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1, INTRODUCTI.ON

How to combine the results of k independent tests of

significance has long been an important problem in statistics. The problem

can arise, for example, in such diverse situations as when tests on the mean

survival time after diagnosis of a terminal disease are made on k groups

of patients in different hospitals-, or when the sets of observations in k

cells of an ANOVA table are separately tested for normality. An important

feature of such tests is that often the individual sample sizes will be

small, so that asymptotic results will not necessarily be valid, We suggest

below that they might even be misleading in some situations,

Although work was done on this problem many years earlier, we

base our discussion on a very comprehensive examination of both test

situations and techniques by Birnbaum C19541. The techniques studied use

the significance levels, or p-levels, of the individual tests,and they

include the following. Suppose PI'P2'""'k are the individual p-levels,

of test statistics t ,t 2,..t k . Fisher's statistic (perhaps the most

widely used) for combining the test results is TF = - 2E log pi (all

logarithns are natural logarithms, and all sums or maxima or minima are over

i from 1 to k). A similar statistic is Pearsonls • Tp = -2Z log qi where

Mqi = 1 - Pi " Two other statistics are T = max p and Tm = min Pi

these are special cases of Statistics derived from methods developed by

Wilkinson (Birnbaum, 1954, p. 562, with r = 1 or r = k respectively).

Birnbaum gives a very careful discussion of these statistics, in particular

against two types of alternative to the ovezall null hypothesis, which we call

H . If the individual null hypotheses are Hoi, i = 1,...,k, H is

H all H • are true.00 0O.
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It is well known that when all u . ar,: true, the pi will be uniformly

distributed between 0 and 1, written U(,l); then T and TP each

2
have the 2k distribution. Birnbaum's alternatives to H are

00

HA: all H 0  are false together, or

B: one or more of the Ro are false.

Birnbaum expressed HA and IB in terms of the alternative densities

gi(pi) of the p-values. On HA, all p, have the same Cunknown), non-

increasing densities gci ) , and on HBe one or more of the pi have

(unknown) non-uniform densities• g.i (pi t is probably true that in

almost all test situations, H.. or HB will express the expected

alternative to H . To quote Birnbaum:00

"Under HA, the t. s are statistics of the same kind obtained from k

replications of an experiment, in which the underlying conditions are

assumed to remain constant with. H false. Under HB, the t.Is may be00 1

statistics of different kinds (for example, a normal mean and a normal

variance), and the conditions under which the t i s are obtained need not

be the same; it is assumed only that H is false in the case of at least

one of the t. 's. HA is seen to be a special case of H . Probably in

the majority of applications, HB is the appropriate alternative

hypothesis." (In this quote and again below, we use H our notation).

Birnbaum goes on to prove that the best test of H against any

particular H B satisfies- his Condition 1; that if H is rejected for any

*
given set of pit then it must be rejected for p-values pi such that
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pi < P, for all i . Then Birnbaum shows that for each. method of

combination of p-values satisfying Condition 1, "we can find some

alternative HB ... against which. that method of combination gives a best

test of H ".
00

Subsequently, Littell and Folks (1971, 1973) have studied

statistics TF , TM , and Tm from the point of view of Bahadur efficiency.

They included also the statistic TN = -- Cq i), where 1D is the

inverse of the standard normal distribution function. Fisher's statistic

performs well by the criteria of both. Birnbaum Cadmissibilityl and Littell

and Folks (asymptotic Bahadur efficiencyl. However, there are two important

ro.asons why asymptotic considerations may' not be valid. Firstly, under

alternative HB , the conditions for examining Bahadur efficiency may not

be realized; and secondly, combinations of tests will often be done with

relatively small samples, so that asymptotic results will not apply.

In this article we concentrate on a comparison of the Fisher

statistic TF (which has become well-established) and the Pearson TP

We first discuss asymptotics in Seqtion 2. Since, as far as we know,

Bahadur efficiency has not been examined for TP , we fill in that

gap, so that TP may be compared from this point of view with the other

statistics. TP  is shown to be equivalent to TM  and, by these asymptotic

Fconsiderations, will be inferior to T
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In Sections 3 and 4 we turn to small-sample issues.

