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Description of Progress

Dexterous Manipulation

‘One-of the great deficiencies of today’s robots is their lack of flexibility. Most industrial
robots are capable only of simple and repetitive tasks, such as spot welding or spray painting.
There are two main reasons for this deficiency. First, typical end-effectors use a very
simple two stick structure. Second, dexterous manipulation (manipulation by grippers with
independently moving fingers) is not well understood. Effective techniques for dexterous
manipulation would have application within a wide range of areas, including industrial
assembly, decontamination of nuclear plants, and exploration of remote environments (e.g.,
ocean bottoms or space).

We are developing a new strategy, finger tracking [Rus90,Rus91], for the autonomous.
manipulation of objects by multifinger robot hands. Most of the earlier efforts devoted to
understanding dexterous manipulation have been devoted to grasping or to manipulation
for task-specific problems. The finger tracking paradigm reorients an object with a series
of rotations effected by fine finger motions, in which the hand maintains contact with the
object at all times. It is common for humans to reorient an object using “extra” fingers —
those not needed for grasping. Finger tracking captures and formalizes these ideas.

Our notion of manipulation refers to the reorientation of an object by a mechanical
hand. The reorientation is accomplished by fine finger motions, with the object held in the
hand through the entire process.

Definition 1 Manipulation is the reorientation of a part inside the grip, while maintaining
the grip.

This definition implies that the reorientation is accomplished with respect to a system
of coordinates which is fixed on the robot hand. In the process of reorientation, the grasped
object undergoes a Euclidean motion, composed of a translation and a rotation. We are
interested in measuring rotations, and therefore we abstract out the translational component
of the motion.

Definition 2 Two congruent objects have equivalent orientation if there is a pure transla-
tion that takes one into the other.

We see two basic types of manipulation based on the relationship between the object
and the hand. In the first kind, the object is passive inside the grip. The object is fixed with
respect to the fingers involved in the grip in the reorientation step. Its motion follows the
finger motions. We call the algorithms which result from such an interaction finger walking
algorithms. In the second type of relationship, the object is active inside the grip. The
internal forces of the grip are used to move the object relative to the grasping fingers. The
manipulator produces motion by applying forces which take into consideration the geometry
of the object. We call the manipulation algorithms which result from an active interaction
between the fingers and the object finger tracking algorithms. Both finger walking strategies
and finger tracking strategies are common in human manipulation. We have experimented
with both strategies using Newton, our simulator for rigid-body dynamics. Our most recent
efforts have been focused on finger tracking.




In order to make the idea of finger tracking precise, let O be the object to be manipulated
and-let H be the dexterous robot hand. We assume that H has enough fingers for a good
grasp of the object. The haud alse has some additional fingers, which we call free fingers.
Some of the fingers are used to constrain the object by restricting its dcs rees of freedom,
while the other fingers are used to generate its motion. In a typical manipulation problem,
we are given the number of fingers n of the hand. Fingers from 2 subset of sizem <n -1
are used to grasp the object, usually by assigning each finger to a separate face. The size
of m depends on the contact type [MNP20,MSS87,Ngu86]. Once the object is grasped, the
m fingers stay fixed in space and the obizsct is constrained to maintain continuous contact
with them. In addition to the m giaspiig fingers that constrain the degrees of freedom,
the object is also in contact with a free finger, which tracks along some curve on a different
face. This process causes the object to move relative to the grasping fingers.

The free finger tracks a continuous trajectory, while at each instant, the m + 1 fingers
hold the object in a grasp with some desired property, for instance equilibrium. Using this
technique, we can generate the reorientation of a grasped object by commanding a simple,
sliding motion for the tracking finger.

The most fundamental question within this framework is exactly how to generate some
desired motion. The answer should allow us to program a robot to take an object from a
given initial orientation to a goal orientation, or to determine when such a program does
not exist. )

To answer this question, we have broken the problem into two components. The first is
related to the fact that this form of manipulation is defined as a constraint »roblem. Thus,
an important aspect is finding an algorithm to determine the configuration space for the
motion of the object to be manipulated. The second component has to do with finding
the manner in which the robot must use its fingers to generate some desired trajectory for
the object to be manipulated. This involves finding efficient tracking algorithms. We have
established a framework in which to adress these algorithmic questions, by using Lie algebra
properties.

Some of our results are summarized below:

o The configuration space for a polyhedral object. For the case of a polyhedral object held
by a robot hand with four frictionless point contacts, we have obtained an algorithm
to describe the configuration space as a manifold given by a closed form equation.
We have analyzed the properties of the configuration space, and have shown that it is
diffeomorphic to the rotation group SO(3). Furthermore, we have shown that for this
configuration space, the vertices of the polyhedron can move in a space-filling way.
A consequence of this result is that the structure of the configuration space is quite
complex, which makes finding finger tracking algoritlins non-trivial.

o Finger tracking for a polyhedral object. Under the same assumptions as above, we
have shown that the differential motion of rhe tracking finger is given by a 4 x 4
linear system. This surprising result is very feasible computationally, especially iu the
context of simulation.

o Polygons in the plane. Our newly developed framework for dexterous manipulation
has been used to express earlier results [Rus90] for polygons; these results were origi-




néﬂy'ébtajned' in_a more-ad:hoc manner. Virtually the same algorithm used to deter-
mine-the configuration space for polyhedra can be used to determine the configuration
space for polygons.

¢ Robustness for-polygons. The planar case has a number of geometric properties that
we have been able to exploit -in order to generate robus* rotation algorithms. The
uncertainty inherent in the real world makes robustness an important feature for any
realistic manipulation algorithm. Our rotation algorithms are robust in the sense
that some of the=a prior: knowledge requirements of the geometry of the object to
be rotated and the necessity for precise calculations based on this geometry can be
replaced by sensing. The result of our efforts is a condition on the geometry of the
polygon to be rotated that guarantees robust rotations by an arbitrary rotation angle.
We have shown that for convex polygons, the condition can be checked in O(n) time,
with O(nlogn) preprocessing.

We are-currently -investigating the possibility of extending the robustness results from
the planar; polygon case to the 3-dimensional, polyhedron case. We are also developing
configuration space algorithms for 3-dimensional objects with curved faces. Another atea
ifi-which we'have made progress is the experimental verification of our results. We are using
Newton, the-simulator for rigid-body dynamics developed by our group, to verify our finger
tracking algorithm for rotating polyhedra.
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LEAST CONSTRAINT:
A Framework for the Control of
Complex Mechanical Systems

Dinesh K. Pai®
Department of Computer Science
Cornell University
Ithaca, NY 14853

Abstract

We describe an approach to control in which control ac-
tions are specified as weakly as desited. We use large
time-varying sets of non-zero measure as desired goals in-
stead of specific trajectories, maintaining that we do not
care where in such a region we actually are. Inequality
constraints and their conjunctions are used to describe
such regions. The constraints are satisfied at run time to
produce the control. The approzch has been successfully
used to produce human-like walking in simulation.

We also describe an implemented programming envi-
ronment for this approach. We discuss the represeatation
of control computations using computational graphs and
automatic differentiation for efficiency. Constraint satis-
faction is performed using a fast relaxation method.

1 Introduction

We are concerned with controlling high degree of free-
dom mechanical systems which have to accomplish several
simultaneous tasks. Such systems include robot arms,
multi-fingered hands, walking machines, mobile robots,
and simulated mechanical systems used in computer 2n-
imation. The system typically has redundant degrees of
freedom for each task, but may have to accomplish a large
number of tasks simuitaneously. The system may also
be autonomous and reactive, which means thzat a large
amount of the “programming” will be done at execution
time.
The complexity of the system implies the following:
1. The ease with which complex tasks are expressed
and composed is critical.
2 The efficiency of the control computations is very
important.

3. Simulation of the mechanical system is necessary to
gain insight into the control programs sznd to aid
their development.

