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Abstract

We consider the problem of identifying the class of time series model to which a series
belongs based on observation of part of the series. Techniques of nonparametric estimation
have been applied to this problem by various authors using kernel estimates of the one-step
lagged conditional mean and variance functions. We study cumulative versions of Tukey
regressogram estimators of such functions. These are more stable than estimates of the
mean and variance functions themselves and can be used to construct confidence bands.
Goodness-of-fit tests for specific parametric models are also developed.
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1. Introduction

Currently one of the most challenging problems in nonlinear time series analysis

is to identify the class of time series model to which a series {Xt} belongs based on

observation of part of the series, {Xt, t = 0, 1,..., n}. Techniques of nonparametric

estimation have been applied to this problem by Robinson (1983), who studied the

large sample properties of kernel estimators of lagged conditional means E(Xt IXt-j)

and E(XtIXt-j,Xt-k) for various j and k values. Such estimators are useful for

detecting nonlinearities graphically, see Tong (1990, p. 12). This approach has been

further developed by Auestad and Tjostheim (1990) who focused on kernel estimates

of the one-step lagged conditional mean and variance functions A(x) = E(Xt [Xf-i =

x) and -y(x) = var(XtlXt-I = x) for the purpose of identifying common nonlinear

models such as threshold (Tong, 1983) and exponential autoregressive (Ozaki, 1980).

In the present paper we introduce an approach to this problem based on es-

timation of cumulative versions of the conditional mean and variance functions,

A(-) = f A(x) dx and r(.) = fa 7(x) dx, where a is an appropriately chosen point

in the state space. These estimators, denoted.A and f, are obtained by integrating

Tukey regressograms for A and -y. The reason for considering cumulative versions of

the conditional mean and variance is that it is possible to derive functional limit the-

orems, whereas available asymptotic results for kernel or regressogram estimators

of A and 7 are only useful pointwise. We advocate A and P as natural 'signatures'

of a time-series in preference to estimates of A and 7.

We derive functional limit theorems for Ak and F under conditions that can

be readily checked when {Xt} is a Markov chain. These results can be used to

construct confidence bands, which are more helpful than confidence intervals in

assessing plots. This is the chief benefit from estimating cumulative conditional

means and variances rather than A and -y themselves. Another benefit is that A

and f are relatively insensitive to variations in bandwidth compared to the kernel

or regressogram estimators.

We also consider the problem of testing whether the regression function A has

a specific parametric form. Klimko and Nelson (1978) developed consistency and

asymptotic distribution results for the conditional least square estimator 9 of 9 for

the parametric model A(x) = g(O, x), where g is a known function and 9 is an

unknown parameter. We construct a goodness-of-fit test for this model based on

a comparison of A and a smoothed version of fa g(O. x) dx, denoted A. Here A is

1



the natural estimator of A under the parametric model. We derive a functional

limit theorem for the process ,fn-(A - A). As a particular application we give a test

for linearity of A. Robinson (1983) has given a test for linearity at finitely many

locations; other formal tests for linearity are parametric-constructed by arranging

the linear model to be nested within various larger parametric models, see Tong

(1990, Section 5.2).

There are some connections between the present paper and cumulative hazard

function estimation in survival analysis, see the survey articles of Andersen and

Borgan (1985) and McKeague and Utikal (1990a). In fact A is closely related to

an estimator introduced by McKeague and Utikal (1990b). Martingale techniques

play an important role here, as they do survival analysis.

Our asymptotic distribution results for A and f are given in Section 2. The

goodness-of-fit test for parametric submodels is discussed in Section 3. We indicate

how our results can be extended to lags of higher order in Section 4. The results of

a simulation study and some applications to real data are presented in Section 5.

Proofs are given in Section 6.

2. Estimation of A and r

Assume that the conditional mean and variance of Xt given X0, X 1,... ,X-l

only depend on Xt- 1.This property holds, for example, if {Xt } is a Markov chain.