Section 3 contains an example from Fisher's works, for which TP  is more

sensitive than T'. This is, of course only one example, and in Section 4

we discuss small sample results more thoroughlr. Three families of.

alternative distributions for p are suggested, which might well be

*Freasonable representations of situations- HA  and HB  For one of these T
A Bl

will be the statistic of choice, and for the other, T. This prompts further

investigation by Monte Carlo methods, of the important small-sample situation,

and the results (which. include other statistics are given in Tables 1 and 2.

They support the view that there will be occasions when the Pearson statistic,

and also TN , should be calculated.

2. ASYMPTOTIC RESULTS ON EFFICIENCY.

2.1 Bahadur efficiency for Pearson's method.

In this section we introduce more detailed notation to examine the

various methods of combining k tests. Suppose now that

t(.1;n1) ,t(2;n 2 ) ,...,t(k;nl are independent test statistics, based on

nln 2.... ,p observations, for testing hypotheses Hol ,Ho2 ...,Hok . To

simplify ideas, we assume for the present that all H . are the same, for instance,

they might be hypotheses concerning a parameter G, that 6E 0 ' where 60 is a set of

possible values. This could occur, for example, in the example of testing

mean survival time using results from k hospitals. Assume without loss of generalit

that all tests are so defined that they reject for large values of the statistics.

Let F(i;n.) denote the null distribution functions of t(i;n.), so

that p(i;n.) = 1 - F(i;n.) is the observed significance level, or p-level, of the

i-th test. To obtain Bahadur efficiency asymptotic results, we shall

suppose all ni  to grow Ateadily larger, and also suppose that the

p(i;n.) converge to zero exponentially fast, that is,
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lir {log pi;ni) }/ni - ci CO)/2 whenever e J 0 0 .
n. - co

The value c. (e) is called the exact (asymptotic) slope of the1

i-th test. Informally, we can say that the larger the slope, the better

the test statistic from this point of view of efficiency. For a thorough

discussion of these ideas, see Bahadur (1967). The more precise definitions

of TF,TP,T N,T , and Tm will now be as follows. Suppose n = En., and

let qi;n.) = 1 - p(i;n.). We add a subscript to indicate the dependence on n,1 1

and have

= - 2E log p(i;n.) (large)
n i

T - - 2E log q(i;n.) (small)
n 1

TN = 1 -i2
TN (q (i;n. ) (large)
n Ac1

M1

TM = max p(i;n.) (small)
n 1

Tm = min p(i;n.) (.small)
n 1

The words large or small indicate for which values of the test statistic

the overall null hypothesis H., will be rejected. In order to derive

overall exact slopes, statistics T, TM  and TM must be converted to
n n n

reject for large values, as will be done for TP below. Also, suppose
n

each n. o , and let A. = lim ni/n, i = 1,...,k. Littell and Folks (1971)

show that the exact slopes for four of the above tests based on the combined

statistics are respectively:

cF () = E x. c. (0); cN C) 1 [E. C. c.ce)) J2i1 1 =k i 11

C M() = k min i Ai ci(0); Cm(0) = max. A. c.(0).111 1
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Note that if all X. are the same, implying all sample sizes n. are the1 1

same, and if the slopes of the individual tests are the same (= C(.) say)

the first three exact slopes quoted are all equal to c(e); thus in the

sense of Bahadur efficiency these methods would be equivalent. We now

examine the efficiency of TP

n

In order to make use of available theory, we define the new
P*p

statistic T*P = log TP}. Thus we have Tn significant forn n n

large values. We then have the result:

Theorem 1. Under the previous assumptions on the asymptotic behaviour

of the independent sequences of test statistics,

T has exact slope k mini Ac. (8)n 1 11

In order to prove Theorem 1, we first obtain 2 lemmas.