These demands are frequently contradictory. We propose
a framework called “Least Constraint® (abbreviated as

*Supported in part by ONR Grant N00014-88K-0591, ONR
Grant N00014-89J-1946, and NSF Grant DMC-86-17355. The
author would like to thank L.-M. Reissell for innumerable dis-
cussions and J Cremer for comments at a short notice.
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Figure 1: Biped walking machine

LC) which we believe facilitates the expression of con-
trol programs for complex mechanical systems and is ef-
ficiently implementable as well. An early version of the
framework was presented in (29].

Section 2 describes the LC approach and how motions
are expressed in it. Section 3 discusses the data struc-
tures for representing control computations in LC and
the algorithms used to perform these computations effi-
ciently. Section 4 describes the solution of the inequality
constraints that arise.

2 The Least Constraint Ap-
proach

2.1 Motivation

Consider the problem of controlling the human-like walk-
ing machine of Figure 1 to walk dynamically in three
dimensions.

One approach to programming such a task is to pick
some periodic trajectory for the joints. and attempt to
track it. However, it is not clear that this is the natural
characterization of the task. Indeed in problems of this
type, a major gotl of the process of developing 2 control
program is to discover the task requirements.

We would instead like to program such machines in-
crementally, by specifying assertions about its behavior.
We can specify several requirements for walking, for in-
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stance, (i) the foot should clear the ground during the
swing phase of the leg, (i) the swing foot should be moved
to a location suitable for dynamic balance by foot place-
ment, and so on.

When the machine is controlled to satisfy these require-
ments, it may turn out that the requirements were inade-
quate — for example, one may find that there is nothing
to prevent knee flexion from becoming so large that walk-
ing is impossible. In this case one would like to modify
the existing program by merely adding new gssertions: for
example, by adding the assertion that the pelvis should
be above a certain height. This is not possible in current
robot programming languages. The LC framework was
designed to address these problems.

2.2 Least Constraint Framework

In the LC framework. motions are expressed by means of
time- and state-dependent assertions. These assertions
ate defined using inequality constraints which describe
the set of allowed states as 2 function of time. The con-
straints are solved at run time to produce 2 motion sat-
isfying them.

Since complex mechanical systems have large state
spaces, it is not convenient or natural to express all of
the constraints in a single space. For instance, the waik-
ing machine in Figure 1 has a 28-dimensional state space.
For convenience of expression, usets define derived vari-
ables in terms of the basic (e.g.. state} variables — an
example of this is the definition of task and end-effector
coordinates for robot manipulators. LC generalizes such
constructions to allow the creation of arbitrary, user de-
finable quantities which are natural to the tasks and the
constraints being expressed. One can isolate smail groups
of variables into domains on which to focus. For example.
the foot collision constrairts in the above waiking exam-
ple are best expressed in a separate {oot position domain.

In LC. users define a domain system, {D, . i € [},
related by linking functions

li;:Di —D;,(1,j)ELCIxI, (1)

which satisfy the basic consistency condition that all di-
agrams of the following form commute.
Int lmj

Dy ——m wcvcee —— D;

l:\' /’qu
lin \ / l
Di ?
All domains D;: are connected to a basic doman Dy by
compositions of linking functions :

Do ...,

Briefly, the motivation for using domain systems is that
they allow a constraint on a subdomain D; to be lifted
to 2a equivalent constraint on the basic domain Do using
compositions of linking functions.

The topological properties of the domains D, are teft
somewhat open — in theory. 2 domaa system could be
expressed in terms of arbitrary manifolds: 1n practice.
however, the domains wiil be copies of R". for varsing
r.. Non-Euclidean domains. such as SO13). are currents;
treated using their coordinate charts.

A motion specificationin LC now consists of a system
of time-varying inequality constramnts Fs.a € A. on the
domains D.. here each constramnt P, is expressed by

Pa = falrit). ) <0, 12

where
fo:Dlx;e—'R. a€Ad

is a smooth map, and z(¢) denotes a time-dependent tra.
jectory in D;.

The interpretation of the constraint function s that
the system is controtled to make the specified expressivas
Po := fa(z(1),t) < 0 true at ali times ¢.

Such Ps and *heir conjunctions

P.=/\P., '3

are executable LC motion programs.

As an example, Figure 1 depicts some constraints on
the position of the foot for the walking machine.

The solution of the constraints is achieved by produc-
ing a trajectory z(t) € D, such that the derived con-
straints

P, := fol{laeo...0lo, ){z{1)).t) SO

obtained by lifting tie original constraints using the uni-
ing maps are satisf.ed at all times t. In LC. this i1s done at
run time at discrete time steps {x. at every time step le.
a feasible point z{tx) 1s produced. and 1s used to compute
the control u.

We have implemented a programming environment us-
ing Common Lisp and the X window system to develop
and execute LC programs. In this environment, users de-
fine variables, domains and linking f{unctions. and express
constrzints in these domains. Exact partial derivatives
can be efficiently computed using automatic differentia-
tion. The environment interacts with a simulator of ngid
body mechanics, “Newton™ [8.14]. LC accepts models
of multi-body mechanical systems described in Newton
and generates the computational graph (see Section 3)
for the simultaneous computation of forward kinematics
of user specified features on each body, differential kine-
matics, and inverse dynamics. The control programs ¢-.n
be tested by sending the control output produced by LC
to the simulator. Tools are provided for debugging con-
trol programs and for visualizing constraints. Finally.
the control programs can be translated into straight line
programs in other languages (currently Lisp and C) for
efficiency.

2.3 Examples

We have deliberately left open issues such as how the sy>
tem 1s used, the nature of the constraints. and the chowce
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Figure 2: Toleranced move near singularity.
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of basic variables. LC is intended to be a general pro-
gramming framework, rather than a solution to a specific
problem. In this section, we present examples of the ap-
plication of LC to robot programming. The examples are

simple for the sake of presentation, but illustrate the use
of LC.

Example 1. Figure 2 depicts 2 2-link planar robot ma-
nipulator which is to be controlled to move along 2
straight lire passing through the singular configuration
(corresponding to the end-effector location (0,0)), from
the point (1.0,0.0) to (=1.0,0.0) with an average spsed
of at least v. We assume that this is a pure kinematic
problem — i.e.. the basic variables are the joint angles
t; 2nd t;, which are tracked by 2 separate low level con-
troller. We are allowed a tolerance of ¢ around the nom-
inal strajght line.

The assertion that the end-effector position (z2.y2) is
within ¢ of the nominal straight line is expressed by the
constraint functions

Jeop(32)
Soot(y2)

y1—¢ (4)
it 7l (5)

and finally the end-effector is “pushed” along the tube by
specifying the constraint function

fpulher(zﬁy ‘) =(z2— 1-0) - vt (6)

Qur conetraint satisfaction procedure is robust near sin-
gularities (Section 4) anc the robot executes the pose-
changing motion shown.

Example 2. Figure 3 depicts the task of placing an ob-
ject in the robot’s hand on the table. In a robot pro-
gramming language such as VAL [34], this will have to
be expressed by arbitrarily commanding a particular mo-
tion to an arbitzzr; point on the table. In LC, the task
is programmed }; placing constraints in the hand posi-
tion domain. The hand is constrained to stay within the
boundaries of the table by the constraints f; and f2. The
constraint f» moves down at constant speed v from height
h, so that af*e; 2 time of A/v the end-effector 1s on the
table top. Note that the exact location on the table top
is unspecified.

Figure 3: Place on Table

If we now wish to place the object at 2 particular lo-
cation on the table, this is achteved by adding the cone-
shaped constraint marked f; 1n Figure 3. If it 1s required
that the center of mass of the arm be above a smail re-
gion of the base during the mouon. a new vanable 7.~
is defined in terms cf the joint angles and base position.
and the constraints z; < Zem < Ie.

