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Final Technical Report
for

Languages Beyond Ada and Lisp

1. Task Objectives

The Prism effort was born out of frustration with the current state of the art of
software engineering. Little progress has been made in language design in the
last thirty years; despite the innovations made along the way, Ada and Lisp are
basically very similar languages. The diffusion of software innovations through
the software economy is excruciatingly slow, due to the myriad barriers between
the pieces of the programming environment (languages, versions, operating
systems, &c.) The goal of Prism was to devise ways to extend programming
languages to encompass more of the total environment, permitting those barriers
to be bridged more easily. (See “Towards Full Spectrum Languages.”)

2. Technical Problems

Early in the Prism project we concluded that a major source of the barriers in
software engineering is the formalist model underlying the entirety of current
language design. Although it was not until near the end of the project that we
coined the term “informalism,” the major outlines of informalism were clear
from early on. In contrast to formalism, informalism-is semantically-based, in
that it assumes that the transformations to be applied to symbols can depend in
an essential way upon the interpretation of those symbols; it is open-ended in
that the meaning of an expression is always open to change; and it assumes
that its data are intrinsically incomplete and inconsistent. The major technical
challenge faced by the project was to devise implementation mechanisms for
such a system. (8ee “A Conceptual Overview of Prism” and “Proceedings of the
Workshop on Informal Computing.”)

3. General Methodology

The methodology pursued by the Prism team consisted of four major techniques:
1. A wide-ranging review of current thinking about the problems being tackled,
including attending conferences and talking with consultants. This review was
deliberately not limited to computer science research, but covered relevant
developments in the philosophy of language, cognitive science, and linguistics.
(See “A Bibliography for Prism.”) 2. A series of white papers setting forth the
principle conclusions of the research effort. 3. A language design effort which
incorporated the innovations suggested by the research. 4. A workshop which
brought together like-minded members of the community and exposed the Prism
conclusions to a broader audience.




4, Technical results

The Prism effort produced three major technical results. First, an epistemic,
property-based type system which overcomes many of the limitations of
traditional, extensional type systems, and allows the treatment of intensionality,
a necessary first step towards raising the level of programming languages.
(See “Epistemic Type Systems.”) Secondly, a representation mechanism which
generalizes all other known representations and permits a hybridization of
connectionist-style processing with symbolic-style processing (see “Ideographs.”)
Finally, a language design which incorporates the property-based type system
into a programming language based on current advances in computational
linguistics (see “Unnatural Languages,” “Reply to 1. D. Hill,” “Prism 0.5,”
“Prismatic Samples,” and “Prism Primer.”)

5. Important findings and conclusions

The Prism project has generated a wide variety of new ideas and approaches to
solving traditional problems along the whole spectrum of formal systems. Many
of these innovations are still in the formulative stage, but are already beginning
to find application. For example, property-based types provide a way to explain
other type systems, object-oriented inheritance, and derived types, all in a
common framework. The linguistic mechanisms of Prism can e used to provide
more expressive and less cumbersome programming languages. The ability to
separate abstraction from representation satisfies a key requirement for design
reuse, and will Ilkely be applied initially in a specification language. The
mechanisms employed in the effort can be refined to provide a common framework
that eliminates the duplicative developments in computational hngu1st1c= The-
methods developed for exploiting incompleteness and managing inconsistency
can be used as the foundations for scalable software, for reasoning about the

physical world, and for developing proof procedures with lower performance
cost for underconstrained systems,

The effort taken as a whole constitutes a vision of and a feasibility study for a
new domain of informal systems. Informal systems represent a new approach
to real-world problem solving using computers: one that recognizes that complete
descriptions of the physical things are impossible, that meaning must be
grounded with an interpretative semantics, that the requirement for
completeness drastically restricts the applicabiiity of formal methods, and that
there can be sound automated reasening systems that support and exploit partial
descriptions, cope with inconsistent specifications, and distinguish between
formal models and the objects they represent.

The interdiciplinary nature of interest in informal systems arises from two
independent causes. First, informalism derives from shared frustrations over
the inherent limitations of formal methods, whether the field be softwace
engineering, linguistics, psychology, or philosophy. Secondly, informalism offers
a potential for interdiciplinary computational interoperability previously
obtainable only in nonautomatable human reasoning.

6. Significant Hardware Development
None
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A New Approach to Software

Deborah A. Baker
David A. Fisher
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Frank P. Tadman

Incremental Systems Corp.
319S. Craig St.
Pittsburgh, PA 15213 USA

Abstract.

There have been few if any revolutionary advances in practical programming
languages over the past 25 years. The key characteristics of languages today are for
the most part indistinguishable from those of the early 1960's. Despite apparent
advances in language design, compiler coastruction, development and maintenance
tools, software engineering practice, database technology, and hardware reliability
and performance, the development and maintenance of reliable and efficient
software for large, long-lived, continuously changing applications remains an
unachieved goal. This is the problem of programming-in-the-large.

As things stand, language technology is isolated from design technology,
which is isolated from environment technology, which is isolated from database
technology and so forth The requirements, design, ireplementation, analysis, and
testing of software are all specified using different tools which cannot communicate
and cooperate with each other.

The solution lies not so much in more or improved technology in any of these
areas, but in providing an integration framework which can be used to exploit
existing and emerging technology. We need mechanisms to give users (i.e.,
application developers and researchers alike) access to the best of existing
technology. In particular, we need an integration mechanism to allow the various
component technologies to cooperate and build on each others’ strengths, and those
of their predecessors.

Languages have always been the most effective means of integration. We
therefore propose to extend programming languages to the full breadth of software

©Copyright, Incremental Systems Corporation, 1987.




concerns. This effort will develop a language which goes far beyond the capabilities
of currently available programming languages. It will develop a full spectrum
language which encompasses not only implementation issues, but the
requirements, design, analysis, measurement, and environmental aspects of
sofiware development and maintenance. It will develop a language capable of
absorbing new software technology dynamically as it becomes svailable.

Success in the effort will depend on our ability (1) to engineer a usable and
easily understood specification mechanism based on abstract types, (2) to identify a
small set of efficient and composable primitives adequate to encompass the full
intended scope of the language, and (3) to integrate these into a simple and practical
full spectrum language.

Success in the effort will mean that the entire life cycle of an application can be
managed without leaving the language. The effort has high likelihood of success
because the solution is much simpler than may first appear. The number of core
concepts in environments, for example, is actually quite small because many of the
concepts of extant environments are borrowed from (and therefore duplicative of) the
concepts of programming languages. By combining environments technology and
implementation languages in a single mechanism, we eliminate the duplication
and along with it much of the apparent complexity of current software technology.

1. The Problem.

Over the years, the boundary between the automated and manual portions of
the software development task has been continually pushed to higher and higher
levels. This has always been done by capturing the best automatic implementation
technology of the day in a class of languages and related tools, which then define the
boundary. We contend that this process is fundamentally flawed, and is responsible
for many of the ills which beset the world of software today. To understand how we
reach this conclusion, consider the historical development of programming
languages.

When software was implemented in machine language, the mappings from
symbolic names to machine addresses were considered specifications. The
programmer had to correctly and reliably translate those specifications into a
formal implementation described in the machine language of the target computer.
¢t was soon realized that many acpects of the programmer's task of mapping
symbolic names of instructions, regisiers, and machine addresses to their machine
representations could be automated with considerable advantages in both
programmer productivity and reliability of the resulting implementation. Most
importantly, the programmer was freed from concerns of the details of address and




operation code translation to concentrate on the more important aspects of software
design.

When software was implemented in assembly languages, the formulae to be
implemented were considered specifications. The programmer had to correctly and
reliably translate those specifications into a formal implementation described in the
assembly language. It was soon realized that many aspects of the programmers'
task of translating formulae into sequences of assembly ianguage operations could
be automated with considerable advantages in both programmer productivity and
reliability of the implementation. Most importantly, the programmer was freed
from concerns of the details of the target machine instruction set architecture to
concentrate on the more important aspects of software design.

Throughout the 1960's and 1970's we learned how to automate more and more
aspects of the data, control, and algorithmic structure of program specifications
with corvesponding enhancements in the level of programming languages. At one
end of the spectrum are a wide variety of very high-level special purpose languages
where, by specializing the language and limiting its breadth of application, it has
been possibie to provide very high levels of automatic translation. At the other end of
the spectrum are broad-based languages such as Ada®! and Common Lisp which
provide a variety of abstraction mechanisms which can be used to implement
software in a large number of application areas. The continued raising of the level of
both special purpose and general purpose languages has permitteu more and more
of the implementation decisions in applications to be assumed by the language
implementation with considerable advantages in both programmer productivity and
reliability of the resulting implementations.

Even more recently, logic and transformational programming have come to the
fore with the realization that many aspects of the programmer's task of translating
specifications into algorithmic processes could be automated with considerable
advantages in both programmer productivity and reliability of the implementation.
Most importantly, the programmer is freed from concern about the details of the
algorithmic processes required in the implementatica to concentrate on the more
important aspects of software design.

The raising of the level of programming languages has been made possible by
first learaing how to formally specify more and more aspects of a software design,
and then learning how to automate the translation of more and more of those
specification mechanisms into operational computer programs. This process has
made programmers more productive by freeing them from those aspects of the
implementation which can be automatically translated from higher-level

1Ada is a registered trademark of the U.S. Government, Ada Joint Program Office (AJPO)




specifications, by significantly raising the level of implementation specification
required of them, and by allowing the implementation description to capture more of
the engineering abstractions uscd by the designer.

Yet despite all these gains, the process of raising the level of programming
languages has been an increasingly slow, evolutionary process that has not led end
will not lead to any revolutionary gains in productivity or reliability of software
design, implementation and maintenance. Most of the gains evident today had
already been accomplished by 1960. The languages of the mid 1980's are for the most
part characteristically indistinguishable from languages such as Fortran and
Algol-60. The limited gains of the past 25 years have been at great expense. Even the
slowest machines today are nearly 100 times faster than the fastest machines of
1960, and yet, in many applications, we are barely abie to obtain 10 times the
throughput. Languages such as Common Lisp permit us to address problems that
were inconceivable 25 years ago, but only with such enormous consumption of
machine resources that the language can seldom be used other than for research
and prototyping purposes. Ada offers the potential for efficient use of machine
resources, but at the expense of very early binding times and a static run-time model
which greatly limit its applicability.

Even worse than the inability of this evolutionary proucess to make further gains
of great significance is the fact that the process itself holds down the level of
programriing languages by limiting them to formal specification mechanisms and
techniques which compiler writers know how to implement (efficiently) at the time
of language design.

The assumption that a language must have a fixed definition leads to
programming languages (e.g., Common Lisp and Ada) which remove many
important aspects of the design of systems from the formal specification and places
them inside the compiler where they cannot be seen, controlled, or modified by the
application developer.

Furthermore, the rationale for this method of language design incorrectly
assumes that the existence of efficient implementation technology will result in its
incorporation in actual compilers. The latter point is most conspicuously illustrated
by the Ada community, where it is clear that the technology exists to provide better-
quality compilers (in terms of reliability of translation and execution performance)
than with any previous operational programming language, and yet the available
Ada compilers produce target code which is notoriously inefficient when compared
with compilers for most of Ada's predecessor languages.

Other facets of current language technology are conspicuously absent from
many widely used languages. For example, despite the long-standing recognition of




the advantages of strong typing, user-defined types, information hiding and other
abstraction mechanisms, especially in large, complex, and continuously changing
applications, they are almost absent from Common Lisp. Much greater steps
backward are evident in C where no preteasion of an abstraction facility is made.
Instead the world of computation is reduced to Fortran-level descriptions of
primitive machine operations acting on integers and sequences of bytes.

The functional, rule-based and object-oriented programming language
paradigms have not provided the answer, either. Certain information, such as
inheritance rules in Smalltalk, or the resolution algorithm in Prolog, are fixed,
inaccessibic, or only indirectly accessible.

Even the wide spectrum languages span a fixed range, from a fixed formal
specification language to the details of implementation. Moreover, they do so with a
fixed set of mechanisms; for example, multiple inheritance is not, and cannot be, a
concept in CIP-L [Mol84]. Worse yet, those fixed mechanisms are inadequate for
real applications; no existing wide spectrum language provides mechanisms for
dealing with such things as persistent data or distributed processing.

Thus we have seen enormous advances in software technology over the past
twenty years, but little of that technology is accessible in any usable form to
applicatior developers and maintainers. Most of it represents research results that
have never been incorporated into practical tools. Practical tools that do exist are
inaccessible because they are tied to a particular language, machine or operating
system. What useful tools the:e are, are large monoliths which can seldom be used
in cooperation or combination with other tools.

2. Towards a Solution.

We believe that significant progress requires & comp) :tely new vision of
software development. The key to achieving this vision is what we call a full
spectrum language, one which provides a base for technology development and
integration instead of fixed specification and implementation mechanisms. A
sketch of the goals of full spectrum languages and how they relate to wide spectrum
languages is presented in section 2.b. Tu section 2.c, we discuss the key technical
requirements for full spectrum languages. The emphasis is on showing how
integration of critical technologies is enabled by lifting some of the fundamental but
unnecessary restrictions of current languages. In section 3, we discuss the specific
activities we plan in pursuit of a practical full spectrum language.

2.a. The Vision.
A number of us have had a vision since the late 1960's that the world of




computation can be different. The vision is of a world in which all aspects of the
requirements, design, and implementation of an application are captured in an
automated ¢ystem, and in which new technology can be gradually captured and
exploited by the system. We foresee a world in which limitations on our ability to
mechanize translations will not limit our use of effective specification mechanisms,
and in which the software designer is allowed to contribute to the design at all levels
of abstraction, but is required to contribute only at enough levels so that the
specifications, in combination with the automated system, are sufficient to produce
a correct solution. As a result, new software technology will actually be transferred
to practice, and new software tools will typically be better than their predecessors in
some way, and more importantly will be as good as their predecessors in all ways.

2.b. Full spectrum Languages. .

Full spectrum languages offer the hope of ushering in such a world by
expleiting a variety of existing technologies as well as incorporating new technology
as it becomes available. They offer the potential for capturing requirements, design
and implementation in a common formal framework to the advantage of all manual
software activities and automated tools. Finally, they offer the potential for growth to
new applications, to new design and specification technology, and to new
implementation technology without having to develop additional languages.

Our concept of full spectrum languages rests on the hypothesis that all
languages can be composed from a relatively small number of semantic fragments
according to certain laws of combination. Soundness of a language stems
ultimately from the stability of its structure, according to those laws. Hence we see
language design as being akin to chemical engineering, or molecular physics.

A full spectrum language is one that is based on the semantic fragments and
laws of combination. More importantly, these elements are exposed and available
so that the language can be expanded and adapted in response to our increasing
understanding and knowledge of software processes. As with natural languages,
new notations and forms of abstraction can be incorporated in the language as
needed, thereby preventing needless complexity from crippling our ability to solve
problems. Also like natural languages, old concepts, notations, and results can be
reinterpreted in new contexts, leading to new unifying abstractions. The practical
consequence of this capability is dramatically increased potential for sharing and
reuse of software knowiedge.

Our ideas about full spectrum languages have evolved from our attempts to
formalize and consolidate the software development techniques we have been using
for building a distributed Ada language system over the past three years.
Specifically, the Ada compiler is organized around a collection of knowledge bases
containing formal information about a set of abstraction mechanisms and




specialized instances of those abstractions. Some of these define general concepts
and mechanisms of computation. Others define specific features of the Ada
language, in terms of these geueral concepts. Still others contain general
information about how to derive implementations (and, ultimately, target code) from
the combination of Ada source code and the compiler's knowledge of Ada, the target
machine, flow analysis, optimization, and so forth.

Our experience with characterizing all parts of the language system in this
uniform framework, although somewhat ad-hoc, gives us great confidence in the
soundness of the basic ideas of the full spectrum language approach to software
engineering. Moreover, we have witnessed many of the benefits which we are
projecting for full spectrum languages within the narrow confines of the Ada
project, including the continual generalization of mechanisms and concepts to
broaden their scope of applicability and consequently reduce the size and complexity
of the compiler. At the current stage of development, the compiler takes only around
20,000 lines of formal description, and produces code that is comparable to or better
than that produced by many commercial optimizing compilers for much simpler
languages, such as C and Pascal!

Full spectrum languages are quite different from wide spectrum languages as
we know them [DGL*79,DSS81,Che84,GLB*83,Mo0184,SS83,Wil83]. A full spectrum
language is a vehicle for software technology integration. As such, it need not
initially implement any specific technology beyond what is required for a modest
core of primitives and integration mechanisms. It must also provide an adequate
set of abstraction mechanisms even if their implementation cannot be fully
automated now. The primitives must be adequate for synthesizing the technology
required by any application, and the integration mechanisms must allow any
implementation technology to be absorbed by the language (without change to the
language) so that it can be shared and reused.

Wide spectrum languages have different, though complementary, goals. They
seek to integrate existing technology to allow specifications at a variety of levels,
together with means of analyzing and transforming such specifications both within
and between levels. Such technology is very promising, and may eventually lead to
significant gains in programmer productivity and reliability of implementations.
However, as long as such technology is couched in terms of fixed specification
languages, trans®;rmation technology, and implementation mechanisms, software
practice will not be able to absorb further advances, or economically exploit existing
implementation technology. If wide spectrum languages were developed within a
full spectrum language, however, each could be of great benefit to the other.

As a simple illustration of how a full spectrum language might be applied,
suppose a user wants to use equational program specifications, and suppose that the




type "equation" already exists in the technology library, but there is no existing
means of processing a set of equations to get an implementation. The user extracts
the reievant algorithms from the literature on equational programming, and writes
a function taking sets of equations as input and yielding sets of functions as output.
Suppose now that another user has dev.loped an equaticnal simplifier and installed
it in the library. The first user can then write applications uzing equations as the
source, and pass them through the simplifier to perform some optimizations bzfore
translating them to operational implementations. Still later, another user adds a
facility for verifying existing implementations against equational specifications,
thereby enabling existing applications to be optimized using the previously developed
equational optimization technology.

Notice that there is no language requirement that any exisiing or future
application use any of this equational technology, nor would any user need to learn
about it in order to continue using the language as before. But all of it would be
available to any programmer who needs it. Moreover, parts of an application might
use some of it, and other parts not, at the discretion of the application developer.
Most importantly, however, the language implementation is completely indifferent
to whether it gets the semantics of a function by compiling a function body or by
compiling a set of equations, or by any other means, because all it cares about is the
internal semantic representation of functions, which is independent of the surface
features used to generate them. The implementation is also indifferent to the source
of the transformation rules it applies during optimization, so the user's equational
transformations are readily integrated as part of the language implementation. The
implementation is also indifferent to the source of the program analysis procedures
it carries out to verify the semantic integrity of programs, so the equational
specification checker can be integrated as an extension of the usual type-checking
mechanism.

