other means are -:sed to minimize the
probability that erroneous or inconsistent data will be accessed, or that the adverse effects
of such accesses will not be catastrophic. One of the better known examples of this approach
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are airline reservation systems in which there is a single shared central copy of the most
current data. All updates must occur directly to this shared copy and are performed there
under lock. Additional local copies are used for access purposes and can be arbitrarily far
out of date. Similarly, update requests can be delayed (actually queued) arbitrarily long
without delaying the updating process. The effect is that sometimes an access will indicate
available seats but the update will fail because none are available, or a reservation will be
accepted (i.e., queued for update on the assumption that it will succeed) and then later
fail due to the effects of other queued requests. The latter results in overbooking.

We find all such approaches unsatisfying. Locking is, in general, prohibitively expensive
in distributed systems and the techniques to overcome those expenses are not applicable
in many situations. The traditional nonlocking approaches do not guarantee consistency
or even detect it, but instead attempt to minimize adverse consequences. Our approach
rejects as infeasible avoiding inconsistency. Instead, our approach creates a situation in
which inconsistency is safely and efficiently detected and managed. The key to detection
of inconsistent data is twofold. First, the various (updated) versions of an object must be
distinguishable (universal identities are adequate for this purpose, see Section 3). Secondly,
objects or application that are used in combination must maintain records of the identities
of the versions or types of the objects with which they must interact. These techniques
have been used successly in our Ada to Iris tool in order to enforce order of compilation.

Summary The solutions outlined here can significantly improve the efficiency, re-
liability and robustness of applications that use persistent data. Key among these are
distributed software development environments, such as that in the KBSA paradigm. The
solution consists of efficient mechanisms that form a substrate to facilitate cooperation
among KBSA facets via sharing and reuse of information. The substrate permits iden-
tifying, storing, accessing, maintaining, sharing and ;eusing information in a distributed
environment.

Some of the current and planned scientific and engineering features that contribute to
the efficiency and safety of our mechanisms for the management of persistent objects are:

" Object identity that is unique, location independent and universal.

" Integrity for all types, even those that are user defined, while the data is under the
purview of the persistent mechanisms.

" Safe sharing via object identity rather than via user given names or data values.

" Recognition and management of inconsistency in the volatility of software devel-
opment environments where data is frequently updated from multiple, independent
sources.
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" Vertical partitioning of attributes.

" Operations optimized for the different demands of small- and large-grain objects.

" Multiple item managers to exploit the various properties of attributed informations
structures.
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1 Abstract

Current type disciplines reflect firm commitments about the taxonomic and ontological structure
of the universe of discourse. Epistemic type systems regard such committed type systems as
examples of ideal epistemic states representing the beliefs of an agent about the universe. These
states are subject to revision and refinement as a result of interactions between the agent and its
environment. The focus of attention in epistemic type systems is the mechanism of change, which
should be conservative in the sense that prior beliefs should be interpretable in any revision. In
this talk some basic principles of epistemic type systems are explored, taking Scott's information
systems as a point of departure.

2 Opening Remarks

The traditional focus of these ,%orkshops on Mathematical Foundations of Programming Semantics
has been on problems and applications of mathematics to the semantics of programming languages
and related systems as they are today. I am breaking with this tradition by raising questions about
the mathematical semantics of language more generally, though with an emphasis on language as
it might be used to communicate with computers. Programming languages, and formal languages
generally, have the advantage of being "mindless", and hence simpler and easier to describe. But
they are rather rigid and impoverished mockeries of language.

My excuse for bothering you with a lot of philosophy and speculation, and disappointingly little
mathematics, about aspects of language that are not traditionally considered in this forum, is that

*This work was supported in part by DARPA under contract number MDA 972-88-C-0076.



the critical problems of software engineering cannot be solved without a comprehensive semantic
basis for entire computing environments which integrates all components in the environment by
transcending the barriers inherent in the local formalisms and conventions used in the development
and operation of individual components. The challenge for mathematical semantics is great, but
not impossible. As Jon Barwise says in the epilogue to his recent status report on situation
semantics, "Someone will eventually lay the foundations for the mathematics of meaning" ([Bar89],
p. 297). However, the problem has to be understood and taken seriously. It is my hope that some
of you will become interested enough in the problem to want to work on it yourselves.

3 Prelude: the greatest prime

The overall goal of the Prism project at Incremental Systems is to lay the foundations for a new
generation of computer languages in which to conduct the long-term development, operation, and
maintenance of large integrated software systems. Appropriate languages will have to cope with
incomplete, imprecise, inconsistent, and continually changing information, including information
about the interpretation and use of information. The only examples of languages in common use
which exhibit these capabilities are natural languages.

Although we do not believe that anything approaching the complexity and subtlety of natural
language is either technically achievable (at present) or necessarily desirable, there are features of
natural language which suggest technically achievable revisions to the basic structure of computer
languages which would advance our goals. The current paper is a small contribution to the
mathematical foundations of one such revision, in the area of types.

The following example of a familiar proof serves to illustrate one respect in which current
notions of type are deficient.

Suppose that p is the greatest prime number, and let x be the product of all the
primes up to and including p, plus one. Clearly, x is greater than p. It is also prime,
because it has no prime factors (upon division by any of the primes, the remainder is
one). But then p is not the greatest prime, contrary to our supposition, and therefore
there can be no greatest prime.

Everyone understands the foregoing argument, though it is incomplete and lacks rigor. Replace
every occurrence of the phrase "greatest prime" with "smallest positive real", however, and it
becomes gibberish, though both phrases fail to denote.

Now, "the greatest prime" is a term which purports to refer to the unique inhabitant of what
is actually an empty type, viz. the type of greatest primes, and similarly for "the smallest positive
real" (and, for that matter, "x"). Because the type of greatest primes and the type of smallest
positive reals are coextensive, they are, in any extensional account of types, the same type. But
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clearly the types are quite different; "greatest prime" confers the properties of being prime, and
the greatest such, on any term of that type, whether the term refers or not. That is why the
argument makes sense, even though it involves reasoning about a nonexistent. It also explains
why coextensive terms are not freely interchangeable in any but the most artificially constrained
languages.

Two things seem clear: that reasoning of this sort is extremely common and useful, and that
current computer languages don't support it. The historical and philosophical reasons for this are
fascinating, but I don't want to go into them here. Suffice it to observe that, if one assumes that
only meaningful utterances should be allowed in a language, and that meaning is denotation, the
way is blocked.

Of course, this is old stuff to anyone who has more than a passing acquaintance with linguis-
tics, philosophy, or logic beyond the small subset that is heavily used in programming language
semantics, and I apologize to my colleagues if I seem to be repeating what everbody knows already.
My excuse is that computer scientists at least seem to be unaware of the philosophical assump-
tions underlying programming languages, and the inherent limitations they imply. Considering
the dramatic effect that philosophy has had on the overall shape of computer technology, I find it
especially disappointing that so many computer scientists dismiss anything resembling philosophy
out of hand. End of sermon.

4 From Extension to Intension

To a first approximation, the purpose of types is to express the general properties of classes of
objects so that algorithms and other thoughts pertaining indifferently to all examples of the class
can be expressed. Generalization, in turn, is the sine qua non of computation. Algorithms are
useful because they exploit universal properties of relations; ad hoc mappings might just as well
be tabulated once for all and filed away.

Once we accept this much, two paths are open: to focus on the properties, or on the classes of
objects. The former route leads to intensional types; the latter to extensional types. The purpose
of this section is to show how the extensional conception, which has thus far dominated in formal
semantics, is a special case of the intensional, and can be recovered from it.

Now, it is a commonplace that every crnsistent theory has a model, so if we are interested only
in consistent sets of properties, or are willing to identify all inconsistent sets, then there is little
harm in identifying each type with its extension. Under these conditions, the distinction between
intensional and extensional types vanishes.

Dana Scott's formulation of domains in terms of information systems ([Sco82]) exploits this
observation, restricting consideration to consistcnt sets of properties. The (partial) elements of a
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domain are taken to be consistent sets closed under consequence', and the total elements (proper
individuals) are simply maximal elements.

The view advanced in [Sco82] is that types are domains, inhabited by nontotal (i.e., properly
partial) and total elements. But what are nontotal elements? Intuitively, a nontotal element x is
a set of properties which is insufficient to identify a unique individual; for if x entails all of the
properties of an individual, then all of those properties belong to x, and x is thereby an individual
(i e, is maximal). In fact, a nontotal element x consists of all those properties which are common
to a class of individuals (total elements), namely those which contain x. Put another way, x
expresses the general properties of a class of objects, which is what we expect of a type!

As Scott points out, it is a simple matter to construct a domain of domains, by specifying
an information system in which the basic properties describe the consistent sets and entailment
relations of the internal domains. A two picosecond proof shows that the notion of "subtype"
on domains considered as types corresponds to approximation between domains considered as
elements of a domain of domains. What this suggests is that the notion of closed consistent set is
a more general, and prior, notion of type, of which the domain theory of types is a special case.
The fact that the same intuition underlies Smyth's slightly different rendition of domains as sober
spaces reinforces this suspicion.

The domain theory of types has some very specific technical goals, viz. to guarantee recursive
definitions at all types, recursive definitions of types, to be effective, and to rule out certain
sources of error. What domain structure provides is a highly general theory of types satisfying
these additional goals.

Although these features of domains are essential for some purposes, they are unnecessary or
even inimical to others, as is shown by the example of the greatest prime. (To be explicit, the
singleton {x is the greatest prime} is not consistent, so the property of being the greatest prime is
inadmissable as a basic datum in an information system.) What is needed for such purposes is a
theory of types which manages, rather than eliminates, inconsistency. This requirement militates
against any restriction to consistent (or, for that matter, coherent) sets.

Another problem for Prism, which I raised in my casual talk in Boivlder two years ago, is that
the assumption "... that sufficiently many propositions have been supplied to distinguish between
distinct elements" (Scott, op. cit., p. 2) is not reasonable when the intended domain is the real
world, or even the small and highly structured part of it known as mathematics. The propositions
which we use to distinguish things in the real world arise through a combination of discriminatory
observation and model formation; more plainly, we learn to classify by noticing differences, and
create taxonomic structures for the purpose. What this implies is that the set of propositions
cannot be stipulated as a priori data to the theory.

'Scott uses the word "entailment", which is properly a semantic relation between syntactic formuie, but he
usps the symbol F- denoting syntactic provability, and refers to sets closed under this relation as being "deductively
closed", thereby encouraging the impression that this is a proof-theoretic notion. However, in taking the elements
to be deductively closed consistent sets, he forces the relation to be semantic.
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Some of Smyth's work touches on epistemology (see, e.g., [Smy85]), though he too assumes
a priori properties, and models learning as a kind of monotonic revelation converging on perfect
knowledge. The problem with the "topology" of reality is that, not only are the points not there,
but the neighborhood systems we create are subject to revision in successive epistemic states. The
periodic table we use today is simply not a refinement of "earth, air, fire and water".

Notice, however, that the ancient periodic table is still comprehensible, and even occupies a
rather prominent place in our constellation of ideas. However, we have reclassified it, from believed
to disbelieved. Now, the only way a point can shift from a neighborhood called "believed" to a
disjoint neighborhood called "disbelieved" is if those labels get reassigned to different neighbor-
hoods, whether in the same or another neighborhood system. Thus, if one wants to maintain that
properties are neighborhoods, one has to index classificatory terms. On that account, "believed"
today refers to one neighborhood; it referred to a different neighborhood in 300 B.C.; and the
ancient periodic table lies in the intersection.

The only problem with such reasoning is that it begs the question, because its account of
"states of knowledge" and how they evolve is really not about knowlege but about something else
which behaves quite differently. The questions before us are, therefore: what properties do we
want types to exhibit, and what kind of mathematical structures are suited to modeling a. broader
notion of intensional, epistemic types? Some preliminary answers to these questions follow.

5 Evidence for the Proposition

In outline, the theory of types developed here is quite simple and familiar. Types are sets of
properties, and a type system is basically a partial ordering of types derived from relations of con-
sequence between types and properties. However, unlike Scott's properties, which are "tokens"
drawn from a set, or Smyth's neighborhoods, which behave like "semantic tokens", our proper-
ties have internal structure which includes references to types. Thus the type hierarchy and its
"underlying" properties are intertwined, so that the "field of basic properties" is not fixed, but is
part of the developing state of knowledge.

The goal of an open-ended language with the real world as its semantic domain seems to force
such interdependency. In our view, epistemic states are models of reality, populated by individuals
and articulated beliefs about them. The word "model" is to be under.;tood here in the sense of
something which exhibits selected features of interest by abstraction and possibly scaling, as in
engineering models and model trains. Properties and types are the bases of individuation and
classification, respectively.2

2For those interested in cognitive science I should point out that this entire discussion is limited to the theorizing
component of mind, in which abstract concepts are formed and manipulated. It should properly be placed in context
of a more complete theory of mind, including distributed-representation sensoiimotor and affective components.
Alas, that will have to wait for another occasion.
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Epistemic changse consists in modification of the model, which may involve an thing from a
simple revision of the properties attributed to an individual to a revision of the type system,
which has the potential for radically changing the scheme of indi iduation and hence the set of
recognized individuals. Change is stimulated by the need to assimilate new information, which
may be generated externally, say by meeting someone new, or internally. say by proing a theorem
in mathematics, or by a combination, as when experiment clashes with prediction. Change is
damped by the inertia of the existing model, resulting in a kind of tension between conservative
and liberal forces. Rationality, or at least sanity, depends on stable balancing of those forces. (One
might even speculate that there is an analog to the Hamiltonian characterizing the trajectories of
sane minds. Perhaps the connectionists will discover it someday.)

What, then, is a property? While riding home from the video store recently, my daughter and
a friend (both between four and five years of age) started discussing infinity. The,, agreed that
there is no last number, but they disagreed as to the reason. Katie's position was that one can
alwavs continue counting starting with any purported largest number (not quite her way of saying
it), while her friend held that it is true because "my daddy told me-. The curious thing is that
neither would accept the other's reason, regardless of the decibel level of its delivery.

The clue offered by this story is that both children seemed to regard the defining feature
of the property in question to be the evidence they could advance to support its predication of
an individual. Lacking agreement about reasons, there was mutual suspicion about content and
understanding. This suggests that we take the set of evidence for belief as the meaning of a
proposition.

b b
Let F p(x) denote that the (implicit) agent stands in a relation F of belief to the proposition

p(-) (which, intuitively, asserts that x exhibits property p). If we have occasion to make the ageit
b

explicit, it will appear to the left, as in IF-p(x).

Although the treatment of belief as a simple binary relation has precedents in the literature on
propositional attitudes, real belief is subject to shading and uncertainty. We therefore associate
a strength with each belief, lying in the real interval [0,11. In general, a belief strength S will be

b b
written below the belief symbol, thus: 1- p(x). For any belief b = I- p(x), we write b. to denote the* S

proposition believed, i.e. p(x), and b. for the strength of the belief.

b
When no strength is indicated, as in I- p(x), it is assumed to be exactly 1; and when the

b
strength of belief is 0, we will use the familiar negation k p(x). Note. however, the difference

b b
between / p(x) and F -p(x)! The former says tha p(x) is not believed; the latter, that p(x) is
believed to be false.

Now, if an agent holds a belief b in context r, it does so by virtue of possessing a collection
of evidence which it construes as supporting L. The particles of e,,idence are themselves beliefs,
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with their own content and strength, and they bear on other beliefs via weighting functions.3

Altogether, then, the epistemic state of an agent is characterized by a set of epistemic factoids,

which may be expressed using the notation F -,+ F p(x), to be read as "in context F the evidence

e encourages the agent to believe p(x) with strength s =

The goal of any evidential semantics, of which Brouwer's intuitionism and Girard's phase
semantics for linear logic are more or less familiar examples, is to reduce the content of propositions
to evidence; that is, to equate what is believed with the possible reasons for belief. It is then possible
to dispense with propositions per se; it suffices to name the beliefs and the witnesses (units of
evidence), and describe how the latter give rise to the former.

In the current situation, this enables us to eliminate propositions from the expression of epis-
temic factoids, thus: P"5, b, where b = w(e,). Doing so frees us from any obligation to give a

linguistic account of propositional content, thereby avoiding the conundrums of reference, compo-
sitionality, and extension which plague sentential/propositional theories of knowledge.

Of what use, then, are propositions? Articulated propositions ep, bp are useful primarily for
(inexact) communication and for f -rming theories which justify the agent's reasoning, taking b. as
the startiing point of a systematic explication of why the agent is justified in taking ep as evidence
for bp.

In the sentential/propositional theories alluded to earlier, the structure of propositions is central
to the account of how evidence bears on belief. An intuitionistic proof of , A b, for instance, is
a pair of proofs < x, y > where x is a proof of q and y is a proof of b. In classical logic, also,
the content of propositions is given by a recursive rule over their structure, and the relationships
among those contents are used to justify syntactic inferences. That is model theory in a nutshell.

Now, formal logic in all its variety and splendor is a wonderful and useful invention, but
its applicability to everyday knowledge and reasoning has been overestimated. In theories of
language, mind, and the behavior of intelligent (as opposed to so-called "ideally rational") agents,
it is absolutely critical to maintain the distinction between why an agent draws a conclusion, and
why an agent may be justified in drawing that conclusion. An agent draws conclusicns because
its machinery is attuned to respond in a certain way to stimuli. It need not, and generally will
not, respect logical propriety. Indeed, if it attempts to do so it will be outpaced by events in its
environment, and thereby fail.

Similarly, cne must maintain a distinction between uniformities in an agent's behavior arid the
3There is an obvious threat of infinite regress in this account. if beliefs are supported by evidence, and the units

of evidencc aie belieL, what supports the evidence? My answer is that certain beliefs are stimulated spontaneously,
such as the beliefs represented by the activation levels of cones and rods in the retina uf the eye, which our theories of
biology and physics attribute to such things as frequency -selective photochemical reactions. Given the impossibility
of telling whether such attributions are correct, or if we are being manipulated by Cartesian demons (read. artificial
reality puppeteers) the content of these "immediate sensory stimulus beliefs" - that is, the ev idence which supports
them - is beyond knowing, though we may (and do) form various theories about it, and call it "reality". However,
spontaneous beliefs may also be hallucinatory, conjectural, or explicitly fictional.
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causes of those uniformities, on the one hand, and a justifiable system of rules (i.e., a theory)
which more or less closely accords with the agent's behavior, on the other. At best, the latter is-
a functionalist explanation for the degree of "success" enjoyed by an agent in its environment. It
is a grave, but all too common, error to attempt to forge such theories into implementations of
intelligent agent0.

Then the meaning of a property p satisfies the equation

1pi rx = f{e I r -- p)
As a sanity check, note that if we assume a truth value (x, r) for each proposition p(x) in context

eb
r, and further assume that r -- I- p(x) iff the evidence e is j(x, r) = true, then the meaning of p
reduces to a characteristic function EpiP = Ax(p(x, r)).

As an aside, I recently noticed that the foregoing account bears a strong similarity-to the phase
semantics for linear logic [Gir86], in which the meaning of a proposition p is the set of "phases"
(evidences) which "verify" (lead to belief in) p, written I = {ele [- p}. The main difference is
the subjectivity of the "observer" in the epistemic account, and the consequent dependence on
the observer's epistemic state, r.

For purposes of the current paper, this explication of properties and propositions should suffice.
However, it neglects the internal structure of properties, which is involved in the processing of
evidence. In the example of the greatest prime, the relevant structure is a conjunction of two
other properties, viz. being prime and being the greatest such. The parallel argument for the
least positive real is nonsense (to me) because there is no reasonable (to me) rule of logic which
licenses the inference that something is prime from the premise that it is a positive real and the
least such.4 Hence the argument is not admissible as evidence for the proposition that the least
positive real does not exist; it is not part of what that proposition means (to me).

Returning briefly to the infinity debate, we can now see that the meaning of "doesn't exist"
is different for Katie and her friend, because their evidence sets differ. This position may seem
unpalatable at first; surely there is some sense in which the children mean the same thing by the
proposition, "there is no last number". My clian is that they mean something similar, but not
exactly the same.

Another example may help to clarify this point. Suppose that George and Mikhail have been
conversing for years and using the term "the sun" in apparently the same way, when one day
Maggie appears on the scene and declares "There's the sun!" while pointing at a bright light in

4An obvious rejoinder to this assertion is that, in fact, many familiar logics have rules which explicitly license
such inferences, and they are validated by appropriate models. However, the decision to identify nonexistents in a
model, whether motivated by a priori philosophy or merely a desire to validate a formal system, is not necessary,
and there is nothing to prevent one from populating models with distinct points representing distinct modes of
nonexistence To the extent that such distinctions are useful and important, and it seems irrefutable that they
are, models (and logics) which ignore them are "unreasonable", no matter how common and familiar they may be
today.
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the sky. Now it happens that George believes everything Maggie says, but Mikhail disbelieves
everything she says, so when each is asked whether the apparition in question is, or is not, the
sun, they give different answers. Because they differ on the extension of the term, they cannot
mean the same thing by it, and there is no difference in the facts of the situation which can
account for their disagreement; there is only a difference in their evidence sets. (Shades of late
Wittgenstein...)

Nonetheless, if we examine the intersection of George and Mikhail's evidence sets we find they
have a good deal in common, and this may lead them to believe that their meanings are the same,
despite their conflict over Maggie's testimony. Of course, doing so may cause them to cast doubt
on other beliefs, e.g., about Maggie's trustworthiness, or the target of her gesture.

Topologically speaking, suppose we treat evidence sets as open neighborhoods, drawn from
two different neighborhood systems. As long as the intersection of the two neighborhoods is again
a neighborhood in each system, one can maintain the impression that there is an objective shared
meaning contained in a sequence of intersecting neighborhoods, and things become reminiscent of
the complete prime filter construction of domains. A theory of "local sobriety" would help out
here.

Another example which sheds some light on the problem of how meanings are related across
changes in epistemic state is an embellishment of the Richard-Soames problem, due to Nathan
Salmon [SS88]. The premise is an ancient astronomer A who refers to Venus as "Hesperus" when
it appears in the evening sky, and "Phosphorus" in the morning, and is unaware of their material
identity. The astronomer takes measurements and calculates the mass of each, makes an error,

b

and declares their masses unequal; in symbols, A F m(H) 54 m(P). Salmon's puzzle has to do
b

with the principle of direct reference, which would lead one to infer that A - m(H) 5 m(H),
which is not the case. In the evidence theory of propositions, the fatal inference would require,
not the "objective fact" that "Hesperus" and "Phosphorus" corefer, but that A believe that

b
they do, which she does not. On the other hand, given that I F- H = P, we can infer that

b b
I 1-((A I- m(H) 0 m(P)) A m(H) = m(P)), which is true; I think the astronomer is mistaken! So
the Richard-Soames species of anomaly, per se, is extinct in the evidence theory.

b b

As usual, such formulas have to be composed and read carefully. In general, 3p(I I-(A - p)A Aj
expresses that there is some specific thing about which I believe A to be mistaken, in contrast to

b
I F- 3p((A -p)A ji), which says that I believe A to be mistaken about some undetermined thing.

The real puzzle is to explain what happens when the astronomer learns that Hesperus is Phos-
phorus, and corrects her calculations. Suppose that the original mass calculated for Phosphorus
was p, and this was incorrect. Then the epistemic transition involves a change in the meaning
of the proposition that the mass of Phosphorus is p; that is, tm(P) = p]F1 5 Im(P) = p r 2. A
would likely object, however, to the suggestion that there had been any change in the meaning of
the proposition. What I claim underlies such intuitions is the fact that both evidence sets contain
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hypotheticals on the order of

(I OK(d)) A ([ OK(d) = r(d, q) -1- q) A (P- r(d, 0))

where OK(d) means that the measuring device d is functioning properly, r(d, 0) means that d
reports that €, and € is the proposition m(P) = p. That is, if it is believed that the device is
functioning correctly, and it is believed that the report of a correctly functioning device should be
believed, and it is believed that the device is reporting €, then this is evidence for believing €, in
any "imaginable" epistemic state. Sets of such "decontextualized" evidences, insofar as they are
invariant over a range of epistemic states, behave locally like ideal, "objective" concepts.

Incidentally, it goes without saying that the principle of logical omniscience has no place in this
scheme, because the meaning of a proposition is the set of evidence which the agent is ready to
accept in its support, which frequently excludes most of the evidence which the agent is capable of
collecting. In general, one expects that an agent will draw out consequences of its beliefs only to
the extent of its capabilities and inclination. Its capabilities, of course, are determined in part by
what it believes about valid inference and how it can be conducted, and its inclination is influenced
by its beliefs about the value of any such activity. Both, of course, can be externally influenced,
and in the case of computers there is an opportunity to inculcate certain ideals of rationality into
a system, at least at the outset. Over time, however, it might turn out that becoming somewhat
irrational is a rational strategy for dealing with the world, which would lead to an attenuation of
those ideals.

6 Types

As a first approximation, define a type to be a set of properties. This definition immediately
raises several questions: Are logically equivalent sets of properties the same type? What about
contingently equivalent sets of properties ({x = 9} and {x = iplanetsl}, to borrow Quine's
example)? How are types affected by context? By changes of epistemic state? How are types
related to one another?

To answer these questions, I have to bring out some points that are implicit in the foregoing
discussion of the semantics of properties. To begin with, I have been assuming that each property
has a unique identity which is invariant over all epistemic states and contexts. This identity is
not syntactic; a given property may be designated by arbitrarily many terms, and any term may
designate any number of properties, depending on context. Nor is it necessary for the reference
of a term to be unambiguously resolved; if a passage is meaningful under several available inter-
pretations of a term, it may legitimately be used to convey multiple thoughts. And, because the
meaning of a property can change, its identity is not semantic, either. Rather, its identity is that
of a point in a domain of mental representations. In general, we call such points "individuals".

An immediate consequence of taking properties to be "mental tokens" is that, not only can
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the meaning of a property vary, but distinct properties can have the same meaning in certain
epistemic states. A number of problems having to do with contingently coincident descriptions,
such as "Aristotle" and "the teacher of Alexander" are thereby solved. The properties of being
Aristotle and of being the teacher of Alexander are different, though their meanings are (foi me)
the same.

Now, consider the allegation x: t, that x is an example of type t. In developing software, we
want to be able to develop t over time; for example, we may assert the relation between x and t,
and then proceed to state the properties in t gradually. Therefore, as with properties, we take t to
designate an individual; the epistemic state determines what properties are attributed as members
of t. What makes t be a type is the attribution that it is a set of properties.

For emphasis, the proper definition of type is: an individual which has the property of being
a set of properties. Which set of properties is not necessarily determined, or fixed, however.

It is clear that in certain epistemic states distinct types may have the same, or merely logically
equivalent, sets of properties attributed to them as members. So logical equivalence alone is not
sufficient grounds for believing that two types are the same.' Additional beliefs, such as that
neither type has any unspecified properties, are required to warrant the conclusion that their
differences are merely apparent.

Having explained and motivated these preliminary definitions and concepts, let us fix an epis-
temic state, and explore the mathematics of its types. Assume that, as in any epistemic state
of interest, there is a relation I- of deducibility between sets of propositions and propositions.
The details of this relation depend on the state, but we assume it satisfies some reasonableness
conditions, which echo the axioms for "entailment" in information systems.

2 . y < t2(tl1- ), W -0,/

Unlike information systems, no distinguished proposition is assumed to play the part of the "least
informative" A, nor do we assume any special classification of types or sets of properties. On the
other hand, nothing prevents there being any number of types having types, or sets of properties,
as their examples, and satisfying closure under subsetting and entailment, thereby carving any
number of information systems (and corresponding domains) out of the epistemic state.

The most basic relationship among types is structural subtyping ("C"), whereby tj C t2 iff
t2 C t1. Intuitively, anything which exhibits all of the properties in ti exhibits all subsets of those
properties. Given its definition, the properties of structural subtyping are obvious.

'An interesting question is. should an agent decide that two types are the same, what can it do to remove
thp duplicate individual? A mechanistic answer is that it can consolidate its information around one "node", and
attribute the other as being equal to the first. Future references to the duplicate node will be redirected to the
chosen representative, and at some point the duplicate will decay (say, when all references have been redirected, or
when there is sufficiently little activity to support its continued existence).

11



A more interesting relation is deductive subtyping r-,defined as follows: tl - t2 if
Vq/ E t 2(tl F- €). Now, take the set Prop of all properties in the epistemic state, and form its
powerset; call it type. Define deductive equivalence in the obvious way, and take the quotient
type/=.. Then, _. is simply structural subtyping on type/=,-.

Some interesting structure arises if the property of being deductively closed exists in the state

(and, of course, satisfies the obvious semantic constraint: that r-5 i dc(t) iff (t F- q) =. (0 E t)).
In that case, type/=F contains a type ty definable as the deductive closure of the property of being
a deductively closed set of properties. Clearly, ty is an example of itself, i.e., ty: ty.

Considered as a relation on type/=., the deductive subtype relation supplies the morphisms
of a bi-Cartesian closed skeletal category, in which the equivalence class of the deductive closure
of the empty set is initial, and the equivalence class of Prop is terminal. An even more interesting
structure - a topos - emerges if we take "restricted functions" between types as our morphisms.
The required definitions and proofs are not difficult, but they would take us too far afield here.

7 Platonic Types: closed sets

Having decided that types are supposed to express general properties, let us say a bit more about
what that entails. To begin with, we need some notation. Let x: t signify that x is an example of
the type t; i.e., roughly speaking, it has the properties expressed by t. The notation tj -- t2 will
signify that tl is a subtype of t2.

Although I haven't specified exactly what I mean by these notations, I can state some minimal
properties I expect them to have. One is that the two notions be related by the rule of subsumption:
if x ia - y and y is a subtype of z, then x is a z. Another is that the subtype relation is transitive.
Formally,

x:y y- z x"y y'z

x: z X -< z

remark
It is instructive to reflect on what has been done to this point. I have introduced some unin-
terpreted symbols, and told you some rules that apply to them. I have not, and need never,
give them extension: they are, and may remain, open to interpretation. Moreover, this is a
perfectly reasonable thing to do, and is completely within the bounds of our language, regard-
less of whether any interpretation is possible at all! If it turns out that all of the descriptions
I've given are totally inconsistent, and so could never properly describe anything, I am not
thereby prevented from presenting them and reasoning about them. In fact, were it impossi-
ble to do that, we could never make inconsistent utterances, much less prove them inconsistent!

The point is that description is prior to interpretation, and can stand on its own. The fact
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that I have attribut&d certain properties to : and -<, for example that they are relations, con-
veys that certain inferences can be applied to them, viz. those- that you associate with the
description "relation". None of this requires that relations "exist", or that we have the same
descriptions, though it is my hope that our shared background will enable you to follow the
ensuing argument.

kramer

Let us turn now to some common sense examples. To begin with, there should be a type
of all things, which we shall designate by "0" (box), such that the assertion "x: 0" conveys no
nontrivial information about x. Informally, "0" corresponds to the English word "anything".

And so we come to our first real assertion, namely, that 0 is a type, notated thus: 0: type. It
follows from this that 2 has all of the properties of a type. But what is a type? More directly,
is type an example of type, or does it have some conflicting properties? Let us defer the question
as too difficult to answer at present, and assert instead that type is certainly an example of some
type, which for lack of a better name we will call "metatype". Formally, type: metatype.

But what is a metatype? We could defer the question again, claiming that metatype: metametatype,
and continue in that fashion indefinitely. The alternative is to cut off the infinite regress at some
point t, say by asserting t: t. Let us explore the consequences of the latter course, tentatively
asserting metatype: metatype. This amounts to saying that, in whatever sense type is a "type of
types", metatype is also a "type of types".

What about subtypes? Clearly, any example of type is something, i.e., is an example of 0, so
it should be the case that type - 0. Similarly, metatypes seem to be specialized types, though
we have been carefully noncommital to this point about what meaning we should attach to the
informal notion of a "type of types". Suppose we take it at face value. Then, every example of
metatype is also an example of type, and hence metatype -_ type. The foregoing is summarized
in the following "axioms".

Al) 0: type

A2) type: metatype

A3) metatype: metatype

A4) type -< 0

A5) metatype -< type

The problem is to explain these notions formally in such a way that they both harmonize with
our intuitions and give a logically consistent interpretation to the relations stated above. That is,
we want to make sense of them. Here are some of the consequences which, according to our rules,
follow from the "axioms" A1-A5.
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CI) 0: 0

C2) type:type

C3) type: <

C4) metatype: type

C5) metatype: 0

C6) metatype -_

Proof: C1 follows from Al and A4 by subsumption. C2 follows from A2 and A5 by subsumption.
C3 follows from C2 and A4 by subsumption. C4 follows from A3 and A5 by subsumption. C5
follows from C4 and A4 by subsumption. Finally, C6 follows from A4 and A5 by transitivity.
0

Remark: It does not follow that 0: metatype, nor is the negation of this statement provable.
Hence the axioms admit models in which either 0 is or is not a metatype, and in fact
models of both kinds exist.

Now, a number of familiar difficulties arise if we take types to be sets, with " :" being set
membership, and "-<" being the subset relation. For one thing, we would have situations where
two sets belong to each other, as in 0: type and type: 0. Intuitively, type contains a copy of 0,
which contains a copy of type, which contains a copy of 0, and so forth ad infinitum - not your
garden-variety set. (Technically, this violates the axiom of regularity, 6 which is usually included
in any axiomatization of set theory to disallow a number of well-known anomalies.) To make the
problem concrete, the reader is challenged to exhibit three sets that satisfy the relations Al-A5
and C1-C6.

Note that without regularity or some other means of restricting the principle of comprehension,
7 we could apparently form the Russell type R = {xi-(x: x)}. In set theory, membership in a set is
equivalent to satisfaction of the characteristic predicate of the set, so we arrive at the contradiction
that R: R # -'(R: R).

6The axiom of regularity disallows infinite regress in the formation of sets. In short, {{{}}}... is allowed,

but not f {{- })} Regularity is also known as the axiom of foundation (von Neumann's Fundcrung), to the
effect that membership is a well-founded relation. Peter Aczel's hypersets hiige on a rejection of the axiom of
foundation. Indeed, hypersets provide one solution to the current puzzle, but not the one I want.

7The principle of comprehension states that for any predicate € there exists a set consistir.g of those things which
satisfy , usually written {.xl}. Russell's original theory of types made peace with the principle of comprehension
by imposing an order on predicates, and restricting the membership predicate E so that the type of the left
operand be strictly less than the type of the right. Thus ruled out are locutions such as x E x, tlic.,eby making
the troublesome Russell class indefinable. This avenue is, however, closed to us because it would banish axiom A3,
along with C1 and C2.
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Because the extensional interpretation of types won't do, we adopt a subtler interpretation,
in which types are sets of unary predicates (equivalently, "properties") closed under entailment.
That is, if tq (q a unary predicate) then 0 E t. In order to specify types finitely, we adopt the
notation Xk for the closure of X under K

For example, let us define oddprime to be the type 0x{x is prime, x is odd}k, I oddprime
includes the properties "0x(x + 1 is even)", ")x(x > 2)", and "Ox(Vy, m. y < x A mJx A mly =€.
m = 1)" along with infinitely many other consequences of the two properties originally specified.

The subtype relation is defined as follows: x _ y if and only if V E y. xko. That is, subtypes
specialize their supertypes. An equivalent, if initially counterintuitive, characterization is that
x -< y whenever y C x (note the reversal!).

Some examples: 0x{x is prime, x is odd, x 2 < 10}k is a subtype of oddprime. Similarly,
0x{x is odd}k is a supertype of oddprime.

To a first approximation, an individual (description) is an example of a given type if it satisfies
all of the properties of that type. ' Formally, x: t if and only if VO E t. O(x). Actually, we need
to refine this definition somewhat, but let us adopt it for the moment, to show what is right and
wrong about it.

With these definitions in hand, we propose the following equivalences between descriptions as
a possible "model" of the symbols introduced earlier. 10

<> = ¢V=

type = 0t{t is an k=- closed set of properties}k

metatype = (type U Ox{Vy: x. y:type})k

It is easy to check the properties A1-A5 and C1-C6 against these definitions. Al states that 0l
is an k- closed set of unary predicates; A2 and A3 state that 0t{t is an I=- closed set of properties}
and (type U {Vy: x. y: type})k are k=- closed sets of properties specifying l- closed sets of properties;
and so forth, all of which statements are obviously true.

8The notation ex is meant to identify the variable over which the predicates in the immediately following type
specification range In this regard it serves the same purpose as the bound variable in a set specification {Xj},
but the two notations mean quite different things!

91 use the word "example", instead of "member", because the members of a type are properties. For example,
"0z > 2)" is a member of oddprime; 3 is not. What 3 is is an example of oddprime.

10This is, in fact, what becomes of model theory here. certain descriptions are made to refer to other descriptions.
Note that reference to anything other than a description is impossible, because reference is itself a property, I.e.
a relation from descriptions to descriptions. This accounts for the model-theoretic ontology of formalism, and
supports Brouwer's contention that mathematical objects are mental constructions. These mental constructions,
or descriptions, can be used in turn to "model" reality, but reality is not like them.
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The interpretation of metatype is motivated by the intuition that a metatype is a type of types.
Note that, with this interpretation, K is not a metatype provided that something is not a type. In
Prism, we fully expect there to be things which are not types, though it is possible to construct
systems consistent with everything that has been said so far in which everything is a type. (Think
of reflexive domains defined in terms of information systems!)

Although the proposed -interpretation makes the axioms and their consequences seem sen-
sible, it doesn't prevent the paradoxes. We can still define an analogy to the Russell type
R = 0t{-,(t: t)} , and draw the usual contradiction. The problem, alluded to earlier, lies with
our notion of examplehood.

The source of the problem is with the requirements for examplehood, which are too loose.
Before something can be subject to the general reasoning applicable to a type, it must already
exist as an example of some more specific type. That is, it must be an individual description
already, with properties that entail those of the more general type. This captures the important
part of regularity, which is that types (sets) be populated synthetically. Thus we arrive at an
analytic theory of synthetically populated types.

Technically, my proposal is that satisfaction of the properties of a type be necessary, but not
sufficient, to establish examplehood. In symbols,

x::y

Vq E y. O(x)
but the converse of this rule does not hold. Instead, we have the following axiom of unit

examplehood, which explains how we come to have any examples at all.

a: 0x{x = a}'

Using these rules, one can prove that the assumption R: R leads to a contradiction, but the
assumption that -,(R: R) leads only to the conclusion that V E R. O(R), which is insufficient to
establish the contradictory R: R. 11 So if we are Platonists we can conclude, quite comfortably,
that R is not an example of itself. If intuitionists we be, we can remain comfortably agnostic.

The metamathematical status of the foregoing argument is crucial. I did not claim that -,(R: R)
is a theorem within the system; I only claimed that R not being an example of itself is consistent
with what can be proved in the system. If we could prove -(R: R) in the system, then we would
have that Ox{x = R}1-l'(x:x), and hence that 0x{x =R} -< R, which would enable us to
conclude the contradictory R: R.

To be precise, the metamathematical assertion is Ox{x = R}' )--,(x: x). If we could internalize
this fact, we would have Ox{x = R}1-'k--(x: x). If this is provable, we can still avoid contradiction
if -- is not an involution (which, of course, is the case in intuitionistic logic). This indicates some of
the boundaries within which we will have to play in formulating specific inference rules for Prism.

nBy unit examplehood, R:Ox{x = RJl , but without further rules 0x{xf = R}1 A R.
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In closing this section, let us examine the question of whether the proposed restriction (a kind
of weak extensionality) excludes any examples. That is, is it possible that the rules we've proposed
are insufficient to prove the examplehood of some example, leading to orphans? The answer is
"no"1, as the following argument shows.

If a is an example of t, then it satisfies all of the properties of t. It follows that all of the
properties of i are included in the singleton type { = a}'-. By unit examplehood and subsumption,
a: t. End of story.

8 Prism Categories

A Prism category, or Pcategory, 12 is a slight generalization of the usual notion of category [Mac71].
It is essentially what MacLane calls a "metacategory". As an aside, here is a description of the
type Pcategory, which may be illuminating to those who are wondering how complex types can
be defined as sets of properties.

Pcategory A 0 c{ Ob0, Arc: 0,
dome, cod0 : Arc --* Ob0 ,
lc: Ob0 -- Arc,
dom,1 = a,
codc a1= a,
Vf, g, h: Arc < f o g: Arc * codef = domcg,

f o(goh):Arc=> f o(goh) =(f og)oh,
f1o : Arc=. f o 1' = f,

1c og:Arc #- 1c o g = g >

An ordinary category is just a Pcategory in which the Arrows and Objects are Sets.

Category A 0 c{ c: Pcategory,
ObC, Arc : Set}=

In a similar manner, we can lift the set-theoretic restrictions usually imposed on any mathemat-
ical structure. For example, a monoid is a set equipped with an associative binary multiplication
and an identity; a Pmonoid is anything equipped with an associative binary multiplication and an
identity. We do this because sets in Prism do not have the primacy accorded to them in classical
mathematics. 13

'2The initial "P" is silent, as in "Pneumonia" and "Prangler".
1aThe key to the current approach is that types are simply specifications, not the extensions of those specifications.

In Prism, "x. ' is a belief (assertion of knowledge) about x, that it is an example of the specification (type)
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We intend that operations in Prism can be applied to objects of any type. Informally, this
means that when something is supplied as an argument, something (perhaps divergence, or an
exception) results. A bit more formally, f: K -- K for any f. Because there are no restrictions
on the domain of an operation, everything is composable with everything else; i.e,, f o g is always
defined.

The design of Prism also stipulates the existence of an identity on 0. Intuitively, you can leave
anything alone. Thus, 0 is a Pmonoid.

A Pfunction is a O-automorphism, i.e., Pfunction A 0 f{Vx: 0. fx: 01} . A restricted
Pfunction is an equivalence type of Pfunctions, namely those that are indistinguishable on a
specified domain t, notated f[t). Application of restricted Pfunctions is defined in the obvious
way, so that f[t](x) = f(x) whenever x: t, and is undefined otherwise.

The codomain of an operation can be specified using the notation -+ t. That is, f --+ t specifies
that the result type of f is t. Combining these notations, we can write f[tl] - t2 to indicate that
f takes tW's to t2's.

There is no overloading in Prism, so a given name can refer to at most one Pfunction in any
context. However, a Pfunction can be specified piecewise, using restriction. For example,

f[x : integer; y integer] -4 Boolean .-+ x < y

f[x: integer] -_ color i-4< 1 4 red; 2 '-4 yellow; 3 t-4 blue;... >

Ada-style overloading would treat these as two different functions with the same name, and
would allow the definition of a third function named "f" with domain integer and codomain Ascii.
The expression f(3) would then be ambiguous unless its context dictated an expected result type
of either color or Ascii, which would serve to disambiguate the reference of "f". In Prism, such
ambiguity is impossible, because all we have are distributed specifications of segments of a single
function, which cannot have conflicting results on overlapping parts of the domain.

In Prism, t 1 -- t2 is the type of Pfunctions from t, to t2, defined as follows. t, -- t 2 A 0
x{Va: ti. x(a): t2}1. For comparison, the corresponding type of restricted Pfunctions is

[tl --+ t2] A (2)XX: type, Vf, g:tl -- t2. f: x A g: x = > (Vy:tl. fy = gy)} =

As with most objects, Pfunctions can be examples of many types. For example, the following
assertions are true of the f partially described above.

f: integer x integer -- Boolean

t. This says nothing about the collection of all such examples, which (if it exists) is an example of the type
Zx{x is a set ,Vy. y E x #> y. i}'=. According to this view, we never have to contemplate or account for such things
as the extension of 0, though it is easy to show in the standard wa that if it exists it is neither a set, nor a class,
nor even a metanclass.
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f: (integer x integer) V integer - (Boolean V color)
f: integer -- 0

Note, however, that it does not follow from f: t , t2 that f: [t1 [ t2]! The correct conclusion is
that f [ti]: [ti -- t2].

9 Type Pcategories

There are a number of ways to make Prism types into a Pcategory. One is the logical Pcategory,
type.<, in which the arrows are given by the subtype relation, <. It is bi-Cartesian closed, with
products coproducts, and exponents given by the following.

t1 At 2  A max t<t1 ,t 2
t

t1 Vt2 g Mill t1, t2- t

tl =>" t2 -A max t A tj : t2

In words, A forms the greatest common subtype (gcs), V forms the least common supertype
(Ics), and =; forms the least sufficient constraint on t, required to verify t2. The terminal object
is 0, and the inconsistent type x is initial.

Another type Pcategory is the restricted Pfunction Pcategory, type_, in which the arrows are
the restricted Pfunctions. This Pcategory is also bi-Cartesian closed, with products, coproducts
and exponents as follows.

t1 X t2 A Ox{1rlx: t1, 72X:t2}1-

t1 W t2 - ox{(3y: t. ily, = x) V (3Y2 : t2. L2Y2 = )}

[tl -+ t2] A OX{X: tpe, Vf, g: t1 -i t2. f: x A g: x (Vy: t1. fy =gy)}

These are analogous to the usual Cartesian product, coproduct, and function space types on
Set. Here, the type with no examples, x, is initial, and any singleton type is terminal.

Incidentally, the axioms for projections and the like, which play an important part in determin-
ing what is entailed by the properties ci.ted in a type specification, are usually specified separately.
For example,

Vf: t3 -- tl,g:t 3 -- t 2 .!:t 3 -+1t x t 2 . ho = fAho- 2 =g.
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Of course, it is a good idea to specify universal concepts like '"product" as a type, and confer
the universal properties of products on all instances by inheritance. An appropriately abstract
definition using only the rather primitive I=-closure mechanism is rather complicated, but a good
start is

product(c: Pcategory) A 0 p{3A, B : Obe. r: p -+ A A 7r2 : p -+ BA
VC: Ob,. Vf: C- A,g: C -- B. 3!h: C -+ p.

ho - 1 = fAho r 2 =g} .

We can then assert Vt, t2: Obtype_. t1 x t2:product(type_).

Fact 9.1 type., is a subcategory of type-, under the obvious identification of arrows in type.<
with the corresponding inclusion Pfunctions.

Fact 9.2 Every arrow in type< is a bimorphism (i.e., epi and mono).

Fact 9.3 In type<, sections = retractions = isomorphisms = identities.

Fact 9.4 type-< is not a topos.

Proof Counterexamples abound. 0

Theorem 9.5 type is a topos. That is, for each type A there is a power type PA and a
membership relation i: EA )-+A x PA such that, for any relation p: R-.A x B there is a pair of
restricted Pfunctions j3, j such that the following diagram is a pull.:ck.

R - EA

AxB AxPA

Proof The required players are defined as follows.

PA A Oz {x: type,Vy: x. y:

EA A Ox{z: A x PA,'rx: 72x}t

L A .[EA

j6 A b i- ox{3r:R- pr =< x b >}I-
A =A (po0 X6))

Given a: S -- EA, 8: S --; A x B making the square commute, the required unique restricted
Pfunction u: S -- R is given by the correspondence .s 1-4!r: R. pr = us, where existence of r
is guaranteed by f and uniqueness by p being monic. 0
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The detailed calculations involved in the fore3going proof are tedious, and not too interesting,
but it may be helpful to sketch them out. From &s: EA infer that 7r(o): 7r2(&). By the definition of P
and the assumpti-:, of commutativity, 7r2(6"s) = Ox{3r: R. pr =< x, b >}k, whence 3r: R. pr =<
7r,(aOs). r:(,;) >. But again, commutativity forces 7c,(&s) = 7r(as), and so 3r: R. pr = as. A
similar "diagram chase" can be used to show the uniqueness of r, though with a few lemmas the
whole thing can be done in a more pur.ly categorial style.

An exhaustive formal study of the Prism type system is well beyond the scope of this brief
overview, but the few elementary results obtained here are sufficient to give a general feel for its
structure, and to reassure us that its semantic base does not force anything terribly unnatural on
US.

10 Abstractness

This section points out the lack of abstractness in the representation-based "abstract data type"
facilities found in current programming languages, and indicates how Platonic types can be used
to remedy that defect. The basic point is that what is specified should be divorced from the
form and especially the details of spec;fications (such as choice of names, order of presentation, or
choice of axioms). One thing that this permits ia the definition of multiple representations for the
same type. Another is the ability to recognize subtype relations that don't depend on mechanistic
inheritance; for example, tne integers are a group under both addition and multiplication, but this
fact does not (and should not) depend on any construction of the integers explicitly involving the
type of groups.

11 Sets

Set is an interesting example of a Prism type, because it provides insight into the interplay between
intension and extension. Of particular note is the axiom of replacement, which allows examples
of types to be collected into sets by Pfunctions, though there may be no Pfunction which collects
all examples of z. given type. Types that can be completely collected are cr rete in the category-
theoretic sense.

12 Epistemology: monotonic revision of Platonic types

In this section a simple model of taxonomic learning is presented, in whic, examples and coun-
terex.amples of taxa induce rronotonic refinement of Platonic type lattices. Examples generalize
taxa to least ,ipper bounds, and cou-nterexamples split taxa at greatest lowrcr bounds. "Ad-hoc"
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collections are modelled as internal coproducts of taxa. Something else to consider, somewhere,
is indeterminates. For example, the type "heap" refers to an undetermined type lying between
(more) determined types of "strong heaps" and "strong non-heaps". Epistemology comes into play
in regulating increases in the definiteness of the description "heap". That is, e.g., when something
that was not previously acknowledged to be a strong heap is declared to be a heap, the type of
strong heaps shifts to the least common supertype of strong heap and the new heap, or something
like that, thereby constraining "heap" further.

13 Intensionality: partial types, partial deduction, and
indexicality

The basic problem with deductively closed sets (Platonic types) is that all inconsistent sets are
identified. Distinct inconsistent types may be obtained if dedlction is allowed to be incomplete
(i.e., if there is incomplete information about entailment). It is also necessary, however, to admit
non-closed sets as types, as shown by the greatest prime example (because it doesn't become
unintelligible as soon as the conclusion is reached). A third intensional issue is indexicality and
how to handle it. The solution to these problems is basically to distinguish between specifications
and types, with the valuation of specifications in "context space" being taken in the domain of
Platonic types.

14 Real World Semantics

Prism represents a major paradigm shift in language design, because its domain is the real world,
not just formal abstractions of real world situations (though of course formal abstractions are an
important part of the real world, and are therefore in the domain of Prism). In doing so, Prism
challenges a pervasive attitude: that computer languages deal only in formal abstractions, and it
is the job of some human conjurer to do the abstracting. We see this attitude as a byproduct of a
linguistic theory developed in the narrow context of formal languages, in particular formal logic,
mathematics, and computation. In order to manage thc long-term operation and maintenance of
software systems, however, it is necessary to capture and manipulate information relating formal
artifacts, such as algorithms and specifications, to their purposes and the real world situations they
represent. The crux of the problem is to maintain the distinction between the machine's internal
description of a real world situation (which is a formal artifact) and the situation it describes
(which is not). We accomplish this by a semantics in which descriptions are partial models of real
world situations. Moreover, this semantics allows descriptions to be composed of meaningful parts
which are nonetheless meaningless (,. fictional, or ... ) in combination.
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15 Open Problems

The purpose of this section is to point out the major deficiencies of Platonic type theory and
epistemology, and to indicate the direction of continuing research.
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Introduction

Programming languages have as twin progenitors the formal
languages of mathematics and the natural languages of everyday life. If
Prism is to achieve its goals of redefining the look and feel of
programming languages, and of defining a language which will not be
made obsolete by the next innovation in compiler technology, it
behooves us to loo- arefully at what those two progenitors have
contributed. In this ..;port we examine the natural language side of
things.

Our thesis is that programming languages are less satisfying than
they could be, not because they are formal (non-natural) languages,
but rather because they are unnatural languages, lacking many of the
characteristics which make natural languages comfortable. Using
techniques developed in the computational linguistics community
during the last twenty years, we feel the time is ripe to incorporate
some of those characteristics in a formal language.

Let us state clearly and unambiguously at the outset that we are
in no way shape or form proposing a natural-language understanding
system. It is clear that the state of the art is hopelessly far from such
a system l , and there are theoretical grounds for suspecting that it
will remain so2 . This does not imply, however, that the baby need

I See for example Hans Kamp, "".
2 For example those advanced by Winograd and Flores.
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be thrown out with the bath water. We feel that many language
designers, boulstered by the almost comforting fact that they could
not implement English, have felt licensed to impose unnecessarily
awkward syntactic rules and restrictions on their language. For
example, just because anaphora in the most general case is difficult,
it does not follow that a limited, easily-analyzed form of anaphora is
not useful in programming languages.

Two objections. There are two objections to this whole approach
which we would like to address before beginning. The first is based
on what for the lack of a better term we shall call linguistic parallax:
the confusion that can arise when old words are used in new ways.
Whenever a name for one object is applied to a new object with
different properties, the language user can become confused by
thinking that the new object has some of the properties of the old
when in fact it does not. For example, the user who does not realize
that in programming languages the symbol '+' is used for modular-
arithmetic '+', and therefore ignores overflow, is a victim of linguistic
parallax.

The argument against using natural-language constructs in
programming languages, then, says that there will inevitably be so
much parallax that the resulting confusion will outweigh the
advantages of familiarity. Better to introduce completely unfamiliar
features, this theory goes; that way no confusion arises- the resulting
system will be less learnable, but no less usable.

We make the following observations about this argument. (1)
Linguistic parallax is an endemic fact of life, in both natural and
programming languages. It occurs in natural languages whenever an
old term is used a new way, and that is very frequently indeed. In
programming languages vast majority of linguistic features have been
drawn from either natural language or from mathematics, and have
almost never been precisely equivalent to their counterparts. The art
of language design is to try to capture the "essential" features of the
old usage, so that the new use seems as natural as possible. This is
not always an easy task, but it is one that cannot be avoided. In short,
we are not denying that confusion bred from parallax can be a
problem, but we feel the assessment cannot be made globally, in
advance; rather, each case must be examined separately. (2)
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Abandoning familiar notations to avoid parallax is a dubious strategy.
One could, obviously, substitute '§' for '+' in programming languages.
Would the language user thereby be spared the problems of parallax?
Probably not. For how would he interpret '§'? It seems clear that he
would say to himself that "§ is just +, except that it overflows when
the result is greater than 216." But this is exactly the same sequence
the user of traditional languages goes through in learning about the
'+' of those languages. (3) Historically, accusations of parallax have
often been made by entrenched partisans of existing technology.
Early claims that users would be baffled by the ways in which the
computer "desktop" differed from a real desktop have not been born
out by experience. (5) Learnability is a major concern.

The second argument against making Prism more natural is that
the ordinary linguistic habits of the programmer will be corrupted by
interference from Prism. We do not dispute the phenomenon:
students of French do end up speaking Franglais; parents of small
children do lapse into baby talk. What we dispute is the gravity of the
situation. It is no argument against learning French or having
children. Multilingualism is a iatural human state, and there is no
documented case of an English expression being killed off by baby
talk. We welcome Prismish, and would regard it as a measure of our
success.

Related Research. It is surprising how exiguous the literature on
this sort of approach appears to be. Most treatments of formal
languages begin with a terrifying glance at the ambiguities of natural
language and then quickly settle down to a comfortable consideration
of the joys of context freedom. A subset of the computational
linguistics community has explored the construction of practical
natural-language understanding systems, but the nature of their
endeavour makes the approach we xe taking irrelevant: if your goal is
to analyze an enormous corpus of German law reports 3 , the
opportunity of writing those reports in a formal language is not open
to you. One might think the most closely related research is that in
the field of natural language interfaces to databases 4 but the
emphasis there is on making the languages as English-like as

3 See Hans Kamp et al., "The LEX System."
4 References.
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possible, rather than using the features of natural languages in a
formal way; and such systems have been for the most part special-
purpose query languages rather than general-purpose programming
languages.