Example 3. We have used the LC framework to success-
fully program the human-like machine n Figure 1 to waik
dynamically in three dimensions {30]. In each qualitative
state of the machine. such as “standing on the left leg
while stepping with the right.” constraints are imposed
to achieve a iarge number of simultaneous tasks such as
foot placement for dynamic balance. torso orientation.
maintenance of pelvis height. <ollision avoidance with the
ground during swing, inter-leg collision avoidance. ot
limit avoidance. etc.

2.4 Discussion

One of the main advantages of the LC framework is that it
enzbles and perhaps encourages subtasks to be expressed
weakly. This reduces the number of arbitrary decisions
which have to be made. such as arbitrarily picking 2 tra-
jectory in Example 2. The program reflects the user’s
intention better and is easier to mantain. [t is also eas-
ier to do “redundancy maintenance.” i.e., to retamn the
excess degrees of freedom available 1o perform a task.

LC introduces certain object-oriented features to robot
programming. Motion programs are easy to combine. in-
herit, and specialize for new tasks. This is particularly
important for complex systems for which programs are
developed incrementally (see Examples 2 and 3.)

Typical users will use libraries of higher-level com-
pound programs for common LC idioms. The following
is & brief list of such idioms.

¢ The obstacle. These constraints encode the free
space in the environment (e.g., 121.4.10,7]). Care
must be taken to grow the constra;nts or to impuse
velocity constraints in order to account for the brak-
ing charactenstics of the manipulator near the Jb-
stacle.




o The interval: This i3 a special case of the obstacle
idiom. and restricts the range of a variable. as in the
case of joint angle limits [17], speed limits. etc.

s The pusher: This a time-dependent constraint which
moves the system in a given direction, without re-
stricting motion orthogonal to this direction. Equa-
tion 6 is an example,

o The funnel [23}: Here the constraints define a set
which contracts over time. Thus the system can be
brought to a desired configuration without overly
restricting its trajectory. A canonical example of
a funnel is 2 contracting ball.

o The toleranced move: A moving ball with fixed ra-
dius is an example. Example 1 provides another in-
stance of & toleranced motion.

2.5 Relationship to other approaches

Current approaches to programming complex mechanical
systems may be broadly classified as follows:

¢ Explicit approaches: These consist of approaches
which allow users to explicitly specify the mo-
tion of the robot, e.g.. by prescribing trajectories.
These include robot-level programming languages
feg, {34,33]). While these approaches zllow fine
control of the motion, they are hard to program and
force users to make acbitrary decisions in order to
execute a2 motion.

o Implicit 2pprosches: In these approaches, the users
only specify the high-level. global goals of the mo-
tion and the system plans a motion that achieves the
goals. These include the approaches of motion plan-
ning (e.g., {21.15,22,11.9.20]) and optimal trajectory
planning {3.32,6]. These methods ate powerful when
they are well matched to the problem. However this
is frequently not the case; for example, it may not
be important that the trajectory minimize 2 spe-
cific functional such as energy along the trajectory.
More generally, these approaches do not facilitate
modification of the planned motions by the users.
Finally, they are typically computationally expen-
sive and need to be executed off-line.

LC is an intermediate approach between the explicit
and implicit. sharing some features of both.

LC is higher level thzn the explicit approaches —
one need not specify motions explicitly but rather more
weakly as a set of constraints. On the other hand. by
moving the constraints and restricting the feasible set.
one has a degree of explicit user control on the motion.

LC is lower level than the implicit approaches. It
has no built-in application specific knowledge. The con-
straints are satisfied locally, and LC cannot guarantee
that the motion generated at one time will not cause a
failure (e.g ., there may be no feasible point in a small
neighbothood of the current state) at some time in the
future An additional planning isyer may be necessary to
avoid such situations. On the other hand. for problems
such as controlling reactive. autonomous systems (e.g..
(57}, this lack of guarantees is not a critical issue.

There is a close connection between sa_usfygng ~on-
straints and avoiding obstacles -— obstacles are -hatd”
mequality constrzints. Conversely, one can think of ~on-
straints as being virtual obstacles in abstract spaces.
which can change and move over ume under the pro-
grammer’s control. In particular. our approach shates
several fextures with the use of artificial potenual fields.
proposed sy Khatib {17] {see also. for example, [12.27.1%
However. there are important differerces.

First, LC generalizes the notion of obstacles to con-
stramis m arbitrary, user-defined domains. This is sup-
ported by a progiamming framework to describe these
constraints conveniently, and a2 constraint sausfaction
system which solves the constraints. Thus LC should be
applicable to a broad range of motion control tesks.

Another difference 15 the specification of motions out-
side the natural constraints imposed by obstacies and
joint limits. In potential function approaches the mo-
tion is specified by constructing a scalar function ¢ such
that the system behaves like a gradient dynamical system
with o as potential. The specification of a motion using
2 potential function is concise — a single scalar funcuon
encodes global dvnamic behavior of the system. How-
ever, this hzs the drawback that 1t s difficeit for asers
to specify potential functions for comphicated behasviors.
Thus the potentizl functions encountered 1n the bteratere
are extremely simple or are generated by special purpose
planning programs (see [19}). In LC motions are specified
by time varying constraints. Each constraint has an intu-
itive meaning as 2n assertion. The construction of com-
plicated potential functions by adding simpler potentials
together does not necessarily result n e2sily predictable
behavior; but, joining two constraints will always pro-
duce motion which satisfies both constraints. The state
is manipulated by time-varying constraints in 2 manner
teminiscent of pushing operations /24! and may be viewed
as a generalization of pushing to user-defined spaces.

We believe that these features make constraints easier
to specify and visualize than potential functions.

2 Representing Computations

3.1 Computational Graph

The domain system of Section 2.2 is implemented in LC 2s
a computational graph (or Kantorovich graph) (31.16). In
a typical constraint satisfaction computation. one needs
to compute the value of each constraint. and the gradi-
ents of the violated constraint functions. These compu-
tations are efficiently performed using the technique of
automatic differentiation. Computations of denived varn-
ables, ~.pecially for kinemaucs, differential kinematics.
and dynamics. contain many common subexpressions. the
elimination of which 1s also a major source of efficiency.
The computational graph is 2 useful data structure for
achieving these goals.

A computational graph can be desctibed as follows see
Figure 4 for example). A function . R™ — R% 15 sad to
be factorable if every component of f1s a function com-
putable fru.n the basic and denived vanables by means of




Figure 4: Computationai graph for 2. lmk tobot

a finite sequence of elementary operations.

We tepresent a factorable function 2s a graph as fol-
lows: let V7 be the set of m vertices corresponding to
the m coordinates of the domain of f. Vo be vertices
corresponding to the n coordinates of the range, and
v be the intermediate quantities in the computation
of f. Let G(V.E} be 2 directed graph with vertex set
V ={ViuVuu Vo) and edge set £. Let ¥ be the set of
basic operaticns. With each vertex we associate an oper-
ation by the function w . V — v with the understanding
that the operation w(v) is applied to the ordered list of
immediste predecessors of v in G. .

Figure 4 depicts a computational graph for the y-
coordinate of the end-efiertor position of a 2-ink robot
manjpulator.

Vertices of the graph are grouped together to form do-
mains, aad the subgraph connecting two domains defines
their linking function. The basic domain D, consists of
2ll the independent vanables in the system’s computa-
tional graph. i.e. the set of all vertices with in-degree 0,
which are not marked as constants. Frequently, the basic
domain is identical to the state space of the system.

3.2 Automatic Differentiation

Automatic differentiation is a technique for efficiently
computing exact derivatives of factorable functions (see
{31,16,13] for recent surveys). It differs from standard
symbolic differentiation in that by using the underlying
computational graph dats structure, the growth of com-
mon subexpressions due to differentiation is automati-
cally controlled; it differs from numerical differentiation
in that the method is exact and results in no loss of sig-
nificant digits.