Insofar as a full spectrum language enables the formal expression of
programming knowledge and has some capacity for "learning”, it is a knowledge-
based system. It differs from typical knowledge-based systems, however, in that its
knowledge is formalized within a strong type discipline. Of course, informal
knowledge can still be represented and manipulated by programs written in a full
spectrum language, but such knowledge cannot be fully integrated with the
language system itself. Put another way, the knowledge base of a full spectrum
language consists only of knowledge which is formally expressed and established.
There is also a big difference between representing knowledge about things which
cannot actually be manipulated and understanding those which can. For instance,
one can easily represent knowledge about concurrent processes in a knowledge
representation language like KIL/ONE, but no amount of effort will enable a KL/ONE
programmer to create a concurrent task, because concurrency is not a basic
component of KI/ONE.




Full spectrum languages can also be contrasted with the extensibie language
developments of the late 1960's and early 1970's. Several of the extensible languages
(most notably PPL at Harvard) were quite successful as programming languages,
but none of them were successful as extensible languages. Their mistake was to
divide the programmer's task into two activities having a very differznt character
and set of concerns: defining syntactic and semantic extensions tailored to the
application domain, and writing the application, using those new featuves in
combination with the preexisting ones. Because of this sharp division, the skills and
knowledge required for one task could not be readily applied to the other, and it was
found to be psychologically impossible to think effectively about both tasks
simultaneously. Consequently, the potential benefits of the meta-features were
ignored in favor of getting the job at hand done. In contrast, a full spectrum
language provides a uniform system in which there is no distinction between the
facilities for describing applications and those for describing the descriptions.

2.c. Technical Requirements for the Language.
Any effort to develop a full spectrum language will be primarily one of

understanding, interpreting, coordinating, and exploiting large amounts of existing
theory and practice from a variety of div.rse areas, so that that existing knowledge
can be integrated and engineered into “he design of a sound and practical full
spectrum language. It will involve minimal development of new theory, but will
require interpretation of results from a variety of domains including formal types,
programming languages, program analysis, design and requirements
specification, programming environments, configuration control, object-oriented
systems, compiler construction, operating systems, and databases. It will require
considerable analytical and empirical investigations of the effectiveness of various
technologies and of how they can be used in combination. The design effort will
require considerable engineering skill in both language design and compiler
construction.

In what follows, we begin by cla=ifving the intended application environment of
our language, stating a number of azi wugiiv..s we have made about that
environment. Following that, we discuss i... general requirements of the language
design. Lastly, we enumerate some of the specific design goals dictated by the
application environment and the generai requirements.

2.c.i. The Application Environment. We make the following assumptions about
the applications for which the language is intended. Applications are large and
may involve hundreds of thousands to many millions of lines of code when
implemented in conventional programming languages. Applications will involve
many people over many years in their design, implementation and maintenance.
Applications will continually undergo changes to their requirements, functionality,
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equipment configurations, and design throughout their lifetime. The domain of
concern for a full spectrum language, like that of its users, cannot be limited to the
internals of a single program or compilation unit, but instead must encompass the
entire environment of application development and execution. Neither can the
domain of concern be limited to a single stand-alone infinitely reliable uniprocessor,
but rather a dynamically changing world of heterogeneous multiprocessors often
without shared memory, connected through networks and removable media, and
geographically dispersed. It is assumed that the hardware and software
components of a system are often unreliable, that the data entering systems are
often errcneous, and that applications must function effectively in the presence of
such problems. It is assumed that applications do not end at the edges of a
program, and instead involve management and control of data and resources that
persist beyond the individual programs that manipulate and modify them. It is
assumed that applications may run forever, that they must be updated and modified
- while they are running, and that system and data integrity must be maintained in
the presence of such change. Note that these assumptions are consistent with any
programming-in-the-large application, and are indistinguishable from what DoD
calls embedded computer applicationa.

2.c.ii. General Requirements for the Language. The technical requirements of
a full spectrum language are in many respects similar to those of any other
programming language, so in this section we limit ourselves to making an
observation and then propose a small set of specific goals for a full spectrum
language. ' '

The observation is that a full spectrum language must be concerned not with
satisfying the requirements of any given application or set of applications, but
instead with ensuring that requirements of any application, whether foreseen or
not, can be expressed in the language by its users once its design is completed.
Thus, the requirements must reflect (a) the needs common to all applications and (b)
the need to encompass unforeseen user requirements. The requirements should not
dictate features specific to particular applications or extant technology.

Given our assumptions about the application domain, it must be possible to
develop the technology of wide spectrum languages in a full spectrum language.
When this is done, however, the width of the spectrum must be limited only by our
ingenuity, not by the language itself. The demands of extendible wide spectrum
technology thus impose two broad requirements on the design of a full spectrum
language. The language must be simultaneously a specification language, an
implementation language, and a programming environment. It must also provide
binding mechanisms which allow it to be open-ended, permit incomplete
specifications at all levels, and enable the implementation to detect and exploit
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binding time information to gain efficiency.

A full spectrum lenguage must be broad as well as wide. That is, not only
must it span many levels of abstraction, it must s’so cover all aspects of
applications. Current wide spectrum languages ignore or deal only inadequately
with issues of concurrent, real-time, and distributed processing, error detection and
recovery, and persistent data. These concerns impose a second set of requirements
on the design of a full spectrum language. Most prominently, {c be practical and
usefu! the language's domain of concern must include the entire environment of
application development ard execution. It must incorporate o pervasive concern for
the integrity of everything within that domain. And, *he language must Lave a
generic organizational capability.

2.c.iii. Specification Mechanisms. A full spectrum language must be able to
capture the goals and intent of its users in a way that can be understood and
exploited by compilers and other automated tools for the ianguage. Over and above
the implementation details of an application, a full spectrum language must be
adequate to describe its goals, abstract design decisions, and execution environment.

Goals include such things as performance constraints, reliability, and
optirnization criteria, in addition to functionality.

Abstract design decisions include various kinds of commitments to such things
as the decomposition of t..e solution into components, their logical properties,
representation, and the engineering rationale for thosc decisions, including
relevant analyses of alternatives.

Execution environment specifications include ezpected operstiug
characteristics, including target hardware and software properties, as well ¢ "*=
expected ranges of external data, what action to take for out of range data, aud *he
expe cted frequency of bad data. To take one example, a certain sutomated teller
system knew enough to check the validity of bank cards and to confiscate cards with
invalid nurabers, but did not know enough abeut the application to recognize and
report an exception when an iuordinate number of invalid cards appeared. Thus,
the machine confiscated 2000 cards in less than two hours [Neu85]. We need to be
able to describe enough of the expectations of an application's environment that a
compiler can automatically provide checking and reporting of statistically
unexpected situations.

The point is that the language must enable users to express information
serving a variety of purposes. Moreover, the variety and details of specifications are
likely to shift continually as new uses for specifications are recognized and the
corresponding technologies are invented. As a consequence, it is necessary to allow
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information that is usually kept together by syntactic conventions to be factored into
several related pieces and assembled as needed. It is also necessary to allow new
kinds of information to be introduced as factors in the description of applications.

The current practice in programming languages is to either force certain
information to be presented together or to force it to be presented separately. Such
restrictions are usually imposed by the concrete syntax of the language. In Ada, for
instance, a package is factored into a specification and a body, whereas the
declarative part of a package body cannot be separated from its sequence of
statements. The factorization of packages has great advantages, for instance in
allowing compilation units that depend on a package to be compiled before the
package body is defined, and making it unnecessary for them to be recompiled if the
body is changed.

However, Ada imposes some restrictions on packages which limits their
utility. For instance, therc can be at most one body (i.e. implementation) for any
package, instead of multiple bodies which could be selected based on efficiency
considerations in the application. Ada does not allow additional information, such
as axiomatic specifications or performance characteristics to be attached to
packages. Instead, some external, difficult to integrate, mechanism such as Anna
[LV85] annotations must be used.

Thus the Ada package specification and body are simply two special syntactic
forms for specifying particular kinds of semantic information about a certain kind of
semantic object. Semantically, a package defines a collection of objects within a
scope which regulates their visibility and determines the access of the entities
defined within the package to each other and to entities defined in other scopes.
There are any number of alternative methods whereby a user could supply
additional semantic information to the implementation, and no technical reason for
limiting them to a predetermined set of mechanisms. For the user to expleit the
alternatives, however, the language must provide access to the basic operations —
constructors and selectors — on objects of type package. Following this line to its
logical conclusion, all semantic concepts of the language must be first class citizens.

When programmers are not restricted in the method of synthesizing semantic
components of a program, it becomes immediately possible for them to factor that
information in any way. In particular, applications can be specified using any
collection of specification languages and mechanisms, provided that these
mechanisms include the means of collecting and deriving the information required
to develop an implementation from those specifications.

By use of such specification mechanisms it becomes possible to specify
requirements, functionality, performance, design and optimization criteria and




decisions, and any other information required to support automated or manual
software development techniques. For instance, it should be possible to attach
complexity types to code fragments, composing them by the rules of order arith:metic
to document and automate, insofar as possible, analysis of the asymptotic
performance of applications.

Put as simply as possible, a language can support arbitrary modes of
specification by not imposing any syntactic restrictions on the form of
specifications, while providing access to, and enforcing restrictions on, the semantic
structure of all concepts.

In order to relate specifications to computation, the core concepts of the
language must include basic implementation mechanisms such as function
application, assignment, and rendezvous. The essential requirement here is that
the language be operationally complete, in the sense that it must provide access to
all of the important operational capabilities of computing machines, now and for the
foreseeable future. In particular, there must be synchronous and asynchronous
mechanisms for concurrent programming, communications, access to hardware
exceptions and interrupts, and mechanisms for real-time programming, including
timeouts based on deadlines, in addition to the more common mechanisms of
sequential processing.

Finglly, there must be mechanisms for managing and accessing information,
and controlling its definition and application; these are the underlying mechanisms
of programming environments. Semantically, what is required are the building
blocks underlying the visibility, extent, and inheritance rules of languages, but
broadened to include the needs of persistent data, in combination with the control
mechanisms cited above.

2.c.iv. Binding Mechanisms. The open-endedness of specification mechanisms
is only one example of the importance of binding mechanisms in a full spectrum
language. We discuss some others here.

A full spectrum language must support incomplete specifications. For
instance, it must be possible to compile and execute a program even if it is in some
respects incomplete. The desire for incomplete specification arises from three
sources. First, it must be possible to test and exercise applications before they are
fully designed and implemented.

Second, it must be possible to avoid overspecification when a design or
implementation decision is arbitrary. Existing programming languages require
that programs be complete. Consequently, it is impossible to leave decisions to the
compiler even though the compiler may be able to make a better choice.
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Finally, as the level of languages grows, programs in a next generation
language can be viewed as incomplete specifications for programs in languages of
the previous generation. We wish: to provide a language system in which the level of
use of the language can grow without having to invent a new language (or class of
languages) for each gain in level.

We view incompleteness merely as an extreme form of late binding. That is,
the language will not require anything to be bound unless and until it is needed by
some computation. When a demand is generated for an unbound entity, an
exception is raised which can be bandled either by the user (perhaps responcing by
creating an appropriate binding and continuing) or by a system default action.

The ability to defer commitments indefinitely is especially important for the
language qua programming environment. Not only do the details of
implementations change over time, but so dv the characteristics of the devices they
are controlling, the machines on which they are implemented, the functional
requirements of the application, the general character of their execution
environment, and their performance goals. Net only must there be support for
orderly change, but the changes must often be accomplished while the
implementation remains operational. We cannot shut down an electric power
network, a nuclear power plant, a medical life support system, or the environ-
mental control system of a space station while software changes &re being made.

On the other hand, certain components of such systems often have severe
reliability and performance requirements, and are typically a critical part of a
larger system whose primary purpose is not computation, whence the term
“embedded computer system”. To meet such performance requirements, we must
have compilers which can recognize and exploit early binding decisions so that the
application does not pay a performance penalty for unused generality (i.e. late
binding capability).

Good general techniques for recognizing early binding opportunities have
recently been developed [HY86,Jon87] though their applicability to realistic
languages has yet to be proved. However, it is clear that effective detection and
exploitation of early binding opportunities requires additional informaticn to be
supplied to the compiler by the programmer, since without such information
binding time analysis is ineffective or intractable.

2.c.v. The Domain is the Environment. Probably the greatest impediment to
effective automated systems is lack of accessible information about the application
and its intended execution environment. Conventional programming languages
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limit their scope of concern to implementation issues that lie within a particular
compilation unit. Applications, on the other hand, must be concerned with data
objects that persist beyond the invocations of the programs that create and
manipulate them, and must deal with execution environments having unreliable
hardware, software, and communications. They must cope with multiple
processors, distributed networks, and dynamic changes in their requirements,
design, functionality, equipment configurations, users, data characteristics, and
implementation hardware. These aspects of applications are currently managed
outside the program with only the resulting implementation decisions presented
within the program. A full spectrum language must encompass the entire
environment of the development and operation of applications.

We can identify certain semantic requirements dictated by these concerns,
such as mechanisms for concurrency, persistent data, and distribution. Others,
such as describing hardware configurations or the role of users, are less clear, as
are the ways that such information can be used. An important goal of our research
is therefore to clarify the issues in this domain and understand their implications
for language design and implementation.

2.c.vi. Pervasive Concern for Integrity. Integrity of all aspects of applications
must be a pervasive goal for a full spectrum language. It matters little how good the
other aspects of an application are, or how fast it runs, or how much it
encompasses, if it produces results that are incorrect or unreliable.

By integrity here we mean something akin to the metaphor of “authentication”
with regard to type systems [Mor73]. Specifically, the language must provide a
strong, enforced, typing mechanism which applies not only within individual
programs, but among programs. Type integrity must be maintained even when
data is shared among programs and persists beyond the invocation of the program
which created it.

Another form of authentication applies to the integrity of implementations. We
take the position that all hardware and software systems are inherently unreliable,
and that applications must be designed, implemented, and executed with that
understanding. Thus languages and compilers must provide effective error
detection and recovery mechanisms. Although a variety of execution errors can be
detected and handled by default mechanisms, full integrity of application data
cannot in general be guaranteed in such recovery. Consequently, applications must
not be denied access to information about any detected errors, and applications must
be informed of any errors which may have corrupted their data.

Finally, a full spectrum language must allow mechanisms for authentication
(in its usual sense) to be built. It must be possible to provide useful and effective
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mechanisms which safeguard the system from deliberate or accidental corruption
to the application properties of protection and security.

2.c.vii. A Generic Organizational Capability. Any language which
encompasses the environment beyond the bounds of individual compilation units
and applications must support the organization and management of large
quantities of persistent data. There must be a mechenism for organization and
retrieval of such data from the persistent data store. The organizational
mechanism (i.e., a logical directory system) must be independent of the types of data
stored in it, must be capable of housing values of user-defined types, must be
independent of any physical organizational structure, and must be compatible with
disjoint and geographically distributed implementations whether of networks or
removable media. The directory mechanism must permit logical sharing with the
same data appearing in multiple directories. It must be adequate for supporting
user-defined organizational mechanisms, as well as a program library mechanism
for the language itself. It must provide mechanisms for efficient sharing of and
concurrent access to data. It must provide mechanisms for control and

management of the physical location of data on peripheral memory and removable
media.

Note that neither conventional file systems nor database management systems
satisfy these requirements. They tend to be very limited in the types they support.
Their logical organization tends to be bound to the physical organization of their
implementation, and is usually optimized for very specialized retrieval
characteristics which cannot be modified by the user. They often have inadequate
concern for data and type integrity. And, finally, they are not well integrated with
programming languages.

3.The Agenda.

Our agenda for exploring the realm of full-spectrum languages involves four
interrelated activities: a) investigation of key research issues, b) design of the
language, ¢) prototype implementation of the language, and d) review and
evaluation. The investigations into key research issues will answer the difficult
scientific and engineering questions required for the language design and prototype
implementation. The questions themselves will be iteratively refined as they become
better understood through feedback from the cesign and implementation processes.
The key research issues and language design efforts will both involve empirical
investigations. It is expected that many of the experimental results will be
incorporated either directly or with modification into the implementation. The
prototype itself will be the primary test of the feasibility, and measure of the cost, of
the language constructs.
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3.a. Investigation of Key Research Issues.

Most of the key research issues are fairly well understood in isolation, so we
expect a minimum of theoretical work ir this project. The difficulties arise vhen
the existing results are integrated with other issues in the design and
implementation of a language, when the simplifying assumptions of the original
work must be removed, and when the requirements are extended to include those of
generality and efficiency. On the other hand, we do expect a fundamentally new

concept of software development to emerge as a result of our efforts, one which will
undoubtedly raise many new theoretical questions.

Some of our current thoughts on several of the key research issues are given in
the following subsections. They arise directly from the language requirements set
forth above. In particular, research into abstract type mechanisms will help meet
the requirements for a specification/implementation language and for open-
endedness. Concurrency and real-time issues must be resolved to allow the system
to expand its domain into the environment. Error detection and recovery
mechanisms are needed to ensure system integrity. Finally, research into the
persistent data problem is needed if we are to meet the requirements for a generic
organizational capability and persistent type integrity.

3.a.i. Abstract Type Mechanism. A full spectrum language must deal with all
of the concepts involved in the engineering of a software product. The primary
purposc of the abstract type mechanism is to facilitate the formal definition of
voncepts and to ensure that concepts are composed in a coherent manner. The
formalization of concepts provides, among other things, important information that
can be exploited by the language system to optimize applications. We use the term
"concept” in this section to avoid the restricting connotations a reader might have
for any of the terms "type", "abstract type" or "abstract data type".

The design of a type system for a practical full spectrum language has to strike
a balance between formal power and elegance, on the one hand, and effective
exploitation of current technologies, on the other. Ensuring that we are not locked
into current technology requires certain essential features of a ra*her formal,
theoretical nature. Effective exploitation of current technology requires that these
key features be embodied in a set of core concepts which cater to the practical needs
of software engineering, language implementation, and computer architecture.

We expect that the core concepts will continually be supplanted and augmented
by newer ones, in a completely transparent way. Old applications need not be
modified or rewritten; new applications do not have to use the old technology.
Achieving this kind of unbounded upward compatibility is the driving force behind




18

the design of the formal ...pects of the type system.

The practical aspects of the design are informed by our experience as software
system designers and implementors. In practice, we take Ada as the starting point
for language design, because Ada deals with mcre important issues for
programming-in-the-large than any other current language.

The essential theoretical quality of the type system is that it must be reflective.
By this we mean that the core concepte are defined internally (i.e. within the
language, in terms of the other concepts of the language). It follows from this that
all -concepts will be first class citizens (i.e. the type system will be higher-order). It
also follows that all of the rules of composition (type formation, computation,
deduction, etc.) must be first class (i.e., composition is itself an abstract concept; this
gives us a categorical outlook).

