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Similarities between various Lamb waves in submerged spherical
shells, and Rayleigh waves in elastic spheres and flat half-spaces
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M.F. Werby

Naval Ocean and Atmospheric Research Laboratory (221), Numerical Modelling Division, Bay St. Louis,

Mississippi 39524

(Received 31 August 1990; accepted for publication 12 Februvary 1991)

A variety of resonance features are studied in the back-scattering cross sections (BSCS) of an
air-filled metal spherical shell submerged in water and insonified by a plane cw sound wave.
Rayleigh (R) and whispering gallery (WG) waves were originally investigated for vibrational
purposes for (flat) half-spaces in contact with vacuum. Lamb waves were originally studied in
flat plates also in contact with vacuum. These old findings are generalized to the cases of an
elastic spherical shell (0.d./i.d. = 2a/2b) fluid-loaded on both surfaces, and exciied by an
incident plane wave. The various (leaky-type) Lamb waves present in the shell are shown to
reduce to the earlier R/WG waves as ¢> 1> 0 and p,—0. The manneri which each one of
these various shell waves manifests itself in the various frequency bands of the shell’s BSCS as
perceived by a remote sensor is also studied. Dispersion plots for the various phase velocities of
the various waves are displayed in very wide (i.e., 0 < ka < 500) bands, and a number of
analogies between Lamb and R/WG waves are obtained as the submerged shell becomes a
solid sphere (b <a), and vice versa (b $a). The fluid loadings, the finite shell thickness, and
the curvatures of the structure all generate novel types of waves in the shell (that manifest
their effects in its BSCS) that could have never emerged from earlier models that ignored these

effects, and which are analyzed here.
PACS numbers: 43.35.Mr, 43.40.Ey

INTRODUCTION

Strictly speahing, Rayleigh waves propagate along the
surface of (semiinfinite) half-spaces in contact with vacu-
um. In practice, however, there are no elastic half-spaces. So,
one may ash if Rayleigh waves can exist on the (flat) surface
of a layer of possibly infinite extent, but of finite thickness.
Numerous authors have studied and answered this ques-
tion,'”” which by now is summarized in various mono-
graphs *'* Briefly, for thick layers — those with thickness d
greater than the Rayleigh wavelength 4, — only two ordi-
nary Lamb waves (viz., 4,and S,,) are essentially excited in
the plate. For d>A,. the propagation characieristics of
these two Lamb modes are very similar to those of a Ray-
leigh wave. Thus the answer to the above question has been
given in the affirmative.

Lamb wave propagation in a fluid-loaded (flat) plate
has also received much attention. Again, various reviews
and monographs have summarized this situation,'*** which
include numerous references. In this case, the wave numbers
(and modes) are determined from a set of coupled charac-
teristic equations that yield the eigenfrequencies (and eigen-
functions), now accounting for the fluid loading.

When the structure is now a shell or a solid-curved elas-
tic body, the analysis of the corresponding Lamb or Ray-
leigh waves on these curved objects has received less
study,?"?* but some general foundations involving curva-
ture??2* and fluid loading™ have been established. It is the
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purpose of the present work to further extend this founda-
tion and examine basic theoretical similarities between the
(generalized) Rayleigh and Lamb waves in convex solid
elastic bodies and elastic shells, respectively, particularly
when these bodies are subject to the influence of fluid load-
ing.

1. THEORETICAL BACKGROUND

A plane sound wave travels through a fluid medium and
impinges on a thin elastic, air-filled, spherical shell of outer
(or inner) radii @ (or b). Its (normalized) backscattering
cross section is given by"!

ag
:—'_; = V/. (Tr’x)l

H

z 2

[, (rx)
[

n

" 2

=L S (—n@n+ia,m|, (1)

IX 4y -0

where £, (7,x) 15 the form function m the backscattering
direction, 8 = 7. We define a4 nondimensional frequency
x = h,a,where k| = w/c,. The circular frequency iswand ¢,
is the sound speed in the outer flud (1.e., medium No. I,
water). The coefficients 4, (x) are determined from the
(six) boundary conditions at the interfaces r = a,b as ratios
of two 6 X 6 determinants, viz.,
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An(x) = _BII/DII

Regd,, d\, dy; dyy ds 0
Regd, dy dyy dyy dys O
—1 0 dy, dy; dyy dys O

Du 0 d42 d-ﬂ d-i-# d-is d46 ’
0 ds; dsy dsy dss ds
0 dey dey dey dos 0
(2)
where
dy dy dy dyy ds 0
dyy dyy dyy dyy ds 0
0 d\', d}g d\_, d‘q 0
D,(x)= o - ; 3)
=0 dy dy dy di dy (
0 di ds; diy dss ds,
0 d": db." d(ﬂ d(vﬁ 0

