'S -

Form Approved
OPM No. 0704-0188

1 Davs Highway. Suite 1204, Arlington, VA 22202-4302, and 10 the Office of information and Regulatory Aftairs, Office of

Inatructs rching exi and mantaining the data

gathering
mmmmcummmw 10 Washingion

|2. REPORT DATE

B 9 784 ATION PAGE
= \\ll\!\\\l\l\\lll\\\\l\l\\\\lll\\l\l\l\l\\ll\ S R R

3. REPORT TYPE AND DATES COVERED
Final: 04Feb 1991 to 01Jun 1993

4. TITLE AND SUBTITLE

(Host & Target), 900918W1.11028

Harris Corporation, Computer Systems Division, Harris Ada 5.1, Harris NH-4400

5. FUNDING NUMBERS

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ada Validation Facility, Language Control Facility ASD/SCEL
Bldg. 676, Rm 135

Wright-Patterson AFB

Dayton, OH 45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

AVF-VSR-388.291

3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES]
Ada Joint Program Office

United States Department of Defense

Pentagon, Rm 3E114

Washington, 0.C. 20301-3081

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

e ——————————————
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABS?EACT {Maximum 200 words)

CX/UX 5.1)(Host & Target), ACVC 1.11.

DTIC

RLECTE
AUG26 1991

o~ . ot

Harris (!orporatopm Computer Systems Division Harris Ada 5.1, Wright-Patterson AFB, OH, Harris NH-4400 (under

91-087
YN lll(ll I lll' Ill’

14. SUB/ECT TERMS

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO.

15. NUMBER OF PAGES

16. PRICE CODE

T By T St Ty —
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION

s ———————————

T Y — T A ———
19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)
5 4 Prescribed by ANS! Std. 239-128




17

Certificate Information

The following Ada implementation was tested and determined to pass ACVC

1.11. Testing was completed on 18 September 1991.
Compiler Name and Version: Harris Ada 5.1
Host Computer System:
Target Computer System:

Customer Agreement Number: 90-06-25-HAR

Harris NH-4400 (under CX/UX 5.1)
Harris NH-4400 (under CX/UX 5.1)

See Section 3.1 for any additional information about the testing

environment.

As a result of this validation effort, Validation Certificate
900918W1.11028 is awarded to Harris Corporation, Computer Systems Division.

This certificate expires on 1 March 1993.

This report has been reviewed and is approved.

.
Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

fa¥ion Organization

omputer & Software Engineering Division
Institute for Defense Analyses

Alexandria VA 22311

DLk, S

Add Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

Accession For
T NTIS GRA&I %
DTIC TAB O
Unannounced O

Justification — i
e,

By . ——_
Distribution/
Availability_?q@fs
‘Avail and/or
Dist Special

M




AVF Control Number: AVF-VSR-388.0291
4 February 1991
90-06-25-HAR

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 900918W1.11028
Harris Corporation, Computer Systems Division
Harris Ada 5.1
Harris NH-4400 => Harris NH-4400

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503




Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 18 September 1991.

Compiler Name and Version: Harris Ada 5.1
Host Computer System: Harris NH-4400 (under CX/UX 5.1)
Target Computer System: Harris NH-4400 (under CX/UX 5.1)

Customer Agreement Number: 90-06-25-HAR

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
900918W1.11028 is avarded to Harris Corporation, Computer Systems Division.
This certificate expires on 1 March 1993.

This report has been reviewed and is approved.

e 2 )

Ada Validation Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

Ada V4lida Organization

Directofr/bbmputer & Software Engineering Division
Institute for Defense Analyses

Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301




DECLARATICN OF CONFORMANCE

Customer: Harris Corporation, Computer Systems Division
Ada Validation Facility: = ASD/SCEL, Wright-Patterson AFB OH 45433-6503
ACVC Version: 1.11

Ada Implementation:
Compiler Name and Version: Harris Ada 5.1

Host Computer System: Harris NH-4400 (under CX/UX 5.1)

Target Computer System: Harris NH-4400 (under CX/UX 5.1)
Customer’s Declaration

I the undersigned, representing Harris Corporation, Computer Systems Division (HCSD), declare that
HCSD has no knowledge of deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A
tn the smplementation [isted sn this declaration. [ declare that HCSD +s the licensece, owner, and
distributor of the above implementation and the certificates shall be awarded in the name of Harrs
Corporation.

/]Wz/wz(;’,” ’ 72&7% Date: S~/ ~ Z C

Wendell Norton, Director of Contracts

Harris Corporation, Computer Systems Division
2101 West Cypress Creek Rd

Ft. Lauderdale, FL 33309-1892




CHAPTER 1

[
. . .

CHAPTER 2

NN
« o e

CHAPTER 3

W w
« o e
W N =

APPENDIX A

APPENDIX B

APPENDIX C

.
£ W N =

W N =

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT

REFERENCES . . . . . . .
ACVC TEST CLASSES
DEFINITION OF TERMS
IMPLEMENTATION DEPENDENCIES
WITHDRAWN TESTS
INAPPLICABLE TESTS .

TEST MODIFICATIONS .
PROCESSING INFORMATION
TESTING ENVIRONMENT

SUMMARY OF TEST RESULTS
TEST EXECUTION . . .

MACRO PARAMETERS
COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD




CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1




INTRODUCTION

1.2 REFERENCES

[AdaB83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Otfice, August 1990.

[UGB9] Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:

A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2




INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of

the customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada Joint
Program
Office (AJPO)

Ada
Validation
Facility (AVF)

Ada
Validation
Organization
(AVO)

Compliance of
an Ada
Implementation

Computer
System

The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’s guide and the template for the validation summary
report.

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which provides policy and
guidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
guidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated softwvare, that uses common storage for all or
part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3




INTRODUCTION

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

Is0

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Vithdrawn
test

Fulfillment by a product, process or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
wvhich validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

Softwave that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4




CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 September 1990.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
B83022B B83022H B83025B B83025D B83026B B85001L
830264 C83041A C97116A C98003B BA2011A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
BD1BO2B BD1BO6A AD1B08A BD2A02A CD2A21E CD2A23E
CD2A324A CD2A41A CD2A41E CD2A87A CD2B15C BD3006A
CD4022A CD4022D CD4024B CD4024C CD4024D CD4031A
CD4051D CD5111A CD7004C ED7005D CD7005E AD7006A
CD7006E AD7201A AD7201E CD7204B BD8002A BD8004C
CD9005A CD9005B CDA201E CE21071 CE2119B CE2205B
CE2405A CE3111C CE3118A CE3411B CE3412B CE3812A

CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as

appropriate.

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

2-1




IMPLEMENTATION DEPENDENCIES

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..2Z2 (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2Z (15 tests)
C45524L..2 (15 tests) C45621L..2 (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type LONG_INTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
Cc45612C C45613C C45614C C45631C C45632C
B52004D C55B07A B55B0O9C B86001W C86006C
CD7101F

C357024, C35713B, C45423B, BB6001T, and C86006H check for the predefined
type SHORT FLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG_FLOAT, or SHORT_ FLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of 47 or
greater.

C45531I..L (4 tests) and C45532I..L (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of 31 or
greater. For this implementation SYSTEM.MAX MANTISSA = 30.

C45624A checks tha* the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 5. For this
implementation, MACHINE_OVERFLOWS is TRUE.

C45624B checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 6. For this
implementation, MACHINE OVERFLOWS is TRUE.

C86001F recompiles package SYSTEM, making package TEXT I0, and hence
package REPORT, obsolete. For this implementation, the package TEXT I0
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION’BASE that are outside the
range of DURATION. There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2AB4A, CD2AB4E, CD2A84I..J (2 tests), and CD2A840 use representation
clav-es specifying non-default sizes for access types.

2-2




IMPLEMENTATION DEPENDENCIES

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method.