The original inspiration for this project came from Montague
semantics 5 . Over fifteen years ago Montague showed how a
substantial subset of English, including the notoriously difficult
features of quantification and intensional contexts, could be treated
as a formal language, using a semantic analyzer proceeding in
lockstep with a syntactic analyzer. His system took English sentences
and generated first-order predicate calculus equivalents. His system
has been extended in a variety of ways by a plethora of research
efforts which both incorporate into it ever greater portions of English
(e.g. modal operators and general quantifiers 6 ) and improve the
mechanism itself.

Our original intent, then, was to see whether a Montague
grammar could be used as a front end to a predicate-calculus-based
formal system. The system we ended up with, however, takes quite a
different approach: instead of translating everything into the
predicate calculus, we instead use primitives which correspond
much more closely to those of natural language itself. For instance,
instead of translating the variable-free quantification of natural
language into the variable-ridden quantification of the predicate
calculus, we instead treat variable-free quantifiers as first-class
citizens of our system.

We would be hesitant to suggest our approach as the basis for a
practical system without three supporting technologies that have
been the focus of intense research efforts in the last five years:
unification grammars, intensional logic, and discourse semantics.
Unification grammars and their generalizations at last promise a
powerful and flexible formalism for expressing the constraints on
language which are an essential part of its semantics (see
Incremental Systems Technical Report 89-??? for a discussion of
unification-based semantics), and for describing phenomena such as
non-contiguous conjunction 7 , which have resisted treatment by

5 References.
6 References.
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less powerful formalisms. Recent developments in intensional
logic 8 hold forth the hope that logic may at last be able to formalize
the Husserlian noesis so as to capture the directedness of natural
language. Finally, discourse structure has quite recently been the
focus of much research 9 ; although no adequate general theory
exists, there is room to hope that a framework adequate for a
reasonable discourse structure for a formal language can be
developed.

Overview. The remainder of this report is divided into three
sections. In "Properties of Natural Language" we summarize those
features of natural language which we feel have been left out of
programming language, and which it might be worthwhile
investigating as candidates for inclusion in Prism. In "A Natural-
Language View of the Prism Type System" we approach the topic
from the other end, arguing that the property-based type system of
Prism can be thought of as an attempt to come closer to the type
system used by natural language. A separate document (Technical
Report 89-???) describes the results of our applying this approach to
the design of a grammar for Prism.

Properties of Natural Language

Consider the following thought experiment. Suppose at the end of an
introductory programming course the students were asked to say
which of the following fragments was from a natural language and
which from a formal language:

(a) The long sighs of autumnal violins break my heart
with a monotonous languor.

(b) pzd & sqr [@j = A45) & \ssp$$

There is little doubt that the student would identify (a) as the

7 References.
8 References.

9 References.
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natural-language fragment. Yet (a) conforms to a simple grammar that
can be rigorously described in a few lines of BNF, while fragment (b)
consists of an almost random sequence of tokens, written down
haphazardly.

This example is meant to suggest that the differences between
programming languages and natural languages have little to do with
their grammars. It is as though the failure to achieve full natural-
language processing capability has been used as an excuse to
introduce into programming languages a host of arcane features
which may or may not have independent merit, but which surely
distance them from our native tongues. "Since I cannot let him say
what he means, I will make him start all string variable names with
dollar signs."'o

Both natural and programming languages can be described using
the same grammatical techniques.

Noun ::= Adjective Noun
Term := UnaryOperator Term

Why then do we end up in a situation where a simple request
such as:

Choose thirteen cards from a standard deck. Sort
them in descending order, then print them on the
Laserwriter.

comes out as

print(sort(chooseCards(std, 13, randomOrder),
descending, O', 3), true, 1w, -1)

or something similar? This is the question we shall ponder here.
Freedom from Overspecification. One of the goals of Prism is to

design a language that allows programmers to specify only as many

10 The example is of course not meant to suggest that natural language is the

preferred notation for all tasks. "Add b to c and store the value in a" is arguably more

opaque than "a =b + c;" we advocate a wide spectrum of notations.
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details of his problem as are actually relevant to finding a solution. As
a trivial example, consider the problem of a number greater than five.
Traditional languages will not let you simply write "x is > 5" or "x :>
5" at all. Instead you must overspecify the situation by choosing some
particularnumber and assigning it to x: "x := 99" or "x := 9999" or
"x := 32768" or the like11 . The compiler is consequently unable to
tell whether this particular value was necessary to your solution or
not.

It is difficult to overestimate the price we pay for this
overspecification in programming languages. (1) It impedes the
generation of optimized code, since the compiler cannot tell what
things can be optimized away and which were essential. (2) It greatly
increases the time consumed in the programming task itself, since
many of the hardest decisions in programming are the arbitrary ones
where the problem imposes no choice but the programming language
does. Psychologically speaking, nothing is really arbitrary, so the
programmer falls back on secondary criteria such as how fast he
thinks the code the compiler will generate will be or what looks
nicest, rather than being able to concentrate on the problem at hand.
(3) Formal methods such as proofs of correctness become much
more difficult when they must be applied to extraneous information
rather than just the problem statement. (4) The ability of the system
to learn from the user's input is severely limited, since it cannot
know how to generalize from what is given. (5) Maintainability suffers
because programmers studying old code have to learn every
irrelevant choice the previous programmer made. (6) It is arguable
that the complexities imposed by overspecification necessitate an
empirical rather than an analytic approach to debugging.

Now the sort of benign underspecification we feel is needed
abounds in natural language. A good example is presented by non-
deterministic quantifiers such as "some". "Some dog is barking"
does not specify which dog it is, it just states that there is one. The
use of tenses to express relative temporal relations is another
example. "John ate his dinner" is very different from "eat(John,

11 It is true that lazy functional languages like Miranda allow you to talk about the

sequence of numbers greater than 5 as 16,7.8.. .. " This is not a generalized language

feature, however.
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dinner, 19:00)."
Extension through juxtaposition. The extreme form of this

underspecification is the free-form way in which natural languages
allow one to build up specifications, tacking them on one by one until
the required degree of specificity is achieved. For example, starting
with a simple "sort!" one can move to "sort the cards" and then on
to "sort the cards in descending order using a bubble sort algorithm
while discarding duplicates and treating the jacks as high cards."

It is important to realize that this underspecification is not to be
thought of in terms of default parameters. The simple "sort!" is not a
call on a fully-specified

sort(what: any ordered things; descending: boolean; how:
algorithm; discarding duplicates: boolean; jacks high: boolean)

with all the parameters unspecified. It is rather the case that the
relevant specifications are discovered and added on the fly. The
lexicographer who wrote the entry "sort" in Webster's Collegiate
never even contemplated the possibility that jacks might be
considered high card; this is a requirement I added afterwards.

This sort of "action at a distance" is analogous to the
"interoperability" towards which the software industry is striving. It
is unclear how far along this path Prism could go. I see three
approaches to implementing it: (a) Use reflection 12 to simulate it.
Thus when the interpreter processed "make jacks high," it might
modify itself so that when it later interpreted ">" in the body of the
sort algorithm, it would treat kings as less than jacks. (b) Some
analogue to inter-process communication might be used; when doing
the comparisons, the sort algorithm could "communicate with" the
jacks-high "process" to ensure the proper ordering. (c) Severe limits
could be placed on the freedom with which specifications could be
piled on one another. For example, a conceptual framework could be
imposed specifying exactly what kinds of modifiers are allowed.
These special cases could be built into the interpreter. For example,
knowledge about location could be built in, so that any prepositional

12 Brian Cantwell Smith,
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phrase specifying a location could be combined with any verb. (d) The
most promising approach, however, is none of the above, but rather
is to be found in an execution model in which the context is taken
into account in every act of interpretation. It is just such an execution
model which we have been investigating in Unification Semantics
(Incremental Systems Technical Report 89-???.)

Parts of Speech. Part of the conceptual baggage of natural
language users is the set of composition rules for the language,
encoded in its parts of speech. Programming languages are quite
impoverished from this point of view, typically supporting just nouns,
verbs, and a few built-in conjunctions. This severely distorts the way
things are said in programming languages. It would be particularly
regrettable in Prism, where programming will consist more of
providing assertions to the interpreter than of constructing
algorithms.

As an example, let us take the case of adjectives. Adjectives play
a major role in Prism's property-based type system, and in
specifications in general. How are they handled in traditional
programming languages?

If the adjective is a constant property of the object, it will
typically be built into the object's name as an inseparable part,
meaning that it gets repeated every time the object is mentioned:

bigjuicy red delicious-apple
largest-commondenominator
maximum-jhrustLrate

If the property is not a constant, two possibilities exist. One is to
create a subcomponent (subnoun) of the object to store the value of
the property:

apple.color := red

Another is to store a boolean value recording whether the object has
the property:

apple.isred := true
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Neither of these is a particularly convincing rendering of "The apple
is red," but the real problem is that neither one allows the
composition of noun phrases using the adjective. Consider trying to
write an assertion of the form "Smart monkeys love big red juicy
apples" in this notation. One ends up with something like

VxVy.x.type = apple & x.color = red & x.size = big & x.juicy = true &
y.type = monkey & x.smart -- Ioves(x;)1 3

The very natural on-the-fly creation of subtypes through use of
adjectives is made very cumbersome because adjectives are not
treated as first-class citizens in traditional programming languages.

There is one area where this shabby treatment of adjectives
causes so many problems that proposals for reform surface
periodically in the literature: dimensional analysis. In natural
languages numbers are not dimensionless nouns, as in traditional
programming languages; they are adjectives applied to units. The
advantages of treating them that way in programing languages, and
the obvious drawbacks of trying to simulate dimensional analysis
using only the features of traditional programming languages, are well
known 14 .

Parts of speech may be thought of as signatures which define the
composition rules of natural language, in much the same way as the
signatures of Ada functions define the legal compositLions in that
language. Setting aside the many and obvious complexities, we could
set forth the following as the nine basic structuring rules for English:

13 Prolog does little better. X loves Y :- smart(X), monkey[X). bigm. red Y. JuicyMY).

apple(Y). The property lists of Lisp come close to providing the subtyping semantics

of adjectives, but with too little syntactic support.
14 References. We are not suggesting that units can be handled like any other

adjectives, rather we are trying to reinforce our claim that adjectives have gotten a
raw deal.
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Exclamation -4 S
NxV-4VS
VxAdv- V
AdjxN-4N
Pron - N
Art ->Adj
Prep x N -- Adj
Prep x N -4 Adv
X x Conjx X-4typeofX

where "Adj". "N" and so forth are the lexical categories of the
language. Recursion is introduced by the third and fourth of these
rules, but it is not felt as nesting: "the big fat red Winesap apple" is
parsed as "the big fat red Winesap (apple)", not "the (big (fat (red
(Winesap (apple)))W. Only the last, atypical rule introduces nesting,
and then only in the case of a very small number of subordinating
conjunctions.

There is a natural-language rule which facilitates parsing. Parts of
speech are traditionally divided into "function words", consisting of
prepositions, pronouns, conjunctions, exclamations, and articles, and
"content words," consisting of nouns, verbs, adverbs, and adjectives.
The rule states that there shall be no user-defined function words.
Thus when parsing "frumtious bismorky" I can be sure that such
interpretations as article + noun and preposition + noun are ruled
out. (An analagous rule in programming language forbids user-defined
keywords.)

Given a programming language which supported a larger set of
parts of speech, an important design decision would be whether -also
to emulate the fluid conversions natural languages support between
parts of speech. I see no clear-cut answer here. Certainly there are
some conversions which we would want to provide: that between
adjectives and their corresponding nouns is one (from "the apple is
red" to "red is a color.") If the crippled discourse structure of
traditional programming languages is retained, the need for many of
these conversions disappears. For example, consider a task with a
"print" verb in it. In traditional environments one is not allowed to
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talk about such tasks, but only to rendezvous with them. If one were
to allow dialogues about them, however, it would be very natural to
support participle formation (noun to adjective conversions), so that
the user could say things like "if my task is printing...". More thought
needs to be given to this topic.

Paucity of punctuation. The great abundance of punctuation in
traditional programming languages seems an important impediment
to their legibility. There are two reasons for such overpunctuation.
Too often, extra delimiters and operators have been used to guide the
parser and facilitate syntactic disambiguation; this is a form of
punctuation we hope to do without. On the other hand, punctuation is
also used in programming language to avoid having multiple implicit
operators, and this form of punctuation we intend to retain. This
would put us close to the natural-language system, where on at least
one interpretation there is Just one implicit operator, function
composition governed by parts of speech, and punctuation serves the
useful function of cluing the reader as to large groupings within the
text. We propose function composition as our single implicit
operator.

Brevity without abbreviation. A chronic dilemma in programming
languages is the identifier length problem: long identifiers convey
more meaning, but can clutter up the program and impair its
legibility; abbreviated identifiers can reveal more clearly the program
structure, but obscure the semantics. Natural languages have a variety
of mechanisms for attaining brevity without resorting to abbreviation.
The principal such mechanism is anaphora, where a context is
retained and short co-referential terms are used to refer to elements
of that context which have been more fully described earlier. The
most conspicuous example is the use of pronouns to avoid restating
the entire noun phrase it represents, but there are many others, such
as repeating nouns without the adjectives originally used to :. scribe
them (first using "the total amount of income received in 1988,"
then simply "the total"), or using short adverbial phrases to
recapitulate long ones ("sort the second deck in the same way".)

It is often revealing to see what becomes of natural language
fragments when we apply programming-language conventions on
them. Consider what happens to a recipe when we combine the no-
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adjectives rule with the no-pronoun rule:

Take 250-grams-of-large-fresh-ripe-tomatoes. Peel
the 250-grams-of-large-fresh-ripe-tomatoes. Chop the
250-grams-of-large-fresh-ripe-tomatoes. Saut6 the 250-
grams-of-large-fresh-ripe-tomatoes in oil.

What do the following examples tell us about the sanity of the
assignment statement?

"Let the roast be the roast minus the carrots."
"Let the contents of the bowl be the contents of the

bowl plus a cup of milk."

It is largely the absence of anaphora which makes abbreviations
so essential in programming languages. The past few years have seen
the introduction of a timid, severely limited form of anaphora in a few
recently-designed languages (e.g. "it" ir, ML and Hypertalk.) In Prism
we propose a more extensive anaphoric analyzer which makes
limited use of semantic information to handle a wider range of types
of anaphora. The complexities of dealing with full-blown anaphora in
natural languages are well known' 5; fortunately, it seems to us that
they are easily avoidable in a formal language.

Discourse Structure. During the 1950's computational linguistics
focused on the syntax of natural languages, since it was felt that its
semantics was intractible. Then Montague came along and showed
how to incorporate the semantics in the system as well. It is
increasingly felt in the computational linguistics community that we
are today in the same situation with regard to pragmatics, i.e. that
further progress in our understanding and formal analysis of language
depends on bringing into the analysis the dialogue within which
natural language discourse, is always embedded. Taking speech-act
theory as a point of departure, a number of researchers have
attempted to provide a formalism for discourse structure 16.

1 5 For a view of the state of the art, see Hans Kamp et al.,"The LEX .,stem."
16 See for example David Evans, "Situations and Speech Acts."
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The relevance of this for Prism are obvious. Traditional computer
systems have a seriously crippled model of discourse: the user types
commands and the computer utters truths. The system has no
understanding of what the user's goals are, and does not consider the
history of the discourse in giving its answers. You could type "2+2" at
your machine all day long, and it would keep on typing back "4",
never once asking you why you kept on asking the same question. (As
with anaphora, there have been a few faint attempts to make the
discourse structure more sophisticated. The Dialogue Manager in the
Macintosh, for exam'le, allows graduated error messages depending
on how many times the error has been committed' 7 .)

The importance of a system that has a dialogue structure and is
sensitive to the history of the dialogue is of course of much greater
importance than the trivial "2+2" example indicates; it is relevant to
a large class of problems in the real world. One thinks, for example,
of the "Mellon Bank problem" in which all the automated tellers of a
large city ate all the bank cards of their customers for an entire day.
If the system had had a reasonable model of the dialogue it was
engaged in, it would have been able to reflect on what it was doing
and realize that it was not behavinag appropriately.

Crucial to any attempt to mimic natural-language dialogue
structure will be the identification of contexts. Conventional wisdom
says that natural-language contexts are mostly undelimited, yet some
researchers have found context markers like "anyway" which have
gone largely overlooked 18 . Engineering a flexible yet unambiguous
context structure will be a major challenge.

Nesting. Closely related to the discourse structure is the question
of nesting. Natural language avoids deeply nested structures like the
plague, and the psychological dangers of deep nesting are well
known. (This applies only to local nesting, however. A sentence
might well be embedded six levels deep within a global structure-
volume 1, chapter 2, section 3, subsection 4, paragraph 5, sentence
6. But it is unlikely to have six levels of embedding within it.) Two
features of natural language account for the shallowness of its
structures. On the one hand, its composition rules are such that

17 Inside Macintosh, Chapter ??.
18 References.



Unnatural Languages
-15-

nested structures are impossible in all but a few severely restricted
situations. On the other hand, it provides mechanisms (analagous to
subroutine calls in programming languages) to provide the effect of
nesting without the nesting itself.

Aliasing. We close this section with an enigma. Why is it that
aliasing is so manageable in natural language and so disastrous in
programming languages. I have no trouble dealing with a situation
where "Chris," "Wicks," "my son," and "the blighter" all denote the
same person; why is it so awful to have "the largest element in x" and
"x[i]" refer to the same memory element?

A Natural-Language View of Prism's Type
System

The Prism type system is intended to accord better with our
everyday intuitions than have previous formal typing systems. In this
section we take a look at some of the basic aspects of the Prism
typing system and attempt to find analogues for them in natural
language.

The Prism view of types as collections of properlies certainly is
closer to our everyday intensional notion of taxonomy than to the
extent- ial view of types as collections of values. We define birds as
"feathered bipedal egg-laying warm-blooded animals," not as "this
crow and that crow and ... this nuthatch and that nuthatch and ..."

The doctrine that all functions are piecemeal-defined functions
from any type to any type merely reflects the open-ended nature of
natural language, which does not rule out any combinations of nouns
and verbs a priori. I am always free to extend the langugae by
defining what it would mean to behead exponentiation, no matter
how unexpected that combination of noun and verb may seem.

The requirement that functions return the same results when
applied to subtypes as they do when applied to supertypes with the
same value reflects a common-sense feeling that properties should be
invariant along the generality continuum. Somehow we feel that the
meaning of "rich" in "rich man," "rich doctor," and "rich
pediatrician" should be the same.
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It is easy to think of apparent counterexamples, of course, The
sense of "yellow-throated" in "yellow-throated birds" is quite
different, for example, from its meaning in "yellow-throated
warbler": it is the difference between "having a yellow throat" and
"belonging to the species dominica". The verb "to drink" has quite a
different connotation when applied to "a liquid" and to "some
aquavit," in spite of the fact that aquavit is a liquid. The Prism
analysis of these situations is to claim that the more general senses
have all the special ones bound up inside them. 'To drink" under
this analysis might mean "to sip slowly if it is a high-proof alcoholic
beverage, and to chug in big mouthfuls otherwise." In this way the
apparent contradiction is avoided.

When one is expanding the domain of a function to include a new
type that is not a subtype of any of the types already in the range,
there are two distinct possibilities. One is to define the expanded
function recursively on some component of the type in question-
presuming that the function has already been defined on the type of
that component. This corresponds in natural language to
synecdoche-the substitution of the whole for the part. Thus I might
want to define a "prime" function on a record type as

prime(R) = prime(R.i)

where prime has already been defined on integer and where i is an
integer field of R. This is exactly the mechanism at work in
synechdocal excressions such as "to feed the army," where the sense
of feeding the whole is derived from the sense of feeding the part.
When functions are expanded in this way, the new properties added
to the type are "conjunctive" in the sense defined in "Prism
Categories, Adjectives, and Functors" (Incremental Systems
Technical Report 89-???). In the example above, primeness is now a
conjunctive property of R.

Symmetry demands that there be an inverse process where the
meaning of the function applied to the part is derived from i.ts
meaning when applied to the whole. Thus in natural language the
sense of "to bring home the bacon" is derived from the sense of "to
bring home food in general." In programming languages it is difficult
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to think of an example because programming languages typically
provide no way of going from components to their totalities. One
would never write "print A[3]" when one meant "print A". It is
interesting to speculate as to why this whole/part synecdoche seems
less valuable in programming than part/whole synecdoche.

The second possibility when expanding the domain a function is
not to call the function recursively, but rather to define a new body
for the function that (presumably) bears some similarity to the
function on previously defined types. This is the natural-language
phenomenon of metaphor. If I hear someone say that "the price of
gold is skyrocketing," I do not look up into the sky, but rather realize
that he is using the general metaphor schema "up is more" [ref] to
extend the domain of skyrocketing to gold prices. The properties
defined by these new functions are just the "orthogonal" properties
described in "Prism Categories, Adjectives, and Functors." The
statement that orthogonal properties are not type pro: e.'ties is
simply the statement that one does not use metaphor wi±,,.Li doing
taxonomy. If I sat down to do a taxonomy of gold prices, I would not
divide them into "skyrocketing" and "non-skyrocketing."

Let us take an example that shows the difference between
synechdocal and metaphoric function expansion. Suppose one hears a
person X refer to "exponential toothpicks" and asks X to explain
what he meant. X might answer that he had just bought some
toothpicks made by a company which had experienced exponential
growth over the last five years. This would be a synechdocal
expansion of "exponential", involving no shift in meaning but just a
movement from a part (the toothpicks) to the whole (the company).
On the other hand, X might answer that he just meant they were
great toothpicks. Here would be a metaphorical expansion of meaning
using some "fast is good" metaphor schema, and we would say that
the property of being exponential is "orthogonal" to the other
properties of toothpicks. One would continue to categorize
toothpicks as fiat or round, wooden or plastic, long or short-not as
exponential or not.

One troublesome point in this account is that it cannot account
for "white metaphors," the metap'.ors that have fixed to the point
that they are taxonomic. In the beginning, "splitting headache" was
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a metaphor exploiting the physical sense of splitting. Now however it
has solidified into a "white metaphor" anC we talk about splitting
headaches without images of axes coming to mind. As a result, it
would seem to be quite reasonable to use the term taxonomically-
one can imagine a doctor trying to diagnose your illness by asking you
if your headache was splitting or not. I see no parallel in Prism to this
evolution of language

Typing in natural language. In natural languages, legitimate types
for actuals are usually determined by a semantic analysis of the
operations performed, not by a formal type. We do not say
"decapitate(x: animal). To remove x's head." Rather we say
"decapitate v.t.: to remove the head of." It does not matter what the
definer of the function foresaw its uses to be; if it makes semantic
sense, we should interpret it that way. We do not refuse to interpret
"decapitate the pin" just because a pin is not an animal. Prism allows
just this sort of specification.
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Noun Phrases.

Prism's property-based type system is incarnated in the use of modifiers and
quantifiers to construct flexible, ephemeral subtypes on the fly. These subtypes are
designated by noun phrases, which are constructed in Prism by starting with a type,
restricting it by adding properties which the examples of the type must satisfy, and then
quantifying the result. For example, the noun phrase "any (<5000) Mersenne prime
integer that ends in '9'" starts with the type integer, adds the properties of being prime, of
being Mersenne, of being less than five thousand, and of ending in nine, and then
quantifies with "any."

name => np

quantifier (premodifier} typeJiteral [postmodifier] => np

Note that only one postmodifier is allowed; this is to allow disambiguation of noun
phrases such as "the cat on the hat on the mat on the bat," which will be parsed as "the
cat on (the hat on( the mat on the bat))." This is no functional limitation, since
parentheses and conjunctions may be used to combine postmodifiers: the cat (or, the mat

& that loves salmon) is hungry.

Names.

Names in Prism constitute a primitive syntactic category. Names designate values
of any type. If the type of the value is type "type", the value designated by the name is itself

a type, and may enter into quantified expressions.

textJliteral I graphicliteral I pronoun => name

name ("' name] => name

'(' np )' => name

type-name '[' np (',' np) 'J' => name1

1 I have deleted the "type qualification" production (type-name name => name)

since it seems to serve the same function as the use of type names as premodifiers. Are
not "the dog Fido" and "dogFido" one and the same?



Text Literals. The most familiar kind of name is a text literal consisting of

characters. Special characters that do not have other meanings in Prism may be used as

text literals. Examples. Fido. Integer. 3. 3.48 x 10123. n.0. *.1.

Graphics Literals. In addition to special characters, Prism allows the use of
graphics as literals. In this way the display image seen by the programmer and that seen

by the user of the program coincide.Examples. 21 is a zoom box.X is a rook.
Pronouns. The third form of name is the pronoun. These are like text literals except

that they designate values anaphorically. That is, like quantified phrases using the

definite article, they are coreferential with another noun phrase occurring earlier in the
program. Examples. Square all (<10) primes. Print them.

Note that unlike natural language, Prism permits the use of pronouns in

quantified expression and in compound names. Example. It'top. Them'E ]1 Every green
it. (In this last example, "it" must have a type value as its antecedent.)

Apostrophe Qualification, Prism provides a genitive construction using the
preposition "of", but, in common with many programming languages, it also provides a
shorthand notation. This is provided by the genitive apostrophe. Example.

John'hat'brim (= the brim of the hat of John or "John's hat's brim").
Noun Phrases as Names. The end result of a noun phrase constructed with

quantification and modification designates one or more values of the type being quantified

and modified. As such, it may be used as a name. To avoid ambiguity, however, such
noun phrases must be parenthesized. Examples. (Every AK-47 assault rifle)'bullets.

(Some zoom boxes)boundingRectangle.

Type Constructors. In addition to text literals and graphics literals, literals for
compound types may be constructed from component values. This is done by enclosing

the component values in square brackets and prefixing it with the name of .he type.

Examples. List[it'tp, every prime integer such that it ends in '3', any character, 6].
Employee[Ogden, Smith, 21000 $, 1956, October, 23].

Quantification.

Plurals. Few traditional programming languages support the formation of plurals;
typically iteration or repetition must be used instead. Compare 'Type the letters" with "for

i := 1 to njetters do type(lettersi])". Or compare "type the letter, the report, and the

rdsumd" with "typefthe letter); type(the report); type(the r6sumd)".
Prism allows plurals. The default meaning of plural constructions is the so-called

"distributive" interpretation; i.e., operations applied to plurals and predicates asserted of

plurals are interpreted as being applied and predicated of each element of the plural.

Examples. Tom, Dick, and Harry are employees. Register the employees, Prnt J, j,
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and k.

The "group" interpretation, indicating that operations and predicates apply to all

the elements taken together, is obtained by preceding the plural with "the group of."

Examples. The group of Tom, Dick, and Harry has three elements. The group of i,

j, and k contains one prime.

Quantifiers.To the extent that traditional programming languages support
quantification, they do so by means of the quantification variables inherited from the

predicate calculus. Compare "All dogs are mammals" with "Vx, dog(x) Dmammal(x)."

Prism supports a number of forms of the variable-free quantification of natural

language. They may be thought of as "selectors" or "filters" which select examples from

the type or subtype specified by the rest of the noun phrase.
This selection is of two distinct kinds. Some quantifiers determine in and of

themselves which examples are to be selected, in which case we say the selection is

"forced". For example, in "every green dog," once the subtype "green dogs" has been
constructed, we have no choice but to select all the examples of green dogs in forming the

quantified expression. On the other hand, other quantifiers leave the choice of examples

open, in which case the selection is "free". Thus in "some green dog" the selection is not

determined completely by the choice of subtype and quantifier, but depends on other

elements of the context.

Free selection is also of two types, arbitrary and nondeterministic. In arbitrary

selection, the choice of examples is completely unconstrained and random, as in "any

(old) book will do". In nondeterministic selection, the choice of examples is constrained by

the requirement that things "come out right" in a quasi-game-theoretic sense. Thus in

"some green dogs are barking" the choice of green dogs is constrained by the contextual
requirement that the dogs selected must make the assertion true. We call these

nondeterministic quantifiers because the selection is not done at the time the

quantification is processed, but only when the result is needed. For example consider the

following Prism fragment:

Some numbers are prime. Print them. 23,5,7,11...

Clearly, if the processor stopped at the first statement to compute all the prime numbers,

it would never reach ,he print statement. It should be noted that in imperative contexts,

the contextual information may be inadequate to fully determine the selection, in which
case arbitrary selection takes over. Thus "print some (>5) integer" and 'print any (>5)
integer' produce the same results.

We now consider the different types of quantifiers in the current version of Prism.

Numeric quantification. Numbers may be used to quantify noun phrases
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nondeterministically, with or without range constructors such as "at leaste and "at

most". "Exactly" is redundant in Prism; "3- squares" and "exactly 3 squares" mean the

same thing.

['at least' I 'at most' I 'exactly'] number_name => quantifier

Examples. 2 chess pieces are rooks. At most 6 employees are architects. Print at

least 3 letters.

Relative guantification. Instead of giving the number of examples in the quantifi-

cation absolutely, one may specify it only relative to the collection as a whole.

'some' I 'few' I 'many' I 'most' => quantifier

Examples. Some document windows have go-away boxes. Most -users give correct

passwords.

These are also nondeterministic quantifiers. One might at first wonder about their

utility in programming languages, but they are important tools for avoiding overs-

pecification in Prism, where a major goal is the provision of reasonableness checking.

Forcing one to choose an exact figure and write "if wrong passwords > 4% or wrong

passwords < 0.005%" denies the processor crucial information about the program-viz.

exactly the information that most answers should be correct.

Total ouantification. Prism provides three2 quantifiers which in different ways

select the totality of the domain.

'all' [number_name] => quantifier

'every' [ordinal] => quantifier

'any' [number_.name] => quantifier

"All" and "every" are forced quantifiers which specify that every example in the

collection is to be selected. 3 The only difference between them, apart from the syntactic

2 1 have omitted "each", since Grammar 0.4 provides no justification for it-

"every" can always be used instead.
3 The comments in Grammar 0.4 state that quantifications formed with "all" can

have the group interpretation, but I see no advantage to this: one can always say "the

group of all employees," can one not? Grammar 0.4 seems to suggest that the difference

between "all" and "eve." is that between a group and a distributive interpretation. I am

rejecting that in favor of the simpler rule that all quantifiers have the distributive
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issue that "every" is a singular, is in the use of the accompanying numeric expression.

The optional numeric value with "all" is a redundant specification of the number of

examples that result. Examples. (a) All modal dialogues have plain windows. (b) All 3

(<10) primes are divisors of 105! 4primes are <10, not 3.

The optional ordinal with "every" provides a filter which restricts the selection.

Examples. Every shark is a fish. Every 3rd line starts with "Alas!".

Not- that because the default interpretation is distributive, multiple quantifiers

result in the cross product of their individual numbers. Thus, "All 4 girls kiss all 7 boys"

denotes 28 acts of kissing. "The group of all 4 girls kisses the group of all 7 boys" denotes 1

act of collective kissing. "All 4 girls kiss the group of 7 boys" denotes 4 acts of semi-

collective kissing, and so on.

"Any" is an arbitrary quantifier used to specify that no matter which examples are

chosen, the operation will succeed. Although "any" does not select every example in the

collection, it is classified with the total quantifiers because if a predicate is applied to a

quantification constructed with "any", since the selection is arbitrary, the result is the

same as if "every" had been used. That is, "Any prime is an integer" is the same as "Every

prime is an integer." This is not the case with other operations, however: "Print any

prime" is quite different from "Print every prime." The optional number _name specifies

the size of the resulting selection. Examples. The sum of any 2 (<10) primes is <13.
Report on any 5 salesmen. Any 6 weapons will protect the tank.

- Interrogative ouantification. The interrogative "how many" is used to form

questions about quantification.

Examples. How many primes are <10? 4. How many users give correct passwords?

Most.

Note that the current version of Prism does not provide for quantification of mass

nouns: "A little water is in the bottle," etc. Con5equently, there is no need for a "how

much" interrogative.

Articles. Prism includes versions of the definite and indefinite articles.

'a' I 'an' I 'the' [number-name] => quantifier

"A" and "an" are of limited utility; they specify that a single example is to be

selected, but do not distinguish between arbitrary and nondeterministic selection. Thus

in "a bird has landed on the porch," the article is being used nondeterministically to pick

out the particular feathered friend who has graced our home with its presence, while in

'a bird is a feathered biped," it is being used to denote arbitrary selection, and is thus

synonymous (in Prism) with "any bird is a feathered biped"4.

interpretation.
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The definite article is a nondeterministic quantifier which in Prism differs from"some" only in that the resulting noun plhrase must be coreferential with a preceding

noun phrase, and is thus a primary mechanism for forming snaphoric phrases.
Consider for example: "Print any integer. Z +- the integer + 5" . Just as "some green dog
is barking" picks out a green dog which satisfies the barking property, "the integer" picks
out an integer which has the property that it has been previously refirred to, in this case
by "any integer". The numeric expression functions as with "all" to redundantly specify
the number of resulting examples. Example. All 4 (<10) primes.

Modfficatiom

Properties.The fundamental primitive of the Prism type system is the property,
which is defined to be a Boolean function of one argument.5 Properties thus partition
the objects to which they are applied into two classes.

Prism provides three ways of denoting properties: by names, by prepositional
phrases, and by relative clauses. Thus 'red" and "prime" are properties denoted with
names; "in the active window" is a property denoted by a prepositional phrase; and "that
is printing" is a property denoted by a relative clause.

Types and Clusters. In Prism there are two quite different ways of combining
properties into larger groupings. The first method creates clusters by disjoining a set of
properties. Thus in Prism "color" is a cluster meaning "red or orange or yellow or green
or blue or indigo or violet."

The secon,' method of combining properties produces types by conjoining a set of
properties. Thus "featherless rational biped" is a type meaning "featherless and rational
and biped." Unlike clusters, types are closed under entailment, so that 'legged" and
"sentient" are properties of the foregoing type, since they are entailed by "biped" and
"rational" respectively. 6

4 This ambiguity is quite problematic, and raise the issue of whether the
indefinite article should not be eliminated from the language altogether. The current
thinking is that it is acceptable in limited contexts. For example, inside definitions-
which are in any case the strongest argument for retaining the arbitrary article-it could
be interpreted as arbitrary, and as nondeterministic elsewhere. Example; A bird =&.e a
feathered biped.

5 This is (according to DAF) in accordance with programming-language
tradition, but conflicts (according to DAM) with philosophical tradition, which holds that
such things as "color," "mass," and "odor" are properties.

6 Types are denoted using braces and the superscript turnstile. The notation for
clusters is as yet undecided.
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Premodifiers. Named properties in Prism are simply placed before the nouns

(named types) to which they apply.

property-name I type-name => premodifier 7

Examples. Green dogs. Prime integers. Large dialogue boxes. AK-47 assault rifles.

Literals in Prism are conceived of as types consisting of a single property, viz. the

property of bearing a name. Thus "Fido" is the singleton set consisting of the property

"has the name 'Fido'". Since many individuals can bear the same name, Prism allows for

using type names as premodifiers to pick out a particular individual or set of individuals.
Examples. The dog Fido. The toucan Fido. The movie Fido. The prime 5. The integer 5.

Units. Measurements are a special kind of property consisting of a number and a

unit. In natural language there is often an elision of the property being measured; one

talks of a "9 mm bullet" rather than "a bullet with a 9 mm diameter." Prism does not

support this elision.
The unit name is optional, so that unitless measurements can b. handled.

number..name [unit..np] => measure.np

measure-np {x measurenp) => premodifier

Examples. A 250 0C temperature. A 3 m length. A 4 m x 4 m area. A 4 length. A 4 x 4

area. A window of 200 pixel x 300 pixel area. A warhead of 250 OC temperature. An array

of 100 x 2 area. 8

Prepositions. Another special form of property is that denoted by prepositional

phrases. These properties express relations (in the everyday, nontechnical sense)

between noun phrases, and occur as postmodifiers.

preposition nounphrase => prepositional phrase
prepositional-phrase => postmodifier

'in' ['reverse'] [binaryBooleanFunction..name] 'order' => postmodifier

Examples. Any green dog under any pink lion. Every prime in (3, 5, 7, 11, 24). Each line

7 Prism0.4 also allows for "value names" as premodifiers, but I can no longer

make any sense of that.

8 We need to provide for and explain expressions such as "a liquid with 450 C

boiling point," "a circle with 35 mm diameter." (I.e. the introduction of specific

measurements with known dimensionality.)
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in the active window. All missiles on the aircraft.
Note that in formal languages the desire for succinct notation has fostered a

tradition of treating relational expression as producing not the individuals which satisfy

the relation, but rather a truth value indicating whether or not the stated individuals in

fact satisfy it. Thus in such languages, to write "every x>y" one must use a

circumlocution such as [x I x>y), but can write "if x>y" as a shorthand for "if x is >y."

Prism follows this tradition for mathematical symbols such as the relational operators,

but breaks with it for prepositions. Thus "every prime in (3,5,7,11,24)" returns 3, 5, 7, and

11, not "false." The Prism equivalent to Pascal's "if x in s" is "if x is in s," Although one

would not write "every x > y" in Prism (since it would mean "every true" or "every false"

depending on the values of x and y), one can achieve the same effect by converting the
relation into a prefix modifier, and writing "every (>y) x."9

The use of prepositions can greatly simplify algorithm expression. Consider the

following Prism fragment and its Pascal equivalent:

Display the window for 30 s or until a mouse click.

showWindow(theWindow);

c := clock;

while (clock - c) < 30 and not mouseClicked do;

closeWindow(theWindow);

A special form of prepositional phrase allows specification of the order in which

examples are to be chosen when forming quantifications. The binary Boolean function

name specifies 10 which '<' operator is to be used in ordering the -examples. Examples.

Print every word from the dictionary in reverse lexicographic order. Place every (<100)

prime in numeric order into A.

Relatives. The final form of property allowed in Prism is the relative clause. Like

the nondeterministic quantifiers, relative clauses do not specify how the examples are to

be chosen, but merely gives a condition which must hold; it is up to the system to choose

examples which make the whole phrase turn out right.

'such that' claim => postmodifier

9 We may want an extension of this adjective formation mechanism which allows

using verb phrases as adjectives, preferably in conjunction with participle formation:
"every working employee." This is all syntactic sugar, however: "every (>y) x7 a "every x

that is > y"; "every working employee" =- "every employee that works."

10 Just how one specifies that an order is lexicographic is left unspecified for the

time being.
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'that' vp => postmodifier

The second form is pure syntactic sugar; "the mouse that roared" is simply a more

convenient form for "the mouse such that it roared." Examples. Every fibonacci number

that divides 120. Every x, y: integer such that x + y > 54. Every spacestation such that

distance(it, moon) < 100,000 m length.

Functions and Expressions.

Claims and Declarationsll.

Claims are expressions which yield truth values when evaluated.

Boolean_np => claim

np vp => claim

claim '.' => declaration

The two primary forms of claims are boolean expressions and declarative sentences.

Examples. x>y. Red and green are colors. The printer is busy.

A declaration is a speech act consisting of the assertion of a claim. That is, the
action I expect of the system when evaluating a declaration is to compare the claim I
have asserted to its database, and to notify me if an inconsistency is detected. Example. 3

is a color! No it is not.

Claims can be used in other ways, however-in the protasis of a conditional

sentence, for example. When I utter "if the printer is busy, use the speaker instead," I

clearly am not asserting that the printer is busy, and do not want the system to give me a

warning if it is free.

Special forms of claims. Two frequently-occurring verbs are given special syntax

for the sake of succinctness.

np '=def' np => claim
np '=imp' np => claim

The verb '=def' is used to introduce definitions. It makes the claim that the value of

the first noun phrase is defined by the value of the second noun phrase. Example. x! =def

x x.(x-1) x (x-2) x ... × 1. x i =def x 'x x' i 'l . To zoom a window =def to make the bounding

11 have used "declaration" instead of "declarative" because claims are declarative

sentences; using the word both ways is confusing.
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rectangle of it = the size rectangle of the screen. 12

Analogously, the verb '=imp' is used to introduce implementations. It makes the

claim that the value of the first noun phrase can be implemented by the second noun

phrase. Examples. x! =imp if x 1 then 1 else x x (x-l)!. To zoom a window =imp resize(it,

(the screen)'bounding rectangle).

Note that since these are verbs, they may be used wherever claims are allowed.

Thus it is allowed to write "if x! =def x x (x-1) x (x-2) x ... x 1 then..." or "if to zoom a

window =imp resize(it, (the screen)'bounding rectangle) then..." The claim is true if and

only if the system has been given a definition or implementation which exactly (in some

sense) matches the one specified.

Verb Phrases and Imperations13 .

A verb phrase is a partial application of a verb, with every slot except the subject
filled in. It is thus analogous to the partial evaluation of a function with one argument

left unsaturated. An imperation is a speech act requesting an action or state change.

From a linguistic point of view, Prism's treatment of verbs is rather ad hoc. It

exploits some idiosyncrasies of English to simplify its processing. In particular, it divides
verbs into action verbs and copulatives, and disallows any imperative forms of the latter,
since that would require special treatment of imperatives like "be." It allows only second-

person imperatives, with the exception of the assignment imperative. (It is a peculiarity

c, English that the uninflected root, the non-third-person-singular forms of the present

declarative, and the second-person imperative-are all the same for most verbs.)
Declaratives. There are two forms of verb usage in Prism, Intransitive, transitive,

and bitransitive verbs can simply juxtapose the verb wi: ! _:. .,-Its. Verbs with other

parameters must use function form syntax. Note that the optional prepositional phrase is
not a parameter to the verb, but rather an environmental modifier which changes the

behavior of the verb "behind its back". The prepositional -phrase is placed before the
objects to distinguish it from any postposition prepositional phrases modifying the objects

of the verb.

action-verb [prepositional phrase] '(' [np {',' np} ] ')' => actionvp

actionverb [prepositional phrase] [np ['to' np]] => actionvp14

12 We need examples of nonanaphoric name introduction.

13 1 use the word "imperation" to distinguish clearly between grammatical

category and speech act. This gives the series of grammatical categories imperative /

interrogative / declarative and the parallel series of speech acts imperation /

interrogation / declaration.
14 1 have my doubts about distinguishing bitransitives as PrismO.4 does. In

linguistics they must be treated specially because of constructions like "give him the ball"
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actionvp => vp

copulative [np I premodifier I postmodifier] => vp

Examples (including subject noun phrases). (1) Intransitives: Every green warhead

shines 15. Some Chrome-57 atoms decay in 27 s. That subroutine sorts with-the Quicksort

algorithm. Zoom boxes appear at the upper right-hand comer. (2) Transitives: That laser

printer prints at 1000 dots/cm the reports. That algorithm computes in O(n x log(n)) time

it'result. (3) Bitransitives: Each accountant pays on (the last day of every month) a check

to each employee. (4) Copulatives. The file with the report is in (the directory such that
it'name = "reports"). All (>x) integers are >(x+l).The earth appears small from 1000 km

height. (5) Function form: Each planet attracts(sun, (the planet)'mass, distance(sun, the

planet)). The F-16 flies through the sky(5000 kin, 800 km/h, 1826 U.100 km).

Imperatives. As mentioned above, in Prism imperatives are syntactically
indistinguishable from action verb phrases.

actionvp => imperation

variable '<-' np => imperation

Examples. (1) Intransitives: Halt. Initialize. Start. (2) Transitives: Print every letter that
has a (>89/08/01) date. (3) Bitransitives: Show some employees such that them'salary >
20000 $ to Joe. Send any monthly report to the Houston office. (4) Assignment. (Each

employee)'salary <- it + 20% x it. The group of bad printers -- it + Old-Faithful.

Conjunctions.

Conjunctions are used to join two or more instances of the same syntactic form.
Prism provides two distinct forms of conjunction. The first, more concise, form is only

available for "and" and "or," since it requires that its arguments be associative.

premodifier I postmodifier I np I vp I claim => form

form ',' (form ',') ['and' I 'or'] form => type of form

form conjunction form => type of form

(where the "to" is omitted), but Prism does not allow such constructions, so there is

nothing special about bitransitives for us. I think we should either provide a more

general prepositional-parameter mechanism, or else require function form for verbs with

more than one parameter.
15 To what extent subject-verb agreement will be supported is still undecided, but

the examples assume it will be supported to some degree.
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'and' I 'or' I 'xor' I 'iff I 'implies' => conjunction

'not' form => form

Examples. Send the message to Tom, Dick, and Harry. Socrates is a Greek implies

Socrates is a man implies Socrates is mortal and not Socrates is feathered. x iff a xor b iff

not c or d iff e.
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Control Mechanisms.

Computations. Prism recognizes four types of computations: noun phrases,

declarations, imperations, and interrogations. The language's control mechanisms

operate indifferently on each of those four types. Thus the same syntax is used to build a

conditional data structure as is used to build a conditional statement. Computations may

be given names, and may be evaluated in foreign scopes through the use of the 'with'

operator.

np I declaration I imperation I interrogation => computation

'A' simple..name ',' computation => type of computation

'with' np 'do' computation => type of computation

Note that interrogations are allowed only in interactive dialogs, not in programs.

Examples. (1) If -empty, stack'top = 0 then push any integer. Not empty. Here

empty is an anaphoric name for "stack'top 0." (2) With Venus do print mass. (3) With

math-package do print a oflist[3, 8,15, 7, 22,4].

Branching control. The fundamental branching statement in Prism is the case

statement, which occurs in two forms. The if statement is provided as a more succinct

special case.

'case' ('when' claim '=' computation) => type of computation

'case' np ('when' np '=" computation) => type of computation

'others' => claim I np

'if claim 'then' computation => type of computation1 6

Examples.

(1) Case

when the animal is a lion, a tiger, or an elephant =>run

when it is a dog or a cat = petit

when it is a sowbug =>feed it to the lizard.

(2) Print case

when x =>oo ='Operand too large.'

when not some printer is free ='All printers busy.'

others =*any integer! 17

16 I had a 'whenever claim then computation' production, but then deleted it. Do

we want one? with demon semantics?
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(3) Case Joe, John, and Jim

when every employee that earns (<10000 $) = 'reward-give a raise to them

when every salesman such that their sales are (>1000000 $) =reward

others =:fire them.

Iterative control. For the moment Prism has but a single iterative construct, which

iterates through noun phrases.

'for' np 'do' computation => type of computation

Examples. (1) Print for every prime x such that 3 _ x _7 do (x. x2. x3.)

3 9 27

5 12

7 4G W

(2) For a few employees- such that they'birth > 79.01.01 do print theyname. Tiny

Tim, Lil Youngling, Pete Petit.

Sentences.

Prism recognizes two classes of sentences: those that are entered interactively and

acted upon immediately by the system, and those that are entered into programs which

are executed at times possibly remote from the time of their creation. Most of the

examples of declarations and imperations we have seen up to now have been taken from

programs.

declaration I imperation => sentence

The interactive versions of declarations and imperations differ only in the use of the

exclamation point rather than the period:

claim '!' => interactivedeclaration

vp '!' => interactiveimperation

Examples. (1) Print a few employees'names! Joe Blow, Fred Flintstone, Barney Miller.

(2) 567 is prime! False. Explain! 567 = 9 x9 x 7.

In addition to these sentences, Prism allows interrogation and calculation in

interactive mode. Interrogation is used to query whether a claim is true (i.e. consistent

with the database) or not, while calculation is a shorthand for displaying noun phrases

(i.e. "x!" is equivalent to 'display x!").
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claim ' => interactive-interrogation
np T => interactive-calculation

interactive-salculation I
interactive-declaration I
interactivejmperation I

interactiveinterrogation => sentence

Examples. (1) Airplane with biggest mass! B-52. (2) Temperature of boiling

silicon! 527 '.(2)-Barney Miller works in what1 7 precinct? 57th. What divisions have (>
50000 $/quarter) earnings? Northeas4 Southeas4 Northwest.

Scoping.

17 Need to put this and other interrogatives in the grammar, or document them

somewhere. In general the number of interrogatives should be minimized; there are
often several ways to ask a question, and we do not need to support them all. E. g.
"Employees that have (> 20000 $) salaries!" = "What employeei have (>20000 $) salaries?"
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Observations on Prism.

1. I sure would like a solution to the "spaces-in identifiers" problem. I want to be

able to write "(every month)'last day", not the required "(every monthYlast.day". Cf. "the

last day of every month".

2. Holes: function and verb declarations. Name introduction. Scoping. Grouping

and indenting.
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Appendix A.- Collected Syntax

name => np
quantifier (premodifier) typejiteral (postmodifier] => np
textjiteral I graphieJiteral I pronoun => name
name ("' name] => name
T~ np 'Y => name

type...name 'r np 1C,' np) -]- => name
r'at least! I 'at most' I 'exactly' numberi-name => quantifier
'some' I 'few I 'many' I 'most' => quantifier
'all' [number-name] => quantifier
'every' [ordinal] => quantifier
'any [number name] => quantifier
'a I 'an' I 'the Cnumber...name] => quantifier
propertyname I type...name => premodifier
number-nanie [unit-np] => measurejip
measure-np (x measure..np) => premodifier
preposition nounphrase --> prepositional phrase
prepositionaLphrase => postmodifler
'in' ['reverse!] [binaryBooleanFunction~name] 'order' => postmodifier
'such that' claim => postmodifier
'that' vp => postmodifier
Boolean..np => claim
np vp => claim
claim ''=> declaration

np '=:defl np => claim
np '--mp np => claim
np '=-defe np => claim

np 'imp' np => claim
action-yerb, [prepositional phrase] 'C [np C;' np) 17' => action_.yp
action-verb [prepositional phrase] [np [to' np]J => action-yp
action..yp => vp
copulative (np I preinodifier I postrnodifler] => vp
action..vp => imperation

v.ariable '+-' np => imperation
premodifier I postmodifier I np I vp I claim => form
form ',' (form ',') [rand' I 'or'] form => type of form
form conjunction form => type of form
'and' I 'or' I 'xor' I 'iff I 'implit-S' => conjunction
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'not: form => form

np I declaration I imperation I interrogation => computation

4c' simple_name ' computation --> type of computation

'with' np 'do' computation => type of computation

'case' {'when' claim '= computation) => type of computation

'case' np ('when' np '= computation) -- type of computation

'others' => claim I np

'if claim 'then' computation => type of computation

'for' np 'do' computation --> ty-pe of computation

declaration I imperntion --> sentence

claim '! => interactive-declaration
vp '!' => interactiveimperation

claim '? => interactivejnterrogation

np '!' => interactive_calculation

interactive..calculation I
interactivedeclaration I

interactive-imperation I

interactiveinterrogation => sentence
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General (1) To simplify processingl the grammar has been kept
simple. One way to think of it is as baby talk: verbs are
restricted to second-person imperatives and third-person
declaratives. First- and second-person declaratives are
expressed in the third person, as, "Daddy wants a greatest
common denominator."

Quantifiers Quantifiers are used to specify how many examples of the
type are to be selected and how those examples are to be
interpreted (by the parent operation). Quantifiers do not
specify which examples are to be selected. The selection is
generally nonarbitrary.

nclass number-name => quantifier The number of examples may be specified
absolutely.

'at least' I 'at most' I ['exactly'] => nclass
'some' I 'few' I 'many' I 'most' => quantifier

The number of examples may be specified
relatively.

'any' [numbername] => quantifier "Any" is used to specify that the selection is
arbitrary and that the default numeric value
is one.

'each' => quantifier "Each" is used to specify that every example
is to be selected each one at a time. Two or
more independent arguments quantified by
"each" specify cross product computations.

'every' [ordinal] => quantifier Like "each", but ordinals may be used to
narrow the selection.

'how many' "How many" is the interrogative quantifier.
'the group of' quantifier => quantifier "The group of" is used to specify that every

example is to be selected together as a single
group.

1 DAF also believes there are psychological benefits (i.e. that this is good

language design), a point DAM disputes.
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'all' [numbername] => quantifier "All" specifies that every example is to be
selected but does not distinguish between
one at a time and group interpretation. The
numeric value is a redundant specification
of the number of examples.

'a' I 'an' => quantifier "A" and "an" specify that one example is to
be selected but does not distinguish between
arbitrary and nonarbitrary selection.

empty => quantifier The absence of the quantifier specifies that
the unquantified type itself is intended.

'the' [numbername] => quantifier "The" is used to specify anaphoric reference
to the intended quantity of examples. The
numeric value is a redundant specification
of the number of examples.

quantifier 'of' primary => primary Quantifiers may be cascaded, This form
cannot be used with the quantifiers "a", "an"
and "the".

Modifiers Modifiers restrict the subtype or position of
examples. Properties are boolean-valued
functions of one argument.Premodifiers
must be names. Postmodifiers may be
prepositional or relative phrases. A
prepositional phrase specifies a relational
feature and the object to which it is to be
applied. Premodifiers and relative phrases
specify properties that restrict the subtype of
the examples; these properties are easily
computed from the modifiers.

property.name => premodifier This form of modifier restricts the examples
to those satisfying the given property. By
definition a property is any boolean-valued
unary function. Note that verb phrases are
not properties: (1) Unlike functions they
have side effects. (2) When applied, instead
of producing boo!ean values, they make

assertions.2

2 Although DAF and DAM believe they are in essential agreement on the
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valuename => premodifier This form of modifier restricts the examples
to those having a feature with the given
value.

type-name => premodifier This form of modifier restricts the examples
to the named type.

measure.np {'x' measurenp) => premodifier
This form of modifier restricts the examples
to those that have the some number as the
measure when measured in the same units.

preposition primary => postmodifier This form of modifier restricts the examples
to values of a particular feature of the object
np. The preposition specifiers the feature as
some positional relationship.

'such that' claim => postmodifier This form of modifier restricts the examples
to those for which the claim is true, The
claim typically contains anaphoric references

facts, they have persistent differences as to how the facts should be
conceptualized. DAM's version is as follows. (1) Verbs only have side effects
when they are used imperatively. I can sit around all day saying "Paul is
blowing up Heinz Hall" without so much as chipping the paint on the
building. Consequently we can continue to use the traditional Tarski-style
view of statements as boolean-valued functions without harm. (2) As for the
difference between assertions and boolean-valued expressions, the situation
seems pretty dubious. DAF's contention is that assertions are put into the
data base unevaluated, while functions are always evaluated immediately. It
seems to me that lazy evaluation and immediate evaluation are equally
available in both cases. In Miranda-style notati,.i we might write "#[2, 4, 6...]
< 3" and the processor would not go off and immediately compute the
length of the infinite sequence, but this does not mean that Miranda's "<" is
a verb rather than a function. Contrariwise, whether or not an utterance gets
immediately interpreted seems irrelevant to the nature of its speech act. If
you say "It is raining outside" I may either look out the window to evaluate
your statement or wait until later to do so. I do not see why we should
restrict verbs to later-evaluated items.

JCS believes that the issue is neither lazy evaluation nor side-effects,
but rather Frege's notion of judgment. DAM agrees that there is such a
notion, but denies that it corresponds to any difference between verbs and
functions.
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to the examples.
'that' vp => postmodifier This form of modifier restricts the examples

to those satisfying the verb phrase.
'in' ['reverse'][binaryBooleanFunctionname] 'order' => postmodifier

For "each", for "every", and for plurals the
order of selection of examples may be
specified.The order may be specified as '<',
'>' or by name. The default is any consistent
order.

number-name [unit-np] => measure-np
Each measure has a numeric value and a
unit, arithmetic operations and functions
can be applied to any measure or number in
any combination, Each unit is a postfix
operator that is defined by its relation to
other units. [This may not be correct.] The
unitless case is provided for e.g. 3 x 3 arrays.

'first' I 'last' I ordinal => propertyjiteral
These are examples of properties. They are
defined for all finite ordered types. Ordinals
are clumbsy to specify in BNF but simple to
implement in Lex.