‘e have implemented both forward and reverse modes
of zutomatic differentiation. The computation of par-
tial derivatives is implemented as augmentation of the
original computational graph to produce a uew graph
G’ that computes both the functicn and its derivatives.
This leads to additional savings since the expressions for
the partiale are frequently already presect in the com-
putational graph and are found using simple expression
matching 2lgorithms. Figure 5 depicts the augmented
computational graph of the 2.link robot kinematics ex-

Figure 5: Augmented computationai graph for 2-hnx
robot

ample in Figure 4. In the example Jy2,8t 15 the same
2s z3, the z.coordinate of the end-effector position. and
need not be recomputed.

In the teverse mode, the additional cost of compuiing
all the partials of 2 function s very small. An apper
bound was derived by Baur 2nd Strassen {2.25}:

Let f be a3 rational function of m variables z;,....zm
for which the computational graph has r{G) vertices. of
which p{G) are muitiplications/divisions. Then

r{G'}Y < 57(G}
s8(G') < 3p(G) {7}

Thus the cost of computing 2li the partials of 2 scalar
function is at most a small constant muitiple of the cost
of merely evaluating the function. The extension to tran-
scendental functions and exponentiztion is straghtior-
ward {25]. Our experience is that the 2bove bounds are
conservative. Also, it is frequently the cace that the func-
tion has been computed before the gradient is required. in
which case the cost of computing the gradient 1s reduced
by 7(G) (or #(G)).

4 Constraint Satisfaction

LC separates the specification of constraints and the tech-
nique used for satisfying them. Thus different constraint
satisfaction algorithms can be used. We describe here 2
non-linear extension of the relaxation method {1j. whick
can efficdently handle constraints :n meultiple domains
The method is local and iterative. The local nature of
the method makes it fast enough to be implementable in
real time. It exploits the knowledge of a good starting
point for the iteration — the solution to the constrant
satisfaction problem at the previous time step.

4.1 Constraints in a single domain

First cuusider the case in which all constraints ate ex-
pressed in one domamn. The method we use for constraunt
satisfaction is similar to the relaxation method for unear
inequaliiies {i], but is extended to nonLinear inequanilies
using Newton's method.




Let D = R™ be the domain, z € D, and let the system
of inequality constraints be

filz) <0,i=1%,....n. (8)

Let z* pe the kth iterate at time-step ¢, and

Vfi(zi)
i —_— ]
" N )
— f-(zh)
d = —_!V;’;(z")! (10)

Then each iteration is:

i Foreach:i=1.....n compute f,(z*). If2li fi(z*) <

0. terminate.
2. Else, let j be such that d, = max, d;.
kel % . N
7 =z - pid; +o)n, (i)
p € {0,2] is the relaxation parameter. 2nd o i5s 2
smezll offset.

The behavior of the above algorithm has been 2naiyzed
in the case of linear f; by ([1,26). The 2lgonthm 3 thea
globally convergent, with positive offsets o having the ef-
fect of inducing convergence in 2 finite number of steps.
The behavior in the non-linear case 1s similar in 2 suffi-
ciently small neighborhood of the feasibis set. The giobal
convergence property is lost. but this is not a serious prob-
lem since we are typically solving the inequalities starting
near the feasible set. Finally, the convergeace can be lin-
ezr with 2 large convergence ratio when the inejualities
are ill conditioned. Chocring relaxation parameter p> 1
can significantly improve convergence. We are currently
investigating the tradeofis with other methods that have
super-linear convergence but are more expensive per it-
eration.

The algorithm works well in practice. Step 1 of e2ch
iteration can be computed in parallel to check viciated
constraints. The gradient required in equations 9 and
10 ts efficiently computed using sutomatic differentiation,
and utilizes the effort already expended in computing fi.

4.2 Constraints in multiple domains

Since LC users specify constraints in different domains,
possibly related by linking functions, the single domain
case above has to be extended to handle meltiple do-
mains Consider the case of two domains D, and D3, and
further assume that D, is defined in terms of D3 by =
smooth linking map I : D3 — Di. Let f! be 2 constraint
in D¢ and f2? be z constraint in D;.

It is compautationally advantagsous to perform the de-
sceat in Dy, We it f' to s equivalent coasteaint
ft = flolin D;. Thus Vft = DITVS!, making the
method robust near singularities.

Also, it is pot necessary to explicitly compute the ma-
trix DIT — we ditectly compute Tft by differeatiat-
ing f! using zutomatic diffetentiation saving the cost of
the dim D, x dim D; maultiplications for the matnx- vector
product DI O 1,

This method is preferabie to methods which choose
the steepest descent and the 2stimate of the distares i:n
the specification domain Dy. Although the latter chowce
makes it easier for the user to anticipate the behavior
of the constraint satisfaction zigenthm. 1t is also more
expensive, 1n effect requiting the computation of I™* ot
DI=*. This also leads to numerical problems when the
Jacobian matrix Dl is singular or il conditioned. This 1s
important in robotics applications, where motion 1 the
vicinity of kinematic singularnities is sometimes desirable
or inevitable {28].

The general situation involves -onstraints exptessed in
severai related. snd possibly over.apping. domains 2nd 1s
haadled similatly by Bifting 2ch constra:nt function f, in
domain D, to the basic domain D3 by using a composition
of the linking functions provided.

4.3 Cost per iteration

Let ¢, be the cost. in muitiplicatzons. of computing 22ch
of the n constraint functions f,. The cost of eomputing
all the f,is V < 37 e where the =<7 case arises if the
/. share computations. The tsst of coastraint viclstica
in Step ! of the iteration costs V' and this is fixed by
specification of the constraints by the user. Let A =
{i1f. > 0} be the active or violzted constraints. Then the
update in Step 2 costs

€< 2% (12

|€A

Here we 2ssume trxz ¢; > dim D 2nd terms of the order
of dim D, are ignored. The cost of compuring the gradient
is actually bounded by 3c,. but of this ¢, has 2iready been
sccounted for n V. The total cost of each 1teration
V+U.

Note that U is very small when only 2 few constrants
are violated. 2nd is 2t mcst twice the cose of merely check-
ing if any consiraints are violzted.

5 Conclusions

The basic idez of the 2pprozch to control described in
this paper is “Least Constramnt™ — by which we mean
that we speafy control actions 2s weakly as desired. Thus
permits motions speafications o better reflect the asers
intentions. and mekes the programs ezsier te mamntan.
Another contnibution of this work s out ese of computa-
tional graphs for the efficient computation of 2 constrant
fonction and it’s derivatives. This leads to an iexpeasine
constraint satisfaction 2lgorithm that has the auxmbary
benefit that it is robust near sizgulanties.

We have wsed the LC framework oo 2 small range
of problems, including the task of programmiag 2 sim-
alated buman-like biped machine to walk dynamicaly
Ourt expenience indicates that LC s a useful programmung
spproach for complex systems with several coastiunts
However, the method can perform pootiy when the con-
strunts 2re dl-conditioned and the feasible set & smadl
and disconnected. For such cases. we are considenng

o




methods with super-linear convergence properties and for
selecting viable connected components of the feasible set
using simulation.

Finally, we would like to suggest that LC may be a
suitable larguage in which high level planners express mo-
tions. The plans produced can then be easily augmented
by sensors or tweaked by users if nec_ssary.
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Abstract

Recently, implicit patches have emerged as alternative
modeling primitives for three dimensional objects Iu
designing three dimensional models, one often encoun-
ters various shape requests. This paper develops tech-
niques for satisfying such requests through shape con-
trol. Jn particular, we show how to achieve the convexity
of quadric patches or cubic patches.

1 Introduction

The end goal of geometric modeling is to design and
to manipulate three dimensional models represented by
free-form surfaces. Traditionally, free-form surfaces are
built from parametric patches. Parametric patches are
successful as far as design and rendering are cousidered,
but manipulating three dimensional models with para-
metric pathes poses fundamental difficulties. For exam-
ple, parametric patches are not closed under sweeping
and convolution. The intersection of two parametric
patches are extremely difficult to represent and evalu-
ate [HK86].

