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EXECUTIVE SUMMARY

This is the first Semiannual Technical Summary Report of the MIT Lincoln Laboratory
Artificial Neural Networks for Seismic Data Interpretation project.

Introduction

Seismic surveillance applications were reviewed and data interpretation tasks were selected
for initial neural network experimentation. The selected tasks are estimation of signal arrival
time (time picking), labeling of seismic phases, and recognition of typical and atypical events on
a regional basis. Basic seismology and surveillance techniques are reviewed in this report and
preliminary experimental results are summarized.

Data Base

We are using two types of data. Seismic waveform data with associated parametric informa-
tion are being provided by SAIC in San Diego, CA. Parametric data for a much larger data set are
being obtained by remote access to an on-line data base at the Center for Seismic Studies (CSS)
in Arlington, VA. All the data are from NORESS and ARCESS arrays in Scandinavia and were
processed by the IMS (Intelligent Monitoring System) regional seismic surveillance system. At the
start of the contract SAIC provided an initial waveform data set for exploratory experimentation.
While using it, our waveform data requirements and formats were worked out with SAIC and the
first installment of waveforms for 50 events has now been received.

Arrival Time Estirmtion

Arrival time estimation experiments concentrated on using perceptrons for arrival time esti-
mation. The initial waveform data set was used and we concentrated on the Pn phase. Differences
between automatic and human picks were found to be small (a fraction of a second). Simple single-
layer perceptrons worked as well as more complicated topologies, and a few simple signal features
seemed to capture all of the relevant information for time picking. The networks did improve on
other automatic picks for this data base, but the improvements were small and probably not of
operational significance.

A preliminary review of IMS statistics in the on-line CSS data showed that they are very
different from those of our initial data set. They range from a few to several seconds on average,
depending on phase type. This makes it difficult to draw hard conclusions from our initial experi-
ments. For real IMS data it does appear possible to make operationally significant improvements.
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Phase Identification

Phase identification experiments concentrated on sonograms from vertical seismometers and
three-component autoregressive signal representations for phase identification. ART-2 neural net-
works and unsupervised learning were used for the sonogram experiments. Radial basis function
(RBF) network and Gaussian classifiers were used in the three-component experiments.

The sonogram experiments used eight NORESS events from our initial waveform data set,
each event with four reported phases. Several sonogram preprocessing options and different num-
bers of ART-2 categories (controlled by the vigilance parameter) were tried. Correct recognition
percentages up to 84-88 percent were obtained for Pn, Pg, Sn, and Lg using 8-10 ART-2 categories.
Gaussian classifier experiments using autoregressive signal representations were also done with 10
events from the initial waveform data base; a success rate of about 90 percent was achieved.

Gaussian classifier and RBF neural network experiments using autoregressive signal models
were performed with 152 ARCESS phase arrivals contained in the 50-event data base recently
received from SAIC. Phase categories for these experiments included Pn, Pg, Px, Sn, SX, and Lg.
The success rates were in the 50-60 percent range for the Gaussian classifier. RBF success rates
were higher on training data, especially for high-complexity RBFs, but the RBF success rates on
separate test data were not as good as the Gaussian classifier success rates.

Future experiments will use more signals, investigate additional preprocessing options, and
include parameters (features) that are produced by the IMS system in addition to sonograms or
autogregressive models. The goal is to improve performance to a level useful in the IMS.
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1. INTRODUCTION

Networks and arrays of seismometers can be used to detect and locate seismic events and to
distinguish between different types of events. Figure 1 is a block diagram of a system to process
seismic signals and to perform these functions. It is patterned after the Intelligent Monitoring

173924-I

J DISCRIMINATION REVIEW HUMAN EXPERT

AUTOMATIC SIMPLE EXPERT SYSTEM

EVENT DISCRIMINATION AND/OR PATTERN CLASSIFIER

SEISMIC ANALYST REVIEW HUMAN EXPERT

[ AUTOMATIC

EVENT LIST PROCESSING EXPERT SYSTEM

SGNAL MEASUREMENT I SIMPLE EXPERT SYSTEM
& PHASE LABELING

_______________ SIGNAL PROCESSING
DETECTION PROCESSING

SEISMIC SIGNALS

Figure 1. Functional elements in a modern seismic surveillance system.

System (IMS) [1,21 developed by DARPA for interpreting seismic data. That system, which evolved
from an earlier system [3] that did not exploit expert system techniques, is uesigned to detect
and locate seismic sources, determine their magnitudes, and provide information to help identify
them as earthquakes, chemical explosions, or underground nuclear explosions. The objective of
the Lincoln Laboratory Artificial Neural Networks for Seismic Data Interpretation program is to
develop neural-network components for possible integration into such a system.
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1.1 Seismological Background

Because seismic data interpretation for nuclear test monitoring is a specialized application
area, we are including in this First Semiannual Technical Summary Report a brief seismological

tutorial to introduce terminology and to put our work into context.

Seismic signals from large events can be detected at very large distances (tens of thousands
of kilometers). But small events, which are important for underground nuclear test monitoring at
low yields, are detectable only at relatively small distances. Therefore, recent work on nuclear test
surveillance has concentrated on using seismometers located within regional distances (typically
less than 1000-2000 kin) of the area being monitored. For this reason, our work will emphasize the

interpretation of regional data.

Seismometer arrays are used to estimate signal propagation speed and direction of arrival
and to increase signal-to-noise ratios (SNRs) by phased-array methods. In current practice for
regional arrays, most array seismometers are vertical instruments that respond only to the vertical

component of particle motion. However, the arrays may also contain a few three-component seis-
mometers, each consisting of two horizonal and one vertical seismometer at the same location. The
three component sensors provide additional polarization and directional information. Small "re-

gional" arrays [4] with both vertical and three-component seismometers, designed especially for use
at regional distances, have now been installed in Scandinavia (NORESS, ARCESS) and Germany

(GERESS) and will be primary sources of data for our neural-network research.

Transient seismic sources produce several wave packets at regional distances, called phases.
The theoretical possibilities are P, S, L, and R phases, corresponding to compressional body waves,
shear body waves, and two different surface wave types (Love and Rayleigh). There are many

variations of type and nomenclature. Pn, Pg, Sn, Sg, Lg, and Rg are used to denote P, S, L, and

R wave types that are observed at regional source-receiver distances. The "n" and "g" subscripts
denote different propagation paths. The g phases propagate entirely within the crust of the earth.
The n phases travel deeper, arrive sooner for most distances of interest, and propagate along the
crust mantle boundary for much of their path length. One caveat to be noted is that although Lg
implies a Love wave travelling through the crust, this im, -.tant phase is now believed to included

more than Love waves. The different phases are roughly distinguishable on the basis of propagation
speed, relative arrival times, polarization characteristics, and frequency content, but algorithms for
phase identification are by no means perfect.