The 28 (nonvanishing) elements, d; have been listed else-
where.?' All the elements depend on x, on x,,, = @/c,,, 0n
X3, =0/c,y,andonx; = w/c;, wherec,, (c.,) is thedilata-
tronal (or shear) wave speed in the shell, and c; is the sound
speed in the inner fluid. Since x., = (c¢,/cy.)x,
x. = (¢,/ca)x, and xy = (¢,/¢;)x, all the elements ulti-
mately depend on x, and so do coefficients 4,, (x). This for-
mulation is exact since the shell motions are described by the
three-dimensional equations of elastodynamics. This solu-
tion has been programmed tor numerical evaluation.

Subtraction of the (rigid) modal backgrounds usually
isolates the pure resonances in the typical manner of the
resonance scattering theory (RST).** These backgrounds
have coefiicients of the form

AV (x) = = (x)/h P (x). (4)

The sum of those (residual) modal resonances is then

v

3 fir(mx)

0=

=| S Ualmn = £ (0]

00

=| L3S (-=n+n
X 5o

|[fE(mx) | =

X [4,(x) =40 (x0)]] (5)

which we have often called the residual or resonance re-
sponse. We have shown®® that the partial waves, |f, (7,x)]
contained within the sum in Eq. (1) can be exactly decom-
posed in the form

Vs (7x)] = l 21 ‘~"(2ie “E Sin g0
X

y  (6)

+3 il 3 l. )

7 F7'— Rezy'—ilmz ™!
where F,, 'is proportional to the shell's mechanical imped-
ance, and 2, ' (i = 1,2) are proportional to its acoustic im-
pedances, as defined elsewhere.”* These exact expressions
fepresent contributions from the background associated

2732 J. Acoust. Soc. Am., Vol. 89, No. 6, June 1991

G. C. Gaunaurd and M. F. Werby. Lamb waves in submerged shells

s
with reflection from an impenetrable body (first term) and |
from the structural resonances that cause reradiation (sec-
ond term). These expressions can be futther linearized in the
current (approximate) way of the RCT, that will not be
further shown here. Equation (6) serves merely to point out
that complex eigenfrequencies x,,, are obtained from the
vanishing of the entire (complex) denominator shown in the
fraction term (viz., F,'=2z""), while the (real) reson-
ances in this “rigid-background” case, are roots of the real
part of the denominator (viz., ;' = Re z;"'). These con-
ditions for complex eigenfrequencies and real resonances are
equivalent to the vanishing of the denominator determinant
inEq. (3) [viz., D, (x) = 0], orofits regular part in Eq. (2)
[viz., B,(x) =RegD,(x) = 0], respectively. Once the
(complex) zeros of D, (x) are found, say x,,;, then the phase
velocities of the various types of Lamb waves present in the
sheil (and their attenuations) can be obtained from che ex-
pressions

cf(x) _Rex, 07(x) = 1

- ’
Imx,

(7N

?
<y n+4

for each value of the index pair (n,/). We have developed
numerical programs to determine the zeros of these determi-
nants, and to calculate the corresponding phase velocities
and attenuations of the surface waves associated with these
zeros. We have also noted that ** the phase velocities and
attenuations of the (Lamb) surface waves of a spherical shell
in vacuo are found by means of Eq. (7) from the zeros of a
simpler determinant of order 4 X4 rather than 6 X6, given
by

dlZ di.\ dl-l dlﬁ

> d§1 d‘-l d‘ﬁ
D z:, x) = R24 B B RE
sl dyn dyy dy
d(12 d().l d()-l d(vS

which exactly accounts for the shell’s double curvature and
elastic composition, but ignores the presence of the fluid
loading on its two surfaces.

