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"Locking" is a phenomenon associated with the numerical approximation of

certain problems whose mathematical formulations involve a parameter

dependency. The problem we consider here is the analysis of elastic

materials with the parameter being u, the Poisson ratio. For P close to

0.5 (i.e., when the material is nearly incompressible), it is well known that

various finite element schemes (for example, the h-version using plecewise

linear polynomials on a triangular mesh) result in poor observed convergence

rates in the displacements, for practical ranges of the discretization. This

is due to locking (called dilatation or Poisson locking in engineering). It

occurs because for the limiting case P = 0.5, the exact solution U must

satisfy the constraint

(1.1) divu = 0.

The imposition of (1.1) on the approximation as well is what leads to locking

in this example.

There are several other problems where similar locking effects may be

observed -- for example, in plate and shell models, where "shear" and

"membrane" locking occur when the thickness "t" is very small and in heat

transfer through anisotropic materials where locking occurs when the ratio of

conductivities in different directions is close to zero. For problems

involving locking, see [41 and Section 53 of [15].

Various methods have beer suggested t6 overcome the effects of locking.

One possibility is the use of mixed methods, which involve reformulating the

problem in a special way. Examples of mixed methods that have been suggested

to overcome Poisson ratio locking may be found in (111, among others. An

advantage of these methods is that they generally yield good approximations

to the "pressures" as well.
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Here, we shall concentrate solely on Poisson locking when the accuracy

of the displacements and energy (and not the pressures) is of interest. Our

goal is to investigate the robustness of several finite element

approximations using the standard (as opposed to mixed) formulation (also

called the displacement formulation). By a robust scheme, we mean one which

leads to acceptable error levels using a practical range of discretization,

no matter how close the parameter is to its limiting value. The use of the

standard formulation avoids the special reformulations required by mixed

methods and in practice could be the only one available in the context of

various commercial codes. Hence it is particularly useful to investigate

the associated locking and robustness properties. In this connection, the

accurate recovery of the pressures may be accomplished through various

post-processing techniques (see [22], for example).

In [4], we have developed a general mathematical theory for locking and

robustness and their quantitative assessment. We use this theory here to

analyze Poisson locking. Accordingly, in Section 2, we prove some required

regularity results and in Section 3, we adapt various definitions and

theorems from (41 to the problem at hand. In this paper, we restrict

ourselves to the case of triangular and parallelogram quasiuniform meshes.

The case of curved elements, which is particularly important in the context

of the p-version, is discussed in 15].

Section 5 contains various locking and robustness results for the

h-version. In [19] (see also 1201), it was shown that no locking results

when polynomials of degree p Z 4 are used on triangular meshes. We present

an alternate proof here and also give/some results for p < 4. The results

of (191 were restricted to triangular elements. Here we investigate the (Ise

of two types of rectangular elements as well and show that locking cannot be
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avoided in either case, for any p. Next, in Section 6, we indicate how one

can show optimal rates of convergence in the displacements for the p and h-p

version uniformly in P. Our approach (and definition of locking) Is

different from that of [23] and [19], by which one only gets optimality up to

an arbitrary c > 0. Section 7 contains extensions of our theory to general

3-d analogs of Poisson locking.

2. Regularity Results.

2Let 0 c R2 , 0 e 0 be a bounded, simply connected, polygonal domain
M

with boundary r = Z F where r are open straight line segments with

i=1

internal angles > 0. For S c Rn, we will denote by Hr(S) the usual
Sobolev spaces (r real) with 1[.11r,s and 11r,S denoting the

corresponding norm and seminorm respectively. For any space V, will

denote V x V (the norm of V and V will be denoted by the same symbol).

We will use c(k)(s), k k 0 integer to denote the usual set of functions on

with k continuous derivatives, and IIcII s to denote its norm (the
C M(S)

superscript k being omitted when 0).

The problem we are interested in is the elasticity problem given by the

following Laa6-Navier equations

-E E
(2.1) - = 2 1+ & -F +)1-_2) graddivu =u in

(2.2) T (u) = g on r

V 4

where U = (u,u2) and where the tractions (T Vu )) are given for i =

1,2 by

2

(2.3) (T ( ))t = Z-. c.1 ( ) + 8IJ 1-2 v ) nj.

J=1
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Here, (nln 2 ) is the unit outward normal to r and {c i} is the strain

tensor given by

I ai .r 8u,1

The coefficient 0 S P < 0.5 represents the Poisson ratio and E the

modulus of elasticity, which are related to the Lam6 constants A,jL by

(2.4) -= (l+')(1l-2) ' 2(1+v)

We assume that

(2.5) JJ I - dx + fJ9 - ds - 0

a r

for any rigid body motion A to ensure that (2.1) and (2.2) have a solution

(unique up to 9).

As usual, the components ir V I = 1,2 of the stress tensor are then

given by

(rV = A9 V + 2#& au,
v, ~L 8u111ax

V XGu piu2,

WV12 = , aLT + 8U2J

where e -divu.

We have used the index P to emphasize the dependence on u. If no

ambiguity can occur, we will omit this index.

We will assume, for simplicity (but without loss of generality), that E

= 1. We will also consider the following variational form instead of

(2.1)-(2.2): Find, for given P e [0, 0.5), a u V el() satisfying,
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(2.6) B( P,*) - ap(u,) + (1+P)(1-2v) (dvUP, div') =(v)

where

rr 2

(2.7) a (uv) = - V ()UV ()d' )
V ~~I+ Z IJIi

(2.8) F()=J .dx +J gvds.

o r

We denote the problem (2.6) by P It can be assumed equivalent to

(2.1) -(2.2) without loss of generality.

Corresponding to (2.6), we define the energy norm by

NEu't = B (UI, -+ -# ).

Using Korn's inequality, we see that

(2.9) C11II 1~ ul NiaISI'U 1 , P S C 2(1-2u')-1/2i11ii10

where 11-11 1,0 denotes the norm in the quotient space

Al (0)\{Rigid Body motions) and C1I and C 2  are constants Independent of v.

Obviously, for P bounded away from 0.5, the two norms are equivalent.