Different propagation paths greatly influence the appearance of seismograms and cause sig-
nificant variability in the recorded waveforms. The most obvious effects are the relative prominence
of different phases in the seismograms from different directions or distances, but more subtle differ-
ences (e.g., frequency content) are also important. Propagation-induced effects greatly complicate
the interpretation of seismic signals, since they can often obscure or be confused with source effects.
Propagation-induced variability is particularly strong for observations at regional distances. It is
important to be alert to this while developing neural networks to aid in seismic data interpretation.
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Despite these complications, seismic event location is a routine process. Locations are esti-
mated by fitting predicted phase arrival titnes to measured arrival time. For example, the P-to-S
time from a single seismogram at regional distances provides a good estimate of the distance to
the source. Arrival time measurements from several phases and from several receiver sites can be
combined to estimate the event location, including depth. Direction information and wave speed
estimates from arrays and three-component seismorneters are also used for event location.

Seismic sources are located in three dimensions: latitude, longitude, and depth. This location
is the event hypocenter. The epicenter is the geographic location consisting of only the latitude

and longitude. Although event location is routine, improvements in accuracy are always being
sought, especially for depth, which is critical for event identification and is usually not accuiately
determinable for that purpose.

After an event is located, seismic magnitudes (or other measures of size) are estimated. This
involves signal amplitude measurements and empirical corrections to remove propagation losses.
There are several different magnitude scales, and more than one magnitude is usually estimated.
The relative size of an event on the different magnitude scales can be diagnostic of the event type,

and for nuclear tests it can be used to estimate yield. For nuclear test monitoring systems, the final
data interpretation step is classification of the event as a nuclear explosion, chemical explosion,
earthquake, or unknown source.

Figure 1 shows this flow of processing and the nature of the processing at each stage. The
general flow consists of: signal detection processing; seismic phase labeling and parameter mea-
surement; event processing to determine the time, location, and magnitude of seismic events; and

event classification.

Much of the processing outlined in the figure is automated, but human seismic analysts play
an important role in the system. They review automatic processing results and make corrections.
The corrections include changing signal onset time estimates, changing assigned phase identifiers,

or changing which detections are grouped together and associated with a single seismic source
(event). This is a complex process in which the analysts bring many different kinds of knowledge to
bear, including their ability to recognize events from looking at the seismic waveforms. Examples
of this are recognizing that an event is an explosion from a specific quarry or nuclear test site or
knowing that natural earthquakes from a specific seismic region almost always look similar. This
recognition is often receiver- as well as source-location specific and is hard to quantify.

The last stage of processing is event identification (discrimination). It is generally based on
a relatively small number of criteria which have underlying intuitive or physical justifications and
have evolved empirically. Emphasis has been on event parameters (magnitude, depth, epicenter,
etc.) and on the distribution of signal energy in frequency and into different seismic phases.
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1.2 Research Plan

Figure 2 indicates one way that we envision an artificial neural network's being integrated
into an overall surveillance system. The basic idea is to develop neural networks that will perform
specialized functions that can be integrated into the present IMS as it evolves.
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Figure 2. Integration of neural networks into a seismic surveillance system.

We have decided to concentrate on relatively low-level data interpretation tasks rather than

the ultimate discrimination task, which is deciding whether an event is an earthquake, chemical

explosion, or nuclear explosion and, if nuclear, what the yield is. Thus, the discrimination and

discrimination review blocks of Figure 1 are omitted from Figure 2. Also, in Figure 2 the signal

measurement and phase-labeling functions are considered to be part of detection processing. All of
these are accomplished in the IMS by a "SigPro" software package.
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The decision to concentrate on tasks other than the top-level discrimination task was made
for several reasons. One is that classification of an event as a nuclear explosion is a poitically
sensitive decision. It must be explained in human terms and the explanation should be based
on physical theory. Although this does not exclude the use of neural networks, we felt that we
could identify better uses for networks in the seismic application. Another potential difficulty with
the discrimination problem is the relatively small number of representative events, especially the
critically important nuclear explosions. This is exacerbated by seismic propagation effects that are
highly variable and difficult to eliminate; there could be serious difficulties with generaizations
made on the basis of test data. We can better predict the performance of discriminants with a
physical basis under new circumstances than we can a discriminant that is almost entirely statistical,
and neural-network discriminants are essentially statistical.

Figure 2 cites several functions that we have identified as candidates for neural-network im-
plementation and on which our research is concentrating: arrival-time picking, phase identification,
typical- and atypical-event detection, and nuisance-event detection. With the exception of the last,
these all share the important characteristic that occasional errors by the network will be routinely
detected by human analysts and will cause no significant political or operational problem. The
emphasis is on improving the automatic processing in the system so that overall performance may
be improved and the analyst load reduced. However, the system is still designed so that occasional
errors have minimal impact. The functioning of the neural networks need not be "explained" (re-
quire a theoretical basis) any more than the traditional event detectors do; it is only required that
performance be statistically satisfactory.

Our initial research will concentrate on arrival-time picking and phase identification, for
several reasons. Discussions with seismic experts in Norway and the United States who are familiar
with operational systems confirmed that arrival time estimates and phase identifications made by
automatic algorithms must often be corrected by human analysts. Thus, improvements in the
automatic performance of these functions is desirable to reduce the analyst workload and make the
overall system more automated.

An advantage of time-picking and phase-identification applications is that minimal require-
ments are placed on source type (explosion, earthquake, etc.) for training or testing. By definition,
a phase has to do with propagation. Thus, the event type should (must) not matter very much
for phase identification. Similarly, time picking may depend on signal and noise characteristics but
not explicitly on the type of event. Because of this, it will be relatively easy to accumulate training
and test data sets.

The neural-network time-picking and phase-identification modules will be developed to im-
prove on the picks and identifications produced by existing IMS algorithms. We will depend on
SigPro to detect the events and provide initial guesses of these parameters. For phase identification
we will explore features that are routinely calculated by the IMS and additional features that we
will extract directly from seismograms. Initial work on phase identification will concentrate on
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"out-of-context" identification; that is, each phase arrival will be treated locally without regard for
decisions made about other arrivals before or after the one under consideration.

The IMS in Norway is routinely used to process data from NORESS and ARCESS. Seismic
analysts routinely review and correct the output from the automatic IMS. All changes and correc-
tions made by the analysts are recorded. Thus, we will have available not only time picks and phase
identifications made by the automatic system but also the corrections made by the analyst. For
our neural-network development work we will consider the analysts' results to be correct. From one
viewpoint this can be open to question, since many of the decisions are fuzzy and different analysts
may not agree, especially for events with low SNR or phases in the coda of earlier phases. (The
coda of a phase is lower-level energy that continues to arrive after the first burst and is usually
attributed to scattering and multipath propagation effects.) However, the analyst's decision is the
best available view of fact. Moreover, as long as analysts are in the loop and can modify the output
of the automatic system, it is clear that the task of the automatic system is to minimize the number
of changes the analyst will make. In practice the analyst's decisions must be treated as correct.