What is a concept? It is a collection of information. An Ada package, for
instance, is a concept. The package specification provides information about the
external interface to the package, and the package body provides information about
how the entities declared in the specification might be implemented.

All such packages are in turn examples of the higher-level concept packoge.
This concept defines the rules of formation for packages in general, including the
relationship between specifications and bodies.

The package concept is representative of the best technology for data abstraction
that was available at the time Ada was designed. However, we can now see that
several exciting capabilities are missing trom the Ada language. There is no
technical reason why polymorphic type inference couid not be applied to a package
body to automatically derive a package specification. There is no technical reason
not to allow more than one body for a given package, as long as the concepts used to
select representations when generating code can be extended appropriately. Nor is
there any reason to require a user-defiued body when it is possible to derive a
representation from an interface specification together with, say, an axiomatic
specification. Nor, for that matter, is there any technical reason not to allow
dynamic creation of packages and instances a la Smalltalk [GR83], perhaps with
multiple inheritance, too.

The point is that the concepts and information used to develop an application
should be constrained only by the available technology, not by the language. The
available technology is embodied in a collection of concepts, each of which is a
collection of related bodies of information. In a full spectrum language, the concepts
include the abstract notion of "concept”, and ways of forming new concepts as
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integral extensions.

Our notion of concept is closely related to the Theory of Constructions (TOC)
[Coq85, Hue87], in that the formal properties of syntax (their "propositions") are
determined by a constructive semantics (their "proofs"). This is a very powerful, but
theoretical (read perhaps not practical) base. A similar notion underlies
realizability models in logic [Sco87]. However, our system is more powerful than
TOC in a number of important ways.

*The syntax of a concept can be any complex structured interface, not just a
proposition.

*All concepts are internalized; in TOC, the basic rules of construction are fixed
externally.

*As a result, new techniques for defining and manipulating concepts can be
introduced by the user.

*We provide a core of concepts which are important for practical software
development. Some of these, such as tasking and exceptions, have no place in the
simplified world of TOC. Others, such as assignment statements and control
structures, make the capabilities of real machines available to the user (TOC is

restricted to A-calculus to make it theoretically tractable). Still others, such as

packages and subprograms, are essential tools for managing the complexity of

large, long-lived, continuously changing applications. A possible list of core
concepts follows.

declarations types time

functions tasks scopes

packages exceptions discrete types

booleans arrays records

sets variables pointers

lists persistent data bindings (in, out, in-out)

numbers (integer, real, complex)

The concept concept? described in this section will guide our research in
other areas. In particular, our investigations into concurrency, error recovery, and
persistent data are best viewed as type-theoretic investigations into the most
prominent concepts of the full spectrum system.

21t is well known that any system with a type "type" is logically inconsistent [Cog86,MR86].
This does not particularly bother us, however, since we do not impute any logical content to concepts
in general. Rather, logic is itself a concept, one which has many uses in software development. But it
does not rule us.
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3.a.ii. Concurrency, Real Time, and Distribution. Concurrent execution is
required in many applications; it is also an increasingly important programming
paradigm, whereby a large task can be decomposed into smaller, communicating,
tasks. With concurrency come the issues of real-time behavior and the distribution
of applications across a collection of physical processors.

Most research in concurrent language constructs has concentrated on
operational mechanisms for synchronization and communication. These range
from low-level mechanisms like semaphores to higher-level mechanisms like
rendezvous. Abstraction and encapsulation of interacting agents have also been
studied, in a number of guises, among them monitors[Hoa74], extended CLU
classes[LAB*81], Ada tasks [ALLRM83], and CCS [Mil80].

As usual, new technology in these areas cannot be integrated into our current
languages because those few languages that have concurrency at all are limited to a
fixed set of primitives. In our full spectrum language we will have concurrency
types which can be composed and manipulated like all other concepts. With
concurrency types a programmer can specify the abstract temporal properties of
components, and type checking will ensure that temporal concepts are composed
only in meaningful ways. This will benefit concurrent programming by drastically
reducing the amount of analysis and testing required to validate concurrent
software.

A theoretical base for concurrency types is suggested in the recent work of
Girard on Linear Logic [Gir86]. We plan to cast these ideas in practical form,
drawing heavily on our own experience in the design, analysis, and implementation
of a distributed run-time system for Ada.

Our experience with distributed Ada has led us to formulate a number of core
concepts for concurrency. These include the separation of tasks and services
(entries); extending rendezvous to full trancactions (thereby allowing
communication between tasks engaged in a rendezvous); asynchronous
communication; task abstraction (similar to system abstraction in CCS); and
generalized mechanisms for task dynamics and sharing. Early versions of some of
these ideas are elaborated in [FW86, FM86].

In the area of real-time behavior, we have developed concepts of observation,
time, and reaction which can be used to specify arbitrary protocols for real-time
interactions. These concepts are the basis for our current implementation of Ada's
real-time components. We believe that most of the current confusion surrounding
the real-time features of Ada (cf. [VM86b]) can be eliminated through the use of
these concepts.
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In the area of distributed systems, the major issues are resource allocation and
sharing, error detection and recovery, and persistent data (including removable
media). These issues have all been discussed in the foregoing sections, with the
exception of resource sharing, which we shall discuss presently. The
generalization of these issues to distributed systems and integration into the
language will be the focus of our research in these areas.

In this effort we can draw on previous work in distributed databases and
operating systems for such things as deadlock detection, extended transactions,
rollbacke, dynamic reconfiguration, and so forth. The problem, as always, will be to
find the right basic concepts and integrate them into the language core.

The problems of resource sharing in a distributed system have never been
adequately addressed in a language. The mapping of software to hardware
components is constrained by the operating environment requirements of the
software. In particular, the patterns of resource sharing within the software
determine how the software can be partitioned.

If two tasks share a variable, for instance, they should be allocated on
processors that share a memory, because the only justification for shared variables
is high performance, which can never be the result of simulating shared memory.
(On the other hand, if two tasks communicate but happen to be placed on the same
processor, the runtime system should exploit that fact and use shared memory to
speed the communications.) Similarly, subsystems which share a file should be
allocated on the same local network as the file server.

Such considerations have led us to the concept of virtual processors as basic
building blocks of distributed software. Integrating this concept into the language
will meke it a more effective tool for distributed software design.

8.a.iii. Error dontification, Analysis, and Recovery Mechanisms, A system is
reliable to the extent .. is correct, makes proper use of computing resources, behaves
predictably and appropriately when hardware or software components fail, and can
be operated reliably by its ugers. As in any other engineering discipline, reliability is
achieved by applying scientific design principles, by including safeguards and
contingency mechanisms ir the design, and by testing. Each of these activities

contributes to our confidence in a system in different ways, and makes up for some
weaknesses of the others.

Each activity has its own style of detecting, analyzing, and recovering from
errors. Type checking and related stetic analysis mechanisms are the tools of
scientific design. Exceptions and exception handling mechanisms are used to
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safeguard against possible flaws in the design or problems in the operating
environment. Various forms of instrumentation (debuggers, performance
monitors, psychological experiments) are used for testing operational systems and
their components.

In each of the three reliability activities, the same five language issues arise:
control, visibility, binding, resource allocation, and abstraction. Moreover, all five
language issues relate to all three aspects of error handling: detection, analysis, and
recovery.

In instrumentation, for example, control issues arise in each aspect of error
handling: the triggering of probes (detection), the ability of probes to alter the control
flow of the system being measured (during analysis), and the transfer of control
from probes back to the system, when this is meaningful (recovery).

Here are some illustrations of how the language issues of visibility, binding,
and resource allocation arise in the context of instrumentation. The environment in
which a probe executes determines what user-defined types and data it can access (if
any), or whether certain run-time system information is visible. Binding time
determines such things as whether breakpoints can be installed interactively, or
have to be "compiled in". In performance instrumentation, resources must be
apportioned among the observed system, data collection, data reduction and
analysis, and presentation and user interaction (if any) so as to minimize
intrusiveness.

The most difficult problems here are in the area of abstraction. Ideally, one
would like to say "measure the X of system Y", and have any necessary probes, data
reduction facilities, etc., generated, installed, and run automatically. Or, better yet,
"determine how well system Y's behavior matches hypothesis Q", thereby tying
testing back to design specifications. The realization of these ideals requires
mechanisms for defining and manipulating abstract properties of systems.

In particular, we need mechanisms for detecting, analyzing, and recovering
from abstract errors. The bank card system which confiscated too many cards
provides a good illustration of what we mean by en abstract error. We cannot
reasonably expect to anticipate every possible misbehavior of a system at every point
in its execution and install (often redundant and wasteful) safeguards at each point
manually. We can hope to describe deviations from a system's expected behavior at
the application level, and have safeguards generated and installed at appropriate
points automatically.

Clearly, the mechanisms we envision for abstract error definition, detection,
analysis, and recovery can and should be defined in terms of the control, visibility,
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binding, resource allocation, and abstraction concepts provided by the language
core. That is, we should not have to reinvent these concepts. Nor should we have to
duplicate the design efforts of those who have already created some good error
handling technology [AW85,Cou8l,Joh83,KC86,KP82a,1.579,MY86,RLT78,YB85].
Rather, we see these concepts as the key to an unprecedented systematic
formalization of error handling ideas, and as the avenue for integrating them into
our language.

8.a.iv. Persistent Data and Type Integrity. The full spectrum language will
support the production of reliable, efficient and reusable software over a range of
applications and will act as a cooperative element in an integrated software
development environment. A sophisticated type system such as the one discussed
above is needed to formalize the properties of such diverse tools as compilers,
compiler generators, debuggers, analyzers and project management assistants,
which act on the types comprising languages, programs, specifications, designs,
test plans, PERT charts and so forth. The type(s) of a datum determine what tools
can create or manipulate it and the relationships in which it can participate.

The concept of object allows instances of values to be named. The object
naming mechanism assigns a unique, universal, location independent name to a
value to create an object. Thus, persistence is a property (concept) of a particular
kind of datum, namely objects. An object is persistent if it outlives the particular
invocation of the program or tool that created it. It is the responsibility of object
management mechanisms of the full spectrum language to ensure the type integrity
of persistent objects and to oversee their creation, destruction and access, both
through space (since the environment may be distributed over multiple networks
and include removable media) and through time (because some data will be
persistent).

Traditional file systems and databases have each addressed some aspects of
object management, but each has shortcomings with respect to either persistence or
typing. File systems provide persistence, but have no way to enforce type integrity
over invocations of tools and manipulations by human users. Programming
languages more closely approximate object management typing needs, but provide
little support for persistence. Databases achieve typed persistence, but their type
systems are inadequate for the variety and complexity of data needed in software
applications and software development environments. They especially do not satisfy
the need for the typing system to evolve over time and to be self-describing.

The object management aspects of the full spectrum language include a
number of requirements, concerns and assumptions beyond those of persistence and
typing. The language must provide support for these concerns, of which a sample
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follow.

* Persistent data is the key mechanism that underlies the entire lifecycle. There
must, therefore, be support of change and the ability to define spheres of activity.
Partial information must be tolerated. There raust be support for both consistency
(e.g. invocation of tools to establish or re-establist: some relation among a given set of
objects) and inconsistency.

* Persistent data is the key mechanism that underlies a software development
environment and variety is the most striking characteristic of the objects in such an
environment. This is perhaps especially true when considering object granularity.
The object management mechanisms must expect, and remain viable for, objects of
a wide range of both physical and logical granularity from the very small to the very
large.

¢ The objects will include active, passive and concurrent entities.

* There will be pre-existing tools and objects for which migration paths must be
established, whenever feasible.

3.b. Language Design.

Naturally, good language design practice is required in the design of any
language [Wei71, Hoa73, Iron76]. What constitutes good design depends in part on
how, by whom, and for what purposes the language will be used. Some design
guidelines for full spectrum languages are the following.

Because the applications are varied and many, it is necessary to provide a
small number of highly composible mechanisms, instead of a large number of
mechanisms specialized to the intended applications. To retain simplicity in the
language each primitive mechanism must isolate some unique functionality which
is easily composible with the other primitives. Every effort should be made to avoid
language features that will lead to psychological ambiguities in programs. The
design should emphasize readability over ease of writing programs. It should
emphasize the semantic integrity and completeness of the language. It should
provide redundarcy without duplication. It should avoid default mechanisms that
obscure the meaning of programs. It should use syntactic and semantic features,
wherever possible, which are compatible with the traditional notations and
intuitions of mathematics, engineering, and computer science. The syntax should
be conservatively extensible, to allow syntactic extensions that cannot cause
confusion by redefining the parsing rules for familiar phrases. And, finally, the
design must strive in every way possible to provide features that will in their use
(during program execution) be only as expensive as is inherent in the generality of
their use.
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We can identify four major sources of inspiration and guidance: Ada,
functional languages, object-oriented languages, and foundational theory. We look
to each of these for specific contributions, as follows.

Ada will influence many of the practical aspects of syntax and program
structure. This influence is both positive and negative; we seek to take the best from
Ada and avoid its mistakes. Ada is currently the most complete compendium of
features needed for practical application development. As such, we can use it as a
baseline of capabilities for our full spectrum language; anything which exists in
Ada should either be in the new language or preferably be easily defined and
integrated. If this goal is achieved, it should be easy for programmers familiar with
Ada to switch to the new language with a minimum of retraining.

Ada slso contains the echoes of some very good ideas, both in its syntax and
sementics. For instance, its near-unification of the syntax of record literals and
actual parameter lists reveals an underlying commoneality which should be

recognized and exploited to make the language smaller and cleaner. The question
is: how?

For an answer to this particular question, we turn to functional languages
such as ML [GMW79], Amber [Car86al, Ponder[Fai83], and Miranda [Tur85], which
have explored a number of alternatives for unifying data and parameter structures.
Other desirable aspects of functional languages are the use of highly composable,
small-grained compcnents; ease of formal analysis and transformation; the
functorial character of abstract data types and modules; and an extensive body of
interactive/incremental implementation technology. The most important
contribution of functional languages, however, is higher-order programming.

Programmers often face the dilemma of not knowing a good general solution to
a problem, though a good solution can be generated for any particular case, given
some additional information. Higher-order programming, in a language like
common Lisp, enables the designer to implement an algorithm for deriving a good
solution, but at the cost of getting an unacceptably inefficient implementation of that
solution. A static language like Ada, on the other hand, provides efficient
mechanisms which can be combined to obtain an efficient implementation, but at
the loss of the general solution.

The problem is that the common Lisp programmer can't convey enough
information about the application to the compiler for it to obtain an efficient
implementation, while the Ada programmer must convey so much information
about the details of a particular solution that the compiler is unable to abstract the
general solution. In a full spectrum language, the programmer should be able to
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communicate to the compiler, a8 part of the program, any information it needs to
derive an efficient implementation of a specialized solution.

Typed functional languages enable more efficient implementations by
including type information in programs. Types constrain the application, promote
checking and representation decisions to an earlier point in the computation, and
enable a wide class of optimization transformations.

The more intricate a type system is, the more information can be expressed.
For instance, dependent types can be used tc inform the compiler to represent a list
as an array if the length of the list is known to depend on a numeric parameter. In
the extreme, virtually any logical property that has constructive significance can.be

embodied in type information (at which point we say we are doing "logic
programming").

The information a compiler needs isn't restricted to functionality, however. To
cite a few examples, the criteria to be used in optimization, expected statistical
characteristics of input data, and complexity measures of components can all be
used to guide the compiler's selection of algorithms and data structures.

As language implementors, we know how to make compiler components that
are driven by user-supplied information and are hence open-ended. What is less
clear, is what high-level syntactic mechanisms should be supplied to enable the
application designer to exprccs information and convey it to the portions of the
compiler that need it? This i3 the most difficult syntax design challenge we face.

Object-oriented languages, operating systems, and databases are currently
experiencing the greatest experimental activity in the areas of inheritance
mechanisms and persisient data issues, and soc we look to them to supply
perspectives and me-hanisms in these areas. In particular, these languages
contribute a third baseline of features, in addition to those found in Ada and
functional languages.

The fourth source of inspiration for our design comes from the formal
foundations of semantics, type theory, logic, and category theory as they relate to
program development. These formal foundations we see as giving the formal
outlines to such things as the type system, notions of component composability,
computing with semantic ccmponents, and the functors relating the various
concepts in the language. They give us insight into what is theoretically possible, as
well as warnings about potential difficulties. Most importantly, the formal
foundations tell us what properties the language as a whole must have in order to
assimilate the mechanisms required by tools for formal program manipulation. It
is through the application of such tools that we expect the real gains in software
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productivity and reliability to be achieved.

Our thesis is that the features we include in the language core should be
adequate for any application. As a partial validation of this thesis, the language will
be completely self-defining. As a further validation, portions of this self-definition
may be incorporated in the prototype implemertation. In particular, use of the
language to implement its own run-time system could test its ability to support
systems programming, and use of the language to support its own development
could test its ability to support software engineering. It should be noted that we
already have experience with this approach, since we use it in our existing Ada
langusage developments.

3.c. Protetype Implementation.

The purpose of a prototype implementation is twofold. First, it provides an
operational description of the language, showing in greater detail than the language
reference manual how the primitives of the language behave, how they interact, and
how they can be composed. Secondly, it furnishes an existence proof of the
language’s implementability. As a functioning embodiment of the language’s
semantics, it confirms that there are no inconsistencies in the design, and gives
some indication of the costs associated with implementing the language.

One possible scenario for a prototype implementation is to use common Lisp as
a starting point. As more of the features of the full spectrum language become
operational, we would hope and expect that parts of the prototype implementation
effort would shift into the full spectrum language. However, we insist that the full
spectrum language be used appropriately; we would not want to establish the bad
precedent of writing Lisp-style programs in the new language, merely in order to
obtain a complete bootstrap. The result would be an experimental facility suitable
for a wide range of demonstrations of the principles of full spectrum language
design.

3.d. Review of Preliminary Language Design.

Formal review by the community can help to raise confidence in the integrity of
the language design and to raise confidence that the language meets its
requirements. We expect such a review, involving a small number of highly
qualified experts representing academia, industry and government, to be a vital part
of any full-spectrum language effort. We do not, however, foresee the need or
desirability of soliciting comments from the computer science community at large.
The comments and suggestions of the reviewers would be incorporated, as
appropriate, into the final language design. It is likely that a small number of
reviewers would also assist in evaluating the reviews and in weighing comments
that have opposing points of view.




28

Bibliography
Selecfed Papers by Members of Incremental Systems Technical Staff.

[BFS87a) Baker, D.A., Fisher, D.A. and Shultis, J.C., "Persistence and Type Integrity in a Software
Development Environment”, in Persistent Object Systems: their Design, Implementation
and Use, Carrick, R. and Cooper, R., eds., Univ. of Glasgow and Univ. of St. Andrews.,
August 1987.