Test File Operation Mode File Access Method
CE2102D CREATE IN_FILE SEQUENTIAL IO
CE2102E CREATE OUT_FILE SEQUENTIAL IO
CE2102F CREATE INOUT FILE DIRECT IO
CE21021 CREATE IN FILE DIRECT_IO
CE2102J CREATE OUT_FILE DIRECT_I0
CE2102N OPEN IN FILE SEQUENTIAL IO
CE21020 RESET IN FILE SEQUENTIAL_IO
CE2102P OPEN OUT_FILE SEQUENTIAL IO
CE2102qQ RESET OUT FILE SEQUENTIAL IO
CE2102R OPEN INOUT FILE DIRECT IO
CE2102S RESET INOUT FILE DIRECT_IO
CE2102T OPEN IN FILE DIRECT_IO
CE2102U RESET IN FILE DIRECT_IO
CE2102V OPEN OUT FILE DIRECT_IO
CE2102V RESET OUT_FILE DIRECT IO
CE3102E CREATE IN FILE TEXT_I0
CE3102F RESET Any Mode TEXT_IO
CE3102G DELETE =  ————em— TEXT 10
CE31021 CREATE OUT_FILE TEXT_I0
CE3102J OPEN IN FILE TEXT IO
CE3102K OPEN OUT_FILE TEXT_I0

CE2203A checks that WRITE raises USE_ERROR if the capacity of the
external file is exceeded for SEQUENTIAL IO. This implementation does
not restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT I0. This implementation does not

restrict file capacity.

CE3115A attempts resetting of an external file with OUT FILE mode, which
is not supported with multiple internal files associated with the same
external file when they have different modes.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or

SET_PAGE_LENGTH specifies a value that is inappropriate for the external
file. This implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT’LAST. For this implementation, the value of
COUNT' LAST is greater than 150000 making the checking of this objective
impractical.

2-3




IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 16 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B24009A B33301B B38003A B38003B B38009A B38009B
B85008G B85008H B91001H BC1303F BC3005B BD2B03A
BD2D03A BD4003A BDB004C

CE3804H requires that string "-3.525" can be read from a file using

FLOAT I0 and that it equal the numeric literal "-3.525"; however, because
-3.525 is not a model number this equality need not hold. This
implementation reports FAILED and prints (only) the Report.Failed message
from line 116, "WIDTH CHARACTERS NOT READ"; the AVO ruled that the test be
graded as passed by Evaluation Modification.

2-4




CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Jeff Hollensen

Harris Corporation, Computer Systems Division
2101 V. Cypress Creek Rd.

Ft. Lauderdale FL 33309

For a point of contact for sales information about this Ada implementation
system, see:

Harris Computer Systems Division
Marketing Communication
(305) 973-5124

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1




PROCESSING INFORMATION

a) Total Number of Applicable Tests 3814
b) Total Number of Withdrawn Tests 74
¢c) Processed Inapplicable Tests 81
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests ' 201

f) Total Number of Inapplicable Tests 282

g) Total Number of Tests for ACVC 1.11 4170

All I/0 tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 282 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewved by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option | Setting Effect
-el If warning or errors occur during
compilation, generate a full source

listing with the warning/error
messages included in the listing.

3-2




PROCESSING INFORMATION

-W Suppress compilation warning messages.

~-L Generate a full source listing even
if no errors or warnings occurred
during compilation.

-Df This option causes file name paths
in error listings to only include the
file portion of the path name,
instead of the entire root directory
(e.g.: bc3205d.a, instead of:
/usr2/ada’/acve/1.11/prevals/bc/be3205d.a).

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3




APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line

length.

Macro Parameter

Macro Value

$BIG_ID1
$BIG_ID2

$BIG_ID3
$BIG_ID4

$BIG_INT LIT
$BIG_REAL_LIT
$BIG_STRING1
$BIG_STRING2

SBLANKS

$MAX_LEN INT BASED LITERAL

(1.

(1.
(1.

e

[N

(1.

LV=1 2> rAT, Vo> 1Y)
LVl => fAT, V2> 127)

LLV/2 => 'A’) & '3 &

(1..V-1-V/2 => 'A’")

V72 2> 'AY) & 4T &

(1..V-1-V/2 => 'A")

V-3 => '0’) & "298"
V-5 => 70¢) & "690.0"

& (1..V/2 =D 'A’) & 117

& (1..V-1-V/2 => 'A’) & "1 & "¢

V=20 => 1 )

"2:" & (1..V-5 => r0’) & "11:"

SMAX_LEN REAL BASED LITERAL
"16:" & (1..V-7 => '0’) & "F.E:"

SMAX _STRING_LITERAL

rne

& (1..V-—2 => 'A') & "

A-1




MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter

SMAX IN_LEN
SACC_SIZE
SALIGNMENT
SCOUNT_LAST
SDEFAULT_MEM_SIZE
SDEFAULT STOR UNIT
SDEFAULT SYS NAME
$DELTA_DOC

SENTRY ADDRESS
SENTRY ADDRESS1
SENTRY_ADDRESS2
SFIELD LAST
SFILE_TERMINATOR
SFIXED NAME
SFLOAT_NAME
SFORM_STRING

SFORM_STRING2

Macro Value

499

32

8

2147483647

3221225469

8

HARRIS 88K

2.0%%(-30)

SYSTEM.PHYSICAL ADDRESS(16)
SYSTEM.PHYSICAL ADDRESS(17)
SYSTEM.PHYSICAL ADDRESS(18)
2147483647

'

NO_SUCH_FIXED TYPE
NO_SUCH_FLOAT TYPE

"n

"CANNOT RESTRICT_ FILE_CAPACITY"

SGREATER THAN DURATION

100000.0

SGREATER_THAN DURATION BASE_LAST

10000000.0

SGREATER_THAN FLOAT BASE_LAST

3.5E+38

SGREATER_THAN FLOAT SAFE LARGE

1.0E38

A-2




MACRO PARAMETERS
SGREATER THAN_SHORT_FLOAT_SAFE_LARGE

1.0E308
SHIGH PRIORITY 9

$ILLEGAL_EXTERNAL_FILE_NAMEl
/no/such/file/name

SILLEGAL EXTERNAL_FILE NAME2
/this/file/does/not/exist

SINAPPROPRIATE LINE LENGTH
-1

SINAPPROPRIATE PAGE_LENGTH
-1

SINCLUDE PRAGMA1 PRAGMA INCLUDE("A28006D1.TST")
SINCLUDE PRAGMA2 PRAGMA INCLUDE("B28006D1.TST")
SINTEGER _FIRST -2147483648
SINTEGER_LAST 2147483647

SINTEGER LAST PLUS_1 2147482648
SINTERFACE_LANGUAGE C
SLESS_THAN DURATION  -100000.0

SLESS_THAN DURATION BASE_FIRST
~18000000.0

SLINE_TERMINATOR ASCII.LF
$LOV_PRIORITY 0

SHACHINE'CODE_STATEMENT
code_3’(or_r,r0,r0,r0);

SMACHINE CODE_TYPE operand

SMANTISSA_DOC 30
SMAX_DIGITS 15

$MAX_INT 2147483647
SMAX_INT PLUS_1 2147483648
SMIN_INT 2147483648

A-3




MACRO PARAMETERS

SNAME TINY INTEGER

$NAME_LIST HARRIS_ 88K

SNAME SPECIFICATION1

~/gx1d9/ada/acvc/1.11/preval _gex 1.11/SRC/ce/X2120A

SNAME SPECIFICATION2

~/gx1d9/ada/acvc/1.11/preval_gex_1.11/SRC/ce/X2120B

SNAME SPECIFICATION3

_/gx1d9/ada/acvc/1.11/preval_gcx_1.11/SRC/ce/X3119A

SNEG_BASED_INT
SNEW_MEM_SIZE
SNEW_STOR_UNIT
SNEV_SYS_NAME

$PAGE_TERMINATOR

SRECORD_DEFINITION
type code_1l(op:opcode) is record oprnd_1:

SRECORD NAME
STASK_SIZE
STASK_STORAGE_SIZE
STICK
SVARIABLE_ADDRESS
SVARIABLE ADDRESS1
SVARIABLE ADDRESS2

$YOUR_PRAGMA

164#FO00000E#
3221225469

8

HARRIS_88K

ASCII.LF & ASCII.FF

code_1

32

10240

0.01

FCNDECL. SPACE(1024)
FCNDECL.SPACE(1024)
FCNDECL. SPACE(1024)

EXTERNAL NAME

operand; end record;




APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler and linker options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically noted
otherwvise, references in this appendix are to compiler documentation and
not to this report.