Once we have completed our exploratory development of time-picking and phase-identification
networks, we plan to expand the work to include "in-context" phase identification and typical and
atypical event recognition. These have in common the fact that the entire seismogram, not just an
isolated phase arrival, will be taken into consideration for classification purposes.

Automatic recognition of atypical and typical events is not now part of the IMS. (There is a
script matching component intended to classify events on the basis of signal-to-noise measurements
on a set of standard array beams plus a few additional parameters, but this is a very experimental
element of the system that is not integrated into routine operations [11.) However, if neural networks
could learn to recognize atypical and typical events, the system might be modified to use this
capability. At the least, the analyst might be alerted to pay attention to specific events. The
idea is simple and related to the fact that human analysts often learn by experience to identify
events simply by looking at their seismograms. For example, for a given receiver site events from a
particular seismic region may have a very characteristic appearance. This is both source-region and
receiver specific. It is also true that not all events from a region will match the pattern. Our plan is
to investigate how networks might learn to recognize a typical event and, perhaps more important,
recognize an atypical event. For example, if an explosion took place in an active earthquake area
where there had been no known previous explosions, a network could alert the analyst that the
signals from this event seemed strange; this focus of attention might be quite helpful.

Nuisance-event recognition is a specialized atypical/typical event-recognition problem that
we may investigate. A nuisance event is a real signal, detected by an array, from a very small event
very close to the receiver. It is not large enough to be detected at other arrays or to be of any
interest. It may be due to local cultural activities, nearby ice fractures, etc. There may be many
of these events, and they can consume processor and analyst time. Thus, recognizing them early
in the processing chain and eliminating them from further consideration would be useful.
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The choice of problems for which we plan to seek neural-network solutions was made during

the first few months of this research effort, when we reviewed data sources, discussed needs with

potential users, and evaluated the match between seismic problems and neural-network technology.
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2. DATA BASES

During this reporting period we have worked with Science Applications International Corpo-
ration (SAIC), which is under DARPA contract to provide data for this project, to define seismic
signal data bases for our exploratory research, to specify data formats and exchange mechanisms,
and to obtain and start using seismic waveform data.

This was done in two stages. At the very start of the project we were provided with an initial
waveform data set that was prepared by SAIC for another purpose; this was the only waveform

data available to us for most of this reporting period. While using this data for exploratory
experimentation, we defined additional data sets to be created and provided specifically for this
project. These newly defined data sets are now becoming available. All data sets consist of data
from regional seismic arrays in Scandinavia. We have also started to access and use the IMS
parametric data that is on line at the Center for Seismic Studies in Arlington, VA.

During this period we also procured, installed, and started to use Sun SPARC stations as
our basic data-analysis and processing tools. These standard workstations are compatible with the
DARPA IMS and are also used by the SAIC group that is providing us with seismic data. This
commonality assures smooth interactions with SAIC and will facilitate possible transition of our
results to the IMS for more extensive evaluation.

2.1 Initial Waveform Data Set

The initial waveform data set provided by SAIC contained a single three-component waveform
segment from the NORESS array for each of 73 regional events. Location and magnitude estimates
were provided for each event. The 73 events included: (1) 23 earthquakes, (2) 39 chemical explosions
(20 from the Blasjo mine site and 19 from the Titania mine site in southwest Norway), and (3) 11
events off the southwestern coast of Norway. All were between 300 and 500 km from NORESS.
This data base was constructed by SAIC under contract to HNC, Inc. of San Diego, CA, for a
neural-network research effort to distinguish between chemical explosions and earthquakes. It was
provided to us with HNC concurrence. The data were provided in Seismic Analysis Code (SAC)
format to allow us to evaluate that option for waveform data exchange and to provide us an initial
data set for initial experimentation.

SAC is an interactive time-series-analysis and signal-display software package that was orig-
inally developed by Joseph Tull at Lawrence Livermore National Laboratory. It has subsequently
been adopted and used for seismic data analysis by several organizations including the SAIC group
providing the seismic data for this project. SAC format is the seismic waveform storage format
understood by the SAC software. We obtained the SAC code from SAIC along with the initial
data. As expected, we have found this format satisfactory; it is already in routine use and allowed
us to start work with minimal software effort. Results of our preliminary experimentation with this
data set are presented in Chapters 3 and 4.
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This initial data base only allowed us to begin exploratory research. It has very limited dis-
tance and azimuth coverage, contains data from only one seismic receiver site (NORESS), includes
only one three-component sensor from that site, and does not include any of the detecting beams.
Because the events in this data set predate the time when IMS came into routine use, it also con-
tains inadequate ancillary paramctric data. Specifically, our research requires that we know the
automatic time picks and phase assignments made by IMS and how they were changed by human
analysts. Thus, while using this initial data set for some preliminary experiments, we also worked
with SAIC to define and obtain a data base better tuned to the needs of this project.

2.2 Waveform Data Bases

Working with SAIC, we have defined eight waveform data bases that they will provide to
Lincoln Laboratory. Data will be provided from both NORESS and ARCESS whenever both
sites appear to have detected the same event. For each event in each data base we will obtain
all unprocessed signals and all detecting beams. In each case a seven-minute data segment will be
provided, starting 30 seconds before the first phase arrival for the event. Complete parametric data,
including all parameters generated by automatic processing and all changes made by analysts, will
be provided. The data exchange media will be read/write optical disks.

In addition to waveforms and parametric data in electronic form, SAIC is providing hard-copy
information for each event. This includes listings of the parameters, maps showing the geographic
location of the event, a copy of the standard display provided to the analyst, and plots of the
detecting beams and of three component beams for each phase associated with the event.

The eight waveform data bases have been defined and sized to provide a broad sampling of
seismic waveform phenomena and source coverage and to expedite obtaining data that we think
will be particularly useful. Once we have obtained and experimented with these initial data sets,
we will work with SAIC to determine which ones need to be expanded for more complete training
and testing.

The eight data bases and the number of events requested are:

1. High-quality regional analyst-corrected events (50)

2. High-quality regional analyst-accepted events (50)

3. Random selection of analyst-corrected events (50)

4. Random selection of analyst-accepted events (50)

5. Random selection of analyst-rejected events (25)

6. Non-event detections (40)

7. Teleseisms (25)

8. Unusual events (10)
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The "high-quality" requirement for the first two data bases means that the request is restricted
to events for which the waveforms have been saved on line by the IMS; this procedure expedites
obtaining the data. The first of the eight waveform data bases has been received and we are
beginning to use it. Now that all formats and necessary software are available, we expect that the
rest of this waveform data will be available shortly.

