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Homoclinic chaos in the rf superconducting quantum-interference device

W. C. Schieve*
Max-Planck-Institut fur Quantenoptik, Garching, Federal Republic of Germany
and Naval Ocean Systems Center, Research Branch, San Diego, California 92152

A. R. Bulsara and E. W. Jacobs
Naval Ocean Systems Center, Research Branch, San Diego, California 92152
(Received 24 August 1987; revised manuscript received 30 November 1987)

We consider a simple model of the flux in a rf superconducting quantum-interference devic(
(SQUID) ring subjected to an external periodic magnetic 4leld. The dynamic equation describing
the flux response of the SQUID is solved analytically in the absence of damping and external driving
terms. We then introduce these terms as small perturbations, and construct, for this system, the
Melnikov function, the zeros of which indicate the onset of homoclinic behavior. For the parame-
ter values under consideration, excellent agreement is obtained between our theoretical predictions
and numerical calculations of the stable and unstable (i.e., time-reversed) solution manifolds. A
chaotic attractor is shown to appear somewhat above the homoclinic threshold.

I. INTRODUCTION imental broadband amplitude spectrum in the hysteretic
regime. Smith et al.14 report on the results of numerical

In this paper we wish to consider the appearance of simulations suggesting period doubling to chaos and
homoclinic instabilities and chaos in the driven rf SQUID qualitative a Ireement with experiment. Finally, Ritala
(superconducting quantum-interference device). Since and Salomaa 5 have observed the transition from quasi-
Poincar6,' it has been known that under perturbation, the periodicity to chaos via the Feigenbaum period-doubling
stable and unstable manifolds emanating from a hyper- scenario for the case of the sinusoidally driven rf SQUID.
bolic fixed point are no longer identical and may cross, Their work represents a major step forward in our under-
giving rise to an infinite number of intersections (homo- standing of the nonlinear dynamics associated with this
clinic points), the resulting motion being so complicated system. It is our object in this work to theoretically pre-
that it may be characterized as chaotic (or statistical). dict the onset of homoclinic instability by means of the
An existence theorem of Smale and Moser 2 states that the Melnikov test function, and then to compare this result
motion in a region near a homoclinic point is with a numerical calculation of the manifold crossing.
homeomorphic to a Markov shift map. Thus, in this re- This latter has not been done for even the rf-driven
gion, the test of the wild instability of the motion is the Josephson junction. Comments are also made concerning
presence of homoclinic crossing. Since the separattix the appearance of a strange attractor in the rf SQUID
solutions are so sensitive to perturbation, a simple above its homoclinic threshold.
theoretical test function due to Melnikov 3- 6 may be used In its simplest form, the rf SQUID consists of a single
to determine the presence of the homoclinic instability. Josephson junction shorted by a superconducting loop

This simple theoretical analysis has been applied to a having an inductance L. An external magnetic field pro-
number of driven oscillators4 ' 5 and, in particular to the duces a geometrical flux (e in the loop together with a
rf-driven Josephson junction, which constitutes the circulating supercurrent i(t)= -I, sin(21rD/) 0), where
primary element of the rf SQUID under consideration in )=q)e +Li is the actual flux sensed by the loop in the
this work. The mechanical analog to the Josephson junc- steady state, (Do being the flux quantum ((D0 =h/2e
tion is a driven damped pendulum which is well known, =2.07X 10- 15 Wb). The flux q) in the SQUID ring
numerically, to exhibit chaos and a "strange" attracting obeys the dynamical equation 16

set. Both the unperturbed Josephson junction and the rf
SQUID are multistable systems. In particular, the rf ..
SQUID exhibits hysteresis above a certain threshold _2+TL-i + 1 + sin(2rx)=xe (. 1)
value of a characteristic parameter [the response of the 20x -
device below its hysteretic threshold to a general pertur-
bation of dc, random, and periodic components has been where the sinusoidal contribution arises from the Joseph-
studied by one of the authors' 2 (A.R.B.)]. In this work son screening current. Here, the dot denotes the time
we shall concern ourselves with the operation of the rf derivative, x (D/( o, xe =)e/ 0, 1 I/LC, TL =L IR,
SQUID in the hysteretic regime. Far fewer studies con- and 3e=2,TLI 1 1/qo. C and R are the capacitance and
cerning the appearance of chaos have been done on the rf normal-state resistance of the loop, I, being the junction
SQUID than in the Josephson juncion (for a review of critical current. It is worth pointing out that the quanti-
the latter, see Ref. 8). Dmitrenko et al.'3 report an exper- ty (I3e/2')coo is simply the plasma frequency w of the
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junction; wj is the frequency of low-amplitude solutions gy U(z1 )= U(z 2 )= U(z3 )= U(z 4 ) and thus be primarily
of the Josephson-junction equations in the absence of an concerned with the region of the two lowest-lying hyper-
external magnetic flux. The parameter #---,/27T deter- bolic fixed points. The steady solutions to Eq. (1.2) are
mines the hysteric threshold of the SQUID; above : criti- given by
cal value# -i', the solutions of x of (1.1) are mul-
tivalued. For the undriven (autonomous) rf SQUID with 0=- z+ -21r8 cosz, . (1.6)
negligible damping, one may case (1. 1) in the form 2

Z=-d (1.2) Simple graphical analysis shows that for130.7325 a new
dz ' fixed point (other than z, = -ir/2) appears at zs =i. For

where the potential U(z) is given by 3>0.7325 multistability occurs (as pointed out earlier).
2 2 The character of these new fixed points may be analyzed