Harris Ada Compiler and Link Options

Usage: ada [options] ada_source.a ... [a.ld options] [object file.o]

Options:
{-b] (object) Symbolic object listing to stdout
[-d] (dependencies) Only check for dependencies
[-dr] (data record) Allow variables to be "data recorded”
[-e] (errors) List syntax errors to stdout
[-eh] (errors hed) Errors to source, call hed
[-el] (errors list) Errors & source to stdout
[-ev] (errors vi) Errors to source, cail vi
[-m] (map) Print an object map (only with -M option)
[-0 name] (output) Name the executable program
{-p] (profiling) Profiling, instrument code for a.prof(l)
[-pp "options"] (preprocess) Pass options to a.pp
[-u] (update) Force update of ada library
[-v] (verbose) Print info about the compile
[-w] (warnings) Suppress warnings
[-Df] File name paths only include
file portion of the path name,
[-E[1] [name]] (errors) Errors/source to stdout and file
[-G] (call graph) Profiling, instrument code for a.gprof(1l)
[-H] (help) Print this description and stop
[-K] (keep) Keep the IL file after compile
[-L] (list) Generate a source listing to stdout
[-M [unit{.a]] (main) Call a.ld to create a program
[-N] (not shared) Set default of pragma SHARE BODY to FALSE
[-0[1level]] (optimize) Select level of code optimization (0-3)
[-R [library]] (recompile) Force updating of instantiations
[-S] (suppress) Apply pragma suppress
[-T] (timings) Print wall and CPU times, memory usage

B-1




COMPILATION SYSTEM OPTIONS

Usage: a.ld [options] unit name [1ld options|arguments]

Options:
[-0 exec_file]

[-m]

[-shmem params]

(output)

(map)

(shared memory)

(verbose)
(warnings)
(files)

(help)
(quiet)
(units)

(verify)

B-2

Name the generated program exec_file,
instead of the default name, a.out.
Print out an object map.

The quoted params string contains a set
of shared package shared memory config.
parameters.

Print the link stream before execution.
Suppress warning messages.

List dependent files, suppressing
execution.

Print this description and stop.
Inhibit terminal status line messages.
List dependent units, suppressing
execution.

Print the link stream, suppressing
execution.




APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -2 147 483 648 .. 2 147 483 647 ;
type SHORT_INTEGER is range -32 768 .. 32 767 ;
type TINY INTEGER is range -128 .. 127 ;
type FLOAT is digits 6 range -1.70141E+38 ..1.70141E+38 ;
type LONG_FLOAT is digits 15 range -1.79769313486232E+308
. 1.79769313486232E+308 ;

type DURATION is delta 2.0**(-13) range -131 072.0 .. 131 072.0 ;

oooooooooo

end STANDARD;

Cc-1




APPENDIX F OF THE Ada STANDARD
Appendix F of the Ada Language Reference Manual
Harris Ada v5.1 (ACVC 1.11, Host and Target = Harris NH-4400)

PROGRAM STRUCTURE AND COMPILATION

A "main" program must be a non-generic subprogram that is either a
procedure or a function returning an Ada STANDARD.INTEGER (the predefined
type). A "main" program cannot be a generic subprogram or an instantiation
of a generic subprogram.

PRAGMAS
Implementation-Dependent Pragmas

Pragma CONTROLLED is recognized by the implementation but does not have an
effect in this release.

Pragma ELABORATE is implemented as described in Appendix B of the Ada RM.

Pragma INLINE is implemented as described in section 6.3.2 and Appendix B
of the Ada RM. See section 2.17 of this manual for more details.

Pragma INTERFACE is recognized by the implementation and support calls to C
and FORTRAN language functions. The Ada specifications can be either
functions or procedures. All parameters must have mode IN.

For C, the types of parameters and the result type for functions must be
scalar, access, or the predefined type ADDRESS defined in the package
SYSTEM. Record and array objects can be passed by reference using the
ADDRESS attribute. The default link name is the symbolic representation of
the simple name converted to lowercase. The link name of interface
routines can be changed via the implementation-defined pragma

external name.

For FORTRAN, all parameters are passed by reference. The parameter types
must have the type ADDRESS defined in the package SYSTEM. The result type
for a FORTRAN function must be a scalar type. Care should be taken when
using tasking and FORTRAN functions. Since FORTRAN is not reentrant, it is
recommended that an Ada controller task be used to access FORTRAN
functions. The default link name is the symbolic representation of the
simple name converted to lowercase, with a leading and trailing underscore
("_") character. The link name of interface routines can be changed via
the implementation-defined pragma external name.

For FORTRAN, the implementation also detects usage of this pragma at link
time see (a.ld) and includes a call to the system supplied FORTRAN
initialization routine as part of the elaboration of the Ada program.
Additionally, the default system FORTRAN libraries are included in the
linking of the Ada program.

c-2




APPENDIX F OF THE Ada STANDARD

Pragma LIST is implemented as described in Appendix B of the Ada RM.

Pragma MEMORY SIZE is recognized by the implementation but has no visible
effect. The implementation restricts the argument to the predefined value
in the package system.

Pragma OPTIMIZE is recognized by the implementatior but has no effect in
this release. See the -0 option for ada for code optimization options, or
the implementation defined pragma, OPT_LEVEL.

Pragma PACK causes the compiler to choose a non-aligned representation for
elements of composite types. Application of the pragma will cause objects
to be packed to the bit level.

Pragma PAGE is implemented as described in Appendix B of the Ada RM.

Pragma PRIORITY is implemented as described in Appendix B of the Ada RM.
Priorities range from 0 to 9, with 9 being the most urgent.

Pragma SHARED :s recognized by the implementation but has no effect.

Pragma STORAGE UNIT is recognized by the implementation but has no visikle
effect. The implementation restricts the argument to the predefined value
in the package system.

Pragma SUPPRESS in the single parameter form is supported and applies from
the point of occurrence to the end of the innermost enclosing block.
DIVISION CHECK and OVERFLOW CHECK for floating point types will reduce the
amount of overhead associated with checking, but is not fully repressable.
The double parameter form of the pragma, with a name of an object, type, or
subtype is recognized, but has no effect.

Pragma SYSTEM NAME is recognized by the implementation but has no visible
effect. The implementation provides only one enumeration value for
SYSTEM_NAME in the package SYSTEM.

Implementation-Defined Pragmas

Pragma EXTERNAL NAME provides a method for specifying an alternative link
name for variables, functions and procedures. The required parameters are
the simple name of the object and a string constant representing the link
name. An underscore is automatically prepended to the specified name,
unless the first character of the name is an underscore. Note that this
pragma is useful for referencing functions and procedures that have had
pragma INTERFACE applied to them, in such cases where the functions or
procedures have link names that do not conform to Ada identifiers. The
pragma must occur after any such applications of pragma INTERFACE and
wvithin the same declarative part or package specification that contains the
object.

Pragma INTERFACE OBJECT provides an interface to objects defined externally
from the Ada compilation model, or an object defined in a foreign language.

C-3

—




APPENDIX F OF THE Ada STANDARD

For example, a variable defined in the run-time system may be accessed via
the pragma. This pragma has two required parameters, the first being the
simple name of an Ada variable to be associated with the foreign object.
The second parameter is a string constant that defines the link name of the
object. The variable declaration must occur before the pragma and both
must occur within the same declarative part or package specification.