[BFSE7b] Baker, D.A., Fisher, D.A, and Shultis, J.C., "A Practical Language to Provide Persistence
and a Rich Typing System", Proc. Workshop on Database Programming Languages, Roscoff,
September 1987 (available as technical report from Univ. of Pennsylvania).

[BH86] Baker, D.A. and Heimbigner, D.M., Design Possibilities for Zeus: The Tool/Object
Manager for Arcadia, Technical Report CU-CS-318-86, University of Colorado, February 1986.

[BHS86] Baker, D.A., Heimbigner, D.M. and Sutton, S.M. Jr., Providing Programmable Relations
over Software Objects in Aspen, Technical Report, September 1986, University of Colorado.

[BS86] Baker, D.A. and Sutton, S.M. Jr., Exception Flow Analysis in Ada, Technical Report CU-CS-
319-86, March 1986.

{BB84] Baker, D.A. and Baxter, A.Q.,"” Computer Science Fundamentals II", lecture notes and
annotations, instructor's guide, exercises and solutions, IBM IS & CG University Program
course, 1984.

[BO84] Baker, D.A. and Osterweil, L.J. "Critics: An Active Approach to Tools and Environments"”,
Technical Report CU-CS-285-84, University of Colorado, December 1984.

[Bak83] Baker, D.A., "EASE - An Extensible Abstract Stiucture Editor”, Technical Report CU-CS-
250-83, University of Colorado, 1983.

[Bak82] Baker, D.A., "The Use of Requirements in Rigorous System Design", Ph.D. Dissertation,
University of Southern California, 1982,

[CF82] Carlson, W.E. and Fisher, D.A., "First Complete Ada Compiler Runs on a Micro", Mini-
Micro Systems, September 1982.

[CK86] Choi, J.W.C. and Kimura, T.D.,”A Compi.2d Picture Language on Macintosh”, Proceedings
of ACM Conference on Personal and Small Computers, San Francisco, California, December
1986.

[FFR72] Fisher, D.A., Faber, U. and Reigel, E., "The Interpreter: A Microprogrammable Building
Block System"”, Proceedings of the Spring Joint Computer Conferences 1972, AFIPS Vol. 40,
May 1972, pp. 705-723.

[Fis81] Fisher, D.A., "Design Issues for the Ada Program Support Environments, A Catalogue of
Issues”, Science Applications, Inc. paper, SAI-81-283-WA.

[Fis80] Fisher, D.A., "Ada, The United States Department of Defense High Order Language”,
AGARD-ograph on Guidance and Control Software, Advisory Grovp on Aerospace Research
and Development, North Atlantic Treaty Organization, May 1980, pp. 5.1-5.9.

[Fis78a] Fisher, D.A.,"DoD's Common Programming Language Effort", IEEE Computer, Vol. 11,
No. 3, March 1978, pp. 24-33.




29

{Fis78b] Fisher, D.A., "Steelman”, Department of Defense Requirements for High Order Computer
Programming Languages, High Order Language Working Group (HOLWG) Report, June
1978.

[Fis77a] Fisher, D.A., "A Common Programming Language for the Department of Defense--
Background, History, and Technical Requirements”, IDA Paper P-1263, May 1977.

[Fis77b] Fisher, D.A., "Floating Point Computational Facilities for a Common Programming
Language for the DoD", Proceedings of the 1977 Army Numerical Analysis and Computers
Conference, March 1977, pp. 585-596.

[Fis77¢] Fisher, D.A., "The Common Programming Language Effort of the Department of Defense”,
A Collection of Technical Papers from the AIAA/NASA/IEEE |ACM Computers in Aerospace
Conference, November 1977, pp. 297-307; Received Thomas R. Benedict Memorial Award for
best paper.

[Fis75a) Fisher, D.A., "A Common High Order Programming Language for the Department of
Defense”, Proceedings of the 10th Anniversary Symposium, Computer Science Department,
Carnegie-Mellon University, October 1975.

[Fis75b] Fisher, D.A., "Bounded Workspace Garbage Collection in an Address-Order Preserving
List Processing Environment”, information Processing Letters, July 1975, pp. 29-32.

[Fis75¢] Fisher, D.A., "Copying Cyclic List Structures in Linear Time Using Bounded Workspace”,
Communications of the ACM, Vol. 18, No. 5, May 1975, pp. 251-252.

[Fis75d] Fisher, D.A., "Programming Language Commonality in the Department of Defense’,
Defense Management Journal, Vol. I No. 4, October 1975, pp. 29-33.

(Fis74] Fisher, D.A., "Automatic Data Processing Costs in the Defense Department”, IDA. Papor P-
1046, October 1974, AD-A004841.

[Fis72] Fisher, D.A., "A Survey of Control Structures in Programming Languages”, SIGPLAN
Notices, Special Issues on Control Structures, Vol. 7, No. 11, November 1972, pp. 1-13.

{Fis70a) Fisher, D.A., "Control Structures”, Computer Science Research Review 1970-1971,
Carnegie-Mellon University, September 1971, pp. 21-25.

[Fis70b) Fisher, D.A., "Control Structures for Programming Languages”, Ph.D. Dissertation,
Carnegie-Mellon University, May 1970, AD-708 511.

[Fis67] Fisher, D.A.,"Program Analysis for Multiprocessing”, M.S.E. Thesis, Mo 2 School of
Electrical Engineering, University of Pennsylvania, May 1967.

[FKRW*78] Fisher, D.A., Kernigham, D.G.B., Reynolds, J., Wetherall, P., and Wulf, W., "Report
on the HOL Analyses Coordination Panel”, DoD Common High Order Language, Phase I
Reports and Analyses, HOLWG Report, June 1978, AD-B950 587.

{FM86a) Fisher, D.A. and Muadie, D.A., "Incremental Semantic Analysis and Overload Resolution
for Ada", Final Report, Phase I, SBIR, National Science Foundation .Award ISI-8560535, August

1986.

[FM86b] Fisher, D.A. and Muandie, D.A., "Parallel Processing in Ada", IEEE Computer, Vol. 19,
No. 8, August 1986, pp. 20-25.

(FS79] Fisher, D.A. and Standish, T.A., "Initial Thoughts on the Pebbleman Process”, Institute for
Defense Analyses (IDA) Paper P-1392, June 1979.

[FW86] Fisher, D.A. and Weatherly, R.M., “Issues in the Design of a Distributed Opgrating System
for Ada", IEEE Computer, Vol. 19, No. 5, May 1986, pp. 58-47.




30

[FW78] Fisher, D.A. and Wetherall, P.R., "Rationale for Fixed Point and Floating Point
Computational Requirements for a Common Programming Language”, IDA Paper P-1305,
January 1978.

[Iron76] "Ironman”, Department of Defense Requirements for High Order Computer Programming
Languages, HOLWG Report, June 1976.

[GMT*80] Gerhart, S.L., Musser, D.R.,Thompson, D.H., Baker, D.A., Bates, R.L., Erickson, RW.,
London, R.L., Taylor, D.G., and Wile, D.S, "An Overview of AFFIRM: A Specification and
Verification System”, Proceedings IFIP 80, October 1980.

[Mun81] Mundie, D.A., "The Integration of the Comecon Computer Industries™, A Report Prepared for
The National Council for Soviet and E4st European Research, Master's Thesis, June 1981.

[Mun80a] Mundie, D.A., "Pascal and the Great Race”, Byte, September 198G, p. 94.

{Mun80b] Mundie, D.A., "PILOT/P: Implementing a High-level Language in a Hurry”, Bytfe, July
1980, pp. 154-170.

[Mun79a] Mundie, D.A., "A Computer-Assisted Dieting Program”, The Byte Book of Pascal, pp. 197-
198.

[(Mun79b] Mundie, D.A., "Supermetric: An Automatic Metric Conversion Program”, The Byte Book
of Pascal, pp. 189-196.

(Mun78] Mundie, D.A., "In Praise of Pascal”, Byte, 1978. Reprinted in The Byfe Book of Pascal,
Peterborough, New Hampshire, Byte Publications, 1979, pp. 7-12.

[PW83] Pervin, E.C. and Webb, J.A., "Quaternions in Computer Vision and Robotics™, Carnegie-
Mellon University, Department of Computer Science CMU-CS-82-150, Proceedings of the IEEE
Conference or. Computer Vision and Paitern Recognition, Washington, D.C., 1983, pp. 382-

383.
[Shu86] Shultis, J.C., “"The Design and Imzlementation of Intuit”, IEEE Conference on Logic in
Computer Science, June 1986.

(Shu:§52) Shultis, J.C., On the Complexity of Higher-Order Programs, Technical Report CU-CS-288-
85, University of Colorado, February 1985.

{Shu85b] Shultis, J.C., "What is a Model? A Consumer's Perspective on Semantic Theory”,
Proceedings Conference on the Mathematical Foundations of Programming Semantics;
Springer-Verlag, Lecture Notes in Computer Science #239, 1385.

[Shu83] Shultis, J.C., "A Functional Shell", Proceedings SIGFLAN ‘83 Symposium on
Programminrg Language Issue in Software Systems, June 1983, pp. 202-211.

[Shu82] Shultis, J.C., "Hierarchical Semantics, Regsoning, and Trenslation”,Ph.D. Dissertation,
Department of Computer Science, State University of New York at Stony Brock, August 1982.

[SK81] Shultis, J.C. and Kieburtz, R.B., "Transformations of FP Program Schemes”, Proceedings of
the ACM Conference on Functional Frogramming Languages and Computer Architecture,
October 1$81, pp. 4148.

{Tad82] Tadmen, F.P., "The Arcturus Programming Environment Program Design and Rapid
Prototyping Language”, Technical Report, Programming Environment Project, University of
California, Irvine, California, September 1982.

[WP84] Webb, J.A. end Pervin, E.C., "The Shape of Subjective Contours”, Proceedings of the

Conference on Artificial Intelligence, Austin, Texas, 1984, pp. 342-343.




31

Papers in Preparation by Members of Incremental Systems Technical Staff,

[TBB*87] "Next Generation Software Environments: Principles, Problems, and Research
Directions”, Taylor, R.N., Baker, D.A., Belz, F.C., Boehm, B.W,, Clarke, L.A., Fisber, D.A.,
Osterweil, J., Selby, R.W., Wileden, J.C., Wolf, A.L., and Young, M, submitted for
publication.

[Shu85)] "Imminent Garbage Collection", Shultis, J.C., Technical Report CU-CS-305i-865, University
of Colorado, Department of Computer Science, 1985.

{IRIS] "Iris: An Internal Form for Use in Integrated Environments", Baker, D.A,, Fisher D.A., and
Shultis, J.C.

Journals and Proceedings Edited by Members of Incremental Systems Technical
Staff.

Proceedings of the IEEE Computer Society Second International Conference on Ada Applications
and Environments, Fisher, D.A., General Chairman; Morris, D., Program Chairman, 1986.

"Special Issue on Ada Environments and Tools", IEEE Software, Urban, J W. and Fisher, D.A.,
Guest Editors; Vol. 2, No. 2, March 1985.

Proceedings of the IEEE Computer Society 1984 Conference on Ada Applications and Environments,
Urban, J.E., General Chairman; Fisher, D.A., Program Chairman.

"Lecture Notes in Computer Science”, Edited by Williams, J.H. and Fisher, D.A., Design and
Implementation of Programming Languages, Proceedings of a DoD Sponsored Workshop,
Ithaca, New York, October 1976; (Publisher: Springer-Verlag Berlin Heidelberg, 1977)

Other References,

[ALRMS83] Ada Joint Program Office, U.S. Department of Defense, Ada Programming Languuga
Reference Manual, ANSYMIL-STD- 1815A-1983, 1983.

[ABB*86] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A. and Young, M.,
"Mach: A New Kernel Foundation for UNIX Development”, DRAFT, Computer Science
Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania, May 1986.

[ABC*83] Atkinson, M.P., Bailey P.J., Chisholm K.J., Cockshott, P.W., and Morrison, R., "An
Approach to Persistent Programming”, The Computer Journal, 1983, 26(4), pp. 360-365.

[AL81] Anderson, T. and Lee, P.A., "Fault Tolerance: Principles and Practice", Prentice-Hall
International, 1981.

[AMC*83] Andrews, P.B., Miller, D.A., Cohen, E.L. and Pfenning, F., "Automating Higher-Order
Logic", Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania,
January 1983.

[And81] Andrews, G.R., "The Distributed Programming Language SR: Mechanism Design and
Implementation"”, Software Practice and Experience, 12, No. 8, 1981.

[AW76] Ashcroft, E.A. and Wadge, W.W., "Lucid--A Formal System for Writing and Proving
Programs", Siam J. Comput., Vol. 5, No. 3, September 1976, pp. 336-354

[AWS85] Avrunin, G.S. and Wileden, J.C., "Describing and Analyzing Distributed Software System




32

Designs", ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July
1985, pp. 380-403.

[Bac80] Back, R.J.R., "Correctness Preserving Program Refinements: Proof Theory and
Applications", Ph.D. Dissertation, Math. Cent., Amsterdam, 1980.

[Bac78] Backus, dJ., "The History of Fortran I, II, and III", ACM SIGPLAN Notices, Vol. 13, No. 8,
August 1978, op. 165-180.

[Bal81] Balzer, R., "Transformational Implementation: An Example”, IEEE Transactions on
Software Engineering, SE-7, (1), 1981, pp. 3-14.

[Bar87] Barstow, D., "Artificial Intelligence and Software Engineering”, Proceedings of the Ninth
International Conference on Software Engineering, Monterey, California, pp. 200-211.

[(Bar77] Barstow, D., "Automatic Construction of Algorithms and Data Structures Using a Knowledge
Base of Programming Rules", Ph.D. Dissertation, Stanford University, Stanford, California,
19717.

[BBD77] Bell, T.E,, Bixler, D.C. and Dyer, M.E,, "An Extendable Approach to Computer-Aided
Software Requirements Engineering”, IEEE Transactions on Software Engineering SE-3, 1,
January 1977, pp. 49-60.

{BBK*82] Bodwin, J.M., Bradley, L., Kanda, K, Litle, D. and Pleban, U.F., "Experience With an
Experimental Compiler Generator Based On Denotational Semantics", Proceedings of
SIGPLAN ’'82 Symposium on Compiler Construction, June 1982, pp. 216-229.

[BD77] Burstall, R.M. and Darlington, J., "A Transformation System for Developing Recursive
Programs”, JACM 24, 1, January 1977, pp. 44-67.

[Ber87] Bernstein, Philip A., "Database System Support for Software Engineering", Proceedings of
the Ninth International Conference on Software Engineering, IEEE Computer Society Press,
Monterey, California, March 1987, pp. 166-178,

[BG87] Becker, J. and Goettge, R., "Ada Performance Issues for Real-Time Systems”, DRAFT,
Advanced System Technologies, 1987.

[BGN84] Balzer, R., Goldman, N. and Neches, B., "Specification-Based Computing Environments
for Information Management", Proceedings of the International Conference on Data
Engineering, Los Angeles, California, April 1984, pp. 454-458.

[BGW76] Balzer, R., Goldman, N. and Wile, D., "On The Transformational Implementation
Approach to Programming”, IEEE Proceedings of Second International Conference on
Software Engineering, San Francisco, October 1976, pp. 337-344.

[Bir84] Bird, R.S., "The Promotion and Accumulation Strategies in Transformational
Programming”, ACM Transactions on Programming Languages and Systems 6, (4) October
1984, pp. 487-504.

(Bjo87] Bjorner, D., "On The Use of Formal Methods in Software Development”, Proceedings of the
Ninth International Conference on Software Engineering, IEEE Computer Society Press,
Monterey, California, March 1987, pp. 17-29.

[BKK*86] Bobrow, D.G., Kahn, K., Kiczales, G., Masinter, L., Stefik, M. and Zdybel, F.,
"CommonLoops: Merging Lisp and Object-Oriented Programming”, OOPSLA ‘86: Object
Oriented Programming Systems, Languages, ard Applications, SIGPLAN Notices 21(11),
1986, pp. 17-29.

[BL84] Burstall, R. and Lampson B., "A Kernel Language for Modules and Abstract Data Types",




Report #1, Digital System Research Center Reports, September 1984.

[BM79] Boyer, R. and Moore, J., "A Computational Logic", Academic Press, 1979.

[BMS80] Burstall, R.M., McQueen D.B. and Sannella, D.T., "HOPE: An Experimental Applicative
Language", Internal Rep., Department of Computer Science, Edinburgh University, Scotland,
1980.

[Boe85] Boehm, B.W., "A Spiral Method of Software Development and Enhancement”, Proceedings
of the Second International Software Process Workshop, Wileden, J.C. and Dowson, M.
editors, IEEE Computer Science Press, Coto de Caza, Trabuco Canyon, California, March 1985,
pp. 22-42.

[Boe76] Boehm, B.W., "Software Engineering”, IEEE Transactions on Computers 25, December
1976, pp. 1226-1241.

[BP81] Broy, M. and Pepper, P., "Program Development as a Formal Activity", IEEE Transactions
on Sofiware Engineering, Vol. 7, No. 1, January 1981, pp. 14-22.

[(BPP81] Britton, K.J., Parker, R.A. and Parnas, D.L., "A Procedure for Designing Abstract,
Interfaces for Device Interface Modules", Proceedings of the Fifth International Conference
on Software Engineering, San Diego, California, March 1981, pp. 195-204.

[Bro85] Brookes, S.D., "On the Axiomatic Treatment of Concurrency”, CMU-CS-85-106, Department
of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1985.

[But83] Butler, K.D., "DIANA Past, Present and Future", Lecture Notes in Computer Science Ada
Software Tools Interfaces, Ed. G.Goos and J.Hartmenis, Workshop, Bath: Springer-Verlag,
1983, pp. 3-22.

[CAIS85] Ada Joint Program Office, U.S. Department of Defense, Common Ada Programming
Support Environment Interface Set, Proposed MIL-STD CAIS, 1985.

[Car86a] Cardelli, L., "Amber", Combinators and Functional Programming Languages, Lecture
Notes in Computer Science #242, Springer-Verlag, 1986.

[Car86b] Cardelli, L., "The Amber Machine", Combinators and Functional Programming
Languages, Lecture Notes in Computer Science #242, Springer-Verlag, 1986.

[Cat80] Cattell, R.G.G., "Automatic Derivation of Code Generators from Machine Descriptions”,
ACM Transactions on Programming Languages and Systems 2, (2), April 1980, pp. 173-190.

[CC83] Ceri, S., and Crespi-Reghizzi, S., "Relational Data Bases in the Design of Program
Construction Systems", SIGPLAN Notices 18,11, November 1983, pp. 34-44.

