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1. Introduction.

*Locking"” is a phenomenon assoclated with the numerical approximation of
certain problems whose mathematical formulations involve a parameter
dependency. The problem we consider here is the analysis of elastic
materials with the parameter being v, the Poisson ratio. For v close to
0.5 (i.e., when the material is nearly incompressible), it 1s well known that
various finite element schemes (for example, the h-version using plecewise
linear polynomials on a triangular mesh) result in poor observed convergence
rates in the displacements, for practical ranges of the discretization. This
is due to locking (called dilatation or Poisson locking in engineering). It
occurs because for the limiting case v = 0.5, the exact solution U must
satisfy the constraint
(1.1) divi = 0.

The imposition of (1.1) on the approximation as well is what leads to locking
in this example.

There are several other problems where similar locking effects may be
observed -- for example, in plate and shell models, where "shear" and
"membrane" locking occur when the thickness "t" 1is very small and in heat
transfer through anisotropic materials where locking occurs when the ratio of
conductivities in different directions is close to zero. For problems
involving locking, see [4] and Section 53 of [15].

Various methods have beer suggested té overcome the effects of locking.
One possibility is the use of mixed methods, which involve reformulating the
problem in a speclial way. Examples of mixed methods that have been suggested
to overcome Poisson ratio locking may be found in [11], among others. An
advantage of these methods Is that they generally yleld good approximations

to the "pressures” as well.




Here, we shall concentrate solely on Polsson locking when the accuracy
of the displacements and energy (and not the pressures) is of interest. Our
goal is to investigate the robustness of several finite element
approximations using the standard (as opposed to mixed) formulation (also
called the displacement formulation). By a robust scheme, we mean one which
leads to acceptable error levels using a practical range of discretization,
no matter how close the parameter is to its limiting value. The use of the
standard formulation avoids the special reformulations required by mixed
methods and in practice could be the only one avallable In the context of
various commercial codes. Hence it is particularly useful to investigate
the assoclated locking and robustness properties. In this connection, the
accurate recovery of the pressures may be accomplished through various
post-processing techniques (see [22], for example).

In [4], we have developed a general mathematical theory for lqcking and
robustness and their quantitative assessment. We use this theory here to
analyze Poisson locking. Accordingly, in Section 2, we prove some required
regularity results and in Section 3, we adapt various definitions and
theorems from (4] to the problem at hand. In this paper, we restrict
ourselves to the case of triangular and parallelogram quasiuniform meshes.
The case of curved elements, which is particularly important in the context
of the p-version, 1s discussed in [5].

Section 5§ contains various locking and robustness results for the
h-version. In [19] (see also [20]), it was shown that no locking results
when polynomials of degree p 2 4 are used on triangular meshes. We present
an alternate proof here and also give ;some results for p < 4. The results
of [19] were restricted to triangular elements. Her; we investigate the Use

of two types of rectangular elements as well and show that locking cannot be




avoided in either case, for any p. Next, in Section 6, we indicate how one
can show optimal rates of convergence in the displacements for the p and h-p
version uniformly in v. Our approach (and definition of locking) is
different from that of [23] and [19], by which one only gets optimality up to
an arbitrary € > 0. Section 7 contalins extensions of our theory to general

3-d analogs of Polsson locking.

2. Regularity Results.

Let Qc R2. 0 € Q2 be a bounded, simply connected, polygonal domain
M

with boundary TI' = zz: Fi. where Fi are open straight line segments with
1=1

internal angles > 0. For S ¢ Rn, we will denote by H (S) the usual

Sobolev spaces (r real) with "'“r S and |-| denoting the

r,S
corresponding norm and seminorm respectively. For any space V, V owill

denote V x V (the norm of V and v will be denoted by the same symbol).

(k)

We will use C ""(S), k 2 0 integer to denote the usual set of functions on

S with k continuous derivatives, and 1= (x to denote its norm (the
c(s)

superscript k being omitted when O0).
The problem we are interested in is the elasticity problem given by the

following Lamé-Navier equations

L - -E > E -+ _
(2.1) Avuv = mAﬂv (1) (1<3p graddivuv = ? in Q
(2.2) T (W) =g on T

- -
where u, = (ul.uz) and where the tractions (Tv(uv))i are given for 1| =

1,2 by

2
-
(2.3) @, @0, = (5] X [oy@) ¢ 8y iy, Jn.

J=1

3

————




Here, (nl.nZ) is the unit outward normal to I' and (eij) is the strain

tensor given by

e = Lf[ow, 8w
iJ 2 9%y ax,

The coefficient O S v < 0.5 represents the Poisson ratio and E the

modulus of elasticity, which are related to the Lamé constants A,u by

Ev . _E
(2.4) A= a3y k= sty

We assume that

(2.5) ”?-ﬁdx + J'z-ﬁds = 0
Q r

for any rigid body motion R to ensure that (2.1) and (2.2) have a solution

(unique up to R).

As usual, the components ch. 1 =1,2 of the stress tensor are then

given by
1 du,
¢,’11 =A6" + 2 axq
vV o _ .V dup
T2 T A0t
v 8uy duy
712 “[E * ax?_]

where @' = dlvﬁv.

We have used the index v to emphasize the dependence on v. If no
ambiguity can occur, we will omit this index.

We will assume, for simplicity (but without loss of generality), that E
= 1. We will also consider the following variational form instead of
(2.1) - (2.2): Find, for given v € [0, 0.5), a ﬁv € ﬁl(n) satisfying,
VV € ﬁ1(n).




-+ > ) - T
(2.6) Bv(u”,v) = av(u”.v) + m(dlvuv. divv) = F(v)

where
2
(2.7) o (uv) = 1o ” Z e¥ (@) ¥ (%) ax
P 1,J=1
(2.8) Hh=JJF3u +J}3®.
Q r

We denote the problem (2.6) by Pv' It can be assumed equivalent to
(2.1) - (2.2) without loss of generality.

Corresponding to (2.6), we define the energy norm by
- 2 _ - - -+ 1
"uHE.v = B,(u,u), te R ().

Using Korn’s inequality, we see that

- » -172 &
(2.9) Cl“““l.n < “u“E,v < C2(1-2v) ||u||1.n
where “'“1 Q denotes the norm in the quotient space
ﬁl(ﬂ)\{Rigid Body motions} and C. and C, are constants independent of v.

1 2
Cbviously, for v bounded away from 0.5, the two norms are equivalent.

Forany k21, 0 sSv <0.5 let us define the space Hk v = Hk v(n)

furnished with the weighted norm (modulo rigid body motions),

- 2 > 2 -2 » 2
(2.10) @2 , = @2 o+ a2 Zav @z, .