Lenma 1.1. Let the ni, n, Xi  be defined as in Theorem 1 and let

{xnl}, Yn2 I, ... , { I be k sequences of numbers'in (0,1) converging

exponentially fast to 1, that is, as the n., n o

1 1

n log(l - xn) cl/2, ... , - 1 logOl - zn) ck/ 2 . (1)
n 11 k nk k

Then

1 A.c .
lim [- log{-2 log x 2 log y ... log znk] min (2)

n,n. 4-nk 1 2 i k

Proof of Lemma 1.1.

We show the result for k = 2 since the extension can be made directly

by induction.
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Let B =_Ilog{- 2 log x -2 log yn and observe that, for large n,

Bn 1 log{- log XnlYn2

Applying the inequality 1-u < - log u < (l-u)/u for u E (0,1) to

1
u=x y , it is readily seen that B -- log Cl - x y ). Let Zn 1n2n n n1n2

be the minimum of x and y Then Z 2 < xyn S Z , and so

(l-Z) (l+Z) > 1 - xnly n 1 - Z. Take logarithms, and multiply by - 1/n;

1 ln )  1 lg(-) Tu
for large n it follows that - -log Cl - x Y ) - - log (1-Z) Thus

n2 1 n 2 n

Bn =-ilog{- 2 log x -2 log yn nlog(l 2- y ) -- nlog(l-Z);
n nn12 nn1 n 2n

as n , the limit',of B is min{ -2} from (1). Thisn 2'

completes the proof.

2
Lemma 1.2. Let z have the X2k distribution. Then, as n +

Lim { 1log Pz < entl} = kt.
n

Proof of Lemma 1.2. From Johnson and Kotz (2971), p. 179, we have

log P(z < e - n t ) = U + V n , wheren n

-nkt

Un = log(e ) and V = log E A
2 r(k)/2 j=0 nj

with A = (l)j(ent))
nj +l(k+j)j,
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CO

S = Z A n is an alternating series with terms descending in absolute value.
j=0 'J

-nt
Thus 1 e -< S < 1

2k 22k

1
so lim S = 2k and hence lim(.V /n) = 0.

2k n

Also, lim(U /n) = -kt, so lim{- - log P(z < ent)} = lim{-(U + V )/n} = kt.
nl n n n

This completes the proof.

We now proceed to:

Proof of Theorem 1.

In order to obtain the exact slope for T , Bahadur's results are
n

used; see Bahadur (1967) , p. 3Q9.

Let F CO) denote the null distribution for T ; we first
n n

show that for each 0 , , as n

Lim(Tn /n) = (rain ) = b(O), a.s., and (3)

1 2

Lim{- - logil - F n t)j = kt = f(.t), t > 0 .()
n n

Observe that (3) follows directly from (21 in Lemma 1.1, by setting

x = 1- pCl;n I ), 1 Yn = 1 - p(2;n 21, etc., and observing that the LHS
n. 2

*p2

of (2) is then (T ) 2/n . In order to show (4), note that
n
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*P> 1 e-nt 2
_1log{1 - F (-Vnt)} I log P{ > n)=- -lgT( P < )
n n n n n n

since TP has the 2 distribution, application of Lemma 1.2 proves (4).

n X2k

The notation b(6) and f(t) is used by Bahadur (1967), who

then shows that the exact slope is C(.O) = 2f{b(.O)}. Thus, in this

application, the exact slope is

C(0) = k min X.c.).

This ccmpletes the proof of Theorem 1.

*P TM
Coment. Theorem 1 shows that the exact slopes of T and T are

n n

the same; thus, from the point of view of Bahadur efficiency, the statistics

PM
T and TM  are asymptotically equivalent.
n n

3. AN EXAMPLE.

In Stephens (1986, Examples 8.15.1 and 8.15.2) two examples

are quoted of combining test results. One of these is taken directly from

Fisher's first illustration of his test method, and we here examine this

example in greater detail. The subscript n will now be dropped from the test

statistics. Fisher quotes 3 tests of significance which gave p-values

of 0.145, 0.263, and 0.087. Then TF is 11.42 and in the upper tail of
2

X6 2the overall p-level is 0.076. The q-values are 0.855, 0.737 and
0.913, giving T P = 1.105, with a p-level in the lower tail of X2 eual