U~z)=1 213r  by linear stability analysis with the eigenvalues X of the2z+-- 2 rxo . (1.3) linearized equations determined in the familiar fashion.
We find

Here, for later convenience, we have made the phase
transformation z =21rx - (ir/2), x e -x o being an external X = ±to( I - 21rft sinz )I/2, (1.7)
(background) dc signal. One may readily verify via sim- from which it may be seen, for I3>f3c=0.7325, that the
pie graphical analyses that, for x0 =O, 1,2, ... , one ob- new fixed points appear (symmetric about z, = - /2) in
tains multivalued solutions to (1.1) above a critical value "pairs" of hyperbolic and elliptic points, as indicated by

0L=0.7325. For the cases "o-,T," • ' one obtains the potential in Fig. 1. It may be shown that the hyper-
ft_(21r)- ' . For any other value ofxo, the critical non- bolic point zI in Fig. 1 lies in the range ir/25z 1 _ir. An
linearity parameter 30, lies between the two limiting interesting feature of this system is the growth of the side
values given above. Throughout this work we shall set wells of the potential as the nonlinearity 63 is increased.
the dc driving term xo equal to zero; the potential (1.3) is This feature is not present in the Josephson junction,
then symmetric about z = - ir/2. This potential has been where all peaks and wells of the potential are equal.
plotted in Fig. 1 for 3=2 and w0= 1. In the later sections In Sec. II we will consider the time-dependent analytic
we will include a damping force solution of (1.2) on the separatrix. This is accomplished

via a spline polynomial approximation of the nonlinear
term in (1.2), a procedure that will be discussed in some

and a periodic driving force detail. This method has also been carried through for the
off-separatrix solution and is discussed briefly in this sec-

x-F, = A sin[0(t .- t 0)] , (1.5) tion. In Sec. III we apply this solution to the calculation
in (1.2). of the Melnikov test function for the rf SQUID for thecenter as well as ihe side wells of Fig. 1. In this section

It is apparent from the potential, Fig. 1, that z 1 and z 3  we also numerically search for the homoclinic points and
are unstable hyperbolic fixed points and that five elliptic Cantor set structure predicted by the Melnikov function,
fixed points occur (for the range of z values used in this comparing our findings with the theoretical predictions.
figure in general, one expects an infinite number of fixed Finally, in Sec. IV we display evidence for a strange at-
points). In this work we will focus on the separatrix ener- tracting set above the homoclinic threshold. This numer-

ical result is discussed briefly.

66.4

II. APPROXIMATE ANALYTIC SOLUTION

50.6 OF THE rf SQUID EQUATION

For the purpose of obtaining a separatrix solution, we
now turn to Eq. (1.2) and formally integrate it, obtaining

34.8 - 2=v?+2U(z,)-2U(z) , (2.1)

D where (z,,vi=i) are the initial values used to determine
19.0 gthe integration constant. Equation (2.1) is now formally

Z4  Z3  Z1 Z integrated to yield

3.2 -= o [ui2+2U(zi)-2U(y)]"2

12.6 = t , (2.2)
-14.0 -9.0 -4.0 1.0 6.0 11.0

z wnere we select the negative sign in (2.2) since we shall
FIG. 1. Potential U(z) vs z for (13,wo,xo)_ (2,1,0). always consider z <z, (this choice of sign yields the
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correct monotonic decreasing behavior on the separa- 2

trix). f 4 (0)-v 2+2U(zi)-co -0+ + 41ro2Psin•
In order to evaluate the integral in (2.2), we employ a

polynomial approximation of the trignometric function in (2.6d)
U(z). Specifically, we set

2 4 One readily observes that for any 0 <z < 21r, the integral
cosz = -a 2z +a 4z , (2.3a) in (2.4) takes the form

where a 2 =0.4967 and a4 =0.03705. Such approxima- 3
tions have been derived'7 by expanding cosz in a contin- I(z)=II + 1

2 + 1
3 +1

4 - 1
4 (2r -z), 2 <z <27T (2.7a)

ued fraction series that can be truncated at any order, de-
pending on the level of accuracy desired. Differentiating 31r
(2.3a) we obtain =I I +22+13(Z- 10,  2 (2.7b)

sinz =a z -a 3z3  , (2.3b) ! r

where a1 =0.9934 and a 3 =0.1482. The above approxi- 2

mation (which may be extendcd to include higher-order
terms for greater accuracy) has been estimated to yield an =I(z), 0<z < - (2.7d)
error of 0.13% or less in the computation of the trig- 2

nometric functions. In applying these approximations, The extension of the above procedure for z > 2 1r is
one is under the restriction z < ir/2. Hence, for z > iT/2, straightforward and will not be discussed here. We have
the angle z must be expressed in terms of an equivalent thus reduced the integral (2.2) to a sum of integrals, each
angle in the first quadrant before computing the trig- of which may be analytically evaluated usng the approxi-
nometric function. We shall demonstrate below how this mations (2.3). For a general initial and final value of z,
spline approximation is implemented. the integrals I are evaluated in terms of the Jacobian el-

Let us assume, as an example, that 31r/2 < z < 21r. We liptic functions. On the separatrix, however, the solution
break the first integral in (2.2) into integrals over each of simplifies considerably, as will be apparent in what fol-
the quadrants [a similar procedure is followed for the lows. We might mention that had we solved the dynamic
second integral in (2.2)]: equation in its original form [Eq. (1.1)], the second term