For any k Z 1, 0 S P' < 0.5, let us define the space H k, = H kvn"

furnished with the weighted norm (modulo rigid body motions),

-2 -. 2 -2 - 2
(2.10) hu~~kV = iuik + (1-2u) ldivuh.iO

Related to this definition are the characterizations of balls

(B e R+) given by

=u eU e m Iklr I~k, P S B)

The spaces H kV are the natural spaces to consider while
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characterizing the solutions of (2.6) (or (2.1)- (2.2)). Their choice is

motivated by the following theorem from [23].

Theorem 2.1. Let 0 be a smooth domain with smooth boundary r. Let k be

an integer k 1. If u V e 1 M denotes the solution to (2.1)-(2.2) for

data Hk-2() g Hk- 3/ 2 (r), then u with

B = C[ 1k,0 * II9Ik..32,r)

where C depends on k but is independent of P.

For the case that the domain is a polygon, the above theorem will again

be valid, but only for a restricted range of k, i.e., k 5 kO , where k0

is determined by the domain. We now prove

Lemma 2.1. Let u e for k a 2, 0 < P < O.S. Let I and g be

defined in terms of P by (2.1), (2.2) respectively. Then I and

satisfy (2.5) and

(2.11) II~llk-2, 0 + Igllk-3/2,r 1  CB
i

where C is a constant independent of P, u V and B.

Proof. Letting v in (2.6) be a rigid body motion, it is easy to see that

(2.5) is satisfied. From (2.1), we see that (E = 1)

1 Ilai -0 1 11jgrad d Iv~i

1f1

II~nk-2,-- <2 UA,"k-2,0 + 2(1+vl(1-2-PlgrT dv plk-2,nl

(""*PH k,11 + 1-2p lllvvk-l,fl

<l -B.
2NVI k, v 2

Similarly, by (2.2), (2.3),

6



4g k-3/2,Zr <-V (lliplIk-/2,r + --- divpllk-3/2,rlI i

5 COu Vllk,P : CB

which gives (2.11). 0

We will be interested in the limiting sets

, L = G E Vo e [0, 0.5)}

Obviously, these may be equivalently characterized as n Hkl ,L
where

= G elu) k flkW). k < BI

Hk, L =u e (), div" =0)

Let us prove the following Lemma.

Lemma 2.2. Let u Ve k a 2, 0 S P 0.5 be such that is satisfies

(2.1) with = 5. Then there exists a 4 e (aB) such that
UL k,L

(2.12) IUV - ULllk,Q 5 TB(1-2p)

where the constants a and 7 are independent of v, u. and B.

Proof.Since u Vsatisfies (2.1) with = , the stresses o' j relate

to the Airy biharmonic function U in the usual fashion,

(2.13) U IaU aU
11 ax2 12 -xax 2' -22 x 2

Let us denote (up to an arbitrary constant)

(2.14) P = AU.

Then since U is biharmonic, P is harmonic. Denoting by Q the harmonic

7



conjugate of P and using the fact that 0 is simply connected, we have for

any s : 1,

(2.15) IPI IQI

Also, with z = x + ix2 ,

(2.16) h(z) = P(x X2 ) + iQ(xlx 2 )

Is a holomorphic function on 0. We define

(2.17) (z) = I fh(z dz = pl(X 1 ,x2 ) + Ip2(X1 ,x2 )

Then (see eq. (30.8) of [171), the solution to (2.1)- (2.2) is given (up to

rigid body motion) by

(2.18) u1 = C1() aU C (P)p
1' 1 ax1  2 1

where

(2.19) Cl(I) = -(l+v), C2( ) = 4(1+)(1-P).

By equation (30.7) of (171, we have

BPI = P I = 1,2
Ox1  4

so that using (2.18) and (2.14),

div~ u= (C1 () + C2"]

= (1-2i))(1+P)P.

Hence,

NPlk-.l,' < (1-2u)(l+p) Idv 11 k10 < Iulk,P s B.

Therefore, using (2.15) -(2.16), for k > 2,

JihiJ k- 1, f 0 CB

(where the norm Is a quotient norm modulo constants).
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Then, by (2.17), for I - 1,2 (modulo rigid body motions),

(2.20) '1ilk,Q : CB,

so that by (2.18)-(2.20),

aUl < 1-. -l ik, + 4 1 1Il lk,
(2.21) ax k,O + u4 1, 11 + 4( 1 1 k,

I k 11  +
< u'VIl~k, v +  4 lpt111k, 0

: CB.

We now define uL (up to rigid body motion) by

(2.22) = C1 (0.5) a + CI = 1,2.

UL -2 C2(0.5)p 2

Then div L = 0 and by (2.20) -(2.22),

luLl11k, f < :5O'B

so that 4L E k,L . Also, by (2.18), (2.22),
U1 , Nc, L

(2.23) u - u. = (1-2p) [aU+ (+ 2u)p

so that by (2.20), (2.21), (2.23),

II u - ULllk,O 0 XB(1-20,

which establishes the lemma. 03

We now extend the above lemma to the case that * 5, to get the

following theorem.

Theorem 2.2. Given 4 Ve O k a 2, 0 5 P < 0.5, there exists a UL E

(aB)
,VL such that (2.12) holds with aT being constants independent of u, u

and B.

9



Proof. Let u. E k a 2 be given. Define f by (2.1). We will

reduce this case to the case of Lemma 2.2, where = 5.

We first find a particular solution of (2.1). Since by Lemma 2.1, e

gk-2 (1) for some k a 2, we may find an extension ? of I to the whole

of 9 such that has compact support, satisfies

(2.24) NpIk_2, 2 C& lk_2,I & CTB

(by Lemma 2.1) and also satisfies the compatibility condition

(2.25) ff "  0

R2

for any rigid body motion A. Then the problem (2.1) with ? replaced by

will have a unique solution over R2 (up to rigid body motion), which we

denote by W . Obviously, I Is a particular solution for (2.1).