Related to this definition are the characterizations of balls Hﬁ "

(BeR") given by

H:’v = (2 e T, uﬁnk’v < B}

The spaces Hk p B&re the natural spaces to consider while




characterizing the solutions of (2.8) (or (2.1) - (2.2)). Their choice is

motivated by the following theorem from [23].

Theorem 2.1. Let Q be a smooth domain with smooth boundary I'. Let k be
an integer 2 1. If 3" € ﬁl(ﬂ) denotes the solution to (2.1) - (2.2) for

data e H2(Q), 2 e H%(r), then U e Hﬁ , vith

| 4
B = c[u?llk_,_, at “E“k-—S/Z.l‘]

where C depends on k but is Independent of wv.
For the case that the domain is a polygon, the above theorem will again

where k

be valid, but only for a restricted range of k, i.e., k < ko, 0

is determined by the domain. We now prove

Lemma 2.1. Let avel{iv for k22, 0<Sv<O0.5 Let f and g be

defined in terms of ﬁv by (2.1), (2.2) respectively. Then f and g

satisfy (2.5) and

-
(2.11) Bl 0+ ) Wleasn,r, § B
i

where C is a constant independent of v, Gv and B.

Proof. Letting v in (2.6) be a rigid body motion, it is easy to see that

(2.5) is satisfied. From (2.1), we see that (E = 1)

1 - 1 -
ez 5 50059 au,ly > o * s(iep)(1=apy 18raddivu i, 5 o

11,2 1 *
s 2 [““v"k,n * T "d“’“u“k-1.n]

- vZ
“uv“k.v < —3B.

nl Ny

Similarly, by (2.2), (2.3),




- C > v -
Z 18ly_32,r, 1% Z [““u“k—ua,r, * gy latv “v“k-s/z,r,]
1 1

<
< Cuuv"k.v < CB

which gives (2.11). a

We will be interested in the limiting sets

HE,L = {ue Hf:,,, Vv e [0, 0.5)}.

Obviously, these may be equivalently characterized as Hﬁ L= Hﬁ n H o

where

"E = (2 e T, 1y g < B

H = {ie®wm, avi=o.
Let us prove the following Lemma.

Lemma 2.2. Let ﬁv € 1-1': L+ k22, 05v<0.5 besuch that is satisfles

(2.1) with £ = 0. Then there exists a GL € Hiai) such that

->

-
(2.12) “uv - uL“k,n < ¥B(1-2v)

where the constants a and ¥ are independent of v, ﬁv and B.

Proof. Since ﬁv satisfles (2.1) with ? = 0, the stresses ¢ relate

1J
to the Airy biharmonic function U in the usvual fashion,

2 2 2
a”u au a v
(2.13) o = —, o = e o =z —
11 axg 12 dx19x2 22 ax?

Let us denote (up to an arbitrary constant)
(2.14) P = AU.

Then since U is biharmonic, P 1is harmonic. Denoting by Q the harmonic




conjugate of P and using the fact that 0 s simply connected, we have for

any s 2 1,

(2.15) |P|s’n = lle,n‘
Also, with 2z = x1 + 1x2.

(2.186) h(z) = P(xl.le + 1Q(x1.x2)

is a holomorphic function on . We define

1 =
(2.17) ¢(2) = i th(z)dz = pl(xl,xz) + 1p2(x1,x2).

Then (see eq. (30.8) of (17]), the solution to (2.1)~(2.2) is given (up to

rigid body motion) by

i _ au
(2.18) uv = Cl(v)5§T + Cz(v)p1
where
(2.19) CI(V) = =(1+v), Cz(v) = 4(1+v)(1-v) .

By equation (30.7) of [17], we have

opy _ P
5;; i 1 1,2

so that using (2.18) and (2.14),

diva
v

[Cl(v) + Czé"’]?

(1-2v) (1+»)P.

Hence,

1 - -
1Pleq.0 S Ty creoy 191V g o S 190, S B

Therefore, using (2.15) - (2.16), for k 2 2,

ihl,_; o S CB

(where the norm is a quotient norm modulo constants).




Then, by (2.17), for 1 = 1,2 (modulo rigid body motions),

(2.20) "pink,ﬂ s CB,
so that by (2.18) - (2.20),
au 1 1
(2.21) hﬁkn‘ﬁﬂ%hﬁ*4“”wﬁhm

Y
S HG,0, , + 4lp.ly o

S CB.

-

We now define Y (up to rigid body motion) by

i

= au =
(2.22) u = C,(0.8) z- + C,(0.5) py, 1=1,2.

Then divﬁL =0 and by (2.20) - (2.22),

Il g S oB
so that 1 e u]((“ﬁ) Also, by (2.18), (2.22),
i1 _ ... .18
(2.23) u, -y = (1-2v) E§5§? + (1+2v)p1]

which establishes the lemma.
We now extend the above lemma to the case that ? # 5,

following theoren.

Theorem 2.2. Given 3 € Hi
—_—— v
{aB)

.

Hk L such that (2.12) holds with «,7 being constants independent of v, ﬁv

and B.

to get the

, k22, 0<v<0.5 there exists a GL €




Proof. Let ﬁvel-l:'v. k22 be given. Define ¥ by (2.1). We will
reduce this case to the case of Lemma 2.2, where £ =3

We first find a particular solution of (2.1). Since by Lemma 2.1, ?e
ﬁk_z(ﬂ) for some k 2 2, we may find an extension F of ? to the whole

of § such that ? has compact support, satisflies

(2.24) Fl_p g2 < cu?uk_z g S CB

(by Lemma 2.1) and also satisfies the compatibility condition

(2.25) J‘J’?-ﬁao

R2
for any rigid body motion R Then the problem (2.1) with ? replaced by 3
will have a unique solution over Rz (up to rigid body motion), which we
denote by ﬁv' Obviously, ﬁvln is a particular solution for (2.1).
1 = 1,2 denote the Fourier transform of (W ), and

v'i
?1 the Fourler transform of Fi' Then if €1, €2 represent the transformed

Now, let W .,
v, 1

variables, we have by (2.1),

1 . 1 3 . )
2(T+0) [[Ef"gg] Y1 * 1-2‘6[ 1",1 % 5% "v.z]]- =F

™

1 o~ 1 S A
Z(T+0) [[ef+s§] Y2t T [ 2,2 * 515, 1]] Fa
which gives
o 2 .2, .2 .
(2.26) %1 - (1+v) (1-20) (£ +€ )+, -£,&, P
. 2 2.2 2 .2, .2| |a
Hv’z (1'0)(€l*€2) —€1€2 (1-2v)(£1+€2)+€1 F2

Let us put v = 0.5 1in (2.26) to define

W g€ -ce| |f
(2.27) L,1 - 3 2 1°2 1

2 2.2 2
clL.Z (€+6)7 | £, £ ?2

10




Using (2.26), we see that

P
-> ~ A
(2.28) div W, = -1(§, 7, 1+ &0, )

= -1(1-20;(1:V) (61?1 + 52?2)
(1-v)(£1+€2)

and putting v = 0.5 1in (2.28), we obtain

(2.29) divﬁl_ = 0.