[ fr/ 2  +r 3r/2 z in (1.3) would have contained cosx, in which case we
z12 /2 , + 3 ,2J would have had to approximate it using (2.3a). The func-

dy tions fk appearing in (2.5) and (2.6) would then be quar-
X [v2+2U(zj)_2U(y)]1/2 (2.4) tics rather than the relatively simple cubics. The solution

I in this case, while still analytically tractable (and slightly

The first three integrals on the right-hand side of (2.4) more accurate), becomes extremely complicated; in par-
may be cast in the form titular, an analytic computation of the Melnikov function

becomes impossible. This is the reason for making the
Sk = 1,2, 3 (2.5) phase transformation x --+z which results in Eq. (1.2).

0 [fk(O)]' / 2 '  Before proceeding with the evaluation of the solution

where 0<0 < r/2 so that the expansions (2.3) are valid. (2.2), we briefly consider the accuracy of the potential
Finally, the last integral on the right-hand side of (2.4) (1.3) in light of the approximation (2.3b). The sinz term

may be written as 14 -1 4 (21T-z), where 14 takes on the in (1.3) is replaced by sin(Or-z) in the second quadrart,

form of (2.5) (with k =4) and Ik(z) is given, in general, by -sin(z-ir) in the third quadrant, and -sin(2r-z) in

an integral of the form (2.5) with the upper limit replaced the fourth quadrant. For z > 27r, the procedure is repeat-

by z. In using the expansions (2.3), it is necessary to ed. The expansion (2.3b) is then used to compute Uz).

transform the integrals in (2.4) so that the argument of In Table I we list the values of the turning point z i ob-

the trignometric function is restricted to the first qua- tained directly from (1.6) and through use of the approxi-

drant. This necessitates the breakup of the integral as mation (2.3) in (1.6). This is followed by a computation

above, with the integrand being redefined in each of the of the values of the potential U(zi) for each of these

quadrants according to values of z i , where we have used a combination of (2.3)
and (1.3) to compute the approximate values of U(z;).

2 2 1  +1 1 2p (26a) Finally, the point z 2 is computed via the condition
f I (0)-V21+2U(zi)-4 2+ -- 41mo2sin0 , (2.6a) U(z I)= U(z 2 ), using, once again, the appropriate values

2 of U(zj), corresponding to the direct and approximate

f 2 (O)=v?±2U(zj)) -0+-L I_ 47ro3sin0, [using (2.3)] calculations. The procedure is repeated for
2 J different /3 values with (wo0,x 0 )=(l,0) throughout. This

table highlights the deviations between the direct and ap-
(2.6b) proximate quantities, with the error introduced in the

1 _L12 computation of the turning point z, appearing to increase
f 3(O)=v2+2U(z)-a 0 o+ +47rTw 3sinO, (2.6c) with increasing /3. This is due partly to the error inherent

in numerically obtaining the turning points of the poten-
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TABLE I. Parameters relevant to the separatrix calculations involving the potential U(z) and its approximation using the expan-
sion (2.3). 6)0= 1, xo=0.

zI U(zj) Z2
3 Direct Approximate Direct Approximate Direct Approximate

0.8 2.5223168 2.4985890 11.294425 50 11.292 663 08 3.759 84842 3.156 399 95
0.9 2.3326811 2.3105992 11.710069 19 11.719 848 93 4.19587066 4.20695730
1.0 2.2180747 2.201 3499 12.190044 30 12.209 259 44 4.47962261 4.48509690
2.0 1.8461779 1.8693389 17.930 745 21 17.964 236 20 5.60904139 5.61104063
2.5 1.7861685 1.8191063 20.979 667 44 20.997 727 30 5.851 80765 5.851 56252

tial [through solving Eq. (1.6)], but also to the fact that potential. One sees that as t-- ±:oo, z--zl, and the
the absolute error introduced into the calculation stable and unstable manifolds are identical, as one might
through the use of the approximations (2.3) increases expect. Before continuing we must reiterate the fact that
with increasing nonlinearity, the special form of the solution (2.11) was derived for the

case of moderate nonlinearity, for which the point z 2 is
A. Separatrix solution contained in the third quadrant. The symmetry between

the solutions in the second and third quadrants [this sym-
We now turn our attention to the formal solution (2.2) metry is evident through a glance at equations (2.7b) and

and evaluate it explicitly on the separatrix. This is fol- (2.7c)] allows us to write down the relatively simple ex-
lowed by an example using a representative set of system pression (2.11). The foregoing analysis may also be ap-
parameters. We assume that the particle starts at the plied to cases (involving larger# values) for which the
point zi (=Z 2 ) at time t =0 with zero initial velocity. It points z i and Z2 are several quadrants apart. In these
arrives at the point zI at t= c. We consider the case of cases, however, the derivation of a solution analogous to
moderate 13 (< 1.5) for which the points z, and Z2 are (2.11) is not so simple. Specifically, one must compute
one quadrant apart, although, as will be indicated later, the solution z(t) quadrant by quadrant and systematical-
the extension to higher 13 values is readily accomplished, ly piece it together to obtain its complete behavior for all
albeit somewhat more tediously. Since the final point z is times. The solution is then a spline function.
always contained in the second quadrant (for any value of Having computed the separatrix solution (2.11) it is in-
13), (2.2) takes the form (noting that ir <z < 37r/2) structive to compare it with the solution obtained via a