Now, let W, I = 1,2 denote the Fourier transform of (Q ) and

FI the Fourier transform of FI . Then If g1' 92 represent the transformed

variables, we have by (2.1),

2(11i' +( ~ +~u~ 2) ov,2 2 ] +F 12

+) (2 2 op. 2 + 41C2 ^, 1)) = t2

which gives

(2.26) P, (1+) i- 12 2 1 2

i i (1-p)(C +t )2 -9 C (1-2u)(~[~
,21 2 1 2 2

Let us put P - 0.5 in (2.26) to define

(2.27) L, 3+ - 2 [ 2

1 2 +C 2)1 - C 2

10



Using (2.26), we see that

(2.28) div 4 -IC1 C, v .i+ C20,2)

-i(1-2p)(1+v) (

and putting v = 0.5 In (2.28), we obtain

(2.29) div WL - 0.

Now by Parseval's equality,

(2.30) 1,n 5 ~ I,R 2= 1 Iil'R2

Using (2.26), we have

2

(2.31) IQ1 12 2 Z9 + C12) ul, -k2, R2

2

C c Iik.2 = CM I~2  2

5 C(TB) 
2

by (2.24). Hence, by (2.30) -(2.31),

(2.32) II5I ~CrB.

Similarly,

(2.33) IIL~O~CTB.

Also, by considering (2.28), we obtain

(2.34) QdIv~ II v 1k-, CT (i-2v)B

11



so that combining (2.32) and (2.34) gives

o e (aB)(2.35) Vue H.(I,

for some a. Moreover, by (2.29) and (2.33),

(2.36) -+ (aB)

Next, using (2.26) and (2.27), we have

1-2v)( 21C2 22V, 1- 22 1+-2p 2 2 2 ii2]

so that using an argument similar to (2.31), we have for some T,

(2.37) I0 -0 II, < B(1-2v).
P' WLk, 1 :

Now let on Q

(2.38) w = u

Then by (2.35), E (" B ) for some a. Moreover, w satisfies (2.1) withV k,V V

=. Hence, applying Lemma 2.2, there exists a WL e 1 k, L such that

(2.39) I1s - wiik,fl : rB(1-2u).

Finally, taking

(2.40) L = WL + WL

(&B)
we see (using (2.36)) uL e Nk,L Also by (2.38), (2.40)

NU - ULIIk, Q  II(O, + WV- (WL + WL)ll k,

V iIy - WLII k, + II1,V wLIIk,

< TB(1-2)

12



for some 7, using (2.37), (2.39). This proves the theorem. o

3. Locking and robustness.

We now discuss the approximate solution of (2.6). Let {} be a

sequence of finite dimensional subspaces of AI(Q)f (N denoting the

dimension, N e N). We then find uN E N satisfying

(3.1)B V * -BUVV

(3.1) immediately gives

(3.2) I[ -V NU E, P :5 1nf" 11 --ull II E, ,,.

The sequence { } defines an extension procedure 7, L.e., a rule to

increase the dimension N (and thereby decrease the error In (3.2)).

We will restrict our attention to the case when the exact solutions u

belong to the sets H.kI, C k() (k a 2) introduced In the previous

section. We assume that the sequence 3 = N} Is such that for any

O S V < O.5,

(3.3) C1F0 (N) 5 Sup inf II' - '1, 5 C2Fo(N)

weil VeN

where Fo(N)--+O as N--+w, F0  independent of P, and C1 , C2  independent

of N and P.

Let 0 < O < 0.5 be bounded away from 0.5. Then using (2.9), (3.2)

and (3.3), we see that the following will hold uniformly for all 0 5 P 5 0

(3.4) CI(Vo)Fo(N) 5 Sup E(u u ) C2(vo)Fo(N )

where

(3.5) E (') - 11 W111  or IIwjtEP

13



and C1, C2  now depend on vO.

A procedure 7 for which the estimate (3.4) holds uniformly for all

0 :5 v < 0.5 will be called free from locking for the sets Hk, with

respect to the E measure. We make this more precise by using definition

3.1 below, which has been adapted from [4], in which a more general treatment

may be found (for e.g., we could formulate the question of locking in terms

of other error measures and solution sets different from the ones considered

here).

For v e L0, 0.5) and N E N, we define the locking ratio with respect

to the spaces H I,V c Ak(Q) and error measures {E V (as in (3.5)) for the

problems (3.1) by

- 4N -1(3.6) L(vN) = Sup E - - .u )(F0

We then have

Definition 3.1. The extension procedure 3 is free from locking for the

family of problems (3.1), v E [0, 0.5) with respect to the solution sets

Hk, V c Ak(Q) and error measures E if and only if

Lim sup sup L(v,N)1= M <cc.
N--+ cc 'P[0, 0.5)

3 shows locking of order f(N) if and only if

0 < Lim sup (sup L(v,N) = C <

where f(N)--4 as N--a. It shows locking of at least (respectively at

most) order f(N) if C > 0 (respectively C < w).

Related to the concept of locking is the concept of robustness, which we

define as follows:

14



Definition 3.2. The extension procedure Y is robust for the family of

problems (3.1), P e (0, 0.5) with respect to the solution sets Ak'uc

Ok(Q) and error measures E if and only If

Lim Sup Sup E(u - u =O.

It Is robust with uniform order g(N) If and only If

Sup Sup E ( u - uN) S g(N)
P UV El.i

where g(N)--+O as N-->w.

The relationship between the above two definitions is given by the

following theorem, from (4].

Theorem 3.1. 9 is free from locking if and only if it is robust with

uniform order Fo(N). Moreover, let f(N) be such that

f(N)Fo(N) = g(N)--*O as N--w.

Then Y shows locking of order f(N) if and only if it is robust with

uniform order g(N).

Note that 3 is non-robust if and only if it shows locking of order

-1(F,,(N) ) .

Let us make some comments about the meaning of the notions we have

introduced. The inequality (3.3) characterizes the approximation properties

of the space IN with respect to the set i, i.e., the smallest error

which could be achieved (for the most unfavorable w in H). The locking

ratio characterizes the ratio of the accuracy of the finite element solution

15



(for the most unfavorable exact solution in it,) to the best accuracy

which could be achieved in the sense of (3.3), using the finite element space

VN . Hence an extension procedure (used to construct a sequence of finite

element solutions) is called free of locking if for all u E H,V# V [0,

0.5), it leads to a rate of convergence which is asymptotically the same as

the best rate which the set VN could provide (in the sense of (3.3)). The

order f(N) of locking characterizes the asymptotic strength of the locking,

i.e. the convergence rate of the finite element solution compared to the best

possible rate. The robustness gives a measure of the rate of convergence

which holds independent of the parameter P.