One way to avoid these problems is to build fiee-
form surfaces from low-degree implicit patches. Implicit
patches are closed under all common operations in ge-
ometric modeling [B2)88], and the intersections of low-

degree implicit patches can be computed efficiently[0SS].

Recent re.earch shows that quadric and cubic nnplicit
patches are flexible enough for building arbitrary thice
dimensional models {Guo90, Guo91]).

A major reason that parametric patches have be-
come so popular in computer graphics is their good
shape control properties. In this paper, we tackle the
shape control issues of implicit patches. Using Berastein-
Bezier representation of polynomials, we can control the
shapes of implicit patches through manipulating their
control points.

*This work is supported by DARPA under ONR contract
N00014-86K-0591, NSF Grant DMC-86-17355, and ONR Grant
N00014-89J- 1946.

In desigring free-form surfaces. one often encounters
various shape requirements, such as a nice pattern of re-
flectiun lines and restrictions ou the munimum radius of
curvatuie. Among all the shape tequitelients, cotivex-
ity s the most basic and the most fiequently 1equested
one. lu this paper, we show how to mampulate the con-
tol points of & yuadiic patch or a cubic patc so that
the patch become convex.

1.1 Previous work

Low-degiee implicit suifaces are extensively used in the
exishing solid modeling and graphics systems as mod-
cling primitives [RV83]. and geometric opetatinns on
low-degiee implicit surfaces are well understood [OSS].
Implicit surfaces ate also very useful in swiface fitting
[PK#9] and blending [ROS7. MS85, HIIST, Blis2].

Many authors have addressed the shape contiol of
implicit patches [Sed85, WAMWS6, BW90]. I partic-
ular. Bloomenthal and Wywill {BW90] discussed shape
contiol using skeletons. and Sederberg pointed out that
the Bernstein-Bezier representation are smitable for con-
trolling the shapes of implieit patches [Sed&5)

1.2 Overview

Tlis paper is viganized as follows, Afta giving some
bachground wfonmation i Sectivn 2, we desaiibe the
basic shape control techuiques in Section 3. Section |
shows hiow to aclicve the comvenity of guadiic patches
and cubie patches

2 Bernstein-Bezier representation

Given a tetrahedion UV with vertices x;. Xa2. X3, and X3.
One can CAPIess any pomt P in space as

wheie




Figure 1: Cubic contiol points

The tuple (71, 72,73, 74) is called the barycenttic coot-
dinate of p. The barycentric coordinates are linearly
related to Cartesian coordinates, so any implicit poly-
nomial surface may be expressed in barycentric coordi-
nates via a linear change of variables.

For a non-negative integer tuple X = (A1, A2, A3, A4)

with [A] = E:=1 Ai = n, the Bernstein polyromial for
Als

]

n: Ay LA Az _A
BMr)= ——————pMptaplop M
M) YYD WL IR

Using Bernstein polynomials, one can uniquely repre-
sent any polynomial f of degree < n as follows.

f(r) =) baBi(7)
JAl=n

The bx’s are referred to as the control pointsof the poly-

nomial f and its surface S(f) = {x|f(x) = 0}. The con-

trol points of a cubic polynomial are shown in Figure L.
The following lemma is very useful.

Lemma 1 If
f2)=)_ erBi(r)
M=k
and ¢ = 0, then
Cr-tyerper = (VF(X0), %5 = %),
forj=1,2,3,4.
Proof: From [Dah86] ,

(xi — x,, Vf(x))

=k Y (erper = Crger) BATH(T)

IM=k=1

Letting x = x,, we prove the lemma. &

3 The basic techniques for shape con-
trol

An imphat pateh s defined as the zero contowr of a
polynonnal f mside a tetrahedion [x.x?x_;xi]‘.

firy= ) baBi(r).

[Al=A

where 7 15 the barycentric coordinate defined by the
tetrahedron {x;x2x3x4]). The basic idea of shape con-
tiol 1s to expiess the geomettic propeities the implicit
patch in teims of the control points so that one can
aclueve shape objectives by 1equiting the contiol points
to satisfv certain constraints.

To get a feel fou the effects ~f the contiol points. we
study a univatiate cubic poly A f.

Slu) =byo Bl + by B3, 2B, + boa Bis.

The value of the function f over [0.1] and the convex hull
of the points (0.b30). (1/3.b2t). (2/3.b12). and (1.bo3)
ate shown in Figute 2. The functions B3, B3,. B,.
and B35 are shown m Figue 3.

From these fignies. we can see the following.

L. At the end points of the interval [0.1], the control
points bye and bz cqual 1o the function values of

/.

2. The gradient of f at the end points of the interval
{0.1] are deternuned by bag. bay. bia. and bos.

3. The contiol point bye has a effect on the value of
S for all w except v = 0. and the eifect 1s the
strongest near « = | Similar statement can be
made about other control points.

All these 1elations between the contiol pomnts and the
properties of the polynomial f generalize to tuvariate
polynomials

We denote by {Xy. . Xa] the convex hall of § Xy, . X }




e control point

Figure 2: Function values of a univariate cubic function

Having understood the effect of the control points,
we use the control points to control the shape of the
surfaces. Consider the problem of interpolating points
and lines in space by a surface S(f). Since the values
of f at a vertex of the tetrahedron [x,X2X3xX4] is equal
to the value the control point at the vertex. setting the
control point to zero forces the S(f) to pass through
the vertex. This method of interpolating a points can
be generalized to a method of interpolating the edges of
the tetrahedron [x;X2x3x4].

Moving on to the problemn of cmntrolling the taagent
plane of S(f), we consider the tangent plane of S(f) at
the vertex x;. The tangent plane at x; is defined by its
the gradient V f(x1). From Section 2, we know that

1 .
bir—t)erlpes = Z_‘(Vf(xl)»xj -x1), j=2.3.4.

Since the vectors xj — x1 (§j = 2, 3,4) are three linearly
independent vectors, the above relation implies that the
control points next to x; completely determine the gra-
dient V f(x,).

More sophisticated examples of shape control are
easy to come by. The restriction of f to an edge of
the tetrahedron {x;X2Xx3X4] is a univariate polynomial.
If the control points on the edge are all positive or all
negative, then the surface S(f) does not intersect the
edge. Otherwise, the surface S(f) intersects the edge
exact once if there is exactly one sign change i the list
of control points along Jhe edge. Similar statemen.s ca
be made for the fars of [x; x2x3%4].

4 Achieving convexity

As an application of the techniques for shape control.
we derive the convexity condition of an implicit patch in
terms of its control points. Throughout this scction. we
concentrate on the implicit pacwch defined as the portion
of a surface S(f) inside a tetrahedron V' = {x;x2X3X4}.

The reader is familiar with convex objects as a set
of points in three dimensional space such that the line
segment connecting two points in the set is contanred
in the set. Convex surfaces are often defined as surfac -~
whose Gaussian curvatures are positive over the entie

surface. Conven objects and convex surfaces are related
in that 1f a comvex sutface s Jdosed and it bounds a
puint ot with finite volume. then the point set is a
convex object.

Defimug a conven sutface m terms of Gaussian cur-
vatuie is wot comvenient when dealing witl imphat sur-
faces  Su we use the definition of comven suifaces in
tetius uf the tangent planes. Let an bmpliat surface
S(f) have a taugent plane S{(Px) at punt x € S(f).
The smiface S(f) is convex at the point x if the surface
S{f) is w the half space bounded by S{Px) aud pointed
to by =V f{x). Au unplicit patch s couven if its pni-
maty swiface is comen at every pownt un the imphat
patch.

Notice the relationship between the convexity of the
sutface S(f) and the convexity of the polynomial f. A
polynomal f is convex over the tetiahedion V7 if for any
two points X and y in the tettahedion.

X+y
2

72 < 200 + 1y,

[t is easy tu show that if the polsuomial f s convex
over the tetiahedron 1, then the implicit patch defined
as the poition of S(f) wside Vs conven., Howerer. the
converse is not true.