S-l

to 0.018. The values of $(q) are 1.059, 0.634, and 1.360, so that
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TN = 1.763. The null distribution of TN is N(0,1), and the p-value

is 0.038. Also, TM = 0.263, and Tm = 0.087; the null distributions

kc kare respectively F M(t) = t and F m(t) = 1 - (l-t) , and

give p-values of 0.018 and 0.239 respectively. Thus the p-levels can

be summarized in the following small table:

TF TP  TN TM Tm

0.076 0.018 0.038 0.018 0.239

Both the Pearson statistic and TM are more sensitive than T

in this example. It is also interesting, in view of the results of

Section 2, that TP and TM  give almost equal p-values.

4. COMBINATIONS OP TESTS BASED ON FINITE SAMPLES.

4.1 Densities for p-levels on HA or HB

We have seen that asymptotic results cannot be applied to

alternatives to H of type H , where some H might be true. It

may also be the case that p-densities for H A alternatives would not

always satisfy the conditions necessary to discuss Bahadur efficiency.

In this section we therefore examine two models for p-densities, f and f2

below, which have been chosen because they might reasonably model alternatives

of type HA and HB . For alternative H A , all p-levels are supposed

to become small together; a model for the density could then be

f1 (p;y) = (y+l)(l-p)Y, y > 0, 0 < p < 1.

This density approaches zero as p + 1, and gives high probability to small p.
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For alternative HB , where some H , are true, some p-values will

remain uniformly distributed U(O,1), and the overall p-density can be

modelled as

1 -(l-l/y), y > , 0 < p < i.f2 (PY

This density also gives high probability for small p, but nevertheless

is non-zero as p - 1. It is well known that TP  is the likelihood ratio

test statistic for alternative f, , and TF  is the likelihood ratio

test statistic for f2

To complete the study, we decided also to construct an alternative

non-uniform family that would allow the p-values to converge exponentially

fast to zero. We call this alternative f3 (p;y). It corresponds to a

p-value constructed a. follows. Let p = e 2 .x , where x is taken from a

standard exponential distribution, but conditional on x < ey /2 , so that p < 1.

For large y , f3 (p,-y) has the following properties, where E and V denote

mean and variance.

n log p} = Tn -T ECog x)

n -

v1- '1 109p} = V lo
n

E(log and V(log depend on y ; as y -) their values are

= -. 5772 and r" (1) - (rl(l) = 1.6449, where r(x) denotes the
gamma function and r'(x), r" (x) its first two derivatives.

So, if,...,X(1)}; [ (2) (2), M) )
{ k Xx .. . [., X.. .k . ., ,! , .
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is an infinite sequence of standard exponential samples, then by setting

n= n/k, X. = k y = Cn. ' and defining
1 k' 1

- Y (n.)2 i
p(i;n i) = e x. , we have

(n.)
log x.

{log p(i;ni)}/n i = Z(n i ), say, = -r/2n + n.

1

Then E{Z(n)} = _ +x) and V{Z(ni)1 = 1 V(log x).
1 2 n. 1 2

i n.1

As n. c , so that y- ,we have1

lim E{Z(n = - C and
S2

n. -) CO
1

and V{z(n1)} ) 0 as'* 1/n. ; thus by the Borel-Cantelli lemma,1 1

Z(n.) - C/2 almost surely.1

4.2 Monte Carlo results.

Tables 1 and 2 report a Monte Carlo study with 10,000 samples, for each

of which k = 5 or k = 10 values of p are used in the overall test

statistic. For alternatives f (Table la) and f2 (Table lb), the power

of four of the test statistics is given for 2 different test levels a and

for various values of y . (Tm does badly throughout and is not reported).

The table shows that, as expected, TP  does better against alternative fl

and TF  against f2 * An interesting feature is the relatively good

performance of the other statistics in Table la (alternative H A), and especially

of TN in Table lb (alternative H B).
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In table 2, y must approach - for asymptotic comparisons

to apply. Since y = cn. , and all n. are equal then, as mentioned in1 1

Section 2.1, all tests have the same Bahadur efficiency, a fact which can

be seen from the table. For smaller values of y the table indicates the

approach of each of the tests to equal efficiency. It is clear, hnwever

that for smaller values of y , T and TN  are again more effective
ta F TM

than T or T in this equi-sample situation.