Now by Parseval’s equality,

(2.30) TR

v'1,Q v'1,R? v'1l,R?
Using (2.26), we have
2
& 12 2. .2 ~ 2
(2.31) W, 1 g2 S Z E+6* §.8) 0, Iy o g2
i=1
2
s 2 2
sC Z IF) -2, g2 = CIFIL_; ge
i=1
< C(tB)2
by (2.24). Hence, by (2.30) - (2.31),
(2.32) Wi, .SCtB
. I v'k.ﬂ T8 .
Similarly,
->
(2.33) “HL“k,Q S CtB.
Also, by consldering (2.28), we obtain
->
(2.34) “dlvwv“k-l,ﬂ s Ct (1-2v)B

11




so that combining (2.32) and (2.34) gives

> (aB)
(2.35) Hv € Hk.v

for some «. Moreover, by (2.29) and (2.33),

> (aB)
(2.36) UL € Hk,L
Next, using (2.26) and (2.27), we have
A -~ 2 2 A
wv,f-"L,l = 1-2v (1+")(€1+€2)_2€: 26162 F1
A 2 2 2,2 2] |a
AP (1-0) (€7+€2) 2¢.€, (1+0) (€] +€,)-2€7 | |F,
so that using an argument similar to (2.31), we have for some T,
> =
(2.37) “wv-wL"k,n < TB(1-2v) .
Now let on Q
(2.38) wo=u -W
v v v
Then by (2.35), ;v € (aﬁ) for some «a. Moreover, ;v satisfies (2.1) with
? = 0. Hence, applying Lemma 2.2, there exists a ;L € Hiaf) such that
- >
(2.39) ' ﬂwv - "L"k,n < ¥yB(1-2v).

Finally, taking
(2.40) GL =W +w

we see (using (2.36)) u e nﬁ“f’. Also by (2.38), (2.40)

-

- - - - -
hu, - Ul g = MW, + W) - (W +w)l, o

< W -
v

s
e, * 1w, -

->
¥k, a

< 7B(1-2v)

12




for some 7, using (2.37), (2.39). This proves the theorem. o

3. Locking and robustness.

We now discuss the approximate solution of (2.6). Let (VN} be a
sequence of finite dimensional subspaces of ﬁl(n)a (N denoting the

dimension, N € #). We then find 3: e W satisfying

N = -> = ->
(3.1) Bv(uv’V) Bv(uv"') Vv € w.
(3.1) immediately gives

- N - -+
(3.2} Huv uu"E v S inf Huv - w"E,v'

! <> =
we

The sequence (Vﬂ} defines an extension procedure ¥, 1l.e., a rule to
increase the dimension N {(and thereby decrease the error in (3.2)).

We will restrict our attention to the case when the exact solutions 3U
belong to the sets Hk.v c ﬁk(ﬂ) (k 2 2) introduced in the previous
section. We assume that the sequence ¥ = (VN} is such that for any

0sv<o0.5,

(3.3) CIF

-+ -+
O(N) S Sup inf |w - V“l,n <C

> - o
WEﬁi VE

vwhere FO(N)—eo as N—oow, FO independent of v, and Cl’ o

2FO(N)

2 independent

of N and v.

Let 0 < vy < 0.5 be bounded away from 0.5. Then using (2.9), (3.2)

and (3.3), we see that the following will hold uniformly for all O S v < v

0
-+ -N
(3.4) €, (vgIFy(N) < §up ] E (U, - U)) S Cy(wg)Fy(N)
ulIEHk,V
where
(3.5) Ev(;’:) = “;"“1,n or ";HE.v

13




and Cl, C2 o'

A procedure ¥ for which the estimate (3.4) holds uniformly for all

now depend on v

0 Sv <0.5 wlill be called free from locking for the sets Hk,v with
respect to the Ev measure. We make this more precise by using definition
3.1 below, which has been adapted from [4], in which a more general treatment
may be found (for e.g., we could formulate the question of locking in terms
of other error measures and solutlion sets different from the ones considered
here).

For v € [0, 0.5) and N € #, we define the locking ratio with respect
to the spaces Hk,v c ﬁk(ﬂ) and error measures {Ev} (as in (3.5)) for the

problems (3.1) by

- = 9N -1
(3.6) L(v,N) = Sup Ev(uv uv)(FO(N)) .

v,

cd

We then have

Definition 3.1. The extension procedure ¥ 1is free from locking for the
family of problems (3.1), v € [0, 0.5) with respect to the solution sets

Hk y © ﬁk(n) and error measures Ev if and only if

Lim sup [3up L(v,N)] =M< o,
No » €(0, 0.5)

¥ shows locking of order f(N) 1if and only if

1
0 < Lim sup [sup L(D’N)_T—T] =C<w»
N— o v £(N

where f(N)—>wo as N—w. It shows locking of at least (respectively at

most) order f(N) if C > O (respectively C < w).

Related to the concept of locking is the concept of robustness, which we

define as follows:

14




Definition 3.2. The extension procedure ¥ 1s robust for the family of
problems (3.1), v € [0, 0.5) with respect to the solution sets ﬁk v €
ﬁk(n) and error measures Ev if and only if

Lim Sup Sup B Ev(av - GN) =0,

v
Now v u €
v Hk,v

It is robust with uniform order g(N) if and only if

Sup Sup R Ev(ﬁv - 35) s g(N)

1Y quHk,v

where g(N)—0 as Now.

The relationship between the above two definitions is given by the

following theorem, from [4].

Theorem 3.1. ¥ 1is free from locking if and only if it is robust with
uniform order Fb(N). Moreover, let f(N) be such that

f(N)FO(N) = g(N)—>0 as N—ow.

Then ¥ shows locking of order f(N) 1if and only if it is robust with

uniform order g(N).