In particular, an important example is the nonlinear autoregressive process

Xt = A(Xt-1) + o(Xt_i.Et, (1.1)

where {ej} are iid with zero-mean and unit variance and -, = a2 . In this case

the time series is characterized by the triplet (A,,y, distribution of fo). \\~ are

primarily interested in A and -y. It is assumed throughout that {Xt} is '> tionary

with a marginal density denoted f.
We restrict attention to estimation of A and F on a fixed interval [a, b]. The

regressogram estimators A and 'r are defined as follows. Let Id,.... , be a parti-

tion of [a, b] made up of intervals of equal length w,, the binF of the regressogram,

and denote I = 2j for x E Ij. Set

n

A(x) = (nWnf(X))' ZI{Xt_: E Ix}Xt,
t=1
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y(x) = (nwnf(x)) - 1 E I{XI-1 .E h}(Xt -(X)) 2 ,

t=1

where f is the histogram estimator of f given by

f(x) = (nw.) - 1  I{X,, E ix},
t=1

and I(.) is the indicator function. Regressogram estimators were introduced by

Tukey (1961) and have been studied recently by Diebolt (1990).

Introduce the estimators

(.)= jA(x)dx and r(-) j(x)dx.

Although it is possible to use the more sophisticated kernel estimators to yield

better estimates of A and -f, there is little to be gained from using them in A

and f, which are less sensitive to variations in A and -'. We prefer the regressogram

estimators due to their computational simplicity. In practice, care needs to be taken

in choosing the interval [a, b] and the bins to ensure that the regressogram estimates

are not too unstable. For good results, the binwidths should be of comparable size

(we have taken them to be of equal size merely to simplicity the notation), and

there should be at least 5 observations per bin.

Ideally, in order to carry out inference on A, using a confidence band for A say,

we would like to find the limiting distribution of n (. - A). However, for technical

reasons we are only able to obtain a satisfactory weak convergence theory when A

is replaced by the smoothed version of A given by A*(z) = f A*(x) dx, where

A*(X)= f f*(A() du/ f*() du

and f* is the histogram estimator of f determined by a finer partition of [a, b]

consisting of intervals of equal length wn.

We regard A* as a 'surrogate' for A, which is reasonable since A* converges

uniformly in probability to A. However v/ (A* - A) may not be asymptotically

negligible; see the remark following the proof of Theorem 2.1. If it is (for example

if A is piecewise constant over 21,...d,. for some n) then A* is not needed and

we can deal with A directly. Similar comments can be made concerning t, with *

defined in a similar way to A*.
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We now proceed to state the main results of this section, giving the asymptotic

distributions of A and F. It is assumed throughout that A and -f are Lipschitz. We

also need:

Condition A

(Al) EXo < o.

(A2) (Xo, Xt) has a bounded joint density f t for all t > 1, and the marginal

density f is continuous and does not vanish on [a, b].
(A3) SUPX-E[a,b] var (x)] = o(w-).

THEOREM 2.1. Suppose that Condition A holds, nwn --+ oo, nw4 -* 0 and w* - w2

as n --+ oo. Then f- (A - A*) converges in distribution in C[a, b] to a continuous

Gaussian martingale with mean zero and variance function

H(z) = 7(x).faz x)

THEOREM 2.2. Suppose that the hypotheses of Theorem 2.1 hold, except that

nw2 -+ oo and EX 6 < c. Then V/(fn -*) converges in distribution in C[a, b] to

a continuous Gaussian martingale with mean zero and variance function f v/f dx,

where v(x) = var([Xt - A(X)] 2 IXt_1 = x) and v is assumed to be Lipschtiz.

Checking Condition (A3): A large class of stationary Markov processes {Xt} that

satisfy Condition (A3) is described by Auestad and Tjostheim (1990), who show

(pp. 680, 681) that strong mixing with a geometric mixing rate implies var[f(x)] ,

O((nwn) - 1 ) uniformly over [a,b] provided that f is bounded there. Thus (A3)

holds under this mixing condition if nw2 --+ c0. In a particular example it will be

easier to check geometric ergodicity (Nummelin, 1984), which implies strong mixing

with a geometric mixing rate. Geometric ergodicity is in turn implied by a readily

checkable condition of Tweedie (1983).

Another way of checking Condition (A3), which is not restricted to Markov

processes, is to verify a mixing condition of Castellana and Leadbetter (1986, The-

orem 3.3). They considered the following dependence index sequence

n

fOn= sup 1 ft(x,y)-f(x)f(y)
z,yE[a,b] t=1
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and showed that

var(f(x)) = 0 +o

uniformly in x. Hence, if On = O(dn) and nw2 -+ oo, then Condition (A3) holds.