Motivated by the design of patametic conves sur-
faces. tescardicrs e CAGD have obtaimed many results
ol Lhe coinveaity couditions of polyuomials vver trian-
gles [CPRI]L Tt is possible to generalize these results
1o poly nonuals over tetrahedra [DMER]. thus obtaining
sufficient conditions for implicit patches to be convex.
However. the convexity conditions obtamed this way are
often ovetly 1estuctve. So in the following. we denve
the convexity conditions of an wunplicit patch directly
fiom the definition of a comves imphert pateh,

Let p’ = (7. m3. 73.7{) be a point close toa point p =
{7t 7. a1 ) on the sutface S(f). The Tavlor expansion
of f. with ngher order tetms omitted. s

H
, of
Jip') = f(p)-é-z ;—;_['i“. -+
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Figure 3: Weight functions for a univanate cubie function
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i,j=1

(ri =il — 1) (i)

The first term on the right-hand side of the above
equation, f(p), vanishes because p is on S(f). Moving
on to the second term, we notice that this term is the
same as the left-hand side of the tangent plane equation

at p,
J

Tl(rl —T.')=O. (2)

.M"'
Q)l\

1]
-

So the definition of a convex implicit surface implies
that S(f) is convex at p if

4
3f /
Zl a,'.fj(r-' ~m)r = 7) 20 (3)
ij=

for all p’. Introducing new variable oi = 7/ — 7, we can
write (3) as
4
9 f
2 5r07, 7 20 “
=1
The o’s satisfy the constraint

4

Za;:O {3)

i=1

since the barveentiic coordinates () and (7)) satisfy
the constiaints

Zr, =1 and ir,': i
=1

. . - 3
To chminate the constiamt (5). we substitute = %"

L=}

for av in (1), The result s

3

S aytp)aia, 20 (6)

[T
for abittay (0. 72.0,5) with

U? -}2 2 02
uy{p) = ; .f + = .f S .d .f - (1)
andr, " Indny Ondry On,dn

The condition (6) 15 the condition for the surface S(f)
to be convex at the point p.

Applyving the condition (6} to every point on an im-
plicit patch. we have the following theorem.

Theorem 1 .tn smphicit patch 1s conver of the 3 x 3
matiie 4 = {a,,) 15 posdiee definate for all pomis poon
the tmplicat pateh.

Proof: Obvious fiom the above arguments. &

Generalizing the convexity conditions for bivariate
polynommls would give a sufficient condition requiring
the matn A to be positive definite over the entire tetra-
hedron as opposed to the mplicit pateh The condition
in Theotem 1is much less restnetive.

]




Although Theorem 1 gives a condition for the con-
vexity of an implicit patch, the condition is hard to use
because checking the condition for the infinitely many
points on the implicit patch is impossible. So ir the rest
of the section, we use Theorem 1 to derive the convex-
ity condition of an implicit patch in terms of its control
points.

If f is a degree k polynomial given by

f = Z b,\Bi(T),

| j=k
then
i -
o =hE=1) Y busa BT
’ ul=k=2

and A = (a,;,(p)) is 2 3 x 3 symmetric matrix whose
entries are homogeneous degree k — 2 polynomials in
(r). From linear algebra, A is positive definite if and
only if

ajpar2

any 20: a12a22

>0, and |Al > 0. (&)

In order to decide whether A is positive definite for all
points p on an implicit patch, we have to determine the
signs of the minimum values of the quantities listed in
(8) under the following the constraints,

f(p)=0, (9)
n+nymtr=1, and n >0 (i=1,23.4). (10}

Here the constraints characterize the points on the im-
plicit patch. The inequality constraints and nonlinear
constraints in (9) and (10) make the problem of deciding
the convexity of a general implicit patch very hard.

Fortunately, practical criterions for the convexity of
quadric patches and cubic patches can be derived. For
quadric patches, notice that

a>f -
oridr, o+

is independent of p, so the convexity of a quadric patch
can be decided by evaluating (8) with the constant «,, =
bosgos +b0002 —borg,s — boyyea.

Deciding the convexity of a cubic patch is a little bit
harder. Using the formula for Bernstein-Bezier polyno-
mials, it is easy to verify that

4
23S i
d7idr, =6 Z bom g2t423 T

m=l
Using this relation, we can re- rite (6) as

4

Z.—QO(a) >0. (1)

m=1

whete

4
Quia) = Z (l’»-.{.»),-.,m‘f'

1y=1
b-_),_4+5m - b,~l+,'|+,_m - ll,4+,,.;.,n. )17.'0_,.

Since the left-hand side of inequality {11) is a convex
combination of Qm(c), the inequality (11) is valid over
the entire tetrahedion enclosing the cubic patch if and
ouly if the inequality is valid 2t the vertices of the tetra-
hedron. i.c.

Qumio) 2 0. for m =1,2.3.4.

So the cubic patch is convex if the inequalities in (8)
holds for m = 1,2.3.4 with constant

Uy = (;,,+,,_Hn. + ’)2,_.4 Fom = l),-{_,.,x_r,.m - b,:*,;.g.,m .

An unportant observation is that for cach m. the
aburve wondition is exactly the same as the convenity
condition for a quadne patch. Using the tarminology of
CAGD. we can say that a cubic patch m=side a teteahe-
dion 15 comvex 1f the subpolynonuals at the vertices of
the tetrahedion are convex.
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ABSTRACT

Modeling and simulating collections of physical objects which are subject to a wide
variety of physical forces and interactions is exceedingly difficult. The construction of
a single simulator capable of dealing with all possible physical processes is complately
impractical and, it seems to us, wrong-headed. Instead, we propose to build custom
simulators for single, particular collections of physiczl objects and where pre-specified
physical phenomena are involved. For such an approach to be practical, an environment
needs to be provided that facilitates the quick construction of these simulators. In this
paper we describe the essential features of such an environment and describe in some
detail how a general implementation of the weighted residual method. one of the more
general classes of of numerical integration techniques, can be used.

Keywords: Simulation, physical modeling, computational fluid dynanics. symbelic « -
putation, weighted residual method, soft'vare development tools.

1 Introduction

We are intereste ' in building software systems that simulate reality—especially
when several different physical phenomena are involved in the simulation. Depend-
ing on the nature of the objects in a scene, their behavior may be governed by
rigid body dynamics, fluid flow, quantum mechanics or other families of laws. The
forces that act on these objects are gravitation and electromagnetism for macro-
scopic systems, and weak and strong interactions for systems at atomic scales. In
addition, many observable properties of physical systems, including superconduc-
tivity, semiconductors and chemistry, are manifestations of statistical averages of
detailed lower level behavior. These macroscopic phenomena are usually simulated
through their own models—it being prohibitively expensive to simulate from first
principles.

Besides the computational costs, the complexity of dealing with all physical phe-
nomena and mechanisms would make such a simulator ferociously difficult to build.
Rather than build such a general purpose simulator we propose a new program:
Build special purpose simulators tuned for a narticular configuration of physical
objects and where a particular set of physical phenomena are involved. Such a
simulator should be less complex than a general purpose simulator, which must
be prepared for any eventuality. The specialized simulator will only have to con-
sider a known system of equations with known parameters. It will consist of more
straight-line code and will have fewer parameters and thus should be easier to tune
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for high performance/patallel computer architectures. However, each new problem
configuration would require the creation of a new simulator.

To make this endeavor practical, we are combining a2 wide array of techniques
from artificial intelligence, computer algebra, compiler technology and code trans-
forms to provide an environment that vastly simplifies the process of building special
purpose simulators. In effect, one builds a “simulator generator™ that crafts a cus-
tom simulator for a particular configuration of physical objects. Such a simulator
generator will generate the particular set of differential equations that model the
scene and then will generate a piece of code for the explicit equations that apply to
the problem. This approach has a number of advantages:

e More sophisticated mathematical techniques can be used to generate the sys-
tems of equations to be solved.

o Conformal mapping techniques can be applied to the non-linear differ-
ential equations to simplify and regularize boundary conditions.

o Averaging and perturbation techniques can be applied to reduce the
order of the equations.

o Numerical techniques specialized to the equations being solved can be used.
o Software can be retargeted to different computer architectures relatively easily.