Remark 3.1. In (191, [201, (231, the condition used to obtain uniform rates

of convergence in P (i.e., characterize the absence of locking) is

(3.7) gU,, - ,voil.a S c ,f,,u,, - Vl vp G [0, 0.5)

where C is a constant independent of N, P. Here, u , u are solutions

corresponding to fixed ? and #, with different P. (3.7) is a stronger

condition than the one In Definition 3.1 -- it is equivalent to the so-called

"divergence stability" and Is necessary and sufficient for the absence of

locking when both the displacements and pressures are considered together.

It can be characterized using Definition 3.1 by choosing

E(M) - 11w111  + 0dlv ,0

in the locking ratio (3.6). Alternately, one could re-define the locking

ratio (3.6) as

fE (u-u)
L(P,N) - Sup e if i- i

upe,, Inf, E,(U-v)

ve

16



and then use Definition 3.1 (with EV(w) = OwII1,).

As mentioned In the introduction, we restrict our investigation here to

the displacements alone, with Definition 3.1 (and not (3.7)) characterizing

the absence of locking. This leads to a relaxation of a condition needed in

a theorem from [191 (see Theorem 5.4) and an improvement in the robustness

result from [23] (see Section 6). o

As analyzed In [41, the question of locking may be reduced to one of

approximability alone if the problem and solution sets satisfy a certain

condition, called condition (a). This condition requires that for any u V

there exist a (for some B' Independent of u , v; u0

depending on u V such that

IO - O SMk,-20
1 / 2

-k

with C a constant independent of P and u. Essentially, condition (a)

says that the solutions u are close enough to functions u0  In the limit

space. As shown In [4], this allows us to answer the question of locking for
-4

solutions u Just by considering the approximability of functions In the

limit space and leads to some useful theorems concerning locking and

robustness.

For our particular problem, we see that condition (a) is satisfied (with

B' = aB) by equation (2.12) (Theorem 2.2). Then Theorem 2.4 from [41 holds

and can be stated as follows.

Theorem 3.2. Let us consider the family of problems (3.1), v e [0, 0.5)

with the solutions sets H kL, c O(Qk), k a 2. Then the extension procedure

I is free from locking with respect to the AI(M2} norm If and only If it is

free with respect to the energy norm. It shows locking of order f(N) in

the 9l1(M) norm if and only if it shows locking of order f(N) in the energy

17



norm.

Theorem 3.2 shows that the locking behavior using the two error measures

under consideration Is the same. This is important, because for theoretical

purposes, the AlI(0) norm Is easier to work with, while computationally,

results obtained by programs like MSC/PROBE are often In the energy norm (see

[51). We shall therefore only refer to the locking of S, without

specifying an error measure.

Let us define, for any space

z( ) = J' e1 div' =0.

Then we may reduce the question of locking to one involving approximability

alone.

Theorem 3.3. For the problems (3.1) with solution sets Hk,V, k Z 2, the

extension procedure 9 is robust with uniform order g(N) given by

(3.8) g(N) = Sup 4f IIu - w11 1uE ,L

Also, with F0 (N) as in (3.3), 7 is free from locking If and only if

(3.9) g(N) 5 CFo(N).

It shows locking of order f(N) if and only if

C F (N)f(N) 5 g(N) < C2Fo(N)f(N).

Proof. The theorem follows using (2.12) and Theorem 2.2(B) of [4]. o

We see therefore that In order to check for locking, we need only

estimate g(N). We now derive an equivalent, more convenient formulation of

g(N).

Let for any space

W(O) = {I I Curl * a *}.
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Then it is easy to see that

(3.9) Z(O) = 4 = Curl E, E )

(aB)Lemm3.1. For k a 1, U e ,L If and only if there exists # e N+i (0) =

{f G Hk+i(g), ppk+1,011 S aB) such that
-0

(3.10) u = Curl #

where a is a constant, independent of u, B.

Proof. Let e E (0). Then defining 4U by (3.10), we see that u G

HkL with

il~Ik,0 lCurl #Ilk,0 5 CII#IIk+l, 0 CaB.

Hence u e

Conversely, let 4 e 4,L" Then we may find # satisfying (3.10).

Since # is arbitrary up to a constant, we may choose It such that = 0,

so that

110110a :5 C101o0I

Then

k+l

B a Ilullk,0 lCurl oIlk,O a C Z '#Is,. >  C
S-1

(aB)so that * e Hj+ (M). o

Theorem 2.A. Let g(N) be as defined in (3.8). Let

(3.11) g(N) = Sup inf I1 - x1 2 , 0 •

*e] (0) XeW(e)

Then

C1g(N) S g(N) S C28(N)
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with C1, C2  independent of N.

Proof. Let E a L and 0 e Z(O). Then by Lemma 3.1 and (3.9) we can

find # e aB (0), x e W(O) such that

(3.12) u = Curl , w = CurlX.

Hence,

Iu - HtI, - UCurl# - Curl X11,0 : I1 - X2,0

so that

g(N) : C2g(N).

Conversely, let # e Ha) (0), X e W(N). Then using Lemma 3.1, let u E

4,L' w E Z(A) satisfy (3.12). By adjusting X by a constant, we can

ensure that (3.12) remains true with

110 - x110  CIO - Xl ,0

so that

in" ,, 110 - zl12,0 < C inf IlCurl (O-z)ll,,zeW(v ) zeW(l")

C CInf -1'

The theorem follows. 0

4. The extension procedure 7.

We now define the subspaces {N}. Let {f h } be a quasiuniform

sequence of meshes on 0 (in the usual sense, see [13]), parameterized by h,

the mesh spacing. Each 1h consists of straight-sided parallelogram or

triangular elements 0hP i = 1,2,... ,n(h) such that 5h n 5h is either
ii I
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empty, a vertex or an entire side for I * J. We will, in particular, be

interested in the case that 0 is a domain which can be covered by uniform

triangular or rectangular meshes T1' 3h of the type shown (for a unit

square) in Figure 4.1.