13 (zi-7r)+1 2(ir-z)=t (2.8) direct numerical simulation of (1.2). In doing so we
demonstrate some of the uncertainties enldemic to a nu-

where we have used (2.7b) and (2.7c). Consider the func- merical computation of the separatrix solution. We con-
tion f 2 (z) appearing in the integral 12 (IT-z). This func- sider as a specific example the case (3,o0,x 0 )=( 1,1,0).
tion is, generally, a cubic in z. On the separatrix, howev- Wiiting the cubic f 2(z) in the form
er, it may readily be seen that the function f2 has only 3 2

two roots, one of these roots being, in fact, a turning f 2 (Z)= A2 Z +B 2 Z +C 2 Z+D2  (2.12)

point. In other words, we may write, on the separatrix, we obtain, through comparison with (2.6b),

f 2(z)=A2 (z- Ja I )2(z+ la 3d) (2.9) (A 2,B 2,C2,D2 )-(.86234,-1, -3.058 65, 2.211 91),

where A2 =41rf3coja3. Here one sees that the z axis is where we have used the approximate values ofzI, z 2, and
tangential to the curve f 2(z)=0 at the point z= I at I. U(zI) from Table I [since the approximation (2.3) is con-
In writing f 2 in the form (2.9), the location of the roots tained in the analytic integration of (2.2)]. A direct nu-
on the z axis is determined by the signs appearing in the merical computation of the roots of the cubic (2.12) yields
factors on the right-hand side. We also have (from sim- three roots, two of which lie very close to each other.
ple geometrical considerations) This uncertainty is displayed in Fig. 2, which shows a

z1 =ir+Il a3 1-z2  (2.10a) plot of the function f 2(z). The point z=a, at which the
curve touches the z axis is not uniquely determined,

and pointing out a source of error inherent in the direct nu-
merical computation of the roots. Such a numerical com-

z=IT- Ita,. (2.1Ob) putation yields the roots a1=0.94023+0.00142i,
The integrals in (2.8) are now readily evaluated to yield a2=0.94023-0.001 42i, and a3=1.343386. It is ap-

parent, therefore, that even though the approximate
z(t)=z -a tanh2 t , (2.11) values of zI, Z2, and U(zI) were used in the computation

of the coefficients of the cubic (2.12), numerically solving
where a=z2 -zI and the cubic yields quantities that are different from those

(4ro ) /2 that were input into the coefficients of the cubic in the
first place. The roots a, and a 2 coincide if one ignores

Equation (2.11) is the solution of the dynamic equation their small imaginary parts %the existence of these imagi-
(1.2) on the separatrix (zjz,), i.e., in the side well of the nary parts :..y be directly attributed to errors inherent in
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one would expect from Table 1). It is certainly true that
in addition to the approximations associated with the

12.5- solution (2.11), tolerance-related errors may be intro-
duced via the numerical simulation of Eq. (2.1). These

7latter errors are more difficult to estimate.NZ 7.0-

B. Off-separatrix solution

The treatment of Sec. II A may be modified and ex--1.79 -1.07 -0.36 0.3 1.07 1.79 tended to cover the case when the initial value zi does not
-4"0- correspond to the point z2. Once again we utilize the

polynomial approximation (2.3) in evaluating the integral
(2.2). However, the initial velocity must be taken to be
nonzero. As in Sec. II A the integral in (2.2) is broken up

-15.0- into the sum of separate integrals over the four qua-
drants. In this general case, however, the cubic fk will
have three distinct roots (two of which may be complex

-20.5- conjugates of each other). Our treatment in this section
is brief since we are not concerned with the off-separatrix
solution in the rest of this work. The procedure, howev-

FIG. 2. Difference U(zj)-U(z) on the separatrix. er, is worth outlining since it may be of practical interest.
(j3,to 0,X)-(1, 1,0). Let us assume that the initial position zi and initial

(nonzero) velocity vi aie arbitrarily chosen at t =0. At
any later time, the position z(t)<zi may be written
down, using (2.2), (2.4), and (2.7), as

the numerical computation of these roots); the resulting

root represents the turning point at which the curve of 1(2)-1(Y)=t , (2.13)
Fig. 2 touches the z axis. In Fig. 3 we plot the solution
z(t) on the separatrix for the special case under con- where 2' takes on the values z, ir-z, z -r, or 2ir-z, de-
sideration in this paragraph. The solid curve corresponds pending on the quadrant of location of z (the cubic fk ap-

to the solution obtained via a direct numerical integra- pearing in the integrand of I must also be suitably select-
tion of the differential equation (1.2). In carrying out this ed). We now assume that the cubic fk(z) has three dis-
integration, the direct values of zi and z2 used are from tinct roots ak > ak2 > ak3, where k defines the quadrant
Table I. The approximate analytical solution (2.11) is of location of the point z. Then one may write (2.13) in
also plotted in this figure (dotted curve). It is evident that the form
although the behavior of the two solution curves is very f " dO
close, there are differences, most notably at long times (as 0I( o f

where

4.5 
k ---2 Ak2 1

akl+ak3

4.0 (Ak2 being the coefficient of z3) and g2 is a constant to be
determined by the initial condition. The integral I(Y') is
an elliptic integral of the first kind and one may cast

3.5 (2.14) in the form

3.0 -(t)=ak 3+ sn2( 2  (2.15)

where sn is the elliptic function of Jacobi and the initial
condition enables us to set the constant 2 via the condi-