'of' I 'in' I 'above' I 'below' I 'with' I 'in order to' I 'for' I ... => preposition
Some examples of prepositions.

Names A name is a syntactic primitive describing a
value of any type.

literal => name A value can have a literal name.
'(' np ')' => name Any value can be named by a parenthesized

expression that computes the value.
name ['.' name] => name This is a tightly binding form of the

preposition 'of' with the arguments
reversed. It is also known as dot
qualification.

graphic => name An atomic graphic can be used as the name
of the value of a type.

type-name '[' np {',' np) ']' => name An example from a composite type can be
named by an application of the constructor
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operation for the type.
type-name ,' name => name The type of an name can be specified

explicitly for disambiguation or emphasis.
'that' I 'it' I 'they' I 'itself' I 'themselves' I 'this' => name

Simple anaphoric and deictic reference is
allowed.

Noun phrases Noun phrases describe quantified values
from some type. A primary describes the
quantified values from which expressions
are constructed.

name => primary Any value can be referenced by its name
alone.

quantifier {premodifier} type_literal['s'] [postmodifier] [value-name] => primary
This is the general form for a primary noun
phrase.

typeliteral ==> type The typejliteral specifies the type of the
intended value.

premodifier type ==> type A premodifier may be used to restrict the
subtype of the value.

type postmodifier ==> type The subtype may be further restricted by a
prepositional or relative phrase.

quantifier type ==> value All values are quantified examples of some
type

value's' ==> value The marker 's' indicates that the quantified
value may be plural.

value valuename ==> value Apposition with the name of the value is
also allowed.

Functions and expressions A functions is a parameterized side effect
free computation of a value. An expression
is an application of a function, It describes a
value. Functions may be applied to plural
values with the effect of arbitrary, parallel, or
cross product computation.

expression frelop expression) => np Chained relationals are abbreviations for the
conjunction of the individual relations:
3<x<10 is short for 3<x and x<1O.
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addop expression => expression Adding operations may be used in unary
form.

term [addop expression] => expression
factor [mpyop term] => term
primary [expop factor] => factor
functionprimary (I np {' np} ) => primary

Function form syntax can be used for
application of any named function.

function-primary name => primary Function form without the parentheses is
allowed for unary functions. Primary is the
only left recursive form. This treatment
gives notational to functionals.

' op ')' => functionname A parenthesized operator symbol is a
function name.

'( binaryFunction-op np ')' => unaryFunctionname
An infix operator symbol and its right
argument can be converted to a unary
function value.

expression => primary Any expression can be used as a primary iff
the function of the expression has a result
type different from the type of all of its
arguments, this makes the grammar
ambiguous, but eliminates the need for
parentheses where the structure can be
determined from the types of the arguments.

leftpara np {',' np} rightpara => name Several parentheses pairs are provided, they
may be used to name any function including
type value constructors.

'{' np {',' np} ')-' => name This form may be used to construct a type

from its properties.
'' np {',' np}'' name => primary anonymous functions can be constructed.

Claims and declaratives Claims have truth values. A declaration
asserts that a claim is true.

boolean-np => claim A boolean expression is a claim by
definition.

np vp => claim A noun phrase verb phrase pair is a claim
that the np value is the agent for the vp
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action or state change, or the subject in the
case of copulatives.

np ' ' np => claim A definition is a claim that the value of the
first argument is defined by the value of the
second argument. Either side of -a -definition
may introduce new nonanaphoric
parameterized names. If the left side is -a
literal it is interpreted as a new local
nonanaphoric name.

np '.' np => claim An implementation is a claim that the value
of the first argument can be implemented by
the algorithm or data representation of the
second argument.

claim => declarative A claim may be used in a context where a
declarative is required to assert that the
claim is true.

'whenever' claim 'then' declarative => declarative
Any declaration may have a precondition.
Note: we may also want an imperative
generalization of this.

[declarative '.' } declarative => declarative
Claims may be composed in any order.

'[[' declarative '.' ' ' => declarative Declaratives may be parenthesized for
disambiguation and emphasis.

Verb phrases and imperatives A verb is a parameterized side effect causing

computation.3 A verb phrase is a partial
application of a verb without the agent or
patient. An imperative prescribes an action
or state change.

noncopverbname [pp] '(' np {',' np} ')' => ncvp
Function form syntax can be used for
imperative application of any noncopulative
verb.

noncopverbname [pp] [primary ['to' primary]] => ncvp
A simpler syntactic form may be used for
application of verbs with zero, one or two

3 Vide footnote 2.
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arguments.
ncvp => imperative Any noncopulative verb phrase can be used

as an imperative with the machine as the
agent.

ncvp => vp Noncopulative verb phrases are verb
phrases.

copulative ver i -- . ' premodifier I postmodifier] => vp
Copulative verb phrases are verb phrases
which connect the patient to an attribute.

variablename '4-, mj'.-,, imperative The assignment imperative has an
alternative syntax equivalent to: '.assign' np
'to' variablename.

'if' claim 'then' imperative => imperative
Any imperative may be conditional.

[ imperative '..'} imperative => inmperative
Imperatives may be composed in the
sequential order of their evaluation.

'[' imperative '. ''j' => imperative Imperatives may be parenthesized for
dieambiguation and emphasis.

declarative => imperative declaratives can be used in imperative
contexts to make assertions about the state at
that point in the imperative sequence.

declarative '.' 'D' imperative => imperative
Declarations that are true throughout an
imperative sequence also can be specified.

'to' ncvp => np A noncopulative verb phrase can be
converted to a noun.

'i' imperative '. np ']' => primary The value of this expression is the vale of
np were the imperative to be executed before
np is evaluated. This expression however
does not have side effects.

Conjunctions Conjunctions are used to join two or more
instances of the same syntactic form.

premodifier i postmodifier I np I vp I claim => form
Con:;z:.:tions can be applied to a variety of
syntactic forms.

form ',' {form ',') conjunction form => form
The most general form requires that the
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conjunction be associative. It can be used
only with and and or.

form conjunction form => form The binary form is not restricted.
'and' I 'or' I 'xor' I 'iff' I 'implies' => con;unction
'not' form => form Not complements the meaning of a form.
'(' form 'T => form Forms can be parenthesized for

disambiguation and emphasis.

Control mechanisms Several mechanisms are available for any
c.imputation. !!! tasks and exceptions may
u.so require some special case syntax!!!

np I declarative I imperative => computation
There are three classes of computations.

[name ':'] computation => computationAny computation may be given an
anaphoric name. The name labels the
primary, the declarative, or the point
immediately before the imperative.

'with' context-np 'do' computation => computation
With allows a computation to be evaluated
in a foreign context.

'case' {'whet" claim 'W' computation) => computation

A conputation with a true claim is selected.
'case' np {'when' np 'W' computation) => computalon

A computation with a possible plural
associated np that contain; al the examples
of the first np is selected.

'others' => claim I np can be used after when in case's to specify all
other cases.

'for' np 'do' computation => computation

This form allows anaphoric reference to np
within the computation.

'quote' computation => compname A computation can be quoted to obtain the
complete computational description
including the associated context, in
unevaluated form. the computation here
must be a fully parenthesized form.

'eval' comp-name => computation the eval operation of one argument will
evaluate the quoted computation.
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,r, computation "' => irisname a computation can be quoted to obtain the

computational description as a data value.
'self' => context name self references the current environment.
'eval' '(' irisnp " context-np ')' => computation

The two argument eval operation will
evaluate an iris value in a given context.

Sentences Sentences are interactive and are acted upon
immediately.

claim '?' => sentence Users can ask whether a claim is true.
np '?' => sentence Users can ask for the value of any

expression.
imperative '!' => sentence Users may request an immediate action or

state change.
declarative '!' => sentence Users may make assertions in the context of

the interaction.
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Lexicon

Quantifiers: the, a, all, some, no, numbers, any, how many, another

CoordConj: and, or

SubordConj: if, whenever, loop

Preposition: at, of, on,-in, above, below, with, in order to, for

Adjective: mass, intransitive, colinear, local, true, false, estimated, first

N: unit, temperature, noun, vt, method, case, candidate, successor, fail

Unit:

Pronoun: it, this, that

Vi: are, is, explain, move, exist, =,

Vt: have, mean, show, try, place, return, raise, move

Vd: move

BinaryOp: +,=,

FuncFormOp: absLexicon
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lexical items: the binding strengths of lexical symbols are given here in roughly
increasing order of binding strength:

? 'the sentence constructors.
the semicolon separator. semicolon

may-be used instead of
comma in any form above.
' A LMP +- when verb the verbs and open form key words.
when 4 other separators.
I the comma separator.
and or iff xor implies the conjunctors.
not not.
= = -- the primary relational operators,

P r< r5 r ... the secondary relational operators,
f /f e e@ alternative relational operators.
+ - V V s- U - the primary and secondary adding

operators,
& = C- alternative adding operators,
" $ A 6 other operator symbols.

A / I- A A , the primary and secondary multiplying
operators,

* \ f alternative multiplying operators.
ID z t the exponentiation operators.
func() type[ X I function form and literal constructors,
quote eval some function and verb names.

quantifiers.
of prepositions and similar words.
0C OF units specification.

names constructors.
( ) I" ]]the primary parentheses.
{ }) ,r,, { } {) }other parentheses.
"", character string quotes.
r -I program quotes.
alpha(alphanum) digit[digit) "(char/"7"" identifiers, numbers, string literals, and

icons.
self • box circle diamond other literals.

the character set for strings.



Prismatic Samples

David Mundie
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Introduction

The purpose of this report is to illustrate some features of the
grammar for Prism currently under development at Incremental
Systems. The method used is the technique known in Comparative
Literature as textual analysis; by juxtaposing similar texts written in

different languages we hope to be able to bring out the similarities
and differences between them.

A separate Technical Report (-Unnatural Languages") presents
the rationale for some of the design decisions illustrated here.
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Samale 1: °C and F in Ada and Prism

Ada version:

function C(F: integer) return integer is
begin

return (F-32)*5/9;
end;

function F(C: integer) return integer is
begin

return (C*9/5) + 32;
end;

put(C(400)); put(F(-40));

Prism version:

"°C" and "OF" are units of temperature.
"Water" and "bread" are mass nouns.
"Boil", "freeze" and "bake" are intransitive verbs.

Water boils at 100 °C and it freezes at 0 0C.

Water boils at 212 -F and it freezes at 32 OF.
Bread bakes at 400 OF. It bakes at how many °C?
IC and 'F are cof/near?
That is true.
Bread bakes at 200 9C.
Bread bakes at how many 0C?

Bread sti/l bakes at 200cC.
-40 OC = how many °F.
-40 °C =-40 'F.
Explain that.
kI +k2=1"P.
k1 x.100 + k2 = 212.

k.1 xO+ k2 =32.
k2=32.



Prismatic Samples
-3-

k1 x 100 + 32 = 212.
ki = 1.8.

1.8 x-40 + 32 = -40.

Comments:

1. The difference in philosophy between traditional languages
and Prism becomes immediately apparent even in a simple example
like this. Where in traditional languages the programmer must
specify the implementation of the solution to his problem, in Prism
he is encouraged to engage in a dialogue with the system. In the
course of that dialogue the programmer conveys information about
his problem to the computer, and the computer does what it can to
help. In particular, it provides algorithms and data structures which
can then be optimized by the programmer.

Thus in the example the Ada programmer had to "presolve" the
Celsius/Fahrenheit problem by figuring out the formulae required.
The Prism programmer simply sat down and gave the information he
knew, namely the boiling and freezing points in the two systems. The
Prism processor uses this information to figure out the conversion
formula, after requesting verification of an assumption it has to make
about the colinearity of the units.

2. Unlike traditional programming languages, extensive support
for and knowledge of units is built in to Prism at the lowest level. The
processor knows what it is to be a unit of temperature, and allows the
natural-language form of unit notation.

3. The first three lir" s are a way of entering the new terms into
the lexicon. The example is written using double quotes to
distinguish between use and mention, although DAF prefers
distinguishing the two by context, as is done in most traditional
programming languages.

4. Double quotes aside, and barring errors in hand-parsing, it is
believed that the Prism Grammar 0.4 will process this example as it
stands.

5. Note that the processor is sensitive to the history of the
conversation, letting the user know that it has noticed that he has
repeated the question ("still".)



Prismatic Samples
-4-

Samvle 2: Trees in Pascal and Prism

Pascal version:
type tree = Anode;

node = record
left, right: tree;
item: string; end;

procedure enter(var p: tree; s: string);
begin

if p = nil then begin
new(p); pA.left := nil; pA.right := nil; pA.item := s; end

else if pA.item < s then enter(pA.left, s)
else enter(pA.right, s);

end;
procedure print(p: tree);
begin

if p <> nil then begin
print(pA.left); writeln(pA.item); print(pA.right); end;

end;
enter("abc", root); enter("father",root); enter("child", root);
enter("man", root); enter("abrecadabra", root);
print(root);

Prism version:
'Tree" is a local noun.
Trees are empty or non-empty.
Each non-empty tree has a string and ("left" and "right": tree).
To insert a string into a tree is

If the tree is empty,
Make it non-empty. Put the string into it. Make
its left and right empty. Return.

If the string = the string of the tree, return.
If the string > the string of the tree,

enter it into the left of the tree,
otherwise enter it into the right of the tree.

To print a tree is
Print its left, print its string, then print its right.
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"Root" is a local, empty tree.
Enter "abc", "father", "child", "man", and "abrecadabra" into root.
Print root.

Comments:

1. Ordinarily we would expect a Prism programmer to define a
sort program by giving a set of sorting axioms and allowing the Prism
processor to suggest a data structure and algorithm to do the job. We
include this example simply to show what a traditional
implementation program would look like in Prism.

2. Notice how the need for explicit dynamic record structures
dissolves in the presence of the common-sense natural-language
concepts of things having components and properties.

3. The Prism version has far fewer names, since anaphoric
references ("it", "the i-ee", "the string") take their place. Names
are only needed where there are two items of the same type ("left"
and "right").

4. Allowing plural formation, as in the request to enter the
strings into the tree, greatly streamlines the notation.
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Sample 3: The Eight Queens in Miranda and
in Prism

in Miranda:
queens 0 = [i01
queens (n+1) = [q:b I q <- [0..71; b <- queens n; safe q b]
safe q b = and [-checks q b i I i <- [O..#b-1]
checks q b i = q=b!i \/ abs(q - b!i) = i

In Prism:
Queens of 0 -, [1.
Queens of "n": any (>0) integer-, ["q": each 0..7] & b: queens of (n-
1) such that q is safe on b.
Any queen is safe on b: any list - not (the queen checks on b at some
of (0...#b - 1)).
Q: any 0..7 checks on b: any list at i: any 0..7 -, q = bi or abs(q-bi) = i.

Comments:

1. Here again, this is not the way we would expect a Prism
programmer to approach the Eight Queens problem, since by the
time these programs are written, the problem has been predigested
by a large amount of analysis. The example is included simply to
illustrate that Prism can approach Miranda's terseness.

2. Analogously to what we saw in the previous example with
records, the use of natural-language-like quantification ("some of
(0.. .#b - 1)) all but eliminates the need for explicit list manipulation.
The single explicit list operation uses a syntax which is not part of
Prism per se, viz. square brackets for list construction and
ampersands for concatenation. The example assumes that this syntax
has been declared in some package in the environment. Similarly for
the "#" operator.

3. Note the freedom with which the Prism programmer can
construct adjectives from predicates: "any (>0) integer," i.e. "any
greater-than-zero integer." An equivalent but more cumbersome
paraphrase would be "any x: integer such that x>0."



Let us examine them in turn.
1. Hill's central thesis seems to be that natural languages are

perniciously ambiguous, requiring contextual information for
interpretation, whereas formal languages are not. He points to three
general sources of ambiguity in natural languages:

* Phrasal lexical items: in "now make the pay half as
much again", the phrase "half as much again" could be
either the phrasal lexical item meaning 150% or simply a
phrase composed of "half as much" and "again".

• Lack of precise binding and scoping rules: for
example, group versus distributive plural interpretations of
"The operas Cavalleria Rusticana and I Pagliacci will be
performed simultaneously on Radio 3 and BBC2 television
this evening.

* Difficulties of anaphora resolution: as in an
advertisement for a statistician "to be responsible for: 1. the
analysis of experiments, on sheep and pigs, and 2.
collaborating in their design."

Much of the current work has been devoted to arguing that
meaning must be dependent on context if Prism is to achieve its goals,
so it is clear that we are in fundamental disagreement with Hill on this
point. Far from believing that context-dependency leads to a quagmire
of ambiguity which would engulf programming languages, we see it as
liberating them from an unnecessary straightjacket.

We feel that Hill's criticism stems from an overly simplistic view of
programming languages. Hill seems to think that ambiguities simply do
not arise in programming languages, because context is not allowed to
determine meaning, and that that is a good thing. In point of fact, of
e,. 4rse, ambiguities do arise in programming languages, and context
does determine meaning. A good portion of the progress made in such
langu.ags over the years can be seen as the introduction of increasingly
more sophisticated mechanisms for dealing with ambiguities and
allowing ambiguity resolution to be performed using more and -more
contextual information. To take a simple example, the statement "i =
junk" in FORT.AN may actually come close to Hill's ideal; the naming
rules are such that from the statement itself one can conclude that i
and junk are integers and that assignment is being performed on them.
With Algol and related languages, this is no longer true, since the



programmer can establish a declarative scope which must be consulted
when interpreting an expression. To avoid ambiguity, such languages
impose the rule that there cannot be more than one entity with a given
name in the same scope, but that restriction disappears with the
polymorphism provided by mechanisms such as Ada's overloading,
ML's type inferencing, or the inheritance mechanisms of object-
oriented programming, all of which allow ever-larger amounts of
context to be taken into account when resolving ambiguities. Seen from
this perspective, the proposal that interpretation in Prism should
depend on the totality of the context of the expression is not wooly-
headed wishful thinking, but rather the logical next step in the
evolution of programming languages.

As for the specific sources of ambiguity which Hill cites, we take a
non-doctrinaire, engineering viewpoint towards them. Since our aim is
not to process natural language in its entirety, we feel free to make
engineering trade-offs. Where techniques 'exist to allow efficient
ambiguity resolution, we believe they should be used. For example,
anaphora resolution is now close to being a solved problem (ref), close
enough at any rate so that the benefits from using it and ridding Prism
of the crippling effects of anaphora-free languages far outweigh its
costs. Where no such techniques exist, as seems to be the case with the
different interpretations of plurals, we have no trouble requiring that
the speaker be consistent.

We are not claiming that ambiguity resolution in natural language is
easy. What we are claiming is that to conclude, as Hill does, that
therefore we should not tolerate any ambiguity, is to throw out the
baby with the bathwater.

Ironically, Hill actually makes a much weaker case than he could
have. The cases he considers by and large involve choosing between
several well-defined, preexisting meanings, as with the prisoners in
the metal shop learning the art of "copper beating," which depends on
the two lexical entries for the word "copper" (viz. the metal and
policeman). If this were all there were to it, one could imagine a whole
series of ever-more-sophisticated algorithms for choosing among the
alternatives, including pun-evaluators which, as in the copper example.
leave multiple meanings intact.

But if this is all one does, the result will have the same brittleness,
the same lack of extensibility, as current languages. The hard case is
not just ambiguity, but rather completely new uses of language. A proud



parent at a spelling bee, when his child takes first place, exclaims
"He's a real buccaneer!" This is not an ambiguity; there is no lexical
entry for "buccaneer" meaning "good speller". This is a completely
new, ad hoc use of language, whose correct interpretation depends on
the sememe "first place" shared by the man's son and the Pirates
baseball teem in 1990. As was seen in the chapter on Unification
Semantics, it is insufficient to adopt a passive strategy, working on a
fixed set of inputs to see which one was meant; rather the Prism
processor must actively "make" sense of the utterance, using all the
means at its disposal. Once this can be done, ambiguity loses its bite.

2. Sometimes natural language expressions are meant to be taken
literally, and sometimes not, but the rules for when to take things
literally are hard to specify. Example: some speakers use double
negatives as the normal form of negation. From an engineering
perspective, we might very well disallow pleonastic double negatives in
Prism on the grounds that they provide too little bang for the buck, but
this does not prevent us from being in radical disagreement with Hill
on his conclusion -that programming languages should be forever
condemned to strict literalness. We agree that "specifying" exactly
when to interpret an utterance literally is a doomed, sisyphean
enterprise; rather, as always the interpretation must be guided by
Unification Semantics. You hand a large glass of water to Sam and he
shakes his head saying "I- do not want no water." You do not interpret
this as "I want water," not because you have some hard-and-fast rule
about Sam and pleonastic negatives, but rather because it does not
integrate into the linguistic context.

3. Natural language does not always obey the rules of Boolean
algebra. Example: The substitution of "true" for "not false" in "If this is
not false then that must be" inverts the meaning because of the ellipsis
Once again we view this as an engineering problem: the rule should be
to handle as much ellipsis as possible. However, we reject for many
reasons the claim that the substitution rules for Prism should be the
simple substitution rules of purely extensional logic; for one thing, this
would mean that the language could not handle intensionality at all.

4. Consciousness is probably a requirement for natural-language
understanding. This is close to the conclusion reached by Winograd and
Flores in their study of artificial intelligence. It is important to
distinguish between two separate claims: (a) Even if a machine
displayed complete natural-language understanding, it still would not



count because the machine is not conscious. (b) The implementation of
natural-language undersi anding systems is fundamentally irrelevant, but
as a point of fact the only possible implementation given our world is
one involving brain cells and consciousness.

We reject claim (a), because we accept Dennett's claim that when I
interact with you, the exact details of your brain chemistry are
immaterial to the intensional stance I take towards you. It really does
not matter to me whether you store the word "banana" using one
molecule of acetylcholine or two, and by a garden path argument I
cannot therefore care whether you store it using a charge on an iron
oxide film. As for claim (b), it may turn out to be true, but we feel it is
somewhat premature to judge.

5. Temporality is simple in programming languages, but not in
natural languages. Conversational implicature. Hill's affection for the
simplicity of good old FORTRAN is touching. He claims that the
temporality of computer programs is exhausted by the distinction
between code to be executed "later" (i.e. subprogram declarations) and
code to be executed "now" (i.e. in-line code). This of course hardly
does justice to concurrency in computer languages. His argument rests
on the bugaboo of a robot entering a conference, seeing "Take a taxi to
the hotel" written on the board, and leaving immediately to follow out
the instructions, not realizing that there was an implied "after the
meetings". Instead of decrying the sorry state of robotics, where
imperatives are reduced to a subhuman, slavish interpretation of "do
exactly this immediately," he embraces this idiocy with fervor. We on
the other hand hope that we can enlarge the range of speech acts of
which the computer is capable, to the point that the normal mode of
interaction is not unthinking obedience, but rather dialogue.

6. Bugs are problems not of language, but of logical precision. We
confess not to understand Hill's point here. He gives several examples
of how illogical thinking can be expressed in natural language, for
example instructions for getting to a place by bus which leaves the
hapless instructee no closer to his destination than when he started. If
we had ever claimed that Prism would prevent one from writing
illogical programs, this would be a telling point, but we have of course
made no such claim. Clear thinking is a virtue, period. Does Hill believe
this shows we should all be writing in assembly code?

7. Legal language shows the folly of trying to make natural language
precise. On this and the following point we agree with Hill completely.
Despite an amazing recent proposal that litigation should be taken as a



new paradigm for computer programming (ref), we do not take
legalese as a reasonable first step from natural languages to
programming languages, and for all the reasons Hill avers: the
conglomeration of proviso upon proviso, without any consideration such
basics of language design as scoping and precedence. But does this
mean that no formalization of any kind could succeed? Hardly.

8. Formal languages could improve natural languages. Hill cites a
number of cases where a simple mathematical formual is worth a
mountain of verbiage. Where word languages such as mathematical
notation are good, they are very good, and in fact one of the goals of the
Prism interface is to allow the harmonious use of traditional two-
dimensional notation alongside linear text. We are by no means
advocating "add two to four and put the result in j" over j := 2 + 4". To
each tool its proper usage.

9. Numbers are not always used mathematically in natural language.
Often the units must be inferred from the context. These are just
special cases of problems we have already considered. The contrast
between "USAir buys 3 jets" and "USAir buys 707 jets" is simply a
lexical ambiguity, like "half as much again". Inferring the units from
the context is just a specific example of the general problem of dealing
with ellipsis.

10. Voice input makes the problem even harder, because of
homophones. Hill is on shaky ground here. He is not arguing that
extracting information from speach is difficult (it clearly is), but rather
that even once it has been extracted, it is inferior to written language.
He implicitly assumes that homophones outnumber homographs, which
they well may, but he should at least have made the assumption
explicit. "Resume Scandal" the headline cries, with an ambiguity
absent from a spoken rendition.

The real point, however, is philosophical, and has to do with what
is relevant to communication. We view written language as an
immensely sophisticated distillate of more general underlying
communicative acts, and feel that the larger the spectrum of evidence
we can bring to bear on interpretation, the better. A case in point is the
example Hill cites: prosody. Recent research in computational
linguistics has shown that prosodic information, far from complicating
matters, can actually guide parsing (ret). "Mary prefers corduroy",
"Mary prefers corduroy", and "Mary prefers corduroy", where italics
convey prosodic stress, each provide information that is useful in



interpreting, viz., whether the question being answered is "What does
Mary prefer?", "How does Mary feel about corduroy?", or "Who prefers
corduroy?" Certainly, humans acquire language with prosodic
information intact, and learning to get along without it in reading is a
long drawn-out process. It may well be that Prism systems have to
undergo a similar evolution.

11. The state of the art in natural-language understanding is
pathetically short of the marK. This again is a point made forcefully by
Winograd and Flores, and it is a point with which we have to agree.

Why do we think that Prism can succeed where so much other
research has failed? For starters, we are not attacking the natural
language problem per se. Our goal is more modest. We believe we can
succeed because: (1) Get a reason from Shultis. (2) The vast majority of
the research in natural-language research has been just that: research
directed at the full natural-language problem. Very little of it has been
devoted to how to transfer techniques for partial solutions of that
problem into techniques useful in programming languages. (3) The
computational linguistic community is itself prey to exactly the kinds of
interoperability problems and the balkanization that Prism is designed
to solve. Just like the computer scientist who devises a hot new
algorithm for code optimization, the linguist who comes up with a great
new algorithm for, say, avoiding the complexities of conversational
implica.-xe faces very high entry costs. He cannot just run off and test
his idea; first he must piece together a parser, a semantic analyzer, a
data base processor, &c. Once he has expended the enormous effort to
con sruct this test bed, he cannot share it with his colleagues, since
they have all run off and implemented incompatible systems. The net
result is the same: enormous numbers of ideas wilt on the vine for want
of a fertile medium of exchange. It would be a gratifying result if Prism
ultimately provided a mechanism for communication among
computational linguists as well as among computer scientists.



Signature Grammars

The boundary between what is considered syntax and what is

considered semantics is of course variable; one definition has it that
syntax is just lower-level semantics, i.e. the unstructured substrate from
which semantics emerges (ref?). One can always attempt to capture
semantic information through increasingly picayune syntactic categories.
To take a hoary example, consider the constraint that the subordinate

clause in an "if" imperation must be a statement.1 Computer science
calls statements "boolean expressions", and lumps boolean expressions
with arithmetic expressions, so often one has:

ifstatement ::= if expression then...

One can however attempt to capture the fact that "if' requires not just
an expression, but a boolean expression, in the grammar:

ifstatement ::= if booleanexpression then ...

There are two problems with this. The first is that it requires
doubling a good portion of the grammar, viz. the portion that captures the
syntactic commonality of boolean expressions and arithmetic expressions.

Alongside productions for normal (arithmetic) terms, factors, etc. we
would have to have similar productions for boolean terms, factors, etc. It
was considerations of this sort that drove computational linguists to
embrace unification grammars.

More serious, however, is the fact that this strategy is, to say the
least, inconvenient for user-defined semantics. Suppose I the user

introduce new types S and T, variable a of type S, and variable b of type T.

1 The use of parts of speech indicators in programming languages is an interesting
one. Typically what are called "statements" in e.g. Ada are not statements at all, but
rather imperatives (what I call imperations). The "statements" are contained in the
declarations (cf. declarative verbs) on the one hand, and on "boolean valued expressions"
on the other. I confess to being puzzled as to how the confounding of sentences and noun
phrases first arose. I suspect it has to do with the feeling that things expressed using
symbols must share some commonality. No one would be tempted to place "The dog
dwarfs the rat" and "The silver-edged cloud" in the same syntactic category; why are we
so willing to do so with "x>3" and "x+3"?



There is now a semantic constraint against writing "a := b". In theory it
might be possible to handle this by modifying the grammar to include a

"T.expression" production and a "Tassignment" operator, but in practice
the only reasonable path is to use a polymorphic assignment operator and
to detect semantic constraints independently of syntactic ones.

The Iris-Ada grammar in use at Incremental Systems carries this
principle to its extreme. The grammar it uses contains a single non-
terminal category



The fact that Prism is a two-way language, with the system itself
generating large portions of the program text, means that readability is at
a premium. The user will be obliged to understand and maintain large
bodies of code that he did not write, so that traditional "write-once" syntax
becomes much more undesirable. Moreover, it is not enough just to allow
the user to say what he needs to about a computation; he must also be able
to say it easily, and not have to shoehorn it into s-expressions or function

form. The goal of expressivity requires a notaflon that is at once powerful
and natural.

Exploiting today's display technologies promises to go a long ways
towards achieving this expressivity. The use of graphical representations
directly manipulable by the user will reduce the asymmetry of the sy.-tem,
since the same representation can be used on input as on output.
Improved typography-the use of multiple typefaces and stylistic variants,
and possibly even a two-dimensional syntax-will contribute to
readability. Coupled with such use of graphics, lexical extensibility will
make the notation more natural by allowing it to confirm to existing

traditions.
Prism's property-based type-system and its u.e .-:f a generalized

feature-structure formalism impose a requirement for a simple and
convenient mechanism for talking about properties. This can perhaps be
achieved by elevating adjectives and prepositional phrases to first-class

status in the language, so that complex composi ions of properties can be
expressed conveniently.

Prism's view that interacting with a comput. is a kind of dialog, its
commitment to supporting intensionality and incompleteness, and its
avoidance of overspecification, all require a language quite different from
the purely extensional languages of the past. The most promising
approach is to integrate a number of features from natural language. For
example, the use of anaphora, includii- both pronouns and anaphoric
descriptions, is a natural way of expressing context-dependency. The use
of variable-free quantification provides a convenient way of avoiding
overspecification. The advances made in computational linguistics over
the last ten years make us optimistic that these features can be adopted at
reasonable cost.
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Introduction 1

Editors' Introduction and Overview
David Mundie and Jon Shultis, Incremental Systems Corporation

The Workshop on Informal Computing was held by Incremental Systems
Corporation under DARPA sponsorship from 1991 May 29-31 at the Inn at
Passatiempo in Santa Cruz, California. It brought together researchers in computer
science, linguistics, psychology, and philosophy to examine the limits of the formalist
approach to problem solving and to make an initial attempt at defining ways to
overcome those limits. The workshop was an outgrowth of the Prism project at
Incremental Systems, a two-year effort to explore ways to eliminate the barriers
which current programming languages impose on the software development process.

The participants at the workshop were:

Alan Biermann, Duke University
Yung-O Biq, SanFrancisco State University
Sandra Carberry, University of Delaware
Bruce D'Ambrosio, Oregon State University
David Fisher,-Incremental Systems Corporation
Don Good, Computational Logic, Incorporated
Cordell Green, Kestrel Institute
Stevan Hamad, Princeton University
Catherine Harris, University of California at San Diego
John Kozma, Tulane University
Timothy Lethbridge, University of Ottawa
David Littman, George Mason University
David Mundie, Incremental Systems Corporation
Larry Reeker, Institute for Defense Analyses
Yvonne Rogers, University of California at San Diego
Anton Schwartz, Stanford University
Jon Shultis, Incremental Systems Corporation
Tim Standish, University of California at Irvine
Karen van Hoek, University of California at San Diego
Stephen Wight, AGFA Compugraphics Division
EdZalta, Stanford University
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The present volume is a record of the presentations and discussions at the
workshop. The viewgraphs and handouts for each of the talks are included, along
with transcripts of the discussion sessions and reflections on the workshop by
three of its participants.

Themes of the workshop. Not surprisingly, a good deal of discussion time
was spent attempting to articulate the distinction between formal and informal
computing. Broadly speaking, three independent though mutually reinforcing views
of formalism emerged, each of which leads to a corresponding view of informalism.

According to the first view, formal means syntactic; that is, a formal system
consists essentially of a finite set of transformation rules applied to a finite set of
tokens whose identity is determined solely by reference to their physical shape.
Negating this position leads to the view that informalism is essentially semantically-
based computation, that the transformation rules in an informal system may
depend in an essential way on what the tokens they manipulate signify. This
point of view underlies, for example, Littman's insistence that informal reasoning
uses task-specific reasoning techniques rather than generic ones, and van Hoek's
claim that natural language is inherently encyclopedic, relying on general world
knowledge for its processing.

On the second view, most ardently espoused by Hamad, what is essential in
formal systems is that they are systematically interpretable. By negating this
view, a number of the workshop participants came to conclude that informal
systems are those which do not have a fixed interpretation, but are rather
permanently open to reinterpretation, like the U.S. Constitution or the Ada
Reference Manual.

The third view claims that what characterizes formal systems is that they
are complete and consistent. Negating this leads to a view of informalism as
reasoning in the presence of incomplete and inconsistent information. This view
was reflected in Standish's catalogue of informal reasoning techniques (probabilistic
reasoning, buggy causality, superstition, &c.) and in Biermann's claim that informal
means underspecified. Often holders of this view see informalism as a precursor
to formalism, as witnessed in Reeker's comments on heuristics, or in van Hoek's
charge that a problem with chomskian linguistics is that it indulges in premature
formalization, although most participants agreed that reality is not formalizable
in general.

One view of formalism that was explicitly rejected by the workshop is the
one which says formal means machine-processible, although the exact relationship
between informalism and computers generated a lot of debate. Standish started
this theme off with his early question on the finite symbol system hypothesis, to
the effect that intelligent beings, whether organisms or machines, can only exhibit
intelligence by means of finite symbol systems transformed by discrete rules,
since that is all they have at their disposal. Several participants maintained that
informalism is relative, and that a computational sybtem which is purely formal
at one level may very well appear informal at a higher level-neural networks
being a favorite candidate. Littman even went so far as to suggest that informal
computing might not have any informalism in the computer at all-that formal
computational support for informal reasoning in humans might be the right place
to begin implementing informal systems.
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Language Day. The first day of the workshop was devoted to language, as
the opening wedge into the subject of informality. The choice of language as a
focus was somewhat arbitrary, assuming the increasingly plausible hypothesis
that the cognitive apparatus is not modular; we could easily have started with a
day about dance, or perception, or emotion.

Informalism draws inspiration ad sustenance from the fact that a surprisingly
large number of contemporary thinkers have launched nearly simultaneous
challenges to the underpinnings of the formalist enterprise, from Lakotos's expos6
of formalist mathematics to the critiques of objectivist linguistics by Lakoff, Giv6n,
and Langacker, and Putnam's and Schiffer's attacks on philosophical functionalism.
In the opening presentation David Mundie attempted to situate informalism within
the context of the history of the philosophy of language and mind, arguing that in
some respects the debate between connectionism and symbolic AI can be traced
back to the Hellenic era.

An informal computing environment as envisaged, for example, by the Prism
project will require radical changes in the nature of the discourse model used for
man-machine interaction, and Wednesday morning's speakers all described aspects
of those changes. At the end of his talk, Mundie described a programming language
developed as part of the Prism effort which incorporates advances in computational
linguistics to make the language more natural for humans. Alan Biermann described
a similar project he has worked on, called natural language programming, and
suggested that such a language would be a powerful front-end for KIDS, the
sophisticated formal design environment developed at Kestrel Institute, allowing
programmers to express the complex, very-high-level software designs and concepts
used in KIDS in a natural way.

Informal computing will require the computer to take on a more active role
in the man-machine dialogue, and to be more flexible and adaptive in response to
user variation. Sandra Carberry addressed the first of these requirements in her
talk, giving an overview of the crucial field of user modeling and then describing
her current project to develop computerized consultants based on dialogues driven
by models of users' goals and planning strategies. Lary Reeker addressed the
second area, explaining how linguistic interfaces can be designed to conform to
the idiolects and system models of their users, and how informal visual cues can
be used in graphics-based problem-solving systems.

Chomsky's generative grammar approach is the epitome of formalism in
linguistics, and has dominated the field for the last thirty years, although as
Michael Scriven has said, Chomsky may have gotten out of linguistics and into
politics just in the nick of time. Wednesday afternoon saw talks by two cognitive
linguists who challenge the chomskian paradigm. Karen van Hoek summarized
Ronald Langacker's theory of cognitive grammar, which is based on the notion
that language is an instrument of general cognition, and is not a separable module.
Although still in its formative stages, cognitive grammar promises to account for
many of the phenomena which severely strain generative grammar. Catherine
Harris examined the factors which made Chomsky's approach initially appealing,
using it as a textbook example of the role of formalism in science, and concluded
by placing connectionism in its historical context as a formalism for modeling
complex phenomena which are not easily captured by other formalisms.
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Discussion 1. The discussion that first day revolved around the question of
what "informality" means, and how to characterize it. In the process, the group
attempted to define "formality"', and found it surprisingly elusive; it is only in
retrospect that the three major viewpoints described above became clear. Othei
important issues that were discussed on the first day were incrementality, lack of
specificity, incompleteness, and implementation.

Reasoning Day. On the second day, we broadened the scope of the talks to
informal reasoning in general. Once again, there was a great variety of topics,
with some common themes running through them.

A good way to think about informal computing is to ask what features we
would like to see that current, formal systems do not possess. In the opening talk
on the second day, David Fisher enumerated many desirable characteristics of
informal systems, and suggest ways in which these might be realized in computer
systems. He presented the vision of informal computing that evolved from the
Prism project, portraying informalism as a way of extending the problem-solving
capabilities of computers. Bruce D'Ambrosio concentrated on one specific limitation
of formal systems: their tendency to fail under severe real-time constraints. In a
sense, real-time constraints are what force informality on us; given unlimited
time and no pressure, we could afford to be as precise and formal as we cared to
be about anything. But, we live instead in a state of continuous action, forced to
make decisions in the face of incomplete knowledge; we are, as Heidegger put it,
"thrown". D'Ambrosio's recent work in decision-making under time constraints
attempts to find good approximations to probabilistic decision functions.

As mentioned above, human beings are our best example of informal systems,
and the remaining speakers on the second day explored insights to be gleaned
from analyzing the way people reason about problems. David Littman talked
about ways of forming and refining plans, and ways in which informal reasoning
might be used in the exploration of problem and solution spaces. Tim Standish
talked about abstraction and reasoning in what he calls the "collateral reasoning
domains", which people use to explore problem spaces and formulate solutions.
Their utility is that they help to control the conceptual complexity of problems
and solutions, while being generally good guides towards solutions. Ed Zalta gave
his analysis of intentionality, and of how it can be captured in intensional logic-an
important prerequisite if informalism is to break out of the extensional
straightjacket. His analysis is noteworthy because it explains, in a formal system,
many of the intentional phenomena that have led people to wonder about the
formalizability of ordinary language and meaning. Finally, Steve Harnad talked
about his work in perception and categorization, and the role of non-arbitrary
representations in deformalizing cognitive models.

Discussion 2. The discussion on this day revolved around trying to identify
tasks in which informal processing is exhibited or would be useful or necessary.
Key concepts that were discussed include approximate representation and
reasoning; granularity; the tension between phenomena and their interpretation,
on the one hand, and the mechanisms which produce them, on the other; concept
formation; grounding; interpolation and extrapolation; the advantages of informal
reasoning for controlling the complexity of a problem space; the methodological
recommendation to tackle informality in specific domains and tasks; incrementality;
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and adaptability (and the importance of parameterized theories as a formal version
of concept adaptation).

Modeling and Y-nterpretation Day. A constant theme of the workshop
was that any discussion of formalism or informalism very quickly leads to questions
of modeling and interpretation, and on the last morning there were two talks on
that subject. The first talk, by Don Good, recast recursive function theory in the
role of the mathematics used to model digital systems. Don pointed out that a
digital system can be interpreted and understood at many different levels, and he
explained how the mathematics of recursive functions could be used to map between
the levels and to show that these mappings guarantee that the properties of the
system at each level are faithfully reflected in the other levels.

Jon Shultis wrapped up the talks with an account of modeling and
interpretation, and explored a spectrum of representations, from abstract syntax
to grounded connectionist networks, as points in a continuum of model types,
comparing and contrasting them along several dimensions of importance for
cognitive modeling.

A third talk on modeling and interpretation, by Jeff Rothenberg, regrettably
had to be canceled.

Discussion 3 The discussion on the last day consisted of a small, informal
experiment, in which the participants attempted to solve a problem, and later
analyzed what they were doing as a means of generating some concrete examples
of informal reasoning.

Acknowledgments and Disclaimers. The workshop organizers would like
to thank all of the participants, and especially the speakers, for contributing their
time and talent, and for making this a most interesting and informative workshop.
Carmen Hoecker deserves special thanks for doing all of the really hard work of
local arrangements, and for taking care of the many, many details and problems
that inevitably accompany any such event.

Funding for the workshop was provided by the Defense Advanced Research
Projects Agency (DARPA), Information Sciences and Technology Office (ISTO) of
the United States Department of Defeiise, under contract MDA 972-88-C-0076,
entitled "Languages Beyond Ada and Lisp".

The transcripts of the discussion sessions have been lightly edited to
improve readability, but due to time pressures have not been reviewed by
the speakers, and should therefore not be taken as an accurate account of
what was said.
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Reflections on the Informal Computing Workshop
Catherine Harris, University of California at San Diego

The workshop had the side effect of being a consciousness-raising session about
the nature of informality. Pre-workshop, I thought of informality as evidence of
lack of rigor or lack of clear thinking, which might be necessary in the early
stages of work, but which was something a researcher should be embarrassed by,
something to play down in published work. This attitude is widespread in
mainstream scientific thought. I just read a review of sociologist Bruno Latour's
Science in Action. He shows that once the formalism is worked out or the molecule
structure is identified, scientists rewrite the immediate history of the fuzzy, trial-
and-error or other "informal" steps leading up to the discovery. Post-workshop,
I've felt on a few occasions that it would be beneficial to describe the informal
steps that I was taking to explain a currently mysteriously phenomena.
Furthermore, I had the urge to do so without apology, to simply inform readers
that the description was informal, and that although the phenomena might be
amenable to descriptions by formalisms a, b or c, each was inadequate in various
aspects. The problem with apologetic presentations of informal ideas is that the
apology often takes the form of either de-emphasizing the informal idea, or trying,
as much as possible, to dress up the new thoughts in the trappings of established
formalisms (using jargon terms, selective description). Other consciousness raising
along similar lines: I've read recently a few papers where scientists note upfront
that what they are doing is not susceptible to complete, precise description, but
that this doesn't mean science is impossible. An example is Marian Dawkin's
1990 BBS article "From an animal's point of view: Motivation, fitness and animal
welfare".
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The First Workshop on Informal Computing:
A Somewhat Personal View
David Littman, George Mason University

This short note is intended to convey my impressions of what I consider to be a
very interesting, successful workshop on the difficult topic of informal computing,
hosted by DARPA and Incremental Systems. When we all sat down at the
conference table the first day, I believe that we had different ideas about what
informal computing is. Over the course of the three-day workshop, two camps-very
friendly to one another I must point out-emerged. The two camps might be
informally labelled the "philosophical camp" and the "psychological" camp. I, a
computer scientist and cognitive psychologist, count myself in the latter and the
remainder of this note reflects that fact. The questions that I had in my mind
from the time that I was invited to the workshop until this moment are these:
"How do we develcr a theory of the representations and reasoning processes that
humans use when they reason informally?" and "How can we build artificially
intelligent computer programs that can 1) help humans reason informally and 2)
reason informally themselves?" Let me give an example. I have worked for
several years on the problem of trying to understand how novices and experts do
problem solving tasks for which they do not have an off-the-shelf, stock solution.
Without a stock solution, a problem solver is almost invariably forced to fall back
on what we call common sense, or background knowledge. For example, both Tim
Standish and I have devoted considerable effort to understanding how computer
programmers figure out how to solve problems that they have never solved before.
We both have come to the conclusion-along with others who study
programmers-that in such situations programmers think about how to solve the
problem using what can only be called informal reasoning. For example, a student
who is just learning to write programming loops might imagine how he or she
would control the actions that are supposed to be done in the loop if he or she
were responsible for controlling the execution of the loop statements. The
transformation of this informal representation of the loop into a semantically and
syntactically correct loop is a significant problem solving accomplishment and it
is crucial, in my opinion, to keep clearly in mind that the long path to the
student's working loop started off with informal reasoning. Tim Standish talked
about several fascinating informal reasoning techniques that novice and expert
programmers use and I discussed some of the informal reasoning processes that I
have seen in my studies of robot designers. This thread of activity at the workshop
convinced me that we really can have a science of informal computing and that
such a science should, initially, dispense with philosophical arguments about
whether it is possible to formalize informalism (I think that it is); whether we can
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have computer programs that reason informally (I think that we can) and the
like. Indeed, I believe that one of the major positive outcomes of the workshop on
informal reasoning was that there really IS a domain of study that can be called
informal computing. Instead of obsessing about such philosophical conundrums
we should, in my opinion, set about our research empirically. We should attempt
to identify the representations and reasoning processes that humans use-and
machines might use-to engage in problem solving that is based in informalism.
Heuristically, this type of problem solving is almost always seen in two situations:
First, during the initial phases of problem understanding and solution generation
and, second, during the acquisition of problem solving skills. Many of the efforts
to build intelligent educational software and intelligent problem solving
environments could, in my view, take great advantage of and contribute to such
work. This is where, I am convinced, we should direct our efforts and, if I have
my say, this topic will be the focus of the Second Workshop on Informal Computing!
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Opening Remarks
Jon Shultis

Logicians have too much neglected the study of vagueness, not sus-

pecting the important part it plays in mathematical thought.

- C. S. Pierce

[T]his bleak alternative between the rationalism of a machine and the

irrationalism of blind guessing does not hold for live mathematics:

an investigation of informal mathematics will yield a rich situa-

tional logic for working mathematicians, a situational logic which

is neither mechanical nor irrational, but which cannot be recog-

nised and still less, stimulated, by the formalist philosophy.

- Imre Lakatos, Proofs and Refutations

We all realize that we cannot hope to mechanize interpretation. The

dream of formalizing interpretation is as utopian as the -dream of

formalizing nonparadigmatic rationality itself Not only is inter-

pretation a highly informal activity, guided by few, if any, settled

rules or methods, but it is one that involves much more than linear

propositional reasoning. It involves our imagination, our feelings

in short, our full sensibility.

- H. Putnm, The Craving for Objectivity.

the meaning of an expression is not determined in any unique

or mechanical way from the nature of the objective situation it

describes. The same situation can be described by a variety of

semantically distinct expressions that embody different ways of

construing or structuring it. Our ability to impose alternate struc-

turings on a conceived phenomenon is fundamental to lexical and

grammatical variability.

- R. Langacker, Foundations of Cognitive Grammar I, p. 107

Facts just twist the truth around.

- David Byrne

Welcome to the Workshop on Informal Computing - the first Workshop on Infor-
mal Computing! I am very excited to be here, and gratified that such an impressive
and enthusiastic group was willing to come here on such short notice.
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Why are we here? We are here because we sense that a good deal of human
understanding and communication is informal, and that informality underlies much
of our ability to adapt and function in the real world.

We want to understand this. What is it? What does it tell us about ourselves
and our world? How can we have a science about it? What part does it play in
scientific understanding? And finally, how can we build machines that are more like
us? Machines that sense, and reason, and communicate, and create, and feel, the way
we do? Informally ... as well as formally.

In one way, our being here speaks of growing dissatisfaction with the standard
litany of formal software development. It is an acknowledgement of the criticisms
that have been leveled over the past decade or so at the widespread assumption
within computer science and related fields that, because computers can be described
as formal symbol manipulators, that that is what they are. This explains why, to most
computer scientists, the phrase "informal computing" rings loudly of the absurd; for
them, it is an oxymoron. But even though a screwdriver can be described as a device
for applying simultaneous torque and pressure to the head of a screw, it is also handy
for prying open lids and gouging small holes in things.

Preconceptions like this have far-reaching consequences. Consider G6del's cele-
brated incompleteness theorem, which I believe is more often cited than studied. It
reads:

For every w-consistent recursive class K of FORMULAS there are recursive CLASS SIGNS

r such that neither v Gen r nor Neq(v Gen r) belongs to Flg(K) (where v is the FREE

VARIABLE of r).

Notice that the theorem applies to a very special kind of mathematical structure:
w-consistent recursive classes of formulas. Notice also that the undecidability of
v Gen r pertains only to the closure of r. under the relation of immediate consequence
(that is what Flg(K) denotes). If these restrictions are lifted or even just relaxed
somewhat, the conclusion is undermined. Yet the Church-Turing thesis, coupled with
the assumption that the universe is reducible to formal terms, makes these i -strictions
seem benign because inevitable.

This is really quite remarkable. It is as though a geometer were to conclude, upon
seeing a demonstration of the impossibility of trioecting an angle with a straight edge
and compass, that it is impossible to trisect an angle at all! Yet this is exactly the
kind of inference which is invoked to support the symbolic thought hypothesis, which
has dominated AI for over 30 years.

Informal computing is mandated by the need to make computers more respon-
sive to human needs in the context of the real world, and the failure of formalism
(rationalism and analytic philosophy generally) as a theory of reality, human under-
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standing, and language. We represent the growing number of people who have come
to accept that, not only are natural language, understanding, and reasoning unlike
their formal counterparts, but they are intrinsically more valid and faithful to c'eality,
and real purposes.

Goals

We are here to give birth to a new discipline: the study of the informal, not as
something to be repaired, replaced, or reduced, but on its own terms.

The goals of this workshop are programmatic. We want to establish ourselves as a
community in which we can have discussions and make progress unhampered by the
need to explain or argue about the basic problems, issues, and validity of informality.
By doing this, we hope to bring greater focus to all our-efforts, and accelerate the pace
of research. Once a body of strong results and successes begins to appear, the broader
scientific community will become more receptive to our philosophical arguments. For
now, we need to spend less time defending ourselves to the rest of the world and get
on with it.

For this community, we want to

* set goals,

* identify key problems and approaches:

- long,

- medium,

- short term

* establish methodological principles for

- theory,

- experiment

* initiate a series of publications, meetings, etc.

Program Notes

Themes

* Adaptive languages and conversational computing: this is the first place where
we see a strong impulse to depart from rigid, formal interfaces.
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e Informal reasoning and knowledge: natural language is just one manifestation
of general cognition, and is inextricably involved with pragmatics, epistemology,
robotics, analogy, metaphor, and other forms of informal reasoning. Basically,
the doctrines of pragmatism and meaning holism imply that natural language
is not separable from general intelligence, so we can't have adaptive languages
and conversational computing without informal reasoning and knowledge.

9 Modeling and interpretation (hermeneutics): these are central to implementa-
tion - the computational/physical/mechanical realization - of the information
processing components of cognitive agents.

Approaches

" broken formalisms

* emergent cognitivism/epiphenomenalism

" intentionality/dialog/hermeneutics

Discussion goals

" Clarify, reconcile, and consolidate approaches within and across themes on suc-
cessive days.

" Research agenda- goals, problems, program, and plans.

" Stimulate discussions leading to cooperative research among participants.
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Human Being

Sandra .Carberry Computer Systein
Department of Computer Science C

University of Delaware
Newark, Delaware

Information Information'
Provider Seeker

Modeling the User

1. Beliefs and knowledge: Kass, Ballim&WilksS er I

F.2. Level of expertise: Wilensky, Chin,
Crosby&Stelovsky

Utterance 'R . ... o _Te
interpreter Generator 3. Preferences

4. Information receptivity

5. Goals and Plans

A. Domain: Schank, Allen, Carberry, Pollack

, Lochbaum&Grosz&Sidner

User B. Plan-construction: Wilensky, Litman, Ramshaw

C. Communicative: Lambert&Carberry
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Exploiting a User Model
0.tlie

Understanding
Indirect speech acts: Allen
Ill-formedness: Carberry, Ramshaw 1. Modeling the user's plans and goals
Ellipsis: Allen, Carberry, Litman

2. Understanding pragmatically ill-formed ut-

Response Generation i terances
Extended responses: Allen, McKeown, i

Josh i&Webber&Weischedel, 3. Generating tailored definitions
van Beek&Cohen

Misconceptions: Pollack, Quilici
Descriptions: Paris

Bateman&Paris 4. Problems and research directions
Definitions: Sarner&Carberry

Overview of Plan Recognition
Incremental Plan Inference

Expected Goals
Ga Gb Gc

* Build a model of the user's plan incremen-
tally as the dialogue progresses

Wilensky
A2 Allen

# Maintain global and local context

o Domain-independent reasoning strategies

* Domain-dependent knowledge of goals and
, plans

Al
Observed Action

W I
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Hiearcicl Pan epesetatonUtteranAce What is the address.of
Hierrchial Pan epreentaionDr. Smith's office?

A. Applicability Condiditons Derive Know the address of
B. Preconditions Goal D.Sihsofc

C. Body
D. Effects

I Candidate 1.Visit Dr. Smith

Sample! Plan: Declare-Major(-ageflt, -..cept) Focused Plans 2. Send item to Dr. Smith

Ap2 pllcability Conditions:
Admitted-U niversity(-agent)

Preconditions: ontex-Mode1
Have-GPA(-agent, -ave)

where GE(..ave, 2.2)
Have-Interview(-agent, Jac) n

1. ObanAcpac(aet -dept)

2. 5 ubmit- Cha nge- Form (-agenlt, -.dept)Upae
Effects: C

Decla red- Major(-ageflt, -dept)

Plani Identification Heuristics

*If the user wants to know the values of
a term for which a proposition P is true, Visit-Canada
then those plans containing P or -P are
candidate focused plans.

Sample Plan: Declare-Major(-agent, -.dept)
Applicability Conditions: Vacation-in-Toronto

Admitted- U niversity(-agent)
Preconditions:

Have-GPA(-agent, a'Ve) A Enjoy,-night-life
where GE(..ave, 2.2)

Have-Interview(..agent, J..ac)
where Undergrad-Advisdr(jac, -.dept)AtedAtn-Atn-

Bd:concert play Blue-Jays-
I. Obtain-Acceptance(..agent, -.dept) game
2. Submit- Cha nge-Form(-agent, -.dept)

Effects:
Declared- Major(-.agent, -dept)



Wednesday . resentatlofit 2U -  Pragmatic II-Formedness
'What courses must I take to satisfy the P m cr e
foreign language requirement?"

Utterance is
1. syntactically and semantically well-formed
2. violates pragmatic rules of world model

(Intensional violation)

Sas-B _Examples

Satisfy-Skills(U) Satisfy-Ma'or(UBA) U: 'I'd like to own my residence,

i Ibut I don't like a lot of maintenance.
*Satisfy-LaPg-Req(U) Which apartments are for sale?"

Sale-Status(_x:Apartment, For-Sale)

* Satisfy- Dept(U,CS, BS) .*Satisfy-Dept(U,CS,BA)
I I U:"Who is teaching CS105?"

SaI , S: "Dr. Smith, Dr. Brown, and Dr. Jones."
* Earn-Credit(UC180) "Earn- Credit UCS 180) U: 'When's Smith meet?"