A/
_ _ h-a -b

(a) 3h: uniform triangular (b) h uniform rectangular

Figure 4.1. Uniform meshes.

h h
The general quasiuniform versions of these meshes will be denoted by 53 , 94

respectively. The meaning of quasiuniform triangular (U3) meshes on a

polygonal domain 10 is clear. The quastuniform meshes will consist of4

elements I which are rectangles (of possibly different sizes, and not just

uniform squares). We will also consider briefly the case of meshes Sh

consisting of parallelograms.

For S a triangle or parallelogram, let P p(S) denote the set of

polynomials on S of total degree < p. For S a parallelogram, we let

Q p(S) be the set of all polynomials on S with degree 5 p in each

variable and define

QpYS) = P (S) 0 {xPx x xP}
pp 1 2' 12'

to be the space of serendipity elements (see 1131).
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For any mesh 3h we now define

h,_ P h ,_7h _fv 2 v I p h
p-1l p,-1I

and for k k 0,

ph Ph ( h) ph nc(k) (W.

p,k p, k p,-1

For rectangular meshes 31 =3h h or 7,), we analogously define2' 4' 5

Qh (.7h) and Q .k0yh) with P (0l,) replaced by Q (a~) Q,(DM

respectively. Then our finite element space =h will be taken to be
p

one of ih h or h
p,O' p,0 p,0"

We now estimate Fo(N) In (3.3).

Theorem 4.1. Let 9 - ON = =41 consist of the h-version using a family
p

of quasiuniform meshes {3h) of parallelograms and triangles, with degree p

a I fixed. Then (3.3) is satisfied with Fo(N) given by

(4.1) Fo( - CN-p / 2  for p < k-1

- CN- (k - 1 )/ 2  for p k k-1

where C is independent of N but depends on p,k.

Proof. We note that by the usual results (see [131) for the h-version,

Fo(N) 5 CN-min(P,k
-l)/ 2

since N = O(h -2). The result for p a k-1 follows by noting that

Fo(N) a CN- (k - 1 )/ 2

using the theory of n-widths [18]. For p < k-i, the corresponding lower

bound has been proved in Lemma 3.2 of [4].

0
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Theorem 4.2. Let 3 = {N} = {) consist of the p-version using a fixed
p

mesh 7o with increasing polynomial degrees p--+w. Then (3.3) holds, with

F0 (N) given by

(4.2) Fo0 - CN(k - l)/2

Moreover, as p---w, (4.2) also holds if the h-p version over a quasi-

uniform family of meshes { h} is used.

Proof. We refer to [3] for the proof of the p-version and [2] for the proof

of the h-p version. o

Remark 4.1. In the case of the h-p version, the following more refined

estimate has been established in [2]

(4.3) Fo(N) - Chmin(p,k-l)P-(k-1)

where N = N(h,p).

Let us now characterize the spaces W( h ) for the various choices of
p

These will be used in the next section.
p

First, we see that over a single element (T = triangle, S =

parallelogram),

(4.4) W1p (T) = P p+(T)

(4.5) W(~p(S)] = Pp+I(S) U Q p(S)

(4.6) W(+p(S)) = Pp+I(S) for p * 2

= P3 (S) U Q2 (S) = w[(k(s)] for p =2
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Therefore,

(4.7) W( h P = h
p,0 p+1,1

for the triangular meshes 51h Y3" Also, for rectangular meshes .2h .h
1' 3 2' 4

(and 5

(4.8) w(dh P ~h Qh)

and for p 0 2

p0 p+ i

with the case p = 2 being given by (4.8).

5. The h-version.

We now analyze the locking and robustness of some h-version extension

procedures. Theorem 3.4 will play a key rile in our analysis.

We first analyze triangular meshes.

Theorem 5.1. Let the extension procedure I consist of the h-version with

plecewlse polynomials of degree I using a uniform mesh 3I as In Figure

1

4.1. Then with respect to the solution set HkV , k 2 2, 3 shows locking

of order N I/2, i.e., the extension 3 is not robust.

Proof. We have IN = h and by (4.7) W( N ) = Ph By Theorem 3.4, we•~~ 2, 1" yTerm:,w

have to estimate

g(N) = sup, In I1-xII.2,
4H, (0) eph (h

k+1 2,1 1

Assume that g(N)--0 as N--w. Then by the embedding theorem we also have

for any * e C"(0),
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pnf ,( 110h - XllC()-O as N--m

But by Theorem 3 of (7], the set ph T is dense In C(2) only If
s,.1 1

s 2 3. Hence we have a contradiction and the theorem is proven. a

Let us now define

r(p) = p for p = 2, 3, 4

= p+1 for p k 5 .

Then we have the following.

Lemma 5.1. Let 31h be the uniform triangular mesh of Figure 4.1. Then for

ueHk(fl), p > 2,

( 1)Inf 1 u - V 11,a5chm In (k, r (P) ) 11lullk, Q

veph (3h)
p,11

Moreover, there exists a function Q e C(fl) satisfying

(5.2) nf iIQ-V1o 0 > Chr ( p ) .

veph (jh)
p,1

Proof. The result for p k 5 is standard (see, for e.g., [12]). For

2 : p 5 4, (5.1) is a generalization of Theorem 4 of [7], and has been

proven by C. de Boor [6]. The L analog of the lower estimate (5.2) was

established in (8] for p = 3 and [9] for p = 4. These results have been

recently generalized to the L ( 0 q : w) case In [10]. 0q

Lemma 5.1 results in the following lemma. The proof of (5.4) is due to

C. de Boor, R. DeVore and A. Ron.

Lemma 5.2. For 1h as above, u e H-k(), p a 2,
1

(5.3) inf" Ou - v112, Ul : Chmi n (k, r (p) ) -2 11 U1k, 11"

veph (7h)
p, 1 1
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Moreover, there exists a function Q E C"(0) satisfying

(5.4) Inf IIQ- AI2,gQ* Chr(p)- 2.vep h  (3,) vl2

Proof. (5.3) follows from (5.1) by using an inverse property argument. To

prove (5.4), let us choose the same function Q from (5.2) in Lemma 5.1.