2.5 - tion

sn 2  ak-ak3 (2.16)

2.0 .......................... 
I - 1- a 12/26

0.0 1.0 2.0 3.0 4.0 5.0 In practice, it is often more convenient to evaluate the
Jacobian elliptic functions in terms of their inverses, i.e.,

FIG. 3. Solution z(t) Eq. (2.11)] in side well for f= 1. The to evaluate 1() directly in terms of the elliptic integrals
dotted curve represents Eq. (2.11) and the solid curve is ob- of the first kind. Then one may write (2.15) in the
tained by direct (numerical) integration of (1.2). equivalent form,
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t m k )-F(, I mk], (2.17) to), indicating a crossing of the stable and unstable mani-
folds, i.e., the presence of a homoclinic point. As dis-

where we have-set cussed in Sec. I, this indicates the presence of a Cantor
[akl- a k 3 1/2 set structure or homoclinic instability.2' 5 The simplicity

I of this procedure arises from the fact that the quantity
1 2-ak3j i(t) in (3.1) is the unperturbed separatrix velocity in the

region (ztz 2 ), given approximately by the time derivative
and F is the elliptic integral of the first kind having am- ofgEq. (2.11). Tis arie b the tix rits

of Eq. (2.11). This arises because the separatrix orbits
plitude M k , the latter quantity being expressed in terms are, in a sense, the most sensitive to any perturbation.
of the roots of the cubic fk. The techniques for the eval- The Melnikov function can only be applied to separatrix
uation of these integrals are well known' 8 and will not be orbits. No analysis has been carried out for nonsepara-
repeated here. trix orbits and thus it is applicable only to unperturbed

nonlinear oscillators with a hyperbolic fixed point and a

III. THE MELNIKOV FUNCTION separatrix. The rf SQUID is a good example. In apply-
FOR THE rf SQUID ing the Melnikov function to the rf SQUID, considerable

care must be taken to ensure that the magnitudes of the
We now suppose that the unperturbed system dis- parameters13, k, A, etc. or combinations of these parame-

cussed in Sec. II is perturbed by a combination of dissipa- ters fall within the realm of validity of perturbation
tive and periodic forces, i.e., Fk and F,, defined in Eqs. theory.
(1.4) and (1.5), respectively. The purpose of this section is Let us now evaluate the integrals in (3.1), considering
to theoretically investigate the condition for the onset of first the region (zIz 2 ) of the potential (1.3) (see Fig. 1).
homoclinic behavior in the presence of the above pertur- Using the solution (2.11) (we are, once again, confining
bations. ourselves to the moderate 1 case), we readily obtain the

The Melnikov test function may be writtea as,3 - 5' 7  first integral as

A(to)-f 0 [Fk(t)+F0,(t)]i(t)dt=Ak+A,(to) (3.1) 14 (3
-Co

This remarkable test function, valid under weak perturba- where the quantities a and " have been defined in connec-
tion,7 has the following properties: (a) A(t0 )=EQ for no tion with Eq. (2.11). In order to evaluate the second in-
perturbation and (b) A(to) changes sign (as a function of tegral in (3.1) we express it as the sum of two integrals:

I,( to) M- 2a A f_ tanhgt sech 24t ( sinwncosw: - cosm:sincoto )t .(3.3)

Noting that i(t) is an odd function in the side well of the ward manifold spirals outward; the manifolds do not
potential, the above integral becomes cross. As mentioned in Sec. I, an analysis similar to that

2f just carried out has been done for the simple Josephson
A(to)= -4a A (cosot0 ) Jo tanh't sech2gt sinot dt . junction.7- 1o The analysis in that case is considerably

(3.4) simplified by the fact that the term linear in x in Eq. (1.1)
is absent from the Josephson-junction dynamics, and the

This integral is readily evaluated to give unperturbed solution may be obtained analytically
41ro2A costo without the approximations of Sec. II. Unlike the rf

A /2]  (3.5) SQUID, the Josephson junction is described by a poten-
A 2 sinh[nw(oA 2 a)] tial in which all the wells have the same size; in fact, the

where the quantity A 2 has been defined in connection potential in this case is simply of the form U(z):sinz.

with Eq. (2.9). It is evident that the function Aw has its For the system under consideration in this work, one re-
witha for c.9). Ito= l [entall othe quntitie hs i ts (3.5)be covers, qualitatively, the features of the Josephson junc-extrema for cost =±- [all other quantities in (3.5) be- tion in the limit 3-- oo (in this limit, all the wells in the
ing fixed]. In the presence of finite damping one obtains potential of Fig. 1 approach the same size). In what fol-
homoelinic behavior above a critical threshold, which lows we shall compare the results of this section with ex-
may be found by setting Ak = I Ao(to )/cosoto I. This isting results for the Josephson junction.
condition leads one to the threshold condition for the on- In Fig. 4 we plot the quantity I A,(to)/cosoto I as a
set of homoclinic behavior, function of the driving frequency (o for 3= 1 in the side

A 2 well (zI <z <z 2 ) of Fig. 1. The natural frequency o is
k 5r a5 A72 sinh[rw/(A2a) 2 ] . (3.6) set equal to unity in this plot. The constant quantity Ak

of Eq. (3.2) is also shown (the straight line). The solid

A similar result was first obtained by Holmes4 for the curve is obtained by numerical evaluation of the integral
anti-Duffing oscillator. Damping may suppress chaos; in in (2.2) and a subsequent numerical computation of the
this case, the forward manifold spirals from the hyperbol- Melniko, integral (3.4). Also shown are data points cor-
ic fixed point into the elliptic fixed point, while the back- responding to the theoretical result obtained from (3.5J.
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FIG. 4. Melnikov function amplitude in the side well (zIz 2). C

The solid curve represents numerical calculation and data FIG. 5. Melnikov function amplitude in the center well
points are derived from Eq. (3.5). The dashed line represents (ztz 3) for the same parameter values as Fig. 5. Both curves are
Eq. (3.2). (13,k, A)-( 1,1,4). obtained numerically.