Pragma INTERFACE SHARED OBJECT provides an interface to objects defined in
foreign languages which exist in CX/UX shared memory segments.
Specifically, this allows for the sharing of data between Ada objects and
FORTRAN or C objects defined within the same process or in a separate
process.

Pragma INTERFACE SHARED OBJECT associates an Ada variable with a CX/UX
shared memory segment. It has two required parameters. The first
parameter is the simple name of the Ada variable to be associated with the
foreign object. The second parameter is a string constant that defines the
external link name of the object as defined in the foreign language. The
variable declaration must occur before the pragma and both must occur
within the same declarative part or package specification.

Variables marked with the pragma must have a static size. It is
recommended that an explicit length clause be specified for composite
objects to ensure conformance with the size as defined by the foreign
language. Additionally, record representation clauses may be used to
define the layout of records to match the foreign language definitions.

The association of the shared memory segment to the Ada variable is
effected at program startup time, by the HAPSE run-time system. However,
specific control over the configuration of the shared memory is defined
externally from the Ada compilation model and requires user intervention.
The CX/UX shmdefine utility has been provided to aid the user in defining
the configuration of shared memory segments. The utility produces a
link-ready file and a loader command file which must be included in the
link of any Ada program using pragma INTERFACE SHARED OBJECT. To include
these files in the link process, the user should invoke the HAPSE
prelinker, a.ld , adding the names of these files to the end of the command
line. See section 11.2.2 for an example application of the pragma. Refer
to the CX/UX User’s Reference Manual for details on the shmdefine utility.

Pragma LINK OPTION allows a command to the linker 1d(1) to be specified in
an Ada compilation unit. The pragma has one required parameter, a string
within quotes containing the command to be passed to 1ld. The string
specified will be passed directly to 1d by the a.ld tool. For example, if
a compilation unit references the CX/UX curses library, the pragma:

pragma LINK OPTION("-lcurses");
can be used in the compilation unit to link the CX/UX curses library with
the resulting Ada program. An example usage of this pragma may be found in

the HAPSE harrislib library’s MATH package. The body of this package
contains a LINK OPTION pragma that causes all programs that "with" package

C-4




APPENDIX F OF THE Ada STANDARD

MATH to be automatically linked with the CX/UX math library.

Pragma SHARED PACKAGE provides for the sharing and communication of library
level packages. All variables declared in a package marked pragma

SHARED PACKAGE (henceforth referred to as a shared package) are allocated
in shared memory that is created and maintained by the implementation. The
pragma can only be applied to library level package specifications. Each
package specification nested in a shared package will also be shared and
all objects declared in the nested packages reside in the same shared
memory as the outer package.

The implementation restricts the kinds of objects that can be declared in a
shared package. Unconstrained or dynamically sized objects cannot be
declared in a shared package; access type objects cannot be declared in a
shared package; and explicit initialization of objects cannot occur in a
shared package. If any of these restrictions are violated, a warning
message is issued and the package is not shared. These restrictions apply
to nested packages as well. Note that if a nested package violates one of
the above restrictions, it prevents the sharing of all enclosing packages
as well. It is also important to note that some objects can be implicitly
initialized by the compiler. Declarations of these objects will also cause
a warning message to be issued, and will prevent sharing of the package.
Records with gaps and arrays with gaps are examples of objects that can be
implicitly initialized.

Task objects are allowed within shared packages, however, the tasks as well
as the data defined within those tasks are not shared.

Pragma SHARED PACKAGE accepts as an optional argument, "params", that, if
specified, must be a string constant containing a comma separated list of
CX/UX shared segment configuration parameters, as defined by the following:

key= name, which identifies the CX/UX shared segment key to be used in
subsequent shmget system calls, which are done automatically by the
implementation in configuring the shared segment. name is considered
to be a CX/UX filename which will be translated to a shared segment
key using the CX/UX ftok(3C) service. By default, HAPSE applies "key=
{absolute HAPSE library path}/.shmem/package name to the shared
package. Note that relative path names may be specified and would
cause key translation to be dependent on the user’s current working
directory when program execution is initiated. If name is a decimal
integer literal, HAPSE interprets this as the actual CX/UX key, and
does not translate it using the ftok service.

ipc= (IPC_CREAT, IPC EXCL, IPC_PRIVATE), which allows the user to
specify details about the initialization of the shared segment. By
default, HAPSE applies ipc= (IPC CREAT) to the shared package, thereby
creating the shared segment if it did not previously exist. If any
ipc parameters are given, they entirely replace the default ipc
specification.

SHM RDONLY, which specifies that the segment is only available for

c-5




APPENDIX F OF THE Ada STANDARD

READ operations. HAPSE defaults shared package segments to
READ/WVRITE. CAUTION: Use of the '‘LOCK or ’UNLOCK attributes with a
SHM RDONLY shared memory segment will raise PROGRAM_ERROR at runtime.

mode = n, where n is assumed to be a 3 digit octal number defining the
access to the shared segment. By default, HAPSE applies mode=644 to
the shared package, (owner read/write, group read, other read).

SHM_LOCAL, which requests that pages for the shared segment be
allocated from the local memory pool (GCX only). If a program
attempts to attach to a segment which has been allocated from local
memory on a different CPU, then the attachment will fail. See
shmget(2).

SHM HARD, which when used in conjunction with SHM_LOCAL, specifies
that pages for the shared segment MUST be allocated from the local
memory pool (GCX only). If pages are not available from local memory
then the signal SIGSEGV is delivered to the process. See shmget(2).

SHM_IO0, which specifies that the segment will be bound to I/0 memory.
See shmget(2).

bind=n, where n is assumed to be an octal number. The segment will be
attached to the physical memory address specified by n. Root user
access is required for this operation. WARNING: If the shmbind(2)
attempt fails due to EBUSY or EREGSTALE, the implementation will
ignore the error and continue, assuming that another program has
already bound the segment to the desired location. Shared memory
segments bound to physical memory should be freed manually by the user
via iperm(1l).

no_bsem, which prohibits the use of shared package lock attributes
(’LOCK and ’UNLOCK). In shared packages marked with this parameter,
no binary semaphore space is initialized in the shared memory segment.
Any attempt to invoke the lock attributes in a shared package marked
with this parameter, will result in PROGRAM ERROR being raised.

Unlike SHM RDONLY shared packages, "no_bsem" packages have READ/WRITE
capability.

Caution: By default, every shared package that is available for READ/WRITE
has a binary semaphore initialized which occupies the last 12 bytes of the
segment. If a shared package is bound to a device using the bind=
parameter, be aware that the contents of these 12 bytes may change during
package elaboration and in the presence of 'LOCK and 'UNLOCK attribute
usage. The initialization of this binary semaphore can be suppressed if
SHM RDONLY or no_bsem is applied to the shared package. In this case,
references to 'LOCK or 'UNLOCK will result in PROGRAM_ERROR being raised.

A detailed explanation of the IPC and SHM flags, and access modes may be
found in the CX/UX Programmer’s Reference Manual. Chapter 2.

C-6




APPENDIX F OF THE Ada STANDARD

The pragma must appear within the specification of the library level
package. The pragma may also be repeated in the package body to allow the
user to override the shared memory configuration parameters that were
associated with the pragma in the specification. Additionally, these
configuration parameters, as defined above, may also be specified at link
time to a.ld, via the -shmem "params" option, where "params" is defined as
above with the addition that the first item in the list must be the name of
a shared package. If this option is used, then it replaces all previous
information that may have been provided with all pragmas for that package.

With the valid application of pragma SHARED PACKAGE to a library level
package, the following assumptions can be made about the objects declared
in the package:

The lifetime of such objects is greater than the lifetime defined by
the complete execution of a single program.

The lifetime of such objects is guaranteed to extend from the
elaboration of the shared package by the first concurrent program
until the termination of execution of the last concurrent program.

In the assumptions above, a concurrent program is defined to be any Ada
program which elaborates the body of a shared package, whose span of
execution, from elaboration of such a package to termination, overlaps that
of another such program.