2.3 Parametric Data Bases

In addition to the parameters provided with waveform bases, it has become clear that we
should use the much larger parametric data base that is routinely generated by IMIS and main-
tained at the Center for Seismic Studies (CSS) in Arlington, VA. This data base contains lists of
all detections made by the NORESS and ARCESS arrays, lists of automatically extracted param-
eters for each detection, automatically generated event lists, documentation of corrections made
by analysts, and revised event lists reflecting the corrections. We need these data to obtain ana-
lyst time-correction statistics, phase-identification change statistics, and to experiment with phase
identification using parameters routinely generated by the IMS. By using the complete parametric
data base we can derive statistics and perform phase-identification experiments with a much larger
data set than would be possible if we restricted ourselves to events for which we obtain waveform
data.

The original plan was to ask SAIC, which is providing us with waveform data, to provide
additional parametric data. However, the parametric data are now on line at CSS and accessible
to us by computer network. This is a more convenient and flexible option and is the mode we are
now using.

Chapter 3 includes arrival-time estimation statistics that were compiled using this data base.
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3. ARRIVAL-TIME ESTIMATION

Arrival-time estimation involves determining, as accurately as possible, the onset times of

seismic phases. It is important because arrival-time estimates are used to obtain event locations.

Arrival-time estimation can be difficult if the SNR is poor or if the newly arriving phase has a

smaller amplitude than the preceding phase.

Algorithms for seismic phase detection typically begin by computing a simple energy measure,

such as the ratio of a short-term average to a long-term average (STA/LTA) of the energy in the

seismogram. When this ratio exceeds a predetermined threshold, a detection is declared. The

threshold-crossing time may then be used as an arrival-time estimate, or the arrival time may be

further refined by various algorithms. In the IMS [1], the time pick is refined using a technique [3]

that involves analyzing the peaks and valleys of the signal near the threshold-crossing time. An

analyst then reviews the time picks and corrects them as necessary.

Our goal is to develop neural networks to improve the time estimates generated by the IMS

automatic algorithms and to reduce the number of corrections the analyst must make. The inputs to

our neural network could include the signal itself (perhaps filtered, scaled, and rectified), the initial

time estimate generated by the IMS and various parameters generated by the signal-processing

software (e.g., rectilinearity, dominant frequency, SNR). The output of the neural network could

be a new time estimate or an indicator as to the expected accuracy of the automatic time pick.

Our work on this project so far has concentrated on better understanding the nature of the

corrections made by the analyst and determining the types of inputs that produce the most accurate

time picks from the neural network. To better understand the nature of the analysts' corrections,
we have begun collecting statistics on the size of the corrections for different phases. These statistics

are given in Section 3.1. To determine the best types of inputs to give the neural network, we have

performed some experiments with the initial data set described in Section 2.1. The results of these

experiments are summarized in Section 3.2.

3.1 Analyst Timing Corrections

Since our primary goal is to use a neural network to reduce the number of arrival-time

corrections the analyst must make, it makes sense to study the corrections currently being made.

We have learned to access the CSS data base [5] using the SQL language and the SQL*Plus tool [6],

and have used this knowledge to extract on-line statistics concerning analyst timing corrections. In

this section, we describe the statistics we have obtained.

The statistics given in this section were extracted from the CSS data base IMS1, which

contains parameter information about a large number of seismic events detected at the NORESS

and ARCESS seismic arrays. While it would be possible to collect statistics on all the detections

in the data base, this may not be meaningful; some of the detections were never associated with

any particular event or any other phases, thus it is unlikely that the analysts made any effort to
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correct them. Therefore, when collecting statistics on arrival-time corrections, we have imposed
the following restrictions:

" The phase arrived sometime after January 1, 1990. At the time of running this
experiment, the data base contained arrivals through October 1990, so these statistics
include about 10 months of data.

" The phase must be associated with some event (and therefore with at least one other
phase); this association must be established or confirmed by the analyst.

" The phase must be detected by the automatic system and kept by the analyst. Phases
added by the analyst or discarded by the analyst are not included.

" The phase must be identified as Pn, Pg, Sn, or Lg; the identification must be estab-
lished or confirmed by the analyst.

All signals satisfying the above restrictions are included in the statistics discussed below.
We have not yet included SNR or oizer quality estimates in these statistics, although collecting
additional statistics as a function of signal quality might be useful in the future.

Table 1 shows the statistics we have collected as a function of seismic phase.

TABLE 1

Statistics on Analyst Timing Corrections

Number of Percent RMS
Phase Signals Changed Change (s)

Pn 5750 42 2.65
Pg 1020 31 1.92

Sn 1345 49 16.57
Lg 5810 52 5.68

These statistics indicate that the corrections made by the analyst are significant, and suggest
that a system for reducing the number of corrections would significantly reduce the work of the
analyst. Also, since the size of the corrections varies significantly from phase to phase, a different
network structure or a different parameter set may be necessary for different phases. In addition,
the Pn and Lg phases are detected far more often than Pg and Sn, so it makes sense to concentrate
on these phases in our early work.
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3.2 Initial Experiments

Ideally, we would like to perform experiments with seismograms obtained from the IMS data
base discussed in Section 2.2. Unfortunately this was not possible since we have only recently
begun to receive these data. Therefore, the results in this section are based on events in our initial
data set (Section 2.1). As will be seen, for this data set the accuracy of automatic time picking is
better than it appears to be on average for the IMS data. This limits our ability to determine how
well the neural network will perform in combination with the IMS, but nevertheless allows us to
experiment with different types of inputs to the neural network and see which inputs give us the
most accurate time estimates.

The approach in our initial experiments has been to first compute a crude estimate of the
arrival time using an STA/LTA detector, then use the neural network to refine this estimate. Our
longer-term plans are to use the estimate generated by the IMS rather than our own STA/LTA
estimate. In our initial experiments, we have used data from the 1-s interval preceding the STA/LTA
detection. This interval contained the true Pn arrival time for most of the seismograms. However,
based on the statistics we now have concerning analyst corrections in the IMS,

we will change the length of this window when we begin using the IMS data. Our initial
experiments concentrated on the Pn phase, since it is usually the first to arrive and is often easiest
to detect with an STA/LTA detector. We plan to consider other phases in the future, probably
starting with Lg.

The neural network structure in our initial experiments is a multilayer perceptron trained
with back-propagation [7]. The network inputs include the data itself, filtered and rectified, various
energy measures, and other parameters such as rectilinearity. The inputs are described in more
detail below. The network output is a single analog output that indicates the position of the new
time estimate within the chosen data window. We have chosen to use a single analog output (rather
than a series of binary outputs) because the back-propagation algorithm minimizes the mean-square
difference between the actual and desired outputs. With a single analog output indicating the onset
time, the back-propagation algorithm will minimize the RMS estimation error.