Note that ¥ 1is non-robust if and only If it shows locking of order
(FoN) ™1

Let us make some comments about the meaning of the notlions we have
introduced. The inequality (3.3) characterizes the approximation properties
of the space VN with respect to the set ﬁi. i.e., the smallest error
vhich could be achieved (for the most unfavorable w 1in ﬁi). The locking

ratio characterizes the ratio of the accuracy of the finite element solution

15




(for the most unfavorable exact solution in ﬁk.v) to the best accuracy
which could be achieved in the sense of (3.3), using the finite element space
VN. Hence an extension procedure (used to construct a sequence of finite
element solutions) is called free of locking if for all ﬁv € ﬁi,v' v € {0,
0.5), it leads to a rate of convergence which is asymptotically the same as
the best rate which the set VN could provide (in the sense of (3.3)). The
order f(N) of locking characterizes the asymptotic strength of the locking,
1.e. the convergence rate of the finite element solution compared to the best
possible rate. The robustness glves a measure of the rate of convergence

which holds independent of the parameter v.

Remark 3.1. In [19], [20], [23], the condition used to obtain uniform rates

of convergence in v (i.e., characterize the absence of locking) is

(3.7) 15, - O, g5 ¢ é’e‘{;n“?‘u -V, q Vvelo 0.5

where C 1is a constant independent of N, v. Here, Gv, 3: are solutions
corresponding to fixed £ and E, with different v. (3.7) is a stronger
condition than the one in Definition 3.1 -- it is equivalent to the so-called
"divergence stability” and 1s necessary and sufficient for the absence of

locking when both the displacements and pressures are considered together.

It can be characterized using Definition 3.1 by choosing

- -
Ev(w) = ""“1,9 +

in the locking ratio (3.6). Alternately, one could re-define the locking

E (u - *:)
L(v,N) = Sup

M er ing" Ev(u -v)

ratio (3.6) as

16




and then use Definition 3.1 (with E (W) = “;“1.9)'

As mentioned 1n the introduction, we restrict our investigation here to
the displacements alone, with Definition 3.1 (and not (3.7)) characterizing
the absence of locking. This leads to a relaxation of a condition needed in
a theorem from [19] (see Theorem 5.4) and an improvement in the robustness
result from [23] (see Section 6). o

As analyzed in [4], the question of locking may be reduced to one of
approximability alone if the problem and solution sets satisfy a certain

condition, called condition (a). This condition requires that for any ﬁv €

cd

ﬁg " there exist a 30 < Hﬁ L (for some B’ independent of ﬁv’ v;

o
depending on Gv) such that

> I 172
Huv - uO"k,ﬂ < C(1-2v)

with C a constant independent of v and ﬁv. Essentially, condition («)
says that the solutions ﬁv are close enough to functions 30 in the limit
space. As shown in [4], this allows us to answer the question of locking for
solutions Gv Just by considering the approximability of functions in the
limit space and leads to some useful theorems concerning locking and
robustness.

For our particular problem, we see that condition (a) is satisfied (with
B’ = aB) by equation (2.12) (Theorem 2.2). Then Theorem 2.4 from [4] holds

and can be stated as follows.

Theorem 3.2. Let us consider the family of problems (3.1), v € [0, 0.5)
with the solutions sets Hk,v < ﬁk(n), k 2 2. Then the extension procedure
¥ 1is free from locking with respect to the ﬁltn) norm if and only if it is
free with respect to the energy norm. It shows locking of order f(N) in

the ﬁ1(n) norm if and only if it shows locking of order f(N) 1in the energy

17




norm.

Theorem 3.2 shows that the locking behavior using the two error measures
under consideration is the same. This is important, because for theoretical
purposes, the ﬁltn) norm 1s easier to work with, while computationally,
results obtalned by programs like MSC/PROBE are often in the energy norm (see
[S]). We shall therefore only refer to the locking of ¥, without
specifying an error measure.

Let us define, for any space V.

-

2(V) = {4 eV, divu = 0}.

Then we may reduce the question of locking to one involving approximability

alone.

Theorem 3.3. For the problems (3.1) with solution sets Hk v’ k 22, the

extension procedure ¥ 1s robust with uniform order g(N) given by

- -
(3.8) g(N) = §up8 inf N Jua - Wi

uer L weZ(V') 1.4.

Also, with FO(N) as in (3.3), ¥ 1is free from locking if and only if

(3.9) g(N) < CFO(N).

It shows locking of order f(N) if and only if

ClFo(N)f(N) S g(N) s CZFO(N)f(N).

Proof. The theorem follows using (2.12) and Theorem 2.2(B) of {4]. o
We see therefore that in order to check for locking, we need only

estimate g(N). We now derive an equivalent, more convenient formulation of

g(N).
Let for any space V.

WV¥) = {(glCurly e V).
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Then it is easy to see that

(3.9) 2(V) ={U =Curly, v e WW)}.

Lemma 3.1, For k21, UK  If and only if there exists ¢ e nif?)(n) -

(¢ € 'Y (q), S aB}) such that

”¢”k+1’n

(3.10) U = Curl ¢
where a 1s a constant, independent of u, B.

Proof. Let ¢ € Héff)(n). Then defining U by (3.10), we see that u e

Hk L with

Y
Wl g = ICurl ¢l o S Clol,,, o S CoB.

Hence ﬁ € Hﬁ,L'

Conversely, let 2 € Hi L Then we may find ¢ satisfying (3.10).

Since ¢ 1is arbitrary up to a constant, we may choose it such that I ¢ =0,
Q

so that
Ielg g S Cl8l, o
Then
k+1
B2 ful o= ICurl ol o 2C ) 181, 02 C bl g
s=1
so that ¢ € Hif?)(n). o
Theorem 3.4. Let g(N) be as defined in (3.8). Let
(3.11) g(N) = Sup inf 19 - xly o
(aB) N ’
e 10 (R)  xeW(V)
Then

c1§(N) s g(N) s czi(n)
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with C,, C independent of N.

1“2

Proof. Let U € HE’L and o € 2(W). Then by Lemma 3.1 and (3.9) we can
find ¢ € Hif?)(ﬂ). x € W(W)  such that

(3.12) U=Curlg, w=Curly.