In actuality, the shared memory segments created by these programs remain
even after the last concurrent program has exited. The values of objects
within these segments remains valid until the segment is destroyed, or
until the system is rebooted. Segments may be explicitly removed through
the shared memory service shmetl, to which an interface is provided in the
HAPSE package shared memory support. Alternatively, the user may obtain
information about active shared memory segments through the CX/UX utility
ipes(3). These segments may be removed via the CX/UX utility iprm(1).

Programs that attempt to reference the contents of objects declared in
shared packages that have not been implicitly or explicitly initialized are
technically erroneous as defined by the RM (3.2.1(18)). This
implementation, however, does not prevent such references and, in fact
expects them.

The above discussion describes the intent that several Ada programs may
begin, continue, and complete their execution simultaneously, with the
contents of the variables in the shared packages consistent with the
execution of those programs.

Since packages that contain objects that are initialized are not candidates
for pragma SHARED PACKAGE, the implementation suggests that programs be
created for the sole purpose of initializing objects in the shared package.

The association of a CX/UX shared memory segment with the shared package is

c-7




APPENDIX F OF THE Ada STANDARD

effected during the elaboration of the package body. If this association
should fail due to system shared memory constraints, access, or improper
use of shared memory configuration parameters, one of several predefined
exceptions will be raised. The exceptions are of the form:

shared_package error.{name of package}.{service}.{code}
vhere .{code} is a CX/UX error code mnemonic.

For example, shared package error.package.shmat.EMFILE would be raised to
indicate that the shared package attachment failed because it would exceed
the system imposed limit on active shared segments. These exceptions are
not available to the user since exceptions generated from the elaboration
of library level package bodies have no enclosing scope from which to
supply a handler. Refer to the CX/UX Programmer’s Reference Manual for a
detailed list of the error conditions for shmget(2) and shmop(2).

So that programs can define critical sections to reference and update
variables within the shared packages, HAPSE has provided semaphore
operations. See the description of the implementation-defined attributes
P’'LOCK and P’UNLOCK.

e
Pragma SHARE BODY is used to indicate whether or not an instantiation is to
be shared. The pragma may reference the generic unit or the instantiated
unit. When it references a generic unit, it sets sharing on/off for all
instantiations of the generic, unless overridden by specific SHARE BODY
pragmas for individual instantiations. When it references an instantiated
unit, sharing is on/off only for that unit. The default is to share all
generics that can be shared, unless the unit uses pragma INLINE.

Pragma SHARE BODY is only allowed in the following places: immediately
within a declarative part, immediately within a package specification, or
after a library unit in a compilation, but before any subsequent
compilation unit. The form of this pragma is

pragma SHARE BODY (generic_name, boolean literal)

Note that a parent instantiation is independent of any individual
instantiation, therefore recompilation of a generic with different
parameters has no effect on other compilations that reference it. The unit
that caused compilation of a parent instantiation need not be referenced in
any way by subsequent units that share the parent instantiation.

Sharing generics causes a slight execution time penalty because all type
attributes must be indirectly referenced (as if an extra calling argument
were added). However, it substantially reduces compilation time in most
circumstances and reduces program size.

Pragma SUPPRESS ALL give permission to the implementation to suppress all
run-time checks. There are no parameters to pragma SUPPRESS ALL. It is
allowved to appear immediately within a declarative part. It’'s effects are
equivalent to a complete list of SUPPRESS pragmas, each naming a different

c-8




APPENDIX F OF THE Ada STANDARD

check.

Pragma OPT LEVEL controls the level of optimization performed by the
compiler. This pragma takes one of the following as an argument: NONE,
MINIMAL, GLOBAL, or MAXIMAL. The default is MINIMAL. NONE produces
inefficient code but allows for faster compilation time. MINIMAL produces
more efficient code with the compilation time slightly degraded. GLOBAL
produces highly optimized code but the compilation time is significantly
impacted. MAXIMAL is an extension of GLOBAL that can produce even better
code but may change the meaning of the program. MAXIMAL attempts strength
reduction optimi.ations that may raise OVERFLOW exceptions when dealing
with values that approach the limits of the architecture of the machine.
The pragma is allowed within any declarative part. The specified
optimization level will apply to all code generated for the specifications
and bodies associated with the immediately enclosing declarative part.

In general, programs should be developed and debugged using OPT_LEVEL
(MINIMAL), reserving GLOBAL and MAXIMAL for a thoroughly tested product.

The following optimizations are performed at the various levels.
OPT_LEVEL NONE:

Short circuit boolean tests

Use of machine idioms

Literal pooling

OPT_LEVEL MINIMAL: (in addition to those done with NONE)
Binding of intermediate results to registers
Determination of optimal execution order
Simplification of algebraic expressions
Re-association of expressions to collect constants
Detection of unreachable instructions
Elimination of jumps to adjacent labels
Elimination of jumps over jumps
Replacement of a series of simple adjacent instructions by a

single faster complex instruction
Constant folding

OPT_LEVEL GLOBAL: (in addition to those done with MINIMAL)
Elimination of unreachable code
Insertion of zero trip tests
Elimination of dead code
Constant propagation
Variable propagation
Constraint propagation
Folding of control flow constructs with constant tests
Elimination of local and global common sub-expressions
Move loop invariant code out of loops
Reordering of blocks to minimize branching
Binding variables to registers
Detection of uninitialized uses of variables
Partial folding of Boolean expressions
Direct branching to exception handlers

c-9




APPENDIX F OF THE Ada STANDARD

OPT LEVEL MAXIMAL: (in addition to those done with GLOBAL)
Comprehensive strength reduction
Test replacement
Induction variable elimination
Elimination of dead regions
Register reallocation and redundant move elimination
Instruction scheduling and reordering

Pragma UNIVERSE allows the specification of the CX/UX universe for a
compilation unit. The pragma has one required parameter, the literal
denoting the desired universe. The pragma takes the form:

pragma UNIVERSE(universe literal);

vhere the universe literal is one of ucb or att. Details on the effects of
the CX/UX universe switch can be found in the man page for universe(l).

Pragma UNIVERSE has effects at compile time, link time and execution time.
At compile time, if the value specified differs from the current CX/UX
universe value a warning message is printed. At link time, if the program
contains units which have been compiled with conflicting values of pragma
UNIVERSE a warning message is printed. Otherwise, the universe will be set
as specified by the pragma for the duration of the link operation. At
execution time, a call to the CX/UX setuniverse(2) service will be
performed prior to the elaboration of the program’s library packages if the
program contains a compilation unit marked with pragma UNIVERSE and if
conflicting values of pragma UNIVERSE have not been specified in any other
compilation units. Pragma VOLATILE accepts a list of simple variable
names, vhich the compiler assumes to occupy volatile storage bases. All
subsequent reads and writes of these variables will result in memory
references.

IMPLEMENTATION-DEPENDENT ATTRIBUTES

HAPSE has defined the following attributes for use in conjunction with the
implementation-defined pragma SHARED PACKAGE:

P'KEY
P’SHM ID
P’ LOCK
P’ UNLOCK

where the prefix P denotes a package marked with pragma SHARED PACKAGE.

The 'KEY attribute is an overloaded parameterless function which returns
the key used to identify the CX/UX shared segment associated with the
package. One specification of the function returns the predefined type
string, and returns a value specifying the filename used in the key
translation (ftok(3C)). If an integer literal key was specified in the
pragma shared package parameters, this function returns a null string. The
other specification of the function returns the predefined type

universal integer, and returns a value specifying the translated integer

C-10




APPENDIX F OF THE Ada STANDARD

key. The latter form of the function will raise the predefined exception
PROGRAM ERROR if the shared package body has not yet been elaborated.

The 'SHM ID attribute returns the shared memory identifier obtained by the
implementation by the shmget(2) service call.