While we may try other types of networks in thc future, we have started with the perceptron
because it is a classic architecture that has been successfully applied to a large variety of prob-
lems. In the experiments performed to date, we have tried 1-, 2-, and 3-layer perceptrons with
comparable results, suggesting that the 1-layer perceptron is adequate for the data we have used
so far; the results given in Section 3.2.1 were obtained using a 1-layer network. Our effort to date
has concentrated not on the network structure itself, but on choosing signal features to maximize
the network performance. Feature options and multilayer networks must be reinvestigated for IMS
data.
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3.2.1 Input Representation

This section contains results obtained with perceptrons and several different types of signal
feature vectors. The raw data were signals from 52 Pn phases with good SNR. The "true" arrival
times were picked by an experienced seismic analyst. The experiments used only one vertical
seismometer (except where rectilinearity is included, in which case a three-component seismometer
was used). The numerical values for the RMS errors may not be realistic performance estimates
by themselves, but should be useful in comparing different approaches.

It is usually important to use different sets of data for network training and testing so that
the testing results are indicative of performance that will be obtained on new data. The procedure
we have used is the "leave-one-out" method, designed to make maximum use of a small data set.
In this procedure, we first train the neural network using 51 of the 52 signals, then test it on the
one signal that was not used for training. Then we repeat this procedure a total of 52 times, each
time leaving out a different signal. Finally, we compute the RMS time error, averaged over all 52
trials.

Table 2 shows a list of different inputs we have used and the RMS time error resulting from
these inputs. For comparison purposes, the RMS error resulting from using the STA/LTA estimate
directly is 0.41 s; the RMS error from using the STA/LTA estimate but correcting for its bias
(i.e., by subtracting the mean time difference between the actual arrival time and the STA/LTA
threshold crossing) is 0.22 s.

TABLE 2

Effect of Different Inputs on Time Picking

Inputs RMS Time Error (s)

1. Signal (40 points) .16

2. Envelope (40 points) .13

3. List of Peaks (10 peaks) .17

4. Energy in 0.5-s window .15

5. Energy in 0.5-s envelope .12

6. Maximum SNR .14

7. Rectilinearity (40 points) .18

8. 5 and 6 above .11
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The first item in the table, labeled "signal", uses data from the 1-s interval preceding the
STA/LTA threshold crossing. The data is filtered to 8-16 Hz and rectified. The item labeled
"envelope" uses the envelope of this filtered, rectified signal-that is, the peaks of the signal are
preserved and samples in the intervals between the peaks are replaced with a linear interpolation
between the adjacent peaks. This forces the neural network to concentrate more on the overall
energy structure of the signal and less on individual peaks and valleys. The item labeled "list of
peaks" uses a list of pairs (time, amplitude), each representing a peak in the signal rather than a
value at each sample time. "Rectilinearity" listed in this table is computed as a function of time,
using a sliding 2-s window, and therefore varies very slowly over the data interval in question By
comparing the results of these experiments, note that the envelope gave better performance than
the raw data, the list of peaks, or the rectilinearity.

Equally good performance can be obtained by computing a very simple energy sum over a
specified interval, thus having only one or two inputs to the neural network rather than 40. The
results listed in the table are for energy sums over only 0.5 s rather than 1 s; we have tried intervals
in the range of 0.25 s to 2.0 s and found that 0.5 s gives the best results.

These results suggest that the essential information the network is extracting from the signal
is the amount of energy immediately preceding the STA/LTA threshold crossing. If this energy is
low, the arrival time is near the end of the interval (near the STA/LTA crossing). If this energy is
large, the arrival time is near the beginning of the interval, further from the STA/LTA crossing.

Theoretically, better results might be obtained by using several inputs simultaneously rather
than individually. In fact, our experiments suggest that combining the inputs does not help sig-
nificantly. The result is usually close to that obtained with the best of the individual inputs, and
is often worse. The best result we have obtained by combining inputs uses the sum of the energy
in the envelope and the maximum SNR (over the entire Pn phase, not just in a specified interval);
this result is 0.11 s, only slightly better than using the energy sum alone. Nevertheless, this is a
factor of 2 better than using the STA/LTA detector alone, even with the bias correction.

We conclude from these experiments that for this data base the parameters summarizing the
energy content of the signal contain the essential information needed to correct the arrival-time
estimate, and that using these parameters in a neural network gives better results than using the
STA/'LTA alone. However, because the IMS analyst correction statistics are so different from those
in this initial experiment, it is difficult to predict the best network structure and signal features
to use for the IMS data and how much improvement neural networks will provide. Now that IMS
data is available to us, these questions are being addressed.
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4. PHASE IDENTIFICATION

Seismic phase identification is the problem of labeling the phase (e.g., Pn, Pg, Sn, Lg, T, or

N) of a waveform, given the waveform and an indication of when the phase arrives (which was the

focus of Chapter 3). Phase identification can proceed directly from the raw waveforms recorded at

the seismic instruments, from waveforms which have been preprocessed in some manner, or from

waveform features that are automatically produced by the IMS before analyst intervention. We

plan to experiment with all of these alternatives.

Phase identification can be done in or out of context. For example, human analysts use

contextual information to identify phases, that is, they consider the ordering and arrival times

of surrounding phases to devise a meaningful interpretation consistent with all the information.

At the other extreme are some of the front-end algorithms in the IMS that classify each arrival

with no context at all. Some expert system elements of the IMS also use context in making phase

identifications. We are working on both in and out-of-context phase classification. An advantage

of context-free classification is that it may be more robust when dealing with multiple events in

which phase arrivals are interleaved. Our overall goal is to improve on the performance of the

automatic phase-classification portion of the IMS and to reduce the number of changes that must

be made by the human analyst.

4.1 Data Representation

This section summarizes two signal-representation approaches that we are investigating for

phase labeling: a sonogram-based approach that has been applied to single-component vertical

waveforms, and an autoregressive method that has been applied to three-component waveforms.

Eventually we may choose one of these representations over the other, or we may find it appropriate
to keep both of them.

We also include in this section a brief discussion of our planned use of the signal parameters

routinely generated by IMS.

4.1.1 Sonograms

Techniques for machine learning and recognition can be borrowed from neural-network image-

processing paradigms if the waveform data is transformed into a two-dimensional image-like repre-

sentation. One such transformation converts a one-dimensional single-component seismic trace to a

two-dimensional sonogram (spectral energy vs. time). Other investigators [8,9,10] have considered

similar appioaches. In some cases, the other investigators first gained experience recognizing signal

types in the sonograms, then constructed templates for each of the categories they were interested

in matching. Subject to the development of appropriate similarity measures, new events are then

compared to the templates and automatically classified. Our approach is different in that neural

networks will be used to generate the templates, thus reducing the need for an independent expert.
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Automating this process can also rapidly indicate when a particular data representation natu-

rally separates the phases into distinct classes. We are now using this approach to perform phase
identification with individual vertical seismograms. Future alternatives include array-average sono-
grams, beam sonograms, and radial/transverse sonograms. We have concentrated on the vertical

component because such data is widely available and positive results would be widely applicable.