Note that the difference between a numerical calculation agreement with results derived for the Josephson junc-
of Ak and the theoretical result (3.2) is much smaller than tion.7-1  In Fig. 7 we show the critical (i.e., minimum)
the scale of this figure. For the moderate value of 3 used value ( A k )c as a function of the nonlinearity parameter
in this figure, the agreement between theoretical and nu- /6, where the subscript c implies that we have evaluated
merical results is quite good. We reiterate that the nu- (A 1k) at the critical frequency o) corresponding to the
merical computations are not totally accurate; however, side well. Results for the center as well as the side well of
it is difficult to obtain realistic estimates of the error in- the potential, are plotted. As expected, when a greater
troduced into the numerical integrations of Eqs. (2.2) and disparity exists in the relative dimensions of the wells (for
(3.4). The intersection of the straight line with the curve moderate f3), a higher minimum value of (A 1k) is re-
represents the threshold for the onset of homoclinic be- quired to trigger homoclinic behavior in the center well
havior since the Melnikov function changes sign as one at the critical driving frequency w, corresponding to the
crosses the line. The graph of I A(to)/costoI is side well. For large 6 values, the values of ( A /k), in the
peaked at o.-w=w, given [for the theoretical result (3.5] by two wells converge.

(A 2a)(/2

Oc = 1. 915 ir(3.7)

This peak represents the minimum value of (A 1k) neces-
sary for the onset of homoclinic behavior. For P= 1 one 7.0
obtains the critical values (W, A/k)-(1.257,1.79) from
the theoretical calculations. These numbers compare
quite favorably with the values (1.26,1.78) obtained via 4.2
the numerical calculations.

Figure 5 shows the quantity I Aa,(to)/sinot0 I for the
center well of the potential (1.3) (i.e., -ir-z _<z <zt) ..
corresponding to the separatrix (ZIZ3 ) of Fig. 1. For the 1.4
rf SQUID we expect the results in the center well to differ
from those obtained in the side well, both because of the
difference in well dimensions and the difference in the -1.4
parity of the velocity between the wells (both these
features are absent in the Josephson junction). This
figure has been obtained numerically. If one considers -4.2
the velocity profiles in the two wells (Fig. 6), it is seen
that the velocity in the side well is odd. Hence, in (3.3),
only the first term contributes to the integral which is -7.0
peaked as some nonzero frequency co,; this corresponds -4.0 -2.4 -0.8 0.8 2.4 4.0
to the case worked out analytically in this section. In the
center well, however, the velocity is even so that the Mel- FIG. 6. Velocity profile i) in the center well (solid curve)
nikov integral in this case is proportional to sinoto in and in the side well (dotted curve). /3= 1.
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20.0 turbation one is faced with the problem of computing the
saddle point. Although numerous methods exist for this
purpose (e.g., averaging 5, 19 and harmonic balance' 9 ), the
answer obtained for the form of the nonlinearity in this

16.0 problem is not accurate enough. Nevertheless, by es-
timating the location of the saddle point and mapping a
small area around this point forward and backwards in
time [using Eq. (1.1)], one obtains a reasnably good pic-

12.0 ture of these manifolds and their behavior relative to
_. each other. In order to obtain clear and distinct pictures

of the manifolds, one must make the mapped area (about
the saddle point) arbitrarily small. In the system at hand,

8.0 - however, one cannot do this since the saddle point has
not been accurately located. This uncertainty is most
likely the reason for the smearing of the manifolds in
Figs. 8-13. It is also possible that some numerical uncer-

4.0 - tainties arise because it is difficult for the integrating rou-
tine to exactly follow the true solution of the differential
equation so close to an unstable fixed point.

Let us now consider some results. We will take

0.0 4 8 1 1 (j3,to,k)(2,2.25,1) (the value w=2.25 is chosen be-
00 4cause it is very close to critical frequency o, for this

value of the nonlinearity) and vary the driving amplitude.FIG. 7. Critical values of (A/k) as a function of /3 in center We set q- A /2i and note that throughout this section

well (solid curve) and side well (dotted curve). Both curves are
derived numerically at the critical frequency co, corresponding we work in the original system of variables (x,1, t ) of Eq.
to the peak of the Melnikov function amplitude in the side well. (1.1). For q=0.5 shown in Fig. 8, the unstable hyperbol.

ic fixed point is close to the unperturbed hyperbolic point

x=0.5438 (this point coresponds to the point zi in
Table I). A branch of ine unstable manifold spirals into

IV. HOMOCLINICTHRESHOLD the right-hand elliptic fixed point due to the dispersion
AND "STRANGE" ATTl'RACTOR (NUMERICAL) (k = 1). A branch of the stable manifold emanates from