The ‘LOCK and ’UNLOCK attributes are parameterless procedures which
manipulate the "state" of a shared package. HAPSE defines all shared
packages to have two states: LOCKed and UNLOCKed. Upon return from the
'LOCK procedure, the state of the package will be LOCKed. If upon
invocation, "LOCK finds the state already LOCKed, it will wait until it
becomes UNLOCKed before altering the state and returning. 'UNLOCK sets the
state of the package to UNLOCKed and then returns. At the point of
unlocking the package, if another process waiting in the 'LOCK procedure
has a more favorable CX/UX priority, the system will immediately schedule
its execution.

Note that if 'LOCK is waiting, it may be interrupted by the HAPSE run-time
system’s time slice for tasks which may cause another task within the
process to become active. Eventually, HAPSE will again transfer control to
the 'LOCK procedure in the original task, and it will continue waiting or
return to the task.

The state of the package is only meaningful to the 'LOCK and ’'UNLOCK
attribute procedures that set and query the state. A LOCK state does not
prevent concurrent access to objects in the shared package. These
attributes only provide indivisible operations for the setting and testing
of implicit semaphores that could be used to control access to shared
package objects. CAUTION: The current shared memory implementation does
not allow the use of the ‘LOCK and ‘UNLOCK attributes with a SHM RDONLY
shared memory segment. -

HAPSE provides the package, shared memory support. This package contains
Ada type, subprogram definitions, and interfaces to aid the user in
manually interfacing to the CX/UX shared memory services.

This inzludes:

System defines and records layouts as defined by the CX/UX C
Programming Language include files, <sys/shm.h> and <sys/ipc.h>.

Interface specifications to shared memory system calls: shmbind,
shmget, shmat, shmctl, shmdt.

Interface specifications to the CX/UX binary semaphore operators:
binsemget, lockbinsem, unlockbinsem.

c-11




APPENDIX F OF THE Ada STANDARD

SPECIFICATION OF PACKAGE SYSTEM
package SYSTEM is
type ADDRESS is private;
type NAME is (Harris 88K);
SYSTEM_NAME : constant NAME := Harris 88K;

-- System-Dependent Constraints

STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant := 3 221 225 469;

-- System-Dependent Named Numbers

MIN INT : constant := -2 147 483 648;
MAX_INT : constant := 2 147 483 647;
MAX DIGITS : constant := 135;

MAX MANTISSA : constant := 30;

FINE DELTA : constant := 2.0**(-30);
TICK : constant := 0.01;

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range O .. 9;

MAX REC_SIZE : INTEGER := 268435455; -- 16%#0FFFFFFF#
NO_ADDR : constant ADDRESS ;

pragma suppress( elaboration_check );

~-- The following functions provide conversions to "address"
-- from integer values.

function LOGICAL _ADDRESS (i : integer) return ADDRESS ;
~-- The following function should ONLY be used to supply a
-- machine address to an object’s address clause statement.

-- The parameter is an integer describing the physical machine
~- address of the object.

~- Optimization of subsequent references to the object with the

-- address clause will result if the parameter to this function
-- is an integer literal.

c-12




APPENDIX F OF THE Ada STANDARD

function MACHINE ADDRESS (i : INTEGER) return ADDRESS ;

function ADDR GT (A,
function ADDR_LT (A,
function ADDR GE (A,

¢ ADDRESS) return BOOLEAN
: ADDRESS) return BOOQLEAN
3 : ADDRESS) return BOOLEAN
function ADDR LE (A, : ADDRESS) return BOOLEAN
function ADDR_DIFF (A, : ADDRESS) return INTEGER
function INCR ADDR (A : ADDRESS 3 INCR : INTEGER) return ADDRESS ;
function DECR_ “ADDR (A : ADDRESS ; DECR : INTEGER) return ADDRESS ;
function ">" " (A, : ADDRESS) return BOOLEAN renames ADDR GT ;
function "<" (A, : ADDRESS) return BOOLEAN renames ADDR LT ;
function ">=" (A, : ADDRESS) return BOOLEAN renames ADDR GE ;
function "<=" (A, : ADDRESS) return BOOLEAN renames ADDR_LE ;
function "-" (A, : ADDRESS) return INTEGER renames ADDR DIFF ;
function "+" (A : ADDRESS ; INCR : INTEGER) return ADDRESS
renames INCR ADDR ;
function "-" (A : ADDRESS ; DECR : INTEGER) return ADDRESS
renames DECR_ADDR ;

s e we ws

o oo

W mw

pragma inline (ADDR GT) ;

pragma inline (ADDR LT) ;

pragma inline (ADDR GE) ;

pragma inline (ADDR_LE) ;

pragma inline (ADDR DIFF) ;

pragma inline (INCR_ADDR) ;

pragma inline (DECR_ADDR) ;

pragma inline (LOGICAL_ADDRESS) ;
pragma built in (MACHINE ADDRESS) ;

private
type ADDRESS is new INTEGER;
NO_ADDR : constant ADDRESS := O ;

end SYSTEM;

RESTRICTIONS ON REPRESENTATION CLAUSES
Pragma PACK

Pragma PACK is fully supported. Objects and components are packed to the
nearest and smallest bit boundary when pragma PACK is applied. Length
Clauses The specification T’SIZE is fully supported for all scalar and
composite types, except for floating point. For floating point, access,
and task types, the supplied static expression must conform to an existing
supported machine representation.

C-13




APPENDIX F OF THE Ada STANDARD

Type Size
floating point 32 or 64
access 32
task 32

T’'SIZE applied to a composite type will cause compression of scalar
component types and the gaps between the components. T’SIZE applied to a
composite type whose components are composite types does not imply
compression of the inner composite objects. To achieve such compression,
the implementation requires explicit application of T/SIZE or pragma PACK
to the inner composite type.

Composite types which contain components that have had T’SIZE applied to
them, will adhere to the specified component size, even if it causes
alignment of components on non STORAGE UNIT boundaries.

The size of a non-component object of a type whose size has been adjusted,

via T'SIZE or pragma PACK, will be exactly the specified size; however, the
implementation will choose an alignment for such objects that provides
optimal performance.

Record Representation Clauses

The simple expression following the keywords "at mod" in an alignment
clause specifies the STORAGE_UNIT alignment restrictions for the record;
values of 1, 2, 4, or 8 are allowed.

The simple expression following the keyword "at" in a component clause
specifies the STORAGE UNIT (relative to the beginning of the record) at
which the following range is applicable. The static range following the
keyword range specifies the bit range of the component. Components may
overlap word boundaries (4 STORAGE UNITs). Components that are themselves
composite types must be aligned on a STORAGE_UNIT boundary.

A component clause applied to a component that is a composite type does not
imply compression of that component. For such component types, the
implementation requires that T’/SIZE or pragma PACK be applied, if
compression beyond the default size is desired.

Address Clauses

Address clauses are only supported for variables, constants, and task
entries.

For variables and constants, both logical and machine addresses are
supported. A "logical addresses" refers to a virtual memory address in the
execution program’s address space. A "machine addresses" refers to a
physical memory address.

Logical address clauses:

C-14




APPENDIX F OF THE Ada STANDARD

The function LOGICAL ADDRESS is defined in the package SYSTEM to
provide conversion from INTEGER values to ADDRESS values for logical
addresses only.

Both static and variable logical addresses are supported.

The value supplied to the address clause must be a valid logical
address in the user’s program.

Machine addresses clauses:

Vhen a machine address is desired, the expression supplied on the
address clause MUST be an invocation of the function MACHINE ADDRESS,
found in package SYSTEM. Any other expression supplied to the address
clause will cause it to be interpreted as a logical address.

Both static and variable machine addresses are supported.

The argument to MACHINE ADDRESS must be a valid integer physical
memory address.

If the argument to MACHINE ADDRESS is an integer literal, then static
address translation can occur, thereby removing any additional
overhead involved in accessing the variable at runtime.

You must be "superuser" to have the ACC_SHMBIND bit set in your access
vector in order to use machine address clauses.

VARNING: It is the user’s responsibility to ensure that the supplied
address is a valid physical memory address.