4.1.2 Autoregressive Modeling

A natural way to investigate the additional information available from three-component
stations is through the covariance structure of the channels. Correlation matrices for different
frequency bands are the starting point for the polarization analysis [11] that is included in the

IMS. Another approach to representing the polarization and frequency information in the three-

component seismometers is autoregressive (AR) modeling, which we are investigating. The goal of
AR modeling is to find a small set of parameters which preserves the information content of the
waveforms, but uses many fewer parameters than the number of data points. These parameters
can then be used for phase identification.

In AR modeling, we assume that the recorded signal, sn, is a linear combination of past values

and some input un;

P

Sn =- aksn-k + Gun , (1)
k=1

where G is a gain factor. In this single-dimensional case, there are p degrees of freedom since the
filter is of order p. The input, u, can be either the unit impulse in a deterministic system or
white noise in a stochastic environment (since they hayw the same autocorrelation and the same

spectrum). Minimizing the error defined as

E = + aksn-k) 2  (2)
n k=1

yields a set of p equations with p unknowns, namely the filter coefficients ak, 1 < k < p. The filter
coefficients can then be processed as a feature vector input to a neural-network classifier.

AR modeling is easily generalized to the multidimensional case of a three-component sensor.
In this case, _sn is now a three-component vector, and the AR model is

P

n= -Aklk + Gu , (3)
k=1
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where G is the noise covariance matrix and the 3 x 3 A's are the matrix parameters defining the

filter. Now there are 9 p equations and unknowns in addition to an assumed model for the noise.

Although this is a great reduction in order from the number of waveform samples, it may still result

in a large number (e.g., 50-100) of parameters.

One excellent way to reduce the dimensionality of the parametric representation is to perform

a Principle Components Analysis (PCA, also known as a Karhunen-Lo~ve Expansion). An inter-

esting suggestion, first made by Fukunaga and Koontz [12), is to apply the PCA to the mixture of

covariance matrices of the two classes to be discriminated rather than to each covariance matrix

separately. This yielded a transform which emphasizes the differences among the classes in addition

to reducing the dimensionality of the representation. This approach was used for some of our AR

experiments.

4.1.3 IMS Parametric Data

A wealth of useful information for seismic phase identification is generated routinely by IMS.

It reports information such as the frequency, SNR, amplitude, rectilinearity, planarity, observed

azimuth, and emergence angle of the signals. These parameters are used for phase identification by

algorithms and expert systems in the IMS. We plan to experiment with using them for identification

by themselves or in combination with sonogram or AR representations. Using the parameters by

themselves, we will investigate whether networks can be developed to improve on the INIS out-of-

context phase identification algorithms that use the same data. Using the parameters in conjunction

with other representation, we hope to determine if important useful information has been discarded

by the automatic IMS.

4.2 Classification Methodology

Thus far, we have experimented with Gaussian classifiers from signal processing and Radial

Basis Function (RBF) and Adaptive Resonance Theory (ART) classifiers from the field of neural

networks.

4.2.1 Unsupervised Neural Networks (ART Networks)

ARTI and ART2 are binary and analog (respectively) classification mechanisms developed

by Gail Carpenter and Stephen Grossberg [13,14]. They are designed to self-organize stable cate-

gories in response to on-line presentation of input. Built into these networks are nonlinear filters

that perform noise quenching and feature enhancement [14,15). The classifier architecture is logi-

cally divided into two fields: F1 , the bottom-up feature-representation field, and F2 , the top-down

category-representation field. These fields should be differentiated from the layers of the multilayer

perceptron because the individual fields of ART can be made up of several layers.

Each field has a logically distinct function. Nonlinear parallel interactions in the F field

suppress elements with low signal content and redistribute activity among the surviving elements,
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thereby enhancing the contrast in the input signals. Bottom-up connections from F prime the F2

field for a category match. The first time a new input is experienced by the network, a parallel
search of existing categories results; when the best match is found, a measurement analogous to
the angle between the two vectors is compared to a single vigilance parameter. If this angle is
close enough, the distance between the winner's direction and the input direction is decreased. If
it is not close enough, the winner is disabled and the search reconvenes, terminating with either
an existing category or, if no existing category is close enough, a new category. When the network
becomes familiar with an input (typically a small number of exposures), the Fl-to-F2 connections
result in direct access to the representative category. The top-down connections from F2 generate
stable recognition codes for F1 inputs. These codes are often referred to as category exemplars in
the parlance of restricted-coulomb energy or RBF networks. For a detailed description of these
networks, see Carpenter and Grossberg [141.

One advantage of ART networks over many other neural-network classifiers is that the ART
networks do not have distinct training and testing modes; categories are constantly refined. Never-
theless, it is possible to guide ART networks in the early stages of operation by providing charac-
teristic examples. This gives ART a head start in categorizing its data in much the same manner
a teacher can help a student ioarn new information.

When taught in this way, another advantage of ART becomes apparent: it can take advantage
of new training inputs immediately. In contrast, when one additional training example is added to
networks such as the multilayer perceptron, the entire training set must be presented again, and
training must be repeated from the beginning.

In order to efficiently teach and e .tiate the performance in classifying seismic phases, ART
(which produces unlabeled categories) was combined with a category labeler that generates a confu-
sion matrix to represent the succesz of claif'j.-.ation trials. This allows us to automate the evaluation
process as a larger data base becomes available.

4.2.2 Gaussian Classification

A Gaussian classifier is relatively easy to implement using standard multilayer perceptrons
171, but the resulting software suffers from slow convergence and the retraining problems described
above. A Gaussian classifier is still useful, however, since the results are well understood and it
facilitates the design and testing of representations for waveform and parametric data.

The Gaussian classifier generalizes the concept of Euclidean distance by weighting the distance
with the covariance matrix derived from the training set. The resulting metric (the Mahalonobis
distance) can be used to determine the a posteriori probability of the signal identifications. Unfor-
tunately, the Mahalonobis distance can be very sensitive to an outlying data point in the training
set, particularly to mislabeled training items. These are both areas where neural-network classifiers
such as ART may be able to help.
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Using the principle component analysis cited earlier, parameter sets are generated which max-
imize the differences between pairs of classes. Although this readily allows a simple discriminant
function (the Gaussian classifier), the parameter set transforms must be recomputed for each pair-
wise comparison. For example, one principal component analysis might generate a parameter vector
well-suited for discriminating between Pn and Pg phases, but another analysis must be carried out
to discriminate Pn phases from Lg phases. Similarly, identification among N possible phase classesN'

requires 2(N!2) separate analyses and comparisons. However, this is manageable for N < 6, which
is the case for phase identification.