[CC77] Cousot, P. and Cousot, R., "Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints”, Principles of
Programming Languages IV, ACM, January 1977, pp. 238-252.

[CDF*86] Carey, M.J., DeWitt, D. J., Frank, D., Goetz, G., Richardson, J.E., Shekita, E. J., and
Muralikrishna, M., "The Architecture of the EXODUS Extensible DMBS: A Preliminary
Report", Technical Report CS-644, Computer Science Department, University of Wisconsin-
Madison, Madison, May 1986.

[Che84] Cheatham, T.E., Jr., "Reusability Through Program Transformations”, IEEE
Transactions on Software Engineering, Vol. 10, No. 5, September 1984, pp. 589-594.

[Che83) Cheatham, T.E., Jr., "Harvard Programming Development System (PDS)", Software
Engineering Notes 8, (5), October 1983, pp. 49-50.




34

[Che81] Cheatham, T.E., Jr., "Overview of the Harvard Program Development System", Software
Engineering Environments, Hiinke, H. editor, 1981.

[CHT81] Cheatham, T.D., Jr., Holloway, G.H. and Townley, J.A., "Program Refinement by
Transformation”, IEEE Proceedings of Fifih International Conference on Software
Engineering, San Diego, California, March 1981, pp. 430-437.

[CK84] Cooper, K.D. and Kennedy, K., "Efficient Computation of Flow Insensitive Interprocedural
Summary Information”, Proceedings of the ACM SIGPLAN ‘84 Symposium on Compiler
Construction, SIGPLAN Notices 19, 6, June 1984, pp. 247-258.

{CKT86] Cooper, K.D., Kennedy, K. and Torczon, L., "The Impact of Interprocedural Analysis and

Optimization in the R® Programming Environment", ACM Transactions on Programming
Languages and Systems, Vol. 8, No. 4, October 1986, pp. 491-523.

[(Cle84] Clemm, G.M., "ODIN - An Extensible Software Environment Report and User's Manual”,
University of Colorado at Boulder, Computer Science Department Technical Report CU-CS-262-
84, May 1984.

[CO86] Clemm, G.M. and Osterweil, L.J. , A Mechanism for Environment Integration. Technical
Report CU-CS-323-86, University of Colorado, Boulder, January 1986.

[Coc83] Cockshott, W.P., "Orthogonal Persistence”, Thesis CST-21-83, Department of Computer
Science, University of Edinburgh, February 1983.

[Con86] Constable, R.L., etal, "Implementing Mathematics in the NuPrl System”, Prentice-Hall,
1986.

{Coq86] Coquand, T., "An Analysis of Girard's Paradox", First Conference on Logic in Computer
Science, Boston, June 1986.

[Coq85] Coquand, T., "Une Théorie des contructions”, These de Troisidme Cycle, Université Paris
VII, January 1985.

[Cou81] Cousot, P., "Semantic Foundations of Program Analysis", Program Flow Analysis: Theory
and Applications, Jones, N.D. and Muchnick, S.S. editors, Prentice-Hall, Englewood Cliffs,
1981.

{Cur83] Curien, P.L., "Combinateurs Catégoriques, Algorithmes Séquentiels et Programmation
Applicative”, These de Doctorat d'Etat, Université Paris VII, December 1983.

[CW85] Cardelli, L. and Wegner, P., "On Understanding Types, Data Abstraction, and
Polymorphism", ACM Computing Surveys 17, December 1985, pp. 471-522.

[CWWS86] Clarke, L.A., Wileden, J.C. and Wolf, A.L., "Graphite: A Meta-tool for Ada Environment
Development”, Proceedings of the IEEE Computer Society Second International Conference on
Ada Applications and Environments, IEEE Computer Society Press, Miami Beach, Florida,
April 1986, pp. 81-90.

[CZ84] Constable, R.L. and Zlatin, D.R., "The Type Theory of PL/CV3", ACM Transactions on
Programming Languages and Systems, Vol. 6, No. 1, January 1984, pp. 94-117.

[DB73] Darlington, J. and Burstall, R.M., "A System Which Automatically Improves Programs”,
Proceedings of Third International Joint Conference on Artifical Intelligence, Stanford,
California, SRI, Menlo Park, California, 1973, pp. 479-485.

[deB80] de Bruijn, N.G., "A Survey of the Project Automath”, H.B. Curry: Essays on Combinatory
Logic, Lambda Calculs and Formalism, Seldin, J.P. and Hindley, J.R., editors, Academic
Press, 1980.




35

[Der85]) Dershowitz, N., "Program Abstraction and Instantiation", ACM Transactions on
Programming Languages and Systems, Vol. 7, No. 3, July 1985, pp. 446-447.

[Der81] Dershowitz, N., "The Evolution of Programs: Program Abstraction and Instantiation”,
IEEE Proceedings of Fifth International Conference cn Software Engineering, San Diego,
California, March 1981, pp. 79-88.

{DF80] Davidson, J.W. and Fraser, C.W., "The Design and Application of a Retargetable Peephole
Optimizer", ACM Transactions on Programming Languages and Systems 2 (2), April 1980,
pPp- 191-202,

{DK?76] DeRemer, F. and Kron, H.H., "Programming-in-the-Large Versus Programming-in-the-
Small", IEEE Transactions on Software Engineering, June 1976, SE-2, pp. 80-86.

[DR79] Davis, A.M. and Rauscher, T.G., "Formal Techniques and Automatic Processing to Ensure
Correctness in Requirements Specification”, Proceedings of the Specifications of Reliable
Software Conference, April 1979, pp. 15-35.

[DR78] Davis, A M. and Rataj, W.J., "Requirements Language Processing for the Effective Testing
of Real Time Systems", Proceedings of the Software Quality and Assurance Workshop,
November 1978, pp. 61-66.

{DS87] Dietzen, S.R. and Scherlis, W.L., "Analogy in Program Development", The Role of
Language in Problem Solving 2, Boudreaux, J.C., Hamill, B.W. and Jernigan, R. editors,
North-Holland, 1987, pp. 95-117.

[DGL*79] Dewar, R.B.K,, Grand, A., Liu, S.-C., Schwartz, J.T., and Schonberg, E., "Programming
by refinement, as exemplified by the SETL representation sublanguage”, ACM Trans.
Program. Lang. Syst., vol. 1 no. 1 (July 1979), 27-49.

[DSS81] Dewar, R.B.K,, Schonberg, E., and Schwartz, J.T., "Higher Level Programming:
Introduction to the Use of the Set-Theoretic Programming Language SETL", Courant Inst. of
Mathematical Sciences, New York Univ., New York, 1981.

[EP87] Elliott, C. and Pfenning, F., "A Family of Program Derivations for Higher-Order
Unification”, Extended Abstract, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, April 1987.

(Ers82] Ershov, A.P., "Mixed Computation: Potential Applications and Problems for Study",
Theoretical Computer Science 18,1982, pp. 41-67.

{Fai83] Fairbairn, J., "Ponder and Its Type System", Polymorphism, Vol. 1, No. 2, The
ML/LCF/Hope Newsletter, April 1983.

[Fea82] Feather, 11.S., "A System for Assisting Program Transformation", ACM Transactions of
Programming Language Systems 4, (1), January 1982, pp. 1-20.

[Fel79] Feldman, S.I., "Make--A Program for Maintaining Computer Programs”, Software -
Practice & Experience, April 1979, 9(4):255-265.

[Gan86] Ganziner, H. and Jones, N.D., editors, "Programs as Data Objects", (Workshop
Proceedings), LNCS 217, Springer-Verlag, April 1986.

[Gan85] "Special Issue on the Gandalf Project”, The Journal of Systems and Software, May 1985, 5:2.

[GGT78] Glanville, R.S., Graham, S.L., "A New Method for Compiler Code Generation (Extended
Abstract)”, Proceedings of the Fifth Annual Principles of Programming Languages, January
1978, pp. 231-240.

[GHW85a] Guttag, J.V., Horning, J.J. and Wing, J.M., "Larch in Five Easy Pieces", Report #5,




36

Digital System Research Center Reports, July 1985.

[GHW85b] Guttag, J.V., Horning, J.J., and Wing, J.M., "The Larch Family of Specification
Languages", IEEE Software, September 1985, 2:5, vp. 24-36.

[Gir86] Girard, J.Y., "Linear Logic", Univercité Paris, October 1986.

[Gir70] Girard, J.Y., "Une extension de 'interprétation de Godel & I'analyse, et son application &
I'élimination des coupures dans 'analyse et la théorie des types, Proceedings of the Second
Scandinavian Logic Symposium, Fenstad, J.E. editor, North Holland, 1970, pp. 63-92.

[GLB*83] Green, C., Luckham, D., Balzer, R., Cheatham, T. and Rich, C., "Report on a Knowledge-
Based Software Assistant”, Technical Report KES.U.83.2, Kestrel Institute, June 1983.

[GMW79] Gordon, M.J., Milner, A.J. and Wadsworth, C.P., "Edinburgh LCF", Lecture Notes in
Computer Science, No. 78, Springer-Verlag, Berlin, 1979.

{Gol86] Goldberg, A T., "Knowledge-Based Programming: A Survey of Program Design and
Construction Techniques", IEEE Transactions on Software Engienering, SE-12 (7), July
1986, pp. 752-768.

[Gol85] Goldsack, S.J., editor, Ada for Specification: Possibilities and Limitations, Cambridge
University Press, 1985.

[Goo76] Goodenough, J.B., "Exception Handling Issues and a Proposed Notation", Communications
of the ACM 18,12, December 1975, pp. 683-696.

[GR83] Goldberg, A. and D. Robson, Smalltalk-80 : The Language and its Implementation, Addison
Wesley, 1983.

[Gre77] Green, C., "A Summary of the PSI Program Synthesis System", Proceedings of Fifth
International Joint Conference on Artificial Intelligence, M.1.T., Cambridge, Massachusetts,
1977, pp. 380-381.

[Gut77] Guttag, J., "Abstract Data Types and the Development of Data Structures”, Communications
of the ACM, June 1977.

[GT79] Goguen, J.A. and Tardo, J.J., "An Introduction to OBJ: A Language for Writing and Testing
Formal Algebraic Program Specifications”, Proceedings of a Conference on Specifications of
Reliable Software, IEEE Computer Society, April 1979, pp. 170-189.

[Hai86] Hailpern, B., "Multiparadigm Languages and Environments”, IEEE Sofiware, 3(1),
January 19786.

[Hec77) Hecht, M.S., "Flow Analysis of Computer Program”, North-Holland, New York, 1977.

[(HMS85] Heimbigner, D. and McLeod, D., "A Federated Architecture for Information Management”,
ACM Transactions on Office Information Systems, July 1985, 3(3):253-278.

[HN80] Habermann, A.N. and Nassi, I.R., "Efficient Implementation of Ada Tasks", CMU-CS-80-
103, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania,
1980.

[HN86] Habermann, A.N. and Notkin, D., "Gandalf: Software Development Environments", IEEE
Transactions on Software Engineering, December 1986, 12(12):1117-1127.

[HO82] Hoffmann, C.M. and O'Donnell, M.J., "Programming with Equations”, ACM
Transactions on Programming Languages and Systems"”, 4,1, 1982, pp. 83-112.

[Hoa84) Hoare, C.A.R., Occam Programming Manual, Prentice Hall, London, 1984."

(Hoa73] Hoare, C.A.R., "Hints on Programming Language Design", SIGACT/SIGPLAN
Symposium on Principles of Programming Languages, October 1973.




37

{Hoo84] Hook, J.G., "Understanding Russell, a First Attempt", Semantics of Data Types, Lecture
Notes in Computer Science 173, Springer-Verlag, 1984, pp. 51-67.

[How80) Howard, W.A., "The Formulee-As-Types Notion of Construction”, Unpublished manuscript
1969. Reprinted in H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, Seldin, J.P. and Hindley, J.R. editors, Academic Press, 1980.

[Hue87] Huet, G., "A Uniform Approach to Type Theory", INRIA, 1987,

[Hue72] Huet, G., "Constrained Resolution: A Complete Method for Type Theory", Ph.D. Thesis,
Jennings Computing Center Report 1117, Case Western Reserve University, 1972.

[HY86] Hudak, P. and Young, J., "Higher-Order Strictness Analysis in Untyped Lambda Calculus”,
Lhirteenth Annual ACM Symposium on Principles of Programming Languages, St.
Petersburg Beach, Florida, January 1986, pp. 97-109.

{Z76} Hamilton, M. and Zeldin, S., "Higher Order Software - A Methodology for Defining
Software", IEEE Transactions on Software Engineering SE-2, (1), March 1976, pp. 9-32.

[Joh83] Johnson, M.S,, editor, Proceedings of the ACM SIGSOFT/SIGPLAN Sofiware Engineering
Symposium on High-Level Debugging, Pacific Grove, California, March 1983.

[Jon87] Jones, N., "The Theory and Practice of Automatic Program Specification”, Third Workshop
on the Mathematical Foundations of Programming Language Semantics, New Orleans,
Louisiana, April 1987.

[Jon86] Jones, N.D., "Flow Analysis of Lazy Higher Order Functional Programs”, DIKU,
Universitetsparken 1, Copenhagen, 1986.

{Jon80] Jones, N.D., editor, "Semantics-Directed Compiler Generation (LNCS94), Springer-Verlag,
1980.

[JR86] Jones, M.B. and Rashid, R.F., "Mach and Matchmaker: Kernel and Language Support for
Object-Oriented Distributed Systems”, Proceedings of the Conference on Object-Oriented
Programming Systems, Languages and Applications, Ed. N. Meyrowitz, Association for
Computing Machinery, Portland, Oregon, IEEE, November 1986, pp. 67-77.

[JS86] Jorring, U. and Scherlis, W.L., "Compilers and Staging Transformations", Thirteenth
Annual ACM Symposium on Principles of Progamming Languages, St. Petersburg Beach,
Florida, January 1986, pp. 86-96.

[JSS85] Jones, N.D., Sestoft, P. and Sondergaard, H., "An Experiment in Partial Evaluation: The
Generation of a Compiler Generator”, Rewriting Techniques and Applications, Lecture Notes
in Computer Science 202, Springer-Verlag, 1985, pp. 124-140.

[KC86] Khoshafian, S.N., and Copeland, G.P., "Object Identity", Object-Oriented Programming
Systems, Languages and Applications Conference Proceedings, October 1986, (also SIGPLAN
Notices, November 1986), pp. 406-416.

[Kin85] King, R.M., "Knowledge-Based Transformational Synthesis of Efficient Structures for
Concurrent Computation”, Ph.D. Thesis, Rutgers University, Kestrel Institute Report,
KES.U.85.5, April 1985.

[KNS77] Kibler, D.F., Neighbors, J.M. and Standish, T.A., "Program Manipulation via an Efficient
Production System", Proceedings of Symposium on Artifical Intelligence and Programming
Languages, Rochester, New York, SIGPLAN Notices (ACM) 12, 8, August, SIGART
Newsletter ACM 64, August 1977, pp. 163-173.




38

[KP82a] Kieras, D.E. and Polson, P.G., "An Approach to the Formal Anlysis of User Complexity",
Working Paper No. 2, University of Arizona and University of Colorado, October 1982.

[KP82b] Kieras, D.E. and Polson, P.G., "An Outline of a Theory of the User Complexity of Devices
and Systems", Working Paper No. 1, University of Arizona and University of Colorado, May
1982,

[Kur86] Kurki-Suonio, R., "Towards Programming with Knowledge Expressions", Thirteenth
Annual ACM Symposium on Principles of Programming Languages, St. Pstersburg Beach,
Florida, January 1986, pp. 140-149.

[LAB*81] Liskov, B., Atkinson, R., Bloom, T., Moss, E., Schaffert, J.C. and Snyder, A., CLU
Reference Manual, Springer-Verlag, 1981.

[Lam83] Lamport, L., "Specifying Concurrent Program Modules", ACM Transactions on
Programming Languages and Systems, Vol. 5, No. 2, 1983, pp. 190-222.

[Lan66] Landin, P.J., "The Next 700 Programming Languages", ACM Communications, Vol. 9,
No. 3, March 1966, pp. 157-166.

[LC84] Leblang, D.B. and Chase, R.P., Jr., "Computer-Aided Software Engineering in a Distributed
Workstation Environment", Proceedings of the ACM Symposium on Practical Software
Development Environments, Pittsburgh, April 1984, pp. 104-112.

[Lei83] Leivant, D., "Reasoning About Functional Programs and Complexity Classes Associated
with Type Disciplines”, Twenty-fourth Annual Symposium on Foundations of Computer
Science, Tucson, Arizona, 1983, pp. 460-496.

[LF82] London, P.E. and Feather, M.S., "Implementing Specification Freedoms", Science of
Computer Programming, 2(2), November 1982, pp. 91-131.

{LHGS86] Liskov, B., Herlihy, M. and Gilbert, L., "Limitations of Synchronous Communication with
Static Process Structure in Languages for Distributed Computing”, Thirteenth Annual ACM
Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida,
January 1986, pp. 150-159.

(ILHL*77] Lampson, B.W., Horning, J.J., London, R.L., Mitchell, J.G. and Popek, G.J., "Report on
the Programming Language Euclid", SIGPLAN Notices 12, (2), 1977.

[Lin84] Linton, M.A., "Implementing Relational Views of Programs", Proceedings of the ACM
SIGSOFT|SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, Ed. P. Henderson, Association for Computing Machinery, Pittsburgh,
Pennsylvania, ACM, May 1984, pp. 132-140.

[Lis84] Liskov, B., "The ARGUS Language and System", Advanced Course on Distributed Systems,
Munich, April 1984.

[LP80] Luckham, D.C. and Polak, W., "Ada Exception Handling: An Axiomatic Apprach”, ACM
Transactions on Programming Languages and Systems 2, 2, April 1980, pp. 225-233.

{LS83] Lampson, B.W. and Schmidt, E.E., "Organizing Software in a Distributed Environment”,
Proceedings of the ACM Symposium on Programming Languages Issues in Software
Systems, San Francisco, June 1983, pp. 1-13.

[Les75] Lesk, M.E., "Lex - A Lexical Analyzer Generator”, Computer Science TR #39, Bell
Laboratories, Murray Hill, New Jersey, October 1975.

[LS79] Liskov, B.H. and Snyder, A., "Exception Handling in CLU", IEEE Transactions on Software
Engineering SE-5, 6, November 1979, pp. 546-558.




39

[LSG82] Landwehr, R., St. Jansohn, H. and Goos, G., "Experience with an Automatic Code Generator
Generator”, Proceedings of SIGPLAN ‘82 symposium on Compiler Construction, June 1982,
pp. 56-66.

[LV85] Luckham, D., and von Henke, F.W., "An Overview of Anna, A Specification Language for
Ada", IEEE Sofiware, March 1985, 2:2, pp.24-33.