Meet-Time(Smith,_t:Time)

Casesof Pra-matic M-Formelness 1. GOAL: Address speaker's intent

1. Improper use of anguage 2. MOTIAION

2. Short-cut use of language A. Gricean Theory of Meaning

3. Erroneous beliefs about the world B. Gricean Maxim of Relevance

Criteria For Responding 3. STRATEGY

1. Discrepancy between speaker and listener beliefs A. Infer speaker's underlying task-related

2. Seriousness with which discrepancy is viewed plan from the preceding dialogue

3. Faith in correctness of own beliefs B. Use inferred plan to suggest substitutions
for the erroneous proposition

Ways of Responding C. Evaluate suggestions on semantic and
relevance criteria

1. Explicitly correct speaker's misconceptions

2. Negotiation dialogue to "square away" discrepancies

3. Address speaker's perceived intent in making
the utterance
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Suggestion Mechanism 7I.
0w

Inferred plan suggests substitutions for the (n T3)
erroneous Proposition. CD 0

1. Simple Substitutions 57 (n0
A. Object class substitution 0C: (D Co CD

U: "We'd like toinvest between 50andS 80 L, 0 32
million dollars. (D 0 _1Z

-n CD 0J 0

Sale-Status(-x:Apartment, For-Sale) (DEn0 (

00

CDC

'D

Enol-ecin(,-:etin

whol-ee Ion-u,..sisecon)sSetoC15

Suggestion Mechanism
Learn-Matel(U,..s:Section)

Inferred plan suggests substitutions for theI
erroneous proposition. Lea rn-From (U,_s: Section, _..fFactulty)

where Teach (_f: Faculty, ..s:Section)

2. Epaned Pth ubsttutonsAttend-Class(LJ, I p:Cls-Room, ..tm:Time)
U: 'Who are teaching sections of CS105?" where Meet- Pla ce(..s:S ection, -.p:Cls-Room)
S: "Dr. Smith, Dr. Brown, and Dr. Jones." Meet-Time(..s:Section, ..tm:Time)
U: "When's Smith meet?"

Meet-Time(Smith, ..t:Time)

Meet-Time(Smith. t:Time)

Teach(Smith, _s:Section)
Meet-Time(..s:Section, .tm:Time)
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e Process model for interpreting pragmati-
Selection Mechanism cally ill-formed queries

Evaluate suggested revised queries
* Based on Gricean theory of meaning and

maxim of relevance

1. Simi!arity.

(a) Operation producing substitution * Relies on established dialogue context as
primary mechanism for suggesting revised

(b) Semantic similarity of terms queries

2. Relevance * Uses semantics and relevance to evaluate
suggested revisions and identify appropri-

(a) Shift from current focus of attention ate interpretations

• Identifies user intent or at least satisfies
perceived needs

Tailored Definitions

"What's baking soda?"

Generating Tailored Definitions Make-light-texture(U, .x:B-GOOD, .:MIXTURE)

Factors Influencing Definitions Add(U, _z:RISING-AGENT, .y:MIXTURE)

where Acidity(z:RISING-AGENT, BASIC)

1. User's domain knowledge

2. User's receptivity to different kinds of in- Make-light-texture(U, _x:B-GOOD, _y:MIXTURE)

formation Precondition:

Ac~dity(.y:MIXTURE, ACID)

3. Existing dialogue context Effect:

Light-texture(_x:B-GQOD)

"What's baking soda"

"Baking soda is a basic rising agent. If the

mixture is acidic, then adding baking soda will

make the texture light."



Wednesday Presentations 23

Critical Assumptions

1. All domain goals are a priori equally likely Problers and Current Research

2. The user's knowledge is incomplete but Default Inferences: Carberry

not erroneous (Exception: Pollack)

Probabilistic model[ Goldman&Charniak

3. The user's statements are correct and not Abduction: Konolige&Appeit&Pollack

misleading Disparate models: Eller&Carberry
I

4. The system's inference mechanisms do not Novel plans: Kass, Pope&Carberry

introduce errors Problem-solving plans: Ramshaw

Communicative plans: Lamberi&Car erry

5. The user's queries address aspects of the

task within the system's limited knowl- Collaboration: Lochbaum&G rosz&Sidner

edge

Is this realistic?

Summary

1. Plan Inference

" Incremental as dialogue progresses

* Exploit model of user's plan for robust

understanding and cooperative response

generation

2. Other aspects of a user model

" Beliefs and knowledge

" Preferences

" Information receptivity

" Level of expertise
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Wednesday Presentations 26 IFIGURME1. SUMMINARY OF PROCESSES INAlI
Wb~en the User Commra Is.Ifog a SYstem Coaumamd)

Ile,?O ,, - ~Casel: User Command Can be Parsed

I Case I-A: Transforracon In UTD

C... ~ *Apply Tmrsc.mxcn

1'.. - i e.p ~Case I-B: Transfontnation Not in UTD
,j*- -Case 1.8.1: Meaningof User Asserion Known to AIUL

0 C ,.T Casell -Uc Carseesy ume~ars

- -- Case 1.8: Al eaitno(Ij-s rseri Known
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A definition of "informality":
Wednesday Presentations 33

The degree of informality is inversely

Natural Language Programming in proportional to the degree of

Solving Programs of Search specification.

Alan W. Biermann
Duke University

29 May 1991

Levels of specification: Levels of granularity:

Help me! Job

Solve problem .sConcept

for me. ,nlevel

fSubtask natural
language

Sort array A. Cocp
....... c..... Sentence

I sentence

i Algorithm e xec,.tabl
for i = 1 to n-1 nattura!

for j = i=I to n language.
begin - - - High level code Tradihiona

L3w level code

Li CLA R1,X

ADD R1,R2 Machine level code

.Microcode

(microcode) Implementation

(mathematical specification)

(set theory)
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A fortual language,

This talk' (1) A subset of natural language.

Natural Language Programming (2) Approximately learnable from

A Generation Methodology for 
a small amount of instruction.

Search Programs (3) A formal definition.

Using Natural Language to Generate
Search Programs

A natural language program: Cmi
ual wa t or a Compiling the natural language program:

Here is a way to sort an array.
Exchange the i-th smallest entry with

the i-th entry for each entry i. Definition of verb sort. Argument: array

Example usage: For each entry i:

Sort that array. Exchange:
the i-th smallest entry

With:

Traditional program: the i-th entry

procedure sort(A:array of integer,
n: integer);

var ij:integer;
begin
for i:= I to n-i do

for j := i+l to n do
if A[i] > AU] then

begin
temp := Ai];
Ai] := AO];
AU] := temp
end;

end; -.-----



I,4ULu1 plras Synax: "apply(ordinal, i-th smallest,
the i-th smallest entry WJ ontaroens 35

containerof(entry))))
collect(X)

object type
check for filter collected from Example: Finding the second
uniqueness focus stack smallest entry in [9, 3, 7, 10]

el e2 e3 e4

Noun phrase semantics: apply(artdef, .the e3:7
for X in apply(artdef, the apply(ordinal, 2-nd smallest, e3: 7

orXin apply(rd l, -th smtypegen(entry, in, el:9 e2:3 e3:7 e4:10
typegen(entry, in, containerof(entry)))) [9,3,7,10]

containerof(entry))))

collect(X) ccollect(X)

Imperative verb execution: A natural language program:

Exchange e3 with e2.

Display a 4 by 5 matrix and call it testmat.
Fill the--matrix with random values.

Complete computation: Choose an entry and call it p.
Define a method to pivot testmat about p.

For each entry i: Choose an entry not in the p row and not in
Exchange: the p column and call it q.

the i-th smallest entry Compute the product of the entry which
corresponds. to q in the p row and the entry

With: which corresponds to q in the p column.
the i-th entry. Divide the result by p and subtract this result

from q.
Repeat for all other entries not in the p row and

The natural language program: not in the p column.
Divide each entry except p in the p row by p

and negate those entries.
Here is a way to sort an artay. . Divide each entry except p in the p column by p.
Exchange the i-th smallest entry with Put the reciprocal of p into p.

the i-th entry for each entry i. End the definition.



The equivalent in PL/I code:EXCAN o

pR . i,4 ;$s 6 Success rates using NLC:
DECLARE (MATRIX(-,*),PIVOT) FLOAT,

(PrVROW,PVCOLROWS,COLMNSJNJ)

FIXED BINARY; Number of subjects
/*DEERMINETHE NUMBEROFROWS (a) achieving success 10 5+2

AND COLUMNS ,! (b) reporting success
ROWS = HBOUND(MATRD.i): system failure 1 I
COLMNS =HBOUND(MATRIX.2); (c) unable to proceed 1 0
/I NAM TE PIVOWPIEO) (d) unable to finish on time 0 3PIVOT = MATRIX(PIVROW.PIVCOL);
/ APPLY THE "RECTANGLE RULE" */
0 I = 1 TO PIVROW-1, PIVROW+I TO ROWS; Total number of subjects 12 '11

DO J = 1 TO PIVCOL-I, PIVCOL+1 TO COLMINS;
MATRIX(IJ) = MATRIX(LJ)

- MATRIX(IPIVCOL) *
MATRIX(PIVROWJ)/PIVOT

/* CHANGETHE OLD PIVOT ROW */
DO J = I TO PIVCOL-1

PIVCOL+I TO COLMNS;
MATRIX (PIVROWJ)
- MATRIX(PIVROWJ) / PIVOT;

/ CHANGE THE OLD PIVOT COLUMN /
DO I = I TO PIVROW-i,

PIVROW+I TO ROWS;
MATRIX(I.PIVCOL)
MATRIX(I.PIVCOL) / PIVOT;

/* CHANGE THE PIVOT "I
MATRIX(PIVROW.PIVCOL) = I/PIVOT;

ENDEXCHANGE;-

A generation methodology for
Sentence processing statistics for NLC: search problems:

Sentence type Number Percent, 1. Specification of the problem.
2. Selection of a theory from a library.Correct 1283 81.2Userrt 183 81.2 3. Specialization of the theory to the -

User Error 18 1.1
Fault of English 2 0.1 current problem.
User Sloppiness 141 8.9 4. Instantiation of the theory into
Unimplemented 107 6.8 a first draft program.
System Error 30 1.9 5. Refinement of the draft program.

1581 100.0 6. Compilation into object code.
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Specification of the problem:

Spec. of Search theory FOdSac
problem fro librar

D [<h,A,key> I h in Nat
4Unification and 1<=h and

A in map(fl..h},Nat) and
Specialized 1Ordered(A) and key in Nat)
search theory TR f index I index in Nat)

ISynthesis theorem 0 lambda<h,A,key>,index.
Fis1rato A(index) = key and

Frstgrafto index in {i..h}

____ ____Optimization

Fiaied

Unification:
Specializing the search theory:

A search theory:
F gs-binary-splic-of-integfer-subrange

D (<rn.n>l m in integer and n in integer and m<e-n) for all x in D.
R (k I k in integer) there is y in DT

0 ~ &m> k. k in (m.)for allz in Rp

R' ~Iambda<mn>~. (<ij> I i in integer and j in integer oxz qyzi
and m<--=<enj

Satisfies lambda k. -ij>. ic=k<=j

r0' lambda <mnn>. <mnn>

Split lambda ii>. j c and
(-dj> = ci.(i+j) div 2> or

- cj> 1.Ni+j) div 2.j>)

Extract lambda k ij>. i jand k =i



A syntheSubstituting into the theorem:Ad~~''rsettoi 38 function OrdSearch (h:Nat,A:rnap(f (1..h) ,Nat),key:Nat):
set(Nat)

function Fp (x:V): set(Rp) returns (index I A(index) =key and
returns I{z 1 0 1(x,z) jOdsac index in (1..h)

=F-gs(x,rO'(x)) -shAkylh

function Ordsearcb..gs(h:NatA:map( 11..h I,Na),
key:Nat,i:Nat,j:set(Nat))

function F...gs(x: D. ,r:R') :set(FT) returns [ index I A(index) =key andreturns Iindex in (i..j))reun {z ISatisfies(z,r') [index I i=j and indexi and A(index)=keyjand 0&(,z))} U (index I i<j and <i'd'>=<i,(i+j) div 2> and
{z I Extract (z,r') and. index in Ordsearch..gs(h,A,keyij)Jq (x,z)} union U ide1 i<j and <i',jS=<1+(i+j) div 2,j>
{F....gs(x,s) I Split(x,r',s)) anindex in Ordsearchgs(h,A,keyi'j')j

Efficiency: Accounting for order Adding the efficiency guards:
function OrdSearch (h:Nat,A:rnap([ I ..h) ,Nat),key:Nat):

set(Nat)
returns (index I A(index) =key and<=> Ai)<--AOj). index in (I..hlI
= Ordsearch..gs(h,A,key, 1,h)

Therefore: 
function Ordsearch..gs(h:Nat,A:mnap(( (I..b I,Nat),

key:Nat,i:Nat~j:setNat))AWi <-- Aindex) <= AO) returns [index I A(index) =key and
index in Ii..j))

A(i) <= key <= AO) [ index I i~j and indexi and A(index)=key)U (index I i<j and <i',j'>=<i,(i+j) div "> and
A(i') <= key <= AU') and

index in Ordsearchgs(h,A,key,i',j'))
U (index I i<j and <i,j>=<1+(ii-j) div 2,j>

and A(i) <= key <-- AG') and
index in Ordsearchgs(11,A,key,i'j')
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search programs:

Accessing a .theory:

Create a program called OrdSearch. 1. by name.

The inputs to the program are h, 2. by "plan recognition".
a positive natural number, A, a sorted
array of entries indexed from 1 to h, 3. by self invocation.
and key, a natural number.

The program is to find index such
that A(index) key.

Accessing a theory by name: Accessing a theory by "plan recognition"

"Use binary search." Select interval [1..h].

If 1 = h then
if A() = key then return '1}
else return {}

Divide interval into
interval [1..h div 2] and

interval [h div 2+1 .. h].

Etc.

(Pattern match against all search theories.)



.WedresdayPre~entations 40 What natural language offers:Invoking te efficiency guards:

Mechanisms for specifying
complex processes"Process A from i to j only if

Utilization of contextA(i) <= key <= AUj)". Variable granularity

Analogy

Stability

Universality

Speakability

Conclusions:

1. We can do natural language
programming which is in
some sense analogous to
traditional programming.

2. There are some powerful
methodologies around for
program generation.

3. We may be able to link
natural language into
them to produce substantially
better natural language
programming.



Linguistic Structure from a Cognitive Grammar Perspective
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- , Karen van Hoek

University of California, San Diego

(1) Standard assumptions
a. A linguistic system comprises a number of discrete, independently describable

components (phonology, morphology, syntax, lexicon, semantics). Grammar (and syntax in
particular) constitutes an autonomous structural domain distinct from both lexicon and semantics.

b. Linguistic semantics is best characterized by a system of rules akin to formal logic
and based on truth conditions.

(2) Cognitive Grammar
a Unification of linguistic description. Linguistic systems are descrbed in terms of a

structured inventory of conventional units.
Syntax is inseparable from semantics, and forms a continuum with morphology. Grammatical
structure resides in the Igxicon, as it is specifled by the conventional units of the language.

b. Cognitive semantics: meaning is equated with conceptualization.

(3) Conceptual Unification
a- Only semantic. l and l are posited.
b. A symbolic unit consists of a semantic unit paired with a phonological unit.
c. Lexicon, morphology and syntax are fully descnbable by means of symbolic units.

(4) Cognitive Abilities
a. to form structured conceptualizations
b. to perceive and articulate phonological sequences
c. to establish symbolic associations between conceptual and phqnological structures
d. to use one structure as a basis for categorizing another
e. to conceive of a situation at varying levels of abstraction (schematization)
f. to detect similarities between different structures
g. to establish correspondences between facets of different structures., or elements

in different domains
h. to combine simpler structures into more complex ones
i. to impose figurelground organization on a scene
j. to construe a conceived situation in alternate ways (irnageryl)

(5) Content Requirement: The only units ascribable to a linguistic system are (i) overtly
occurring expressions (or components thereof); () schernatizations of the elements permitted by
(i); and (iii) categorizing relationships between permitted elements.

(6) Schematization: A is schematic for B if B is fully compatible with the specirications of A
but is characterized with greater precision and detail.

(7) a. Components of overtly occurring expressions: [W], [tzp]
b. Schematization: [CVCI
c. categorizing relationships: ffCVC----. [lktf], [CVC]---. [tCp]]

(8) The content requirement rules out any "purely grammatical' constructs, elements which
have neither semantic nor phonological value (e.g. empty diacritics, syntactic tree structures.
syntactic coindexing, most grammatical cons.raints and fitters).

(9) Common assumption: The autonomy of grammar is established if any aspect of
grammatical structure is less than fully predictabL4 on the basis of meaning or other independent
factors.

(10) TypePreicrtabity Fallacy: (9) confuses two issues tMat are in principle ditinct: (i) what
kinds of linguistic units there are; and () the prectabi of their behavior.

(11) Grammatical form is not predictable on the basis of meaning-rather it symborizes
meaning. Language is conventioral symbolization.
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(a) Meaning Is based on conceptualization
(b) A fixed expression is often polysemous, i.e. it has a variety of related established

senses that form a complex category representable as a network.
(c) The meaning of an expression is characterized with respect to one or more

cogniteQMans (or "frames", "idealized cognitive , . dels", "scripts", "folk models", etc.) Any
kind of experience, concept, conceptual complex, ,. Knowledge system can serve as the cognitive
domain for an expression. :.

(d) An expression's meaning embodies conventional imgely or naC=..; i.e. it-,.
incorporates a particular way of structuring or construing the conceptual content proviled by its
particular domains.

(13) Network model of complex categories

(141 (a) Categorization by schema A -- .B
A is schematic for B; B elaborates or Instantiates A.
B is fully compatible with the specifications of A but is characterized with graateF-C

precision aind detail (e.g. DOG POODLE)
(b) Categorization by pjgjy= A-> B
A is a prototypical value; B represents an extension from the prototype. (e.g.

ROBIN -- -> OSTRICH)
B conflicts in some way with the basic specifications of A but is assimilated to the

category on the basis of some perceived similarity to A.

[CIRCULAREN TTZ ... ...

IRCUL 'MAKl CIRCULA OBJECT

[c I Rc OA R P IE CE 0OF JEWELRYI

CIRCUIAR PIECE OF JEWELRY CIRCULAR PIECE OF JEWERY

WORN AROUND FINGER __WORN THRU NOSE

(15) COLOR SPACE: yellow ARM: elbow BASEBALL: shortstop

(16) Meaning = Content X Construal

(17) Some Dimensions of Construal
(a) level of specificity (schernaticity) at which a situation is characterized
(b) construal relative to different background assumptions and expectations
(c) perspective (e.g. vantage point)
1d) relative prominence of substructures (e.g. proliling; figur/ground)

(18) a. The hill gently rises from the bank of the river.
b. The hill gently falls to the bank of the river,

(19) The semantic pole of any linguistic expression is referred to as a prediation. The h=
(or z, of a predication is the extent of its coverage in relevant cognitive domains (i.e. how
much of those domains it necessarily evokes and relies on for its characterization). A
preoication's QfI is that substructure within its base that the expression designates.

hL i
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. .. o............. ..... ...

A aet H - %over R = recipient energy transfer - - aOtion
>....- perception/possession .... =corespodence/identity - sphere of control

(20) (a) A nominal predicatioQn profiles a region In some domain. (Region defined
abstractly-a set of interconnected entities, which need not be discroie, salient, or Individually
recognized.)

(b) A relational prediction profiles Interconnections among conceived entities.
(Interconnections can be thought of as cognitive operations that register the relative positions of
entities in a domain.)

(c) Processes profile a series of relational states, conceived as arranged in time, and
scanned sequentially.

0. ...c' z. .. . ' . .  .' - =

11MA I~~lm 1

..... ..- .. .....
.1) n-,- ?, (b) 3 . 1 . ,') "..y_ = 'LZ tro... .?.

(21) Relations involve figucchgmund asymmetry; this is one aspect of construal.
i (a)

(22) a. The lamp is above the table.j , ,. ' ._
b. The table is below the lamp.

-- :'..O IT OF BAC ) ,.

(23) -0-Q -->

(24) a. Mary hit John.
b. John was hit by Mary.

(25) Elements of grammatical composition: c and ghrtQn

0 ...... ....0
..
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Wednesday Afternoon
Discussion

Shultis. I've been sitting around frantically trying to integrate over
this day. Today was language day. Tomorrow is more general. Tomorrow is
knowledge day. Unfortunately Cordell Green had to go back to his offices.
He'll be back tomorrow morning, but he has to help people get ready for a
site visit they're having. I said I was sorry to hear that he was going because
I would have liked to hear what he had to say about the day. He replied that
he was shell-shocked, that there was a lot of stuff going on and he was
feeling overwhelmed. And I have to confess that even though I had some
idea of what was~going to happen today, I have been really impressed by the
diversity and the number of ideas that have come up; but if I can at least
make a stab at it, we were all talking about language today. One thing that
I see as a common theme is that we're all concerned in one way or another
with the problem of meaning and the problem of conceptualization and how
they influence or affect the linguistic interface, that is, linguistic performance
and capabilities.

Instead of sitting up here and pontificating on the subject, I'd like to
see if I can solicit from you questions or issues, and write them up here on
the board, to see if we can come up with a list of points that people feel it
would be important to discuss at this point. As I said, I can supply some
views of my own, but...

Standish. The question I have that seems to be a thread running
through this proceeding and which may touch on something c verybody deals
with, is this: what do people mean when they talk about "informalism" or
"informality"? What's the meaning of "informality"? In particular, is there
any meaning of it that contravenes the finite symbol system hypothesis
which is something that, as a CMU person, means roughly that any intelligent
organism or machine can only exhibit intelligent behavior by means that
deal with finite systems of symbols and their transformation by discrete
rules through time. Something like that. if somebody else has heard another
version of that maybe they can give it more articulately. Is there any meaning
of "informality" that transcends finite systems of symbols and their
transformations?

Shultis. By which I assume you mean finitely-based?
Standish. Yeah. Finitude is, I think, part of it; although others may

have heard variants of it.
van Hoek. What is the import of finitude? Finite in what dimension?
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I'm not familiar with this.
Reeker. In terms of the number of basic elemerS you (can manipulate);

you can compose infinite...
Standish. I couldn't, for example, compute with continuous functions

that s-e infinite in their domains and ranges. Like adding holograms, color
holograms.

Larnad. That was almost the same question I was going to ask, but
could you put down "What is formality?"

1hultis. OT. Yeah, that was a question you raised this morning.
lfw-naad. And could I have a subquestion. What did you mean when

you said "computers can be described as formal symbol manipulators"? I
mean, of course, according to Putnam, chairs can be described as formal
symbol manipulators, too, but I thought in the case of computers, we were a
little bit closer to the truth.

Shultis. Well, let me hazard a quick answer to that and then people
can chew on it and get back to it. The fact is the computer is no such thing
as a formal symbol manipulator. It's a bunch of silicon and wire that makes
electrical pulses jiggle and move up and down and that's all it is. There's
another kind of answer; the answer, if you like, is that the only way in
which you see a computer as a formal symbol manipulator is because you
interpret that physical behavior as being manipulation of formal symbols
and it is an interpretation. Given that what you're doing is interpreting one
phenomenon in a particular way, there is nothing in the physical device
which requires that you give it that interpretation or that says that's the
only interpretation you can give it.

Reeker. But isn't there a sort of a grain built in at some level into any
computer? Not inherent in the silicon, but inherent in the design of it?

Littman. Its purpose.
Shultis. So: computers are intentional systems?
Littman. Yes, they're designed for a reason.
Standish. Well, they exist at many different levels. At one level you

might push electrons in the current technology, but at an old level, it might
have been sound waves and mercury delay lines or magnetic spots on a
drum. In a future one, it might be optical pipes, or interactions, or
macromolecular protein folding.

Shultis. Or even adding holograms.
Standish. Adding holograms, whatever. At a level above the basic

material mechanics are certain logical symbol manipulation rules that are
usually pretty faithfully implemented by the underpinnings, although not
always whien there are electronic glitches and whatnot. And from that point
up, from just the pure logical equations, an awful lot of the power of abstraction
that is built in a representation is built on top. So, at some level, if I cut it
off at the physical device level, and just talk about the rules of logic that
define the instruction sets, whatever they happen to be, it is really mathematics
and logic, and has nothing to do with the underpinnings. They are just
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material artifacts that usually fairly perfectly, and sometimes imperfectly,
implement these finite symbol systems.

Shultis. Let me give another example of that and then I want to get off
this and on to other questions. Larry showed an example earlier today.
Suppose you take your X-windows display and there's a picture of Mickey
Mouse on it, and you ask "What is the computer doing?" The answer is:
"The computer is showing me a picture of Mickey Mouse". What I want to
know is what partial recursive function it's computing. There is a construal
of that bit pattern which has absolutely nothing to do with it as a formal
system. So, just think about that. Other questions, issues?

Harnad. Well, there's a related one in your talk; in fact closely related.
What role does the semantic interpretability play in the meaning of formality,
or the meaning of physical formal systems?

Standish. Yeah. Good question.
Shultis. Could we formulate that in something I could write down?
Harnad. What role does semantic interpretability play in the meaning

of "formality"?
Shultis. So this harks back to your earlier question about whether or

not Post's game of Tag is a formal system or not. OM. There's no semantic
interpretation there; it's just a game you play with scratches on a piece of
paper, but there are rules that tell you which scratches to write down when.

Litman I can't help it; I'm an empiricist. I'd like to see some examples
of formality and some examples of informality. I feel like I'm up in the
stratosphere here, which people accuse me of being in most of the time. But
I think it would be interesting to try and make an extensional induction,
pardon the expression, on those two concepts by identifying some really
clear cases of informality and some really clear cases of formality. Then we
could see whether the issues are process issues, or representational issues...
So those are two questions.

Shultis. What you're suggesting, maybe, is a method for approaching
these questions: "Wbt is formality?" "What is informality?" by trying to find
some central examples of the categories of what we mean by those terms.

Littman. Yeah. I assume that we want an intensional definition, but
maybe... I don't know how to use the words right. Stephen maybe you can
help me... Maybe the best place to start is try to enumerate some examples
of formality and informality.

Harnad. ... an extensional definition of...
Littman. I'm suggesting that a methodology might be to develop an

extensional definition; but presumably we'd also want a necessary and
sufficient set of features, which is intensional definition. So it's "bottom
up"-but it's methodological.

Fisher. It strikes me that the characterization of informality and
formality is really a central theme of the whole workshop and needs to be
discussed every day. I'm sure we're going to have new contributions to these
questions every day, but at least three people that I noticed today, namely
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Dave, Alan and Cathy did attempt to give at least partial definitions of
these concepts during their talks today. We might want to go back and look
at what they said.

Littman. I still want to see examples. I'll be a pain in the butt about
this for three days.

Wight. I'm a little bit concerned that with a group of persons such as
ourselves, who are all, if we admit it to ourselves, basically formalists,
deep-down, because what we're trying to do is to organize the world around
US...

Harris. I disagree.
Lethbridge. I disagree.
Littman. No, that's a good point he made... say what you said again.

He said " We're formalists because we're trying to organize the world around
US.,

Wight. We try to make sense of the chaos that we're wading through
Littman. My question is: does it follow that, because we're trying to

make sense of the world around us, we are formalists?
Several. No, not at all.
Wight. I should finish my thought. I'm a little bit concerned that a lot

of the examples that have come up informally here are actually issues having
to do with complexity which could otherwise be explained with fully "formal"
existing systems of beliefs, symbol manipulation, and whatnot.

van Hoek. What do you mean?
Wight. A lot of the issues that we have been talking about, and I am

thinking in particular of Larry's examples, have had to do with the imperfect
user of a query database system. I mean, it was a more sophisticated
application, but really it seems to me that, at a superficial level, we're
dealing with this random event generator of a person interfacing with a
complex application and cracking the hierarchy explicit or implicit in the
design of the application by what should be, theoretically, foreseeable
questions or foreseeable demands on the system. But it turns out to be very
simple to create demands that are inconsistent or unreasonable for the
systems that many of us here try to operate every day. To me, the engineer-
on-the-street answer to that is that if I heard that the system that I'm
supporting broke on a user, I would blame myself and say I have to go back
to the drawing board, that there must be an inconsistency in the design. You
know the famous incomplete program or inconsistent program: an incorrect
program must be behind it. In other words, I haven't pursued the formalism
to the level of complexity that I should have when in fact today, to me, it
looks like I actually should say, "Hey! this is an informal interface! It's not
broken; that's just the way it is. This is what happens, this is what it spirals
towards, when you push the outside of that particular envelope." I'm not
expressing this very clearly...

Reeker. It seems to me that there are probably different types of
informality. We're talking about using informality; why are we interested in
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informality in computing? One of the reasons might be that we think that
there are some things that are in principle unformalizable, and we need to
deal with that. Another might be that it is just too much trouble to try to
formalize them because in fact there are so many of them that can occur,
like all the different activities that a user might think of...

Harnad. What are the examples you have in mind? Surely not the
truths of arithmetic, nor the facts of many-body mechanics, but what do you
have in mind?

Reeker. Well, I'm thinking of natural language. In principal we might
formali&e some very large body of natural language, but in fact there are a
lot of things that militate against doing so, a lot of computational difficulties,
so we would be very content to work with some non-formalized version of it.

van Hoek. Or do a formal version that leaves out a lot of facts.
Reeker. Yes, one that's incomplete. And then keep building on that.
Wight. So informality is a precursor to formality?
van Hoek. It can be. That's the cognitive grammarian's position.
Reeker. That's one meaning of it. Historically, T think that's been true.

People have dealt with things informally first, then formally. There are
many cases where people have done things heuristically first and then come
up with algorithms.

Harnad. Okay, so now you're starting to answer the questions, but
we're still getting questions. We haven't gotten any questions on your half of
the day yet.

Shultis. So, Steve, can you articulate a question?
Wight. Oh, Jeez...
van Hoek. How about: are we looking for formality in all the wrong

places?
Wight. That says it as well as I could.
Littmatt Can I try it? Maybe its something like this, but tell me if I'm

not right.
Wight. Well, we can keep doing this 'til you get it right.
Littman. There's this thing about the processes people engage in which

require informal reasoning. That's me using the computer. Then there's this
thing about the underlying program-not the code, and stuf, but the design
of the program. And those are two different things. And it seems to me that
it's like a two by two table; you've got formal and informal, and you've got
the processes that the system is supporting and the reasoning that the
system does, and it seems quite plausible to me that you could have systems
which reason about the formal processes that people want to do formally
and about the informal processes that people want to do formally. You see
what I'm saying? There's this distinction that you might want to make



Wednesday Discussion 56

Formal Informal

User's reasoning

Computer's reasoning

between the processes the person that's using the system is doing and the
way i,, which the system goes about its reasoning. Now what I was hearing
you talk about was the clash between the two.

Shultis. So it's a distinction between what the system is doing...
Littman. ... how it's doing it...
Shultis.... and how it produces that behaviour, or the difference between

that behavior and the production of that behavior. Is that it?
Littman. Yeah, that's even better. Forget about what the person is

doing. Just look at the behavior that's emitted from the computer system
that the person relies on to perform their activities. Is that behavior construed
as informal reasoning? It looks like informal reasoning could be generated
from underlying mechanisms which are formal, or informal, or a combination
of both. So, I guess the question is...

Wight. That is a very interesting point, but it's a little bit divergent
from what I pictured in my head. I think I have a simple example; I'll just
try this one more time. When we're talking nbout natural language processing,
about processing "arbitrary" input from a user, the number of cases and
frames and environments and empty dead branches that we have to waddle
all the way to the end of and climb all the way back from indicate a large
amount of complexity which we are navigating through using our formal
systems and subsystems and sub-subsystems. Although such interpretation
of natural language is formal, we have been referring to it as an informal
computational interface, if I'm not mistaken. That's the usage of the NLP
paradigm here so far.

Littman. Is there a question mark at the end of that?
Wight. That's a question mark.
??. It sounded like a statement.
Littman. Now I think it's coming closer.
Wight. I'm saying more what I wanted to say but I'm not helping

phrase this question.
Shultis. OK, well, maybe you can think about that some more and we

can formulate it later.
Here are some questions that I would like to ask, just to throw out here
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maybe for some votes and we'll come back to this. Is there informality?
??. Absolutely.
van Hoek. I think we have to know what it is first.
Shultis. Yes, yes!
Fisher. If we have a definition, we can probably decide whether it

exists or not!
Shultis. That's why I'm putting this on page two. If we answer those

first questions...
Standish. We might want to answer to settle the second question first

without knowing the answer to the first, first. And then we'll know...
[Simultaneous speech; jokes.]

Shultis. Is informality a good thing? Do we want it?
Carberry. If it exists. [Echoed by others.]
Standish. And if we can define it.
Shultis. Lots of good things don't exist. But is it a desirable thing, and

why?
Fisher. It strikes me that the questions: "Can everything be expressed

formally?" and "Are there limitations?" i.e. the questions you have on the
previous page, are highly relevant. But the question: "Is there informality?"
must either be answered "yes" by definition, or "no" by concluding that
everything is formal. I don't understand the point of the question, I guess.

Shultis. The point of the question is to be provocative, and get other
questions asked. [Laughter.]

Standish. You succeeded.
Lethbridge. I'd like to add a question to the list. It is: Assuming

informality exists, how can we handle it pragmatically? In other words,
what computational techniques do there exist for handling informality?

Littman. I'm going to claim that that falls under the distinction I was
trying to make. Good question.

Shultis. So there's a question of: what is it, and how can it be done?
Littman. It is what it looks like. I mean, I might have a system that

supports heuristic reasoning and the person that's using it is reasoning
extremely informally, whatever the heck that means. Underlying such a
system I might have the predicate calculus, Woody Bledsoe's theorem prover,
all that kind of stuff. I might have this beautiful formal representation of
heuristic problem solving, and so on. I've got a formal theory of that kind of
problem solving, but the system sure doesn't look formal to the user. But I
don't even know what this means yet. I'm still trying to understand these
two places that informality might arise.

Shultis. So far there haven't been any questions specifically pertaining
to informality and language. And since we spent a day talking about language,
and informality in language, maybe people have some questions that are
specifically focused on things that were said today in the talks.

Carberry. I'm not sure it's a question really of what informality is,
because obviously we don't seem to know what it is. Everybody's got some
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questions about it, but Ciey come down to this: "What are the serious issues
that we can't addr-iss with formalisms?" Out of that falls what we, want
informality to be.

Standish. Not clear. If I say here are items x, y, and z that current
computers can't do, one faith that I could have is: do more of the same.
Produce more formal systems that try to answer.., fill the gaps.

Mundie. Yeah, until the point it feels like you're just pounding your
head against the wall.

Carberry. But it's not what current computers can't do, so much as
what we don't think formal theories are ever going to be able to-do.

Shultis. That's good.
Lethbridge. Or better than that, what is it pragmatically more useful

to do now? We might be able to in 20 years make it formal. But what can we
do now, informally?

Standish. What is it we expect from this non-formal dimension, if'
we're able to define what it is?

Littman. Again, that's a technology question. Right?
Standish. It might just be an inflated-expectation question. What are

the unrealistic, inflated expectations that we're trying to satisfy?
Littman. About the implementation of reasoning systems?
Standish. About what current systems can't do that we think they

ought to be able to do, that we think informality might be a means to an end
to accomplish.

Littman. In the implementation of the reasoning device, you mean.
Standish. If reasoning is needed to get whatever it is that we expect,

yes.
Littman. Problem solving.
van Hoek. But also explaining language. I mean, your question applies

to language, exactly. What is it about language that you can explain informally
that you can't, at this point, at least, formalize?

Carberry. And that you don't think you'll be able to handle in a precise
system.

Lethbridge. With reasonable effort.
Shultis. This sounds like it goes back to a discussion that we were

having earlier about incremental incrementality as opposed to subductive
incrementality.

??. Opposed to what?
Fisher. Yeah, that's a question, too.
Littman. Yeah, that's good. I agree.
Shultis. Yeah, the discussion of whether we can get there by just doing

more of the same, making the systems more and more complex, and just
building formalism upon formalism upon formalism, or whether there is
something fundamentally wrong with that, something that says we're not
ever going to converge on something that is truly intelligent.

Fisher. That question of incrementality I think should be on the list
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somewhere.
Harnad. Should incrementalism be incremental? Tough argument.

[Laughter.] Should incrementalism be subsumptive or can it be just
incremental?

Fisher. Yes, good question.
Standish. Should the increments be small or large chunks?

[Simultaneous comments.]
Standish. Replace the whole system or replace just pieces?
van Hoek. That, of course, is obviously a domain-specific question. In

the field of linguistics the answer to whether we should or shouldn't do more
of the same might be different than in, say, software engineering...

Shultis. If you'll excuse me for putting words into the mouths of those
who have spoken today, I think that we've had people here today, like
Karen, who basically argued for a kind of subductive incrementality where
you want to revolutionize things, and a major shift of framework is required,
and then I think we've had people like Alan...

Harnad. Jon, it's "subsumptive".
Shultis. Sorry, I kept saying "subductive". I'm sorry.
Standish. Minor technical question. What is the difference -between

subduction, subsumption, abduction, and pure terrorism?
Shultis. Right. I was coming up with a portmanteau for "subsumption"

and "abduction", for some reason.
[What was going on in Jon's head was probably something like this.

"Abduction" was C. S. Pierce's term for the kind of reasoning step that leads
to the invention of a theory, as distinguished from deduction and induction,
which occur within an existing theory. In type theory, subsumption is the rule
that any example of a type is also an example of any more generl typ, i.e.,
the sp~cia case is subsumed by the general. But it seemed to m: ., ; ',teve
was using the word "subsumption" to suggest something more, a h ;. of
creative leap to a more comprehensive theory, but not by empirical induction
(which is, I think, the accepted term for what we were calling "incremental
incrementality'). -Eds.]

Harnad. I would correct you to "subsumptive" in order to reflect the
intended interpretation of the coiner of the expression.

Littman- Yes, formalize the concept.
Standish. Could you give us an informal definition of subsumption?
Harnad. I could give you an example.
Standish. OK
Harnad. In fact I did give you one. If you do a formal classical mechanics

for a particular pool game with particular sized balls and a particular initial
position, and a particular whack on one of them and whatever happens and
if you do a theory for that, and then your next increment is to take another
pool game and to do a theory for that and more of the same, your increments
are going to be incremental 'til doomsday. You're not going to end up with
general principles that account for all of these pool games. Once you come
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up with Newtonian mechanics, you now have subsumed all of these; its not
going to be case one plus case two plus case three, done more or less the
same way, it's going to be subsumed by something that accounts for all of
them by finding some kind of invariance that they share, and it's not going
to be incremental in spirit any more, although it will be incremental in data
because it will have incremented the set of data that you can explain.

Standish. When I heard that this morning, the line of questioning that
I wanted to pursue was: what if I had a different set of increments, not just
confined to different variations of the pool game. What if I give you kinematic
experiments with projectiles in a vacuum and then projectiles in friction and
then planetary orbits or celestial body mechanics and you keep on putting
stress on the system and you have to keep building theories that account for
more and more of these kinematic things. And finally you come up with
Newtonian or Einsteinian kinematics. In one sense the original pool games
converged on something that was very local and never stressed you to go
beyond the boundaries and so you didn't create a subsumptive thing. In the
other case, a non-convergent sequence of examples forced you to enlarge the
theory, forced you to subsume a lot more. They were both incremental.

Hamad. I think if you're enlarging it just incrementally, then you're
just adding more. You're saying, I've accounted for this, now I've got to
account for this and this and this...

Standish. Yeah, but I'm going to keep popping orthogonal dimensions
on you, forcing you to do what you would have done by subsumption and I'm
going to call it incremental. Now what's the distinction ?

Hamad. Well, if you increase the data domain in orthogonal directions,
you're still just increasing the data domain.

Standish. Then I don't understand what subsumption is.
Shultis. Is subsumption different from generalization?
Littman. If you add new dimensions, then it's not clear to me that

that's incremental in the straight sense of incremental that you had before.
If you gain new insight into the old phenomena because you add a new
dimension, then there's something subsumptive about that, but I'm not sure
that it's the same kind of subsumption. I think the classic case of subsumption
that you were talking about might be variabilization of a plan. So generating
a script would be subsumptive because now you can handle all cases -of fast
food restaurants.

Standish. I know what it means in logic as a law. I can give you the
formal law. It's something that includes all the other cases and rolls it into
one neat summary and you don't need to mention all the others because the
summary encompasses it all, roughly speaking.

Hamad. Maybe a complexity theoretic distinction would be the right
one. Namely, the size of the putative algorithm that you're coming up with
shouldn't be increasing with the order of magnitude of the number of
incremental cases.

Fisher. I took your original definition earlier today, at least intuitively,
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to mean that to be subsumptive you have to be constantly generating new
theories about the data as opposed to just increasing the size of stored data.

Harnad. Well, let's say that your algorithm is not growing as fast as
your data set.

Reeker. I like that descriptive complexity distinction.
Fisher. Can I go back to an earlier point? Dave had brought up the

question about behavior, and I interpreted him to be taking the impersonation
machine approach to the distinction between formal and informal. Is that
what you meant, or is it not?

Littman. I was confused about how to say it, and Jon came up with
the term "behavior". No, I don't mean... well, impersonation actually may
have something to do with it. I'm not sure I understand.

Fisher. When this came up, it sounded like you were saying we could
distinguish between formal and informal by virtue of whether our observations
of its behavior were consistent with what we expected from machines versus
what we expected from humans, along the lines of Turing's imitation-game
approach.

Littman. No, I wasn't intending that, at all.
Fisher. Then what was the intent of that question?
Littman. Here's what I'm trying to get at. One thing we might talk

about is how to build systems that are useful for people that are trying to
solve problems. OK? And we find that the kinds of problems people solve fall
into a whole bunch of different.., well, I don't want to call them categories.
But some of them require what we typically think of as informal reasoning.
Heuristic reasoning might be an example. And others require reasoning
which is much more formal. So if you're writing a specification document for
a functional program, that's pretty formal. If you're trying to decide where
to take your vacation, you might be doing some fairly informal kind of
reasoning. That's one layer at which formality and informality appear. It's
the kind of problem-solving process that the person or others, the computer,
is engaging in. So that's the problem solving mode. Then there's the question
of how we implement a computer, a support system, that will help the
person who is trying to solve that problem to solve that problem. And here
again it seems that there are some methods that you might say are clearly
formal, like the predicate calculus, while others are not so formal.

So there can be very formal representations which are used to create,
now I can say it better, systems which reason... no, which support problem
solving activities that are either formal or informal. Then there might be
technologies that we could use which we agree are informal, which also
support that kind of problem solving. I'm just trying to get candidate
technologies. At the layer where we're trying to build the system, you might
imagine predicate calculus vs. neural nets, maybe. I don't know, I'm just
trying to get a handle on this.

Harnad. What did you say before predicate calculus? What was the
subject of that sentence?
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Littman. I'm trying to get a handle on what this formality/informality
dimension might be at the layer... no, I don't want to say layer... at the
place where we're talking about the system that is-supporting that problem-
solving process, given that we're trying to develop a way to build technologies
which will support various kinds of problem-solving.

Harnad. OK. I have a specific question about that. Are neural nets,
interpreted as cognitive systems, formal?

Littman. OK. That's a reasonably good question.
Harnad. Not interpreted as neural nets, mind you, but interpreted as

cognitive systems.
Littman. On the second level down, on the implementation level, can

we say they are a clear example of a technology of informality? And is
predicate calculus an example of a technology of formality? We may or may
not agree that it is, but at least we should think about it...

Shultis. Well, I think that that gets back to your original point: let's
get some examples.

Standish. Could we raise more attributes of possible informal reasoning,
for example: probabilistic reasoning; Bayesian reasoning; satisficing;
nondeterminism; deliberate use of incompleteness; reasoning with fallible or
buggy plans; progressive debugging; beliefs; causality; buggy causality;
superstition; things like that.

Littman. And these, you're suggesting, could be at either level, or is
this at the problem solving level?

Standish. No, you were just talking about enumerating instances of
technologies that might be considered informal or formal reasoning, if we
agreed that they were, and-we might not.

Littman. For each of these examples that you gave, I could imagine
suggesting to a graduate student that they try to build a program which
would do that kind of reasoning in predicate calculus. Do you agree?

Harris. And that would make them formal?
Littman. That would make them formal. Conversely, I could imagine...
Standish. The trouble is, these things are reducible to one another,

and you can have things at different layers. At one layer, it's Bayesian
probabilistic, or it's indeterminate, non-deterministic. On another layer, it
uses Boolean algebra and it's completely reducible to predicate calculus.

Fisher. That was part of Steve's point. If you're going to talk about
neural nets, you've got to say which level or view you're talking about.

Standish. Which layer.
Fisher. The level is absolutely critical.
Standish. Representational layers may differ in their mechanics and

yet aid each others' gross behavior.
Kozma. Isn't informal reasoning an oxymoron?
van Hoek. I thought formal reasoning was an oxymoron! [Laughter.]
Shultis. Well, let's get some examples of each of those then. What is an

example of something that's informal, an informal idea, or...
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Kozma. I thought that people referred to heuristic systems as informal
reasoning... I guess in one sense they are, but in another sense, in order to
implement the system itself, you have to have some formally defined rules-
for it.

Fisher. That reminds me of the old question: "Are heuristics algorithms?"
And it's pretty hard to argue that they're not, or at least that their
implementations are not. And of course if they're algorithms, they must be
formal. Again, it's the issue of levels.

Wight. Incorrectness does-not invalidate an informal system.
Lethbridge. I think informality is a relative thing. When you say

something's informal, or say something's formal, you've got to say what
you're referring to, what it's relative to. I mean, you implement an algorithm:
that's obviously a formal thing. You're going to get the thing running on the
computer. Relative to the computer, it's formal, but relative to some higher-
level process, or to the user, it may be very informal. Heuristic algorithms
would be informal in that case.

Shultis. What makes the algorithms formal relative to the computer,
and informal with respect to the user?

Lethbridge. It's got a precisely-defined semantics. I like that way of
looking at things.

Biermanm Or another issue is proof of correctness. Maybe proof of
correctness has something to do with formality.

Lethbridge. If it's got a precisely defined semantics, you can prove
stuff with it.

??. Optimality, completeness. Any other things you'd like a formal system
to have?

Lethbridge. Optimality? No, it doesn't have to be optimal.
Fisher. I don't know if this is redundant or not, but Dave Mundie's

talk actually went over a number of characteristics that we normally associate
with formal systems. And certainly in the DARPA Prism effort at Incremental
Systems we have been operating on a principle that if you violate these
characteristics of formal systems, then you have an informal system. A
review of the points that Dave was making might be useful.

Shultis. Maybe we could put those up as proposed characteristics for
what it is to be a formal system, and proposed characteristics of an informal
system, and talk about them. Just to have something concrete in front of us.

Reeker. There's another question. What about creativity? Nobody's
really mentioned it...

Shultis. Oh, golly...
Reeker. That seems to be something that's pretty hard to formalize. I

mean Gidel himself suggested that... it's a famous memorandum...
Shultis. It's interesting that you bring that up... [Brief tape gap.]

... and so far we don't have any empirical evidence that would lead me to
believe that either analysis is correct.

Reeker. The example that Godel gave was coming up with more and
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more powerful axioms of infinity. People that have done that over a-period of
time. Could a machine do it?

Shultis. The import of my originally putting up G6del's incompleteness
theorem is that what it says is that in any formal closed system, you're
doomed either to inconsistency or incompleteness.

Harnad. Not in any...
Shultis. And...
Harnad. Not in any...
Shultis. Right.
Harnad. And certainly not in the propositional logic.
??. It has to be sufficiently rich.
Shultis. Excuse me.
Reeker. No, but this is a different thing I'm talking about...
Harnad. But we're talking about formality. And as a matter of fact,

propositional logic is a formal system.-So this-can't be something wrong with
formality.

Shultis. I think Larry's point is that there's something rather open-ended
about what people do, something that is not captured by any formal system.
Therefore you have to conclude that whatever it is that people do, it's not
consistent or it's not complete, or it's both. So something else is going on.
What is that so.mething else?

'Maybe we can structure a discussion around that question. Dave put
these up primarily as things that people often cite as being characteristics of
formalism and at this one extreme here, we've got a situation where we
would include things like Post's Tag. Does everybody here know Post's tag-if
I talk about that?

Standish I know the correspondence problem. But what about Tag?
Shultis. The point of Tag is... OK. You write down a string of ones and

zeroes-any string of ones and zeroes that you like- and you start at the
left hand end-of the string. And then there are two rules. And the rules are
that if you see the-first two characters are zero zero you cross them out. And
of the first two characters... if the first character is... I don't remember
exactly...

Harnad. It doesn't matter, you can invent any rule you want...
Shultis. It doesn't matter. It's something like this. If the first character

is a one, then you cross out three characters and you write 1101 at the end
of the string, the other end of the string. And so you just follow these two
rules, ad infinitum. And now the question is, does the game ever terminate?

van Hoek. How long is the string?
Shultis. Well, the string eventually reduces to-if the string reduces to

zero zero you cross it out and the game is over. And so starting with an
arbitrary string of ones and zeroes the question is: does the computation
terminate? In some cases it does and in some cases it doesn't. In fact, it's
undecidable which, for an arbitrary string-it's in general undecidable
whether or not the game will terminate. I've probably got the rules wrong.
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But it's a fun thing to unleash undergraduates on in teaching them data
structures. Build a program that will play Post's tag and make them do it
for things where they have to come up with such complex encodings that
they can't just use ones and zeroes because there isn't enough memory in
the machine.

Harnad. The point of that...
Shultis. There's a system there, which is used, as Tim said earlier, as

a theoretical device to investigate certain classes of mathematical systems
where there's no interpretation intended at all. Where you're only interested
in the properties of the reductive rule system. So that's one extreme of
things. And then there are other characterizations here of informal systems.

Harnad. I think lots of games fall into this category. But the question
is: are games in any interesting sense a formal system when there's no
semantic interpretation other than the middle motions that you're going
through in themselves? I think it's important... somebody over here raised
the question about interpretability constraints. And I think, they have a lot
to do with what a formal system is. I mean, what makes formal systems
interesting is that they will bear another weight. A weight that's outside of
them. Namely the weight of the systematic semantic interpretation. If they
are simply what they are defined as being, namely, do a squiggle then do a
squaggle, then do two squiggles, then they're nothing! Nothing! They're
just...

Reeker. They may be fun!
Harnad. They may be fun, but they're neither formal nor informal...
Standish. Suppose you're trying to build a theory. Just say you're a

professional mathematician and you may come up with a puzzle. Are there
an infinite number of primes, or is there just a finite number of primes?
Now, at first that's just a puzzle, OK? But if i settle it one way or another,
certain very dramatic things happen in the rest of the theory.

Harnad. But the whole point is that numbers have interpretations,
namely numbers. Prime numbers are not just squiggles and squaggles. They're
not just things that you say about scratches on paper...

Mundie. Yes, they are.
Harnad. To a formalist they are, indeed, things you do to scratches on

paper, but all of those scratches on paper have this remarkable property,
and are systematically interpretable as truths about numbers.

Shultis. What's a number?
Standish. Why should I care whether a number is prime or not, whether

it has this funny property of being divisible only by itself and one?
Harnad. That's another issue. Why do we care about capturing human

cognition?
Standish. At first that's really an irrelevant property unless I can

demonstrate its utility by some other application.
Harnad. I think there are two different motivations that are being

conflated over here. One of them is the one that was raised initially, which
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is the notion of the intended interpretation, which clearly prime numbers
have. And the other question is why we care about prime numbers, but
that's a different motivation of course.

Shultis. But when you say that mathematicians' squiggles and
squaggles, or whatever, are things that are about numbers...

Harnad. Umhuh.
Shultis .... there's a serious question there, which is: what are numbers

other than squiggles and squaggles...
Harnad. Yes, but we're not doing metaphysics here. I happen to be a

Platonist, but what difference does it make? That's not what we're talking
about here, is it?

Kozma. But you can't define what numbers are either.
Harnad. Whether I can define them isn't the issue, and whether I'm

right that they're Platonic abstractions as opposed to the invariants that all
extensions of them share, doesn't matter because we're not doing metaphysics
here. God, lets abstain from metaphysics! But the fact is that the intended
interpretation is Lot that they are squiggles and squaggles. That's all. Never
mind which foundational preference we have about what they are. Let's just
agree that they're not just squiggles and squaggles.

van Hoek. That's true.
Harnad. Even the formalist admits that the formal system has an

intended interpretation. Even the formalist.
Kozma. An intended interpretation.
Harnad. Yeah. So in other words something outside the system that...
Kozma But the interpretation itself can't be formalized.
Harnad. It doesn't matter. The formalist does not claim that what I'm

doing is playing around with uninterpretable squiggles and squagglo'. That's
not what he's doing. He's not playing the bead game. He's not playing Post's
Tag and that's relevant, I think, to what a formal system is.

van Hoek. Any formal system or just an interesting formal system?
Lethbridge. That's a good distinction.
Littman. I agree.
Harnad. No, I don't think so. I don't think so.
van Hoek Well, which one is it then? You're talking about a formal

system.
Harnad. Well, I think we wouldn't be talking about formal systems in

the context that we are now, if we meant anything but the interesting ones,
the ones that are semantically interpretable.

Shultis. Well, let's talk about interesting formal systems just for a
minute. Let's take a little chapter out of model theory and formal logic.
Quite some time ago, Church, as we all know, invented lambda calculus.
And his intended interpretation for lambda calculus was that lambda
expressions were supposed to denote functions over some domain. And of
course you get into this minor problem that, in the untyped lambda calculus,
there are no nontrivial models. Or so it appeared at first, because there was
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this problem of having basically an isomorphism between the domain and
its own function space. And so for some time, there was really a serious
question about whether or not the formal system of lambda calculus had
any meaning at all, of whether or not it was an interpretable formal system.
Nevertheless, it turned out to be quite useful and an interesting thing and
so on and so forth. It was only, of course, in the late sixties that Dana Scott
did his work on reflexive domains...

Harnad. And so what conclusion do you draw from that?
Shultis. .... and came up with an interpretation, where, in fact, you can

have a domain semantics for it. Now on your characterization of formal
systems, what would you say about all the stuff that was done in lambda
calculus...?

Harnad. If you had a formal system, if you took Post's tag, and you
said to yourself: rm looking for a non-trivial interpretation of Post's tag, by
which I mean that the interpretation will not just be the game itself, you're
in a legitimate epistemic game, right? It's a system looking for its
interpretation. If you find an interpretation, then you've got a formal system
worth talking about. if not, you've got a bead game.

Standish. No, I'd say, if they are bead games, then sometimes bead
games can settle important issues in the evolution of a mathematical theory.
Example: in the theory of context-free grammars, there's a question about
whether deterministic push-down can recognize certain languages. And I
can give you a language of unmarked palindromes that no such push-down
machine can recognize. Now, is it a bead game? Because the-grammar for it
goes: x goes to xa, or x goes to a. And you'll never know with a push-down
automaton how to recognize that. That's a bead game, but it settles something
very important about the class of mechanisms that can deal with context-free
grammar and cognition. So bead games can sometimes settle important
foundational branch questions in the evolution of a theory. Why should we
deny them that pragmatic utility if they don't have interpretations other
than that?

Reeker. But here we're taRng about informality in computing and I
think that probably they don't play that sort of role. I think in the case of
Jon's example, for instance, the lambda calculus was interpreted in the
sense of Church's intended interpretation of it. Now, if it turned out not to
have any actual models, I think that's probably a good example of the sort of
thing that people reason with all the time. They have system- and although
the systems aren't maybe totally formal, they have an interpretation in the
person's mind and yet they may have inconsistencies or...

Standish. How about the paradoxes, like Russell's paradox? Set of all
sets that aren't members of themselves. That's a bead game, isn't it?