These results point to the following conclusions. Asymptotic

considerations of Bahadur efficiency, which indicate that Fisher's 
TF

will be the best statistic for considering test results, can be

misleading when (a) the individual tests are based on relatively

small samples and (b) the alternatives to H00 are H A or HB above;

then Pearson's statistic T ,and the "normal scores" TN can often

F
be superior to TF . Such situations can quite possibly occur, so that it

seems wise, in the practical analysis of data sets, to calculate TP  and

TN , and possibly T M , along with TF . Although tests using all the

statistics will then change the overall a-level, the statistics themselves

will throw light on the possible alternatives to H00
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Table i

Power .of .4 .combined test statistics against aternatives f 1 (p;y) or f 2 (p;y).

The table gives the percentage of 10,000 samples significant when k = 5 or

k = 10 values p are taken from f (Table la) or f2 (Table ib) and combined

by the test statistics. The two test levels are a-= 0.01 and (x 0.05.

Table la. a = 0.01

k= 5 a = 0.05

TF  TM TP TN TF TM T TN

1 7 8 10 9 23 30 36 32

2 16 27 34 28 49 61 70 63

3 31 48 58 50 66 81 89 83

4 46 66 77 66 81 91 9.7 93

5 57 79 88 79 90 95 100 98

6 68 '86 94" 88 94 98 100 100

7 77 92 97 93 98 99 100 100

8 83 95 100 96 99 99 100 100

9 88 97 100 98 99 100 100 100

10 93 98 100 )99 100 100 100 100

20 100 100 100 100 100 100 100 100

k = 10

1 14 22 30 26 40 51 66 58

2 42 61 81. 69 78 84 97 94

3 70 83 98 93 95 96 100 100

4 89 94 100 99 100 99 100 100

5 97 98 100 100 100 100 100 100

6 99 99 100 100 " t " i

7 100 100 100 100 " " "
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Table lb. a = 0.01

k =5 a = 0.05

yT' TM TP  TN TF Tm Tp TN

2 32 8 14 26 52 19 30 46

3 66 19 31 58 82 34 51 75

4 85 28 45 77 93 46 65 89

5 93 38 57 88 97 55 73 95

6 96 45 64 4 99 61 78 98

7 98 51 70 97 100 65 81 99

8 99 56 73 98 100 69 85 99

9 100 60 76 99 100 72 87 100

10 100 63 78 99 100 74 89 100

20 100 79 91 100 100 86 95 100

k = 10

2 53 8 21 45 74 22 44 67

3 89 20 50 84 96 37 71 93

4 98 32 68 96 100 47 83 99

5 100 39 77 99 100 55 89 100

6 100 46 83 1QO 100 62 92 100

7 " 52 88 " 100 66 94 100

8 " 57 91 100 69 96 100

9 " 60 92 " 100 73 97 100

10 " 64 93 " 100 75 97 100

20 " 81 98 " 100 86 99 100
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Table 2

Power of 4 combined test statistics against alternative f3 (p;y).

The table gives the percentage of 10,000 samples of significant when

k = 5 or k = 10 values p are taken from f3 (Table 2) and combined

by the test statistics. The two test levels are a = .01 and a = .05.

= .01 a = .05

y TF  TM  TP  TN  TF  TM  TP  TN

1 6 7 9 8 21 21 25 25

2 13 17 21 19 37 40 48 47

3 32 42 52 47 67 68 80 79

4 66 77 88 83 93 92 98 98

5 92 96 99 98 100 99 100 100

k = 10

TF TM TP T NF T TP TN

1 12 11 17 17 33 25 40 41

2 31 27 45 45 62 47 40 41

3 70 61 85 86 92 77 96 97

4 97 91 100 100 100 96 100 100

5 100 100 100 100 100 100 100 100
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