Machine addresses clauses are implemented via CX shared memory
segments, which are bound to the specified physical memory address at
elaboration time. These shared memory segments are removed at the end
of normal execution of a program. If the program is terminated
abnormally, the user is responsible for removing the shared memory
segments left in the system (see ipcs(2), ipcrm(2)).

Interrupts

Interrupt entries (UNIX signals) are supported. This feature allows Ada
programs to bind a UNIX signal to an interrupt entry by using a for clause
with a signal number. There is not any protection against two tasks
binding the same signal. The result is undefined. Interrupt entries
should not have any parameters and can be called explicitly by the program.
See SIGVEC(2).

The HAPSE run-time uses SIGALRM (14) to perform time slicing and delays.
The result of establishing a signal handler for SIGALRM is undefined.

The following example program uses an interrupt entry that prints a message

C-15




APPENDIX F OF THE Ada STANDARD

when the process receives SIGINT.

vith TEXT_IO, SYSTEM;

use TEXT I0;

procedure INTR is

-- This program waits for the user to generate SIGINT (<CONTROL>C)

SIGINT_NUMBER : constant := 2;

task SIGINT HANDLER is
entry SIGINT;
for SIGINT use at SYSTEM.PHYSICAL_ ADDRESS(SIGINT NUMBER);
end SIGINT HANDLER;
task body SIGINT HANDLER is
begin
accept SIGINT;
PUT LINE("Control-C received");
end SIGINT HANDLER;

begin
null;
end INTR;

OTHER REPRESENTATION IMPLEMENTATION-DEPENDENCIES

The ADDRESS attribute is not supported for the following entities: static
constants, packages, tasks, and entries. Application of the attribute to
these entities generated a compile time warning and a value of O at
runtime,

CONVENTIONS FOR IMPLEMENTATION-GENERATED NAMES
Implementation-generated names do not exist.
UNCHECKED PROGRAMMING

UNCHECKED CONVERSION

The following describes the transfer of data between the source and target
operands when performing unchecked conversion. When possible, the
implementation may optimize the conversion operation such that no transfer
of data actually occurs.

The implementation considers all objects of simple types to be "right
justified" within the storage allocated, and all objects of composite types
to be "left justified". If, for alignment reasons, an object is placed in
storage which is larger than the object’s "SIZE value, the significant bits
of an object of a simple type will be placed in the low order bits of
storage, right justified, with any padding in the high order bits.
Likewise, should an object of a composite type be allocated storage which
is larger than the type’s ’‘SIZE, the significant bits will be placed in the
high order bits, and any padding will be placed in the low order bits.

C-16




APPENDIX F OF THE Ada STANDARD

Simple Type to Simple Type Conversions

For all access, task, and scalar types, unchecked conversion is implemented
using the most efficient transfer instruction to move a 1, 2, 4, or 8 byte
object to its destination, unless the type has been explicitly given a
*SIZE which is not a power of two, in which case, a bit transfer will be
used.

If the sizes of the source and target differ, then the smallest size is
used.

If the target has a larger size than the source, the source is moved to the
low order bits of the target. If the target type is signed, then the high
bit of the source is sign extended through the high bits of the target.
Otherwise, the high order bits of the target are zero filled.

If the target has a smaller size than the source, the low order bits of the
source are copied to the target.

Composite Type to Composite Type Conversions

All conversions logically occur by moving bits from the source to the
target, starting at the highest order bit of the source and target.

If the sizes of the source and target differ, then the smallest size is
used. '

If the target has a larger size than the source, the source is moved to the
high order bits of the target, and the low order bits of the target are
zero filled.

If the target has a smaller size than the source, the high order bits of
the source are copied to the target.

Simple Type to Composite Type Conversions

Conversions from simple types to composite types are implemented by moving
the low order, right justified, bits of the source to the high order, left
justified bits of the target.

If the sizes of the source and target differ, then the smallest size is
used.

If the target has a larger size than the source, the source is moved to the
high order bits of the target, and the low order bits of the target are
zero filled.

If the target has a smaller size than the source, the low order bits of the
source are copied to the target.

Composite Type to Simple Type Conversions

Cc-17




APPENDIX F OF THE Ada STANDARD

Conversions from composite types to simple types are implemented by moving
the high order, left justified, bits of the source to the low order, right
justified bits of the target.

If the sizes of the source and target differ, then the smallest size is
used.

If the target has a larger size than the source, the source is moved to the
low order bits of the target. If the target type is signed, then the high
bit of the source is sign extended through the high bits of the target.
Otherwvise, the high order bits of the target are zero filled.

If the target has a smaller size than the source, the high order bits of
the source are copied to the target.

UNCHECKED DEALLOCATION UNCHECKED DEALLOCATION is supported. In the current
release, it has no effect on access objects which designate tasks.

IMPLEMENTATION CHARACTERISTICS OF I/0 PACKAGES
Implementation-Dependent Characteristics of DIRECT I/0

Instantiations of DIRECT IO use the value MAX REC SIZE as the record size
(expressed in STORAGE UNITs) when the size of ELEMENT TYPE exceeds that
value. For example, for unconstrained arrays such as a string where
ELEMENT TYPE’SIZE is very large, MAX REC SIZE is used instead.

MAX REC SIZE is defined in SYSTEM as 4_000 000 storage units.
Implementation-Dependent Characteristics of SEQUENTIAL I/0

Instantiations of SEQUENTIAL IO use the value MAX REC SIZE as the record
size (expressed in STORAGE UNITs) when the size of ELEMENT _TYPE exceeds
that value. For example, for unconstrained arrays such as a string where
ELEMENT TYPE’SIZE is very large, MAX REC SIZE is used instead.

MAX REC_SIZE is defined in SYSTEM as 4_000_000 storage units.

MACHINE CODE INSERTIONS

The general definition of the package MACHINE CODE provides an assembly
language interface for the target machine including the necessary record
types needed in the code statement, an enumeration type containing all of
the opcode mnemonics, a set of register definitions, and a set of
addressing mode functions. Also supplied (for use only in units that WITH
MACHINE CODE) is the implementation defined attribute ‘REF.

Machine code statements accept operands of type OPERAND, a private type
that forms the basis of all machine code address formats for the target.

The general syntax for a machine code statement is

CODE_n’(opcode, operand {, operand});

C-18




APPENDIX F OF THE Ada STANDARD

In the example shown below, CODE 3 is a record ’'format’ whose first
argument is an enumeration value of the type OPCODE followed by three
operands of type OPERAND.

code_ 3’ (sub, r4, r4, +1);

The opcode must be an enumeration literal (ie., it cannot be an object, an
attribute, or a rename). An operand can only be an entity defined in
MACHINE CODE or by the 'REF attribute.

For an object, arguments to any of the functions defined in MACHINE CODE
must be static expressions, string literals, or the functions defined in
MACHINE CODE. The 'REF attribute may not be used as an argument in any of
these functions.

The 'REF attribute denotes the effective address of the first of the
storage units allocated to the object. For a label, it refer. t- the
address of the machine code associated with the corresponding bcdy or
statement. The attribute is of type OPERAND defined in the package
MACHINE CODE and is allowed only within a machine code procedure. 'REF is
only supported for simple objects and labels.

Registers - The full set of 32 general purpose registers for the 88K target
is supported (RO through R31).

Addressing modes - All of the 88K addressing modes are supported by the
compiler. They are accessed through the following functions provided in
MACHINE CODE.