The moment condition (Al) can probably be weakened, but it makes the results

easier to prove.

We now mention some possible applications of these results.

Confidence bands: Condition (A3) implies that f is uniformly consistent (see the

remark at the beginning of Section 6). Thus, using Theorem 2.2, it can be shown

that H(.)=fj/f dx is a uniformly consistent estimator of H. Then, by Theorem

2.1, an asymptotic 100(1 - a)% confidence band for A* is given by

A(x) ± cn-1/ 2H(b)l/ 2 (1 + (x) x E [a, b],

where c. is the upper a quantile of the distribution of suptE[0,1/ 2] 1B°(t) and B °

is the Brownian bridge process, see Andersen and Borgen (1985, p. 114). Tables

for c, can be found in Hall and Wellner (1980). A confidence band for "* can be

obtained in a similar way.

Testing simple hypotheses: A test of the simple hypotheses, A = A0 and -Y = 'Yo,
where A0 and -yo are given, can be made by checking whether the above confidence

bands contain A* and Fr. A rather different approach has been taken by Diebolt

(1990), who developed a test based on a piecewise constant version of

,/n- ( AS (x) dx - jf(x) Ao (x) dx) .

Diebolt obtained a functional limit theorem for this process, and a similar one

designed to test y = -yo, where yo is given and A is known, in the special case of

model (1.1).

Testing for a difference between two regression functions: Consider the "two-sample

problem" of testing whether two independent time series have identical regression

functions A. Denote the various functions, sample sizes estimators etc. associated

with the two series by using a subscript 1 or 2, as in Aj, j=1,2. Let n = n± + n,.
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Then, if nj/n -+ pj for j = 1,2, and the conditions of Theorem 2.1 are satisfied

for the two series, V'i(Al - A2 ) converges in distribution in C[a, b] to a continuous

Gaussian martingale with mean zero and variance function

Pi yt (X) dx + p2 Y dx,
f(x) a f2(X)

provided that A1 = A2 on [a, b] and v/i-(A* - A*) converges uniformly in probability

to zero. The latter condition holds if the common A is piecewise constant, as

mentioned earlier. Confidence bands for A* - A* are constructed as above. Some

plots of such bands are given in Section 5.

3. Goodness-of-fit tests for parametric models

In this section we consider the problem of testing whether A belongs to a

parametric family {g(0,.) : 0 O} of regression functions. Here g is a known

deterministic function, and O is a closed, bounded subset of R P.Our test is based

on a functional limit theorem for v i(A - A), where f(z) = f A(x) dx,

A(X) jf *(u)g (9 u) du/ L!(u) du

and 9 is the conditional least squares estimator minimizing E_. 1 (Xt - g(9 , Xt- ))2.

First we state a version of the consistency and asymptotic normality result

of Klimko and Nelson (1978) that is adapted to our present setting, taking the

opportunity to simplify their approach a little. We assume that {Xt} is an ergodic

process and E(Xi - g(o, Xo)) 2 has a unique minimum at a point O0 in the interior

of 0.

For a matrix Y and a vector y, denote 1IY11 = sup2 , IyJI, 11YI = supi lyl,
and y®2 = yyr. It is assumed that g(O,x) is twice differentiable w.r.t. 0 and the

corresponding derivatives are denoted g' and g".

Condition B

(B1) There exists a function J such that j[g"(0,x) - g"(( x)II _ J(x)6(0 - 0I

where J(Xo) has a finite second moment, and limc_ 0 5(a) = 0.

(B2) There exists a function K such that jIg"(0,x)JI < K(x), where K(Xo) has

a finite fourth moment.
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(B3) g(Oo, Xo) and -y(Xo) have finite second moments, and all the components

of g'(00, X0) have a finite fourth moment.

(B4) The matrices

V = E[g'(0o,Xo)02 ],

S = E[g'(0o,Xo) 2 y7(Xo)]

are positive definite.

THEOREM 3.1. Under Condition B, -- 90o and Fn(9 - 0 0) -N(O, V-1SV).

We now state the main result of this sectiun.