In our implementation the final decision from among the pairwise decisions is made by a
plurality vote whenever possible. For example, if Pn is the choice more often than any other phase,
then Pn is selected. When there is no plurality winner, the decision is more complex and depends
on the certainties of the binary decisions.

4.2.3 Radial Basis Functions

The RBF classifier [16] is a supervised neural- network-like multiclass classifier consisting
of two stages. The first stage uses a set of radially symmetric "basis functions" to project the
input vectors into a higher dimensional space, with the result that a classification problem cast
into a high-dimensional space is more likely to be linearly separable than the same task in a
lower dimensional space. The second stage operates from the high-dimensional space to perform
the classification via discrimination hyperpidnes. The orientation of the hyperplanes is set by
supervised training, during which the misclassification errors are minimized for all elements of
the training set simultaneously. The hyperplanes are represented by weights that can be learned
incrementally in noisy environments, or that can be calculated analytically after a single pass of
"clean" data using a matrix pseudoinverse to minimize the squared error [17]. The complexity of
the classifier is controlled by the number of basis functions. As this number increases, a given data
set is distributed more sparsely to classification space, and the classification hyperplanes fit the
data more precisely (with fewer errors); at the same time, the classifier may overfit the data, in
which case it is less successful with data not experienced previously. Thus we seek to use the least
complex classifier which produces an acceptable misclassification error rate.

To maximize the usefulness of the basis functions, it is helpful to adjust their sensitivity
to match the distribution of the inputs. If a particular input vector never occurs in a particular

classifier application, it is wasteful to have part of the classifier be sensitive to it. The sensitivity
of the basis functions is controlled by the locations of their centers (in input space) and their sizes
(the coverage-extent in input space). A popular technique to determine the centers, which we also
use, is to perform a cluster analysis using the k-means clustering algorithm [18], where k is the
optimal number of basis functions determined empirically. The sizes of the basis functions can
also be determined empirically, or can be based on the cluster standard deviations. Significant
overlap among basis functions as well as extensive coverage of the input space are necessary for
generalizability beyond the training data set.
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4.3 Initial Experiments

4.3.1 Phase Identification Using Vertical Sonograms

Our initial experiments with sonograms examined several pattern-recognition preprocessing
options, explored how much phase identification information might be contained in only the sono-
grams of vertical seismograms, and experimentally applied an ART2 approach to phase identifica-
tion.

The results in this section are based on a subset of our initial waveform data set (See Sec-

tion 2.1). The data consisted of single vertical seismograms from eight events (four earthquake
and four explosions) recorded at NORSAR. Four phases (Pn, Pg, Sn, Lg) were reported for each
of the events. For these experiments the phase onset times were picked by a Lincoln analyst. The
wa-o.eform was cut into time blocks starting 1.6 seconds before each phase and continuing until the

next phase, or 25 seconds later in the case of the Lg phase; noise and coda intervals were also used.
A noise sample was taken from just before the Pn window and the coda was taken starting 45
seconds after the onset of the Lg phase. The 32 phases varied in duration from about 3.5 seconds
to about 35 seconds.

The signals for each phase were subjected to the following processing. We first generated

sonograms, which were then processed to enhance areas of rapid change, to emphasize the phase
onset, to normalize the spectra by background noise, or to reduce sensitivity to source spectra
by coda normalization. The processed images were then applied to an ART2 [14] network. A
supervised labeler was used to map the ART2 output nodes into phase names. Later experiments
will examine other neural-net classification techniques; we were initially interested in examining
the effect of the sonogram-processing schemes on classification performance.

Altogether, we examined the 9 processing schemes listed in Table 3. They were applied in the

order in which they are listed in the table from left to right. In all cases the images were smoothed
and resampled along the frequency and time axes to avoid excessive sensitivity to slight shifts of
the sonograms in frequency or time.

The sonogram images were given phase labels using an unsupervised ART2 classifier with a
supervised phase labeler at its output. The number of elements in the ART2 input vectors was
240. The ART2 input vectors were obtained by raster scanning the processed sonogram images.
Most of the sonograms contained more than 240 pixels and were down-sampled to get 240 values.
One sonogram was smaller and was upsampled.

In our initial experiments we forced our ART2 classifier to generate fixed numbers of classes
and compared the classification performance for the different processing schemes and for different
numbers of ART2 categories. When the number of ART2 categories was greater than four (corre-
sponding to the four phase types to be classified: Pn, Pg, Sn, Lg) the post-ART2 labeler was used
to make the required many-to-one mapping. The number of ART2 categories was controlled by the
"vigilance" parameter, which controls how alike inputs must be to be assigned to a single category.
There is a lower limit to the number of categories that can be obtained by adjusting vigilance. In
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TABLE 3

Sonogram Postprocessing Schemes

Normalization Data Compression Image Processing Technique

D i Time Zero
Name Div. Divg Freq. Smooth Log. DOG DOG Crossing

by Avg by Avg Smooth & Log. of Power lxl-3x3 3x3-5x5 ossinG
Noise Coda & Sample S e of DOG

ft X X
ftl X X X

nft X X X

nftl X X X X

cft X X X

cftl X X X X

cftld X X X X X

cftlD X X X X X

cftle X X X X X

X indicates computation performed; order is left to right.

ART2 there is an unassigned category which has arbitrary preassigned weights; it is always possible
that it will be closer to a novel input than any of the previously assigned categories. Thus, if a
classifier already has assigned categories and a new input is applied, a new category may be created
regardless of the vigilance setting. The interpretation of this is that the data is sufficiently distinct
to require additional categories to represent it.

Table 4 shows experimental results for the cases of four, eight, and 10 ART2 classes. Since
we were concerned with four phase types, forcing ART2 to generate four categories seemed rea-
sonable. However, in several cases it was not possible to produce only four categories by adjusting
vigilance; four seemed too restrictive. Eight is another natural choice because our data included
both earthquakes and explosions. The table also gives results for 10 ART2 categories; there is no
need to restrict the number of ART2 categories to a number that we believe to be natural, and
more than the natural number of categories may improve performance.

The results shown in Table 4 are significantly better than chance (25 percent). Many of the
data representations force ART2 to create a minimum of 5 or 6 categories, because postprocessed
data clusters are farther from each other than the unassigned category. Thus, ART2 tells us that
we must use more than four categories to represent this data. beveia l processing paths cause

25



TABLE 4

Postprocessing Performance

Results

Experiment 4 Categories 8 Categories 10 Categories
Name

ft - 66% 66%

ftl - 59% 63%

nft - 59% 75%

nftl 47% 44% 50%

cft - 78% 81%

cftl - 84% 88%

cftld 69% 72% 78%

cftlD - 78% 84%

cftle 56% 56% 72%

indicates ART2 naturally produces more than 4 categories.