Harnad. No. Wait. Let me take it one at a time. Post Tag: if Post Tag
turned out to be a terrific weather predictor that wouldn't make it a formal
system for me. It would just make it useful. it would turn out to be that the
bead game had some other uses. The Russell thing is getting far afield, but I
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don't think... I mean sets have intended interpretations, so you're not dealing
with squiggles and squaggles. You're again going into somet.Lng where it
looks like an abstruse, uninteresting question but actually is an interesting
question, right?.., about whether sets, you know the question about those
sets. But it's not a question about the status, formal or nonformal, of a
particular formal system. It's a question about motivations. Why are some
people interested in crazy problems like...

D'Ambrosio. It seems to me that the question of whether or not a
formal system has to have an interpretation in order to be worthy to be
considered fcrmal is connected with something that was brought up earlier
about the intended use of the system in the following way. If we allow a
formal system to not need an interpretation, then it seems to me that anything
we can write and implement in a computer is going to be a formal system,
since according to that rule, we'll be able to interpret it that way. But more
importantly, if we require that there be an intended interpretation, then we
can ask, do all the manipulations that we perform in that formal system
correspond-generate, in fact-valid interpretations?

1Iarnad. Exactly. That's the systematicity criterion.
D'Ambrosio. And if they don't, then we can talk about in fact being an

informal system because it doesn't fully satisfy this mapping property. And
that's the only case in which we can create interesting informal systems.

Standish. Could you do that again? That went by way too fast.
D'Ambrosio. OK. Let's try it again. If we allow formal systems to

include purely syntactic ones that have no intended interpretation, then
every program that we write is trivially a formal system. If we require that
a. formal system have associated with it an intended interpretation, or as a
part of it, I should say, an intended interpretation, then the issue that was
brought up earlier comes up. That is: do the manipulations in the formal
system in fact preserve this intended interpretation or not? And if they
don't, then we can say, that, well syntactically it's a formal system, which is
the only thing we can implement. In fact it's an informal system in the sense
that it is not guaranteed to always preserve the intended mapping.

Harnad. This property, which Fodor calls systematicity, was packed
into the subquestion that I raised about systematic semantic interpretability
because it's not just hermeneutic interpretability we're talking about, like
horoscopes and the positions of the stars. When a formal system is semantically
interpretable in the systematic sense, it's got to have this property... I mean
it's a model-theoretic interpretability, right? The model has to be a model of
the syntax. As a matter of fact, that's a good way of finding a model. Well,
that's a good way of showing that a formal system is inconsistent, is to
find.., what.., now I'm getting lost in my own syntax!

D'Ambrosio. ... is to generate some transformation under the rules of
the model, under the rules of the system, that is not...

Standish. You appear to be trying to set up something that dismisses
as not formal something that is merely frivolous but formal, like a computer
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program that does nothing important.
D'Ambrosio. Well I'm saying that that's not interesting to us in the

sense of trying to understand the dichotomy between formal and informal
because everything is interpretable as formal under that interpretation.

Standish. But what if what is meaningful to me is frivolous to you and
vice-versa. For example, I might build this computer program that
choreographs dances for Skinner's pigeons and uses a Chomskian generative
grammar to produce LeBas [?] notation for a pigeon dance. And you think
that's frivolous, so to you it's not formal...

Reeker. But not in the sense that we're talking about.
??.You're still producing the intended...
Shultis. Can I summarize your question, Bruce, in the following way?

Is an informalism a broken formalism, in the sense that there is an intended
interpretation, but that the formal manipulations which are supposed to
correspond to something don't actually preserve or mirror the way in which
it is-supposed-to work?

D'Ambrosio. Or may not.
Shultis. Right. And so it's an attempt to capture this, but it's not

completely accurate and so it's broken in some way.
Mundie. I'm confused. I would have said that it was in exactly the case

where it didn't correspond to the intended interpretation that it was a formal
system.

Standish. Can I try another cut. We had this debate in the programming
language community about whether there should be a formal definition for
Ada, a new programming language. And some said, you haven't really defined
the language until you've given a machine that works by discrete symbol
rules that always decides an answer, that always decides the behavior and
acts as a reference so that any question about how does it behave or what
does it mean can be settled by running the formal model, the exact, discrete,
completely defined, crisp, convergent thingamajig. Others said, nah, nah,
let's do it in English, because we can understand the implications of the
English. But we may not be able to understand the implications of this
model. And now, what we get is an English definition of Ada and then a
squadron of Ada language lawyers. And it looks like you may be able, ad
infinitum and indefinitely, to come up with Talmudic variations, and
unsettlable questions, and volumes could be written, and test sets grow, to
decide what the language is. Is that an informal thing, if it has a non-convergent
set of interpretations and appears to burgeon beyond any reasonable
constraint? And is the U.S. constitution therefore similarly informal?

Fisher. I'm not sure that's the way it is in the Ada community. Yes,
you have the language lawyers, but they act as a judicial body that makes
interpretations. Those interpretations supposedly reflect the "good" of the
community, but often are at odds with any normal interpretation of the
English in the Ada Language Reference Manual. Ultimately the definition
of Ada is provided neither by the L.R.M. nor by the language lawyers, but
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rather by the validation suite.
Standish. Yes, in the case of Ada there's a test set, and there's a

defined procedure for defining whether a compiler is or isn't one of these:
whether it passes the test set. So it's operationally defined. Now I would call
that a formal filter. It decides issues. For Algol there was none such. And for
the U.S. Constitution, I suppose you have the Supreme Court to the degree
that you can interpret precedent. But then again, that's elastic.

Fisher. It changes over time.
Standish. Yes, it changes over time. What do the founding fathers

mean?
Kozma. That's more decidability than formality.
Standish. Yes, but decidability might be connected with informality.
van Hoek. I though formality was decidability.
Reeker. Not really. No?
Harris. It's not really?
Kozma. Well, let's go back to number theory. Can Fermat's conjecture

be proved?
Standish. Nobody knows. We don't know yet.
Fisher. Yeah, we do. Two months ago. It's been disproved. It was in

the Times.
Standish. Meaning what? There's a counterexample? I never heard of

that.

Kozma. How about Ramsey theory?
Shultis. Can I try to summarize all the views on informalism? What

I'm trying to do right now is come up with some ideas on what informalism
is. Tim, would you accept this summarization of your position on informality?
On your proposal? Something is informal if the interpretation is open. And
it's something that is open and discussed. It's under discussion. It's under
creation. Is that a fair characterization of what you were saying?

??. Hm. I like that.
??. I don't.
Standish. It pushes the problem back one level, onto wl.-lt we mean by

interpretation.
Lethbridge. That's why I said it's relative. It's relative to how you

interpret the system...
??. Exactly.
Lethbridge. Either by machine or by the human. Infbrmally in one

sense and formally in another.
Fisher. I would like to propose an alternative. I have certain intuitions

about what formal systems are, about certain characteristics that I observe
in them, and certain classes of problems that I want to solve; problems
whose solution is precluded by the characteristics of formal systems. And so
what I would take to be an informal system is one which in fact has properties
different from those of the formal systems that I observe-properties such
as incompleteness, tolerance for inconsistency, intensionality, imprecision,
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analogicality, and prototypicality.
Harnad. Can I try a rival? . hand at informal and foimal? It's not a

pun vra the word formal that fornal also means form, it doesn't just mean
conventional and efficient in notation. It also means form. And, I forget,
when you were going through it you mentioned that in a sense, you said in a
sense, but I think it's literally true, that what we're doing in the case of the
formal system is manipulating the shapes of the symbol tokens on the basis
of rules that operate only on their shapes. And those shapes are arbitrary in
the sense that they're not related in any way to the things that that symbol
system can be interpreted as meaning. So if I have-let's just pick natural
language, even though it's a vexed case-the shape of the symbol string
"cat" is interpretable in English as referring to that hairy creature. If English
were in fact just an interpretable but uninterpreted formal system (which it
isn't), "cat' would be interpretable systematically as meaning cat in
expressions like: "The cat is on the mat." "The mat is on the cat." "The cat
ran." etc. But its shape would not be-related in any non-arbitrary way to the
thing that it stands for. That's what formal system means. It means a
syntactic system consisting of objects, physical objects, symbol tokens, that
are manipulated on the basis of rules that operate only on their shapes. But
that has the second remarkable property that all of those systematic goings
on can be interpreted as meaning something like: the cat is on the mat.

Shultis. So is this your definition of informalism? I just want to make
sure I capture these things. What makes something informal is that it's a
non-arbitrary symbolism?

Harnad. That's what I would propose. Yes.
Standish. But by shape, you don't mean a continuum of elastically,

reformable, possible shapes? You mean a system to discriminate among a
finite number of them, don't you? The letter "e" can't occur in infinitely
many variations which play a role in your theory.

Harnad. In practice, the symbol tokens in formal symbol systems,
whether they're scratches on paper that notate arithmetic or computer
programs or the graphemic systems of natural language, etc., the symbol
tokens tend to be finite, discrete objects. You know, the issue about using...
I mean, analog computing as an interesting thing to talk about as a separate
side issue, and relevant here, and it gets into the domain of role of arbitrariness
of all of this. But I think the model for a formal system is discrete, a finite
set of discrete symbol tokens manipulated according to a finite set of rules.

Standish. Right. That's all I meant by the finite symbol system
hypothesis.

Shultis. Something that I'd just like to say, by the way, since something
you said reminded me of it, is that the informal/formal dichotomy is a false
thing. There's really a gradation here. There are things that are more formal,
and things that are less formal. Of course, when we talk about informal and
formal, we're really talking about the extreme poles of this continuum. And
so there's this gradation. Cathy?
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Harris. Before Steve Harnad spoke I was going to offer up a try at
defining formalism and informalism. And I completely agree with how he
described it. Absolutely. I think he summed it up very well. However, I was
going to phrase it a little bit differently...

Shultis. Steve is on your committee and you haven't defended yet?
[Laughter.]

Harris. No, I just think he's right. I was going to refer to a sentence or
two from my talk, when I quoted Chomsky. I think that when Chomsky was
trying to urge a certain rigor in the linguistic community, he wanted a
formal description of the grammar. And the way he described it was explicit,
so that it wouldn't require any of the intelligence of the understanding
reader. The system could be described without relying upon an inference
process. So an example of an explanation or a theory that is informal is a
type of explanation that uses intuitive folk terms, such as: how do people
produce novel utterances? Well, they do it on analogy to other forms they
have already heard. That's an informal statement. And the formalization of
that might then be a specific mechanism like a set of recursive rewrite rules,
or a PDP system that learns to associate a mapping and can get a type of
analogy out of that. So that brings me to the final thing I'll say, which is
that for the top question of whether neural nets, considered as cognitive
systems, are formal, I definitely see neural networks as formalisms, because
they are symbol manipulation systems of the type Steve Harnad described.

Harnad. No, I introduced that just as a question. And I think that the
answer to the question is no!

Littman. I'm uncomfortable... I think that if you say formal equals
arbitrary symbolism, that's OK. Did you mean that?

Harnad. I missed that. I take back what I said. I didn't realize that
the question was formed in that way. In that case, the answer is yes.

Littman. What's your question? I don't like the informal equals non-
arbitrary symbolism. Formal equals arbitrary symbolism. OK. I really don't
know what the concept of informalism is, except by negation, and if that's
what we mean, then informal systems are those which aren't formal and if
that's what we agree upon as a useful distinction, OK. I just don't know
about that.

van Hoek. We bring a lot more to them than just...
Littman. It's a concept we're trying to make more understandable.
Harnad. There's a request for examples, and there are actually good

examples. Johnson Laird, does anybody know Johnson Laird's book Mental
Models? He gives good examples of informal systems, when he has his people
trying to verify the truth of inferences by building up models in which they
simply just imagine arbitrary shapes, and then they put arbitrary constraints
on these shapes in such a way as to rule out certain conditions and rule in
others. And they're definitely not formal.., you can't deduce from these little
informal models that they make for themselves the truth of all possible
propositions, and in fact these informal methods are demonstrably incomplete
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and inadequate and often wrong. Yet they are what people often use to solve
long syllogisms and things like that. I found them very analogous to the
kinds of things you're describing in Ron Langacker's theory-the kinds of
little structures that are being used inside the head in order to...

Littma. So it seems to me that what you're getting at, if I understand
what you just said, is that formality and informality are properties of the
device which is interpreted in the sense of a computer program being
interpreted by the machine, because you're saying it's a formal system if it's
interpreted by a computer. And I think Cathy was just saying that a second
ago. And that's because it doesn't understand what it's doing.

Harnad. No, but it's more specific than that. I was trying to give it as
a positive example for the non-arbitrariness of the informal system. That's
right, for the non-arbitrariness, because the reason these mental models
work is because they try to take... You know, the syllogisms are really just
formal syllogisms. They're just really a set of propositions which if you could
do the calculation, you could figure out from the truth tables whether they're
true of false. That's the formal way to do it, although as a matter of fact,
truth tables are a vexed case. But the way Laird's subjects do it is completely
informally, that is, they start constructing a case that matches a model,
literally in the model-theoretic sense. They create an informal model, and
based on what's true of the informal model, they make inferences about
what's true about the problem that's given to them.

Littman. The model they built is clearly arbitrary.
Harnad. No, it's non-arbitrary, because what they're doing is: Oh, OK,

this can be there, so I'll put a pebble into this...
Littman. That's what a computer can't do. And it wouldn't matter, if

the symbols they were manipulating in fact were being manipulated only by
virtue of their shape. It's the fact the people are interpreting them as they
manipulate them and are making a mapping to the problem that they're
trying to solve.

Harnad. No, I don't think so, because as a matter of fact Johnson
Laird is agnostic about arbitrariness and non-arbitrariness and he gives an
example of a mental model that a computer could perfectly well...

Littman I'm just talking about the example that you gave.., but that
would be a formal model, because there would be arbitrary symbolism.

Harnad. Well, I don't know.
Littman. With respect to the computer. With respect to the computer,

which is what I was suggesting before formality might require...
Harnad. I'm committed to some really bizarre consequences. For

example, a dedicated computer in my sense is not a computer. A dedicated
computer-that is, a computer that is irrevocably wedded to its peripherals-
is not a computer and it's no longer just a pure formal system because some
of its interpretation are fixed.

Shultis. Is it fair to say that what you're trying to get at is that
arbitrariness is in the eye of the beholder?
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Littman. Yeah. In two words or less.
Shultis. So whether or not something is arbitrary is...
Littman It doesn't matter what the system is, it's what the computation

is being performed on. The fact that the computer has no understanding
of...

Shultis. Let me give an example from Ron Langacker's book. He talks
about onomatopoeic expressions and in fact just the raw use of noises. I say,
"He went 'Ah!'" That "Ali" is a perfectly decent piece of my language, and it's
not an arbitrary symbol. It's itself. It's a noise that I make, and that I
incorporate into the sentence to represent itself. And it is nonarbitrary to
me and to you, because we're all people. But if you're a mosquito, and I don't
know whether or not mosquitoes hear anything, but some animal, say, that
has a very different way of interpreting sound waves, that, in fact, maybe a
dog or something-at any rate, the noise I made may bear no resemblance
whatsoever to that animal's auditory system, to the noise that was actually
made, and he may say OK, that's an arbitrary symbol. He means by that
something else. And he's just using that strange arbitrary symbol to mean
this noise. So to some extent whether something is arbitrary or not is a
property of interpretation.

Littman. It may in general be a property of, an issue of interpretation.
I was thinking only of the relationship between the symbol system and the
device which is performing operations on those symbols, which I think is
close to what you're talking about as the symbol grounding problem.

Harnad. Are you agreeing with Jon? Because I would violently disagree.
Littmanm Yeah. I don't think so.
Harnad. I don't think the interpretation is in the mind of the beholder.

If you throw aside all mentalism and simply talk about the system itself,
some circumscribed gadget, whether it's a pure symbol cruncher or has all
kinds of analog peripherals, and you ask, is the symbol-the state-(because
it will be a state of the device, that I'm calling symbol x) arbitrarily related
to what x can be systematically interpretable as meaning? I think the answer
to that is not in the mind of the beholder at all, but in the causal interections
of that system with whatever it is, that it allegedly can be interpreted as
meaning. In other words, if thef thing goes around calling cats cats, stroking
the things that it tokens as cats aud all J.i* rest of the stuff systematically
interpretable til doomsday, then it's nov, --...asitic upon my interpretation at
all. It's intrinsic in the causal relations of the device with the objects and
states of affairs that its symbols could be interpreted as being, as standing
for. Do you understand?

Littman It looks like a duck. It walks like a duck. It talks like a duck.
It's a duck!

Standish. The duck test.
Harnad. No. It's not that.
Shultis. Are you saying that there's something about cats which...
Harnad. I'm saying the question about arbitrariness is about how it is
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that the symbol token "cat' is being tokened by that system and we have to
be specific about what the system is. We can't partition it into interpreter
and what have you the way that you did. There's a thing there that has -a
symbol token in it, "cat". And r,. :r auestion now is: is that symbol token
arbitrary in relation to what i. :.,x be interpreted as standing for? The
arbitrariness is not in my hear

Shultis. But, but... Let . to respond to this. Are you saying
that a non-arbitrary symbol w.. 6 one in which there was some causal
relationship between the symbol a-,A the thing itself?

Harnad. Yes, whereas a pi )e formal symbol system simply has the
property that it has states th"' an be systematically interpreted as
corresponding to...

Shultis. Just to clarify so.: aething. I would consider that causal
relationship to be part of the process of interpretation that goes on in that
device.

Harnad. Maybe there s nobody home in that device. All it's doing is
squeaking around in the world. Why do mental'stic interpretations hLave to
come into it at all?

Shultis. Interpretation to me means the use of one thing to represent
another and the process of doing that, if it's a causal link, then it's a causal
link.

Harnad. Under special conditions I might be 1xielined to agree with
you. But as a general principle I think that that's saying too much.

Shultis. So there's a proposal up there. Are there other proposals?
Dave.

Fisher. At the -tisk of putting words in Alan's mouth, in his talk he
took your view that ,ihere's a spectrum of formal and informal, that it isn't
just a hard boundary, and that it has to do with the degree of specification...

Harnad. Specification of what?
Biermann. This actually is compatible with the business of

interpretation. If you specify completely, then the interpretation is complete.
If you specify rather weakly then that would be rather informal and the
interpretation is lacking. So I think there's a certain compatibility with the
point of view that you were giving and the point of view that I was giving.

Littman. Wait, wait. He's got the non-arbitrary symbol.
Harnad. Mine is non-arbitrary, You're agreeing with the middle one.
Littman. The middle two, right. Yeah, Steve is non-arbitrary symbolism

which is...
Harnad. I don't agree with the middle one because it's too epistemic. It

really does make the formality just in the eye of the beholder. If you understand
the system completely. The very same system, according to that definition,
the very same symbol system can be informal if I don't know what the
correspondence is or only know partly what the correspondc-;o is, arid formal
if I do.

Littman. Yes, yes.
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Fisher. But Alan doesn't address that. Alan doesn't address the issue
of interpretation.

Littman. Why don't you like that idea? The idea that if it's running on
a stupid computer it's a formal system and if it's running on us and we know
what these things are it's an informal one. Sorry to bring mentalism into
this.

Fisher. The distinction isn't between people and machines, but between
implementation and higher levels of interpretation. I would claim that the
implementation level is formal, or at least mechanistic, for both people and
c'rmputers; but that at higher levels at least people think and act informally.
* am interested in how that informality can be exploited at the higher levels
in computers.

Shultis. If you define formal to be what can be done with a computer
then in fact you've reduced the title of the workshop to an oxymoron. And 1
think that Steve's point about when a computer is not a computer is a
relevant question there. If it becomes fully embedded and engaged in the
world and its functioning is defined by its engagement in the world, and its
involvement of the world in its processing and so forth, is it no longer a
computer?

Littman. But that doesn't mean that it's formal or informal. I just
don't see how it speaks to that issue. But I'll shut up now.

Shultis. Well, I don't think that we're going to arrive at a conclusion
here.

van Hoek. I just feel like speaking up as one of the few linguists here.
I'm not used to arguir- about these terms, and I wanted to say how I
understand formal and nformal, just from my background, and I want to
know how this fits with some of the discussion going on. To me, it's very
strange to talk about a machine or a system or anything el,' as being
formal or informal in an abstract sense. I'm used to using the terms formal
and informal as descriptions of theories or descriptions of analyses. That is:
what my background has taught me is that a formal theory or a formai
analysis is one in which all the symbols are defined and everything is laid
out with explicit rules so that in a sense an automaton can do it, or as
Chomsky said it doesn't require human interaction or understanding. To
put it more bluntly, it's an analysis with no fudge factors. Where every
single bit is laid out very explicitly. That's my understanding of what formalism
is. And informalism is when you can't lay out every single factor-the term
that has come up several times is non-specificity. And then one question
that arises in my area is: when is it appropriate to be concerned with getting
a formalism? Of course the cognitive grammar answer is: not too soon, if it
precludes developing intuitively satisfying analyses for which you don't quite
know yet how you're going to spell out every single bit. You wouldn't-want to
forgo pursuing these analyses just because you don't know how to spell out
every single bit. And then the other question is: will we ever have a complete
formalism? Will we ever spell out every last little bit? And the answer, I
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believe, is: probably not for language, in the sense that spelling out every
last little bit might mean spelling out every last neural connection in a
native speaker's head. So, in a certain sense we'll never spell out every last
little bit.

Shultis. But even if you do that, though, there's the fact that (and I
don't think this is anything you'd argue with) even if you spelled out every
last bit and every last connection in a native speaker's head, you still have
the problem that there's a social phenomenon of language, which is not
captured by that.

van Hoek. You don't know what's going to happen to them tomorrow
and what they'll say and how that will affect the neural connections, exactly,
yeah.

Shultis. And so what do you do? You go off and do that detailed
description of the physical setup for every creature on the planet and do you
still have it? Probably not. And the thing is that you may have a description
of a way to reproduce the mechanism, possibly, but is that a description of
language? No, because the categories are wrong. It's a description of a
mechanism that implements language, but it's not a description of the
language.

van Hoek. I don't think you can have a fully formal description of
language. With natural language, I do not believe you can, at all.

Shultis. That's an interesting question...
van Hoek. The question is how much formalization is useful for our

purposes.
Shultis. That's an interesting question. I'd just like to take a real

quick straw vote on it. How many people here believe that some things are
in principle unformalizable?

Littman. Well, wait.
Carberry. What do you mean by formalizable? [Pandemonium.]
Littman. This is an informal straw poll.
Carberry. I want to know what you mean by formalizable first.
Shultis. If we take it seriously, one of the questions is: there is a

notion that people have that says that the world is reducible- to formal
theory.

Hamad. It's called Church's thesis.
Shultis. Yes. Everything is reducible to some formal description.
Littman. That one can describe everything...
Hamad. So you asked us whether we believe in Church's thesis?
Shultis. Right.
Reeker. Well Church's thesis doesn't really say that. It only says that

for recursive functions...
Hamad. Yeah. You can interpret it as referring to just abstract objects.

It's been interpreted as referring to physical systems as well, and certainly
in the sense of Turing equivalence it has.

Littman. But now that we've constrained this question down to a
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manageable one, how many people believe Church's thesis?
Fisher. That's an improtant question. I think it was an assumption in

what Jon said that Church's thesis addresses the entire world. And I don't
agree with that assumption. In particular, I believe that incompleteness is
essential and that we can never have a complete description of any part of
the physical world.

Shultis. Obviously there's a question of how you interpret Church's
thesis, of what its scope of applicability is.

Reeker. Yeah, I think that's it. For instance if you talk about the sort
of traditional heuristic problem solving program. That works in some cases.
In some cases it doesn't. Now, you can say it's a totally recursive function,
that it's going to halt, that it's going to say "no" or "I don't know". But from
the standpoint of its usefulness, in fact in certain cases it might as well not
halt. It's not giving you an answer to your problem.

van Hoek. I'm just curious. How does -Church's thesis deal with the
Heisenberg uncertainty principle? I really don't know.

Shultis. You need to read Roger Penrose's book.
Standish. Heisenberg says that you can't really measure the state of

the world because the act of measuring it may disturb the thing being
measured and you can't get within a certain envelope of uncertainty about
the thing you're trying to measure because of the disturbance created by
your measuring instruments. So you never could get a symbolic formal state
and a state transformer in the symbol system sense sufficiently well described
that they could capture the full determinism of the universe.

van Hoek. Right.
Harnad. An uncollapsed wave packet is not equivalent to a Turing

machine. But there's strong motivation for saying you should only talk about
collapsed wave packets if you're talking physics. And the collapsed wave
packet has no problem with being Turing equivalent.

Shultis. The collapsed wave packet is a point of observation. But the
fact is, in order to project the unfolding of physical events, you have to deal
with the mathematics of the uncollapsed ones. And, you know, quantum
mechanics is, after all, a nice, formal, or at-least a mathematical, theory of
sorts, but what it does, it imposes constraints upon the universe.

Harnad. Right, but it's an empirical theory and so what it really has to
account for is the data points and not what happens between the data
points. Between the data points you can have complete continuity which
also is a formal notion and that really does violate Church's thesis. Such a
system, in a superimposed state...

Carberry. I think what we want to do, I mean everybody seems to be
agreeing, is get beyond what formal systems are able to accomplish, however
we define formal systems. But I feel uncomfortable with the term informal
computing because I do think it's an oxymoron, or even the term informalism
because I don't think, to the outside world, it'll get across what we want to
do. I think there will be different views of this and you're going to spend a
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lot of time trying to communicate what you mean. I really think you need a
better term to capture it.

Littman. Essentially, I have just the opposite intuition. I think we
could do ourselves a lot of damage by trying to drop down into the philosophy
of it. If our goal is to establish a science of informal computing, we could do
a lot of damage by trying to discuss the philosophical issues and we could
actually make a lot more progress by saying: there's this stuff and it's
informal and it's like heuristic reasoning and when I... It has very much for
me to do with the degree of specification, and I think that is something
everybody will understand. But if you start saying it's non-arbitrary
symbolism, or broken formalism, I think it's a mistake. [Changing tapes.]

Shultis. We're beating around a radial category of some kind. There
are more central examples, there are more central ideas. There are different
notions, but there is something that ties it together. And maybe the pursuit
of trying to nail down exactly what it is, is in fact a futile one. Given that
there is something in common that we're all trying to wrestle with, and I
think there is, the real question, as Sandra said, is: where do we go from
here? What do we do? How do we overcome the limitations, the brittleness,
if you like, of our formal systems? How do we deal with the natural
phenomenon-and I think it is a natural phenomenon-of informality in the
world? We need a science of some kind. How do we make progress on trying
to put together some research, some things that we could do, some experiments.
How do we build some of these things? Try to think about how are we
actually going to do some of them. I think that your suggestion, that we get
on with it, instead of trying to define things, to nail it down, might be a good
one to think about for the discussion tomorrow.

Carberry. I think that to the outside world, the term "informal" isn't
going to conjure up the ideas that we're discussing.

Standish. It may be a PR mistake.
Littman. I hope not, because I think that these ideas are what will be

very confusing to people.
Standish. I have no idea what people's ideas are myself.
Carberry. Well, the idea of lack of specificity, which I really think is

one of the core ideas here.
Littman. That's something we try to do in fact in software

engineering-there's an audience that you can tap into right away, the
informal specification community. You just have to say it the right way. Or
somebody's trying to build a house and is first trying to get an idea of how
much lumber and how many bricks they will need, and is going about it
informally.

Shultis. If it turns out that there's a better way to describe what
enterprise we're involved in, that's fine. But I think that most people would
agree that there are informal, unformal, or nonformal processes and things
in the world and that we're trying to understand them. And if people get the
idea that that's what this is about, I don't see that that's a bad thing... But
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one of the things that I don't want to focus on too much is our PR, how we
look to the rest of the world. I want us to cohere as a body and see how we
can start to make some progress.

Fisher. If we're going to cohere, though, we have to have some common
understanding of what we're talking about. And what I thought you just
said was let's throw all of these out because we aren't going to be able to
come up with a formal definition. But I think, at least I heard four or five
people now really endorsing this degree of specificity aspect of things. I
think it is something that a lot of us share as a key characteristic of informal
systems.

Shultis. Let me say this. I guess what I was suggesting, Dave, was not
that we throw them all out, but that we accept them all.

Fisher. But what if I personally disagree with several of them?
Shultis. That's OK. It's not necessary that everybody in the group

endorse every aspect of it to have a common understanding.
Fisher. You're suggesting that having any of these properties would

suffice?
Shultis. We're all talking about things that are related. There are

family relationships among these concepts, and that's what we're down to.
Some of us will think that some these are more central to the category than
others and that's fine. The enterprise is still this family of ideas.

It's six o'clock and we could probably go on forever and forever. What I
would like to suggest is that we wrap it up in five minutes and all go off and
stay up all night and talk to each other and come in bleary-eyed in the
morning and solve all the problems.

Reeker. People might also think about what specificity means.
Shultis. What I'd like to think about for tomorrow is: how are we going

to build these things? And what kinds of things are we hoping to achieve by
doing informal computing?

Standish. I would like to put one more stimulus in the pot. Is there
such a thing, such a natural phenomenon, as intuition-let's say human
intuition? If so, what are its characteristics? Is it at all important in deciding
what we mean by informality, and is it suitably important to want to seek
mechanisms to implement it? For example, Gary Kasparov plays Deep Thought
and he beats it. Is Gary doing pre-cognitive things about planning where
things are going to happen in the long-range future that are not achieved by
finite symbol system searching down search trees, according to the rules of
chess? And does he know that if you bottle the end game up over in the
comer and get it to temporize so that you can't do anything you can sort of
pick away at the corners? Does he have an intuition about how to beat it
and is that what makes him world champion and enables him to beat Deep
Thought?

van Hoek. Sounds like you're saying he's drawing generalizations that
the computer may not have acquired.

Standish. Some of this can be mechanized in limited forms, like Arthur
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Samuel's checkers-playing program, which became the Texas state champion.
And its mechanism for implementing that kind of intuition was (God forbid)
polynomials with learning coefficients. So I don't care what the mechanism
is, but does it exist? and is it important? It's an interesting thing to me.

Littman. Well sure it is, and sure, and of course, to answer your
questions one, two, three.

Harnad: It's interesting that there's formally an anal.gous debate at
the foundation of mathematics between intuitionists and furmalists. And
some of these issues are very much the same. The intuitionists who are
questioning... but it's turned upside down, because of course constructive
proof is better than a purely formal proof, not worse... In a way, the way
Kripke settled this in the interpretation of foundations is relevant here, too.
The idea is this: you can prove something to be true formally by showing
that it leads to contradiction if it's false. That's a formalist proof. You can
prove something to be true constructively. That is to say, you can construct
a model of it, perhaps even a physical model. Thates an intuitionistic proof.
What Kripke- asked was, 'What is the status of the truth of something that
we know to be formally true but we don't yet know to be intuitionistically
true: is it true or is it false or what have you?" And in the end I think thates
the down side of your notion of informality: it's based too much on ignorance.
Kripke's solution was to think of epistemic time for a mathematician. There's
a time line, and on the time line when the constructive proof has not yet
materialized the truth of the thing is sort of in a three valued logic limbo
and it collapses into the two valued logic world that we're in when you come
up with a constructive proof. But you see why it's upside down here. Here
we're talking about informality as a form of ignorance. Right?

Shultis. A couple of things, rd like to...
Standish. Oh no. It makes really good performance in the case of

intuition. If Gary Kasparov is using it and he's world champion then it may
have very strong problem solving consequences.

van Hoek. But we can't formaly specify how he did it.
Harnad. But we don't know how or why and we haven't formalized it.
Shultis. Let me say something. A couple things rd like to say. There is

formal constructivity and there is intuitionism the way that Brower saw it
and they are in very great conflict with one another. The second thing is
that Kripke's construal of the semantics of constructivism is incorrect.

Harnad. It will be interesting to hear that.
Shultis. The question of truth, the question of truth of the proposition

is meaningless to the constructivist.
Harnad. The bivalent truth is meaningless. The classical bivalent truth

is meaningless.
Shultis. Even trivalent truth. Its not a meaningful question. What

you know when you have proved a proposition, to a constructivist, is identified
with knowledge of the method of that proof. That is to say, knowledge of the
proof. And there is no question of truth or falsity...
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Harnad. But that's just semantics, because you're redefining truth as
what I can construct. You're saying, no, don't ask whether this is true, ask
whether I can construct the proof of its truth or I can construct the model in
which it is true.

Shultis. The right answer is that if you ask: is a proposition true or
false, independent of knowledge of the proof or disproof of it?, the correct
answer is not "yes", "no", or "maybe", but rather "muh!", and... another tim.e.
Shall we break and go off and have these discussions at dinner?
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Abstract

We derive a model of the role of reaction in real-time decision making from a consid-
eration of the computational dilemma facing finite agents acting in the world. This
dilemma is simply that more time spent in computation will generally provide a bet-
ter solution, but more time also means more delay, which may have costs of its own.
Our model provides a more fundamental role for reaction than is generally assumed.
We illustrate this model with examples from a prototype real-time decision maker we
are constructing, and briefly survey several current proposals for real-time problem
solving architectures in light of the role they assume for reaction.

Introduction

This paper is an extended abstract of a longer paper submitted to IJCAI-91. In
it we investigate the role of reaction in real-time decision making. The problem of
real-time decision making, or acting in time, presents a fundamental challenge to AI
approaches to problem solving in general, and to decision making in particular [1],
[6] . Two predominant responses to this challenge are reaction [2], [10] and meta-
level reasoning [11]. We find most discussion of the roles of reaction and meta-level
reasoning in real-time problem solving confusing and confused. The primary goal
of the full paper is to present our understanding of the roles of and interactions
among potential decision-making elements,and especially the role that reaction plays
in decision making and in problem solving in general.

Our interest is in how finite agents cope with a complex and dynamic environment
in the pursuit of their goals. The fundamental requirement of an autonomous agent
is that it be able to act in pursuit of its goals. Therefore, we take the ability to choose
an act, or decide as primitive, and study decision making, rather than planning. We
will organize our discussion of decision making around three characteristics of any
decision situation: the process by which the decision will be made, and the domain
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of action for the decision, and the way in which a decision situations arises and is
recognized.

Decision-making processes

Traditional theories of decision making or planning in AI model the process as the
application of a general-purpose reasoning procedure to a problem representation
stated in some language. These models generally presume the knowledge is organized
in a form convenient and compact for expression, and the reasoning complexity is
unbounded if the language is at least as expressive as FOPC. Such decision processes
are typically termed reflective or deliberative. By the use of the term reflective we do
not mean to necessarily imply any form of self reasoning, as in [13]. Rather, we simply
use the term in its dictionary sense of "to think deeply." By contrast, the term reaction
is typically used to denote a decision-making process in which the decision is made
based on simple, direct sensor-effector connections, and in which either the depth of
computation is bounded, or the total computation time is bounded.

We find this characterization of reaction and reflection unsatisfactory. By the
above definitions, processes of the complexity of finding the optimal decision given
a decision basis, which are known to be NP-hard, are "reactive." This seems coun-
terproductive. In the following we build up a model of real-time decision making
processes from which we derive a very different characterization of reaction and re-
flection.

Models of decision processes There is an essential element missing in the above
definitions: they do not take into account either the nature of the environment, the
task, or the agent [4]. Given a probability distribution over domain decision situa-
tions an agent might face, and a set of utilities over outcomes, we begin by defining
a decision process to be any computational process which recognizes a subclass of
situations and selects a single action more or less appropriate for that entire subclass.
An Optimal real-time decision process is then a bounded-space bounded-time decision
process that computes that action for which the expected utility is the maximum over
all possible actions, where the expected utility is evaluated at the time the compu-
tation will complete when executed on the agent for which the process is '.esigned.
Optimal real-time decision processes for a given environment, task set, agent com-
bination can vary in two ways: The class of situations to which they respond, and
the computation time required. An optimal real-time decision-process set is a set of
optimal real-time decision processes that together do not exceed the resource limits
of the target agent, and which as a set provide the maximum expected utility of any
such set.
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Decision domains In general, decision-making can take as its domain the environ-
ment, the agent, or both. When the domain is the environment, input is the state of
the environment, as evidenced by sensors, and output is an action, to be performed
by effectors. When the domain is the agent (that is, meta-level decision making),
input is (some aspect of) an ongoing decision process, and output is a modification to
that process. We conjecture that an optimal real-time decision process set for highly
resource constrained agents and/or agents operating in highly dynamic environments
will often include meta-level decision processes.

Meta-level decision making requires modeling ongoing decision processes. Any
computational process can be modeled as consisting of three aspects, data state,
control state, and procedure. At this level of abstraction we can say little more. Data
state is simply the declarative, input/output interface to a process, and its form is
determined by the language the decision-making process requires. Similarly, control
state cannot be specified separately from procedure. We chose to commit to decision
theory [12] as our theoretical model of decision making, and the decision basis [7] as
our representation of a decision problem. This defines a data state as consisting of
five sets:

" Parameters representing aspects of the state of the domain,

" Beliefs about the values of these parameters and their interrelationships,

" Action alternatives,

* Beliefs about the effects of actions on parameters, and

" Preferences over possible outcomes.

We will have more to say about control-state and procedure later, when we de-
scribe the prototype agent we are constructing.

Decision Situations

We are almost ready to define a reactive decision process. One question remains:
how does a decision situation arise? We assume a symbolic, event-based interface
to the external world, which makes the first question simple for base-level decision
situations: a new decision situation arises whenever new symbolic data arrives from
the world. At the meta level the same principle applies: a new decision situation
arises whenever the state of the active decision process or the external world changes.

Now we face a second problem: how is an agent to recognize that a new de-
cision situation has arisen? All decision processes could be active simultaneously,
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monitoring for situations to which they can respond. However, this approach is in
general infeasible: for arbitrary forms of meta-level reasoning the number of potential
decision processes could be unbounded. An alternative is to seek a minimal set of
decision processes which must be active at all times. This minimal decision process
set must be sufficient to generate all possible decision processes in the full set under
appropriate circumstances, and will in general contain three kinds of decision process:

1. decision processes that yield an action directly.

2. meta-level decision processes that initiate new decision processes.

3. meta-level decision processes that modify existing decision processes.

While not required by our model, the easiest way to ensure that this set is closed
and finite is to require that all decision processes in our minimal set be stateless.
This permits them all to be executed by a computational element which need not
monitor its own state. We are finally in a position to define a reaction: any decision
process in this set is a reaction, and the entire set the minimal reaction set for the
larger decision process set. It may be that there exist stateless decision processes not
in this set which, if added to the set, would improve the expected performance of
the agent (by reducing response time to the decision situation responded to by those
processes). The minimal reaction set, supplemented by the subset of such stateless
decision processes which maximizes expected performance of the agent, is termed the
optimal real-time reaction set. For convenience, we term all decision processes not in
the reaction set reflective.

Reaction and Reflection in Real-Time Decision Making

We can now present a general computational model of real-time decision making.
First, we posit a decision maker consisting of at least two computational elements,
a reactive processor and a reflective processor. The reaction set will be located in
the reactive processor. Since all decision processes in the reaction set are stateless,
the reactive processor can be implemented as a combinational circuit. Input to the
reactive processor must include all state change information, both external to the
agent and internal. The output of the reactive processor can be any one of the
following:

1. An action to be performed in the external world. In this case the reactive
element is responding to an external decision situation by choosing to make the
decision reactively, and producing the decision.
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2. A change to an ongoing reflection. In this case the reactive element is responding
to a meta-level decision situation by choosing to make the decision reactively,
and again producing the decision.

3. A new reflection to be begun. In this case the reactive element is responding
to a base or meta-level decision situation by choosing to make the decision
reflectively, and initiating the reflection.

Of course, the reactive element can always chose to ignore a decision situation
entirely. Note that in this model all reflection is initiated by reaction. When initiating
a reflection, the reactive element must provide initial values for the data state, control
state, and procedure. If the data state scope includes only the external environment,
base level agent action, and a problem statement, then the reflection spawned is base-
level. However, if the scope includes one or more elements of other on-going reflections
(data, control, or procedure), then by definition the new reflection is meta-level. We
assume that only the highest level reflection currently outstanding is active, and that
all lower level reflections are suspended until it completes or is terminated by the
reactive element. Variables in reactive decision processes are bound to the currently
active decision process in the reflective element.

We have introduced a variety of definitions, and claimed to provide a general model
of real-time decision making in terms of those definitions. Clearly these definitions are
useful only to the extent that we can do something with them. Ideally, we would like
to provide a procedure for solving the design problem implicit in the model: given an
ETA description, derive the optimal real-time decision process set and corresponding
optimal real-time reaction set. We have-not yet produced such a result, and doubt it
is achievable in the near future (if ever) for non-trivial problems. Rather, in the full
paper we present two illustrations of the utility of this framework. First we illustrate
this model with some examples from an agent we are constructing. Second, we survey,
from the perspective of our model, several current proposals for real-time problem
solving architectures.

Conclusions

Reaction is typically assigned the role of serving as a "quick and dirty" front end to
a more "intelligent" deliberative (reflective) process. We have argued that reaction
plays a much more fundamental role in real-time decision making: that it is the
ultimate ground of all reflective processing, and that the essence of a reaction is that
it is a stateless decision process which is always active. We have introduced the
notion of an optimal real-time reaction set as a complete specification of the optimal
solution to a real-time decision problem, where the problem specifications include
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environment, task, and agent characteristics. Finally, we have found that our model
of reaction is adequate to compactly describe the kinds of decision making dynamics
we have found useful in a study domain, the on-line maintenance agent.
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Decision Making With Informal, Plausible Reasoning
David Littman

Department of Computer Science
George Mason University

Fairfax, VA
dlittman@gmuvax2.gmu. edu

Debbie Boehm-Davis
Department of Psychology
George Mason University

Fairfax, VA
dbdavis@gmuvax.gmu. edu

Introduction: Motivation and Goals

The purpose of the research described in this report is to explore the possibility of
developing a computational model of the informal, plausible reasoning that occurs
when people try to solve decision making tasks that arise in the course of everyday
human activity, such as using a computer. We believe that very little, if any, of this
kind of reasoning is "formal" in the traditional sense of that term. Because the type
of decision making that we intend to model is based primarily on methods of plausible
inference and not on methods of logically sound inference, we call this type of decision
making Plausible Decision Making (PDM).

Because PDM is based on rules of plausible inference (cf. Collins and Michalski,
1989), a hallmark of PDM is that it typically generates new knowledge. That is, after
an episode of PDM, the decision maker has learned something. What the decision
maker has learned may or may not be correct, of course, but learning has occurred
and it will affect future problem solving.

For example, suppose one is trying to decide what kind of compact car to buy and
therefore must decide whether Hyundais are better than Fords. At the beginning of
the PDM episode, the decision maker may have no opinion on this issue and knows
only that Hyundais are made in Korea. During the PDM episode the decision maker
may reason as follows: Because Korea is "close to" Japan, the two countries probably
have close economic and technical ties. Through these ties, Korea probably benefits
from Japanese expertise in automobile design and engineering. Because all Japanese
cars are better than all American cars (the decision maker reasons) Korean cars are
probably better than American cars. Notice that this conclusion implies assertions
that the decision maker believes after the PDM episode but that did not exist before
it. Therefore, PDM typically generates new knowledge. Plausible decision making,
such as deciding which make of car to purchase when one has only fragmentary
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knowledge about car makes, models, countries of origin, reliability, value for the
money, and so forth, has been studied extensively by psychologists (cf. Kahneman
and Tversky 1982' Such studies have yielded valuable insight into both the heuristics
that people use to attack naturalistic decision making tasks, as well as some of the
factual knowledge to which they appeal.

The psychological work, however, has not produced an account of PDM that is
sufficiently detailed to support the specification of a computational theory of this
ubiquitous kind of human cognition. That is, we do not yet have a precise, detailed
description of 1) the structural properties of the informal knowledge that is the basis
of naturalistic decision making, 2) the computational form of the rules that carry
out reasoning in naturalistic decision making tasks, or 3) the control structure that
governs the application of the rules during decision making in this type of informal
reasoning. In short psychological studies of informal, naturalistic, decision making
have produced descriptive theories rather than process i. e., computational, theo-
ries. As well, we do not believe that current "formalistic" models of reasoning can
account for Plausible Decision Making. Because our primary goal is to develop a
computational theory of informal, naturalistic decision making that can serve both as
an explanation of PDM and as the basis for the construction of artificially intelligent
support systems for informal reasoning that behave reasonably in extremely under-
specified tasks, our research focuses on three facets of plausible decision making that
have been largely neglected. In this project, we therefore address the following three
research questions:

Research Question 1: What are the properties of the declarative knowledge struc-
tures (representations) of beliefs and facts that comprise the knowledge base for
informal, naturalistic decision making?

Research Question 2: What are the forms of the rules of plausible inference that
perform the inferential reasoning in naturalistic decision making tasks?

Research Question 3: What control structure governs the application of the rules
of plausible inference during an episode of informal reasoning for decision mak-
ing?

Although we intend to study PDM in several types of naturalistic decision making
tasks, our goal is not simply to describe patterns of plausible decision making as they
arise in the many separate tasks. Rather, we intend to develop a general process
model of PDM which describes the characteristics that govern the structure of the
informal knowledge used in plausible decision making.
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Tasks and Domains for Plausible Decision Making

As we have suggested, plausible decision making is knowledge-intensive and inference-
intensive. PDM occurs when a reasoner must make a decision but does not have suffi-
cient knowledge to generate a logically justified decision. In these circumstances, the
reasoner generates a "good as necessary" decision by performing plausible inference
operations (Collins and Michalski, 1989) on structured knowledge that is potentially
relevant to the decision.

We have identified for study three common types of decision tasks that typically
require the decider to rely on imperfect information and therefore require the decider
to perform plausible inferences. The three decision tasks are:

Selection Tasks: In selection tasks a person must either 1) choose from among
several alternatives that are provided or 2) must both generate alternatives and
choose from among them.

Advice Giving Tasks: In advice giving tasks, a person listens to a specified prob-
lem e.g., of another person and either 1) reasons to select from among alternative
courses of action or 2) generates alternative courses of action and then reasons
to select from among them.

Resource Investment Tasks: In resource investment tasks, a person must decide
whether to 1) begin investing a resource, 2) continue investing a resource, or 3)
reallocate resources with the goal of achieving some desirable, but potentially

-underspecified, outcome or 4) discontinue pursuit of the goal.

We have identified several domains to which we are applying the theory of plausible
decision making. Two domains which are relevant to the interaction of computers
and humans, and in which PDM play an essential role, are:

Adaptive User Modelling: Effective user modelling appears to be essential to
good interactions between humans and computers in complex problems solv-
ing situations. A key, unsolved problem in the area of user modelling is giving
computers learning algorithms so that they can acquire new models of users
when models which the system already possesses are found to be inappropri-
ate. It seems quite clear that when human consultants, or tutors, are helping
someone solve a problem - and are therefore maintaining a "user model" of the
person they are helping - they are very good at adapting their user models to
new kinds of problem solvers. Our initial studies of human tutors shows that
they do not reason "logically" when they are developing new, appropriate mod-
els. Rather, they use a combination of informal, plausible reasoning strategies
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to develop new user models. This reasoning, and the knowledge behind it, is
1) very powerful, 2) poorly understood, and 3) potentially very useful in smart
computer systems.

Everyday Problem Solving: It is clear that people do not reason "logically" when
they are making everyday decisions such as which car to buy; whether to use
leftover prescription medication; how to help someone solve a problem, and
so forth. Rather, they use informal, plausible reasoning methods to arrive at
a decision. We are currently investigating the potential power of models of
plausible reasoning in explaining this phenomenon. We hope that the research
will lay the groundwork for developing computer based assistants that can help
people make such decisions as well as to learn to improve their decision making.
This work is expected to feed into the work on user modelling, described above.

In the full report, we will describe our methodology, results, and tentative analyses.
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Thursday Afternoon
Discussion

Shultis: Some of the things that started to come up at the end of
yesterday's discussion, and that have come up again today are, "Well, what
do we do? What sorts of projects can we outline?" I think that one way of
looking at the problems that we all confront is that the fundamental fact is
our unease, our feeling that there must be something else, that there must
be more to life than formalisms. And perhaps a way to start thinking about
what we might do to start drawing up some plans, or conclusions, or projects,
for ourselves as a community is to start thinking about what it is that we
want. I think we've seen a lot of wishes, or a lot of feelings about what sorts
of things we might like. An example of that that came up earlier today was
the problem of code explanation, for doing maintenance. Another project
that came up today, rather prominently, and it's sort of been sitting there
all the time in the background, is how we build our successors. [Laughter.] If
you take seriously the idea of building an autonomous cognitive agent, then
you can say, well, look, we can probably build it so its spiking frequencies
are a lot higher than human spiking frequencies, and maybe it can do things
a lot faster and maybe just better than us, anyway, and we eventually just
become instruments of this device, and it's just the next stage along evolution,
or something. Somebody said something like that-I guess you did, David.

Littman: But it's only half. I mean, when I set out to establish a
methodology for supporting guided robots, it came from an idea I've had for
a long time, which is to develop a support environment for building minds.

Harris: I'd like to make a comment on that. Terry Sejnowski has an
example of why we needn't fear a computer takeover...

Littman: I'm not afraid of it!
Harris: ...and it's just that we would need something like 105 times as

many Cray computers as we currently have on the planet to have the same
number of pieces of hardware as there are in a human brain.

Littman (laughing): Well, I think, not to digress, the IRS already has
more information about me than I'd like them to have, so I think they've
already taken over. [Laughter.]

Shultis: Well, just to get a focus, or a bead on where we're going, we
might say that building robots is a long-term project, and in terms of thinking
about the kinds of capacities and abilities that we're trying to achieve here,
maybe we get to a point where what you're talking about is something that
has a good deal of robotic capability. Whether we compete with them or not
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for the same resources and end up in trouble I'll leave for the future to
decide, because it's pretty moot right now.

Littman: It seems to me, and I'm serious about this, that a long-term
goal might be to build robots that Steve Hamad would not eat.

Shultis: Well, I think he could never really be sure. There's always a
nagging doubt that maybe that carrot really does have qualia. But a more
serious question is: can we identify small projects that might help to focus
us in terms of what we can do in the medium term. There are two set of
things that have come up that Bruce [D'Ambrosio] and I were talking about
this morning, and that was to look at decision-making in engineering design.
If you think about the sorts of things Bruce was talking about this
morning-real-time decision-making, decision-making under constraints
(that fact that you have to do something now, that you can't wait)-in
engineering, you're also in a space where you need to make decisions, and
you need to make them within certain limitations of time and other resources.
And, even though it's a different kind of application domain that doing
on-line maintenance and repair of machines-it's not all that different.
Somebody said, I can't remember who, that programming is just debugging
a blank page; there's some repairing to be done. And so, that's one kind of
project that I've seen come up. Correct me if I'm wrong, Bruce, but is that a
medium-term kind of project, not something we could expect to accomplish
in the next 2-3 years?

D'Ambrosio: Medium-term meaning not short-term, yes. There's a
whole separate range of issues on the human-computer side. I've been
looking at mechanical engineering design, at least, and there's a lot of issues
there just in terms of the human interface and problem acquisition.

Standish: Somewhere floating around Washington was a document
created, maybe by Feigenbaum and some others, on an engineering assistant,
and they wanted to pose grand challenge problems that would plant money-
suckers on the government and flow large amounts of cash to their coffers
and do something big and useful, and they felt that making an engineering
design assistant, as an artificially intelligent creature was a worthy goal
that has a large, programmatic description. Has anyone ever seen that?

D'Ambrosio: I haven't seen the document. I have heard Steve Crocker's
talk about assistants and associates.

Standish: Yeah, that's because it probably went to him and he's floating
that. Is that going to go anywhere? Because if it is, that's the train to hitch
a ride on.

D'Ambrosio: My impression is that they're trying to sell it inside and
outside. Inside to get the funding and outside to get the outside support for
the funding.

Shultis: Another sort of project that came up, before I forget about it,
is: what can we do about program explanation, or doing code archaeology?
For purposes of maintenance, can we do program explanation in a way that
would take some of the abstractions one might build on something like the
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KIDS system, say, and do some analogical or metaphorical reasoning, and
help people to understand what is going on in a program in terms of collateral
reasoning domains and the epistemology of computer programming that
Tim [Standish] was talking about? Those are the sorts of projects that I see
people talking about. Another is Sandra[ Carberry]'s cooperative dialogue
systems for certain kinds of applications. Maybe there are other applications
than advising students where there is a serious demand for that, and a
serious challenge that would bring out some of the issues that we've been
talking about. I don't mean to be saying anything against your system,
Sandra, but I think you would agree that advising students in a college is
just a small-scale application.

Carberry: Yes, but you can use it for any kind of consultation dialogue.
For instance, the IRS wants to build a taxpayer's assistant.

Shultis: Exactly. But when you start talking to the IRS about doing
tax consultation, then the legal issues become so serious that you can't do it
by half measures. You've got to get it right. There are legal consequences.

Standish: Even though in the current system your chance of getting a
wrong answer is 33%.

Shultis: But that doesn't matter, because if you get it wrong because
the computer screwed up, then there are real liability problems, whereas
people are expected, and allowed, to make mistakes.

Fisher: I don't think there is any legal difference. The principle is that
you must do at least as well as accepted practice in the given engineering
discipline.

Shultis: No, there's a serious legal issue there, and I'll describe it in
another situation altogether. A friend of mine was designing building analysis
tools for doing passive solar designs for office buildings and things like that.
The company he was working for collapsed, because they couldn't sell it to
anybody. The engineers said, "If we use this stuff, and the building fails,
we're liable. If we follow standard, approved, and accepted engineering
practices, it's OK, we can blow it. As long as we followed the right practices
we're not legally liable."

D'Ambrosio: I'll give you, perhaps, a counterexample. There's a system
called Pathfinder that's been developed to aid pathologists in identifying
pathologies in tissue samples, and it's being backed by the American
Pathological Association, or whatever that group is, and the claim by the
developers is: they're not so much concerned about the suits for the system
malfunctioning, as they're looking forward to the first suit against a pathologist
for not using the system.

Shultis: Well, there are those kinds of issues, and whichever way it
goes I don't really care. But the reason I'm bringing up these projects is so
that we can start asking: what is it about these kinds of tasks that requires
or would benefit from informal processing, or whatever you want to call
it-pragmatic computing, maybe grounded robotics.

D'Ambrosio: I'd like to just raise one other point, that the long-term
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task, potentially, is one that requires grounding, and the medium- and short-
term aren't. I think a potentially valuable place for informalism is in systems
that clearly require grounding, simply because formal systems have been
such failures in areas of dealing with real sense information. I'll turn to
Steve: do you have any recommendations for medium- or short-term useful
products, if you will?

Harnad: What?
D'Ambrosio: Well, products in the sense of engineering design aids, or

program explanation, or,... prototypes of products?
Harnad: I've neglected to say that I'm just a cognitive modeler. I don't

think I'll ever make, or have anything to do with, a product. I have projects,
and I consider the general project of pattern recognition and categorization
to be one that's burning for a breakthrough. All I have done is to look at a
few generic approaches-I mean, Minsky almost did in this field; it's time
to revive it.

Green: Incidentally, he tried very hard to do in the whole field of logic
and theorem proving as well.

Harris: What did he do?
Green: Oh, mostly tirades. Ridicules.
Littman: I wanted to make a suggestion; I'm trying to generalize.

These are specific projects, but what if we state the long-term goal to be the
production of knowledge-acquiring autonomous agents which use informal
reasoning in order to achieve their goals. Medium-range projects would be
something like knowledge-based support tools that support tasks that require
informal reasoning. Short-term projects might be to hit particular domains,
and identify the representations for informal knowledge, the informal
reasoning strategies, and so on, so that it would be cumulative. The point is
that we should try to build in the idea of reasoning informally at each level.
The philosophical issues about grounding, and so on, are an orthogonal
dimension to that.