This new approach to simulation and modeling is replete with new problems that
need to be studied and new technologies that need to be developed and applied. In
this paper we sketch a general framework for simulator generation and consider some
of the components in detail. It should be noted that we are sketching a simulation
and analysis framework that is to be used not only for Newtonian mechanics but
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also for problems that are driven by electrodynamics, relativistic mechanics and/or
quantum mechanics as well as aggregate models like solid state theory. galactic
dynamics, chemical kinetics and fluid dynamics. Thus one should exercise caution
when extrapolating from experience in just one simulation domain.

The process of performing a simulation is shown in Figure 1. We begin with
the observable scene to be simulated. An observable scene is those properties of
the system that ba be observed and are independent of the physics used to model
the behavior of the scene. By applying the laws of physics to the scene state equa-
tions are generated whose solution describes the evolution of the scene with time,
within certain regions of validity. The state equations are then converted into code
that numerically computes the scene’s state changes. As time advances. the state
equations may cease to be valid and must be changed. Similarly. the geometric or
topological characteristics of the scene itself may change. These effects are indicated
by the shaded “feedback” arrows in Figure 1.

The state of a physical system is determined by the values of a set of state
variables, which may include a subset of the observable parameters of the objects
in a scene. The result of applying the physical laws to a scene are a set of stale
equalions that constrain the state variables over time. For instance, for clocked
boolean logic circuits, there is a finite set of state variables, each of which ranges
over {true,false}, time is modeled by a sequence of discrete events occurring on
clock edges and the state equations are boolean equations. For rigid body dynamics,
there is a discrete set of state variables that have continuous values, time is modeled
as a sequence of irregularly spaced events and the state equations are ordinary
differential equations. In fluid dynamics, there is a continuc.s number of of state
variables, one for each point in the (continuous) fluid, and their values range over
a continuous vector space. The state equations are partial ¢.flerential equations.

Once the state equations of a scene have been generatzd (the middle box of
Figure 1), general mathematical techniques can be used to convert them into a
form where numerical information about their state variables can be determined.
Examples include conversions of ordinary differential equations into finite differ-
ence formulas by Runge-Kutta methods, or the conversion of partial differential
equations into systems of linear equations by finite element methods. We call the
process of converting a system of equations into an effective computational form a
discrelization.

These computation structures can then be converted to actual programs (or
codes) that numerically simulate the scene. If something 1s known about the archi-
tecture of the computer that will run the program then especially fast codes can
be generated by symbolic elimination of variables, unrolling of loops or duplication
of code. Each of these options may be appropriate because of cache sizes, vec-
tor processing structures or interprocessor communication costs. Other .echniques
of compiler theory are also appropriate and should be carefully considered at this
point. More radical transformations like changing the order of the discretization
or the discretization method itself may also be appropriate. This entire process of




converting state equations into computational structures and then into executable
code is indicated in the right half of Figure 1.

This paper discusses each of these steps in the simulation process. In Section 2 we
discuss one approach to representing scenes, their components and the underlying
physics. Once the state equations have been generated, they can be directly solved
numerically, yielding the trajectory of the scene from a given set of initial conditions.
The approach we are pursuing is discussed in some detail in Section 4.

However, occasionally some property of the trajectory is of interest—not the tra-
jectory itself. We argue that by using symbolic techniques, we can often transform
the differential equations that describe the system into other equations whose solu-
tions more precisely answer the questions being asked. Solving these transformed
equations is often substantially easier than solving the original system. However,
substantial (non-numeric computation) is required to produce the transformed equa-
tions. In Section 3 we illustrate how averaging techniques can be applied to reduce
the dimension of the problem being solved and more directly answer the questions
of interest. This technique is classical, but we fell is representative of the type of re-
duction that will be valuable in the future and is possible by the general framework
being proposed.

In the domain in which we are working (fluid dynamics), the state equations
are partial differential equations. A wide variety of different methods are available
for their numerical solution. Many of these methods can be subsumed within the
general mathematical framework of weighted residual methods. Because we have
access to the state equations in symbolic form, we can directly apply the weighted
residual methodology to the differential equations of the problem to produce a
computational structure based on a wide variety of different techniques including
finite element, spectral and collocation methods. This approach is discussed in
Section 4. In Section 4.1 we describe the general principles behind the weighted
residual method. In Section 4.2 we use the weighted residual method to produce
a spectral method computational structure for a problem in fluid dynamics. This
particular example illustrates the complexity of the codes generated in the study of
turbulent fluid dynamics.

In Section 4.3 we give another illustration of the weighted residual method in
fluid dynamics, but this time the result of the discretization process is not a system
of linear equations, but rather a system of ordinary differential equations. This is
another example of where symbolic techniques can be used to convert a numerical
problem into one that more directly provides the desired answers.

2 Scenes and Laws of Physics

This section makes more precise what we mean by scenes and physical laws. Sec-
tion 2.1 discusses scenes while Section 2.2 discusses the components of a2 physics
and some their functions.




2.1 Scenes

When describing a physical system that is to be simulated. we distinguish the
observable properties and characteristics of the system from those properties and
characteristics that are required by a particular physical model. The former are
components of the observable scene, while the later belong to the physical laws
and models that are to be applied to the scene. For instance, the charge, mass
and position of an electron are components of the scene. but the electric field is a
characteristic of a physical model that might be used to determine the effect of the
electron on other charged particles. Fields in physics are not themselves directly
observable. It is only through their effect on other objects that their existence can
be ascertained. The effect of one object on another is the purpose of a physics
and thus fields are artifices used to facilitate the physics itself. (Recall that general
relativity replaces a gravitational field by bending of the fabric of space itself. For
small masses these disparate mechanisms give the same predications.)

Similarly, the “ether” of nineteenth century physics belongs to a set of physical
laws, and is not intrinsic to the scene. Ether is posited by nineteenth century
physics and is not, itself, observable. A more modern example is the wave function
of quantum mechanics. It cannot be observed in the scene but is essential for a
particular set of physical laws. In all of these cases the physics used to analyze the
system imposes additional parameters (e.g., wave functions) or objects (e.g., fields
or ether) as an aid in specifying the physics itself.

A scene consists of a number of objects (rods, resistors, fluids. etc.) and connec-
tions (hinges, electrical nodes, etc.) between them. The constraints constrain the
behavior of two or more objects in some fashion. For instance, a hinge between two
rods requires that the rods remain connected, while an electrical node connecting
the pins of two resistors ensures that the two pins always have the same potential.

In addition, the objects possess a number of “observable” properties, ¢.g., the
position and momentum of a particle. These properties are those aspects of the
state of the object that may be observed in the scene, and thus are independent
of the physics used to model the behavior of the scene. The observable properties
may be redundant and related by some equations. For instance, the observable
properties of a particle include the particle’s mass (m), position (r), velocity {v).
momentum (p) and kinetic enetgy (T), where

v_dr
T dt?
p =myv,
_mv-v_}_)-_p
T= 2 T 2m’

For some models of physics, like Newtonian mechanics, the observable parameters
actually correspond to state of the physics. That is, the observable position and
momentum are actually the position and momentum of the object in the physics.
In other models, ¢.g. quantum mechanics, the observables are derived from the
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Figure 2: Simple Pendulum

their correspondents. That is the quantum mechanical position and momentum of
a particle are not interchangeable with the observable position and momentum of
the particle.