In this section we will show Poincar6 return maps of the region of the center well and approaches the hyper-

the numerical solutions to the driven damped rf SQUID, bolic point "around" the unstable solution in the Poin-

Eqs. (1.2)-(.5). The objective will be to first estimate the car6 phase plot; the stable and unstable manifolds do not

onset of homoclinic crossing and compare the results touch. This pattern is characteristic of an overdamped

with those of Sec. III. This was first done by Holmes4 for system. For q =0. 72 shown in Fig. 9, the unstable mani-

a cubic map, which preserved some of the properties of fold approaches the stable manifold by developing a

the anti-Duffing oscillator. No such results have previ- sharp cusp. At q = 0.73 (Fig. 10) the manifolds appear to

ously been obtained for the Josephson junction or the rf touch, and in Fig. I 1 they have already crossed, for

SQUID. In the final part of this section we will give evi-
dence for the existence of a strange attracting set in the
solutions, which develops in a parameter range beyond
the onset of the homoclinic instability.5 Such attractors 1.86 --
have been numerically studied in detail for the Josephson
junction (see Ref. 8 for a review). S4

Comments are made by Holmes4 concerning numerical 1.24

techniques, but it is worthwhile to also comment here on
the procedure and the difficulties. In order to facilitate
the numerical integration of the differential equation (1.1) 0.62
we have introduced the scaled time variable rmo0 t. It is .x

apparent that for the special case oo considered 0.00 
throughout this work, this scaling does not change the
original Lquation at all. However, in all practical appli-
cations of rf SQUID's, one usually has wo 1010, which -0.63
leads to enormous problems when one attempts to in-
tegrate the equation of motion (1.1), unless such a scaling -1.25
is utilized. The stable and unstable manifolds discussed -1.00 -0.47 0.06 0.59 1.12 1,65
in this section are computed by mapping a large number X(t)
of points on the stable (unstable) manifold near the saddle FIG. 8. Stable and unstable manifolds in parameter zegime
point, one or more Poincar6 periods backward (forward). where no homochnic behavior is expected. (/3,^,k, q = Al
In the presence of damping and the periodic external per- 21r)-(2,2.25,1, 0.5).
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2.00 2.00

1.32 -,1-32

0.64 0.64

-0.04 -- 0 .04

-0.72 -0.72 \

-1.401 -1.40
-0.55 -0.04 0.47 0.98 1.49 2.00 -0.55 -0.04 0.47 0.98 1.49 2.00

x(t) x(t)

FIG. 9. Same as Fig. 8 but with q=0.72. The stable mani- FIG. 11. Same as Fig. 10 but with q=0.75. Supercritical
fold has developed a cusp and is approaching the unstable mani- case; a homoclinic crossing has taken place in the side well.
fold in the side well.

the algorithm of Wolfet al.21 It is evident that the system
q =0. 5, in the side well. For these parameter values, the displays chaotic behavior (characterized by a positive X,,)
Melnikov function of Sec. III predicts a homoclinic at a value of q somewhat above the homoclinic threshold
crossing for q = 0.74, in good agreement (considering the value q = 1.21. Further, one observes bands of periodic
numerical difficulties) with our numerical results. Fur- behavior (characterized by a negative X,,) at higher q
ther increasing q causes the other branch of the stable values. Such intermittent behavior is now known to
manifold to loop back and cross the other branch of the occur in many nonlinear chaotic systems and, in particu-
unstable manifold; the latter is attracted to the stable (el- lar, in the driven Duffing oscillator. 4

liptic) fixed point in the center well. Figure 12 shows the We should comment that there is no theoretical con-
near crossing for q = 1.21, and in Fig. 13 the homoclinic nection between to the appearance of these attracting sets
intersection has already occurred (for q=1.25). The and what we have termed homoclinic instability. The
Melnikov function predicts the first crossing in the center Melnikov function does not characterize the appearance
well for these parameters at q = 1.2. of a strange attractor, as is well known. 5 There have been

Now let us turn to the evidence for the appearance of a efforts to correlate the Melnikov test empirically with the
global steady chaotic attracting set in the SQUID-a
strange attractor. Chaos in such a set may be properly
characterized by its Lyapunov exponent.5'20 In Fig. 14
we plot the maximal Lyapunov exponent Xm as a func-
tion of the periodic driving amplitude q with 1.60

(fl,o 0,k)=(2,l,1). This quantity was computed using

084 .

2.00 008 \

1.32 - -068 .

I S°

064 - -1.44

-0.04J- . -2.201 -0.30
-10 03 0.40 110 1.80 2.50

-0.72 FIG. 12. Same as Fig. 11 but with q=1.21. Near-critical
--case for homoclinic crossing in the center well; the manifolds

-140- ' are about to touch in the center well (upper left of figure). For
-0.55 -0.04 0,47 0.98 1.49 2.00 this value of q, homoclinic crossing has already occurred in the

x(t) side well, The blackened area represents the smearing of the
FIG. 10. Same as Fig. 9 but with q =0.73. Critical case, the manifold due to the numerical uncertainties referred to in the

manifolds just touch in the side well. text.
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1.60 0.69 /

0.84 \0.29 -/

0.08 Y , -0.11

-0.68 -0.52

-1.A4 - -0.92

-2.20 -1.32 , ,
-1.00 -0.30 0.40 1.10 1.80 2.50 -1.27 -0.84 -0.41 0.01 0.44 0.87

x(t) x(t)