Shultis: What you're suggesting, it sounds like, is, as a first stage,
something more along the lines of trying to make a program simply of
identifying, cataloging, and characterizing...

Littman: What is informal reasoning?
Shultis: ... the limits of formality. In trying to clarify some of these

things we've been talking a lot about one sort of issue, which is the construal
of the behavior of the system, or the interpretation of it. Steve[ Harnad]'s
question yesterday: is a neural net, interpreted as a cognitive system, informal?
And there's that point of interpretation, that if you interpret it as just a
bunch of hardware computing squashing functions, doing backprop, and
things like that, then of course it's just a bunch of code in a simulator, and of
course it's a formal system, if i's treated that way. It's just doing a bunch of
computation. But if you think of it in terms of what it is doing cognitively,
what it's doing may be inferencing, reasoning, categorizing, and that is not
necessarily formally describable.
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Hamad: Could I make a comment on Bruce's question? It took me by
surprise; I've never been asked to propose a product before. There is definitely
a split in the agenda, and there always has been, between cognitive modeling,
which is trying to figure out what goes on in organisms' heads, and modeling
it, and making useful products. Right? I mean, sometimes there's a spinoff-it
can happen. The cautions I've been urging are anything but philosophical;
they are empirical and methodological questions...

Littman: Issues of grounding?
Hamad: Yeah.
Littman: ??
Hamad: This is not a philosophical question: what should you do?
Littman: I agree with that-it's an implementation issue...
Hamad: I'm inclined to say it's not a philosophical point, either, in

that for cognitive modelers, unlike for artificial intelligence researchers and
creators of products, there's an entry point problem, which is: there's this
big cognitive domain of which the human mind is capable. Is it modular?
Can you just pick out a little piece of it and handle it on its own terms?
There are reasons to believe that even a big chunk like syntax is not an
autonomous module that can be done on its own terms. I don't know how it
affects on-the-shelf products, but as far as cognitive modeling is concerned
it's a big empirical and methodological question whether you've carved out a
natural piece when you've decided to do one of these short-range projects.

Littman: That's why I think that the only way I can understand this
issue of informality, or informalism, is to look at it in terms of the kinds of
activity that people do and which we typically say is informal reasoning.
I'm just trying to understand, at the first step, what those activities are. I
gave a couple of examples in my talk, and I think Tim did as well. The short
term I see as partly interacting with the PR issue; you've got to tell people
what you are doing, and why you are doing it. Now as to the question about
whether you have to solve all the problems in cognitive modeling to pick out
a piece that's interesting: I think syntax is a really stupid piece to pick out.
I never would have picked that out. I might have picked out representations
that are used in developing programs that solve the following kinds of
functionality because there's some sort of fairly natural traceback to the
kinds of reasoning people do when they're trying to solve these problems
naturally. But again, I'm just being stupid about this, and trying to avoid
philosophical problems, and maintaining this view... If you prove to me that
I can't have a knowledge-acquiring autonomous agent that doesn't have a
grounded symbol system, I would be very happy for you to prove that...

Hamad: ?? acquiring what?
Littman: This thing that's walking around like a kid. Walks around

this room and it learns things, all that kind of stuff. I would probably be
willing to believe that. I would be very interested if you could show me that
I couldn't have a knowledge-based support tool that supports the informal
reasoning that people do, without having a grounded symbol system.
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Hamad: I don't expect to have anything to say about that. I mean,
who knows what it takes to develop a good tool to help people? But to the
extent that having a good tool depends on doing it in a people-like way...

Littman: That's the issue.
Hamad: What I would say would be that some of the short- and

medium-term projects seem to me like they're hanging from skyhooks from
the grounded point of view.

Littman: Well, it seems to me that a question is: What are the grounding
issues? And if we agree that informalism requires grounding, again, I can't
understand that very well; maybe I'm just being stupid. And that's one
track of issues I think are very important. The other track of issues is: the
kind of reasoning people engage in when they solve problems, using informal
reasoning. The implementation of systems that support that may or may
not require grounding.

Hamad: I agree.
Littman: Now, there's the further question of: if you have a system

that helps a person in exactly the same way that a human consultant helps
him: does that system then require grounding? I guess the answer to that
would have to be 'yes', because presumably it would be having the same
cognitive activity as the human consultant. But those are two different
questions. I think it would be useful to distinguish the kinds of applications
we're after from the development of the theory.

Lethbrid_ -: As I see it, there are three kinds of things we can look at
in the short term, perhaps. I've put stars by them in my notebook, here.
One of them is informal knowledge, which I think we should distinguish
from the second one, which is informal reasoning. The third one, which
hasn't been spoken much of except in some of the talk about graphics today,
is informal interfaces. I think those are three different directions: you can
have an informal interface, for instance, with totally formal knowledge and
formal reasoning; you can have informality on any of the three levels. I'm
actually planning some experiments in which we want to see if users are
willing to use a system which has an informal interface. They can specify
things informally through the interface, but internally the knowledge becomes
more formal. So, I certainly think there are some possibilities there.

Mundie: What is an informal interface?
Lethbridge: What I mean by an informal interface is one where the

user doesn't see a formal language inside the thing, and he doesn't see a
formal reasoning mechanism inside the thing: he interacts through the human
interface, whether it be by buttons, or bits of language, or whatever, but
that's only a passing thing in time. Once it gets into the system, it can take
any form, whether it be informal or formal.

Mundie: Is X windows a formal interface?
Lethbridge: Is X windows a formal interface? Umnm m.
Mundie: Or Motif?
Lethbridge: I'm not prepared to answer that; I think that's up for
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discussion. I would suggest that...
Shultis: It's an implementation medium.
Lethbridge: Yes, it's an implementation medium. The thing is, I see

people using AI systems, using knowledge representation systems, and they
get hung up by formalism. We worked for a year in industry with a company,
and people would say, "That's too formal. I can't get a grip on it." So we set
about trying to take our tool to such a point where they could use it in
ultimately an informal way. We turned what was originally a way of specifying
complicated frame-based semantics into basically what would be an outline
processor. They could manipulate statements just like Microsoft WORD
outline processing mode. And that could gradually be transformed as they
became more expert into a more formal way of inputting things. But it was
a question of usability.

Fisher: Is this what Dave Mundie on the first day was calling non-ugly?
Lethibridge: Yeah, you could say things along those lines. I think this

is very important if we're going to have good PR and want to make informalism
respectable to the community.

Biermann: By the way: wouldn't you say communication rather than
interface?

Lethbridge: It's two-way. I don't think it makes much of a difference
whether it's communication or interface or not, but it is certainly two-way.
I'm talking about the user to the computer and the computer back to the
user.

Shultis: in setting this workshop up, on the first day I think I said
that we had a huge list of themes that you could focus on, and we chose
language as the opening wedge into things. Certainly you could broaden
language to interface issues in general. We settled on language because
there seemed to be enough people thinking about that kind of interface to
run up against these barriers there. But I think that's a legitimate question,
and some of the things that Tim was talking about earlier, these various
representations, like simulation, raise the same question. Can you think
about direct manipulation environments and so on as interfaces with some
grounding to them? Is artificial reality grounded?

Harnad: No!
Lethbridge: I think a distinction that people perhaps don't make is

that between languages and internal knowledge representation. I think
there should be a distinction made between the language which is used to
communicate and the internal representation, which can be considered a
language, too: a language of logic, a language of frames, or whatever. But
that is a distinct kind of thing from the language used to communicate into
it.

Shultis: What I wrote down here [on the easel] is that we'd like to
identify some problems that we think can use informalism, or exploit some
things outside the boundaLies of the formal. So we need to identify what
those things are. We need to find some problems we can solve with them,
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either problems that can be solved that can't be solveO otherwise, or that
can't be solved at reasonable cost. The cost issue is c..e of the things that
Bruce's work is addressing because the costs there are. I guess your cartoon
is the best example of the cost, because if you don't act fast enough, you lose.

Harris: My complaint about this discussion session and the one yesterday
is that things are being pitched at too abstract a level. I think it would be
i -_aful to summarize more concretely some of the thing that were said during
tm. day. One theme that came up today that I thought was sort of glossed
over was the isome of overspecification. I have some suggestions for som,
heuristics for overspecification that come from experiments on humans,
experiments in word recognition, that I was flagging my head, saying, "Oh,
I'd like to share these with people who are working on overspecification in
contexts like lazy evaluation." But this hasn't come up yet, so this is why
maybe I'm asking whether some time in the next hour we could return to a
more concrete view, bringing up more specific issues.

Standish: That could be a short-term project: the kinds of experiments
you could perform to settle certain issues t.iat are easy to imagine, easy to
conduct, and easy to get results from in a short-term period.

Shultis: What you're talking about is fleshing out this program of
characterizing what it is, and we've had a number of things come up here.
Maybe that's a good direction to move at this point. Can we identify some
things that we think are outside the boundary of formality, and summarize
them? We can return to these other issues as we go along.

Standish: Id like to hear about Cathy's experiments on word recognition.
Harris: No, just put "overspecification" on the list, and maybe we can

return to it.
Shultis: Does everyone want to do this, shall we try to draw up a list of

things that are "beyond formality"?
Reeker: There are a number of things that have been mentioned that

are evolutionary in nature, where the process of getting at a task is really a
process moving toward something and we don't know where it's going to
leed.

Littman: If we said we believe that informalism as a computational
activity will be particularly useful in problem-solving tasks, for example
design tasks, at the very early stages of development, that would be amazing,
because then all these people working on requirements analysis, and so on
and so forth would tune into it. So, yeah, underspecification, at the very
eai'_y stages of problem solving, where you don't have formalisms yet, where
y u're in the process of developing them, for example.

Shultis: Basically, preformal notions that are ambiguous in some ways,
and can be fleshed out in a number of different ways.

Reeker: Yeah, or where you don't know if you ever will have
formalizations.

Littman: Better posing ill-posed problems. I keep having this intuition
that informalism comes up when people don't understand stuff.
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Standish: Buggy reasoning, muddling through, reasoning in the
presence of superstition and-bugs.

Littman: When you-don't have a formal representation you can ve to
reason about and communicate to other people, then you are thrown back
into using these kinds of heuristics and representations for solving problems,
and nobody is working on that, because it's a real hard problem. People
work on it, but everybody wants it and nobody can do it.

Shultis: Can you give me one word, or a slogan?
Wight: Organized religion? [Laughter.]
Littman: The problem-groping phase. No, that's not good.
Harris: I had a slogan for a certain related idea. It came up during

David Fisher's talk this morning: the idea that we can't anticipate all the
concepts that will need to be represented, so we must have a system that
can do some type of dynamic concept formation.

Shultis: OK. Dynamic concept formation.
Harris: On the spot, as the need arises. Be able to...
Standish: Improvise.
Lethbridge: I'm not entirely convinced that that is necessarily informal,

though. You can do that in a formal system, I would have thought.
Harris: OK, fine. The issue, as Fisher was saying, seems to be something

that current computer AI technology can't do very well. We need to move
towards a way to get a system that can create concepts on the fly.

Shulxis: And, in these areas, these labels are going to be problematic,
because if I put down things like underspecification, or dynamic concept
formation, or creation, or something like that, are you doing anything more
than composing old concepts? What is it that characterizes dynamic concept
formation that isn't just writing down a definition in terms of old terms?

Harris: Yeah, one of your mechanisms might be composition...
Shultis: Because we already have definitional extensions.
Harris: Well, ask Fisher what he wants, then.
Fisher: Maybe I didn't understand what you were saying, because I

thought you just changed your position in the last half sentence, but...
Shultis: What I was saying was that there are ways of doing things

like underspecification in formal systems, as well. There are formal analogues
to these things.

Fisher: Sure-or maybe there are just formal implementations of these
things.

Shultis: So these slogans don't completely capture things, that's all I
was saying.

Fisher: The topic I brought up was not underspecification, but rather
forced overspecification, as for example in programming languages and almost
all other software systems. It is the point that formal systems require
completeness and thus specification of irrelevant detail and "don't care"
cases. It is why formal systems can only describe and reason about models,
never about what is being modeled. Underspecification is an important but
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different property, namely, the ability to deal with the absence of crucial
information...

Shultis: OK, well, I was trying to put up the positive form of that...
Fisher: But they're not the same thing. They're both valid points, I

think.
Littman: You asked me for a phrase that captures that, and I think

I've got one: representational development processes. People are all screaming
about that. Software engineers want it, and that's the thing that I see. It's
those processes that lead to some easily sharable representation that seem
to carry the weight of informal reasoning.

Schwartz: Well, that sounds like concept formation, something very
similar.

Littman: I agree.
Fisher: I never responded to Cathy, of course, on concept formation.

Certainly the point I was making was that we cannot anticipate, when we're
building the system, all the concepts we're going to have to represent. We
can't pre-ground everything; we can't build in a set of primitives and have
everything else we're ever going to have be composed from them; instead we
must have mechanisms for grounding concepts that occur after we've built
the system. And I think that drives us in two ways. One is the robotic sort
of grounding, but the other one is the linguistic one, and I find it quite
acceptable, and quite desirable, to have ungrounded symbols over the linguistic
interface. It's not that we're not going to ground them, it's rather that we
can do a lot of reasoning about their relationships before we get around to
grounding them, so it's kind of a lazy evaluation of the grounding.

Harris: Maybe it's my naivet6, but I don't know anything about the
literature on how you can do this, about AI programs that do this dynamic
concept formation on the fly, about how they're able to develop a representation
that...

??: There's a whole learning literature in that...
Harris: ... so I gather that's not a problem, anymore.
Littman: Oh, yeah, it's a big problem. Are you kidding?
Lethbridge: Big problem. [Pandemonium.]
Schwartz: The problem is that, at one level or another, all the attempts,

or virtually all the attempts, get down to some primitive representation.
Whether they're continuous or discrete, it doesn't really matter. The problem
is to convince yourself that you're doing something more than just stringing
together a definition, and creating something in terms of some base vocabulary.

Fisher: Just an example on this grounding thing. If I say, "Glitzes are
winkel" and then I say "There's a glitz", I can conclude that it's probably
winkel. I don't really have to have grounding of those terms yet. Now,
th3re's an assumption, and I think we do this in human conversation, that
when we hear words and sentences, we don't have to know their complete
interpretation immediatel in order to reason and communicate.
Interpretations can be delayed until they are needed for reasoning, and then
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they can be grounded through more communication.
Littman: Once you point and say, that's a glitz, that's kind of chiouuuuu!

6clat, I guess. That's the grounding.
Fisher: Yes, that's the grounding of glitz, but it doesn't say anything

about wintzel.
Littman: Well, that's grounding, too, because I can reason about it. I

get it for free, I guess.
Shultis: Let me try to summarize these issues, then. What you want

is control over the degree of specification.
Littman: How about form and degree? If you say form as well as

degree, I'd be happier. Degree begs the question of what the representation
is going to be like.

Mundie: He said "specification".
Littman: What did I say?
Mundie: "Representation".
Littman: I know. Form. I mean...
Shultis: OK, so there are two issues. One is form, representational

form. The other is...
Lethbridge: Degree of specification.
Shultis: Degree of specification.
Littman: Yeah, I'm just being paranoid, because...
Shultis: Maybe one way of putting it is that we want to have more

control or freedom over what -kinds of representations we use, or what we
interpret them as being about, or how they're grounded, or how much we're
committed to them, or how much we infuse them with any meaning at all.
And I think that Dave's point is that we should be able to have symbols that
do float around a bit and only have, if you like, functional roles, In other
instances you can fill out their details incrementally, as you go along, as you
need them, and you have the ability to fill things out partially, and then
backtrack, maybe to change those specifications. Is that it?

Fisher: Yes. One can reason precisely and correctly without complete
information or grounding, and that information need not be obtained until it
is actually to be used. Humans do this all the time. If reasoning only uses a
limited, finite amount of information, then I only need the information crucial
to that reasoning, never complete information.

Reeker: So, you're talking about a partial specification...
Standish: Delaying the arrival time until you need it, or something.
Littman: And what's so interesting is that you can do very, very powerful

heuristic evaluations of whether you're going in the right direction, based on
these extremely ambiguous and underspecified specifications...

Fisher: Because the minute you have any relationships at all, you
have a lot of constraints on the system.

Littman: And the more you know about the constraints...
Fisher: Yes.
Shultis: I'm going to let you guys fight it out, but tell me when you're
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done, come to a consensus, and you tell me what to write up here.
Lethbridge: We should certainly have something about grounding up

there, since it seems to be a topic under discussion.
Shultis: What I'm looking for now I guess is something to replace this

line [underspecification].
Fisher: I don't have any trouble with that line.
Shultis: What?
Fisher: I don't have any trouble with that line. I suspect Dave doesn't

have any trouble with that line!
Lethbridge: No, neither do I.
Littman: No. Again, I say I was being paranoid. This is personal, but

the thing that I keep coming back to is that human beings in general, but
especially we, here, strive to develop representations of situations that we
don't understand very well. And I think that is one of the key things that
we use informalism and informal reasoning for. And so I take it one of the
things that we try to get is representations for things.

Shultis: OK, let's try to focus on something a little bit. We've talked
about things like informal representations. What's an example, in your
mind, of an informal representation?

Littman: Well, in the programming domain there are a lot of things
that won't run on a computer, but which we can use to communicate with
other people about what we want a program to do. They come from a lot of
places. I think Tim talked about several of those places this morning. For
me, that's a reasonably, pardo- me, prototypical example of informal
representations. The kinds of reasoning strategies that you use on them, I
think, are different from the ones you use when you have a more formal
representation. When, for example, you actually start proving loop invariants,
you forget about the meaning and just start treating the symbols. So, an
example of a se -f informal representations would be the kinds of descriptions
of the activity u. a program that you find people using when they're trying to
develop some complex program.

Schwartz: What would they look like? Are they natural language,
or...

Standish: Take the blocks world, at the low level of the Piagetian
thing that was being talked about by Larry Reeker yesterday. You have a
collection of blocks, and they're different heights, and you tell a kid, "pick
out the biggest one, and then the next biggest, and the next biggest, and
arrange them in a decreasing order column". And they can usually do that
if they can discriminate between the sizes, at a certain age, when they can
do the discrimination, and take the goal, and understand what the goal is.
It's pretty much muscular: you're not giving them a terribly formal spec,
and that really is prototypical for priority queue sorting, or selection sorting,
or heap sorting. You can take that basic template, and throw it into...

Schwartz: You refer to it as a template, but I'm curious to know how
you specify it other than just calling it object number 49, or template number
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49. How do you specify it in a way that the computer can make some use of
it?

Standish: First you asked me what was an example of an informal
thing, now you're asking me to give you a formalization of it. I could do
that, but I'm not sure that...

Schwartz: No, I'm not saying that... well, maybe that is what I'm
getting at. It seems to me there's an oxymoron floating around...

Standish: I tend to think that preformal things are stimuli to develop
the formal things, but that they can both exist, and one can lead to the
other. I think that's what Dave was getting at...

Schwartz: It just seems uninformative to me to posit an object. I agree
with your intuition that there are such things, but the question is... [Recording
gap.]

Reeker: ... using that representation within the computer and maybe
having the computer operate with that representation at some other level
that helps you work with it. Maybe the interface would be a good way to
think of it, in the sense that you can use interfaces with a lot of graphics
and stuff, and the graphics can help you to conceptualize problems of one
sort or another, which can then, once that conceptualization is put into the
computer, be used to create a program or some formal object. So the interface
representation means something to you that it doesn't mean to the computer
at all.

Schwartz: OK, well, that's a key aspect.
Reeker: Maybe it isn't non-formal, but it's formalized in a different

way in the computer; it's a different formal system in the computer than it
is to you.

Wight: That seems allegorical. It sounds as though we're talking about
programming by allegory. Tell a story, then flesh in the meanings, bit by
bit.

Zalta: What category does that fall under? Filling in the missing
elements of a story? It seems to be a general task that is performed all the
time, and which seems to be a classic case of informal reasoning. Which one
of these categories, so far, does it fall in? It's like the story Tim gave us of a
guy who needed some money, and he robbed a bank-bought a gun and
robbed a bank-and then he asked the question, why did the teller give him
the money?

??: Schema completion.
Schwartz: In AL, it's referred to as analogical reasoning.
Lethbridge: Exactly.
Littman: No! No, no, no, it's exactly what Steven [Wight] said. What

you've got is an underspecified representation of what happened, and you
try to figure out what probably happened, so you're building a more complete
representation.

Standish: It's plausible inferencing.
Littman: It's plausible inferencing.
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Shultis: Or, interpolation?
Standish: Script-based interpolation, yeah.
Zalta: ... interpolation. That seems to be the task that you perform.

So that would be the informal reasoning task... [Everyone talks at once.]
Harnad: I suggest you call it "pattern completion".
All: Yeah. Sure.
Wight: But we're not really talking about pattern completion initially,

we're talking about generating the pattern with the gaps in it, and
manipulating that before we interpret it. Stories can be arbitrary, and can
be of arbitrary kinds, so I don't see why it's a pattern. Stories can have
arbitrary subject matter. There's no pattern that's being completed there,
it's just a question...

Littman: It's not a single pattern. I think that this is a semantic
problem, perhaps. Stories, it seems reasonable to imagine, are composed of
many patterns with interconnections between them, and the way you fill
them in to figure out that he pointed the gun at the clerk in Al's store at
Fifth and Vine is to make the inference that he had the gun in his hand and
so on and so on...

Carberry: It is underspecified, though.
Shultis: Pattern completion suggests something that is a specific kind

of interpolation. Is that fair?
Littman: Yeah, that's interesting. Pattern completion might :-

prototypical example of interpolation. Everybody will understand if you try
to talk about it, though they may disagree that that's what happens.

Shultis: And let me suggest a couple of other things, since we're here.
S'ong with interpolation, some other things that come to mind are

approximation and projection.
Littman: Approximation and what?
Shultis: Approximation and projection.
Harnad: What's projection?
Mundie: Extrapolation.
Shultis: Extrapolation, if you like.
Littman: A! So, what is he going to do with the money? Probably buy

drugs.
Kozma: What about the converse, where you in an informal system

dealing with inconsistency? In trying to throw away information, there...
Standish: Exactly. We took some protocols of people developing

programs and the really good ones first simplified the problem to something
that was ridiculously oversimplified by stripping away information, and
making unwarranted simplifying assumptions. That controlled the problem
complexity. Then they were really good risk-takers. They would take risks
only where there was very little risk to be exposed to. And very carefully
controlled the complexity of what they were reasoning about, got the crystalline
core of the solution, then went back and added the extra cases and the
conditions to fill it out to the whole thing, sort of expanding the core. So
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that information stripping was one of the first things they did. Simplifying;
deliberate simplification; deliberate oversimplification; irrationally stripping
away to core of the problem.

Shultis: So what you're talking about ther- is approximate
representation and reasoning.

Standish: It's deliberately buggy reasoning, solving a non-probleri that
isn't the same as the real problem in order to get a core solution which then
can be expanded to the whole...

Fisher: But it's not deliberately buggy, it's deliberately simplified.
Standish: Fine.
Littman: A bad representation is better than no representation at all.
Shultis: But the reason you do that, and this is the first time I've

heard of a utility for any of this stuff...
Several: OK, yeah, agreed
Shultis: ... is that you do it in order to control...
Standish: ... the mental complexity of the search space.
Carberry: You're doing a kind of inexact reasoning. It's inexact

reasoning, and it's like something somebody was talking about the other
day, I think it was Dave Fisher: moving to different models, where you
might try a number of different models in trying to solve the problem, and
somrp migh lead you down a path that wasn't successful.

Fisher: If you underspecify you can afford to try different
representations. If your reasoning does not assume completeness, it need
never be buggy.

Carberry: Well, it's inexact relsoning, though, because if it were exact,
you would know that it was going to work out.

Fisher: No. It may be incomplete, but it is exact.
Standish: Then there's even the kind Alan Biermann was talking

about that is incorrect without the person knowing it is incorrect. We had
an interesting example of that. There's that anecdote where Hardy went to
see Ramanujan when Ramanujan was on his deathbed, and Hardy couldn't
think of anything to say, so he recited the number of the Taxi cab license,
which I think was 1739 or something, and asked, "Do you find anything
interesting about that number?"

?: No, he said it was a boring number.
Standish: Boring number, and Ramanujan said, "Oh, no, that's the

smallest number that's the sum of two cubes in at least two different ways!"
[Laughter.] So, the problem then was to write a program to find this, and
the guy who did it thought that the sequence in which he was doing it,
which was to go line by line in the subdiagonal matrix generated monotonically
increasing values. That was false; it's a sawtooth function-as you go to the
end of the row it drops as you come to the next line. But it doesn't matter,
because the next one beyond that is, um..., so the assumption of monotonicity
was wrong, but it still leads to the right conclusion. You need a different
proof, one that fixes the bug. But anyway, it illustrates the point that
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sometimes you use completely fallacious reasoning to get to the solution
that later you have to go back and say, "Oh, that's the right solution, but I
need a valid justification".

Wight: This might not be directly related, but these things all fit into,
in my mind, the science, or pseudoscience, of the creation of operating system
shells. Basically, we're talking about the shell around the computational
core of this theoretical computer application. I can fit all these into shell
attributes, categorically. I don't know if that's relevant, at all...

??: Could you...
Wight: It might just be wrong. Maybe I'm thinking too much in terms

of interface questions, but we are attempting to describe a flexible, dynamic
interface...

Rogers: But I thought at this stage what was being discussed was the
informal reasoning which humans and designers go through, so maybe we
should say something like "construction and manipulation of mental models"
You are exploring all these different possible models, but not in an exhaustive
search...

Standish: That's kind of neat. In algebra there is word problem solving,
which seems to bring forth the use of mental models, and even their explicit
representations on paper. An example is: two trains are heading toward the
same railroad station, one going 80 kilometres per hour and the other going
40, and they cross at the railroad station and head in opposite directions.
How long will it be before they are 480 kilometers apart? It's remarkable.
Today's college students will often times draw them heading in the same
direction, or draw them in different directions and subtract the velocities
rather than add them. And there are all sorts of bad mappings of the words
of that problem onto diagrams and diagrams into equations. We're not sure
why the new generation of birdbrains is doing this wrong, but it's certainly a
prevalent phenomenon. [Laughter.]

Littman: I just wrote down three things. One, shifting grain size.
That seems to me to be something that has to do with informalism. You
think of your problem at different levels of, I don't even know how to say it,
maybe complexity.

Lethbridge: Granularity.
Littman: A second one is shifting focus. That led me to the third

point: a lot of informal reasoning goes on in the domain of the problem,
where you're reasoning about the causality in the domain and the issues of
agency in the domain. A lot of the reasoning you do has the goal of trying to
make some kind of abstraction about the structure of some given behavior.
I think that that would count as informal reasoning. Insofar as a problem-
solver reasons about the processes in the domain with the goal of developing
a more formal representation of them, that would be informal reasoning.
So, shifting grain size, shifting focus, and reasoning in the domain might be
three attributes of informal things.

Reeker: That's something I've never been able to see any way to do
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formally.
Littman: Are you talking about the latter, or the first two?
Reeker: Shifting grain size. I referred to that yesterday. There was a

little memorandum that Kurt Gbdel wrote. When people asked him about
machines thinking, and whether he thought that G6del's theorem precluded
it, he said no, he didn't think it did, but that in fact there might be one
phenomenon that he saw, one thing that humans seem to be able to do but
he didn't see how machines could do it, and that was that people can keep
coming up with sharper and sharper axiom systems, in other words they
make finer and finer distinctions. This is in fact one of the main attributes,
I've always felt, of high intelligence, as opposed to mediocre intelligence:
coming up with finer and finer distinctions.

Harnad: Until you get the geniuses, who just split hairs.
Shultis: Grain size of what? Would it be fair to say that you take these

representations and these reasoning rules that are rough-hewn, crude,
mechanisms, and say, "Well, I think XYZ because of W, and that's typically
true", and you correct that later, or...

Reeker: I'm thinking of systems based on constructs, particular
constructs, and so your constructs are all set up there, and you can do all
sorts of manipulations on them, and then someone comes along and says,
"Yeah, but..." Those constructs bring us very close to concept formation.
Then you form new concepts by splitting the old concepts up, and then you
can create a new formal system which works with these new concepts, and
you create different ideas, basically. Maybe this is a sort of paradigm
shift...

Fisher: It goes the other way, too.
Mundie: Yes, I'm a bad piano player because I think in terms of the

individual notes, rather than in terms of higher-level chunks like chords
and harmonies. The same with my chess playing-I think in terms of the
individual moves of the pieces, rather than in larger patterns.

Littman: Yeah. You were asking me for another example of shifting
grain size. Here is one from social psychology. You're trying to explain why
families do what they do. Psychologists used to say, "This person says this
to that person": there were very small, dyadic explanations. Then it got to
be, "Well, it's sort of this configuration, so there are three or four people",
and then it got to be, "Well, it's sort of the family", and then the extended
family. Today the good models of social process I'm familiar with in the area
of dysfumctional families take into account the social system that they're in,
the whole social service system-what the schools are, and the whole thing,
so that understanding a family and why it does what it does requires reasoning
on a number of different levels of granularity about the things that impinge
on that family. The idea is that you can shift very fluidly across these
different construct levels which take into account larger and larger but
perhaps weaker and weaker effects. Again, that seems to be a fairly informal
activity.
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Schwartz: I don't know that that example is really an example of
granularity. It seems to me more one of going from a local reasoning process
to a more global one. What I think of when I think of shift of granularity is
some of the work that was done in hierarchical planning. Say you want a
plan for going to Russia. It would be very complicated if you actually had to
give a specification of all the actions you were going to take. Say you have a
vocabulary of actions you can take, and you order their preconditions so that
some number are very important and some you can ignore for the moment.
If you're going to take a flight, then you take the availability of a ticket to be
very important, but the way to get to the airport is somewhat less important.
Then you can make one pass through the plan by only looking at these very
important facets of the action you're going to take, and then you successively
narrow down to include more and more details.

Shultis: So there's an aspect of holophrasting there, of ignoring certain
detail. But I wonder if all the things that are being talked about here are
examples of granularity. What you're really trying to do is come in on a
situation and impose some kind of conceptual organization on it, and it may
be one that is larger grained, or smaller grained. You view a family as a
collection of individuals, or you view it as a unit in a community, and you
bring in certain theoretical terms, or abstractions, if you like, that you use
to describe it. You fit the situation into the description. Sometimes you force
it in, use it as a procrustean conceptualization. That ability to take the
material you're talking about, and fit it into a number of different conceptual
frameworks, for different purposes of reasoning, is crucial. What we tend to
do now with programming is to build hierarchical structures, and they're
fixed. Once you box something up and put it in a package and define the
interfaces, that's the conceptual organization. Whereas here you want is to
tear all those pieces apart and reorganize them and put them in a different
conceptual organization. Is that fair? Is what we're talking about having an
ability to reconceptualize somehow?

Standish: Cognitive transmogrification! [Laughter, assent.]
Shultis: I'll write it up here if everybody likes it! (Dissent.]
Littman: Yeah, it's the Gestalt idea, I guess, being able to see things

in terms of different perspectives. But perspectives isn't quite the right
idea-it's being able to see things in terms of different wholes.

Shultis: Schematization.
Harris: Levels of schematization.
Littman: It's not just level of, but it's level and kind. So it's which

schema, and how much detail you're bringing into the schema.
Shultis: So, flexible schematicity, or schema flexibility? What do we

want to throw on this list?
Littman: What Cathy said is really neat. You might pick a piece of one

schema which, if you went to a lower level of specificity wouldn't work at all,
but that's OK, because the reason that you're using it is that there's some
kind of metaphor in it at a very high level of generality that you find useful.
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So, which one and how much specificity.
Wight: Meta-metaphor?
Shultis: What do I call this?
Biermann: Why are you avoiding the word "granularity"? Why do you

need so many other words to avoid this one?
Shultis: The only reason that I didn't write up "granularity" is that I

wasn't sure that it really captured all that was going into it. There was a lot
being loaded into that term, and I want terms whose meaning we'll remember
tomorrow.

Littman: The thing that has come out of this discussion, for me, anyway,
is: which grains, and how big they are. Before we just had how big they
were. But now this idea of schematicity brings in "Which grains?", and then
"How far down do we specify?" brings in the size.

Reeker: rm glad schematicity means that to you... [Mayhem.]
Fisher: I want to speak in favor of granularity, too, because it does

convey an important idea that has not been stated explicitly. Granularity
not only implies levels, but also that at each level you must treat a different
set of entities as atomic. It is only by viewing and processing entities at
higher levels as atomic rather than as compositions of lower-level entities
that we can avoid multiplying the processing costs as we move to higher
levels.

Littman: And the rules of inference that you get at each level are of
the same order of complexity, and you don't have to, say, unpack everything
all the way down...

Reeker: That influences the schema that I might apply.
Shultis: The thing that I want to get away from, though, and the thing

I'm afraid of, with "granularity" (let me express my discomfort with the
term) is that it lends itself to an interpretation which is: hierarchical.

Many: No, it doesn't.
Harris: And what's wrong with hierarchical?
Littman: Well, it's a commitmcnt we may not want to make. There are

people who claim that the knowledge you've got in your head is hierarchical,
and the problem is, they're probably wrong.

Harris: Impatiently.] I think we should get our ideas out there.
Fisher: Yes.
Shultis: OK, that's fine, that's fine, that's fine.
Standish: Granulophobia. [Laughter.]
Shultis: OK, I'll write granularity up here. Bruce, you've had your

hand up for a while.
D'Ambrosio: Yes, I want to raise a concern about what this endeavor

is. It seems to me that the traditional AI community would very very
happily endorse most of these points as wonderful problems to be working
on. Granularity, for example. I know that Forbus has recently directed a
great deal of attention to the theory-selection problem, both in terms of the
size at which you should discretize the domain, and the theory that you
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should apply (thermodynamics or whatever). I want to question whether,
methodologically, what we should be doing is focusing on mechanisms or
focusing on tasks. And perhaps a main contribution informalism can make
is being extremely faithful to the task domain, and not saying, "Well, we're
going to carve it up into this set of mechanisms and somehow force the
domain into the'e mechanisms."

Standish: OK, interesting. What are examples of the things you think
might satisfy that desideratum? Or, at least one?

D'Ambrosio: I'm not exactly sure where to go from there, other than,
what it points to is an agenda somewhat like the agenda I understand, from
a distance, the ethnomethodologists are taking in human-computer
interaction. The work at Xerox PARC, for example, which would involve a
very careful examination of the actual human performance in the domain,
without preconceptions about the mechanisms that are supporting it.

Standish: OK, behavioral investigations.
Littman: Can you get a Ph. D. in that?
Harnad: How about "thick reasoning"?
??: What kind of reasoning?
Harnad: "Thick". That's the anthropologists' term for immersing

yourself in the local problem. Local reasoning.
Lethbridge: Explain.
Standish: Like, hey, man, lets go native?
Harnad: No, no, no. You come into a culture, and you immerse yourself

in the myths and symbols of that culture, and start to spin out an explanation
in those terms, rather than in some larger terms in which you try to invent
those terms. [General muttering.]

I'm trying to capture what it is that Bruce meant, and I assume that if
you go to a problem and you start thinking in terms of the particulars of the
problem, rather than in general formal principles, you're doing something
like thick explanation...

Littman This morning I suggested that in informal reasoning questions
are looked at in a very domain-specific way: what are the representations
that are used in the domain, which ones are particularly useful for informal
reasoning, what are the rules of composition, and so on and so forth, exactly
in the spirit of what you're talking about.

Rogers: They call it situated activity, so why not situated reasoning?
D'Ambrosio: Unfortunately, I'm not sure that's something we can do

as a group, without a particular task to focus on, so I'm not sure what that
leaves for us to do right here.

Shultis: Well, there are two sorts of things. I would put your suggestion
more at the programmatic level: what are the sorts of tasks that we need to
do?

D'Ambrosio: Right.
Shultis: Can you give me a term? What phrase do I use?
D'Ambrosio: Steve suggested "thick"...
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Harnad: "Thick description". I think "thick descHiption" is what they
call it.

Lethbridge: Situated reasoning.
??: Too opaque. But I don't have a better one.
D'Ambrosio: Task focus. As opposed to method focus. Or mechanism

focus.
Shultis: So your suggestion is...
D'Ambrosio: ...a methodological suggestion, that the focus of

informalism should be extremely task-directed, instead of mechanism-
directed, instead of focused on generic methods.

Shultis: So you're suggesting that there are specific tasks, or problems,
that we can enumerate...

D'Ambrosio: Tasks of the kind we were identifying earlier: an
engineering assistant, or program explanation, or whatever.

Shultis: OK, things like that where we th.'ik that informal methods
have a part to play, in performing those tasks, in some way.

D'Ambrosio: Right, and we should come without previous commitment
as to what kinds of mechanisms must be used there.

Shultis: Sure. Because I think your point is well taken, that in the
process of trying to perform those tasks, you start to reveal what really is
important there, and what the essential ideas are. It is currently ten to six,
and we were supposed to break up five minutes ago, but rm not going to cut
the discussion off entirely...

Littman: Let me just say something. I think it integrates what Bruce
was saying about this, and it's the thing he said about how most people in
AI would endorse this. In AI we tend to work on one of those methods, and
not a bunch of them. My suggestion would be that when we look at these
domain-specific problems, the thing we might focus on is a control structure
that governs the integration of all of these different kinds of reasoning to
solve a problem.

Lethbridge: Exactly. Yes, precisely.
Fisher: I don't buy into the task view. If I ask, "How would we

distinguish ourselves from A? ", rm hard pressed to believe that we want to
say, "Ae're going to solve problems in this application area, and they're
not", or vice-versa. I believe the differences will be in the mechanisms. And
I don't think it's a matter of our using a specific mechanism, but rather
there must be characteristics of mechanisms that we are anticipating and
the AI community is not. Certainly a lot of the distinctions that I see-this
list, in fact tPointing]-enumerates things that I think would not generally
be used in the AI community.

Littman: They would, but I think they would try to solve the whole
problem using only one or maybe two of the mechanisms, so it's the issue of
the control structure that, in part, governs the integration...

Fisher: You just reminded me of a point I was going to bring up
earlier. That is, one thing I wouldn't have thought of before I came to this
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workshop, but something I've seen among so many of the speakers here, has
been this issue of incrementality. And I don't mean incrementality just in
the interface, I mean in the whole philosophy of the way you attack these
problems. Everything we're talking about is incremental. Larry just a few
minutes ago was talking about something I vie- as very incremental. Certainly
I was advocating incrementality-I see that from Steve's talk today. It just
strikes me that there is an incrementality in the approach that I don't see in
traditional AI. I think it comes about because of this view of incompleteness
that we think is inherent, and you can't deal with incompleteness without
incrementality.

Littman: In fact, unpacking that, what is it to solve a problem
incrementally? You were talking about this earlier,...

Wight: Are you guys setting us up?
Lethbridge: Incremental systems!
Mundie: Yeah, yeah! [Laughter.]
Reeker: There is another thing I thought I'd just mention that relates

to incrementality. I was thinking of Alan Perlis in his last years. He would
talk about organisms, what he called organisms, and his idea was that any
time you have a system, algorithmic or otherwise, that is beyond q certain
size or complexity, then it tends to take on a life of its own and cends to
evolve. He felt that it was sort of inevitable that these systems were going
to evolve, all the time, and for that reason he didn't see that proving invariants
on a system was that useful, because the next thing you know it changes
[Laughter.] and you have to keep just keeping up with it. So you have these
systems which inherently-I mean, this is a sense in which they may inherently
be beyond formality-they just keep moving on you. What's formalized at
one point has to be changed at another point. So you sort of have to take a
leap forward.

Green: it seems like the algebraic notion of parameterized theories is
a formal notion that informal people should probably take a look at, as a
stepping-off point, just so you don't recreate it. It seems like the coming
trend: I see it in the way software knowledge is getting organized. The CPL
(Common Prototyping Language) effort is more or less standardizing on it,
the British are standardizing on it, and I see it emerging as a standard way
to organize your knowledge to deal with some of these problems.

Reeker: Some of what David was saying this morning sounded a lot
like that, too.

Green: Unfortunately I don't know of a good reference for it, though.
Lethbridge: One point I haven't seen on the list there, which I think

perhaps deserves to be there, is adaptive representation. What I mean is
that you pick the kind of representation, the kind of language which is
suitable for this particular aspect of the problem, and for another aspect of
the problem you pick a different kind of representation. Totally different
syntax, totally different way of representing the things.

Harris: That's very nice. I agree with that, too.
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Lethbridge: I think that's pretty important, and I don't see that it fits
into any of those categories.

Reeker: At some points it might be a pictorial representation, some
points might be a linear representation...

Lethbridge: Exactly. Some parts could be natural language, other
parts some logical formalism,...

Reeker: We saw some examples of that about fifteen minutes ago.
Harris: The system knows how to pick the right representation for the

task.
Lethbridge: Or the user decides, and the system can handle whichever

you put in.
Carberry: Or the system changes its representation as it goes along.
Lethbridge: Sure, exactly.
Littman: So it's heterogeneous, too.
Lethbridge: Heterogeneous and adaptive, both.
Littman: Which are separate.
Lethbridge: Yeah,-they are separate-you're right.
Shultis: I think that the intuition I have gotten from this discussion is

very closely related to that of parameterized theories. The notion of
parameterized theories entails adaptation of a general schema or conceptual
framework to a particular situation, and there's a notion of instantiating
something, or adapting it or unifying it with some of the information that
you have, in some way.

Green: Yeah, and there's ways to match it to the problem, to fit it to
the problem. And it allows pretty ornate mappings between theories and
problems.

Fisher: I guess I would take adaptability to be a more generic term
than parameterized theories. In particular there need not be any preconceived
notion of which aspects constitute parameters.

Littman: The idea behind adaptability is more mutability.
Shultis: Well, I guess we should stop here...
Chorus: Heterogeneity! Add heterogeneity to the list!
Shultis: I'll do that.
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Use Discrete Mathematics , A CSZ ahn oe
to Model Hardware hat~s or n=0O

then s
else MC68020-(-NEXT (is), =-I)

"Swritches by binary digits
NE= (s)

ifevenp~rpc(ts))
" Operation by recursive functions then if po;_ead(zems) ,pc:-(s))

then EXECUT (FETCH(Vc(s) , s

--- --- --- -- --- --- -- update~pc:.(s, .. )

else halt (s, po _signal)
so 1 01 10 00 0 11 11 1 else halt (s, pc_oddL_signal-)

EXCUTE(ins,s)

S, I1 0 0 01 1 0 00 1... E50 pages for 90% user ins.]

---------------------
Provides a-niathematically precise and consistent

--------------------- machine language reference manual.

s2 I I110 00 10 101 1

Yuan lu. PhD Thesis (in progress'L University of Texas.

A VIPER Machine Model
The VIPER Machine . rM, pa, x, ybstoP)=

A 32-bit microprocessor "whose reactions are toW[lY if stop
predctabe."then (ram,p,ax,y,bstop)
predictble." lse (noinc \/ illegaladd-) \1

* Accumulator if (illegalci \/ ±3.legalsp)
.2 idexregiter .V (illegalonp, \jIlegalwr)

* ne egseste ('ram,=ewp,a,x,y,,b,T)
* Program- counter else .. [aot7pgs .

* Comparison. register . box7 ags..

* 16 instructions .where

Avr Chn.A~oo~f~orrctle~~ftheWE ,ram - a memnory of 32-bitl words
Miroh] ro oofCrcsso:sTs E!eviTebi~thep Sp - 20-bit program counter

Micrnroessr: Te Er~kX91 Tecnicl~eorta - 32-bit accumulator
104, University of Cambridge Computer Laboratory, x,y - 32-bit inidexc registers
January, 1987. b - 1 bit- compare result register

stop - stop flag

W. J. Cullyer. mnlem enting-High-Integity Sysems:
The VTER Microprocessor., In-Computer Assurance,
COMPASS 88. IEEE, June, 1988.

~III D oc.IQ9isA1OFWWI
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The FM8502 Machine An FM8502

Machine Model
A 32-bit microprocessor.

. 2 address architecture
- 4 addressing modes F8502(ms,mn)

s if not (.istp (mn))
98 general-purpose registers then ms

S219 20-bit itrucions else FB8502 (NlXT (ms),rest (i:n))

N (XT (ms) =
list (next memory (s),

Warren A. Hunt, Jr. FM8501: A Verified next-register file(ms),
______nelxt car-zy flag (ms),IMicroprocessor, Ph.D. Thesis, The University of Texa next overflow_flag (ms),

at Austin, 1985. next zeroflag (ms),
next negative_flag (rs) )

-- , MiLcrorocessor Design Verification. Journal of

AutomatedReasoning. Vol. 5, No. 4, Dec 1989. ... (about 10 pages]

ElI •194C9iAUL =Fcb9i =OCC9gl

17 I,

An FM8502
Register Transfer Model Connecting the Mols

GATES (gs,g) =
if not (listp (ga) )- fm8502 (s,~m) ---- >o
then gs I
else GATES (COMBLOGIC (gs, car (qn)), l-

cdr(.gn) ) D (ms) . Ugs)I 4I
COMB LOGIC (gs,gn.) = I
... [on bit operators, e.g., xor] ..- o ------ gates(gs,gn) ---- >o

where
Theorem: H(ms,mn) ->gs - [regs, flags, me-, int-regs] fm8502(ms,mn)

rags - 8 32-bit vectors U(gates (D (ms) ,Kg(ms,mn, md)))
flags - 4 Booleans
mem - 2- 2 32-bit vectors Under the conditions 3,
int-regs - 32-bit vectors for internal

registers, flags, latches * the fm8502 modelisjust as accurte as gates
* but with somedeai supprgcsed by U.

ci1&A 199l uc.owW;2 L4&i L% 049c41 20Ftb1I
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Software Model Observables Mode odi
iA machine is prot, by settie the swithes

Frogammin g in 1ne ,ovide which it will interpret asi AstCtis dwin--.operation. (Before stored-prograls mchiesr tais

process was called "setting up" be nach/me.)
a wide variety of ways --------

of describing tfiem,-but -o------- I da
I prog so data

the observables are st.U switches, * These switches are the proaram. .hey bontrol the
subsequent operatio.of-the machine.

and-so are programs' . A computer yroram is a-physical-control
mechanism.
• The bit string "011000" is a mathem.tical

description otthe control mecianism.-

A Model of A Program Description, p0
a Programmed Machine

Aodel of machine X operating oa inial sate s0 for -s -' --- " -" - -
k (sOy steps under *e control of the progrz.
described by pO is given by

oo3 oa Wt Mft .Wo ft "a =nta "MNME . S

-, . nsa... .. .n-t ..se e.. EM n et ... a . eeWhere oS~En Mw t~~ - EM.

sO - a machine state such that M M t. MG . MO MM . M . MM MN

prOg,(so)=pO ~:: ::
a MM M e I&CM atM .wM M.3 IA.M M fprog(s) - a function that extracts the -.... n nnM" fn-" - n -ntm

program description from s ""oo fitS .M Gte M "M'a M"

Operating Requirements ....... t..... . e

A model of a machine programmed to satisfy an ...
operating requirement R (sO, sk) is given by ..... . 4-.. ..o

R(sO, M(sO,k(sO))) .... .... . -fo W. -tt

[752 16-bit words]

E lm49mS,20R691 20MigCo~~~,iiz~CWgo CII M~nna LoCo:-:-x Lett h~~Circ a r-
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The Kit Separation Kernel Kit Operating Requirement, R

* Uses a modified --. 8501 (=is,-,) machine
" Interrupts for timer and IO
" Process management

- fixed-number of processes "
* process scheduling (round.obin)

- process communication,(messagepassing)

* response toerror conditions

" Device managemen for character I/(-to
asynchronous devices

* Memory maagement uses hardware protection

William R. Bevier. Kit: A Study in Overating System
Verification. IEEE'fransactions or Software
Engineering. November 1989. -

MEMO
C: Cpe g~~ C 17, C c!L. -

The CLInc Stack The Piton Language

-o-- -Gyp"sy (?, yprd, y) ->a 'The Piton language has

-execute-only pvogam space
Comile Young dsp y edwrit global ar ays

v -, recursive subroutine calls.
o ----- pit0on.ps, pM) ---- >ol- ^ • frmal parameters

! * user-visible stack
Link-asse=ble Moore mndisplay

I stack-based instructions
v I * flow-of-controFinstructions.
0 ... =8502-(MS,=) ---- >o!O n The cross assembler produces an.FM8502'binary core

i image.
Reify Hunt gdisplay

I I
v i
o ------ gates(gs,gn) ---- >o

-Warren A. Hunt, J Stro ther Moore 11, Willam
D. Young. Journal.of AutmatedRensohing. Vol. 5, No.
4, Dec 1989.

17 I
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The Micro Gypsy Language The Stack Theorem
The Micr Gypsy subset of Gypsy ka 7heorem-: E' (yc,yp,yd,y=) ->

* ypes integer, boolean, character u'ys (gte D y, y,=)

* one dimensal-arrays Kg' (y, Yyd, yn, md))

a procedure cills with pass bor refereac~parameters -Proof: X-echanica-71-y checked.".
* sequential-control structues-if, loop, Under the conditions E',
* condition- handling signal-when.eth qpymdtiusascureasgts

the compile produces Putistocnteas.a
The ompier poducs Pion.* but with mnini details suppressediby U'.

IBoyver-NM-oore Logic

Robert S. Boyer, J Strother Mioore IL &-comvutationa1!
121 anbo Academic Press ,1988.

Matt Kaufmann. A UsEtr's ManU211for arnTteractive
Enhancement to the Bve-Moorenheorem-Prover TR
19, ComputationalLogic, Inc., 1988.

A Hierarchy of Miodels Gypsy Program Descriptio
of a Programmed Machine procednure ='t (a= ams :t8502 int;

RfyxO,y&pO,ydO, ydc) bgi
M--?R.Y j ge 0;

uGyosv(yxO,ypO,vd0, yk'(yzO,y.=O,ydO)) EXIT-.- anZ j-
- - - a=r Jc:!E8502_5knt := 0;

piton(ps0,Pi p(.VpsO) k 3
0;

finBSO2 (msO, nlc(mSO)) lc
ASPT j ge 0 r. k iai [0. .jg

gates (gsO, gk(gsO)) i ~ ans = NT =--v=S (-, j-k);
if k le 0 then leave end;
asans + ~
kc k .c 1;

Correspooding to these is Thierarchy ofrprogram end;
descripffos- end;

C~pzC nc~~iAZFWI
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Pi-ton rormDsrponF.V.8502 Program Description

(?USEWC~L)SS) ;azz :- 0;

RS-LCL %) j _J

(DIL L-?- N__ Dc) ,0~______________
(2CSZ-E-C'L 3) b :- k 1M 0 1_______
(?USS-LOO.L =) -~b~-

(DZ~-~0L-SD-~Q A.SZ L-3) _______

(2DZCSz=MASD_ (M=. 0)) ____________
(?O2-C .L C-C)______ 

_______

()Z L- ) 2;-__________

(DL L-4 N_ waDC2)3

P~v-:=:-=S) a=-=

(2DS-=3 C-C)
-.. (4 0:eS-tC~S

Operating Requirement

Rm~bq~ft1, j4: i tjf3S02it)=

E5.-4- j Se 0;

en-d;

ftj~ Mold' typ :C=0-502 :i--t
imtegeFE- (2-33.) .(2-31) -1.1;

.1 1(A si~ie Pcbl-e D-i

ALM Assw% 'I fctica TS(,y5tee:ieg =

Lu (s) -exits(ass== r-esult=
_4f v =0 t he 0

All, CS' 36 MCIVJ else il = -1--te-- x

~' i4t.gelse x N-- _ _ Z_ Y1

&Y,4P .eAtk w~U.

~jyri~4~Mo14t i A uee~ 64 &
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Mathematical Requirements DesignI Requirements
.There is more to designing a sysizz lia just

*Unambiguous: Requirements have a well-defined statig anid refining Matlemh=2*2 euiere
iaerreatothat tells~exacty wha thkussfcorca~fm d2sy

* Analyzable: Do-the requirements say the "cighr n uttlwsrut e mfrim
thing? * o2Cn 7 sd'zxuge

R~x, ) -> o~,d b~g~z v) -awmachines aresill ervr

-Consistency: Requirements-contain-no
contra~ictions-

o Enable mnodeling a-program-compc~nt beir
,~din; i -(and-ibereby, save the-time and-ost of

designing a-poor program.)

To get these benefits the requirements notation-mus
have a rigorous rnathematical-foundation (semantics)-

Summary Conventionial Nocn-Wisdcm

desinn I'r426 AM ae yt em Xr. m odUe uformxl~fe~ods7 Ow ,h mnicgi m odelhag

software systems owrs *OnlyW afeRr aST3tm ~bUilttjo ~f*W

Seneffes: early error dc=eo)vl as kuttogMi

* Saves time tefitebsdwe
-SaTes money
eSaves operatioadisrupion

*Saves opeaionllmzisbaps

Risks: modelmiszepreseats system

* Izcarate

* bcomplete
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yeorplis Epa tinof the Title

Eps ndcTye * Ileographs = structure for conceptual modeling-

Interpretive Semantics * Epistemic Types = constructively grpunded
categories

* Interpretive Semantics = "meanin* is use"

Jon Shultis , Formalist: The world is a modi of my language
Incremental Systems Corporation ,- Informalist: M4y language is a model of the world

31 May 1991

Cognitive Agent Outline

*Modeling

input Modeling and Inte rpretation

/Conceptual Modeling and Interpretation

Parii Formal Modlin
s'IFormal Modeling

*Categorization

iFormal and Informal Classifiers

1.i Formal Types

/Informal Types

individuals,,, *h Implementation (structure + process)

output Abstract Syntax

leIis

/Attributes

iIdeographs

/Epistemic Ideographs

v Connectionist Implementation

*Conclusions
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CD5.

0 - L;CLo\°...................... A K 2 ; ..........."
CL 

%
% 0

% =3

CD

* Cn

CD D
* -I - -,

* 00- o-
0 C

V

Formal Modeling Informal Modeling

* central dogma: dissociation of form and content. central dogma: groundedness (context-involvement)
is essential

* representing object manipulated w/out' reference , Exploits partial access to modeled .domain, which
to, or influence from, modeled, in turn

* implication: formal system is a constraint on the , constrains form of the model. InvolVement of mod-
world; hence model theory eled domain leads to greater completeness of model

* j[ ]:A- M; i.e., make world conform to language + interpretation.
e ex: digital airframe in a digital wind tunnel. , [ :M-A; i.e., try to make language conform to

world

e cx: balsa airframe in physical wind tunnel.
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*Extensional: classes'-
C0

*Intensional: set of -properties !

*Members v. examples a;-
Formal constructive types >~C
iEvidence = Process (construction) a
~'[P1= Type of constructions

,-Epistemic: know-what know-how 3C

.00h10

Informal Types

"*Graded 
-

- 0" Theory-dependent (conceptually relative) 9<
" Epistemic, graded theories
" Radical empiricism, i.e. pragmatism ac
" Intuitionism in Brouwer's sense (

3 57

(D
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Implementation =structure + process <i i + C/) z CO,
M~ : ~

*What structures? X E)

*What processes?

*Issues 
Z

Interpretation
Grounding
Epistemology>

C)

U)t

-'DC

z CD

CDD

*Structure: Trees C

*Process: Applicative Evaluation (Data Flow) x-
*Issues:/ D

Interpretation: Structure - Meaning :3

Grud:none z

1Epistemology: fiat 32e.