THEOREM 3.2. Suppose that Conditions A and B hold and A(-) = g(Oo, .). If

nw, ---+ oo and nw 4 -- 0, then x/- (k - A) converges in distribution in C[a, b] to

j y(x)/f(x) dW(x) - 0(.) g'(0o, x) y/-(x)f(x) dW(x),

where

O(Z) = g( 0o,x)TdxV - 1,

and W is the Wiener process extended to the whole real line.

A chi-squared goodness-of-fit test for the parametric model is now easily con-

structed. Let J 1 ,..7 • ,,. be a partition of [a, b] consisting of intervals. Denote the

increment of N/n (A - A) over Jj by Aj. It can be checked that A = (Aj) converges

in distribution to a Gaussian random vector with mean zero and covariance matrix

having rl th entry

H(Jr n J) + 0 (Jr)S o(Jl)T - 0 (Jr)H,(J) - 0 (J)Hi(Jr),

where H is defined in Theorem 2.1 and

Hi(z) 9'(0o, )-(x) dx.

Let G be the natural estimate of this covariance matrix obtained by replacing the

unknown 0, f, and -y by their estimates. Then the Wald test statistic ATG-A

7



has a limiting Xq distribution under the parametric model, where q is the rank of

the limiting covariance matrix of A. A test for a parametric model of 7 can be

developed in a similar way.

4. Extension to higher order lags

It is possible to extend our results to higher order lagged conditional means, but

it would be unreasonable to use more than second order lags in practice because of

the "curse of dimensionality"- the data becomes sparser at an exponential rate as

the dimension increases. We briefly indicate how to handle the second order lagged

conditional mean A(x,y) = E(XtIXt-1 = X, Xt- 2 = y). This mostly amounts to

just a reinterpretation of our original notation.

Denote Xt = (Xt, Xt- 1 ) and assume that the conditional mean and variance of

Xt given Xo,X 1 ,... ,Xt- 1 are A(Xt- 1) and 7(X,- 1 ) respectively. The regressogram

estimator of A is

A(Xly) = (nwnf xy)) ZIfXt- E IX}
t=2

where 2y = Ix x 1. and

n

f(x,y) = (nw 2) - 1 ZI{Xt E
t=2

Here f is a histogram estimate of the density of Xi.

In order to obtain the asymptotic distribution of A = fa A dx dy we need to

extend Conditions (A2) and (A3). In Condition (A2), ft is now the joint density

of X, and Xt. The rate in (A3) is now o(w'). Castellana and Leadbetter's (1986)

dependence index sequence /3, can be extended in the same fashion. If /3n = O(d')

and nwn --- cc, then the extended version of Condition (A3) holds.

The functions f*, A* and are defined much as before, except using a parti-

tion of [a, b]2 consisting of squares with sides of length w*, and integrals over 1,,.

Let C[a, b]2 denote the space of continuous functions on [a, b] 2 provided with the

supremum norm. Our earlier results now extend as follows.

THEOREM 4.1. Suppose that the extended version of Condition A holds. n u', U cc.
9/2 9/4 ]

nu,n - 0, and w* - wn . Then V/(, _ A*) converges in distribution in C[a. b]2



to a two-parameter Gaussian martingale with zero mean and variance function

f. fa '/fdxdy.

THEOREM 4.2. Suppose that the hypotheses of Theorem 4.1 and the extended

ver3ion of Condition B hold and A = g(Oo,.,.). Then v/ (A - A) converges in

distribution in C[a, b] 2 to a process which Jhas the same form as the limiting process

in Theorem 3.2 except that the integrals are with respect to the W¥iener sheet

extended to R2

5. Numerical results and examples

5.1. Simulation study: We have carried out simulations using three model examples

taken from Auestad and Tj0stheim (1990):

Model 1: linear autoregressive, Xt = 0.8Xt-I + Et;

Model 2: threshold autoregressive,

-0.3Xt- 1 + Ct, if XI-I < 0,{ 0.8Xt- 1 + et, if Xt- 1 > 0;

Model 3: exponential autoregressive, Xt = {0.8 - 1.1 exp(-50X2_ 1 )}X t _ l + Ct.

Here et is Gaussian white noise with mean zero and standard deviation 0.1.