[Mac71] MacLane, S., "Categories for the Working Mathematician”, Springer-Verlag, 1971.

[Mac86] MacQueen, D., "Using Dependent Types to Express Modular Structure", Thirteenth Annual
ACM Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida,
January 1986, pp. 277-286.

[Man87] Manes, E., "Program Expressions in a Category”, Third Workshop on the Mathematical
Foundations of Programming Language Semantics, New Orleans, Louisiana, April 1987.

{Mar84] Martin-L&f, "Intuitionistic Type Theory”, Studies in Proof Theory, Bibliopolis, 1984.

[Mar79] Martin-L¥f, P., "Constructive Mathematics and Computer Programming", Sixth
International Congress for Logic, Methodology, and Philosophy of Science, August 1979.

[(Mau86] Maule, R., "Run-Time Implementation Issues for Real-Time Embedded Ada",
Proceedings of First International Conference on Ada Programming Applications for the
NASA Space Station, June 1986.

[(MB81] MacQueen, D.B. and Burstall, R.M., "Structure and Parameterization in a Typed Functional
Language”, MSS, August 1981.

[Mey86] Meyrowitz, Norman, editor, Object-Oriented Programming Systems, Languages, and
Applications Conference Proceedings, ACM SIGPLAN, ACM, Portland, Oregon, September
1986. SIGPLAN Notices, 21(11), November 1986.

[Mil80] Milner, R., "A Calculus of Communicating Systems", Lecture Notes in Computer Science,
No.92, Springer-Verlag, 1980.

[Mit86] Mitchell, J.C., "Representation Independence and Data Abstraction”, Thirteenth Annual
ACM Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida,
January 1986, pp. 263-276.

[MK83] Magee, J. and Kramer, J., "Dynamic System Configuration for Distributed Real-Time
Systems", IFAC/IFIP Workshop on Real-Time Programming, Hatfield, March 1983.

[MN86] Miller, D.A. and Nadathur, G., "Higher-Order Logic Programming", Third International
Conference on Logic Programming, Imperial College of Science and Technology, London,
July 1986.

[MNRS83] McLeod, D., Narayanaswamy, K. and Rao, K.V. B., "An Approach to Information
Management for CAD/VLSI Applications”, Proceedings of the ACM SIGMOD International
Conference on Databases for Engineering Design, San Jose, May 1983, pp. 39-50.

[Mol84] Mgoller, B., "A Survey of the Project CIP: Computer-Aided, Intuition-Guided Programming”,
Technical Report TUM-18406, Institut fiir Informatik der TU Miinchen, Munich, West
Germany, 1984.

[(Mor73] Morris, J.H., dr., "Protection in Programming Languages”, Communications of the ACM,
Vol. 16, No. 1, January 1973.

[MR86] Meyer, A.R. and Reinhold, M.B., "Type' Is Not a Type", Thirteenth Annual ACM
Symposium on Principles of Programming Languages, St. Fetersburg Beach, Florida,
January 1986, pp. 287-295.




40

[MSOP86] Maier, D., Stein, J., Otis, A., and Purdy, A., "Development of an Object-Oriented DBMS",
Object-Oriented Programming Systems, Languages and Applications Conference
Proceedings, October 1986, (also SIGPLAN Notices, November 1986), pp. 472-482.

[MW80] Manna, Z. and Waldinger, R., "A Deductive Approach to Program Synthesis”, ACM
Transactions of Programming Language Systems 2, (1), January 1980, pp. 90-121.

[(MW77] Manna, Z. and Waldinger, R., "The Automatic Synthesis of Recursive Programs",
Proceedings on Artificial Intelligence and Programming Languages, Rochester, New York,
SIGPLAN Notices (ACM) 12, (8), SIGART Newsletters (ACM) 64, August 1977, pp. 29-31.

[(MY86] Miller, B.P. and Yang, C.Q., "IPS: An Interactive and Automatic Performance
Measurement Tool for Parallel and Distributed Programs”, Technical Report 613, Computer
Science Department, University of Wisconsin-Madison, Madison, Wisconsin, December
1986.

(Nau63] Naur, P., editor, "Revised Report on the Algorithmic Language ALGOL 60",
Communications of the ACM, Vol. 1, No. 17, January 1963.

[Nei80] Neighbors, J.M., "Software Construction Using Components”, Ph.D. Dissertation, Technical
Report 160, University of California, Irvine, California, 1980.

[Neu85] Neumann, P. G., "Letter from the Editor; Risks to the Public", Software Engineering Notes
10 (5), October 1985, pp. 4-14.

[Nie85] Nielson, F., "Program Transformations in a Denotational Setting", ACM Transactions on
Programming Languages and Systems, Vol. 7, No. 3, July 1985, pp. 359-379.

[OSD86] Orenstein, Jack A., Sarin, Sunil K., and Dayal, U., "Managing Persistent Objects in Ada",
Technical Report CCA-86-03, Computer Corporation of America, Cambridge, Massachusetts,
May 1986.

[Ost87] Osterweil, L., "Software Processes Are Software Too", Proceedings of the Ninth
International Conference on Sofiware Engineering, Monterey, California, March 1987, pp. 2-
13.

{Ost86] Osterweil, L., "A Program-Object Centered View of Software Environment Architecture”,
University of Colorado, Department of Computer Science Technical Report CU-CS-332-86, May
1986.

[PC86] Parnas, D.L. and Clements, P.C., "A Rational Design Process: How and Why to Fake It",
IEEE Transactions on Software Engineering SE-12, 2, February 1986, pp. 251-257.

[Phi83] Phillips, J., "Self-Described Programming Environments”, Ph.D. Thesis, Stanford
University Computer Science Department, Kestrel Institute Report, KES.U.83.1, March 1933.

[Per87a] Perry, D.E., "Software Interconnection Models", Proceedings of the Ninth International
Conference on Software Engineering, Monterey, California, March 1987, pp. 61-69.

[Per87b] Perry, D.E., "Version Control in the Inscape Environment", Proceedings of the Ninth
International Conference on Software Engineering, Monterey, California, March 1987, pp.
142-149.

(PL83] Powell, M.L., and Linton, M.A., "Database Support for Programming Environments",
Proceedings of the ACM SIGMOD International Conference on Databases for Engineering
Design, San Jose, May 1983, pp. 63-70.

[Pre86) Pressburger, T., "An Environment Supporting the Automation of Software Development”,
Kestrel Institute, KES.U.86.7, September 1986.




41

(Ras86) Rashid, R.F., "From RIG to Accent to Mach: The Evolution of a Network Operating System”,
Proceedings of the Fall Joint Computer Conference, November 1986, pp. 1128-1137.

[Rei87] Reiss, S.P., "A Conceptual Programming Environment", Proceedings of the Ninth
International Conference on Software Engineering, Monterey, California, March 1987, pp.
225-235.

[Rei85] Reiss, S.P., "PECAN: Program Development Systems That Support Multiple Views", IEEE
Transactions on Software Engineering SE-11, 3, March 1985, pp. 276-285.

[Rei84] Reiner, A., "Cost-Minimization in Register Assignment for Retargetable Compilers”, CMU-
CS-84-137, Department of Computer Science, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, 1984.

[Rep82] Reps, T., "Generating Language-Based Environments", TR82-415, Cornell Computer
Science Department, August 1982.

[Rey85] Reynolds, J.C., "Three Approaches to Type Structure”, TAPSOFT Advanced Seminar on the
Role of Semantics in Software Development, Berlin, March 1985.

[Rey72] Reynolds, J.C., "Definitional Interpreters for Higher Order Programming Languages”,
Proceedings ACM National Conference, Boston, August 1972, pp. 717-740.

[RLT78] Randell, B., Lee, P.A. and Treleaven, P.C., "Reliability Issues in Computing System
Design", ACM Computing Surveys 10, No. 2, 1978.

[Rob79] Robinson, J.T., "Some Analysis Techniques for Asynchronous Multiprocessor Algorithms",
IEEE Transactions on Software Engineering, Vol. SE-5, No. 1, January 1979, pp. 24-31.

[Roc75] Rochkind, M.J., "The Source Code Control System", IEEE Transactions on Software
Engineering, SE-1, 1975, pp. 364-370. .

[RR77] Robinson, L. and Roubine, O., "SPECIAL - A Specification and Assertion Language", CSL-
46, SRI International, June 1977.

(RS82] Reif, J. and Scherlis, W.L., "Deriving Efficient Graph Algorithms", Carnegie-Mellon
University Technical Report, Pittsburgh, Pennsylvania, 1982.

[RS77] Ross, D.T. and Schoman, K.E,, Jr., "Structured Analysis for Requirements Analysis", IEEE
Transactions on Software Engineering SE-3, (1), January 1977, pp. 6-15.

[RSW79] Rich, C., Shrobe, H.E., Waters, R.C., "Overview of the Programmer's Apprentice"”,
Proceedings of Sixth International Joint Conference on Artificial Intelligence, Tokyo,
August, 1979.

[RTD83] Reps, T., Teitelbaum, T. and Demers, A., "Incremental Context-Dependent Analysis for
Language-Based Editors", ACM Transactions on Programming Languages and Systems 5,
(3), July 1983, pp. 449-477.

[SB83] Smoliar, S.W. and Barstow, D., "Who Needs Languages, and Why Do They Need them? or,
No Matter How High the Level, It's Still Programming", SIGPLAN Notices 18, (6), June 1983,
pp. 149-157.

[SB78] Stone, H.S. and Bokhari, S.H., "Control of Distributed Processes", IEEE Computer, July 1978,
Pp. 97-106.

[Sch85] Scherlis, W.L., "Adapting Abstract Data Types", Carnegie-Mellon University, Pittsburgh,
Pennsylvania, September, 1985.

[Sch81] Scherlis, W., "Program Improvement by Internal Specialization”, Eighth ACM Symposium




42

on Principles of Programming Languagues, ACM, Willamsburg, Virignia, January 1981, pp.
41-49,

[Sco87] Scott, D., "Domains in the Realizability Universe", Third Workshop on the Mathematical
Foundations of Programming Language Semantics, New Orleans, Louisiang, April 1987.

[Sco80] Scott, D., "Relating Theories of the Lambda-Calculus”, H.B. Curry: Essays on Combinatory
Logic, Lambda-Calculus and Formalism", Seldin, J.P. and Hindley, J.R. editors, Academic
Press, 1980.

[Sco70] Scott, D., "Constructive Validity”, Symposium on Automatic Demonstration, Lecture Notes
in Mathematics No. 125, Springer-Verlag, 1970, pp. 237-275.

{SHK*76] Standish, T.A., Harriman, D.C., Kibler, D.F. and Neighbors, J.M., "The Irvine Program
Transformation Catalogue”, Department of Information and Computer Science, University of
California, Irvine, California, 1976.

[Sin80] Sintzoff, M., "Suggestions for Composing and Specifying Program Design Decisions",
International Symposium on Programming, Springer-Verlag, Lecture Notes in Computer
Science, 1980.

[Spe87] Spector, Alfred Z., Distributed Transaction Processing in the Camelot System, Technical
Report CMU-CS-87-100, Computer Science Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, January 1987.

[SR86] Stonebraker, M. and Rowe, L.A. , "The Design of Postgres", Proceedings of the ACM
SIGMOD ‘86 International Conference on Management of Data, Washington, D.C., June
1986, pp. 340-355.

[SS83] Scherlis, W.L. and Scott, D.S., "First Steps Towards Inferential Programming”, Carnegie-
Mellon University Technical Report CMU-CS-83-142, July 1983.

[ST84] Standish, T.A. and Taylor, R.N., "Arcturus: A Prototype Advanced Ada Programming
Environment”, Proceedings of the ACM SIGSOFT[SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, Software Engineering Notes,
May 1984, 9(3):57-64.

[ST78] Stevens, S.A. and Tripp, L.A., "Requirements Expression and Verification Aid",
Proceedings of the Third International Conference on Sofiware Engineering, May 1978, pp.
101-108.

[Sza78) Szabo, M.E., "Algebra of Proofs”, North-Holland, 1978.

[SZBHS86] Swinehart, D.C., Zellweger, P.T., Beach, R.J. and Hagmann, R.B., "A Structural View of
the Cedar Programming Environment", ACM Transactions on Programming Languages
and Systems, Vol. 8, No. 4, October 1986, pp. 419-490.

[TCO*86] Taylor, R.N., L.A. Clarke, L.J. Osterweil, J.C. Wileden, and M. Young., "Arcadia: A
Software Development Environment Research Project”, Second International Conference on
Ada Applications and Environments, April 1986, pp. 137-149.

[Tei85) Teitelman, W., "A Tour Through Cedar", IEEE Transactions on Software Engineering,
1985, SE-11(3):284-302.

[Tic86) Tichy, Walter F., "Smart Recompilation”, ACM Transactions on Programming
Languages, July 1986, 8:3, pp. 273-291.

[Tic85) Tichy, Walter F., "RCS - A Syste.n for Version Control”, Software - Practice and Experience,
July 1985, 15:7, pp. 637-654.




43

[Tic82] Tichy, W.F., "Design, Implementation, and Evaluation of a Revision Control System",
Proceedings of the Sixth International Conference on Software Engineering, Tokyo, Japan,
September 1982, pp. 58-67.

[Tic79] Tichy, W.F., "Software Development Control Based on Module Interconnection”, Fourth
International Conference on Software Engineering, Munich, September 1979.

[Tha82] Thall, Richard M., "The KAPSE for the Ada Language System", Proceedings of the
AdaTEC Conference on Ada, ACM, October 1982, pp. 31-47.

[TM81] Teitelman, W., and Masinter, L., “The Interlisp Programming Environment", Computer
14, 4, April 1981, pp. 25-33.

[TR81] Teitelbaum, T. snd Reps, T., "The Cornell Program Synthesizer: A Syntax-Directed
Programming Environment", Communications of the ACM 24, 9, September 1981, pp. 563-573.

[Tur85) Turner, D.A., "Miranda: A Non-Strict Functional Language with Polymorphic Types",
Functional Programming Languages and Computer Architecture, Jouannaud, J.P. editor,
Springer-Verlag LNCS 201, 1985 pp. 1-16. -

[VMS86a] Volz, R. and Mudge, T., "Instruction Level Mechanisms for Accurate Real-Time Task
Scheduling", Proceedings of Real-Time Systems Symposium, December 1986.

[VM86b] Volz, R.A. and Mudge, T.N., "Timing Issues in the Distributed Executioz of Ada
Programs"”, IEEE Transactions on Computers, Parallel and Distributed Processing, 1986.

[War77] Warren, D., "Applied Logic - Its Use and Implementations as a Programming Tool", Ph.D.
Thesis, University of Edinburgh, 1977.

[Wat82) Waters, R.C., "The Programmer's Apprentice: Knowledge Based Program Editing", IEEE
Transactions on Software Engineering SE-8, 1, January 1982, pp. 1-12.

[Wat81] Waters, R.C., "A Knowledge-Based Program Editor", Proceedings of Severth
International Joint Conference on Artifical Intelligence, 1981.

[WEB82] Winchester, J. and Estrin, G., "Requirements Definition and Its Interface to the SARA
Design Methodology for Computer-Based Systems”, National Computer Conference, 1982, pp.
369-379.

[Wei71] Weinberg, G.M., "The Psychology of Computer Programming”, Van Nostrand Reinhold,
New York, 1971.

[Wel86] Wells, M.B., "General Purpose Languages for the Nineties", Frontiers of Supercomputing,
University of California Press, 1986.

[Wie86] Wiebe, D., "A Distributed Repository for Immutable Persistent Objects"”, Object-Oriented
Programming Systems, Languages and Applications Conference Proceedings, October 1986,
(also SIGPLAN Notices, November 1986), pp. 453-465.

[Wil83] Wile, D.S., "Program Developments: Formal Explanations of ImplementaZions”,
Communications of the ACM, 26(11), November 1983, pp. 902-911.

[Win87] Winkler, J.F.H., "Version Control in Families of Large Systems", Proceedings of the
Ninth International Conference on Software Engineering, Monterey, California, March 1987,
pp- 150-161.

[Win79] Winograd, T., "Beyond Programming Languages”, Communications of the ACM 22, (7),
July 1979, pp. 391-401.

[(WPSK86] Wasserman, A.lL, Pircher, P.A., Shewmake, D.T. and Kersten, M.L., "Developing
Interactive Information Systems with the User Software Engineering Methodology”, IEEE




44

Transactions cr: Softwar? Engineering SE-12, February 1986, pp. 326-345.

[YB85] Yemini, S. and Berry, D.M., "A Modular Verifiable Exception-Handling Mechanism",
ACM Transactions on Programming Languages and Systems 7, 2, April 1985, pp. 214-243.

[Zad84] Zadeck, F.K., "Incremental Data Flow Analysis in a Structured Program Editor”,
Proceedings of the ACM Sigplan ‘84 Symposium on Compiler Construction, SIGPLAN
Notices 19, 6, June 1984, pp. 132-143.

{Zav82] Zave, P., "An Operational Approach to Requirements Specification for Embedded Systems”,
IEEE Transacations on Software Engineering SE-6, (3), March 1982, pp. 253-269.

[ZCL86] Zadeck, K., Cytron, R. and Lowry, A., "Motion of Control Structures in High-Level
Languages”, Thirteenth Annual ACM Symposium on Principles of Programming
Languages, St. Petersburg Beach, Florida, January 1986, pp. 70-86.

[Zdo86] Zdonik, S. B., "Maintaining Consistency in a Database with Changing Types”, Object-
Oriented Programming Workshop, June 1986, (also SIGPLAN Notices, October 1986), pp. 120-
127.

[Z586] Zave, P. and Schell, W., "Salient Features of an Executable Specification Language and Its
Environment”, IEEE Transactions or Software Engineering, February 1986, SE-12(2):312-
325.

{ZW86] Zdonik, S.B. and P. Wegner, "Language and Methodology for Object-Oriented Database
Environments”, Proceedings of the Nineteenth Annual Hawaii International Conference on

ystem Sciences, January 1986, pp. 378-387.

[ZW85] Zdonik, S.B. and P. Wegner, "A Database Approach to Langueges, Libraries and
Environments”, Proceedings of the Workshop on Software Engineering Envirenments for
Program.ming-in-the-Large, Harwichport, Massachusetts, June 1985, pp. §3-112.




A Conceptual Overview of Prism

Deborah A. Baker
David A. Fisher
David A. Mundie

Jonathan C. Shultis
Frank P. Tadman

Incremental Systems Corporation
319 South Craig Street
Pittsburgh, Pennsylvania 15213

February 22, 1991

[P R
¥ m—————— - R e - -

1 Abstract

Artificial barriers which partition and isolate software activity are inherent in current software
development environments. Deliberate and explicit partitioning is evident iu the separation of
programming languages from operating systems from databases, but more subtle barriers are
manifested as limitations to expressiveness forcing overspecification and over-specialization, and
barriers to sharing, access, and reuse caused by failure to represent aad maintain semantic infor-
mation about the artifacts produced and maintained by our tools.