*Comma Semantics: multiple interpretation -I -I -O

0 1

/D CD / DC

CD

00

,aC0
CD
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Iris C

. Structure:

iDictionary (directed graph) tI"
,Internalizes Sorts, Signatures (lexical informa- "1',

tion) 
* - , .

Process:' : .

Applicative Evaluation / =
Overload Resolution (lexical disambiguation from +context)+ / " : "

* Issues:

iInterpretation: Structure- Meaning + CD
Grounding: none c

Epistemology: fiat / ,-

*Recurrent .

. Structural constraints on interpretation 3+ +
0

+-o 4

0
"3

Attributes Ideographs

. Structure: Labelled Graphs + Externals * Z: Internalize attribute descriptions

* Process: AE + call-out/ca-in * "Encyclopedic"

* Issues:.* Self-referentiza Encodings

iInterpretation: Interactive, composite

Grounding: insulated contact

Epistemology: fiat

* Open-ended, flexible

* Equivalent to feature structures

* Attribute relations are external



0 0_

O/ a)

-~ Cl)

C: 0

0
i.. -4.

0.0 0. J

LL.

Cl) CL.5-

a, U)

0 20

ClC)

x 0
cu.0

I a ,
0 -CL 0.4-.-,

CDJo a. co

0/ . a. 0 0 ).
to) 0 ) LM' Aa) L D z C : .-

4O a)-

a)

wU 0

-00

z m L O L -

>- L) a 1

JI) cu I.-

0. CM

CD T- 0- COVc

Cl)) 0)COc
c15c cr. ml ~

F - 11 %4.g 1-1

2) 
Cl)

CI) CL-a, c c

co 0 0
O X 0 >

-x)

ZLI SUOIJUTuoso.T' SUTpr-



Friday rpentatirns.I'2
Epistemic Idorps<0 CDD

Iaegrans0 CD
*Structure: 0 0 Cr c

C: 0 C -
0 t 0 <=Internally labelled graphs 0 0

Spontaneous nodes (scnsorimotor periphery) 0*~ CD c CD(0CO
00 Q CL ,,

*Process: parallel, distributed~ 11 -0, (n -

equilibrium CD3W
COD

spreading activation +) '' R
ergodic/chaotic C: ID CD

C n C 'CD (JO
*Issues: CD C

-. _ ~<CD
Interpretation: activity patter;,s are models N 1.< ~-~-C,
Grounding: Construcil've; spontaneous base *~ _% CL --

.,Epistemology: Evidential 06Cco- _j

CL 0
cc. <

CD

CDC

CJ)

0D 0 C: <

0 CD
0 wm

CD :3 C=
0 CD CD

CDCD
0M

CD,

0 CD CD
00

0

CD 0
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Conclusions

*Reality is unformalizable.

* Cognition is gounded (hence informal).

* Grounding is an epistemic/causal link between re-
ality and mental representations.

* Interpretation is the mapping of conceptual struc-
tures (input units) to conceptual structures (output
units) through other conceptual structures (hidden
units).

, Analogy and metaphor are the normal case: mod-
eling and interpretation.

* Epistemic ideographs a plausible structure for cog-
nitive modeling.

* Formalism a limiting case. Paradigmatic in a radial
category.
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A Model for Informality
in Knowledge Representation and Acquisition

(an extended abstract)
Timothy C. Lethbridge

Department of Computer Science
University of Ottawa

Ottawa, Ontario, Canada KIN 6N5
(613) 564-8155 FAX: (613) 564-9486

tcl@csi.uottawa.ca

Introduction

This extended abstract summarizes how we are handling informality as a fundamental
aspect of our paradigm for knowledge representation (KR) and acquisition (KA). We
have developed this paradigm as a result of several years of experience with industrial
application of our research KA system CODE [SKUC 89]. One of the most striking
observations from this experience is that people need to be able to work at any level of
formality (or informality), and to freely mix such levels. Among various things, our
paradigm attempts to systemize the. formality-spectrum in knowledge based systems.

Concepts and the formality spectrum

In our paradigm, al!- knowledge is represented in computer memory objects called
concepts, intended to correspond to concepts-in the human mind. We have additional
constructs called knowledge maps and knowledge masks which allow us to interpret
networks of concepts in terms of such traditional models as frames or semantic nets, and
to restrict the focus of the knowledge to useful contexts.

As in most KR paradigms, concepts are classified ontologically, i.e. on the basis of their
knowledge content. Of equal importance though, is an orthogonal classification of concepts
in terms of how they are to be interpreted: what processing is performed or performable
on them.

The hypothetical extremes of the formality spectrum are defined as follows: The
representation of a completely informal concept in a knowledgeable agent would contain
only strings or bit maps that are not immediately interpretable by the agent.
Uninterpretable strings typically contain -natural language fragments. The
representation of completely formal concepts would contain only links (which must also
be completely formal concepts) to other completely formal concepts.

In practice, neither extreme of the formality spectrum is found (our definition of a
completely formal concept is infinitely recursive). Concepts have links to other
concepts (if nothing else they may be placed in an isa hierarchy under, say, entity)
which makes them not totally informal in our paradigm. Similarly they are not totally
formal because they either have some uninterpreted content or have direct or indirect
links to concepts with uninterpreted ccntent.

Concepts can be partially ordered in terms of their formality level. To compare two
concepts one compares their uninterpreted content and the formality of linked concepts.
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At present we use a heuristic algorithm for this. Note that one does not assign a formality
'measure' to a concept, concepts are merely comparable in terms of formality.

Knowledge acquisition as the increasing of concept formality

We consider knowledge acquisition to be the process of increasing a concept's level of
formality (by supplying it witn more links and hence with more structure or form).
The process is recursive in that the primary way to increase a concept's formality is to
increase the formality of its linked concepts. The secondary way is to add new links;
often this is done as a by-product of increasing the interpretability of the concept's
uninterpreted content (by virtue of the acquisition of other concepts, the potential for a
system to make automatic interpretations increases).

In our KA model, the early phases of a user's efforts are devoted to entering highly
informal concepts (perhaps using an outline-processor style-of interface) to capture the
user's stream of consciousness [LETH 91a]. As KA progresses the user increasingly
enters links that give concepts more formality. By comparing the formality of concepts,
a system can help the user decide on a productive direction in his or her knowledge
acquisition efforts.

A word about our use of the terms 'formal' and 'informal'

We use the term 'formal' in the ordinary English sense of 'has a form or a structure that
follows rules'. A concept that has less such structure than another is more informal.

It is important not to confuse this idea with the sense of 'formal' as used in 'formal
language'. The latter sense typically is 'has an unambiguous syntax and semantics'. Our
use of 'formal' is more general than the latter: We would prefer to call the latter
'representationally formal', where concepts are only compared with consideration given
to representation relations, not all relations.

Conclusion

We have developed a knowledge paradigm that integrates the idea of a formality
spectrum. We believe that most existing knowledge based systems stress formality,
ignoring the continuum that could exist between them and informal natural language.
Integrating the notion of the formality spectrum allows a more accurate representation
of what is in a person's mind (which typically has low formality). This can greatly
facilitate the knowledge acquisition process by reducing difficulties caused by the user
prematurely having to formalize ideas.

We are implementing our ideas in a completely new version of our knowledge based
system called CODE [LETH 91b].
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Friday Morning
Discussion

Shultis: What I'm going to propose is that we try an exercise here,
which I hope that people will be able to carry on elsewhere. It's the kind of
exercise that has been done lots of times, in lots of places, but with different
goals. The problem is basically this. I want people to break into groups of
three. One of the three will be an observer, a recorder. The other two of you
are going to engage in a dialogue in which you're going to try to solve a
problem which I don't think you've ever solved before, but which you have a
lot of background for. I'll give you the problem in a minute. But the goal is
this: for ten minutes, two of you are going to try to solve this problem, and
you're going to engage in a dialogue about it. One of you is going to watch,
and write down what you see happening. What kinds of reasoning domains
do you see people using, what kind of rules, what kinds of floundering; can
we try to characterize the floundering?

Littman: Jon, let the observer give the problem, because if you give
people 30 seconds, even 15 seconds, it's gone.

Shultis: Fine; I'll do that. You're absolutely right. Anyway, the premise
of this whole workshop is that informal computing, whatever it is (and I still
don't want to call it mathematical modeling of human behavior, though
there's a grain of truth in what Don said) ...whatever it is that extends
those capabilities we now have, it would make computers more useful and
helpful. That's the premise here. So the question is: what is it that we're
looking for, and what makes it helpful? So, I want observers to note things
like: what domains people are reasoning in, what representations they're
using, what kinds of inferences, what sorts of methods, what kind of control
structures are going on, or what kinds of passing control, granularity issues,
anything that you can think of tl:t's appropriate. A better way to do this
might be to videotape this and analyze it later, but we've only got an hour,
and we don't have the equipment.

So, ten minutes of problem solving, and then we're going to take 20
minutes to sit around as a group and analyze the data that ".ias collected,
and try to identify some things about the data. I'll tell you now what we're
going to look for. We're going to look for some useful phenomena that we
label as "informal", identify its utility...

Littman: Why don't you not tell us now? Otherwise, people will...
99 ... you'll alter our behavior...
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Littr- n: It's an interesting bootstrap, but watch out for Heisenberg.
Shult : All right. Look, I understand... this is experimental design on

very short notice; you're right. I wish that we had more time to do this. OK,
I need observers. OK, you, you, and you.

Littman: It's got to be a really hard problem. With Standish and
D'Ambrosio here, it's not Lair!

Shultis: Oh, it is hard. I'll buy any group that actually solves this
problem a six-pack of beer.

??: I don't drink alcohol.
Shultis: OK, look, beer is a prototype. Category good-thing. Solve the

problem and I'll do something good for you.
JS to observers, privately: The problem is: prove the Pythagorean

theorem. You can assume you know the formula for the area of a square,
and that you know polynomial algebra.

[10 minutes pass]
Shultis: Within each group, now, what I'd like you to do with your

observer is the following: try to identify, out of what went on, one thing that
you can identify and characterize as an informal phenomenon. If you can't
come up with any such thing, say so, but try to identify one thing that was
going on that you can say is informal, where, if you like, "informal" is
defined here operationally as the kind of good thing we'd like to have. Try
to articulate what its utility is, why would it be a useful thing, why it is a
good thing. And try to articulate what about it is informal. I imagine that
will take some time, talking about what happened and analyzing it, so let's
do that for about 15-20 minutes, and then I'll have each of the observers
report out on their group.

[20 minutes pass]
Shultis: OK, let's get a rundown on what you found out.
[First group: David Fisher, John Kozma, David Mundie (observer;

absent to pack his bag)]
Kozma: We used pictures. We drew, and used transformations. That

has been referred to as "informal", although I'm not so sure I would call it
that. I think it's possible to conceive of some kind of formal system of
graphical, pictorial, proofs for geometric theorems, especially in this instance.
We tried to restate the problem, and spent a lot of time trying to figure out
whether the instruction to use our knowledge of polynomial algebra was
significant, and how we were supposed to do that, or whether it was just a
red herring, or what. We tried to draw a picture of one special case, that of
an isosceles triangle, and to solve that, and then move on to the more
general case of any right triangle. Then time got called.

Talking afterwards, I have the impression that my mental processes,
trying to solve the problem, were as follows: I have seen a logo for somebody,
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or something-a picture of a 3-4-5 right triangle with squares on it. They're
all marked off, gridded off, so I somehow have the idea that that's the kernel
of the proof. If you can somehow figure out how to manipulate those squares,
you can solve the problem. So we drew a picture of a triangle (though not a
3-4-5 triangle). We were trying to work with the diagonals, and trying to
match them up. Again, I don't know whether you would call this formal or
not...

Shultis: What you did there was this: you saw something that stimulated
your thinking...

Kozma: That aspect of it was certainly informal.
Shultis: ... some association to the problem, and it seemed that there

was something analogical there that you remembered from before that you
might be able to apply. Then you tried to use that pattern.

Fisher: The one thing that I found myself doing that I certainly don't
see in formal systems, was that I basically started looking at almost random
aspects of it. You know: let's square the sides, let's draw some things and
look for correlations there that might have some relevance, but it was all
done without any guide to what that relevance wou.:ld be. I just felt that if I
could identify a pattern then I might be able to relate it to something else I
knew to generate a solution.

Shultis: So you were just generating things in the space and seeing
what you could do.

Kozma: But we were guided by the idea of taking the edges of one
triangle and drawing squares on them...

Fisher: It was all geometrical reasoning, based on a diagram that we
thought represented the problem.

Shultis: Well, you can't solve the problem that way without the real
calculus.

Standish: Pythagoras did it! His original proof was actually in terms
of...

Shultis: But that's a limitation. It's a limit proof, that way.
Standish: No, it has to do with congruent triangles. You carve up the

squares on the three sides of the right triangle.
Fisher: I'm not sure that's relevant to our discussion
Standish: But the constraint was to do it in terms of polynomial algebra.

That wouldn't have given an algebraic proof, that would have given a proof
by direct geometry.

Reeker: But it would have been one you could have algebraicized, I
suppose.

Standish: Not without the Pythagorean theorem.
Kozma: One more thing. The fact that the problem statement included

a reference to polynomial algebra hindered me in a way, because I thought
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there was some simple application of High School algebra that I should be
trying to recall. It got in the way of trying to work with the squares and
coming up with some other solution.

Shultis: I think that this use of associations of things that you knew
before, and trying to fit them onto the problem, is one kind of phenomenon
we've talked about a number of times-trying to use analogical reasoning in
this inexact way. So you saw that happening, and it seems useful in that
sometimes that kind of thing works. Another group?

[Second group: Tim Lethbridge, Steve Wight, Larry Reeker (observer)]
Reeker: Tim and Steve tended to be pretty geometrically oriented, too.

They tried to use drawings to come up with some method, different types of
drawings, including the one you mentioned, which I think most of us remember
vaguely from our geometry books, and other drawings. They changed things
around, and redrew, sometimes abandoning the drawings altogether. They
took slightly different tacks on this. Tim was trying to look at a specific
case, like you said, for the isosceles case, or the 30-60, and Steve was trying
to do the general case, trying to keep it clear of constraints. That was the
basic approach: labeling the sides, in terms of thinking about putting it into
an algebraic form. I was interested to note that nobody really tried to do it
using analytic geometry, basically with drawing a vector out there and giving
it co~rdinates. I don't know whether that was prohibited by the restriction
to polynomial algebra.

Shultis: Well, the answer is that, as far as the experiment is concerned,
the important thing was that you felt there were some constraints on the
problem solution-otherwise it's too easy. But it had to be a problem where
you had enough background knowledge so you could make some progress on
it, so whatever you construed the constraint to be is fine with me.

Reeker: They observed that by using the pictures they were trying to
keep track of things, so that they could manipulate things in their minds
without getting too much information that they had to keep in their mind at
once. They could manipulate one part of the picture at a time. Sometimes
there were two things that they would use as markings in their picture.
They would use some of them to keep track of what they were doing as they
tried to cut up these figures, and so on, some markings just to analyze what
was going on. Also, the redrawing sometimes had to do with attaching new
semantics. They might come up with the same drawing again, but it was
because a new idea had come along, and they were attaching some new
semantics to the drawing.

Shultis: So there's that point of interpretation. You've got this
representation or model, and you're interpreting it in different ways,
depending on how you're trying to construe it. It would be nice to tease out
what was going on with that conceptual shifting.

Lethbridge: I found that, during the conversation afterwards, I had
enough of the diagram written down that my mental processes could continue.
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I just needed this to act as some kind of a crutch. I didn't have enough
short-term memory to remember exactly the configuration of lines, but once
I had it down on the paper I had the ability to continue the analysis completely
in my mind.

Reeker: As we were talking, he suddenly started writing furiously...
Lethbridge: That's because I'd been thinking for a minute or so.
Mundie: I don't if this has already been talked about, but thinking

about this while I was packing my bag, what struck me was how close the
process they went through came to Hofstadter's model of bottom-up, essentially
random observations at the bottom, combined with unification with the
top-down specification. They were making random observations and
suggestions like: "Oh, this line is the same length as that line over there."
"This is z, too." "Draw another bigger one around the whole thing."

Wight: Generating random patterns...
Littman: It's not random, though.
Lethbridge: It's not random.
Fisher: It's certainly not goal-oriented.
Littman: Yes, it is, yes, it is. And the reason it's not random-actually,

I've got a student working on this-is that there are heuristics for exploring
that space. We may not know what they are, but connecting lines together,
and looking, deciding what to focus on...

Fisher: What I'm suggesting is that the goals we were applying there
were not ones related to the theorem we were trying to prove. They were in
fact goals having just to do with our understanding more about the space.

Littman: But it's not random, though, in the sense that my student is
enumerating heuristics for doing that kind of exploration. What's going to
happen is that he will build a control structure, and it's going to do that
.ind of searching, and that control structure will not be a random number

generator.
Fisher: What I think is important is that it was not a hierarchically

guided search; we didn't take this top goal and divide it into smaller goals.
We really were operating without knowledge of what that higher goal was.

m7" nan: I don't think that's right, because given another problem you
might have looked at that thing differently.

Shultis: But, David, it's an empirical question what kind of searching
that is. We need to build models of it, and we need to test them. And that's
an excellent topic for further case studies.

Littman: I was just reacting to "random". [Digression about randomness.]
Shultis: OK, third report.
[Third group: Tim Standish, Bruce D'Ambrosio, David Littman

(observer)]
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Littman: We had some informality in the process, and some informality
in the data. Tim came up with one kind of informality in the process. Bruce
came up with another, and then we have the sketches, which we all consider
to be informal...

Standish: I can try to recreate what my exploration sequence was. I
first tried, historically, to dredge up what I knew about the problem. I
recalled that Pythagoras had solved it by actually putting the squares on
the sides of the right triangle and cutting them up into pieces. I think I
knew that I couldn't reconstruct that in the time given. So there was
always risk analysis going on: will I be able to complete a memory dredge
plus bringing it up to completable and correct form in the time given? So I
cut off that exploration instantly, because it didn't seem to lead to the
solution within the time limits. Then, the next thing was to pursue a trig
formula. You start with sinca + cos 2a = 1, and then plug it in and it yields
the solution. But that's disallowed, because you're supposed to use polynomial
algebra. Since it was disallowed, could you get rid of the trig by substituting
algebraic formulas for sin2 and cos2. And we thought, well, maybe we could
substitute the Taylor series, but then that screwed up because it wasn't
quite polynomial. Then we thought maybe we could dredge up the formula
for the area of a triangle in terms of the three sides. That has to do with the
semidiameter, and the radius of the inscribed circle. So I made a lame
attempt at dredging that up. And then time was really pressing on, so we
thought before I could dredge that up and verify it, we'd better go back to
the trig thing, and see if we could eliminate the trig again. We did that by
taking area is one half of the product of the two sides times the cosine of the
included angle, and got rid of the cosine by solving that for it and plugging
the area in, and that just about worked, within one quarter, until Bruce
said, "Well, you can't really do that, because it depends on the trig formula
sin' + cos2 = 1, and doesn't really eliminate the trig from which you're
plugging it in". It'll look like it did, but it really won't. So he had one that
was based on tiling the square, where you duplicate the triangle along its
hypotenuse and you get a rectangle. Take the triangle and reflect it across
the hypotenuse, and you get a rectangle. And then, you take the longer side
and make a square out of it, and then take the remaining part of the square
and divide that. And you try to get an algebraic relation out of that, and
then we thought at the end if you take the formula for the area in terms of
the three sides only, and then the buzzer sounded, and we had to quit. So
we're not sure if that leads to a solution or not.

The meta-comment is: we were using risk analysis to know whether to
pursue certain avenues, and the time limit was so severe that we couldn't
explore very long before saying we'd better abandon this and progress and
deepen elsewhere. So we started one path, started another, decided that
wouldn't fit within the time limit, came back and reprogressed and deepened
another. To be truthful, there wasn't all that much time to keep coordinating
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about what we were doing, so we were both on independent exploration
tracks, and only a little time was allocated to communicating to see if pieces
would fit together, and the thing we were pursuing when the buzzer sounded
was a piece of his thing with a piece of my thing trying to fit it together, the
area in terms of the three sides only.

Littman: There were two processes we counted as informal. Tim just
talked about one of them, and that is the heuristic evaluation of risk, heuristic
evaluation of whether you're going to succeed... it's not A-star, but it's that
kind of idea, just that we have weak heuristics, I guess, except that he has
good ones, since he's a mathematician. And that's interesting. It's not fair
for this problem, anyway.

And the other process was one that Bruce mentioned. I guess you
called it "deliberate oversimplification for the purpose of scrounging", where
you try to just get anything to happen. This was very much like what you
all were talking about.

Fisher: Yes, in fact, I was very fascinated by that, because this timing
thing, I think, had a tremendous impact on my approach to it. This
randomness-what I was claiming is randomness-was a consequent of saying
"There's not enough time to really look at the alternatives and decide which
one is worth progressing, so I'd just better pick things rapidly or I'll never
get through within the time limit." So I think if you had said we had three
times that amount of time, we would have seen a very different response.

Littman: The interesting thing that comes out of this is that Tim is
trained as a mathematician, so if you look at it in terms of heuristic evaluation
search functions, he's got real good ones.

Standish: I didn't get the solution!
Littman: It doesn't matter. You knew the kinds of things that you

might want to look at, and you had a very far horizon for how hard it was
going to be to combine things. You quickly saw, for example, that eliminating
the trig would still be just covering it up.

Standish: I thought that was really slick. We got one solution, and all
we had to do to get from one solution to the other was to sweep the trig
under the rug and not let it appear.

Littman: Just for my own c-ariosity, would that have been a fair solution,
if he had done that? If he got rid of the trig and expressed it in terms of...

Reeker: Usually you derive the trig using the Pythagorean theorem.
Littman: What I was getting from Tim was interesting because it

relates to his other interests. Tim is very interested in models of proof, not
in the mathematical sense but in the cognitive sense. So what I saw Tim
doing was searching the space of models for proofs. He used the idea that
"If I could just eliminate this then..." and that was one of the key points.
And then when you two combined your solutions again it was trying to
eliminate stuff. But the idea was that he has very good heuristic search of
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this space of models of proofs.
Shultis: If somebody wants to do an experiment on this, I'm going to

spend just a couple of minutes telirg you all what the answer is, and noting
something funny about it. This is a variation on a puzzle that has plagued
me for years. The proof for the isosceles right triangle you can do fairly
easily off of this diagram from the Meno. You take the isosceles right
triangle diagram out of the Meno, and take the argument out of the Meno,
and you show it to students, show it Io random people, and you say, great,
this is a nice argument...

Standish: Jon, I'm not up on my Plato. What is the argument? All I
see there is a few lines in the middle of a rectangle. I see a lozenge, with a
cross, inside a rectangle. What is it?

a

Shultis: Sorry. You've got two a's and a b. In the special case here,
the argument is that you can see that this line here bisects this area. And
you can see that all these things are just rotations of the same thing, yes?
And so you can see that this area here is half of this area out here, right?
And so that b2, in this case, is equal to (2a)2/2, so that b2 is equal to 2a2. The
funny thing is that if you ask people to generalize this argument, I've observed
that almost everyone does it wrong, like this:

a
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The right generahization is this:

2

- (a+b) (a - b)2

2 (a+b) 2+ (a -b) 2

a 2
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OK, Just to summarize some things. My purpose in doing this little
experiment was to see whether or not we could establish some kind of a
methodology for doing two sorts of things, over a period of time. The first
question is: is this kind of experiment a good way to try to tease out, and
identify, the issues and phenomena we've been talking about at this workshop?
what utility do we think there would be for them, and what about them do
we think is different from the formal? That's a question, and we can discuss
that in a minute. But on the assumption that it is, there are two lines of
short-term research that I can see. I'm going to put these forward as
possible conclusions, and then you can tell me, no, these shouldn't be
conclusions of the workshop at all, but... Basically, I think we need to do
some empirical research, and get some evidence in. This is one way to
collect it, and there are two sorts of things you can do with studies like this.
One is to try to build a taxonomy of the phenomena: what are they, what's
informal about them (whatever "informal" means there; maybe we need a
better terminology; I'm all for it), and what do we think would be useful
about them if we could do this kind of thing in computer systems?

The other thing you can do with this kind of study is to make some case
studies: look for the same kind of techniques in many different situations,
try to see what is common about them, try to characterize a particular kind
of phenomenon in depth. We're looking at problem solving. I was talking to
Don for a minute, and he had a suggestion for at least one aspect of what's
going on. This doesn't cover your thing, David, I don't think.

Littman: Which thing?
Shultis: Well, maybe it does. Um, sure it does! Computer-assisted

problem-solving, is one of the things we're talking about. We want to extend
the computef Io help us solve problems, and help us with the activities that
we do when we're solving problems, whatever they are.

Littman: Wait, that's my thing, or that's what this doesn't cover?
Shuxtisi I retract that statement altogether. I think we can include all

of the thinzgs we've been talking about under that one roof. In a sense, what
we're complaining about is that in order to use computers, we have to make
our problem-solving methods conform to those of formal description,
specification, and so forth. What we'd like to do is make the computer's
support conform to our problem-solving, so that computers help us to solve
problems. And David Fisher, in characteristic form, has done something he
constantly accuses me of doing-of saying, after everything is all said and
done, that that's what I was saying all along. But here [putting up DAF
slide stating that "Humans and Computers are Problem-Solving Devices"] he
has the evidence. [Laughter.]

Good: An invariant!
Shultis: And maybe that's a better title for a follow-on: Computer-

assisted problem-solving. But there are these two sorts of things we can do



Friday Discussion 189

in the short term: one is to try to develop a taxonomy and the other is case
studies of specific phenomena.

Standish: I think that coming to a conclusion is probably one of the
hardest things to do in one of these workshop exercises. I have a feeling
that people came here wanting to share and find commonality, and were
interested in what the others had to offer, but they all came with agendas of
their own life and work, partly wanting to share and offer that to others,
and curious about what others are doing. But, as you go around the room,
and without naming names, you could find philosophers who want to do
beautiful new logic -systems that were parsimonious and explained all the
-conundrums in that profession, and did well at it; and cognitive scientists
who want to explain the bases for human cognition, with some sensitivity to
the philosophical problems of logic, and so forth; and then there are people
who want to synthesize programs, sometimes explaining things in English
to the machine, and sometimes choosing from a parameterized space; and
there are people who want to verify that programs did things to satisfy
constraints on engineering situations; and then I think that there are
Edisonian inventors, who would like to do something neat and wonderful
and powerful, like before there were movies invent movies, and before there
were victrolas invent victrolas, and before there were light bulbs invent
light bulbs, and make the world new and different in some very powerful
way, and they wanted inspirations about where the Edisonian inventiveness
should be channeled to get some new domain of technological power; and
then there are the modelers, who... well, I don't know if I should keep going
on, but a lot of people had these different agendas, and it isn't clear that you
can take one thing, particularly this new and latest thing, and say, "Well,
our real purpose was to get better machine assistants." Wait a minute!
How come we didn't get Rich and Shrobe and Waters here to talk about the
programmer's assistant, or something, if that was our real agenda? A cognitive
human assistant in the computer wasn't even represented in our set of
talks, and so how come all of a sudden that became the noble goal that
would unify us? So I think it's very hard, under these different agendas, to
find a common focus.

Shultis: Maybe what I can take from that is that we've come here as
an event, to share our ideas and thoughts about these things, but we're
going to pursue different courses and we've got different goals that motivate
us, individually. There are sort of two models of a workshop like this. One
says you bring people from lots of different areas, and you get them to come
together and talk about something and then they go their own ways again.
The other model says that there are some things that we're all trying to talk
about together, and maybe we can continue to help each other over a period
of time to wrestle with those things. Maybe it's not that we have some
common goal that motivates us, but a common set of interests, or problems,
that could cause us to gather again. I think that you're right, that it's
probably more like the latter.
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Standish: Yeah, it was disparate. I left out several things.
Fisher: It strikes me that you can come to a conclusion that there's a

commonality, and you'd like to work toward some common goals without
being able to formulate what those goals are, and even admit that probably
there isn't any one property that you know about those goalsthat could be
written down so that everyone would agree. That doesn't bother me. In
fact, one of the questions I wanted to ask is: regardless of what your agenda
was when you came or your views on things when you came, and regardless
of what they are now, how many here feel that they've had some changes in
their views of this subject matter? I certainly have, and to me that's the test
of whether a workshop was useful. [General agreement, assent.]

Shultis: Well, it's past 12:30 and we're supposed to break up. I'd just
like to remind everyone that there is a steering committee for a follow-on
after lunch, and if enough people show up, then we've got a committee! Just
to talk about what sorts of things we might do, who might do what, and see
who's there, and start to get a group of people together to plan the next one,
because one of the things that helps a meeting be a good success is all of the
people who attend it and contribute to it. I'd like to personally thank all of
you for coming, and for making this a very interesting and stimulating
experience. [Note: At the steering committee meeting it was decided that
there should be a follow-on conference in about 18 months, and that David
Littman would take on responsibility for organizing, with David Fisher acting
as figurehead. -Eds.]

Standish: Well, on behalf of us I'd like to thank you for organizing it,
and cordinating all the different strands that brought us here.

Fisher: Yeah, I thought it was a terrific group of people, and I just
thought that the interdisciplinary aspect of it was really quite refreshing.

??: ... one of the best ever.
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1 Introduction

IRIS1 is a semantically based system for representing information that can be viewed as an utterance
in some formal language [T+90, WCW90, BFS88]. It serves as a medium of information exchange
among a variety of tools of a software development environment. It is an extensible and open-ended
system with respect to the information it can capture and represent. This paper emphasizes the role
of IRIS in providing reusable infrastructure for the use of formal methods in software development.
In Sections 2 and 3, IRIS is viewed syntactically and semantically, respectively. Section 4 describes
the IRIS attribute system, which captures and maintains arbitrary user-defined information. Other
special characteristics of IRIS that make it suitable for the support of formal methods are presented
in Section 5. in Section 6, the relevance of IRIS to the workshop themes is discussed explicitly,
and some examples are given of its current and proposed use.

2 A Syntactic View of IRIS

At a syntactic level, an IRIS instance is a tree. An IRIS tree represents an utterance consisting
of references and applications. Corresponding to this, an IRIS tree is composed of two kinds of
nodes: reference nodes and application nodes. For example, the expression f(x,g(y, z)) consists of
references to entities named f, x, g, y, and z and applications of f and g. The corresponding IRIS
tree is shown in Figure 1. Circles 4epict application nodes and squares depict reference nodes.

The first child of an application node is its operator. The operator identifies an operation which
is applied to the remaining children, which are called arguments (actual parameters). Frequently,
the operator is a reference to the declaration of a named operation, but it can be any operation-
valued expression represented as an IRIS tree.

To avoid clutter, IRIS trees are often drawn in the style shown in Figure 2 where the name of
tne operation is shown next to the application node. In this case it is understood that the operator
is a single reference node referring to the named operation and is not shown.

'IRIS is an acronym for Internal Representation Including Semantics. Iris was the Greek goddess of the rainbow,
and messenger of the gods.
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Figure 1: An IRIS Tree Figure 2: A Simplified IRIS Tree

In IRIS, an entity is anything that can be defined, computed, or named. Entities include such
things as constants, variables, types, functions, packages, exceptions, statements, declarations, ax-
iomatic specifications, operational descriptions and-proofs. Some entities can be used as operations.
Every operation has an associated -signature which specifies the number and type of the arguments
that an application of it requires and the type that the application yields.

Some operations, called declarative operations, associate identifiers with entities. An expression
whose primary operator identifies a declarative operation is called a declarative expression or dec-
laration. A declaration is an actual association between an identifier and an entity. The scope and
visibility of a declaration is determined by other IRIS operations, consistent with the definition of
the language of an utterance.

IRIS is similar to commonly used internal forms for (first-order) abstract syntax, but differs
from them in that it demotes the operator from a nonterminal class to a distinguished subtree. This
frees IRIS from any particular choice of operators, thus contributing to language independence.

The graphs used for representing terms in combinator reduction systems share with IRIS the
use of a single nonterminal class representing application of the leftmost child to the remaining
children. However, every operator in such a system is either a reference to a primitive combinator, or
a composition of primitive combinators. In IRIS, such primitive combinators could be represented
as unresolved reference nodes, but the recommended procedure in IRIS would be to define the
combinators in terms of one another, and have each "primitive" combinator reference resolved to
its description. For the formalist, perhaps the appropriate metaphor for IRIS is "pure combinatory
calculus", where the "purity" is that of pure A-calculus, which has no constants.

3 A Semantic View of IRIS

There are two semantic aspects of IRIS, depending on whether one in interested in IRIS as a means
of representing semantic information, or as the subject of semantic investigation. This paper em-
phasizes the former, because we are interested in how IRIS can be used as an integration technology.
The two issues are not completely independent, however, and at least a passing acquaintance with
the semantic interpretation of IRIS is prerequisite to understanding how it can be used to represent
semantic information.

IRIS semantics consists in interpreting each node as an object and each attribute as a relation-
ship among the objects in a manner that is consistent with the description of those objects and

2



relationships given by the syntactic IRIS. The most important constraint given by the syntactic
IRIS is that the object which interprets each node in fact be equivalent to the composition which
interprets its description. Briefly, IRIS semantics generalizes the notion of algebraic homomorphism
to the non-well-founded case.

Now, a tool which processes IRIS descriptions can glean semantic information about an object
either by giving an interpretation to the object itself, or by computing it from the IRIS description
of the object and its attributes. At some point, of course, most tools will have to give some
external interpretation to at least some aspects of some of the operators in an IRIS tree, but the
determination of which ones, and what information is required about them, is determined entirely
by the tool, and not by anything in the IRIS itself.

Thus, IRIS simplifies tool building by allowing tool builders to focus on those operations and
properties of operations that are inherently important to the functionality of the tool and to ignore
other operations and properties of operations. For instance, a semantic analyzer that is part of
a front end tool will be interested in, and give interpretation to, only a subset of the operations,
typically those for scope and declaration.

Moreover, the fant that tools only depend on (partial) interpretation of a subset of operations
means that they can be reused for processing IRIS descriptions in any application where the subset
recognized by the tool is present. As an example, there are certain features shared by many
languages. IRIS facilitates the development of a reusable infrastructure consisting of a set of tools
based on operations common to the description of many languages. Actually finding a set of
operations that can be shared by many language descriptions is a design problem that is facilitated
by the use of IRIS.

Perhaps the most important semantic characteristic of IRIS is its primitivelessness. For in-
stance, in representing static semantics, the signatures of all operations are represented in a uni-
form way in IRIS, instead of being represented in some other form which is peculiar to a tool or
set of tools. The point is that semantic information about IRIS objects (in this case, types) can
(and should) be represented in the IRIS itself.

In a sense, IRIS is to applicative systems what graphs are to categories. Instead of representing
compositions in arbitrary categories, it represents applications in arbitrary applicative domains.
(Incidentally, category theory itself makes inherent and necessary use of application; without it,
the composition f o g cannot be expressed, because it requires the application of composition to f
and g. Thus application is prior to composition, despite some categorists' apparent distaste for it.)

As in category theory, any operation can be described as a composition which may reveal
information about it, and every operation has a signature which constrains its composability.
Unlike category theory, the form and content of signatures is not dictated by IRIS; in particular,
they are not restricted to first-order ground terms, but can be arbitrary descriptions allowing
unlimited degrees of polymorphism and subtyping.

To carry the analogy further, languages in IRIS correspond to categories, IRIS instances corre-
spond to arrows (described by composition), and IRIS attributes correspond to arbitrary mappings
from a category. When attribute values are themselves represented in IRIS, certain constraints are
required to make the attribute mapping sensible, corresponding to the notion of functor. We hope
that this sketch of a metatheory of IRIS helps to give some insight into its scope and nature, but
we shall not pursue it further here.
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4 The IRIS Attribute System

The IRIS attribute system is a mechanism for attaching user-defined information to IRIS nodes.
The attribute system permits any number of attributes to be associated with each node.

The IRIS attribute system is unusual in that values for a given attribute and IRIS tree are
allocated and managed separately from those of other trees and other attributes. This means that
each tool can have local attributes without knowledge of other tools and without imposing space
or time costs on other tools. Finally, by physically partitioning the attributes by attribute rather
than by node, those that are shared among tools can be stored in the library and loaded only by
tools that reference or modify them. It should be noted that, although IRIS attributes are stored
independently in this fashion, attributes that are frequently used together may be colocated for
efficiency.

Formally, the attribute system can be modeled as a set of triples

< IRIS node, attribute, attribute value >

where there is at most one attribute value (at a given time) for each IRIS node and attribute
combination. The attribute system does not associate any intrinsic properties with nodes except
their distinctness (i.e. the nodes constitute a set). Attribute values can be of any type appropriate
to the tools using them. The IRIS system does not impose restrictions on the types of attribute
values. Since tools can add attributes, the IRIS system has no inherent bias towards any particular
kind of attributes, such as those useful for compilation.

5 Special Characteristics of IRIS

The process of resolution consists of replacing unresolved references by resolved references. An
IRIS tree may have all unresolved references; such a tree is also called a parse tree. A tree in which
all references are resolved (that is, the referent of every reference node is another IRIS node) is
called a resolved IRIS tree. It is also possible to have a partially-resolved IRIS tree in which there
are both kinds of references.

A fully resolved IRIS description is complete in the sense that everything that is used ill the
description is itself described; no part of the description depends on externally defined "primitives".
A tree that is fully overload resolved is the quintessential IRIS tree; some tools may expect and
require their input to be fully resolved IRIS trees. Inconsistent, incomplete and otherwise incorrect
utterances are normally represented by IRIS trees in which all nodes that are complete, correct
and unambiguous have been resolved as far as possible.

Another characteristic of IRIS is open-endedness. It is not possible, of course, to foresee the
specific information needed by all tools, extant and future. Even if it were possible, it would be
undesirable to impose the cost of such complexity and volume of information on all tools. While
the actual IRIS tree form contains no tool specific information, the use of the attribute system
allows inclusion of any arbitrary tool specific information at no cost to tools which do not use
particular attributes.

An important feature of IRIS is language independence, a consequence of primitivelessness.
There are of necessity a variety of languages used during the software development process. Iden-
tical tools can be used to process utterances in any of the various languages when the languages
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are represented in the same internal form. Furthermore, use of IRIS can promote experimentation
on new languages and new language concepts in a research and development environment.

6 Relevance of IRIS to the Formal Methods Workshop Topics

The utility of formal methods for large-scale software development can be expected to increase
steadily with improvements in engineering technology and foundations. Unfortunately, there is
currently no clear path for the transfer of formal methods from research to industrial practice.

It is clear that no existing or foreseeable suite of formal methods and tools can cover the entire
range of software development issues and tasks. Practitioners must therefore be able to apply
formal methods selectively and partially. However, many existing and proposed systems based on
formal methods assume a more global perspective, and can be applied only to entire projects.

Another aspect of the problem is that many existing systems do not support sharing of common
technology, or the migration and integration of new or foreign technology. A few projects, like
Edinburgh LF [HHP87], ERGO [LPRS88], and Larch [GHW85], and the somewhat less instantiated
work on institutions [GB85] address some aspects of the integration problem, but only within
limited domains. For example, institutions promote sharing and reuse by abstracting the common
features and structure of logical systems and permitting specific logics to be composed from common
components. The motivation behind ELF is similar. A similar kind of capability is needed that cuts
across the boundaries between logics, languages, implementation regimes, paradigms, and lifecycle
tasks, as well as the boundaries between formal and informal methods - in short, a genuine basis
for integration.

IRIS is an internal form which provides a basis for the integration of formal systems, methods,
and tools. At the core of IRIS is the notion, common to all formal systems, that there is some
domain of objects (individuals) of interest, and these are represented by IRIS nodes. Another
underlying assumption of IRIS is that any description of an object is either a direct reference to
it, or a composition consisting in the application of an operation to some other objects.

Fully resolved IRIS descriptions have major advantages for any kind of processing, as a single,
uniform algorithm can be used to process the entire description, with no need to relate things
represented in IRIS to external, non-IRIS information. On the other hand, incomplete IRIS de-
scriptions are allowed, and simply represent partial information. IRIS descriptions that cannot be
completed consistently are also allowed, and these simply represent incorrect or inconsistent infor-
mation. Such descriptions are required by formal tools that deal directly with intensional objects
such as programs, specifications, and proofs.

The open-endedness of the IRIS attribute system allows IRIS attributes to be processed by
IRIS-based tools. For example, if a predicate transformer attribute uses IRIS representations, then
the predicate transformers can be checked, analyzed, transformed, translated, displayed, and so
forth using the same algorithms that are used to process the programs they attribute.

As a direct consequence of the partitioning of attributes by attribute as well as by IRIS tree,

any number of attributes, of arbitrary value type, can be contributed by cools processing an IRIS
description. Similarly, tools can share and reuse attributes contributed and modified by other
tools. If one looks at the sets of attributes which are used and produced by any tool as a kind
of "signature" for the tool, it is easy to see that IRIS-based tool composition is far more flexible
than ordinary pipeline or functional composition. The open-endedness and flexibility of this tool
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composition and partitioning of attributes ;rovide the crucial path for integrating new technology
into existing systems. Adoption of IRIS as a de facto standard in the formal methods and tools
community would greatly enhance sharing and reuse, and facilitate the gradual transfer of formal
methods to practice.

IRIS has been used by Incremental Systems as the internal form for a compiler for the Ada
programming language. The Arcadia Consortium has adopted IRIS as the common internal form
for its tools, including front end tools, analyzers and interpretors. IRIS is being evaluated for use
in the STARS (Software Technology for Adaptable, Reliable Systems) program. Computational
Logic, Inc, is using IRIS in its study of a provable subset of Ada [CSS88]. There is some interest
in using IRIS to support ANNA annotations and the ANNA toolset [LvH85].
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1 Introduction

Iris is a language and machine independent form for representing the sentences of any formal lan-
guage. Iris simplifies the development of tool components for the analysis, query, and synthesis
of programs. It is especially useful as an integrating mechanism for program development and
maintenance environments that incrementally process large, long-lived, or continuously changing
software applications. Iris was developed at Incremental Systems in cooperation with the Arca-
dia Consortium. This document provides the Iris specification for the Iris representation of the
Ada programming language as used by the Arcadia Consortium, in the STARS program, and at
Incremental Systems.

Ada is a modern programming language that requires compile-time analyses to discover pro-
gramming errors that traditionally were detected only during execution. Additional analyses and
transformations are required for optimization to generate code which satisfies the real-time con-
straints of its applications. The simple structure and open-endedness of iris allows algorithms
which do these analyses and transformations to be smaller and simpler and provides a framework
in which their results can be shared by other environment tools.

The Iris representation is tree-structured with only two kinds of nodes: reference and applica-
tion. Each Iris tree represents an expression composed of applications and references. Reference
nodes are interpreted as references to declarations that appear elsewhere within the Iris structure.
Application nodes are interpreted as the application of an operation to a sequence of arguments.
The operation is always the value of the operator (which is the leftmost subtree) of the application
node. The arguments are the values of the remaining subtrees. If the reference nodes of Iris are
viewed as leaves (terminals), then the Iris representation can r4bo be viewed as an abstract syntax
tree with the application nodes asting as nonterminals. Each reference node, however, contains a
reference to a declaration which is itself an application node appearing earlier in (a preorder walk
of) the Iris structure.

Iris is unique in that all operations are described within its own structure. This means that
individual tools need to recognize and provide special case processing for only those operations
that relate directly to the functionality of the tool. For example, the overload resolution portion
of a semantic analyzer needs to recognize only those operations that are declaration, scope, or
type valued. It does not have to distinguish between control structures and arithmetic operations.
This means that individual tools and tool components are often significantly smaller than with
traditional representations. Also, because tools process most operations based on the internal
definition of the operation rather than by explicit reference, the language being represented can
often be modified or extended without modification to the tools.

Iris is also a higher order system in that it provides full support for computed operations at
any level. A computed operation may appear either in place at the point of its application (i.e., as
another application node which is the operator of the application) or as the value of a declaration
which is referenced at the point of call (i.e., as a reference node which is the operator of the
application). The combination of internal and higher order specification means Iris can be used to
represent any formal language and that Iris based tools can be reconfigured for multiple languat,
and other changing requirements with little or no change to their components.

To specify the representation of any language L, two things are needed: a grammar and a set
of L-augmented declarations. The grammar describes the correspondence between the concrete



also necessary t. decide what the abstract syntax for each feature would be. A formal specification
of the abstract syntax is given in Appendix A. Finally, certain conventions were adopted in the
design of the abstract syntax to ensure that operations with similar functionality would have similar
forms as an aid to understanding and to facilitate processing them uniformly. These conventions
are discussed in Section 2.4.

2.1 Lexikal Extensions

It was necessary to extend the set of legal lexical units to include identifiers for built-in features
of the Ada language while insuring that their names could not be referenced in (non generalized)
Ada programs. Thus, most of the declarations in the Ada augmented declarations package have
names that begin with a tilde (-). Because the - names are illegal Ada identifiers, they accomplish
two important goals. First, those declarations with - names are hidden from the Ada programmer
who is not allowed to make use of them in writing Ada programs. Second, user-defined Ada
subprogram, type, etc. declarations cannot mask or hide the declarations with - names. The
remaining operations, typo; and constants defined in the Ada augmented declarations package
have legal Ada names. These eatities are those defined in the Ada package standard. They must
be visible for use in writing Ada programs.

2.2 Visibility

Two extensions to the Ada visibility rules must be made to understand or process the -Ada aug-
mented declarations package. Each operation, type and constant declared in that package is visible
throughout the entire package, except in its own specification and sometimes in its body2 . This
extension allows forward reference in the Ada augmented declarations package. This extension
is required for the earlier declarations in the Ada augmented declarations package because every
designator is declared as a composition that references other declarations, and no designator is
predefined (i.e., defined outside the Ada augmented declarations package).

In Ada, formal parameters and function return types may not reference other parts of the
specification. This Ada restriction has been lifted so that formal parameters and function return
types may reference earlier formal parameters. This generalization is necessary to formalize the
dependencies among parameters of Ada's built-in operations.

2.3 Types

The Ada type system has been generalized by removing several restrictions that Ada places on its
users but not on itself, and by generalizing the Ada concept of t-pe to include all concepts of the
language. Although these changes are straightforuard and involve only concepts already in Ada,
they have a dramatic impact on the power of the language.

The first generalization is to view all Ada concepts as Ada types. Acceptance of this view means
that record, array, access, exception, function, statement, pacLge, type, entry, generic, universal
integer, and so forth, are types.

'2 The restrictions on visibility within an entity's own specification or body ame the normal restrictiLns imposed by
Ada.
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Operator Operation Operand type Result type
(1) * multiplication any integer type same integer type
(2) * multiplication any floating point type same 9oating point type

Operator Operation Left operand type Right operand type Result type
(3) * multiplication any fixed point type INTEGER same as left
(4) * multiplication NTEGER any fixed point type same as right
(5) * multiplication any fixed point type any fixed point type universal fixed
(6) * multiplication universal-real universaL integer universal real
(7) * multiplication universal. integer universal- real universal-real

Figure 1: * operators from the Ada Language Reference Manual Sections 4.5.5 and 4.10

function ","(left, right: -univ.integer) return -univ.integer;
function ","(left, right: -univfloat) return "univ..float;
function ","(left: -univ.fixed; right: -nonderivable(integer)) return "univ-fixed;
function "Y"(left: -nonderivable(integer); right: -univ.fixed) return -univJfixed;
function ","(left: -independent(-univfixed); right: -independent(-univ-fixed))

return -nonderivable( univ_fixed);
function ","(left: -nonderivable( -univreal); right: -nonderivable(-univ_inz.ger))

return -nonderivable(" univ_ real);
function ","(left: "nonderivable( "univ-integer); right: -nonderivable(- univ- real))

return -nonderivable('univreal);

Figure 2: * operators from the Iris-Ada declarations

used to mark the type of any formal parameter whose type cannot be changed even if the
operation is inherited (with respect to other parameters). E or instance, there are seven "*"
operators defined in Sections 4.5.5 and 4.10 of the Ada Language Reference Manual [Ada83];
they are reproduced in Figure 1. In Figure 2, the Iris-Ada specification for each of these
operators is given. Focus on the third and fou:. 1h operators in Figure 1. These are fixed point
operators defined in Section 4.5.5 of [Ada83]. Each has a formal parameter that must be
of the predefined type integer. In Figure 2 the corresponding formal parameters are defined
to be -nonderivable(integer). The function "nonderivable disallows the usually legal type
de.ivation. The fifth, sixth and seventh " operators also require the use of -nonderivable
in their declarations.
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float iota

Figure 4: The type hierarchy of the Ada augmented declarations, Part 2.
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function "incomplete-.spec(name: -token; t: -metatype('type)) return decl-item; This is the
standard Ada operation to enable recursive type definitions.

function "instantiationdecl(name: -token; t: -type; value: t) return -decLitem; This is a
variation of -vis-decl that is used for generic instantiations in Ada.

2.4.2 Units

There are several kinds of library units, namely -Iibspec, -ib.body and -ib.subunit. Each of
these has three parameters, the first of which is the parent context, the second of which is the Ada
context and the third of which is the specification or body, as appropriate. See Figure-6.

2.4.3 Iris Tree Superstructure

Figure 6 shows the Iris tree superstructure for the sample Ada program shown in Figure 5. The
IRIS-Ada parser produces a forest of trees, one for every subunit. A separate context contructor
then inserts the interunit references, shown in Figure 6 as curved lines.

with Q; separate (P.S)

package body V is ... end V;
separate (P)
function S is ...

package body V is separate; ... end S;
with C;
package body P is ...
function S is separate; ... end P;
with A, B;

package P is ... end P;

Figure 5: Sample Ada program structure.
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3 Ada Augmented Declarations

language ada

package standard is
-- Copyright @ 1990 by Incremental Systems Corporation. All rights reserved.
-- Permission to copy all or part of these materials is granted, provided that
-- the copies are not made or distributed for commercial advantage and that the
-- Incremental Systems Corporation copyright notice set forth here appears on
-- each copy.
-- This work was supported in part by the Defense Advanced Research Projects

Agency (Arpa Order 5057) monitored by the Department of the Navy, Space and
-- Naval Warfare Systems Command under contract N00039-85--C-0126 and by the
-- Defense Advanced Research Projects Agency (Arpa Order 6487-1) under
-- contract MDA972-88-C-0076.

3.1 Functions

type -function(
fpl: quote -list-of (-fpitem);
rt: -type) is private;

function -body(

dl: quote -list-of(-decl-item);
s: quote -list-.of(-statement)) return 0;

-- return type depends on the context in which called
-- return type can be any Ada return type, -statement, -package or -generic

function -return(x: K) return -statement;
-- x is restricted to the return type of the function in which it is called.

function -return return -statement;
-- may be called only within procedures and accept statements

3.2 Declarations

type "decLitem is private;

type -token is new -scalar; -- a nonoverload resolved designator

function "spec(
name: -token;

t: -type) return -decLitem;

function -preinit.decl( -- initialized constant declaration including enumeration items
name: -token;
t: -type) return -decl-item;

function -decl( -- value evaluated at elaboration of declaration
-- decl is a composition of -define and "qual-exp where -define is:
-- function -define(name: -token; value: 0) return -decl-item

name: -token;

11



function "="(left, right: -private) return -nonderivable(boolean);
-- function"/ ="(left, right: -private) return -non derivable(b oolean);
-- must be automatically inserted after every declaration of =1

function "I:="I(x: out -private; y: -type-.of(x)) return -statement;

3.4 Metatypes

type -metatype(t: -type) is private;
-- the metatype of t

function - new..type(t: -type) return -type;
function -quaLexp(t: -type; x: t) return t;

function -type-..convert(t: -type; x: C>) return t;
-- type convert is implicit in Ada function form syntax

function -type-.of (x: -quote C>) return -type;
function -base-.of(t: -type) return -type;
function - independent(t: -type) return -type..of(t);

-allows parameters of the same type name to be independently
-- derived, not available to Ada users

function -nonderivable(t: -type) return -type..of(t);

3.5 Formal Parameters

type fjp.item is private;
function - in..mode(t: -type) return -type-.of(t);
function - in...out-mode(t: -type) return -type..of(t);
function -ouLmode(t: -type) return -type-.of(t);
function - value..mode(t: -type) return -~type-..of(In-.out-.mode(t));

-- corresponding value of type t is copied to a local variable of that same type

function - quote..mode(t: -type) return - type-.of(t);
function fjp-.spec(name: -token; t: -type) return -fp.item;

function -default(t: -type; value: -quote t) return -type-.of(t);
-- used for default formal parameters, variable initial values, and
-- default field values

function - named- exp(name: -token; x: C>) return -type..ofgx);
-- used for named actual parameters and aggregates

3.6 Scalar

type -scalar is private;

function "<"(left, right: -scalar) return -nonderivable(boolean);

function "1< ="(left, right: -scalar) return -nonderivable(boolean);

13



type character is(

nul, -soh, stx, -etx, -eot, -enq, -ack, -bell
-bs, -hit, -If, -vt, -ff, -cr, Sol si,
dle, -dcl, -dc2, -dc3, -dc4, -nak, -syf, -etb,

ca, -,sub, -esc, fs, s rs, us,

'0, '1', 121, 131, 141, 151, t 6 17 171,
18 91 :, ;1

I IA I) IB , IC 7 I II I1 I I , I I



3.8 Integer Types

type - univ..integer is new -discrete;

function "1-1 (right: - univ..integer) return -univ-integer;
function "-"(right: -univ-.integer) return uiv-integer;
function -abs(right: -univ-integer) return -univ-integer;
function "+"(left, right: -univ-.integer) return -univ-.integer;
function ,.-,,"(left, right: -univ-.integer) return -univ-.integer;
function "Y,(left, right: -univ-.integer) return -univ-.integer;
function m7od(left, right: -univ-integer) return -univ-.iuteger;
function -rem(left, right: -univ-.integer) return -univ-integer;

function "1**(

left: -univ-.integer;
right: -nonderivable (natural)) return -univ-integer;

function "/"(left, right: -univ-.integer) return -univ-integer;
-- ranges are implementation dependent

type short..integer is new -univ-integer range -128.. 127;
type integer is new -univ..integer range -32768 .. 32767;

type long-.integer is new -univ-integer range (-2147-483647) - 1 .. 2147-483647;
type positive is integer range 1 .. integer' last;
type natural is integer range 0 .. integer' last;

3.9 Universal Real

type -univ..real is new -scalar;
function "+ "(ight: -univ..real) return -univ-.real;
function "-"(right: -univ..real) return -univ..real;

function -abs(right: -univ..real) return -univ..real;

function "+"(left, right: -univ-.real) return -univ..real;
function ",-"(left, right: -univ..real) return -univ..real;
function "*"(

left: -nonderivable(-univ..real);
right: -nonderivable(-univ-integer)) return -nonderivable( - univ- real);

function "Y'(

left: -nonderivable(-univ.integer);
right: -nonderivable(-univ-. real)) return -nonderivable(-uiv- real);

function "l/ (

left: -nonderivable(- uflv.real);
right: -nonderivable( Thniv..integer)) return -nonderivable(-univ..real);

function -rmantissa..of(t: -metatype(- univ. real)) return -univ-integer;
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function '*"(

left: "nonderivable(integer);
right: -univfixed) return "univ-fixed;

function ",AI(
left: -independent(- univfixed);
right: -independent(-univ-fixed)) return -nonderivable(-univifixed);

function "/A(

left: "univ-fixed;
right: -nonderivable(integer)) return -univ-fixed;

function -delta- constrain(
t: -metatype(-univfixed);
del: static( univ.real)) return "metatype(-univfixed);

function -delta- of(t: -metatype(-univ fixed)) return -univ-fixed;

function -aftLof(t: -metatype(-univ fixed)) return -univ-integer;
function -foreof(t: -metatype(-univ-ixed)) return -univ-integer;

3.12 Lists

type -list- of(fieldtype: -list-of (-type)) is private;
function 'list(x: -list-of (0)) return "typeof(x);

-- list is the only operation which can have a variable number of parameters.
-- It cannot be overloaded.
-- Unlike other operations, -list must be capable of handling large numbers
-- of operands.