Auestad and Tjostheim (1990) checked geometric ergodicity and stationarity for

these examples.

We restricted estimation of A to the interval [-0.3,0.3]. The binwidth was

taken as w, = 0.05 (same as Auestad and Tjostheim, who plotted point estimates

of A for these three models). Inspecting the plots of A in Figure 1, we find that

the three models are easily distinguishable, even for sample size as low as 250. The

parabolic shape of the linear autoregressive model, and the 'squashed' parabola of

the exponential autoregressive are especially distinct.

Figure 2 shows plots of differences between the estimates of the cumulative re-

gression functions in the two sample problem, for various pairs of the above models.

In the first plot in each row, the two series are generated using the linear model and

the zero function is contained within the band, so our test would correctly conclude

that the regressicil fanctions are identical. In the other plots, the zero function is

well outside the bands and the test correctly concludes that the regression functions

are different.
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Table 1. Observed Levels and Powers of Goodness-of-Fit Test for Linear Autore-
gressive Model at Nominal Level of 5%; binwidth, w,, = 0.05; L = 4.

Sample Size
Observed Series 100 250 500 1000 1500 2500

Linear 0.0974 0.0604 0.0518 0.0496 0.0426 0.0496

Threshold 0.8674 0.9938 0.9994 1.0000 1.0000 1.0000
Exponential 0.4836 0.9376 0.9996 1.0000 1.0000 1.0000

NOTE: The data were generated using the Gaussian random number generator of
Marsaglia and Tsang (1984). The number of samples in each run was 5000.

Table 1 gives observed levels and powers of the chi-squared goodness-of-fit test

for the linear autoregressive model Xt = OXt-1 + et, when the time series is gener-

ated by each model. At small sample sizes (less than 250), the covariance matrix

estimator & sometimes failed to be positive definite and the chi-squared statistic

value was negative. The percentage of negative chi-squared statistics was 2.4% and

0.1% for sample sizes of 100 and 250 with the linear model; 7% and 3% with the

threshold model; 3.6% and 0.94% with the exponential model. We rejected the

linear model when the chi-squared statistic was negative. This is reasonable since

C is consistent under the null hypothesis so that a negative chi-squared statistic

is evidence in favor of the alternative. The observed levels are very close to their

nominal 5% values and the powers are close to 100% (except for n = 100) under

the threshold and exponential models.

5.2. Canadian lynx data: The classic Canadian lynx data set consists of the annual

numbers of Canadian lynx trapped in the Mackenzie River district of North-west

Canada for the period 1821-1934. Various parametric time series models have been

proposed to fit these data, see Tong (1990) for an extensive review. Moran (1953)

fitted a second order linear autoregressive model, after first transforming by log10 ,

to obtain

Xt = 1.05 + 1.41X_11 - 0.77Xt_ 2 + Et

where et - iid (0,0.04591). However, many authors, including Bartlett (1954),

Hannan (1960), Campbell and Walker (1977) and Tong (1977), have judged this

model to be inadequate compared with some other parametric models.

We carried out our goodness-of-fit test for the second order linear model (hav-
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ing three parameters) using d, = 5,6,..., 10, and 4 (2 by 2) and 9 (3 by 3) degrees

of freedom. The bins were arranged to cover the whole range of the data and to

contain, as closely as possible, equal numbers of data points. All our tests indicated

an extremely strong departure from the linear model.

5.3. IBM stock price data: Consider the set of IBM daily closing stock prices from

late 1959 to mid 1960 (period I) and mid 1961 to early 1962 (period II) given in

Tong (1990). The daily relative change in price appears to be stationary and is used

in place of the raw data. Tong (1990) tested for linearity and decided that period I

is linear and period II is nonlinear. Figure 3 gives a plot of the difference between

the estimates of the cumulative regression functions in the two periods, along with

the 95% confidence band, using d = 10. The confidence band does not contain

the zero function, so we conclude that the regression functions for the two periods

differ significantly from one another. Our chi-squared test with d = 8, 10 and 12,

and degrees of freedom L = 2 and 4, gave the same result.

0

---
~- -------- 

- - .-.-.

o

-0.02 0.0 0.02 0.04

Figure 3. A1 - A2 with 95% confidence band for IBM stock price data; d, = 10;
A1 = period I, A 2  period II.