Hence,

- -
fu - Wi, o= lCurlg - Curlaly, o s li¢ - xl; g

so that
g(N) s CZE(N).
Conversely, let ¢ € Hﬁtf)(ﬂ). A € W(VN). Then using Lemma 3.1, let Qe

Hﬁ L’ we Z(VN) satisfy (3.12). By adjusting x by a constant, we can

ensure that (3.12) remains true with

¢ - x"o,n < Clg - 7cl1’n

so that
inf e - xil s Cinf ICurl (¢-x)1
er(V“) 2,0 xeW( % L.a
> -
= Cinf u - wi .
wez(W) 1.0
The theorem follows. 8]

4. The extension procedure ¥.

We now define the subspaces {VN). Let {Vh} be a quasiuniform
sequence of meshes on R (in the usual sense, see [13]), parameterized by h,
the mesh spacing. Each ﬂh consists of straight-sided parallelogram or

1t =1,2,...,n(h) such that ™ A ® 1is either

triangular elements ﬂh 1 3

1'
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empty, a vertex or an entire side for 1 # j. We will, in particular, be
interested in the case that 0 is a domain which can be covered by uniform
triangular or rectangular meshes 3?, Jg of the type shown (for a unit

square) in Figure 4.1.

— ——

(a) 7?: uniform triangular (b) 32: uniform rectangular

Figure 4.1. Uniform meshes.

h

The general quasiuniform versions of these meshes will be denoted by ﬂg, 94

respectively. The meaning of quasiuniform triangular (ﬂg) meshes on a
polygonal domain Q 1is clear. The quasiuniform meshes 32 will consist of
elements Q? which are rectangles (of possibly different slizes, and not just
uniform squares). We will also consider briefly the case of meshes 72
consisting of parallelograms.

For S a triangle or parallelogram, let Pp(S) denote the set of
polynomials on S of total degree < p. For S a parallelogram, we let
Qp(S) be the set of all polynomials on S with degree < p 1in each

variable and define
P = P p
QP(S) Pp(S) ® (xlxz.xlxz).

to be the space of serendipity elements (see [13]).
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For any mesh Sh, we now define

ph gt

h
b1 = Po (0 = (v e L@, vig <P @)

and for k 2 0,

h _ _h ,ohy, _oh (k)
Pox = Pp T =Pp ync o,

For rectangular meshes ﬂh (= 32. 32.
h

h h '’ gh h h rrea
Qp,k(’ ) and Qp.k(g ) with Pp(ni) replaced by Qp(ni), Qp(ni)

or 72). we analogously define

respectively. Then our finite element space VN = Vg will be taken to be

h h
one of gp,o’ ap,o

We now estimate FO(N) in (3.3).

h *
or ap'o.

Theorem 4.1. Let ¥ = {VN} = {Vﬁ) consist of the h-version using a family
of quasiuniform meshes {7h} of parallelograms and triangles, with degree p

21 fixed. Then (3.3) is satisfied with FO(N) given by

(4.1) Fo(N) ~ cN P2 for p < k-1

~ CN-(knl)/2 for p 2 k-1

where C 1s independent of N but depends on p,k.

Proof. We note that by the usual results (see [{13]) for the h-version,

-min(p, k-1)/2
FO(N) < CN

since N = O(h_z). The result for p 2 k-1 follows by noting that

Fo(N) 2 oy~ (k-1)72

using the theory of n-widths [18]. For p < k-1, the corresponding lower

bound has been proved in Lemma 3.2 of [4].
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Theorem 4.2. let ¥ = (VN) = (Vg} consist of the p-version using a fixed
mesh 3h° with increasing polynomial degrees p—w. Then (3.3) holds, with
FO(N) given by

(4.2) Fo(N) ~ on~(k-1)72

Moreover, as p—w», (4.2) also holds if the h-p version over a quasi-

uniform family of meshes (ﬂh} is used.

Proof. We refer to [3] for the proof of the p-version and [2] for the proof

of the h-p version. o

Remark 4.1. In the case of the h-p version, the following more refined

estimate has been established in [2]

(4.3) FO(N) ~ Chmj'n[pnk‘l)p"(k-I)

where N = N(h,p).
Let us now characterize the spaces W(Vg) for the various choices of

Vg. These will be used in the next section.

First, we see that over a single element (T = trlangle, S =

parallelogram),

(4.4) w[ﬁp(r)] =P (T

(4.5) w[dp(S)] =P () U qs)
(4.8) wﬂﬁ;(S)] =P ,(8) for p=2

Py(5) | Q,(8) = u[ (S)] for p = 2
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Therefore,

h h

(4.7) WD o) = Pog g
gh 3h h h
for the triangular meshes 1’ 3° Also, for rectangular meshes 72. 74
(and ﬂg).
h h h

(4.8) W ) = [Ppﬂ.l UQ .1]
and for p = 2

h‘, __h
(4.8) W(dp’o) =P

with the case p = 2 being given by (4.8).

5. The h-version.
We now analyze the locking and robustness of some h-version extension
procedures. Theorem 3.4 will play a key r-~le ln our analysis.

We first analyze triangular meshes.

Theorem 5.1. Let the extension procedure ¥ consist of the h-version with
plecewise polynomials of degree 1 using a uniform mesh 3? as in Figure
4.1. Then with respect to the solution set Hk v’ k 22, ¥ shows locking

of order Nl/z, i.e., the extension ¥ 1is not robust.

Proof. We have V' = P} o and by (4.7) wi) = P> . By Theorem 3.4, ve

» 17
have to estimate

g(N) = SUP( o) inf 1=z, q-

h h
®eH (Q) xePa'l(ﬂl)

Assume that E(N)—eo as N-—ow. Then by the embedding theorem we also have

for any & € C°(Q),
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inf
h h
xePz’l(Ul)

“¢-x“c(n)—+0 as N—oo

But by Theorem 3 of (7], the set P: 1(7?) is dense in C(Q) only if
s 2 3. Hence we have a contradiction and the theorem is proven. a
Let us now define

r(p) = p for p=2, 3, 4
=p+1 for p 2 85.

Then we have the following.

Lemma 5.1. Let 5? be the uniform triangular mesh of Figure 4.1. Then for
ue (R, p22

(5.1) inf “u_vuo Q < Chmin (k,r(p))

h h
vePp'l(ﬂi)

IIUIlk,n-

Moreover, there exists a function Q € C*(Q) satisfying

(5.2) inf 1R-vig g 2 chh(P),
vePP (7?) ’

P,
Proof. The result for p 2 5 1is standard (see, for e.g., [12]). For
2 Sps<4, (5.1) is a generalization of Theorem 4 of [7], and has been
proven by C. de Boor [6]. The L, analog of the lower estimate (5.2) was
established in (8] for p =3 and [9] for p = 4. These results have been
recently generalized to the Lq (1 £ q S o) case in {10]. o
Lemma S.1 results in the following lemma. The proof of (5.4) is due to

C. de Boor, R. DeVore and A. Ron.

emma 5.2. For 3? as above, u € Hk(ﬂ). p 22,

(5.3) inf flu~ v < Chmin (k,r(p))-2
vePh 1(?I'l‘)

»

2.0 hully q-
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Moreover, there exists a function Q € c*(Q) satisfying

(5.4) inf bQ-vi, o2 chl (P12,

h h
vePp’l(ﬂl)

Proof. (5.3) follows from (5.1) by using an inverse property argument. To
prove (5.4), let us choose the same function Q from (5.2) in Lemma S.1.