Suppose v * ph (3 (-) is such that
P, 1 1

IQ- vii2,Q = o (hr(p)-2).

Then, by using the above and (5.1), there exists w E h (5 1 h such that

11 (Q- v) - Wll 0 , a Ch211Q- vl12 ,0
= o(h r(P

)

which is a contradiction to (5.2). 0

Lemma 5.2 gives sharp upper and lower bounds for

j(N) = Sup inf 110 -X1
"'EHO (Q) ZEPh (31h) 2 0

k+1 P,1 1

for k k r(p)- 1. In fact, we obtain

(5.5) Chr(p)-2 (p)-2

Theorems 5.2 - 5.3 below follow Immediately from (5.5).

Theorem 5.2. Let the extension procedure 9 consist of the h-version with
hpiecewise polynomials of degree S 2 on Y 1. Then with respect to the set

extension 7 is uniformly robust with order N-1 / 2 for k a 2 and

shows locking of O(N / 2 ) for k a 3.
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Theorem 5.3. Let the extension procedure I consist of the h-version with

plecewise polynomials of degree S 3 on 7I. Then with respect to the set

H extension 3 is uniformly robust with order N-  for k k 3 and

shows locking of O(N1/ 2 ) for k Z 4.

In Theorems 5.1 - 5.3 (for p S 3), we restricted ourselves to the

huniform mesh 1 . It was essential that the mesh have three pairwise

independent directions, since with meshes with additional independent

directions, the results will be different. For p > 3, we may drop the

restriction of uniform meshes and prove the following theorem.

Theorem 5.4. Let the extension procedure 9 consist of the h-version with

piecewise polynomials of degree p > 4 on a general quasiuniform mesh 7h

Then with respect to the set Hk,V , k k p+1, 3 is uniformly robust with

order N- p/ 2 and there Is no locking.

Proof. By (4.7), we have W(N) = ph For p = 4, this gives the

p+l, 1

Argyris triangle, for which the interpolation theory (Theorem 6.1.1 of (13])

shows that

(5.6) inf II0- XII2 ,0 S ChPI*11p+ 2 ,.
XePp+i, 1

Moreover, the proof of Theorem 6.1.1 of [131 may easily be generalized to

show that (5.6) holds for any p k 4. The result follows from this. (Note

that the result follows immediately from (5.5) for the mesh 31 h).
1r

Remark 5.1. In [191, a more restrictive condition on the mesh is used to

prove that locking does not occur for p k 4. However, the result obtained

there is stronger and leads to divergence stability as well, as discussed in

Remark 3.1. We avoid the condition on the mesh precisely because our
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Definition 3.1 of locking is different, involving only the displacements and

not the pressures.

So far we have discussed the triangular mesh 1 (and g'3). Let us now

discuss the mesh 3- with respect to the extension I based on Q (S). We
2 p

first prove some auxiliary lemmas.

Lemma 5.3. Let Q = ((xlX 2 ), 0 < x,x 2 < a), 1 : a :S 1, be covered by

the mesh Th. Consider the set Qh (Th). Let G(x1, 2  - G(x) xp-+4 +
2 p'-1 2 -21 1

f(x ) where f is a polynomial of degree < p. Then for I = 1,2

1 
/

(5.7) Z,= inf G -X 1 o(hp - )
+1EQp- ,-_1 nh3 )

Proof. Since is a uniform mesh, the following Inverse inequality holds2
h Eh

on every element 07 for any polynomial v e Qh

(5.8) HISII < Cht-Slivil t' , 0 : t ,

where C is independent of v, h , t, s, h. Suppose for I = 1,2

Z1 = o(h
p - )

and that this infimum is attained by X e Q hThen we have, using
p+1-1,-l*

(5.8) with v G- X G Q and s = p+2-1, t = 2
1 p44,-i

1/2
2 hi Ch2-lp+2-1)Z o)

3rhJI -X 11p+2-t 1.Qh 
01

2

from which

xIZ-I + fP+2 1 ) 0(i)

2
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But this Is impossible, since G Qh implies a- Z' - 0 overt P+Ii.-I x, P*2 - i

each Ch. This proves (5.7). o

We now prove the following lemma, using an idea from the proof of

Theorem 2 in [7].

Lemma 5.2. Let 0 = 02 be as in Lemma 5. 1 and let D(xlX 2 ) = +3 21 1 x2 . Let
W (p h (5,h)
W (P+l, I S,1 ) 2

W ph (Sh)
W2 p+l,l 2

Then for I = 1,2

inf ID-rlI2 #0 0 o(hP
-I)

xeW

Proof. We use the standard notation

N- x): =(x - i)S for x

0 for x < X.

Let M = h and for 0 < i,J S M-1, let (xI, x2 ) (ih, Jh). Then any
Z ph

p41, -1 can be represented as a linear combination of the truncated

powers

(5.9) N -x1)pj (x2_ i)qj 0 5 i, j 5 K-i
I- I+ 2 +

where p,qj 0 and p + qJ S p + 1. Any X * Qh can be similarly

represented by taking p1 
< p, qJ < p. If we impose the constraints pi > 2

for I > 0 and qj ; 2 for J > 0, then (5.9) gives us precisely all X E

phnd1 Q, respectively. Consequently, In this case, the only termsinpp+l,1 Pp _ Ipl xx l +

in P h of the form (5.9) with p p can be x -xI)P l (x-x')P orp+1,l II+ I +

(x-x I)Px while those satisfying q a p must be of the form (x-xJ) p+ I

1 22 +

(x-xj) + or x (X-xj).
2+ 1 2+2
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For H > 0, define the difference operator AH  by

AHdg(xl'x2) - Y.( ()1 () (m) g~ 1 la x2 +ma)
1,m - 0

where a = H/4. Let H - sh where s is a positive integer. Then for any

X cc+P h (of the form (5.9)) with p k p or q k p, we have

AHX = O.