6. Proofs

Recall that the intervals Ij partition [a, b]. We write them explicitly as =

(xj ], j = 1,...d, 4. In what follows we need f to be uniformly consistent for

f on [a, b]. This holds under Conditions (A2) and (A3) since

E(supIE[,b] jf(x) - ft(X))2 < ZdL var[f(xj)] = dno(wn) -* 0,

12



and, by stationarity, f t(x) - Ef(x) = wj- f7. f(u)du - f(x) uniformly on [a,b].

Also note that t = Xt - A(X,- 1 ) is a martingale difference with respect to the

natural filtration ,7t = a (Xo,. Xt)

PROOF OF THEOREM 2.1. First observe that f(x) = wnl fz f* du. Since A is

Lipschitz and f converges uniformly in probability to f, which is bounded away

from zero, we have

n 6d
A(x) = [nwnf(X)W~n']1 ZIXt-~i E -T*}[A(Xti) + t] du

1 t=i
n

= A*(x) + OP(W*) + [nwnf(x)] - ' > I{Xt-1 E ZE }t-
t=i

Hence, by w* '- w2 and nw 4 -+ 0,

1 Iz E,=IX-1I "x} d~p(1

V(&- A*)(z) =- / It dx + op(l)
______ f W)

= M(n, .)(z) + R(z) + op(1)

uniformly in z, where

I [zd] kM(k, z)- V/- E f f(xj)-l If IX-i E -Ti}6 I k = 1,...,n

j=l t=l

t=l

and, given a function - defined on [a, b], € is the piecewise linear approximation to

€ that agrees with 0 at each xj. Here [.] denotes the integer part and A(k, z) is

defined to be zero when [zdn] = 0. To complete the proof we need to show that

the remainder term R converges uniformly in probability to zero and M(n, -)V4m,

where m denotes the Gaussian martingale given in the statement of the theorem,

for Lemma 4.1 of McKeague (1988) then implies that M(n, .)---m.

Now M(., z) is an .Fj martingale for each fixed z. We shall use the martingale

central limit theorem (see Theorem A.2 of Aalen (1977), for instance) to show

that all finite dimensional distributions of M(n,.) converge to those of rn. The

13



predictable variation process of M(., z) evaluated at k = n is given by

[zd,]
M n z ft(xj)2 {X E 1j)(Xt-)

j=l t=1

jz [-,(x) + O(W.)]I(x) dx + op(l) P--H(z).

fT(x) 2

Next, we check the Lindeberg condition that

1 [zdn] n 1 Ei}
n j=1 t=1

converges in probability to zero for all E > 0. By the conditional Cauchy-Schwarz

and Chebyshev inequalities, and since ft is bounded away from zero on [a, b], the

conditional expectation in Ln is bounded above by
{E( I641gt_I)} {[vIe-ft(xj)]- 2 E(I{X 1 l

E (){((~i}IXti E j6 X_,}2

Now (Al), stationarity of {Xt} and A Lipschitz imply that supt E~ts < 0, so again

using the Cauchy-Schwarz inequality, (A2), boundedness of f and -y, and nw -+ oc,

we have

E(Ln)n E_ Ej, (E- {f¥X-l_1 E _Tj)- =O(- ---- 0,

so the Lindeberg condition holds. By the martingale central limit theorem, the one

dimensional distributions of M/I(n, .) converge to those of m. The above argument

readily extends to all finite dimensional distributions of M(n, .) using the fact that

increments of M(., z) over disjoint intervals in z are orthogonal martingales.

The next step is to show that {M(n, .): n > 1} is tight in D[a, b]. By a slight

extension of Theorem 15.6 of Billingsley (1968), it suffices to show that

EIM(n,y) - M(n, x)12 1M(n, z) - M(n,y)12 < C(z - x)' + o(1)

for a < x < y < z < b, where C is a generic positive constant. Indeed, by the

Cauchy-Schwarz inequality it suffices to show that

EIM(n,y) - M(n,x)14 < C(y - x)2 + o(1). (6.1)

14



Using Rosenthal's inequality (Hall and Heyde, 1980, p. 23), the left hand side of

(6.1) is bounded by

CE [ZZE((jXti E I3 J Ft1 2±CZEE (IXi E u )A ,4, (6.2)
j t= l " -ft(xj) ) I j t= vr4-ff t (xy)

where the summation over j runs from [xdn] + 1 to [ydn]. By (A2), the first term

of (6.2) is bounded by

0 
n

j t=l j,h s~t

= O(Y _ X) + O(l)(y _ X)2 < C(y _ X)2 + O(1),

and the second term of (6.2) is bounded by

o(-~)~E(EIfXt-1 E Ij})"(E~) O( ff) -X) = j)

since nwn -4 oo. So (6.1) holds.