The goal of the Prism effort is to produce a common persistent framewozk in which we can
express, capture, ‘euse, improve, and build on anything that might be relevant to computational
activity. Our means of achieving this integrated framework is a language emphasizing expressivity
and serving as a medium for dialogus, rather than one-way communication, between user and
machine. Highlights of the language include the ability to express and manage incomplete and

1This work was supported in part by DARPA under contract number MDA 972-88-C-0076.




inconsistent specifications, and a view of semantics that replaces fixed and rigid interpretation of
syntactic forms with interpretations that can be imprecise, dynamic, and strongly influenced by
history and context.

Though we are scm~what surprised by the seeming radicalness of our approach, we are both
convinced that such a departure from tradition is necessary, and encouraged that the goals continue
to appear achievable. It is important to recognize, however, that this effort does not expect to
solve any particular recognized software problem, but only to characterize an enabling technology
that will remove the traditional obstacles to their solution.

2 Why Not Another Programming Language?

Reflection on the history of computer languages reveals a disturbing pattern. Languages are both
generated and abandoned at a very high rate. A few languages, like FORTRAN, sh, and SQL,
persist, though they are revised periodically in an attempt to improve them. These remarks apply
to computer languages invented for a wide variety of purposes, such as operating system and
database interfaces, specification languages, requirements languages, and prototyping languages,
as well as programming languages. In all cases, the primary cause of longevity in a computer
language seems to be not so much that the language has some intrinsic qualities that make it
superior, but that there is so much invested in systems written in the language, not to mention
the costs of language and environment implementation, and the even higher costs of training
and supporting a workforce that has the competence and experience required to use a language
effectively. As new paradigms and technologies ppear, the number and variety of languages
i1creases, and cults are formed around the idea that one or another family of languages is ultimately
superior to all others, which will eventually pass into heathen oblivion, leaving the world of
languages a smaller and cleaner place. History, however, tells another story.

Conventional wisdom, as preached by language moderates, is that the diversity and evolution
of languages in punctuated equilibria is a natural, perhaps even inevitable, consequence of the
diverse and often conflicting demands of their application niches. But is it inevitable? And is it
desirable? Although the current situation in computer language engineering bears a strong analogy
to biological evolution, the latter does not seem to us to be the best model for an engineering
strategy. For one thing, it is slow and inefficient. Perhaps more importantly, it is not directed
towards any goals, but merely plays off the (dis)advantages of one mutation against those of others.

Experimental research and innovation are necessary for technological progress, and there is
bound to be much trial and error. Edison tested ? materials before finding a satisfactory filament
for the electric light bulb. At the end of his experimentation, though, he had a solution to a
problem - an answer. Experimentation with computer languages is often seen as being analogous,
but the nature of the problem has never been very clearly articulated. If we look closely, we
see that each language, or family of languages, is really directed toward a solution to a limited
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problem, such as how to specify queries in a language that is psychologically natural and supports
efficient retrieval, or how to express algorithms in a language that enhances clarity and reliability.

This kind of activity is very different from an effort to solve some kind of overall “language
problem”. Instead, 1t produces many solutions to many problems. What we find disturbing about
this is the proliferation of highly duplicative efforts to solve limited problems at great expense,
resulting in fragmentary and incohesive interfaces between people and computer systems as a
whole. The typical computer user employs several languages for each of a wide variety of tasks,
with little uniformity among them, and less ability to share or integrate what is done in one
language with what is done in another.

Is there a language problem? Clearly, there is. The problem is to find an effective way of
communicating with computer systems. We hypothesize that the problem has a solution because
we are equipped with several solutions to the related problem of effective communication among
people, namely English, Japanese, Dutch, Swahili, etc. These examples of real solutions differ
markedly from computer languages generally. Though there is diversity in natural languages, it is
unlike the diversity of computer languages. Natural languages evolve gradually, and are infinitely
capable of assimilating new paradigms, techniques, and ideas. There are relatively few natural

languages, they are relatively stable, and their rates of generation and extinction are extremely
low. .

At a deeper level, we observe that people have the capacity to be multilingual in a way that
transcends translation, because the nature of understanding is universal across all human tongues,
including our artificial ones. Thus, despite diversity, the things we do in one language are easily
shared and integrated with those we do in another. This is true even when what is done in one
language cannot possibly be translated into another, as is the case with poetry and punning.

Have there been any experiments aimed at solving this problem? There has been one, based on
formal semiotics as embodied in our books and articles about language design and implementation,
and our formal theories of syntax, semantics, and pragmatics. Over the years, this experiment
has led to the invention of a great many filaments that are good for special purposes, but none of
which sheds the full-spectrum light we need. The general characteristics of artificial and natural
languages cited above suggest that this is no accident; that there is something fundamentally
flawed in our entire approach to the language problem. It is time for a second experiment.

3 The Goals of Prism

The Prism project is aimed at laying the conceptual and practical foundations for a new kind of
language for communicating with computers. The hallmark of Prism is its open-endedness in all
dimensions. In the past, languages have tried to overcome various limits by being comprehensive
and complete in some respect. The Prism goal is not to be complete, but rather to expunge from
the language all varieties and degrees of absoluteness and finality, theieby permitting unbounded




expressiveness.

During the initial phase of the project, which officially started in the Fall of 1988, it became
increasingly clear to us that the problem we had set out to solve required some change to the basic
structure of language systems, while preserving and accomodating existing language features and
implementation techniques. At the most basic level, this has meant replacing the conventional
model of language as a means of expressing (naming, identifying, denoting) objects in some se-
mantic domain with a model in which language is used in a more relative and oblique fashion for
the mutual orientation of the parties to a dialogue. Thus Prism is a language for conversing with
a system that happens to inhabit a computer, 2 and which has access to and control over the
computer’s resources. The primary object of a conversation with the system is to have it employ
those resources on your behalf.

Some potential misconceptions must be dispelled at once. First and foremost, Prism will not,
all by itself, solve any of the specific problems alluded to in the introduction. It will only remove

the obstacles to their solution implicit in the platforms on which current languages and systems
are designed and implemented.

Secoudly, Prism is not a programming language, though it can be used to express and discuss
programs. It can also, however, be used to communicate about specifications, designs, versions,
analyses, requirements, failures, time, problem domains, implementation techniques, notations,
representations, transformations, goals, hardware characteristics, operating environments, persis-
tent data, expected behaviors, user models, formal deductive systems - in short, anything that
bears on the technical aspects of the development, maintenance, or operation of computer systems.

The ambition is for Prism to be a “full spectrum” language, in a variety of dimensions. First
off, it permits specification at arbitrary levels of abstraction. In this it extends the ambition of
so-called “wide spectrum” languages, which have attempted to bridge gaps between particular
specification languages and implementations. It is not our aim to build any particular bridge or

set of bridges, but to design a language in which bridges like these can be built and extended
indefinitely.

In another dimension, Prism accomodates incomplete and incorrect specifications as well as
complete and correct ones. Tolerance for incompleteness is important not only for incremental
refinement, but is a key tc avoiding overspecification. Forced overspecification is rampant in
current languages, making it difficult to determine which design decisions are important, and which
are arbitrary. Many of the difficult and expensive analyses performed by optimizing compilers are
aimed at recovering a less committed design so that the compiler can make its own commitments,
based on information that is not relevant or readily available to the programmer. As long as
the information supplied by the user is sufficient, in combination with the automated system, to
obtain the results desired, nothing further is required. Nor is the user prevented from specifying
any information that might improve the efficiency or utility of an application. The system’s

2The use of the singular should not be construed as limiting the system to a single box. A global network is as
much a computer as is an isolated PC.




is to eliminate limits wherever they are found in the existing language framework, and avoid
introducing new ones. This is much easier said than done, however, and the number and kind
of limits that exist is not always apparent. Moreover, there are strong arguments in favor of
limitations, which can serve to guarantee certain degrees of consistency, completeness, or simplicity
a priori. These advantages, and the technology that goes along with them, can be preserved in
the Prism framework, in the guise of contexts within which certain overarching assumptions can
be made. In contrast to the current situation, however, sharing and propagation are enabled by a
common underlying language, semantic representation, and persistent context.

The most troublesome puzzle is how a common language can be created which not only acco-
modates all of the useful paradigms, modes of expression, and technologies which currently exist,
but also those which have yet to be invented. The current language framework would require us
to define a single comprehensive language right now which somehow merges existing languages
and anticipates all future developments, and this is clearly not possible. Even if we limit ourselves
for the moment to formal logic, the problem, as Gddel’s incompleteness result makes abundantly
clear, is that one cannot have a single fixed system for any significant purpose which is simulta-
neously consistent and complete. This seems to force upon us a choice between completeness and
consistency, and most reasonable people opt for consistency.

The choice, however, is not forced. There is the option, which seems to have gone unnoticed,
of having an open-ended, variable, system. Yet it is easy to see that any kind of systematic,
parametric, variability will not suffice, because all one can obtain in that way is a fixed system of
higher order. Something more basic has to give.

Natural languages apparently have the kind of open-endedness and flexibility required, but
to reduce the problem to that of natural language understanding would be to trivialize it, and
quite probably to doom oneself to failure. It is nonetheless reasonable to look to natural language
for clues. What one finds is that natural language belies the formal language framework at
virtually every point. Even the most basic ideas, that a language is a set of strings, that it has
a grammar, and that meaning is compositional, are blasted, to an extent not widely recognized,
and often denied, by computational linguists following the lead of such luminaries as Chomsky
and Montague.

The surface features of a natural language are in fact merely the expression of a capacity to
communicate, shaped by the cultural and personal experiences of each speaker. A language like
English is a collective, a posteriori, phenomenon that is generated and sustained by a community
of speakers.

An analogy with biological taxonomy may help to clarify this idea. Early taxonomists such as
Linnaeus classified organisms on the basis of their features, or morphology, leading to a definition
of species as a set of features, corresponding to the definition of language as a set of strings, or
grammatical structures.

The advent of genetics and population biology provided an alternative definition of species, as




iolerance for incompleteness and inconsistency is due to a semantics based on intensional objects
and supporting intensional reasoning. This support for intensionality implies absolute conceptual
freedom, allowing fictives, nonexistents, counterfactuals, and abstractions of all kinds and levels
to be expressed.

In yet another dimension, all of the functions ordinarily assigned to operating systems, file
systems, and databases are absorbed into the Prism system. All persistent data are contained in
the persistent context, which includes all machines, networks, and removable media. When we say
the persistent context, we mean it; there is only one. (At least, for any given Prism system. There
is always the possibility of having multiple systems, much as there are multiple people, but each
has its own unique and subjectively comprehensive context.) The system is also responsible for all
aspects of control, including resource management and scheduling, requiring all of the elements of
the system’s grounding in the physical world of the computer to be predefined in the persistent
context.

To avoid giving the impression that we regard Prism as some kind of panacea, we must
hasten to point out that the system'’s representations of its users’ intent, and the real semantic
content of their utterances, is inherently imperfect and limited. The system will blindly accept
any inputs that are consistent with what it has received before, according to whatever tests it has
been organized to undertake to verify consistency. We believe these limitations are inherent in
all uses of language, even among people. They become even more acute in the case of computer
languages, including Prism, because no computer system has any potential for contact with the
reality of human concerns such as asthetics and hunger, which are not part of the natural context
of machines. These things can only be reflected in abstract models which necessarily fall short
of genuine contact with the human world. Thus the design of systems which are responsive to
human desires and needs will remain a human task, requiring great skill and sensitivity, and the
responsibility for making decisions that affect human welfare must ultimately remain with people.

The need for a language of Prism’s intended scope is clear; we cannot seriously hope to enlist
computers as effective partners in computer system engineering without it. The practical impos-
siblity of creating such a language within the tradition of formal languages as we know them is
equally clear, and this is the source of a second potential misconception: that a language must be
unimaginably complex to achieve our stated goals. In order to respond to this, quite legitimate,
concern, we have to explain the basic difference between Prism and conventional computer lan-
guages, and how it may solve the problem of fragmentation without being crushed under its own
complexity.

4 The Prism Approach to Language

If the fundamental problem with existing languages is that they erect barriers and impose limits
restricting our ability to propagate technology and share results, then the solution to the problem




a freely interbreeding populatior.. In this view, what identifies a species is genetic compatibility,
which is expressed in a set of similar phenotypes. Phenotypic variation arises from a combination
of genetic variation and individual history and environment.

The approach to language we are advocating here corresponds more closely to this latter
theory. On this account, English is the (somewhat accidental and ephemeral) expression by a
community of speakers of a basic communicative capacity. Differences in capability, errors in
transmission, “interbreeding”, drift due to cultural isolation, and happenstance account for much
of the variability of natural language, but changes may also be stimulated by the appearance
of new things in the cognitive landscape. Thus language adapts to changing circumstances and
assimilates new ideas.®

Now, a conventional formal language is a closed system, in that its semantics, and in particular
its semantic domain, is fixed at the outset by the language definition. As a rule, the more complex
the semantic domain, the more complex the syntax that is needed to cover it.*

Prism, on the other hand, is an open-ended system, in that its semantics is determined by the
contents of the persistent context in which the system is embedded, and the interpretation given
to those contents. The persistent context can be viewed as a kind of “knowledge base”, which may
become arbitrarily complex, incorporating objects from arbitrary domains. For an object from a
previously unknown domain to be brought into the context (immigrate), all that is required is to
name it, thus entering in the persistent context an ideograph consisting of nothing but the identity
of the object, i.e., a reference to it. The system may become informed of additional properties of
an object in a variety of ways, the most basic of which is to be told about them.® Thus Prism
can be used for arbitrarily complex purposes while remaining small and uniform as a language,
because it can accomodate semantic extensions without accompanying syntactic extensions.

Actually, the situation with regard to semantic and syntactic extension is more complicated
than the rhetoric here would suggest. For one thing, most implementations of programming lan-
guages, such as FORTRAN, permit a great deal of semantic extension through externally defined
subroutines, and some languages, such as Ada, even include such facilities explicitly in their def-
inition. However, these things can be used to “break” the semantics of the language, as when
multitasking is added to FORTRAN by this means. The problem is that the new objects are

3At the risk of drawing the analogy too far, the adaptation of language in direct response to its “environment” is
a kind of Lamarckian mechanism, far exceeding in efficiency and appropriateness random mutation, recombination,
and natural selection. The extent to which the success of genus homo can be attributed to this more effective mode
of adaptation cannot be overstated.

4As a simple example, consider Scott’s LAMBDA [Sco76], in which the product type is “defined” by a term of
LAMBDA. What one really gets, of course, is a retract of Pw, i.c., a set of elements of Pw which serve to represent
ordered pairs. This is fine as far as it goes, but if one wanted to denote objects from some other domain and use
them to represent ordered pairs, it would be necessary to add syntax to LAMBDA to denote them, because all of
the existing syntax has already been exhausted on Pw.

5Common Lisp exhibits some open-endedness, in that there is a universal type of all objects, and some predefined
types, but there is no restriction of types to compositions of predefined types, nor of objects to the objects of the
predefined types.
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accessed using the syntax of subroutines, but do not conform with the semantics of FORTRAN
subroutines, so that the semantics of such things as assignment statements and even simple ex-
pression evaluation may be disrupted. In Prism, the use of an extension in a syntactic combination
such as function application would be permitted only after establishing either that the extension
conforms with the semantics of application (in this case, that it is of type function), or making an
appropriate extension to the semantics of application. What Prism permits, that other languages
do not, is both of these alternatives, as well as the means to express them. Moreover, it demands
that one or the other, or a combination, be accomplished, so that consistency is assured.

The ability to adjust the semantics of operators in Prism hinges on severing the rigid binding
of semantics to syntax. This is the primary motivation for introducing the idea of interpretation,
whereby the properties associated with an operator, and its scope of applicability, can be modified
in response to changing circumstances. Two important kinds of interpretation shift are gener-
alization and restriction. A mathematical example of the former is the generalization of power
series on R to formal power series. An even more striking example is provided by MacLane’s ac-
count of the genesis of the concept of category, aided by a shift in notation from the set-theoretic
f(X) C Y for the signature of a function to the less commital f: X — Y [Mac71). Restrictions are
equally important, for example when something new shows up on the horizon that violates a for-
merly general law, which must now be hedged. For example, the unrestricted rule of S-conversion,
(Az. e1)e; — eq[ez/x], has to be restricted when a nondeterministic choice operator is introduced.
(In the long run, one would also like a new general rule covering the choice operator, but in the
interim the restricted rule justifies retaining results obtained before the disruptive extension was
made.)

Of course, the vocabulary and concepts of the language may grow well beyond the capacity
of any one person, or machine, to grasp them all, but this is to be expected. Nobody knows all
the words in English, nor more than a handful of the concepts that are found in our libraries and
the combined minds of all our experts. As the complexity of the persistent context grows, we
may expect limitations on the speed and capacity of individual machines to lead to some kind
of division of labor amongst them. Burgeoning complexity will also create constant pressure to
generalize and abstract knowledge, so that large volumes of specific facts may be replaced by
methods for recomputing them on demand.

As remarked earlier, the historical continuity and inierpretive sensitivity of Prism allows the
system to ass.milate new concepts and techniques, and thus become increasingly useful. Assim-
ilation is the key to a cumulative software technology, in which the benefits of new technology
may be propagated to existing applications, and the benefits of past technology are automati-
cally conferred on all future applications. This cumulative platform stands in sharp contrast with
existing platforms, which are fragmented, duplicative, and lack the ability to propagate existing
technology forward, or new technology backward.

The central importance of historical continuity uncerlying the cumulative strategy forces the
language/system designer to focus on conversations iustead of isolated utterances. A conversation




users — nothing can be left “outside” the persistent context. This includes inconsistent and
incomplete utterances, fictives, and other flavors of nonexistents, such as round squares and
flying horses, the reason being that it is impossible to discuss and reason about partial or
incorrect specifications if they are excluded from the language.®

Although in some respects the Prism system is a kind of “epistemic engine”, and takes some
of its inspiration from natural language, it is neither a project in “machine learning”, nor in
“natural language understanding”. We have no plans to incorporate, ror contribute any advances
to, specific technologies aimed at enabling systems to learn, nor are we attempting to develop a
system which converses with the user in natural language. Rather, Prisin seeks to enrich formal
language with features that have some of the more powerful descriptive capabilities of natural
language.