This Implies that C Qh 2 and 1f 2 flh ( Also, we see

that

where f(x 1 ) is a polynomial of degree : p. Hence, If we fix H to be

sufficiently small and let s--+w (i.e., h--40), we see by Lemma 5.1 that for

I - 1,2

Rxp-+I f~x Ao(h p - ')
lnf ilAH(D-X) 2 , > x. X,1 + fox1 ) - i!2 ,0 2  o,.11)
XGWI l/ XeQp .1 -i l

Noting that

IAH (D-X)1l2, 0 1 / 2 < C ID-XHU2 ,0

(since A(H  Just gives a linear combination) proves the lemma. 0

We can now prove theorems for rectangular meshes analogous to some

theorems proven for triangular meshes.

Theorem 5.5. Let the extension procedure I consist of the h-version on

the uniform mesh 9' for elements of type Q with p - 1. Then with
2 p

1/2respect to the solution set H k,V, k Z 2, 7 shows locking of order N

I.e., It Is not robust.

30



Prof. The proof is essentially identical to that of Theorem 5.1. We now

use Theorem 1 (instead of Theorem 3) of [7] to characterize the density

,h this) th U1 2hof the space P () .1 v (312). By this theorem, h hp Is

dense in C(R2 ) only when s 2 4. 0

Theorem 5.6. Let the extension procedure 3 consist of the h-version on

the uniform mesh S2 for elements of type with p k 2. Then with
2p

respect to the solution set Hk,v , the extension 9 Is uniformly robust with
orde -(p-1) /2 1/2

order N-  1  for k k p and shows locking of O(N ) for k Z p+l.

Proof. By the results in (14], the optimal rate of convergence is obtained

when CM tensor product splines of degree k 2 in each variable are used.

More precisely, we have for 0 e Hk+I(0), k k p,

Inf h )Ph ,h O- X02,0 : infh 110- xll2,0
p, o  ., p,1 %Qp,. 1

< Chp -1 NO*k+l,.

Moreover, by Lemma 5.2, this is the best rate possible. The theorem

follows, using Theorems 3.4 and 4.1. o

We now consider an extension procedure based on 72 using elements of
h

type dp'.

Theorem 5.7. Let the extension procedure 3 consist of the h-version on

the uniform mesh 2 for elements of type Q '. Then with respect to the

solution set Lk. V #

1) For p = I, k Z 2, 3 shows locking of O(N / 2 ) and hence is

non-robust.

It) For p - 2, 9 is uniformly robust with order N- 1/2 for k Z 2
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and shows locking of order N1/ 2 for k a 3.

iii) For p > 2, Y is uniformly robust with order N- (p -2 )/ 2

for k > p+2 and shows locking of order N for k k p+l.

Prof. For p S 2, as shown in Section 4,

W(dh ) _ W(dh

Hence, by Theorem 3.4, the results for locking and robustness are identical

for ap" and ap elements, so that (1) and (ii) follow from Theorems

5.5 and 5.6, respectively.

By (4.9) and Theorem 3.4, we see that for p > 2, 9 Is robust with

uniform order

g(N) = Sup (B ) Inf hIh of- x1l 2 ,0.

k1 p+1, 1

By Theorem 2 of [7], we see that

inf 10 - Z1Ic(Q) : ChPllCl p+) (a)

from which, using the inverse inequality and the fact that 1I01lCcp+2)(0) <

CIIOIlk+lI we obtain

(5.10) j(N) :5 CN- (p -2 )/ 2 .

Moreover, by Lemma 5.2, this is the best estimate possible. This establishes

(ili). o

Comparing elements of types Qp and Q , we see that both show

locking but that the locking shown by Qp elements is twice a strong as

that of Q

Let us briefly discuss meshes 7h and h using Q elements. For
4 5 p

the mesh 3, the statement about robustness (O(N (P )/2)) is exactly the
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same as for the mesh 32" Nevertheless, an exact assessment of the locking

is not presented here.

In the case of the meshes 3,h it is possible to generalize the

approach of the construction of Bogner-Fox-Schmidt rectangles (see (13]) to

once more prove robustness of O(N 1 2 ), provided p k 4. We do not

discuss the case p < 4 here.

Let us summarize the results of this section:

Order of Robustness

Type of mesh Type of element locking, r order, q
f"(N)=O(N r ) g(N)=O(N- )

Uniform triangular Pp, p = 1 r = 1/2 q = 0

p = 2 r = 1/2 q = 1/2

p=3 r=1/2 q=1

Quasiuniform triangular Pp, p k 4 r = 0 q = p/2

p

Uniform rectangular Q1 6 QI' r = 1/2 q = 0

Q, p a 2 r = 1/2 q = (p-1)/2

Qp', p = 2 r = 1/2 q = 1/2

Q', p 3 r = I q = (p-2)/2

1

Quasiuniform rectangular Q , p a 2 0 S r S q = (p-1)/2
p2

1

Quasiuniform parallelogram Qp, p a 4 0 S r S q = (p-l)/2

6. The D and h-D versions.

In [231, It was shown that the p-version (using straight-sided

33



triangular meshes) for (3.1) leads to a robust estimate of O(N 2] , C >

0 arbitrary, when the solution is known to lie in Hk(O), i.e., the order

of locking is at most NC. The loss In order c resulted due to the

definition of locking employed (see Remark 3.1) and Is directly related to

the locking In the pressures. Using the theorems from Section 3, we are able

to obtain an optimal robustness estimate and prove that there is no locking

for the displacements in the sense of Definition 3.1. This holds for

parallelogram elements as well. Using this approach, we remove the

dependence on c that will occur in the robustness estimate for the

displacements if the results from [23] are used.

Theorem 6. 1. Let the extension procedure 9 consist of the p-version using

a mesh consisting of .ri.angles or parallelograms. Then with solution sets

Hk. V , k Z 2, 7 is free of locking and is robust with uniform order

N- (k-i)/2

Proof. Using the results of (21] and [16], we have for the p-version with

C( 1 ) continuous triangular or parallelogram straight-sided elements (h0

fixed), for 0 e Hk€ (0), k k 2,

(6.1) Inf H#- X [2, 0 :< C-(k-1) 1) k+,
eP, 1

Since pho C W( ), using Theorem 3.4 gives the required robustness rate.
p91 p

The absence of locking follows by Theorem 4.2. 0

Using the results of [19], it can be shown that the h-p version with
C

quasiuniform triangular meshes results in locking of order at most pC, with

the rate in h being optimal, provided p Z 4. We are able to prove the

following theorem.
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Theorem 6.2. Let the extension procedure 3 consist of the h-p version,

using quasiuniform meshes consisting of triangles. Let the solution sets be

Hk u Vwith k > 2. Then for p a max(4,k-1), 3 is free of locking and is

robust with uniform order N - (k - 1 )/ 2  (or, more precisely h k-1p-(k-1)).