It only remains to show that R converges uniformly in probability to 0. Since

f is a uniformly consistent estimator of f, which is bounded away from zero on

[a, b], it suffices to show that

1 n } - . (6.3)
WZLf(xj)f (Xi)IE I{Xt-i E PA6

j=1 t=1

By the Cauchy-Schwarz inequality and (A3), the expectation of (6.3) is bounded

by
1 n(var[f (Xj)]) 12 E(If X,-i_, j )j,) 2

j=1 t=l

= n 0 o(V -W ) 0O(-, - --- 0,

as required. C3

Remark: To show the uniform consistency of f, we used Condition (A3), which can

be readily checked under nw 2 --+ 0. However, under nw 2 -* oo we aro unable to

15



shiow that v/n(A* - A) tends uniformly in probability to zero since A* - A is at best

of order O(tvn). Thus we have not been able to obtain an asymptotic distribution

result for \/n-(A - A) in general.

PROOF OF THEOREM 2.2. Define -rt = -2 _ Y(Xt_,). Since A and -y are Lipschtiz,

funiformly converges in probability to f which is bounded away from 0,

j~)= [nwnf(X)]-' E I{Xt- 1 E -x} [ct - >i I{Ai- 1 G . + OP(Wn)j2
t=1 zi if Xi- 1  TX}

7()= [nWnf(X)f' _13 If{Xti E h.}y(Xt- 1) ± Op(ti4).
t=1

Noting that Vfrw* (nw4)'/ 2 
-*0, we have

v/-f- r*)(z) = -j -I{~ 1 2}7tdx

+1 2 */ ii;fX~1  (6.4)
Wn t=1

+0P~(;~ jfz E If{Xt- E T.} dx + op(1)
Vn " =1

uniformly in z. The second term in (6.4) is unformly bounded by

op E f X-iE Ij~
j~=1 1t=1

-OP( 3 1 > Op(nWn) =OP(3/) 2 OPMl,

since nw2 00 . The third term in (6.4) is unformly bounded by

Op(~) S E j~j: Op (7=) Op(v?iTHn) =op(1).

Hence, ,/n-(t- r) has the same form as V'-(A -A*) except that 7tj replaces j. Note

that 7-j is a martingale difference and E(7rIXu- = x) = v(x). Also, the condition

16



EX' 6 < co implies that sup, E(rf) < co. Therefore, the result follows by the proof

of Theorem 2.1. r-

PROOF OF THEOREM 3.1. Define Qn(O) = _ - g(,Xj-)) 2 and q(O) =

E(X 1 - g(O, X0)) 2 . Note that

1nn(0( Q.0(())= n_ 1 Xt [0(, Xt-l) _ g( ,f Xt-l) ]

T=1

+ n_,[g(o,X,-i ) + g((,Xt-l)][g(0,X,_i) - g((,X,-i)].

t=1

By Condition (Bi), we have that

Ig(0, x) - g((, x)l _< [CK(x) + IJg'(0o, x)I]1l0 - (11.

Hence, under the moment conditions in (B1) and (B3), and the ergodic theorem,

121-IQ (0)-Q (0)I C110 - (11,

where C is finite almost surely. It follows that {nQ-1Q(.)} is equicontinuous. Again

by the ergodic theorem, n-'Qn (O)- )q(O) (< oc), which implies that f n - 1 Qn (')} is

pointwise bounded almost surely. It follows by the Arzela-Ascoli theorem that this

family of functions is almost surely relatively compact in the space of continuous

functions on 0. Thus n-Qn(.) converges uniformly to q(-) on e almost surely.

Since q(O) has a unique minimum at 9o E 0, and 9 minimizes Qn(9), we conclude

that 9 is consistent.