On the other hand, the predefined syntax and notations of Prism exploit a number of features
from natural language, complementing and enriching a style of mathematical notation which has
some novel aspects of its own. To some extent, the features of natural language are better suited to
open-ended, incomplete, and distributed specifications than are their formal counterparts, which
are designed to eliminate lexical, syntactic, and semantic ambiguities by restricting expressions
to highly stylized syntactic forms. The goal here is to develop a syntax in which one can write
in the style of a good mathematical text, in which formulaic notation and English description are
intermixed. More will be said about syntax in §10.

Beyond any particular syntax, we require that it be possible for machine learning, natural
language, and other AI technology to be programmed and integrated with the system through
its use. This requirement obliges us to anticipate and provide the potential for such things in
the basic design. After all, the limitations on the dimensions and degrees of language extension
imposed by existing languages is at the heart of the problem we are trying to solve.

5 Basic Organization of the Prism Language System

The central focus of the Prism language system is the persistent context, in which all information
available to the system is recorded and organized. This includes all information about the system
and language itself, as well as all information about applications and the tools used to develop
them.

Superimposed on the persistent context is a conversational context, which supplies a parser,
generator, and interpretation for the basic constituents of utterances. The parser and interpreter

“Programming languages guarantee consistency by excluding inconsistent utterances. This makes consistency
into a kind of language property. In Prism, consistency (or lack thereof) is expressly not a language property -
it is a property of utterances, which they may or may not possess. The problem, as we see it, is not to exclude
inconsistency, but to manage it.
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typically have to interact as coroutines because parsing may depend on the interpretations given
to proper names, anaphoric references, and indexicals generally. Moreover, the parser may contain
internal references to parsing rules which may, in principle, vary with context.

Interpretations are synthesized from three basic sources of information: the global persistent
context, the local context, and external channels. The local context is structured according to a
dialogue model, which determines both how information is gathered and made accessible during
the course of a conversation, and what the possible continuations for a conversation are at any
given point, including the intent, or role, of a given utterance. In other words, the dialogue model
determines a set of possible histories, and the way in which past and future events condition the
interpretation of present utterances.”

External channels constitute the coupling of the system to its “environment”, which is to
say, the interface provided by the physical computer. This includes all hardware operations and
data representations, including clocks and counters, and access to devices, including processors,
memories, networks, and i/o devices interacting with sensors, effectors, storage devices, and users.
These things ultimately supply the grounding of all information in the system regarding its “real-
ity”. For example, the system’s notions of time, which are involved in the specification, analysis,
and implemention of concurrent and real-time applications, are grounded in the locally sequential
behavior of processors, channels, and clocks, both internal and external.

An important aspect of the system is that all components and concepts of the system itself
are represented in the persistent context. These representations provide the necessary “hooks™ for
reasoning about and enhancing the system, and also provide access to the system components for
reuse in arbitrary applications. For example, an application which needs a parser could use the
system parser, or derive a new one starting with the system parser as a base.

A necessary consequence, and benefit, of self-description is that nothing in the system, or
language, is primitive in the sense of being an unanalyzed, externally defined concept. The ad-
vantages of being primitive-less are striking, and first came to our attention when we invented
a primitive-less internal representation for programs, known as IRIS, and used it to develop an
Ada compiler. IRIS is basically an abstract syntax tree representation, except that there is only
one nonterminal class, instead of one for each primitive operator or construct of a particular lan-
guage. Initially, each nonterminal in a program has an associated operator symbol, and semantic
analysis is responsible for replacing each operator symbol with a reference to the declaration of
an operator. This analysis is performed in the context of an IRIS tree in which the basic opera-
tions of the programming language have been declared, along with any operations used to make

“The syntactic arrangement of programs into sections like declarative regions and bodies, or the simple parse-
evaluate loop of interactive languages like ML, are rudimentary examples of dialogue models. In these models, past
history results in a simple binding environment for names, interpretation of current utterances is purely a matter
of looking up the binding of a name, or supplying the fixed interpretation of a symbol or construction, and current
interpretations can be related to future events by suspending them aud posting an obligation for completion, as in
the case of incomplete type declarations in Ada.
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those declarations.® This obliterates any distinction between applications of language constructs
and applications of user-defined functions, so a single simple, uniform algorithm can be used to
resolve and check the semantic composition of the entire program, with no special processing for
the basic constructs of the language. Similar simplifications were realized in every phase, resulting
in an optimizing Ada compiler which has only a tenth the number of source lines as compilers of
comparable speed and code quality. Moreover, the compiler can essentially be used to compile
programs in any language whose semantic composition rules are consistent with those of Ada. The
only additional information needed is a grammar, and declarations of any constructs which are
not specializations or trivial compositions of the generalized Ada constucts defined in the existing
language definition package.

Similarly, Prism’s persistent context includes a collection of predefined concepts and mech-
anisms. A relatively small subset of the predefined concepts are essential in that they form a
spanning set of concepts, but even these are not to be regarded as primitive. These essential con-
cepts must simply suffice to establish the lowest-level linkage of the system with its environment,
and to enable the definition of all other concepts. All other predefined concepts of the language
may be regarded more as standard library packages. In selecting and designing standard library
packages, we have attempted to confine ourselves to things which are frequently used, and which
are too expensive to define from scratch, or for which there are clear advantages to standardization.
An example of the former is the type array; an example of the latter is the type Boolean.

Prism includes a variety of abstraction mechanisms, one of which is context abstraction. This
can be used to define subcontexts of any context, thereby allowing information about some topic
to be packaged and treated as a unit. As with all other concepts in Prism, contexts are semantic
entities, which have no fixed relationship to syntax. Hence there are no syntactic primitives,
such as syntactic nesting of scopes, which limit the ways in which contexts can be specified and
composed. In particular, contexts may overlap lexically, or be entered and exited intermittently.

Another important abstraction mechanism is embodied in the notion of {ype, which enables
general reasoning in the system, divorced from the specific details of any particular object or
objects. The most prominent features of the Prism type system are outlined in §9.

6 Persistent Ideas

IRIS is a good generalization of abstract syntax that integrates the representation of syntactic
and semantic information in a language-independent form. We have found it inadequate as an
internal form for Prism, however, because it assumes that all compositions are functional, or at
least categorial. The need to handle partial structures, the frequent lack of operator/operand

8Thus all information about every operation that is used either in a program or in the language definition is
represented uniformly in IRIS form. Mathematically, an IRIS language definition can be viewed as a set of mutually
recursive definitions with no ground terms. Tahen in isolation, therefore, the IRIS structure constrains the class of
possible interpretations, but does not determine a unique interpretation.
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asymmetry, and the breakdown of compositional semantics all contribute to the inadequacy of the
functional form of IRIS.

As it turns out, many computational linguists have abandoned trees for similar reasons, re-
placing them with feature structures. [Kni89] is an excellent survey which explains the basic ideas
and (for us) the important advantages of feature structures and unification on them. For those
unfamiliar with the idea, suffice it to say that a feature structure replaces the rather rigid idea of a
distinguished operator dominating some fixed list of operands with an unrestricted list of features,
and has much in common with Minsky’s frames and related “knowledge representations”. Each
feature structure represents some partial collection of information, and unification of feature struc-

tures requires only that the common parts be reconciled, consistent with any constraints among
the parts.

Unfortunately, feature structures, frames, and the like suffer from the same deficiencies that
led to the invention of IRIS, namely that the features are labelled with tokens denoting primitive
concepts and relations which are externally defined, and about which no information is represented
in the system itself. Happily, the remedy is the same: to replace the labels with references to
structures of the same kind which represent the semantics of the intended relations. We call these
generalized feature structures ideographs, with the somewhat immodest and perhaps misleading
implication that they are structures representing ideas.

Formally, an ideograph z is a (non well-founded!) set of pairs < r,v > where r is an ideograph
representing a binary relation, and v is an ideograph representing something that stands in the
relation (represented by) r to (the interpretation of) .

An abstractly equivalent formulation is that ideographs are the nodes of a directed multigraph
equipped with a mapping p of edges to nodes. An edge e =< z,y > represents a binary relation
between r and y, where the relation is represented by the ideograph pe. This provides a convenient
way of depicting ideographs as directed graphs with arcs from edges to nodes representing p, as
shown in the figure below. This sample ideograph represents the number three, which has the
properties of exemplifying the types prime and odd (%" is the “exemplifies” relation), and of
being less than the square root of ten.
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In practice, a wide variety of ideograph representations may be used in the Prism system,
providing greater efficiency or convenience for various ideograph types. For example, direct repre-
sentations may be provided for n-place relations instead of forcing everything to be decomposed
into binary relations, or representations may be provided for special composition forms, such as
function application, for which a trivial adaptation of IRIS will do.

From an abstract perspective, the persistent context is a network of ideographs. Intuitively,
an ideograph is a kind of mental entity having identity and a set of associated properties. The
properties need not be consistent, or correspond to any real or even possible object, 2s in an
ideograph combining the contradictory properties of bcing round and square, which intuitively
represents the idea of the round square, a classic nonexistent.

Ideographs play the role in Prism that S-expressions play in Lisp, in that = rudimentary “pure
Prism” system can be built exclusively in terms of some standard representation of ideographs,
togethc: with an interpreter for a small initial context. As with pure Lisp, an extremely simple
syntax can be used to specify ideographs in the standard representation.

The notion of identity in the persistent coniext is universal, in that no two distinct ideographs
can ever have the same identity, anywhere. Nor can the idea of identity be reduced to inde-
pendent notions, such as location or proper name, because these things are subject to change.
In practical terms, this imposes a requirement for each ideograph to have a unique, universal,
location-independent identity (see [KCS6)}). This is one of the fundamental factors in our treat-
ment of persistent object management in Prism, of which more will be said in §8. Another is the
degree to which an ideograph is mutable (subject to change).

There is a logic of ideographs which determines when certain ideographs follow from others,
leading to notions of type and subtyping. At the most basic level, the logic is consistent twith
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structural unification, in that the unifier of a set of ideographs implies each of them. Beyond this,
there are implications which have to do with the content of individual ideographs, such as that
every prime number great-. than two is odd. When unification is extended to the whole logic,
ideographs ar~ =ecz Lu generalize Ait-Kaci’s 9 terms, as well [AK84].

Of course, a network of ideographs in isolation doesn’t represent anything; it is just a complex
structure. Ideographs are infused with meaning by interpretation, which projects the universe
onto them. We have very little to say in general about the universe, what its internal structure
might be, or even if it has internal structure in any meaningful sense. All we can say is that
idecgraphs and their logic are supposed to form an abstract model of the universe, which ignores
many distinctions and details, and is thus an approximation at best. We don’t even want to claim
th-* every interpreted ideograph, like an ideograph representing the idea of the Statue of Liberty,
corresponds to some real object, because that would lead u. to puzzle over whether the Statue of
Liberty is the same object now as it was before its restoration, and similar conundrums. What is
constant is the ideograph, and an ideograph has significance in the universe if some aspect of the
universe is projected onto it. The round square ideograph, by contra.t to an ideograph representing
the Statue of Liberty, has no significance in the universe, though its component properties do.

7 Language and Ideas

We have stated briefly that interpretation projects the universe onto ideographs, but how are
ideographs related to language? Considered simply as consitituents of the universe, linguistic
phenomena give rise to ideographs through interpretation just as other phenomena do. These
ideographs represent only the linguistic phenomena themselves, however, and not their interpre-
tation. In plainer jargon, the direct projection of an utterance is its abstract syntaz, and the
interpretation process is parsing. Other, less common, interpretations include the analysis of spo-
ken language as a sequence of phonemes, or more crudely as a sound wave, or the interpretation
of a written text as a pattern of glyphs.

However, the important featurc of linguistic phenomena, which distinguishes them and gives
them their power, is that they are supposed to stand for something else; they signifv. For example,
the ideograph of the expression “5 + 4" is a structure having three major featurc. n operator

and a left and right operand. This ideograph, in turn, signifies the sum of two numbers, namely
three and four.

The interpr-tation of linguistic ptenomena in these two stages is the source of the use/mention
distinction, and motivates the factorization of language processing into semantics and syntax.

Pragmatics is snpposed to compleic the semiotic picture by explaining the interpretation and role
of utterances in an overall context.

The semiolic factorization is only approximately correct, however, because the .oncerns of
pragmatics are manifested also in the parsing and semartic phases. That is, both the parsing




of an utterance and the interpretation of its significance are influenced by context. Consider the
sentence “He is taller than he is old”, which most English speakers accept. The interpretation one
gives to “taller” in this context is not the usual ordering on heights, but rather a relation between
heights and ages according to some unspecified scale. The interpretation is best explained as a
context-induced perturbation, or mutation, of a standard interpretation supplied by a lexicon. A
more standard, but less satisfying, explanation is that the lexicon supplies a denotation which is
somehow parameterized by context in such a way that the meaning in this situation can be derived.
The difference between the two views hinges on the question of whether the interpretation in every
possible situation has to be anticipated when making entries in the lexicon.

To some extent, the intuition that pragmatics is not separable from syntax and semantics un-
derlies Kamp's discourse representation theory (DRT) of natural language understanding [Kam88],
but DRT does not take it far enough. The fact that large parts of the context of English speakers
are relatively uniform and stable over time accounts for our ability to communicate, and in fact
“the English language” is nothing but this shared context. On this account, the notion of “a
language” is not a priori, but empirical and derivative.

These considerations led to the novel conceptualization of language which underlies Prism.
The basic theme is that the purpose of language is not to denote, but to stimulate ideas. That
is, we see language not so much as a vehicle for naming and transmitting semantic objects from
one speaker to another, but more as a way for one speaker to provoke a certain kind of reaction
from the interpretive capacity of another. The difference is that the response elicited by a given
stimulus depends intimately on the recipient’s orientation, making meaning relative instead of
absolute. As further support for this view we remark that a great deal of conversation is aimed at
orientating the participants relative to one another so that a system, or community, is established
with a set of regularities and invariants that permits more efficient communication.®

At the center of the language process lies the interpreter, which has as its goal the reconciliation,
or unification, of linguistic data with its interpretation of the universe. That is, the meaning of
an utterance is a unifying ideograph which is simultaneously an interpretation of the utterance,
and a partial picture of the universe.

To obtain this unifier, the interpreter first “parses” the utterance to obtain a relatively un-
committed abstract structure, with no interpretation. Interpretations for individual components
of the initial ideograph are offered by the context, and the interpreter attempts to choose a com-
bination of these which together form an interpretation which is congruent with its interpretation
of the rest of the universe.’® Some of the component interpretations may require that the initial
structure be refined, making some features subordinate to others. When ideographs conflict, they
may be recenciled by dropping or relaxing some of thcir features as necessary. Meanings may be
inferred for previously unknown words or phrases because they are essentially variables which are

9How often have you gotten into a heated debate with someone only to discover after much discussion that you
had no real disagreement, but merely misundersto. d one another?
10The astute reader will recognize this as the Prism analogue of overload resolution in Ada!
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filled in by unification. By symmetry of the unification process, new information about some part
of the system’s world model may be inferred. In this way metaphor, analogy, and oblique uses of
language become possible. Moreover, because interpretation is naturally partial, overspecification
is avoided, and the amount and kind of information that may be supplied to refine an ideograph
or its interpretation is not restricted in any way.

8 Persistent Object Management

There are several important requirements for the management of persistent data in Prism. These
requirements are concerned primarily with the integrity and efficiency of creation, destruction,
storage and access of the persistent data through both space and time. The primary requirements
we place on persistent object management in Prism are discussed in the next several paragraphs.

As explained earlier, the persistent data items in Prism are ideographs; th2y are the “objects”
to be managed. From an object management perspective, an object is a container for a data value
of arbitrary type (including other objects). There must be no restrictions on the types of values
that can be made persistent. Each object must have an identity which is unique (to avoid confusing
it with other objects), universal (so that knowledge of an object’s identity is not invalidated in
one part of the system when changes are made elsewhere) and location-independent (because the
location of an object may change in the course of its lifetime).

Integrity is a pervasive goal for Prism; type and identity integrity are central to persistent
object management. It matters little how good cther aspects of a system are (e.g. how fast it
runs, or how much it encompasses), if it produces results that are incorrect or unreliable. Because
types are used to express the formal properties of data and because of the nature of identity, the
persistent object management mechanisms must enforce the typing and identity mechanisms.

Users and developers of software systems must be given control (though not required to exercise
it) over the placement of persistent objects as they move between peripheral memories (including
removable media) and main memory, as they move across nodes of a network and indeed between
networks, and as they are replicated for reasons of efficiency and backup. Controlling the granu-
larity of the data that can be independently placed is essential in achieving performance. Users

and developers must have access to mechanisms that remain efficient over the full range of object
granularity.

Traditional programming languages, operating systems and databases have addressed some
aspects of persistent information management, but each has its shortcomings. The underlying as-
sumptions of operating systems and databases are not valid for the data in a software environment.
In violation of the operating systems assumptions, correct and effective management of software
development objects requires intimate knowledge of their types, which are expressed (implicitly
or explicitly) in the objects themselves, in order to ensure type integrity across tool invocations
and manipulations by human users. In violation of the database assumptions, the types of data in
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a software development environment at any time are specified by that data, the number of items
of information of any given type may range from one to millions, and some objects are virtual
(and are only instantiated dynamically). Furthermore, both the user-defined names relied upon by

operating systems and the value-oriented names of databases compromise the integrity of object
identity.

High-level programming languages are better at managing this kind of complex information.
Unfortunately, programming language designers and implementors have never really addressed the
problems of managing resources beyond local memory. Instead, they have relied on databases and
the file systems of operating systems to manage persistent data.

More recently, research on managing the persistent objects of the entire software activity
has been conducted. Much of this work (in areas such as software development environments,
CAD/CAE systems, object orientation, databases, database programming languages and persis-
tence) is relevant to the Prism effort in many ways, especially by providing basic techniques for
instantiating and realizing our goals.

We should emphasize that similar remarks apply to many other areas of language and systems
research and technology, on which the success of the Prism effort depends, and without which its
success would be pointless. It is the barriers to accessing and integrating the vast array of existing,
potentially useful technology which we decry, not the technology itself!

9 Types

Types in Prism are partial information structures used for general reasoning about Prism programs.
A Prism processor’s facility at manipulating types is one measure of its “intelligence”, or of how
well-educated it is. Similar remarks apply to Prism programmers. From this point of view, the
Prism type system refracts into two parts: information structures, and the associated logic(s).
The issues here are foundational: what are the partial information structures; what and how do
they mean; what is the role of logic; and so forth.

From a different angle, the type system appears as a collection of basic abstractions, such as
arrays, tasks, and interpretations, together with mechanisms for generalization and specialization.
This is the view traditionally used to describe the type systems of programming languages such
as Ada and Common Lisp. It is important and useful because it conveys the higher-level syn-
tactic features available for type specification, and the interrelations among those features (e.g.,
subtype/supertype relations).

A third angle reveals a number of fundamental relationships among types, and strategies for
exploiting those relationships. For example lification is a basic strategy for deriving subtypes
(exploiting the supe