TABLE 5

Phase Confusion Matrix for cftl in 10 Categories

Classified Phase

Desired Phase Pn Pg Sn Lg

Pn 4 4 0 0

Pg 0 8 0 0

Sn 0 0 8 0

Lg 0 0 0 8
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80 percent of the phases to be correctly classified; the best is 88 percent accurate. Allowing ART2
to use additional categories did improve the classification accuracy. We did not spend time tuning
to this data base, because its small size may not generalize well to larger data bases. However,
these early results are promising.

We next briefly examine which phases are confused with each other. Table 5 illustrates the
misclassifications made for the example "cftl" and 10 ART2 categories. Pn and Pg are the only
misclassified phases in this case. This is consistent with seismological expectations. Deciding
between Pn and Pg on the basis of signal characteristics alone is more difficult than, for example,
deciding between a P-type phase and either Sn or Lg.

Future work will build on these preliminary experiments. We will investigate sonogram-based
ART2/hybrid classifier characteristics using a larger data base. The waveform data base being
provided by SAIC (see Section 2.2) will be used. We will employ only automatic algorithms (no
analyst intervention) to select phase onset times and locate coda segments. Another important
task will be to explore the use the ART2/hybrid approach for phase classification using parameters
(signal features) available within the IMS. We will develop networks and investigate classification
performance using the IMS parameters alone and with sonograms.

4.3.2 Phase Identification Using Three-Component Autoregressive Models

Some of the results in this section are based on the initial waveform data set (built for HNC)
and some are based on the high-quality analyst-corrected 50-waveform data base recently delivered
to us by SAIC.

Using the multichannel autoregressive parameters, we applied two mechanisms to multichan-
nel waveform data to perform phase identification: (1) Gaussian classification based on pairwise
KL-transformed data and (2) RBF classification.

Preliminary experiments with 10 events and 40 phases from the initial SAIC/HNC waveform
data base showed that the Gaussian classifier (and the ART classifier) performed at chance leve!s
on the multichannel autoregressive parametric data. Although this was discouraging, the addition
of the Karhunen-Love (KL) transform (PCA) brought the classifier error rate down to less than
10 percent. There were four categories (Pn, Pg, Sn, and Lg). All 40 phases were used for training,
so 10 percent is the error rate on the training set. Data-set limitations restricted the experiments to
first-order three-component autoregressive models. Phase-onset times were provided by an analyst
and the entire signal from the onset to the next phase onset (or 25 seconds, whichever was smaller)
was used to estimate the autoregressive coefficients. The error rate is comparable to that obtained
using ART2 and vertical sonograms.

Additional experiments have been performed using the 50-event waveform data base that was
recently provided (see Section 2.2) by SAIC. Results obtained using 152 phase arrivals from the
ARCESS array are presented in Table 6; it presents Gaussian classifier results for (1) when all the
data were used for both training and testing and (2) when the 152 arrivals were split into separate
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TABLE 6

Karhunen-Lo~ve/Gaussian Classifier for Phase ID

% Correct

Training* Test Data**

First- First-Exact Exact lte
letter letter

51% 63% insuff. 59%
* 152 phases used for training and testing

** 100 phases for training and 52 for testing

training and testing data. The automatic phase-arrival times provided by IMS were used as the
start of the window in which autoregressive coefficients were calculated. A three-second window
was used in all cases for estimating autoregressive coefficients.

There were six classes for these experiments: Pn, Pg, Px, Lg, Sn, and Sx. Phases labeled
Px or Sx may have been too ambiguous to label more exactly, and so were treated as distinct
labels during training. During recognition, however, we examined the case where the test-phase
identification was required to match the analyst label exactly (i.e., Pn = Pn), and the case where
only first letter matches were required (i.e., Pn = Pg = Px). As expected, success improved when
the matching criterion was relaxed.

The number of KL coefficients (eigenvalues) used for classification ranged from 2 to 25, de-
pending on which two phases were being distinguished. It was necessary to use fewer coefficients
when one phase type of the pair was underrepresented in the data (e.g., there were only three
phases labelled Pg). In the case when the data were split into separate testing and training sets,
underrepresentation became so acute that there were insufficient data to design a c]assifier to dis-
tinguish all six phases; only "first letter" classification was possible. When there were enough data
so that we could have generated more than 25 coefficients, we arbitrarily chose to use only 25. The
performance impact of the underrepresented phase types in the data and of the explicit inclusion
of the ambiguous Sx and Px types is uncertain and needs investigation.

For the RBF method, we used the first 25 parameters from the autoregressive model, giving a
d = 25 dimensional input space. Since each parameter matrix is 3 x 3, this corresponds to about a
third-order model. The number of phase identification classes was again six. The number of basis
functions, f, was allowed to vary as we searched for an efficient representation. In Table 7, the
complexity (i.e., the number of RBFs) increases in multiples of d (the input dimensionality).
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TABLE 7

Radial Basis Functions for Phase ID

Complexity % Correct

RBF's Training* Test Data**

First-First-
f/d Exact Fis- Exact Frt

letter letter

1 21% 43%

2 67% 71% 31% 50%
3 76% 82% 15% 39%

4 89% 95% 17% 37%
5 97% 97.5% 29% 52%

* 152 phases used for training and testing

** 100 phases for training and 52 for testing

*** This case was not run.

These results show that the RBF classifier has greater success representing the training data
as the classifier complexity increases, but the generality of the representation may suffer from over-
fitting the training data. In these initial experiments, the RBF easily oitperformed the Karhunen-
Lobve transform(KLT)/Gaussian classifier during the training phase, but could not match the
KLT/Gaussian classifier with the subsequent test data regardless of the classifier complexity.

We will need to improve on these success rates if we are to provide a useful capability for
the IMS. For example, a quick check of the parametric data base maintained at the Center for
Seismic Studies [5,61 suggests that only 20-30 percent of the phase labels assigned automatically
by the IMS are subsequently corrected by the analyst. Based on this, a success rate less than 70-80
percent would not be of much value. We plan to review the CSS data base in more detail to fully
understand the analyst correction statistics.

All of these results were obtained using a single three-component sensor that was not rotated
to include radial and transverse components. For the later experiments only one three-second time
window starting at the phase-onset time was used to generate autoregressive parameters. Alterna-
tive windows, sensor rotation, and multiple sensors are three options for improving performance.
A larger or later window could provide a larger SNR or a view of the phase when it is in purer
state. An azimuth estimate obtainable from three-component data [19,11] could be used to rotate
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the sensors and develop an autoregressive representation that is more invariant to direction of ar-
rival. Alternatively, the IMS frequency-wavenumber direction estimate could be used to provide
the azimuth information needed to rotate the sensors. Data from more than one three-component
sensor could also be combined, by beamforming or by correlation matrix averaging [11], to improve
SNRs. We plan to explore these options and investigate the use of feature vectors that include
polarization, speed, and other parameters that are automatically produced by the IMS. We expect
to achieve substantial performance improvements by these means.
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