3.13 Arrays

type -array(
index-type: -list-of (-independent(-metatype('discrete)));
field-type: -type) is private;

function "aggregate(x: -list-of (0)) return -array;
-- Ada aggregates have special visibility rules and thus require special
-- case processing. The only special aggregate operations are
-- aggregate and -named-exp. The arguments to an array aggregate
-- must be static if there are more than one.

function -index-. constrain(
t: "metatype("array);
constrailnt: -list_of(_metatype(-discrete))) return -type;

function -subscript(
x: -array;
i: -type- of(x).index_ type)

return -type-of(x).field-type;

-- subscript is implicit in Ada function form syntax
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3.15 Records

type -record(fpl, c: quote "list_of(-fpitem)) is private;
function "aggregate(x: -list-of (0)) return -record;

-- Ada aggregates have special visibility rules and thus require special
-- case processing. The only special aggregate operations are
-- aggregate and "named-exp.

function "case(
discrim: -discrete;
x: -quote -list-of (

"set.of( static(-discrete)),
-list-.of(-fpitem))) return -fp-item;

3.16 Sequential Control

type -statement is private;
function -compound(sl: -quote -list-of ('statement)) return -statement;
function -scope( -- Ada declare

dl: quote -list-of (-decLitem);
s: quote -list-of (-statement)) return -statement;

function -if(
x: -quote -list-of (-independent(boolean),

list-of (-statement))) return -statement;
function -case(

discrim: -discrete;
x: quote -list-of (

"set-of(-static(-discrete)),
-list-of (-statement))) return -statement;

function -loop(val: -quote -list-.of (-statement)) return -statement;

function -while.loop(

c: -quote boolean;
val: -quote -list-of ('statement)) return -statement;

function -forloop(
i: -quote -decl-item;
val: -quote -list-of (-statement)) return -statement;

function -for_ reverse loop(
i: -quote -decl-item;
val: -quote -list-of (-statement)) return -statement;

type -block-label is new -statement;

function -exit(b: boolean := true) return -statement;
function -exit-with-.label(bl: -block-label; b: boolean := true) return -statement;
type "gotoIabel is new -statement;
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3.19 Duration, Task, and Entry

type duration is delta 0.000050 range 0.0..107374.1823;
-- actual values are implementation dependent
-- duration 'small corresponds to 50 microseconds,
-- duration units are seconds,
-- range is 1..24 days.

function -delay(d: duration) return -statement;
type -task is new -package;

function -abort(x: -list-of (-task)) return -statement;
function -callable-of(x: -task) return boolean;
function -terminatedof(x: -task) return boolean;
type -entry is new -function(O, -statement);

type -accept-timeout-terminate is new -statement;

function -count-of(e: -entry) return -univ-integer;
function -accept(

e: -entry;
t: -metatype(-type-of(e));
sl: -quote -listof (-statement)) return -statement;

function -a 'pt(
e: entry;
t: -metatype(-typeof(e));
s: -quote -list.of (-statement)) return -accept- timeout terminate;

function -delay(d: duration) return -accept-timeout-terminate;

function -terminate return -accept-timeout-terminate;

function -select(
alternatives: -quote -list-of (

independent(boolean),
accept- timeoutterminate,

-list- of(-statement));
elseiart: -quote -list.of(-statement)) return -statement;

function -timed_ entry(
entry.call: -quote -statement;
sl: -quote -list-of (-statement);
d: duration;
dsl: quote -list-of (-statement)) return -statement;

function -cond.entry(
entry-call: -quote -statement;
sl: -quote -list-of (-statement);
else-part: -quote -list-of (-statement)) return -statement;
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function -calLpragma(
p: -function(*), -pragma); x: -list-of (C0)) return -statement;

-- Ada requires that no errors be reported for incorrect pragma calls

function controlled(t: -metatype(-access)) return -pragma;

function elaborate(lu: C)) return -pragma;
function inline(f: -list-of (-function)) return -pragma;

function memnory..size(x: Thiiv-iuteger) return -pragma;
function pack(x: -metatype(-array)) return -pragma;
function pack(x: -metatype(-record)) return -pragma;
function priority(x: -static(integer) range 0..7) return -pragma;

function shared(x: in out C)) return -pragma;
function storage..unit(x: -univ-integer) return -pragma;
function system-.name(x: -token) return -pragma;

function interface(f: -function) return -pragma;
function list return -pragma;
function optimize return -pragma;

3.23 Representation Specifications

type -address is private;
-the address type required in Ada package system is
-- subtype address is -address;

function - address- rep-. spec(x: -quote*C; a: -address) return -decl-item;

function - length-. rep-. spec(
t: -type;
f. -function;
val: -static(- univ.real)) return -decL-item;

function -enum..rep-.spec(t: -type; val: *)return -ded-item;
function - recorcL rep..spec(

t: -type;
alignment: -static(positive);
component: -list-of(

-token,
-static(- univ-lnteger),
-set-.of (Independent (-static(-xmiv~integer))))) return "decL-item;

function -address-of (x: -quote C)) return -address;
function -first-. bit-. of (x: -quote*C) return -univ-integer;

function -last- bit-of (x: "quote C)) return "univ..integer;
function "position..of(x: -quote C)) return -univ-integer;

function "size-.of(x: -quote*C) return -univ-.integer;
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A Reference Manual for the Iris-Ada Grammar

A.1 Introduction

Section A.2 specifies the notation used to describe grammars. The notation is largely historical
and was not intended for publication purposes. It is, however, the formal input language from
which tables are generated for the Incremental Systems parser. It is also currently the only formal
notation in which the correspondence between the shape of Iris trees and the concrete syntax of
the Ada programming language is specified.

The grammars that we use are somewhat unusual in that they have a primary nonterminal,
exp, from which almost every syntactic construct of the language can be derived. Two observations
will help in the explanation of why this is desirable. Traditional context-free grammars specify
both the syntactic constructs of the language and their syntactically-valid compositions (nestings)
However, some compositions require semantic information such as type information to validate
their composition (or even to overload resolve their operator) and so the composition rules cannot
be completely applied until semantic analysis.

The second observation is that syntactic categories (i.e., the nonterminals of a grammar) can
be reinterpreted as types, thus allowing legality of composition to be determined during semantic
analysis as part of the overload resolution and type checking processes.

By eliminating composition checking from parsing, parsing bec(omes simpler and faster, and all
checking can be performed in a uniform manner during semantic analysis. Error reporting and
recovery from incorrect compositions can be delayed until semantic analysis when there is more
(semantic) information available to assist the error reporting and recovery processes. A forgiving
parser is also needed so that incomplete and incorrect Ada programs can be translated into an Iris
representation and then be analyzed and revised directly in that form.

A grammar may contain a few other nonterminals. Most of these are nonrecursive with respect
to exp, that is, all derivations of the nonterminal from itself involve an intermediate derivation
of exp. These nonterminals could be eliminated by expanding each reference to Ohem in the
exp productions, but are used to avoid the repetition of identical subexpressions or to factor out
subexpressions for readability. Other nonterminals which are recursive with respect to exp are also
allowed. Two features of our grammar, iterative operations (see section A.2.2.1) and contexts (see
section A.2.4), eliminate the need for them in most cases. Their use for other purposes unnecessarily
restricts the input language, limiting the number of incorrect programs which can be parsed. Thus,
we rarely use them3.

3The only such nonterminal in the Ada grammar is if-tail. While the concrete syntax could be written nonre-
cursively, our current abstract syntax notation could not describe the correct RIS tree if we did this.
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{ } Braces enclose syntax that can be repeated one or more times. The items within the braces
always produce a list with the operator -list (though, if enclosed by square brackets, the list
may have zero items).

© Used within braces. The braces enclose two expression lists, one before the @ and one after.
The expression after the @ is used to separate multiple occurrences of the expression preceding
the @.

$ Used within braces. The expression following the S is used either to separate or terminate

the multiple occurrences of the expression preceding the S.

* x indicates that the context x (see section A.2.4) should be associated with a subexpression.

-x indicates that this production may be used only to match a subexpression associated with
cntext x (see section A.2.4).

A.2.2.2 In the abstract syntax

$ Refers to the Sith item generated by the (productions invoked by the) concrete syntax. See
Section-A.2.3.

( ) The first item in the parentheses is the operator of the subtree and the remaining items are
its arguments (i.e., standard S-expression notation).

A.2.2.3 In either the concrete or the abstract syntax

Any lexical unit which is immediately preceded by a quote is interpreted as a terminal of the
grammar even if it is a reserved word of the metagrammar or a metalanguage symbol.

% Signals an action (see Section A.2.9).

A.2.3 Details of the Grammar

The grammar is applied to a source program using a standard recursive matching process. Each
time a nonterminal of the grammar is encountered in a production, the parser applies one of the
productions for that nonterminal to the input text. When the concrete syntax of the production
is completely matched, the abstract syntax describes zero or more trees to be produced which are
then passed back to the higher-level production. These trees are appended to the list of values
produced so far. When the concrete syntax is completely matched, the result is a list of tree values.
The abstract syntax of the higher-level production describes zero or more trees to be produced from
the result of the concrete syntax.

Therefore, every item in a production can produce zero or more -alues. An item is a nonter-
minal, a keyword, a metagrammar reserved word (id, id-list, any, or int-lit), a repeated item,

or an optional item. Nontcrminals produce values as already described. Keywords never produce
any values. Metagrammar reserved words produce a single value4. Repeated items always produce

4Id-list causes the replication of the value produced by the production containing it as a side effect. However, it
contributes a single value to each of these replications.
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exp id-list : 15 #T (-preinit-decl S1 ('var -2))
{ id.list : 15 -fp #E -fp.spec

id.list : 15 -fd fT (-fp_spec $i (-value $2))
idist : 15 -st #T (-labeLdecl $1 %identifier -block-label $2)

In a statement list, the last of these alternatives is chosen. If this construct appears in an illegal
position, e.g., in

while y: integer loop ...

the first alternative is chosen.

A.2.5 Metagrammar Reserved Words

There are several metagrammar symbols for lexical categories.

id id matches any lexical unit that should be in'erpreted as an identifier (i.e., any token which is
neither a literal nor a reserved word-).

id-list id-list matches any list (of length one or more) of identifiers separated by commas. id-list
causes the subtree generated by the production in which it appears to be replicated for each
item in the list (e.g. x, y, z: T; becomes x: T; y: T; z: T;).

any any matches any single token except end-of-file.

int-lit Int-lit matches a single integer literal.

A.2.6 Nonterminal Names

root This marks the root of the grammar being defined.

exp Exp matches any literal or identifier in addition to any construct specified by its productions.
When exp matches an identifier, it is interpreted as reference to the identifier, not as a token
literal- Exceptions to this rule can be specified, see the description of the %6idenifier action
in Section A.2.9.

There are several ways to refer to the nonterminal exp in a grammar.

* Exp may appear explicitly, as in this production from the Ada grammar:

apI ::= {exp ,}j N.

" Bxp may be referred to with a non-zero positive integer. For example, in the Ada
grammar there is a production:

exp ::= 70+75 ,-rE .

This usage also associates a precedence (see Section A.2.10) with the occurrence of exp.

'This is more general than the typical definition of an identifier. For example, in Ada operators and operato;
strings are both included.
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identifier is is a token literal and the literal kind assigned is token- lit'. If an identifier matches the

implicit production

exp ::- id

then this use of the identifier is a reference and the literal kind assigned is identifier.
In Ada, certain builtin operators can be referred to by string designators, which the parser calls

k word strings. For example a + b can also be written "+"(a, b). The parser cannot always tell
whether a string literal is being used as a string or as a designator. A string which is syntactically
legal as a keyword string can match the metagrammar reserved word id; the literal kind assigned
is kw.str-lit. A string literal can also match the implicit production

exp ::= ( string literal )

If the string is syntactically legal as a keyword string, then the literal kind kw.str is assigned;
otherwise, the str lit is assigned. kw-str may later be replaced by str. lit when it is determined,
using semantic information, that this use of the string is not as a keyword string.

As described in section A.2.5, the tree produced by any production containing id-list is repli-
cated once for each identifier in the list. For example, "x, y, z: T;" becomes "x: T; y: T; z: T;". In
order to have the information needed to apply the Ada rules for matching specifications .and bodies
to iris-Ada trees, it must be known whether such replication took place. Therefore, the token
literals produced for all but the last replication are assigned a literal kind of nonlast-token-lit.
nonlasttoken- lit Is identical to token-lit in all other respects.

A.2.9 Actions

Inserting an action in a grammar alerts the parser of the need for some special processing which is
difficult or impossible to describe in BNF or regular expression form. The languages that can be
recognized by our parser are approximately those that are LALR(1). In a few places this results in
conflizts which cannot be rcsolved with single token lookahead and so an action is used to instruct
the parser to look ahead further to resolve the conflict.

Actions are specified operationally. Most of the actions are used just once or twice in the Ada
grammar. One appoars only in the metagrammar, and it is the only action that appears in the
metagrammar. The built-in names id, id-list and any are in fact predefined actions.

%aggregate Distinguishes between aggregates and parenthesized expressi3ns and produces the tree
('aggregate ("list $1 ... $n)) in the former case and the tree ('parenthest_. L) in the latter.

%apply This action appeais only in this production:

e):p ::= 100 '( apl ') #T $1 $2 %apply

%6apply replaces the list operator of its second argument with its first argument. A semantic
analyzer for Ada may m=ke additional tree transformations based on disti, uishing whether
the expression is a function call, an array reference or a type conversion.

7 However, id may be follvwed by the action %reference (see section A.2.9) to change the itera. Idnd to identifier,
thereby changing the reference node produced by id from a literal reference to a named reference.
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%label-match This action is similar to %id.match, but the matching occurs at a higher level
according to the Ada rules for matching block and loop labels.

%of Appears in the following two productions:

exp
I 100 "110 #T ($2 $1) %of
I 100 110 '(exp ') #T ($2 $1 $3) %of

Ada attributes are built-in functions of the Ada language that are called with their own
special syntax. On the one hand they must be transformed to the standard Iris application
form; and on the other hand the resulting token name must be distinguishable from other
uses of the same token in source programs. For example, x' first is distinguished from first(x)
by replacing first in x' first by -first- of. %of performs this name translation.

%reference This action is used when an identifier matched by id should be a reference rather
than a token literal. It is used in the unusual case where the source language (semantically)
permits expressions (i.e., references to) values of a given type but (syntactically) restricts the
expressions to being singlt identifiers. That is, it enables overload resolution of identifiers
specified by id instead of exp.

%select Distinguishes between select, timed entry and conditional entry statements and produces
the correct tree.

%set_ enum_ list This action appears only in a single exp production:

enum.item ::= id #T (-preinitdecl $1 0).

exp
I type id is '( {enum-item ,} ')

#T ('decl $1 "metatype (-derived ('enum $2))) %set-enumilist

%set enum. list fills in the second argument of the "preiniL decl with the overloadable iden-
tifier of the enumeration type.

%with-spec The parser locates the Iris trees associated with the library units named in a with
clause. The reference nodes in the representation of the with clause are resolved to refer to
the withed units.

A.2.10 Precedence

Operator precedence coild be spi ified by a cascade of nonterminals. However, this is cumbersome
and is contrary to our goal of having only a single primary nonterminal. However, there remains
a need to express facts like * has greater binding strength on the left than does + on the right, so

35



A.3 The Metagrammar

-- Grammar for Grammars (Metagrammar)

-- Copyright @ 1990 by Incremental Systems Corporation. All rights reserved.

-- Permission to copy all or part of these materials is granted, provided that
-- the copies are not made or distributed for commercial advantage and that the
-- Incremental Systems Corporation copyright notice set forth here appears on
-- each copy.

-- This work was supported in part by the Defense Advanced Research Projects
-- Agency (Arpa Order 5057) monitored by the Department of the Navy, Space and
-- Naval Warfare Systems Command under contract N00039-85-C-0126 and by the
-- Defense Advanced Research Projects Agency (Arpa Order 6487-1) under
-- contract MDA972-88-C-0076.

$%#* N[({})]NTE

grammar

root [{ any }] 'grammar list-oLsubgrammars
listfoLsubgrammars { id '::= list-oLproductions }
x= [{exp}]
list-oLproductions { production @ 'I }
production ::= concrete-syntax '# abstract-syntax
concrete-syntax xl
abstract-syntax 'T xl

S 'E exp [exp]
I 'N [exp]

exp I( xl ')$ int-lit
I% id

* id

-id
'any

I {xl'}
I {xl ,©xl',}
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Extended Abstract
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Deborah A. Baker, and Jonathan Shultis
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Iris as an Internal Representation

An. Overview of Iris. Iris is an internal form for representing utterances (i.e. programs)

written in any formal language. Developed at Incremental Systems as part of an Ada compiler

development project, Iris is intended as a common medium of information exchange in a fine-

grained-component-based Frogramming environment based on multiple cooperating tools.

From a theoretical perspective, Iris is best seen as a generalization of the internal forms

commonly used to represent first-order abstract syntax. It differs from those forms in that it is

a higher-order system which treats operators as calls on operator-returning declarations.

This frees Iris from any particular choice of operators, thus contributing to language

independence. As we shall see, it also is critically important in ensuring that different tools

can work independently on the same data base.

- An Iris tree is composed of two kinds of nodes: reference nodes and application nodes.

For.example, the expression f(xg(yz)) consists of references to entities named f, X, g, y, and

z, and applications of f and g. The corresponding Iris tree is shown in Figure 1, where circles
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depict application nodes and squares depict reference nodes. 1i is impor ant to note that Iris is

a semantically-based system, in the sense that reference and application are not just

syntactic constructs (as are the more common "nonterminal" and "terminal"), but rather are to

be interpreted as references to declarations and as function application, respectively.

Figure 1: An Iris tree for the utterance "f(x,g(yz))."

The first child of an application node is its operator, which identifies an operation

applied to the remaining children, which are called arguments or actual parameters.

Frequently, the operator is a reference to the declaration of a named operation, but it can be

any operation-valued expression represented as an Iris tree.

In Iris, an entity is anything that can be defined, computed, or named. Depending cn

the language being supported, entities could include such things as constants, variables, types,

functions, packages, exceptions, statements, declarations, axiomatic specifications,

operational descriptions, and proofs. Some entities can be used as operations. Every operation

has an associated signature which specifies the composition rules for the operation. In

general all that Iris requires for the specification of composition rules is a concept of type for

the purposes of type matching, and the concept of composition itself; everything else is

language-specific. For example, in Ada the signature for an operation is defined by the
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number, names, and types of its arguments and the type that an application of it yields.

Some operations, called declarative operations, associate identifiers with entities. An

expression whose primary operator identifies a declarative operation is called a declarative

expression or declaration. A declaration is an actual association of an identifier with an

entity. The scope and visibility of a declaration is determined by other operations, consistent

with the definition of the language in which the utterance is written.

Expectations for Iris. The principle benefits we expected from Iris were: (1) compact

-trees (2) ease of modification of the static semantics of the language being supported through

modification of its signatures (3) flexibility in defining the attributes the tree possesses (4)

independence of co6perating tools (5) compactness of code. In the remainder of this paper we

examine our practical experience using Iris with an eye towards evaluating the degree to

which those expectations were fulfilled.

Using Iris During Compiler Construction

I is as an Intertool Insulator. The attribute system underlying Iris was designed to allow each

tool in the environment to have its own view of the attributes of a program representation

(Figure 2). Apart from the minimal skeleton required to define the tree structure itself, the

attributes of the program tree are tool-specific. Tree nodes are not permanently defined and

allocated records with a fixed number of fields, but are instead flexible, noncollocated bundles

of attribute values. Each tool can select those fields that it needs, and need not concern itself

with the fields that it does not use.

-,3-



Semantic CodeGeneration Profier
Attributes Attributes Attributes

Node 240: Node 240: Node 240:
Synthetic Type Synthetic Type Run-time Address
Error Kind Reference Count Execution Time
Semantic Status Run-time Address

Tool 3
Tool I Tool 2

Figure 2: Each Tool can have its own view of what the program
tree looks like, since nodes are partitioned horizontally.

This scheme greatly reduces the memory requirements for each individual tool, but its

primary advantage is that it allows tools to operate independently. As we saw constantly

during-the compiler development, different tools can define their own local attributes without

disrupting the other phases of the compiler. For example, at one point in development the

Reference Counter decided that it needed an attribute to record whether or not a subprogram

references global variables. Using Brand X, this would have been a major undertaking; a field

would have had to be added to the global node definition, and every tool using the node

definition would have had to be recompiled. Worse yet, that field would have become a

permanent, globally visible attribute of the program tree. Using Iris, the Reference Counter
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simply declared a local attibute to store the information and went on. To the Reference

Counter, nodes had sprouted a new field, but to the other tools the node definition had

remained unchanged.

Iris as an Intertool Communications Medium. The converse of the use of Iris to insulate

tools from one another is its use as a medium of exchange among tools. Just as any tool could

decide to add a local attribute, so any tool could decide to reuse an attribute without any

impact on other tools. For example, the Seriiantic Analyzer, to optimize its processing,

computed the representation type of program entities; this can dramatically speed up type

checking, since it is known that two entities with different representation types cannot

possibly be type-compatible-this cheap test can thus avoid the relatively expensive process

of full-blown type checking. At one point the Code Generator got to the point where it needed

to know the representation types of program entities. All that the Code Generator needed to

do was to request that the the Rep-type attribute be made visible to it; no global redefinition

was required.

We have long felt that it is only this sort of unanticipated reuse that can lead to a free

economy of tools where each component of the environment can borrow the results it needs from

the other tools, and can in turn contribute its own results to the growing pool. What surprised

us was how important this effect was even in a project as small as a compiler, since to us its

primary utility will be in large-scale programming environments.

The flexibility of the Iris Attribute System comes in large measure from the fact that it

places no restriction on the type of the attributes it manipulates. There are actually two

questions here: (1) can tools declare the types of attributes, and declare them to be of arbitrary

types? (2) does the system support type integrity? Although the Iris Attribute System in its

current implementation does allow arbitrary user-defined types, there is currently no support
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for type integrity within the attribute system-there is nothing to prevent a tool from looking

at a string attribute as an array of integers, for example. What is missing is a method for tying

together the type-checking mechanisms provided by Iris and the user-defined types provided

by the attribute system. In a future implementation of the system, we intend to do just that

through the mechanism of universal identifiers; each attribute type will be linked to a type

declaration by means of that declaration's universal identifier.

Primitivelessness and self-definition. A key feature of Iris that turned out to be

important in the development of the compiler was the fact that the static semantics of the

language being implemented were described within the language itself. That is to say, the

composition rules for Ada were specified in a "table" consisting of about one hundred and fifty

Ada2 signatures defining the operators of Ada. A sample of these specifications is given in

Figure 3.

function ":="(x: out <>; y: type.of(x)) return statement;
type "function"(fpl: quote list.of [formalparameter_tdem]; retjype: type) Is private;
function ".."(left, right: scalar) return setof(scalar);
type "array*(index _type: listof[independent(metatype(discrete))]; fielcLtype: type) Is

private;

function "if"(x: quote listof[boolean; statement]) return statement;

Figure 3: Some representative declarations from Iris-Ada.

The importance of this self-definition in constructing the compiler is difficilt to

overemphasize. All the traditional benefits of being table-driven accrue, but they extend-to

semantic analysis, and are not limited to syntactic processing. Instead of being embedded in

the code for the compiler, the static semantics for the language is encoded in easy-to-read

2Actually, Ada extended with a few compile-time type-valued operators, and a couple of
other minor additions.
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Ada code that can be modified by simply changing signatures.

What this means is that operators can be added to the language without requiring

modification of the tools that process the language. In a traditional system of first-order

terms, all the operators of the language must be known to all tools, since there is no other way

for the tool to "check all cases." This need for massive changes-scattered through tools

whose very existence is difficult to detect in a large environment-is a major obstacle on the

path to component-based environments. Because Iris is a higher-order system, tools can tell

from the declarator which cases it needs not concern itself with, and that obstacle vanishes.

A further advantage to this approach is that the distinction between built-in operators

and user-defined operators evaporates. The same representations and the same processing

mechanisms are used for both. The importance of this primitivelessness lies in the fact that

any given tool has a subset of operators which it "knows" about, that is, which it processes as

special cases. The catch is that that subset varies from tool to tool, so that to build in any

particular subset as primitive would condemn all tools for all time to treat that subset as

special cases, even when they did not need to.

For example, consider the Semantic Analyzer and the Code Generator. The scope and

visibility operators are of necessity special cases for Semantic Analysis, since they cause

entries and deletions in the symbol table. To the Code Generator, however, they are not

special cases; when doing reference counting, the Code Generator does not need to distinguish

them from any other operators, and because Iris-Ada contains the signatures of those scope

and visibility operators, that is exactly what the Code Generator does. On the other hand,

operators such as the representation specification operator which are inherently special for

code generation are plain vanilla for Semantic Analysis; because the specification for the

representation specification operator is included in Iris-Ada, the semantic analyzer does not

need to know about it, and can simply process it in the normal manner.
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Regularity and general cases. A major concern of our compiler project was to minimize

the complexity of the compiler by using algorithms that were as general as -possible and

therefore small and easily comprehended. We employed two principle means in achieving

this end. The first was to generalize as much as possible the inte-rpretations given to Ada

operators. For example, entries were treated as subtypes of type "function," so that most

processing could treat them uniformly.

The second means to generality was a set of conventions that ensured a uniform, regular

representation of information in the Iris tree. For example, all declarators take the name of

the thing being declared as their first parameter and its type as the second parameter. All of

Ada's syntactically variegated type declarations were transformed to have a common tree

shape.

This regularity of structure means that it is easy to extract information about types,

declarations, signatures, bodies, and the like from the tree. It is difficult to convey the flavor

of these algorithms without a lot of preparatory explanation, but a simple example is given

in Figure 4, which shows the essence of the subprogram which computes the type of any node

in the tree.

function typeof(exp: tree) return "type" Is

begin

If exp.isjreference then

- the second child of a declaration contains the type

return exp.op.x[2];
else - in the case of a function application, exp.op.x[2] is 'function";

- the second parameter to function is its result type
return exp.op.x[2].x[2];

end if;

end typeof;

Figure 4. A representative subprogram from the PDL code for the compiler.
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Of course, the concrete syntax tree of an Ada program does not come with this regularity

built in. To mould the tree into the requisite shape, numerous transformations are required

while parsing and to a lesser extent during semantic analysis. These transformations are of

course not -equired by M-is, but are ratherianguage-dependent optimizations to facilitate later

processing.

Lessons Learned

Ever-greater regularity. The importance of transformations for ensuring regularity of

structure during the early phases of the compiler was always clear to us. Their importance

during the later phases of the compiler was clear to us also, but in spite of this we adopted a

rule that we would refrain from making such trahsformations because of the nuisance of reusing

tree space and doing garbage collection. We concluded that we had made the wrong choice,

and that in the long run it would have been cheaper to build in garbage collection, only after

we had expended significant effort making special cases out of constructs that could have been

treated as general cases if we had allowed transformations in the back end. For example, the

declaration of the loop control variable in for loops should have been treated like any other

variable declaration, but could not be because the tree was not of the right shape. One thing

that convinced us we had made the wrong choice was that many of the attributes the Code

Generator added to the tree were in effect attributes that recorded the transformations that

the Code Generator would have made if it could have; it then used those attributes to

simulate the transformations on the fly.

Language support. The use of Iris could be greatly facilitated by language support for

noncollocated records. Although simple in concept, such records must be implemented in
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infelicitous notation in most existing programming languages. For example, the Ada rendering

of the statement "return exp.op.x[2].x[2]" from Figure 4 would be something like:

expop := expression(exp.op);

exp__op_.x2 := expression(expop.x[2]);
return expopx2.x[2];.

Rigorous adherence to coding conventions reduced the problem to manageable proportions, but

everyone who actually coded the compiler yearns for the day when record types are freed

from the collocation assumption.

This is especially so since any programming language that supports records has the

basic machinery to support noncollocated attributes. Only two language additions are needed.

The first is an "extensible" record specification mechanism, and the global co6rdination of

field names that that requires. The second is a mechanism for specifying which fields are to

be collocated.

Conclusions

Our expectations about the beneficial effects of Iris on both tree size and code size were born

out by our experience. Considering just the "core" attributes needed to describe the skeleton of

the tree, reference nodes in Iris trees occupy 4 bytes, and application nodes 7 bytes. We thus

can handle a compilation unit of 2,000 lines in less than 512K bytes of main memory.

The compiler itself, including an optimizing code generator, consists of fewer than

30,000 lines of code, compared to the 200,000-500,000 lines in most commercial Ada compilers.

The semantic analyzer, generally the largest portion of an Ada compiler, is fewer than 2,000

lines.

What is harder to assess is the qualitative impact of using Ids on the compiler effort. In

terms of human resources, the project was not significantly smaller than other Ada compiler

-10-



efforts. We suspect that this was to a large extent the effect of the learning curve, and feel

that using Iris for a new language or a rewritten compiler would have substantial benefits in

terms of programming costs. In the last analysis, though, the principle benefit was that the

compiler which-resulted uses algorithms whose correctness it is feasible to check by inspection

and a language definition whose static semantics are scrutinizable by mortals.
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1 The Iris Framework for Information Management

There have been many advances in the last twenty years in technology, tools and environments
for the design, implementation and maintenance of software applications. While many of these
component technologies are demonstrably effective for limited aspects of the software process, there
has been no way for them to work cooperatively and there has not been a marked improvement in
software productivity.

Iris1 is a flexible, open-ended and easily extended framework for information representation. Iris
information (i.e. object) management enables sharing and communication of information among
tools and tool components, thus promoting their integration.

Objects (i.e. information) in a software environment are diverse. They obviously include
requirements, designs, specifications, implementations and results of programs. Also included are
representations of thpse objects in the form of source text, internal representations, and object and
target code. Artifacts from analysis, documentation, testing, project mahnagement and maintenance
processes are objects. It is crucial that the various tools and tool generators of the environment
are themselves first class objects. The objects in a software environment are diverse in type, vary
in their relationships, and may exist simultaneously in a variety of versions and configura.tions.
Objects exist from a wide range of both logical and physical granularity from the very small (a bit
or a binary digit) to the very large (many megabytes or an entire database). One of the challenges of
object management systems is to reirain effective across the entire spectrum of object granularity.

Iris provides a powerful infra.struture for the representation and management of the diverse
objects of a software environment. A full Iris system includes an information structure, small-
grained object management and large-gained object management.

*This work supported in part by the Defense Advanced Research Projects Agency (Arpa Order 6487-1) under
contract MDA972-88-C-0076.

1Iris is the Greek goddess of the rainbow, and messenger of the gods.



In Section 2, the Iris information structure is introduced. Small- and large-grained object
management, and the user perspective thereon, are discussed in Section 3. Finally, the work at
Incremental Systems that supports the Iris framework is discussed in Section 4. In the full paper,
each of these sections will be expanded, and include more detail.

2 The Iris Information Structure

An Iris information structure is a representation of an utterance in some formal language (such as
a specification, implementation or design language). At the highest level of abstraction, the Iris
information structure is a tree composed of applications and references. Corresponding to this, an
Iris tree is composed of two kinds of nodes: reference nodes and application nodes. For example, the
expression f(x,g(y, z)) consists of references to entities named f, X, g, y, and z and applications
of f and g. The corresponding Iris tree is shown in Figure 1. Circles depict application nodes and
squares depict reference nodes.

ff X x

g y z y z

Figure 1: An Iris Tree Figure 2: A Simplified Iris Tree

The first child of an application node is its operator. The operator identifies an operation which
is applied to the remaining children, which are called arguments (actual parameters). Frequently,
the operator is a reference to the declaration of a named operation, but it can be any operation-
valued expression represented as an Iris tree.

To avoid clutter, Iris trees are often drawn in the style shown in Figure 2 where the name of
the operation is shown next to the application node. In this case it is understood that the operator
is a single reference node referring to the named operation and is not shown.

In Iris, an entity is anything that can be defined, computed, or named. Entities include such
things as constants, variables, types, functions, packages, exceptions, statements, declarations, ax-
iomatic specifications, operational descriptions and proofs. Some entities can be used as operations.
Every operation has an associated signature which specifies the nu.,ber and type of the arguments
that an application of it requires and the type that the application yields.

The Iris information structure is similar to commonly used internal forms for (first-order)
abstract syntax, but differs from them in that it demotes the operator from a nonterminal class to
a distinguished subtree. This frees Iris from any particular choice of operators, thus contributing
to its language independence.

2



3 Iris Small- and Large-Grained Object Management

Current state-of-the-art object management systems distinguish between large- and small-grained
objects. The distinction is based on the use of an object, not merely its size (as it is possible to
have physically small large-grained objects as well as physically large small-grained objects).

Large-grained objects tend to be independent entities. Each large-grained object can be placed
(moved) independently and has a unique, universal, location independent identity. Small-grained
objects, on the other hand, are grouped into collections, with each collection typically represented
as a large-grained object. Each small-grained object is then placed and identified only as a member
of a collection.

There are certain tradeoffs that are made in choosing between large- and small-grained objects.
Factors that would influence the choice include frequency of access, the nature of relationships with
other objects and performance requirements.

In the Iris framework, a segment is a container for an indexed collection of small-grained objects
called items; each segment is a large-grained object. An item manager implements a particular
form of small-grained object management. An object manager provides the facilities needed for
large-grained object management.

4 Basis for Iris Research and Implementation

Incremental Systems Corporation has several ongoing projects involving both research and practical
development which provide the experience and basis for the Iris work described in this abstract.

* Ada-to-Iris: For this project, a tool to translate Ada source text into a common Iris repre-
sentation is being developed. It includes the Iris tree form, a variety of small-grained object
management mechanisms and rudimentary large-grained object management. Iris-Ada is
the name of this specialization of Iris for Ada. Under Iris-Ada, each Iris tree represents an
Ada library unit. An Iris-Ada tree is represented as collections of attributes with each node
consisting of its identity and its attributes. Attribute management is a particular kind of
small-grained object management while management of Ada library units constitutes large-
grained object management in this project.

" Full spectrum ianguage: The goal of this effort is to produce a persistent framework in which
information can be expressed, captured, reused, improved and built upon. A fully generalized
Iris system will provide the internal form for expression of this information and -will include
both small- and large-grained object management.

" Mechanisms: For this project, a set of mechanisms for (large-grained) persistent object man-
agement in a distributed software development environment were designed.

In addition to our own projects, Iris has been adopted by research and research and development

groups at several universities and corporations.

3
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1 Yntroduction candidate sets entirely by adopting the recursive
strategy first proposed by Cormack [Cormack 81].

The challenge of implementing Ada's overload reso- This greatly simplifies the method, and makes it
lution has elicited a number of different algorithms more suitable for integration into an incremental
and implementation strategies. Most algorithms environment. We also have incorporated into the
use varying numbers of alternating top-down and algorithm a number of pruning heuristics which
bottom-up passes: the top-down passes use inherit- improve its practical performance. The most impor-
ed information to eliminate candidates that do not tant of these heuristics prunes the tree at nodes
produce the desired result type, while the bottom- which have no more than one candidate-a high
up passes use synthesized information to eliminate percentage of the nodes in most programs.
candidates that do not have the correct types for
their parameters. The number of passes required 2 The Baseline Algorithm
has decreased steadily from unbounded [Ichbiah
79] to four [Ganziger 80] to two [Pennello 80] to For clarity of presentation we will develop the fully
one [Baker 82, Stockton 85]. However, the smaller optimized algorithm in three stages. In this section
number of passes have been purchased at the price we shall examine a baseline algorithm and in the
of increased storage, increased complexity, and of- next we present our refinements of it.
ten, surprisingly, increased processing time. All versions of our algorithm assume -that the

The algorithms in this class have two major input to overload resolution will be generalized
drawbacks, especially when implementing an in- parse trees represented in IRIS, the internal repre-
cremental programming environment. First, they sentation developed at Incremental Systems for
use auxiliary storage to maintain the candidate sharing information in tool-based environments
sets which are manipulated during the walking of [Fisher 89, Mundie 89]. Tree nodes in IRIS are
the tree. This storage is potentially quite large, classified as either application nodes representing
and the complexity of maintaining it is unattrac- finction application or reference nodes represent-
tive. Secondly, they are essentially batch-oriented ing references to entities. Every application node in
algorithms. Their application requires that the en- the parse tree consists of an operator node followed
tire subtree under consideration be processed; by a varying number of arguments. After parsing,
nothing in them permits pruning branches of the the operator points to the string which is the name
tree that can be shown to be unaffected by an edit- of the operator. The task of overload resolution is
ing change. to determine what operation is intended by that

The algorithm presented in this paper takes a name, and to fill into the operator a pointer to the
different approach. Our method does away with declaration of that operation, so that subsequent

* This work was supported in part by the Defense Advanced Re- passes of the compiler will have immediate access

search Projects Agency (Arpa Order 5057) Monitored thto the information (types of parameters, result

partmenr of te Navy, Space and Naval Warfare Systems Corn- type, etc.) which is contained within that declara-
paner oftrac aN00039-85Ce0126. tion. Figure I illustrates this process using a sim-
mad under contact 0.ple example. The operator "f" has as its declaration

"function f(i: integer) return boolean." After parsing, the
call "f(4)" is represented as an operator pointing to
the string "fr, followed by a single operand pointing
to the integer literal "4." The overload resolver,
when processing this node, must decide which of
all the f's in the program is the one referred to by
this call and assign the correct declaration of "r to
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Figure 1. Overload resolution determines and retains the correct operator declaration for each node.

the operator of the node. generator resolve( ttee) Is
The baseline algorithm, shown in Figure 2, gen- begin

erates every legal configuration of the tree. It tra- If tree is a reference then
verses the parse tree top-down;-at each node, the op = tree.op;
list of currently visible declarations is searched for or e e dlpo
entries which have the same name as the current f name of d = op then
operator, and whose formal parameter list is com- name of do
patible in terms of number of parameters, the tree.op:ed;
names of named actual parameters, and default else- ree is an application
parameters. For each such entry, we check wheth- apl- actual parameter list of tree;
er the actual parameters to the current node match for aca re er tree ;
the corresponding formal parameters. If the types f tree.op is a function then
of all the parameters match, then we have found a formal is amtion te
legal configuration for the current node. apl:= actual parameter list of tree;

The algorithm does a coreturn once for each le- If number of parameters, parameter aes, and
gal configuration. When the list of candidates is ex- defaults match beeen fpmies ap then
hausted, it falls off the end and does a normal re- embedded fori in L. length of api d t" h
turn. For clarity, the algorithm uses an "embedded for each resolve( a(i)) loop
for loop" construction to represent an atrary If te of fpl(i) matches type of a(i) then od
number of nested loops. For example, the embed- Comtu i;
ded for loop in Figure 2, end resolve;

embedded for i in 1 .. length of ap do Figure 2. T ,lh ;'." , thrn.
for each resolve(apl(i)) loop .

if type of fpl(i) matches type of apl(i) then od...
loops as there are actual parameters.

would get expanded, assuming the length of the This algorithm is sirwar to the one presented
apl were 3, into: -by Cormack. We chose it as the starting point of

our research because of its clarity .and simplicity.
for each resolve(apl(1)) loop Because it is a top-down, recursive algorithm, it

If type of fpl(1) matches type of apl(1) then lends itself to analyzing trade-offs, identifying pos-
for each resove(apl(2)) loop sibilities for pruning, and experimental modifica-

if type of fpI(2) matches type of apl(2) then tions.
for each resolve(apl(3)) loop,

if type of fpl(3) matches type of apl(3) then.... 3 Synthetic Refinements to the Algorithm

That is, the loop body is nested into as many for Despite its meths, the baseline algorithm given



legal; thus an overload error at the top of a parsetype conf_status = (reprocess, unique,.no match); (D subtree results in the user's program going unpro-
- the status field is initialized to reprocess in all nodes cessed, and any errors there being masked and un-

reported. Secondly, errors are propagated up the
generator resolve( tree) is tree: if a given node is found to be illegal, its parent
begin will be also, and its parent, and so on, so that a sin-

If tree.status = reprocess then i  gle overload error near the bottom of the tree re-
n:= 0; - begin count of synthetic configurations* suilts in large numbers of nodes being marked ille-
If tree is a reference then gal. Taken together, these aspects of the algorithm

o,:= tree.op; mean that correct operator selection will be per-
for each visible declaration d loop formed only when the entire tree is free of errors.

If name of d = op then This is, of course, understandable, since a primary
tree.op:= d; purpose of overload resolution is to determine
n:= n +1; - count synthetic configurations 3 whether the tree as a whole is correct. For mean-
coretum; ingful error reporting, however, the error status of

else - tree is an application individual nodes must often be determined by ig-
api:= actual parameter list of tree; noring certain errors in their ancestors and descen-
for each resolve( tree.op) 1ooo dents.

If tree.op is a function then The improvements we have made to the base-
fpl:= formal parameter list of tree.op; line algorithm address both of these areas. The ba-
If number of parameters, parameter names, and sic idea behind the improvements is that the repro-

defaults match between fp and api then cessing of nodes may be greatly improved by
embedded for i in I.. length of api do recording in each node the history of its previous

for each resolve( ap()) loop processing, particularly those properties which will
If type of fpl(i) remain invariant during subsequent reprocessing.

matches type of apl(i) te od This history is captured during processing as the
n:= n +1; number of legal configurations found for the sub-
- count synthetic configurations 3 tree, and then recorded in the tree as a status field
coretum; indicating how future processing of the node

If n= I then® should be done.
tree.status:= unique; - mark subtree as unique We consider first the improvements that can be

elsif n = 0 then M made by exploiting the synthetic information pro-
stop error:= false; vided by the analysis of the actual parameters to a
If not tree is a leaf and tree.op is a function then node. The changes introduced are shown in italics

for i:= 1 to length of api loop in Figure 3. The first change (labeled 0D) is to mark
-if apl(i).status = reprocess then 9 each node of the tree with a configuration status

resolve( apl(i)); - process all nodes field with three values: reprocess, unique, and
elsif apl(i).status = nomatch then no_match. This field is initialized to nomatch

stop error:= true; by the parser. It is this field that encodes the histo-
if stoperror then M ry information required for the optimizations and

tree.status:= unique; - inhibit error propagation error handling described above.
coretum;. The second change is to count the number of le-

else gal configurations for the given node. A counter is
tree.status:no-match;-ma btreeasnomatch initialized on entry to the generator and incre-
repotierror( tree, 'no resohit*on of subiree); mented whenever a candidate operator is found

elsff tree.status - unique then ® whose formal parameter list type-matches with the
coreturn; - return one configuration for unique types of its actual parameters (M).

-if tree.status no.match, just bounce off 0 The next change is to use the number of legal
end resolve; configurations to compute the configuration status

of the node. The most important case is where only
Figure 3. Synthetic optlmizatlons and error recovery, one legal configuration was found (G). What this

means is that overload resolution can be performed
for this node using synthetic information alone.

above suffers from two serious drawbacks which That is to say, no inherited information from the
make it unusable in a production-quality or incre- parent, viz. the type the parent expected this node
mental system. (1) Its performance is exponential, to turn out to be, can possibly affect the overload
in the sLe of the tree in both the worst case and in resolution for this node-there simply were no oth-
the expected case. (2) It has two serious deficien- er legal configurations. When this is the case, we
cies in the area of error handling. First, the cliil- mark the tree's status as unique. The benefit from
dren of a node are never processed if the node is il- this is that in subsequent reprocessing, we can



simply skip the body of the routine, and do a single
coreturn reflecting the fact that there is a unique pt(fC3, g(1) ha+9)), Invert(g(2)+ h(1)))
legal configuration (®).

The reason we attach such importance to this put
optimization is that we expect it to cover the vast
majority of the cases in typical Ada programs. f invert
Even in programs that make extensive use of over-
loaded operators, it is rare that synthetic informa-
tion is not sufficient by itself to do the resolution. 3 * g h
In fact, almost no lnguage other than Ada even [
permits overloading .Lased on return type. This op
timization alone reduces the time for overload reso- g h 2
lution in the expected case from exponential to li- I I
ear. 1 +

The second special case in computing the status 1
is where there were no legal configur-tions at all a 9
(®). This means that based solely on :ynthetic in-
formation we were able to determine that this is an Figure 2. Unique Nodes Act as Dikes.
illegal node with ro valid choice of operators. As
with unique nodes., subsequent processing can sim- unique nodes used above to optimize reprocessing
ply "bounce off' this node, since no further informa- can in an incremental -environment be ued as
tion could change the outcome; in the no-match "dikes" which prevent editing changes from being
case, however, we do not even need to do the core- propagated throughout the tree. Consider for ex-
turn, since there is no legal configuration to gener- ample the program fragment "put(f(3, g(I) * h(a + 9)), in-
ate (M). vert(g(2) + h(1)))," as shown in Figure 3. Suppose that

Two complications arise, however, at the point because of an editing change this subtree must be
that we detect the nomatch case, The logic of the re-analyzed. Without our heuristic, the entire sub-
generator is such that it quits processing actual pa- tree would have to be re-traversed, as would be
rameters as soon as the first failure is encountered. done by the baseline algorithm. If, however, "r" and
From an optimization point of view this is correct, 'Invert" have only one candidate based on name and
since once one parameter has failed, we know the number of parameters, then we do not have to re-
node is illegal, and as Cormack points out, we are examine their parameters, since we know that
really not interested in exactly how illegal it is. nothing below them could change as a result of
From an error correction -point of view, however, it changes -'ove them. The restriction of overload
has the undesirable consequence that actual pa- resolution. co sub-statements and sub-declaratins
rameters beyond the first failure may be left unpro- falls out r: this strategy naturally without treating
cessed. These parameters might, however, contain statements and declarations as special cases.
errors which the user should-know about, so leav-
ing them unprocessed is unsatisfactory. Our solu- 4 Inherited Optimizations to the Algorithm
tion is simply to loop over the actual parameter list
looking for unprocessed nodes and calling resolve on The performance of the algorithm can be enhanced
them to guarantee that they are all rrocessed (M). still further-by a judicious exploitation of-inherited

The second complication is that we must pre- information. The key observation here is that al-
vent errors which result from type matching fail- though passing all possible desired types down to
ures from being propagated up the ti .ie. We accom- the children by means of candidate lists is unap-
plish this by checking for children marked pealing, a practical and low-cost approximation to
no-AmatchL at the same time we are looking for un- that straey is to pass down the single desired
processed children (@). If any are found, we simply type in the very common case where there is only a
mark the current node as unique1 , so that future single legitimate choice for the parent.
calls will simply bounce off(®). Figure 4 shows the required changes in the al-

As an aside, we should point out that the gorithm, as well as the changes needed to add am-
biguity detection. A new parameter to resolve (Q)

1 The algorithm as shown marks nodes unique during the secw.d passes down the inherited type required; if the par-
call on resolve. In actuality, the node should be marked unique ent is not unique, then null is passed instead. Be-
during the first call on resolve, not the second. This optimization fore doing operator selection (Q) and before pro-
does not affect the order of the algorithm, but is a significant say- cessing the actual parameter list (0), the required
ings i ,,ti' -±r> becin e the inherited optimization dis- type is checked against the type which would be re-
cussed in the following section depeds on the parent node being turned by the configuration; if the types do not
marked unique. The details of achieving this have been left out so match, then the subsequent processing can be
as not to cloud the algorithm, skipped. At those places where resolve is called re-



cursively but it is not known that the configuration function f(a: t2; b: t4; c: t6) return integer;
is unique, we must be careful to pass null as the re- function f(a: t1; b: t3; c: 7) return integer;
quired type (@), and we must split the unique case function f(a: 12; b: 4; c: t8) return integer;
out during the processing of the actual parameter function g return t1;
list (M). function g return 12;

The final algorithm shown in Figure 4 also adds function h return t3;
a new status type to handle amibiguous trees (()). function h return t4;
Whenever more than one legal configuration has k: t8;
been found for a node, it is marked ambiguous; this
allows us to minimize reprocessing by returning f(g,h,k)...
only a single configuration on subsequent calls ()

Because the formal parameter types of a and b
5 Analysis of the Algorithm. toggle back and forth between two different types

during the processing of successive candidates,
As mentioned above, the baseline algorithm itself is their subtrees must be re-analysed each time. This
exponential in the size of the tree. We define m = is why Cormack proposed storing the results of pre-
the average number of candidates for a given node, vious passes. It is our contention that because the
k = the average number of parameters to a given worst case is rare, the additional time savings on
non-terminal, n = the number of non-terminal worst case time performance will be less than the
nodes in the parse tree, and h = the height of the cost of managing the retained values when the al-
parse tree. The performance of the baseline algo- gorithm is applied to real programs. This is espe-
rithm is 0(mhn) for nonterminal nodes, since it vis- cially so because even in the worst case, the algo-
its each node once recursively for every candidate of rithm is not exponential in the height of the whole
its parents. In addition, bottomnonterminal nodes tree, but only in the height of the non-unique node-
must process each of their k terminal descendents chain between unique nodes. That is, unique nodes
for a total time of 0(kmhn). In the case of the base- above or below serve to cut-off the exponential pro-
line algorithm, there is no time difference between cessing. This is particularly significant in view of
best case, worse case, and expected case. The space the fact that statement operators and declaration
requirements are constant per node, i.e. O(n).' We operators are all unique in Ada, so that exponen-
note that on the average h = logn and that for tial behavior will never extend beyond statement
large Ada programs k = 2.1. or declaration boundaries: -

As mentioned above, the optimizations we have
given greatly improve the expected-case perfor- 6 Using the Algorithm in IRIS-Ada
mance of the algorithm. It is in fact linear whenev-
er nodes can be resolved using only synthetic infor- The algorithm discussed above does not address a
mation or when their parent is unique, since in number of special challenges which Ada presents
these cases the node will be marked unique and for overload resolution. In this section we discuss
subsequent calls on resolve will simply bounce off. the strategy we have adopted in inserting the algo-
Statistically, this covers the vast majority of cases. rithm into our compiler.
The optimizations do not change the worst-case per- 1. Assignment. Throughout semantic analysis
formance of the algorithm, however, although due we attempt to exploit the the language's type sys-
to the optimizations we have added it is more diffi- tem to do as much of the work for us as possible.
cult to construct such a situation than it is with the Instead of limiting overload resolution and type
baseline algorithm. Despite the overloading -of matching to user-defined constructs, we treat all
arithmetic operators, for example, expressions like constructs of the language as subject to the same
ax:= a+b+c+d" are not exponential-due to the pruning type-based composition rules. This requires provid-
effected by inherited information: our algorithm ing a complete language definition expressed in
does not examine all possible +" operators, only Ada--or to be precise in a somewhat generalized
those whose result type matches the inherited type version of the language, since some of the con-
of x which is unique by virtue of being a variable. structs of Ada cannot be expressed in Ada itselfS.
A wor.t case can be constructed, though. Consider The advantage is that semantic analysis can be
the following: driven by that language definition, so that most

constructs which would otherwise require special-
function f(a: t1; b: t3; c: t5) return integer; case processing can be treated using the general al-

gorithm.
Our treatment of assignment provides an exam-ple. One methodl of treating assignment is to evalu-

2 This is quite different from the analysis in [Baker 82]. Baker's p. e t or i a g n so_

algorithm is entirely bottom up with O0(k 2n) time and O(mn) 3 For example, the abstract syntax for a renaming declaration
space. says that a renaming takes a name, a type t, and an object of type



cursively but it is not known that the configuration function f(a: t2; b: t4; c: t6) return integer;
is unique, we must be careful to pass null as the re- function f(a: t1; b: 13; c: t7) return integer;
quired type (0), and we must split the unique case function f(a: 12; b: t4; c: t8) return integer;
out during the processing of the actual parameter function g return t;
list (®). function g return 12;

The final algorithm shown in Figure 4 also adds function h return 13;
a new status type to handle a:-biguous trees (0). function h return t4;
Whenever more than one legal configuration has k: 18;
been found for a node, it is marked ambiguous; this
allows us to minimize reprocessing by returning f(g,h,k)...
only a single configuration on subsequent calls (®)

Because the formal parameter types of a and b
5 Analysis of the Algorithm. toggle back and forth between two different types

during the processing of successive candidates,
As mentioned above, the baseline algorithm itself is their subtrees must be re-analysed each time. This
exponential in the size of the tree. We define m is why Cormack proposed storing the results of pre-
the average number of candidates for a given node, vious passes. It is our contention that because the
k = the average number of parameters to a given worst case is rare, the additional time savings on
non-terminal, n = the number of non-terminal worst case time performance will be less than the
nodes in the parse tree, and h = the height of the cost of managing the retained values when the al-
parse tree. The performance of the baseline algo- gorithm is applied to real programs. This is espe-
rithm is O(mhn) for nonterminal nodes, since it vis- cially so because even in the worst case, the algo-
its each node once recursively for every candidate of rithm is not exponential in the height of the whole
its parents. In addition, bottom=nnonterminal nodes tree, but only in the height of the non-unique node-
must process each of their k terminal descendents chain between unique nodes. That is, unique nodes
for a total time of O(kmhn). In the case of the base- above or below serve to cut off the exponential pro-
line algorithm, there is no time difference between cessing. This is particularly significant in view of
best case, worse case, and expected case. The space the fact that statement operators and declaration
requirements are constant per node, i.e. O(n).TWe operators are all unique in Ada, so that exponen-
note that on the average h = logkn and that for tial behavior will never extend beyond statement
large Ada programs k - 2.1. or declaration boundaries:

As mentioned above, the optimizations we have
given greatly improve the expected-case perfor- 6 Using the Algorithm in IRIS-Ada
mance of the algorithm. It is in fact linear whenev-
er nodes can be resolved using only synthetic infor- The algorithm discussed above does not address a
mation or when their parent is unique, since in number of special challenges which Ada presents
these cases the node will be marked unique and for overload resolution. In this section we discuss
subsequent calls on resolve will simply bounce off. the strategy we have adopted in inserting the algo-
Statistically, this covers the vast majority of cases. rithm into our compiler.
The optimizations do not change the worst-case per- 1. Assignment. Throughout semantic analysis
formance of the algorithm, however, although due we attempt to exploit the the language's type-sys-
to the optimizations we have added it is more diffi- tem to do as much of the work for us as possible.
cult to construct such a situation than it is with the Instead of limiting overload resolution and type
baseline algorithm. Despite the overloading of matching to user-defined constructs, we treat all
arithmetic operators, for example, expressions like constructs of the language as subject to the same
ax := a+b+c+d" are not exponential-due to the pruning type-based composition rules. This requires provid-
effected by inherited information: our algorithm ing a complete language definition expressed in
does not examine all possible "+" operators, only Ada--or to be precise in a somewhat generalized
those whose result type matches the inherited type version of the language, since some of the con-
of x which is unique by virtue of being a variable. structs of Ada cannot be expressed in Ada itself3.
A woit case can be constructed, though. Consider The advantage is that semantic analysis can be
the following: driven by that language definition, so that most

constructs which would otherwise require special-
function f(a: t1; b: 13; c: t5) return integer; case processing can be treated using the general al-

gorithm.
Our treatment of assignment provides an exam-ple. 3ne method of treating assignment is to evalu-

2 This is quite differem from the analysis in [Baker 82]. Baker's p. me d tan s m tso_

algorithm is entirely botom up with O0(km 2n) time and O(n) 3 For example, the abstract syntax for a renaming declaration
space. says that a renaming takes a name, a type t, and an object of type
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