Next, Taylor expanding Qn about 00, we can write

vl-( - Oo) = U./Vn(O*),

where Un = U n

kk

7 2n

and 0* is on the line joining 00 and 9. Since U(" ) is a martingale in k, the martingale
k V

central limit theorem can be used to show that U,2 -- N(O, S) under the moment

17



conditions in (B3). To complete the proof we need to show that V (0*) )-.

Routine algebra gives that

Vn(o*) = g(00'Xt-i)®
t=1

+ n E[gf (0* , Xt-1 0), - g'(00',Xt-i)®2

t=1

+ 1 [g(o*, Xt i) - 0(9, j....)]gf(* Xt. 1 )

t=1

+ ' L 
-got)]g(,Xt)-

n

By (B3) and the ergodic theorem, the first term converges to V almost surely. Using,
a9*. )0, Conditions (B1)-(B3) and the ergodic theorem it can be shown that the

second, third and last terms above converge almost surely to zero. A strong law of

large numbers, see Hall and Heyde (1980, Theorem 2.19), (B2) and (B3), and the

martingale difference property of t, give that the fourth term also converges almost

surely to zero. We conclude that V 7 (*) a~*4V. El

PROOF OF THEOREm 3.2. By Taylor expanding g(-, u) about Oo for each fixed u,

- A*)z) = [w7 1 ~x~T

v,'n-((j [j*()[Wix]' f*(u) gI(9*lu)du dx)T f-( O)

where 09* lies on the line joining 00 and 9.Since j is a consistent estimator of 00,

and g' is continuous,

Lw~xf jf(u) gI(O*,u) du] a

From the proof of Theorem 3.1, fu(0 - Oo) = V-1 U + op(l), so using the proof

of Theorem 2.1,

vn - k)(z) = MI(n, .)(z) - tk(Z)U 1 + OP(1

18



uniformly in z. By a D[a, b] x R version of Lemma 4.1 of McKeague (1988), it

suffices to show that (M(n, .), U,) converges in distribution to (m(.), U..), where

m(:) = v.(x)/f(x) dW(x),

U 0 = j g'(0o,x) VR(x)f(x) aW(x).

The proofs of Theorems 2.1 and 3.1 give that M(n, .)m-- and U, V -*U. It only

remains to show that the finite dimensional distributions of (M(n, .), U,2 ) converge to

those of (m(.), U00 ). This is done by applying the martingale central limit theorem

to the vector-valued martingale consisting of U(" ) and increments of Al(-, z) over

disjoint intervals in z. In particular, note that

1 lzd~l n
(M(., z),U(,)}= 1 E ft(.)_' Z: I{Xt,- E Ij} g'(Go,X-1)-r(Xt-i)

n j=l t=

g 1 LZ [g,(oX)(X).+.O(wn)] f{Xt-i IxIdx +op(1)

nwn It(x) It=1

) jg(Oo, x) y(x) dx = Cov(m(z), U00).

The Lindeberg conditions involving increments of M(., z) have been checked in the

proof of Theorem 2.1, and those involving the p components of U ( n ) in the proof of

Theorem 3.1. 13

PROOF OF THEOREM 4.1. Since A is Lipschtiz and f uniformly converges in prob-

ability to f, which is bounded away from 0, we have

n

(x7, y) = A*(x, y) + Op(w*) + [nw'f(x,yE Z {Xti E 4}yCt.
t=1

Since V/-n -- (nw9/ 2 )1/2 -, 0,

1 - A*)(zi, Z2 ) 2JJ dx dy + op(1).
,/nw a f (X, y)

The remainder of the proof is almost identical to the proof of Theorem 2.1 except
that Xt replaces Xt, T,, replaces T", w 2 replaces w,, double integral (summation)

19



replaces single integral (summation), and is the piecewise linear approximation

to 0 determined by cells 2 4 g. Note that Condition nw2 -* oo is used in checking

the Lindeberg condition, and tightness can be checked by using a two-dimensional

time parameter version of Theorem 15.6 of Billingsley (1986) given in Bickel and

Wichura (1971). We omit the details. D

PROOF OF THEOREM 4.2. The proof is similar to the proof of Theorem 3.2 and is

omitted.
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