Finally, it should be noted that the Rayleigh-wave ve-
locity in a flat halfspace, where it was originally intro-
duced,"® comes out to be the real root of a fourth-order
algebraic equation, which can be approximated by the sim-
ple relation®

Cp =[(0.87 + L12v)/(1 + 1) ]c,, 9)

where v is Poisson’s ratio and ¢, is the shear speed. This is an
analytic approximation quoted by Viktorov® of an earlier
numerical evaluation of the Rayleigh speed for a flat, elastic,
half-space in contact with vacuum. The numerical evalua-
tion was originally found by Knopoff,?® and it was iater re-
ported in textbooks (viz., Ref. 11, p. 34). For a spher’:al
shell of radii a, b, there is no true Rayleigh speed since now
one has (spherically modified) Lamb modes and surface
waves. However, in the limit 5-0 " (i.e., for a solid elastic
sphere), a *‘corresponding” Rayleigh speed is obtained
which 1s slightly higher than that predicted by Eq. (9) for
the flat interface. In fact, ail the spherical Lamb branches,
A1,S)500A,,,S,, of the dispersion curves associated with all
the Lamb surface waves for the shell also approach their own

(8)
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Rayleigh speed in the imit of a solid elastic sphere (i.e., for
b—0orh’' =100%). So, the Rayleigh speed in these cases is
mode-order (1.e., ) dependent. Ultimately, for high-order
modes, which is a situation equivalent to high frequencies or
to large values of a, the value of ¢; for a flat interface, given
by Eq. (9), is then reached.

Il. NUMERICAL RESULTS

Figure 1(a) and (b) shows the residual or resonance
response associated with the # = 0 elastic mode of an air-
filled steel spherical shell of variable thickness immersed in
water. This display of residual responses is obtained by the
suppression of suitable (rigid) modal backgrounds. The rel-
ative shell thickness fi'=h/a = (a — b)/a ranges in value
from 1% to 100% in 11 stages. Tkese are: ' = 19, 2.5%,
5%, 10%, 209, 40%, 60%, 80%, 90%, 95%, and 100%.
The last stage corresponds to a solid steel sphere in water.
All the calculations are displayed in the broad (nondimen-
sional) frequency band: O<x=£,a<100. The n = 0 mode
and its associated residual response, after background sup-
pression, is the one usually related to purely dilatational fea-
tures. Table I lists all the required material parameters for
theshell and the fluids that load it on its two surfaces. Simple
observation of these plots shows that thin shells support few-
er modes and isolated resonance features than thicker ones.
Up to thucknesses of abcut 20% only one or two resonance
features (i.e., the/ = 1 and/or 2) are visible in the resulting
graphs within the displayed band. For thicker shells more
features appear until about /=8 resonances are seen at
thicknesses of 90%, 95% and 100%. The first one of these
resonances features (i.e., the / = 1) would be the analog of
the Rayleigh resonance for a solid sphere, while all the others
would “correspond” to the whispering gallery resonance
features (/>2). However, here we have a shell in which the
I =1 featare, present in all the modes, is due to the first
antisymmetric (flexural) shell Lamb wave A, This is the
spherical counterpart of the A, surface wave that has been
the subject of many studies' ™ for the case of flat plates.
Hence, our A,, is a spherical Lamb wave that generalizes the
A, Lamb wave of plates. This flexural shell wave “corre-
sponds™ to the Rayleigh wave for solid elastic spheres (viz.,
b—0"') and also ultimately, to the Rayleigh wave in flat
clastic half-spaces (a» 1).

It should be pointed out that for an air-filled shell, the
effect of the air-borne reverberations will manifest itself as a
series of very narrow resonance spikes in the BSCS, or in the
isolated residual responses of Fig. 1. These skinny reso-
nances are several thousand tmes narrower than the ones
shown n Fig. 1. They look like a “noise effect.” and are