Suppose Vv € Pg 1(7?) is such that

1Q-vi, o = ota"P)2),

Then, by using the above and (5.1), there exists w e Ph (3h) such that

p,1 71
1Q-v) - wl, o S ChZIQ-v]
0,0 2,Q
= o(hr(p)).
vwhich is a contradiction to (5.2). o
Lemma 5.2 glves sharp upper and lower bounds for
g(N) = SupB lnfh . he-xl, o
¢er’1(n) xePp’l(ﬁx)
for k 2 r(p)-1. In fact, we obtain
(5.5) c,n" P2 < gn) s cp P2,
Theorems 5.2 - 6.3 below follow immediately from (5.5).
Theorem 5.2. Let the extension procedure ¥ consist of the h-version with

plecewlise polynomials of degree € 2 on 3?. Then with respect to the set

Hk v’ extension ¥ 1is uniformly robust with order N-l/2 for k22 and

2

shows locking of O(Nl/ ) for k 2 3.
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Theorem 5.3. Let the extension procedure % consist of the h-version with
plecewise polynomials of degree £ 3 on 3?. Then with respect to the set
Hk ' extension ¥ 1is uniformly robust with order N-1 for k23 and

1/2) for k 2 4.

shows locking of O(N
In Theorems 5.1 - 5.3 (for p S 3), we restricted ourselves to the
uniform mesh 32. It was essential that the mesh have three pairwise
independent directions, since with meshes with additional independent
directions, the results will be different. For p > 3, we may drop the

restriction of uniform meshes and prove the following theorem.

Theorem 5.4. Let the extension procedure ¥ consist of the h-version with
plecewise polynomials of degree p 2 4 on a general quasiuniform mesh 52

Then with respect to the set Hk " k 2 p+l1, ¥ 1is uniformly robust with

N—p/2

order and there is no locking.

Proof. By (4.7), we have H(VN) = P;+1 1

Argyris triangle, for which the interpolation theory (Theorem 6.1.1 of [13])

For p =4, this gives the

shows that

- p
(5.6) inf  10-2l, o S CHPUBI

xePp+1’1

+2,0°

Moreover, the proof of Theorem 6.1.1 of [13] may easily be generalized to

show that (5.6) holds for any p 2 4. The result follows from this. (Note

that the result follows immediately from (5.5) for the mesh 9?). o
Remark 5.1. 1In [19]), a more restrictive condition on the mesh is used to

prove that locking does not occur for p 2 4. However, the result obtalned
there is stronger and leads to divergence stability as well, as discussed in

Remark 3.1. We avold the condition on the mesh precisely because our
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Definition 3.1 of locking is different, involving only the displacements and
not the pressures.

So far we have discussed the triangular mesh 3? (and 52). Let us now
discuss the mesh 32 with respect to the extension ¥ based on Qp(s). We

first prove some auxiliary lemmas.

_ 1
Lemma 5.3. Let Qa = {(xl.xz). 0 < Xy, Xy < a}, zSasi, be covered by

the mesh 90, Consider the set Qg _1(32). Let G(x;,x,) = Glx,) = x§+1 +

2
f(xl) where f 1s a polynomial of degree < p. Then for { = 1,2
5 172 s
(5.7) 2, = inf, Z IG- 2l on 2 o(h’ ).
xeopox-t,-i Qheﬂg

Proof. Since ﬂh is a uniform mesh, the following inverse inequality holds

2
on every element nh for any polynomial v € Q;+1 -1
(5.8) Ivl_ - S ChE™S)v| 0stss
: s, Qb t, ’
where C 1is independent of v, nh. t, s, h. Suppose for 1 = 1,2
2, = (P
and that this infimum is attained by 2 € Qp+1 -1,-1" Then we have, using
(5.8) with v = G--x1 € Qp+1,-1 and s = p+2-1, t =2
1/2
2-(p+2-1), _
LZ 16- 202, n] < on 2, = o(1)
hegh
2

from which

pe2-1 172
Z |)1:i-1 + f(p+2-”(x1) - a—’z-gl . = o(1)
ax,? 0,0

hegh
2

28




pe2-i
But this is impossible, since x, € QP implies L4]

p+1-1, -1 P =0 over

each ﬂh. This proves (5.7). o

We now prove the following lemma, using an idea from the proof of

Theorem 2 in [7].

Lemna 5.2. Let Q =0, be as in Lemma 5.1 and let D(x,,x,) = x‘;’*3x§. Let

h h
wl = (Pp+1 1 @ Qp 1)(72)
W, = wlﬁf)

Then for 1 =1,2

tnf ID-2l, o * o(nPh).
A€W,

Proof. We use the standard notation

(x - i)f = (x - x)° for x 2 X
=0 for x < x.
Llet M=h' and for 0 S 1,Js M1, let (xi, xg) = (ih, jh). Then any
X € Pg+1’_1 can be represented as a linear combination of the truncated
powers
(5.9) (x,-x, P (x -x) 0<1,Js M1

2 2°+

where pi,qJ 20 and Py + qJ Sp+1l. Any x € Qg -1 can be similarly
represented by taking p1 s p, qJ S p. If we impose the constraints Py 2 2

for { >0 and qJ 22 for J >0, then (5.9) gives us precisely all x €

i ly' nsequently, in this case, he only terms
p+1,1 1p,l lESFECt ve Co t

p+1 i,p
in Pp+1.1 of the form (5.9) with pi 2 P can be (X X ) ’ (X-Xi) or

(x-x’)pic while those satisfying q, 2 p must be of the form (x—x’)p+1.
1 2 J 2°+

S R -oJ\P
(x x2)+ or xi(x x2)+.
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For H> 0, define the difference operator AH by

Aﬂg(xl’xz) = i (-l)lm[ﬂ [i] g(x1+la. x2+ma)

l,m=0

where a = H/4. Let H = sh where s 1is a positive integer. Then for any

x € of the form (5. w p, 2p or q,2p, we have
P:Hl (of the form (5.9)) with p, y2 ha

AHx =0.