FIG. 13. Same as Fig. 12 but with q = 1.25. Supercritical FIG. 15. Attractor corresponding to q = 1.43, k = 1.0. This
case; homoclinic crossing has just occurred in center well. case represents the possible onset of a chaotic attractor.

appearance of "chaos" in the Josephson junction. 8-1 1  pendulum (this is the mechanical analog of the Josephson
While not uninteresting, they do not evidence a physical junction) by Gwynn and Westervelt. 23

prelude or early scenario to the appearance of a strange We now examine the parameter range for which a
attractor. At best, now, one would expect that the Melni- chaotic steady attractor seemingly occurs. At any given
kov function is a "rule of thumb" insofar as the appear- time, the state of the system is completely specified
ance of a strange attractor is concerned. It provides one through a determination of its position and velocity
with a lower bound for the chaos threshold in a given (x,*). It is well known that in the chaotic regime, a
nonlinear system and its vanishing should be considered a Poincar6 plot of the system evolution displays a strange
necessary condition for the appearance of chaos in the attractor, i.e., there exist steady areas in state space to
dynamics under consideration. Moon and Li 22 have con- which the states of the system are preferentially attracted
structed the fractal basin boundary for the driven anti- in a seemingly random manner-the successive values of
Duffing oscillator and have observed that the fractal (x,. ) jump from one region of state space to another in a
structure appears to be correlated with the appearance of random manner producing a topologically complex Poin-
homoclinic orbits in this system. They observe that car6 section.
above the homoclinic threshold (determined by Holmes4  In Fig. 15 we show the Poincar6 plot of the system for
using the Melnikov integral), the fractal basin boundary q - 1.43, k = 1.0; Fig. 16 shows the effects of reducing the
becomes quite complicated, whereas it is smooth and damping to k =0.3 (the attractor displays a far more in-
nonfractal below this threshold. They conclude that the tricate structure at this lower k value). The value
Melnikov criterion is a necessary condition for the ap- q = 1.43 is seen (from Fig. 14) to be quite close to the
pearance of the complicated fractal boundary. Similar threshold for the onset of chaos in this system. The
boundaries have been constructed for the driven damped (common logarithms of the) power spectral densities cor-

075 093

045 033i! x
015 -026

E . " ".

-0,15 -085

-0 45 -1 45 "

75 07 1 -204 L l :

1.00 1 40 179 219 258 298 -142 -093 -044 004 0.53 1.02
q x(t)

FIG. 14. Maximal Lyapunov exponent Xm as a function of FIG. 16. Chaotic attractor corresponding to q= 1.43,
the driving force amplitude q. (3,&o,k)= (2,2.25, !). k =0.3.



37' HOMOCLINIC CHAOS IN THE rf SUPERCONDUCTING ... 3551

1.34 . 2.18

-0.61 0.44 . , I ;

-2.55 
-1.30 *

o01 ,,., -3.05 ' . "\, ": , . ;. *

o2-4.50-' +, , , : .

-4.79
-6.45 -

-6.53
-8.39 ! I ! I ! -6.06 -3.50 -0.94 1.61 4.17 6.73

0.00 0.60 1.20 1.80 2.40 3.00 x(t)

'i
FIG. 18. Chaotic attractor for (/?,0),k,q)= (15,2.25,1.5,21).

FIG. 17. Spectr ! densities corresponding to the attractors of The system makes excursions to numerous side wells.
Figs. 15 (solid curve) and 16 (dashed curve). Only the harmon-
ics of the driving frequency are present, with the prominent
peak on the left occurring at the fundamental driving frequ~ency the plasma frequency of the junction. Ritala and
w/2v=0.36. Salomaa15 have observed the appearance of subharmonic

and chaotic solutions in the rf SQUID in a band of fre-
responding to these cases are plotted in Fig. 17, with the quencies centered about 0w) ,/2. Here, o, is the reso-
power spectral density defined by nance frequency that governs low-amplitude oscillations

2}, in the rf SQUID and is easily shown to be given by
P(n)= T f-T x(t)exp(i10dt (4.1) Oar,=o0(l +2r#). The quantity o, may be considered the

T -T/2 analog of the plasma frequency for the rf SQUID. It is

where T--,oo and the angular brackets denote the time interesting to note that as P is varied, the ratio W,/ a, ap-

average (the spectra were computed over 1000 rf cycles pears to lie in the interval [0.4,0.9] for moderate Pi
with a frequency resolution of approximately 0.021 Hz). (0.74 <08< 100). Hence, one might expect that setting

We observe that the power spectra contain harmonics of the driving frequency w) approximately equal to the op-

the driving frequency (w/21r=0.36) only, superimposed timum value 4), predicted by the Melnikov function

on a broadband noise background; this is a characteristic might provide a connection between our results and ear-

of chaotic behavior. Finally, in Fig. 18, we show a case lier work.'1 8 Of course it must be remembered that sim-

in which the system is driven enough strongiy so that it ply selecting an appropriate driving frequency according

makes excursions to numerous side wells in the poten- to the above "prescription" is not, by itself, sufficient to

tial. The parameters used in this case are (fl,,k,q) induce homoclinic behavior or chaos in the system; the
-(15,2.25,1.5,21 ). The attractor displays a quasi- values of the damping coefficient k and the driving force
periodic overall structure c amplitude A must also be appropriately selected.

In concluding, it is worthwhile to speculate on the
significance of the frequency w, defined in (3.7). From ACKNOWLEDGMENTS
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