SPECIFICATION OF THE PACKAGE MACHINE CODE

package machine code is
type opcode is (
add, add ci, add_cio, add_co, addu,
addu_ci, “addu cio, addu co, and_r, and c, and_u, bbO,
bbO_n, bbl, bbl _eq, bbl ne, bbl gt, bbI _le, bbl 1t, bbl ge,
bbl h1, bbl 1s, bbl _lo, “bbl _hs, bbl n, bbl n _eq, bbl n ne,
bbl n gt, bbl n _le, “bbl n 1t, bbl n _ge, bbl n _hi, bbl n 1s,
bbl n lo, bbl n hs, bend 0, bend 10, bend 11, bend 157 bcnd 4,
bend 5, bend 6, bend 7, Bend 8, bcnd 9, bcnd_eqoO, bcnd _ge0,”
bend gtO bend 1e0, bcnd 1t0, bend ne0, bend n _0, bend n _10,
bend _n_11, bcnd n 15, bend n 4, bcnd n 5, bend n 6, bend n 7,
bend _n ~8, bend n 9, bend n_eq0, bend n geO bend ™ _n_gt0, bend _n_le0,
bend_n_ 1t0 bend_n_ne0, br, br n, bsr, bsr n,
clr, cmp, div, divu, ext, extu, fadd_ddd,
fadd_dds, fadd_dsd, fadd_dss, fadd_sdd, fadd_sds, fadd_ssd, fadd_sss,
fcmp sdd, femp_sds, femp_ssd, femp sss, fdiv_ddd, fdiv dds, fdiv dsd,
fdiv dss, fdiv_sdd, fdiv sds, fdiv_ssd, fdiv_sss, £f0, ff1l, flt ds,
flt ss, fmul_ddd fmul dds, fmul dsd, fmul dss, fmul sdd, fmul sds,
fmuI~ssd, fmul_sss, fsub ddd, fsub dds, fsub _dsd, fsub dss, fsub sdd,
fsub_sds, fsub_ssd, fsub_sss, int sd, int ss, jmp, jmp_n,

Cc-19




APPENDIX F OF THE Ada STANDARD

) .

jsr, jsr_n, 1d, 1d_b, 1d_bu, 1d_d, 1ld_h, 1ld_hu, lda,

lda b, 1lda_d, lda h, mak, mask, mask_u, mul; nint_sd,

nint ss, or _r, or_c, or_u, rot, set, st, st b,

st d, st _h, “sub, sub ci, sub cio, sub _Co, subu, subu ci, subu _cio,
subu_co, tb0, tbl, tbnd, tend O, tend 10, tend 11, tend 15,

tend 4, tend 5, tend_6, tend 7, tend 8, tend 9, tcnd eq0, tend ge0,
tend gt0, tcnd_leO, tcnd 1t0, tcnd_neO, trnc_sd, trnc_ss, xmem,

Xmem bu, Xor r, Xor _Cy Xor U, flder, fstcr, fxcr, 1d usr, 1d_b_usr,

1d bu _usr, 1d d _usr, 1d h usr, 1d_hu usr, ldcr, rte, st_usr, “st _b_usr,
st d _usr, st h _usr, ster, Xcr, xmem _usr, xmem b usr

type scale select is (unscaled, scaled) ;

type operand is private ;

type operand_seq is array (positive range <>) of operand ;

n

: positive ;

Instruction formats.

type code O (op : opcode) is

record
null ;
end record ;

type code_1 (op : opcode) is

record
oprnd_1 : operand ;
end record ;

type code 2 (op : opcode) is

record
oprnd_1 : operand ;
oprnd_2 : operand ;
end record ;

type code 3 (op : opcode) is

record
oprnd_1 : operand ;
oprnd_2 : operand ;
oprnd_3 : operand ;
end record ;

type code 4 (op : opcode) is

record
oprnd_1 : operand ;
oprnd_2 : operand ;
oprnd_3 : operand ;
oprnd_4 : operand ;

Cc-20




r0
rl
r2
r3
r4
rd
ré
r7
r8
r9
ri0
rll
rl?2
rl3
rl4
rls
rlé
rl?
rl8
rl9
r20
r21
r22
r23
r24
r25
r26
r2?
r28
r29
r3o
r31

Sp

end record ;

Registers.

se 44 es an  as as ee

..

ss e ex se e es

" se e

e

*s S5 S8 Be S B es e s e

s e

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

constant

operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand
operand

operand

Addressing modes.

APPENDIX F OF THE Ada STANDARD

type five bit_range is new integer range 0..31 ;

Assembler Notation :

function ext_lo (name

lol6(name)

.
.

string) return operand ;

c-21




APPENDIX F OF THE Ada STANDARD

-- Description :
- Provides the low 16 bits of the address of the external

-- object denoted by name.

Assembler Notation :
hil6é(name)

function ext_hi (name : string) return operand ;

-- Description :
--  Provides the high 16 bits of the address of the external
-- object denoted by name.

Assembler Notation :
lol6(xxx)

function absol_lo (disp : integer) return operand ;

-- Description :
-- Provides the low 16 bits of the address specified.

Assembler Notation :
hilé(xxx)

function absol hi (disp : integer) return operand ;

-~ Description :
-- Provides the high 16 bits of the address specified.

Assembler Notation :
Rn,0

function indr (addr_reg : operand) return operand ;

-- Description :

-- The address of the operand is in the address register specified

-- by the register field.

Assembler Notation :
Rn,Il6

c-22




APPENDIX F OF THE Ada STANDARD

function disp (reg : operand ; disp : integer) return operand ;
~- Description :

-- The address of the operand is the 32-bit unsigned sum of the
-- address in the address register and the zero-extended 16-bit
-- displacement integer.

-~ Assembler Notation :
-~ Rn,lolé6(name)

function indr_lo (addr_reg : operand ; name : string) return operand ;

~- Description :

-- The address of the operand is in the address register specified
-- by the register field, indexed by the low 16 bits of the

-- displacement of the external specified by "name". A typical

~- sequence to load the value of and external variable might be:

- code_3’ (or_u, r20, r0O, ext hi("name")) ;
~-- code_ 2’ (1ld, r2l, indr_1lo(20,"name")) ;

-— Assembler Notation :
- Rn,Rn

function index (base_reg : operand ;
index_reg : operand) return operand ;
~- Description :
~- The address of the operand is the sum of the address in the address
~- register and the 32-bit contents of the index register.
~- Normal unsigned 32 bit address arithmetic is used.

-- Assembler Notation :
--  Rn{Rn]

function index (base_reg : operand ;
index_reg : operand ;
scale_factor : scale_select) return operand ;

-- Assembler Notation :
- w5<05>

function bit_field (width : five bit range ;
offset : five bit range) return operand ;

c-23




APPENDIX F OF THE Ada STANDARD

-- Assembler Notation :
- IMM16

-~  An 16-bit unsigned immediate operand
function "+" (right : integer) return operand ;

private

type operand is new integer ;

r0 : constant operand := 0 ;
rl : constant operand := 1 ;
r2 : constant operand := 2 ;
r3 : constant operand := 3 ;
r4 : constant operand := 4 ;
r5 : constant operand := 35 ;
r6 : constant operand := 6 ;
r7 : constant operand := 7 ;
r8 : constant operand := 8 ;
r9 : constant operand := 9 ;
rl0 : constant operand := 10 ;
r1l : constant operand := 11 ;
r12 : constant operand := 12 ;
rl3 : constant operand := 13 ;
rl4 : constant operand := 14 ;
rl5 : constant operand := 15 ;
rl6 : constant operand := 16 ;
rl7 : constant operand := 17 ;
rl8 : constant operand := 18 ;
rl9 : constant operand := 19 ;
r20 : constant operand := 20 ;
r2l : constant operand := 21 ;
r22 : constant operand := 22 ;
r23 : constant operand := 23 ;
r24 : constant operand := 24 ;
r25 : constant operand := 25 ;
r26 : constant operand := 26 ;
r27 : constant operand := 27 ;
r28 : constant operand := 28 ;
r29 : constant operand := 29 ;
r30 : constant operand := 30 ;
r31 : constant operand := 31 ;
sp : constant operand := 31 ;

pragma built_in (absol _lo) ;
pragma built_in (absol hi) ;
pragma built_in (disp) ;
pragma built_in (ext_lo) ;
pragma built_in (ext_hi) ;

C-24




APPENDIX F OF THE Ada STANDARD

pragma built_in (index) ;
pragma built_in (indr) ;
pragma built_in (indr_lo) ;
pragma built_in ("+") ;

end machine_code ;

Cc-25