Proof. We only outline the proof here. Essentially, the idea is to use

(6.1) together with a standard scaling argument to show that

(6.2) infh I#- XH2, Q Chk-1p-(k-1) Olk+1,Q
P, I

provided p a k-I. For details see [2], where this scaling argument has been

used to prove an estimate analogous to (6.2) for the case of C (0 ) elements.

Using Theorems 3.4, 4.2 (or Eqn. (4.3)) completes the proof. o

7. Some generalizations.

So far, we have only considered the two-dimensional isotropic case. It

turns out that situations analogous to Poisson locking arise in more general

contexts as well. For example, the same phenomenon is observed in the

three-dimensional isotropic case when P-->O.5. Moreover, one can consider

similar situations that occur in the anisotropic case (both 2-D and 3-D),

when locking may be observed due to the introduction of a constraint on the

approximate subspaces.

Let us look at the general 3-D equations of anisotropic elasticity given

by

(7.1) A - c() In Q

(7.2) divo= in 0

(7.3) an = 9 on r

where r Is the 3x3 symmetric stress tensor, and c(u) the strain tensor.
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A is a fourth-order tensor known as the compliance tensor which depends upon

the properties of the material. It is a self-adjoint linear operator acting

on the six-dimensional space of symmetric 3x3 tensors, and is characterized

by specifying 21 independent elastic moduli. n is the unit normal to the

boundary as before and we assume (2.5) again.

The standard variational form of (7.i)-(7.3) is obtained under the

assumption that A is positive definite, in which case (7.1) may be solved

for (r and substituted in (7.2) to give a problem involving the unknown u

alone. For many important materials, however, A may be positive

semi-definite and singular (or close to singular). In this case, if 0 <5 A

< A ... 5 6  denote its eigenvalues and (r1"2'' 6 a corresponding set

of orthonormal eigenvectors, then Al = 0 (or is close to 0). The

corresponding constraint on u, analogous to (1.1), becomes

(7.4) div (o.1; ) = 0

In fact, Poisson locking is a special case of (7.4), because for the case of

isotropic materials with P = 0.5, it can be shown that the identity matrix

is an eigenvector of A corresponding to the eigenvalue 0.

There are two cases which must be distinguished between. (7.4) defines

a singular constraint if a-1 is a singular tensor. If r I is non-singular,

then (7.4) is called a non-singular constraint. Poisson locking is obviously

an example of a non-singular constraint. On the other hand, a material that

is inextensible in the direction r satisfies (7.4) with a singular o1

given by

-PT -4

(7.5) 01 = r r

Both singular and non-singular constraints will lead to locking, when

the material is such that A is (or is close to being) singular. Singular
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constraints like (7.5) are analogous to the locking constraints found in

shell problems and are generally harder to develop robust methods for. See

Section 3 of [4], where we have discussed the robustness of various methods

for the problems of heat transfer through highly anisotropic materials, which

has the same character as locking due to a singular constraint.

Here, we are interested in the case when A Is not close to having a

singular constraint (this Is characterized precisely in [11) but is close to

having a non-singular constraint like (7.4). Such a situation has been

characterized in detail for the case of 3-D orthotropic materials in [1].

Denote by u., the solution to (7.1)-(7.3) when the compliance tensor A.,

has minimum elgenvalue X1 > 0 and let the limiting constrained case be AO.

Then by Theorem 1.1 of (11, if the constraint Is non-singular, there exists a

unique limit solution u0  satisfying (7.4) with

Lim II 1-i- h1- , = 0
A A - A 0

It is expected that an analog of (2.12) (with X1 replacing 1-2p) will be

valid in this case as well. However, such a result is not currently

available.

Suppose we discretize the standard variational formulation of

(7.1)-(7.3) (obtained by first solving (7.1) for a). Then, without

establishing (2.12), Theorems 3.2 - 3.4 cannot be proved as stated. However,

It Is still instructive to look at the limit problem, where the exact and

approximate solutions must satisfy the constraint (7.4). Suppose we are

interested in exact solutions u E H, where H characterizes the

smoothness. Let H0  be the subset of H satisfying (7.4) and Z(O) the

subset of N satisfying (7.4). Then the limit problem has the optimal

rate of convergence F (N) in the 91(fl) norm if and only If

37



(7.6) g(N) - up nK I 11 - S CF0(N).

0

By Theorems 2.2(A), 2.3(A) of [4], (7.6) is a necessary condition for 5 to

be free of locking with respect to the Al (0) or the energy norm.

When a-1 is non-singular, we can derive a more convenient condition

which is sufficient for (7.6) to hold and is analogous to (3.11). As in the

two-dimensional case, we have

div = 0 * z = Curl.
Hence, for eH 0'w G Z(B, we have

01 u = Curl, WIw =Curl

where ; W(H) , w e W(VN). Here,
0'

(7.7) W(Y) = ; Q Y-

Then we have

II ' - 'll I  10- 1  Curl ( X- )111,n l <5 11 - 'l2,0l

so that the following is sufficient for (7.6) to hold:

(7.8) Sup _ inf :11 < CFO (N)
eW(H') ' ) 2EW(V

As an application of (7.8), let us look at the case that {N} consists

of continuous piecewise polynomials of fixed degree p on a quasiuniform

sequence of meshes consisting of tetrahedra. Then for any non-singular o-,

T-1 will be bijective on 0, so that from (7.7), we see that

W(N) = W(O) . ph
p p+1,1

analogously to (4.7). By [24], the minimum q required to obtain an optimal
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rate of convergence for the h-version using ph Is q = 9, so that (7.6)
q, 1

will be satisfied whenever with p > 8 and the h-version for the
p

limit problem will show optimal convergence. We expect once again (similar

to the results in Section 5) that the use of lower p or the use of

parallelepiped elements will result in locking.
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