This implies that AW, < Ql; 1(217’2‘) and A W, C Qg_l 1(32). Also, we see

that

= Pl
AHD = Cx1 + f‘(xl)

vhere f(xl) is a polynomial of degree < p. Hence, if we fix H to be

sufficiently small and let s— o (i.e., h—0), we see by Lemma 5.1 that for

i=1,2
+1 _ p-1
Inf I8y (D-0)ly o 2 Cinf Ixy +£lx) - aly g *o(h” )
xX€EW, erp01 -1,1
Noting that
18, (-2, o S CID-xi, g
(since AH Just gives a linear combination) proves the lemma. o

We can now prove theorems for rectangular meshes analogous to some

theorems proven for triangular meshes.

Theorem 5.5. Let the extension procedure ¥ consist of the h-version on
the uniform mesh 32 for elements of type Qp with p = 1. Then with
respect to the solution set Hk ' k 22, ¥ shows locking of order Nl/z.

i.e., 1t is not robust.
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Proof. The proof is essentially identical to that of Theorem S.1. We now

use Theorem 1 (instead of Theorem 3) of [7] to characterize the density

h h h h h
of the space P2,1(’2) > [P2.1 v Ql'l](ﬂg). By this theoren, Ps'l(ﬂz) is
dense in C(Rz) only when s 2 4. ' o

Theorem 5.6. Let the extension procedure ¥ consist of the h-version on
the uniform mesh 32 for elements of type ap with p 2 2. Then with

respect to the solution set Hk v’ the extension ¥ 1is uniformly robust with

-(p-1)/2

order N , for k 2 p and shows locking of O(Nl/z) for k 2 p+l1.

Proof. By the results in [14], the optimal rate of convergence is obtained

(1)

when C tensor product splines of degree 2 2 1in each variable are used.

More precisely, we have for ® € Hk+1(ﬂ), k 2 p,

;2:(6” P " H0-xu2,n s ;23“ n¢-xn2’n
p,0 p*l,1 Pyl P,1
< chP e
k+1,Q°

Moreover, by Lemma 5.2, this is the best rate possible. The theorem
follows, using Theorems 3.4 and 4.1. o

We now consider an extension procedure based on ﬂﬁ using elements of

type 3p'.
Theorem 5.7. Let the extension procedure ¥ consist of the h-version on
the uniform mesh ﬂg for elements of type Qp'. Then with respect to the
solutlon set Hk.v’
1) For p=1, k22 ¥ shows locking of O(N"2) and hence is
non~robust.

11) For p =2, ¥ 1is uniformly robust with order N-l/2 for k 22
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and shows locking of order NV2 for k 2 3.

111) For p > 2, ¥ 1is uniformly robust with order N~ (p-2)72

for k > p+2 and shows locking of order N for k 2 p+l.

Proof. For p $ 2, as shown in Section 4,

h .,y . y2h
W@ o) =W .

Hence, by Theorem 3.4, the results for locking and robustness are identical
for ap’ and ap elements, so that (1) and (i1) follow from Theorems
5.5 and 5.6, respectively.

By (4.9) and Theorem 3.4, we see that for p > 2, ¥ 1is robust with

uniform order

g(N) = Sup( inf 1®-xll .
aB) h h 2,9
ﬁe“k+1 () xEPp#l,l(’z)

By Theorem 2 of [7], we see that

- P
infh n e xllc(m £ Ch IIOIIC(poa)(m
xeP (7))

p+l1,1 2

from which, using the inverse inequality and the fact that “Q“C“”g)(n) s

Cllel we obtain

k+1,Q

(5.10) Z(N) s o~ (P2)72

Mo;eover, by Lemma 5.2, this Is the best estimate possible. This establishes

(111). o
Comparing elements of types Qp and Qp’, we see that both show

locking but that the locking shown by Qp‘ elements is twice a strong as

that of .
QP

h
4

the mesh 32, the statement about robustness EDUN-(p-l)/z]] is exactly the

Let us briefly discuss meshes J, and 72 using Qp elements. For
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same as for the mesh

is not presented here.

In the case of the meshes ﬂh

approach of the construction of Bogner-Fox-Schmidt rectangles (see [13]) to

.

Nevertheless, an exact assessment of the locking

s'

it is possible to generalize the

once more prove robustness of O[N-(p-l)/z). provided p 2 4. We do not
discuss the case p < 4 here.
Let us summarize the results of this section:
Order of Robustness
Type of mesh Type of element locklng, r order, ?
£(N)=0(N") | g(N)=0(N"9)
Uniform triangular Pp. p=1 r =12 q=0
P = 2 r=1/2 q= 172
p=3 r=1/2 q=1
Quasiuniform triangular Pp. pz4 r=0 q = p/2
Uniform rectangular Ql' 1’ r =12 q=0
Qp. p22 r=1/2 q= (p-1)/2
Qp'. p=2 r=1/2 q=1/2
Qp'. p23 r=1 q= (p-2)/2 |
|
Quasiuniform rectangular Qp. pz22 osrs % q= (p-1)/2
Quasiuniform parallelogram Qp. P24 0Osrs % q= (p-1)72

6. -

In [23], it was shown that the p-version (using

V!

1o
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_LE:11+e]
P
y €2

triangular meshes) for (3.1) leads to a robust estimate of O[ﬁ
0 arbitrary, when the solution is known to lie in Hk(ﬂ). i.e., the order
of locking is at most N®. The loss in order ¢ resulted due to the
definition of locking employed (see Remark 3.1) and is directly related to
the locking in the pressures. Using the theorems from Section 3, we are able
to obtain an optimal robustness estimate and prove that there is no locking
for the displacements in the sense of Definition 3.1. This holds for
parallelogram elements as well. Usling this approach, we remove the
dependence on € that will occur in the robustness estimate for the

displacements 1f the results from [23] are used.

Theorem 6.1. Let the extension procedure ¥ consist of the p-version using
a mesh consisting of .r:angles or parallelograms. Then with solution sets

Hk b’ k22, ¥ is free of locking and is robust with uniform order
N-(k—l)/z.

Proof. Using the results of [21] and [16], we have for the p-version with

C(l) continuous triangular or parallelogram straight-sided elements (h0

fixed), for ¢ € Hk+1(ﬂ). k 22,

_ -(k-1)
(6.1) Inf, le-xl; g s Cp Ieli1, 0
x€P
p.1
Since P2°1 c H(Vg°). using Theorem 3.4 gives the required robustness rate.