TABLE L Matermal parameters of the shell and the fuids,

r 4

easily missed if high-resolutions are not used in the genera- _

tion of the plots. We have intentionally suppressed them
here, since they do not adg io the points of present concern.
Figure 2 displays the dispersion plots for the phase ve-
locities of this (generalized) 4,, (Lamb) wave in the . pheri-
cal shell as a function of x( =k ,a) for eight shell thicknesses.
These thicknesses are: i’ = h /a = 10%, 20%, 40%, 80%,
90%, 95%, and 100% (solid). For thicknesses below 40%
the dispersion curves exhibit an upward turn due to the
(double) curvature of the shell, in contrast to those observed
in earlier works which were based on plate theories or ap-
proaches to generate the corresponding dispersion plots.
Figure 3 exhibits the value of the phase velocities of each
shell mode ranging from n =2 to 7, as a function of the
relative thickness, /i, in an appropriate range (viz.,
10%<h'<100%). These shell modes n = 2,3,...7, respec-
tively, cerrespond to the Lamb modes usually labeled 4,, S,
A, S5, Ay, and S;. Asseenin Fig. 3, for i = 100%, the phase
velocity ¢” of all the modes takes on a value near 3.5 km/s,
that decreases with increasing mode order. Higher oider
modes such as # = 30—which would correspond to the 4
Lamb wave—exhibit lower values of the phase velocity in
the solid sphere limit (i.e., for 1’ = 1009%). The value in
that case is ¢” = 3.14 km/s (cf. Fig. 4, bottom plot). Such
value is reached at a shell thickness of /1 * =40%, and it re-
mains constant from /1 * =40% up to 100%. The value of the
Rayleigh speed for a flat elastic half-space, ¢, as approxi-
mately given by Eq. (9), turns out to be ¢, ==3.00 km/s
using the values of the material parameters 'sted i : Table I.
This is the limiting value for ail modes at sufficiently large
values of a, or for sufficiently high frequenci-s. To further
examine some of these points, we generate tie usual type of
dispersion plot for the phase velocity of the single Lamb
wave A4, vs x, for various thickaesses such as: i’ =19,
2.5%, 5%. 10%, and 20%. The rasuit is displayed in Fig. 3.
The way such a plot is generated is by solving for the roots,
x,; of D, (x) =0, using a complex rootfinder, and then sub-
stituting those roots into the first of Egs. (7). All the disper-
sion curves exhibit an upward turn at low frequencies. At
higher frequencies. they all approach the Rayleigh speed, ¢y, ,
found above. This high-k,a limit is approached faster the
thicker the shell becomes. The curves are drawn solid above
the value of the sound speed in the outer water (viz., ¢, = 1.5
km/s), and dashed below it. This mode A, is only excited
above the value of ¢,. For frequencies x such that ¢” < ¢,, this
mode is not present in the shell. Other, water-borne waves
exist in this “'subsonic™ region. We note that the frequency at
which ¢” = ¢, is Cramer's coincidence frequency'* at which
strong flexural vibrations are excited in the shell, which are
then communicated to its backscattering cross section.™

Densny Dilatational Shear speed Young™s madulus Paissan's ratio.
plefem’y ¢, {em/y) ¢ (cm/s) Etdyn/em’) v
Stainless steel 17 595 - 10 190 0.8, 10" 0,289
Water 10 14825~ 10°
Air 0.0012 0344 - 10" ]
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FIG. 2. Dispersion pluts fos the phase velouty, o, of the 4, Lamb wave n the band. O« x = 4 ,a ~ 100, fur o spherical steel shell i water of increasig rclative
thickness {viz. (a) b = 105, 2092, 40%., 607, (b} h = 80%%.90%%. 955, and 1005 (sohd sphere) ). The limit of ¢, —as gnven by Eq. (9)-—scems to be

approached in all cases for x large.
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FIG. 5. Dispersion plots of the phase velocity ¢ (km/s) of the A,, Lamb
wave vs x, for a steel spherical shell in water of increasing thickness (viz.,
h =19.2.5%. 5%. 10%. and 20 ). The frequencies at which the curves
cross the present value of ¢, ( =1.4825 km/s) 1s the “coincidence™ frequen-
<y x,. Mode A4, exists only for x> x,. For all thicknexses. the curves ap-
proach ¢, for x» 1. At low frequencies all curves exhibit an upward bend.
due to the shell (double) curvature.

Below coincidence, another shell mode is always pres-
ent, namely the S, mode. The dispersion curves for the phase
velocities of this Lamb wave, S,,, are displayed in Fig. 6 for
the same shell thicknesses used in Fig. 5. All the curves ap-
proach ¢, from above, as (k,a=) x increases to large values.
The thicker the shell the faster the dispersion curve will ap-
proach the ¢, limit. At the low-frequency end, all the curves
exhibit an upward bend to high values due to the shell’s
(double) curvature. This mode is always *“on,” above and

20 40 60 € 100 150 x

FIG. 6. Dispension plots of the phase velity ¢ (hm/s) of the S, Lamb
mode/wive vs x. This is for a steel spherical shell in water of increaning
thickness ("= 19, 2.5%. 5%. 10%. 20%7). The displayed band
0 xs=hwe 190, All the cunes veem to approach the value of ¢, v 1L
This Lamb made. S, canis above and befon the camcidence frequevy. i, .
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below the coincidence frequency. As we have seen before, in
the band: 0<x< 105 the two predominant modes are 4, and
S, Thisis madeevident in the lower part of Fig. 7, which was
constructed fe.; a spherical steel shell of #°=5%. At higher
frequencies (1.e., x> 100), other modes start to enter the
picture, as we display in the upper part of Fig. 7. For this
thickness, modes 4,, S}, and S, already enter the picture, in
addition to 4, and S, in the broad band: 0<x<500. For ei-
ther broader bands or thicker shells, more of these Lamb
modes/waves will produce a contribution. The construction
of Fig. 7 follows the same pattern outlined for Figs. 5 and 6.