The absence of locking follows by Theorem 4.2. o

Using the results of [19]), it can be shown that the h-p version with
quasiuniform triangular meshes results in locking of order at most pe, with
the rate in h being optimal, provided p 2 4. We are able to prove the

following theorem.
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Theorem 6.2. Let the extension procedure ¥ consist of the h-p version,
using quasiuniform meshes consisting of triangles. Let the solution sets be

Hk v with k 2 2. Then for p 2 max(4,k-1), ¥ 1is free of locking and is

-(k-1)/2 k-1_-(k-1)

robust with uniform order N (or, more precisely h 'p ).

Proof. We only outline the proof here. Essentially, the ldea 1s to use
(6.1) together with a standard scaling argument to show that

(6.2) inf_ gzl g chk~1p7(k-1)
xePp 1 *

I#lier,a

provided p 2 k-1. For detalls see [2], where this scaling argument has been

(0)

used to prove an estimate analogous to (6.2) for the case of C elements.

Using Theorems 3.4, 4.2 (or Eqn. (4.3)) completes the proof. o

7. Some generalizations.

So far, we have only considered the two-dimensional isotropic case. It
turns out that situations analogous to Poisson locking arise In more general
contexts as well. For example, the same phenomenon is observed in the
three-dimensional isotroplic case when v—0.5. Moreover, one can consider
similar situations that occur in the anlsotropic case (both 2-D and 3-D),
when locking may be observed due to the introduction of a constraint on the
approximate subspaces.

Let us look at the general 3-D equations of anisotropic elasticity given

by

(7.1) Ao = e(0) in 0
(7.2) dive = ¢ in Q
(7.3) on = 3 on T

where o 1is the 3x3 symmetric stress tensor, and e(ﬁ) the strain tensor.
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A 1is a fourth-order tensor known as the compliance tensor which depends upon
the properties of the material. It is a self-adjoint linear operator acting
on the six-dimensional space of symmetric 3x3 tensors, and is characterized
by specifying 21 independent elastic moduli. n is the unit normal to the
boundary as before and we assume (2.5) agaln.

The standard variational form of (7.1)-(7.3) is obtained under the
assumption that A 1is positive definite, in which case (7.1) may be solved
for o and substituted in (7.2) to give a problem involving the unknown a
alone. For many important materials, however, A may be positive
semi-definite and singular (or close to singular). In this case, If 0 < A

1

< Az ... S As denote its eigenvalues and ’1'“2""“3 a corresponding set

of orthonormal eigenvectors, then Al =0 (or is close to 0). The

corresponding constraint on 3, analogous to (1.1), becomes
->
(7.4) div(wlu) =0

In fact, Poisson locking is a special case of (7.4), because for the case of
isotropic materials with » = 0.5, it can be shown that the identity matrix
is an eigenvector of A corresponding to the eigenvalue O.

There are two cases which must be distinguished between. (7.4) defines
a singular constraint if o

is a singular tensor. If ¢, 1is non-singular,

1 1
then (7.4) is called a non-singular constraint. Polsson locking is obviously
an example of a non-singular constraint. On the other hand, a material that

is inextensible in the direction © satisfies (7.4) with a singular A

given by

(7.5) o, =rr

Both singular and non-singular constraints will lead to locking, when

the material is such that A 1is (or is close to being) singular. Singular
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constraints like (7.5) are analogous to the locking constraints found in
shell problems and are generally harder to develop robust methods for. See
Section 3 of [4], where we have discussed the robustness of various methods
for the problems of heat transfer through highly anisotropic materials, which
has the same character as locking due to a singular constraint.

Here, we are interested in the case when A Is not close to having a
singular constraint (this is characterized precisely in [1]) but is close to
having a non-singular constraint like (7.4). Such a situation has been
characterized in detail for the case of 3-D orthotropic materials in [1].
Denote by 311 the solution to (7.1)-(7.3) when the compliance tensor AA1
has minimum eigenvalue Al > 0 and let the limiting constrained case be AO.
Then by Theorem 1.1 of [1], if the constraint is non-singular, there exists a

unique limit solution u, satisfying (7.4) with

o
Lim 1o, -u

I
A Jo'1,0
MR

=0

It is expected that an analog of (2.12) (with Al replacing 1-2v) will be
valid in this case as well. However, such a result is not currently
avallable.

Suppose we discretize the standard variational formulation of
(7.1)-(7.3) (obtained by first solving (7.1) for o). Then, without
establishing (2.12), Theorems 3.2 ~ 3.4 cannot be proved as stated. However,
it is still instructive to look at the 1limit problem, where the exact and
approximate solutions must satisfy the constraint (7.4). Suppose we are
interested in exact solutions u e H, where H characterizes the
smoothness. Let Ho be the subset of H satlsfying (7.4) and Z(VN) the
subset of VN satisfying (7.4). Then the limit problem has the optimal

rate of convergence FO(N) in the ﬁl(n) norm if and only if
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(7.6) g(N) = Sup_ inf I - W, S CFy(N).
ueH: wez(VY) 1,0 0
By Theorems 2.2(A), 2.3(A) of [4], (7.6) is a necessary condition for % to
be free of locking with respect to the ﬁl(n) or the energy norm.
When cl is non-singular, we can derive a more convenient condition
which 1s sufficient for (7.6) to hold and is analogous to (3.11). As in the

two-dimensional case, we have
divz =0 =» z = Curlg.
Hence, for Qe Hg, we Z(VN), we have

vlﬁ = Curla, oW = Curl ;
vwhere 3 € W(Hg). we W(VN). Here,

(7.7) wyY) = {9, ¢;1Cur1.‘)) cY}.

Then we have
- - -1 - ->
IS - Wiy = e Carl (3-01) o S 1$-3, o

so that the following is sufficient for (7.6) to hold:

(7.8) Sup inf  J$-%, o S CF,(N) .
3eH(H:) er(V") 2,0 0

As an application of (7.8), let us look at the case that (VN} consists
of continuous pliecewlse polynomials of fixed degree p on a quasiuniform
sequence of meshes consisting of tetrahedra. Then for any non-singular o

1

aI will be bijective on VN, so that from (7.7), we see that

1 .

2 -» h
W) = W@ = PD

analogously to (4.7). By [24]), the minimum q required to obtain an optimal
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rate of convergence for the h-version using PZ 1

will be satisfied whenever VN = Vg with p 2 8 and the h-version for the

1s g=9, so that (7.6)

limit problem will show optimal convergence. We expect once agalin (similar
to the results in Section 5) that the use of lower p or the use of

parallelepiped elements will result in locking.
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