The numbers along the various branches of Fig. 7 corre-
spond to vaiuss of the modal order n, obtained from a par-
tial-wave expansion of the residual responses
If., (x) = i (x)] for higher values of n, similar to those
displayed in Fig. 1 for the mode-order n = 0. Further details
will be given elsewhere, particularly the connection between
(generalized) Lamb poles for a shell, and Rayleigh poles for
an elastic sphere in water. These later ones have alreacy re-
ceived sonie atiention.””

We close by emphasizing the obsious point that the find-
ings obtained above for the phase velocities of the various
categorized types of surface waves considered here, and for
their transition from one type to another as the shell-size
grows, have emerged from an analysis of the BSCSs (or the
residual respenses) of the shell immersed in an acoustic me-
dium. This is the only type of information available to a
remotely sensing sonar. The large volume of works on elastic
surface and bulk waves™** usually pertains *o the vibratory
responses of (these) flat surfaces in vacuo, without any con-
nection to acoustical scattering situations. The present re-
sults are not only novel from the purely vibratory point of
view of fluid-lo:..ded shells, but they are all extracted from
the intricate pattern of “wiggles” present in the remotely
sensed cross sections.

lil. CONCLUSIONS

Thefirst (i.e., / = 1) antisymmetric flexural Lamb reso-
nance (or leaky surface wave) present in the modes of a steel
spherical shell in water is the analog of the (generalized)
Rayleigh resonance (or leaky surface wave) in a submerged
elastic steel sphere. To prove this point we showed the modal
resonances present in the residual responses (cf. Fig. 1) of
the n = 0 mode of an elastic shell of increasing thickness that
ultimately becomes a solid sphere. The dispersion plots for
the phase velocity of the spherical, flexural, A, Lamb wave
were then calculated and displayed for increasing shell
thickness (cf. Fig. 2) showing that in the large-x limit these
curves approach the flat half-space Rayleigh speed, ¢,,. We
further investigated the phase-velocity variations of a2 num-
ber of higher order modes (n = 2.3,...,30) as a function of
(relative) shell thickness /. In the solid sphere limit (i.c.,
h'—100%, or b—0 * ), the phase velocity ¢” of each mode
seems to approach the value of the Rayleigh speed for that
spherical mode. For higher-order modes (or for larger x val-
ues), the value of the Rayleigh wave speed, ¢, for a flat
interface is then eventually reached. Figure 4 shows that for
the A, mode this value seems to be quite close to the value
alieady reached by a shell thickness of about 4 * = 40%.

G. C. Gaunaurd and M. F. Werby. Lamb waves in submerged shells 2737




0
.
2% -

h'=5%
(STEFL)

We have computed and displayed dispersion plots for
the phase velocity ¢” of individual Lamb waves in the shel
such as A, and S, (cf. Figs. 5 and 6). We have generated
these plots for various shell thichnesses in order to exhibit in
other more conventional ways their respective frequency de-
pendencies and their asymptotic low- and high-frequency
behaviors. Although in the relatively narrow frequency
bands displayed 1n Figs. 5and 6, only two (spherical) Lamb
modex waves secem to be present in the shell (viz. 4,,and S,,)
this 1s not the case for broader bands. We displayed the ap-
propriate results for a /i " = 5% steel shell in water ina very
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broad band (v1z., 04x<500) in Fig. 7 to show the appear-
ance of additional branches of the dispersion curves (viz .

Ay, S,. S:) beyond the basic A, and S, ones. All these
bran. hes bear some resemblances to the analogous ones™' for
flat plates. The differences are substantial at low frequencies
where the curvature effects are strongest These effects are
ignored by flat plate approaches. The phenomenon of coinci-
dence'’” (viz.. ¢” = ¢,) seems to be responsible for the re-
gion of strong flexures that develops®! in the backsca(urmg
cross sections of shells in the neighborhood of the coinci-
dence frequency. We note in closing that some of the poles in
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the scattenng amplitude of the waves returned by elas.ic
spheres are associated with the Rayleigh wave that circum-
navigates the sphere on its surface.?® Their connection with
analogous Lamb poles for shells will be studied elsewhere.
For plates, their connections have been already estab-
lished.*”
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