2.2 Physics

The properties of an observable scene are not necessarily approprizte for simuia-
tion. Instead, the physical laws translate the scene into one where the new scene’s
objects are described using state variables. For instance. 2 two dimensional scene
that consists of a heavy bob at the end of a rigid, massless rod whose other end is
hinged (i.c.. 2 two dimensional pendulum) might have constitutive parameters of
the length of the rod (£} and the mass of the bob (m)—see Figure 2. The observable
parameters in the scene might be the position of the bob ({z,y) € 22). However.
when formulating a simulation, one would probably use the defiection of the rod
from vertical (6 € [—=, 7)) as the state variable of the system. The position of the
bob can be derived from @ by

(z.y) ={c: + £sinb,c; + £cosb).

Each set of physical laws acts similarty. It must coastruct from an observable
scene an inferprelaiion scene that consists of objects, state variables that are appro-
priate to the physical model and the manifold structure in which the state variables
lie. A correspondence also nezds to be provided between state varizbles in the in-
terpretation scene and quantities in the observable scene. The combination of the
state variables, their manifold. and the correspondence we call an interpretetion
scene or just an inlerprefation. Examples of interpretations are the generalized
coordinates of Hamiltonian mechanics (which were used in the pendulum example)
and the wave functions of quantum mechanics.




A description of a physics consists of (1) the domains of validity of the physics,
(2) a method to generate an interpretation scene from an observable scene and (3)
how fields and energies are to be derived from the resulting interpretation scene. In
addition we must have a formulation of mechanics that allows us to combine the
fields and energies produced by the different sets of physics to generate the state
equations. Examples of formulations are Lagrangian and Hamiltonian mechanics.
both of which can be applied outside the domain of Newtonian mechanics.

The physical laws that apply to a scene are kept separate from the scene and
should be expressed independently of their application to a particular scene. There
should be one (or more) descriptions of rigid body dynamics and one (or more)
descriptions of electrodynamics. These descriptions include the “laws of physics”
(e.g., F = ma for rigid body dynamics, or Maxwell’s equations), specifications of
when the particular laws are applicable and procedural specifications of how to
apply the laws to a particular scene.

We call a set of physical laws a physics. Each physics has a limited range of ap-
plicability (until the Grand Unified Theory is discovered). Among the components
of a physics is a specification of how forces and energies of objects in a scene can be
computed. There are multiple physics’s, some of which are compatible with each
other over certain ranges of state variables and some of which are incompatible.
For instance, Newtoniar.  =chanics and classical electrodynamics are compatible
for small masses and slow., aoving macroscopic particles. Electrodynamics merely
introduces a new force, which is characterized by Coulomb’s law. Quantum me-
chanics and general relativity seem incompatible.

This approach ensures that different physical considerations are dealt with sep-
arately. For instance, one should be able to simulate an electric motor by applying
both rigid body dynamics and electromagnetics to a scene that consists of the rotor
and stator of the motor, with the appropriate constitutive nroperties. We believe
that greater modularity will result from this approach, althougn it places a premium
on the symbolic techniques.

3 Harmonic Balance

When setting up a system of differential equations that models some physical sit-
uation, it is often easier to generate the equations in terms of state variables that
are different from the ones that the user is really interested in. For instance, for
a mechanical system it may be easiest to generate equations in terms of cartesian
coordinates while the interesting behavior might best be expressed in terms of radial
coordinates, or angular momenta or even averaged angular momenta. Each of these
conversions can be performed after the numerical solutions are generated, however,
using symbolic techniques to perform this conversion before the integration process
makes generating an accurate solution easier.

To illustrate this approach we will use a more sophisticated type of coordinate
change that ~lso facilitates an averaging technique. Thus we will ultimately generate




differential equ. ons for the average values of the variables of interest.

A large varie., of simple oscillatory type systems can be modeled by differential
equations of the form
L=y,

. (1)
¥ = —z + ch(z, y).

For h(z,y) = (1—z?)y we have the van der Pol equation [14], for h(z, y) = (1-y%)y
the Rayleigh equation [12], etc. When € = 0 (1) reduces to a simple harmonic
oscillator, whose solution is:

z(t) = ro cos(t + o), y(t) = 2(z) = —rosin(t + ¢o), (2)

where ro and ¢o are constants set by the initial conditions. In the z-y plane (the
phase plane), the solutions are circles centered at the origin. The term ch(z, y) of
(1) acts as a perturbing non-linear damping factor on the solution to the harmonic
oscillator. An example of the behavior of this damping factor cap be seen from the
van der Pol equation where h(z,y) = (1 - z%)y:
=y,

(3)
§=—z+¢(l-2z%)y.

The phase plot of the van der Pol equation, for ¢ = 6.6 and various initial conditions,
is shown in Figure 3.

In the phase plane, (3) has a stable limil cycle of radius approximately 2. If the
initia! conditions of the system are outside the limit cycle, the system will cycle
inwards around the limit cycle continuously getting closer. If the starting point is
inside the the limit cycle the system will oscillate outwards towards the limit cycle.
From a physical point of view we mi,ht have two basic questions:

e What is the average amplitude of the Lmit cycle?
¢ How quickly does the system converge to tne "imit cycle?

We can study the behavior of the non-linear oscillator by ass.n-ing the solurin
is of the form (2) but allow the constants to be time varying functioss, ?

z = r(t)cos(t + 4()),
y = r(t)sin(t + ¢(2)).
Substituting these expressions into (1) gives the following system of equations
fcos(t + ¢) — sin(t + ¢)(1 + ¢) = rsin(t + ¢),
Fsin(t + @) + cos(t + ¢)(1 4- ¢) = eh(rcos(t + @), rsin(t + ¢)).
When solved for # and ¢, which must be done symbolically, we have
= eh(rcos(t + ¢), rsin(t + ¢)) sin(t + ¢)

b= ~Zh(rcos(t + ), rsin(t +¢))cos(t + ).




Figure 3: van der Pol Oscillator

The solution to this system of equations gives the amplitude of the system, which
is closer to what we are looking for. In a physical system we probably don’t care
about the phase information. We are more interested in the asymptotic behavior of

the system. This can be obtained by averaging these equations over one oscillation,
i.e. ttot+2m

dry e [* . .

& ", h(rcos(t + ¢), rsin(t + ¢))sin(t + ¢) dt,
d(¢) 3 € 2z .

TRt ==l h(rcos(t + ¢), rsin(t + ¢)) cos(t + ¢) dt.

In the r-¢ coordinate system, the van der Pol equation becomes
i = er(l — r? cos?(t + ¢))sin®(t + ¢)
¢ = (1 — 72 cos*(t + ¢)) sin(t + ¢) cos(t + ¢)

When, averaged, the equation for # becomes

dr) _ €
dt ~ 27 Jo

(4)

x 3
’ (rcos?(t -+ @) ~ 1)rsin(t + ¢) dt = —¢ ((—2— - %) . (3)

The solution of this equation is precisely the evolution of the “average™ amplitude
of the oscillation without any additional information. Notice that we have been able




Figure 4: Amplitude of van der Pol Oscillator: raw and averaged

to reduce the order of the equation by one by averaging out the phase information.
In Figure 4 we have shown the evolution of the a solution of (4) for two starting
points, one inside and one outside the limit cycle, using a solid line. The dotted
lines indicate solutions of the averaged equation (5) from the same two starting
points. ]

On the stable limit cycle of the system, (r) will vanish, so by solving

G
0= (T - 7)

we see that the average radius of the limit cycle is 2, which is independent of the
initial conditions. This can also be observed from Figure 4.

The rate at which a solution approaches the limit cycle can be determined by
solving (5):

4016“ 1/2
)= | ——————— .
r(®) (c;e“ - l)

This type of perturbation analysis has been used by in celestial mechanics since
the time of Laplace and Lagrange. The particular problem we consider here, the
behavior of solutions of equations of the form (1) was discussed in some detail by
Poincaré [11]. More recently Krylov and Bogoliubov [8] have demonstrated the use

10




of averaging techniques in a wide variety of problems. For a more modern treatment,
one might look at [13].

4 Weighted Residual Methods

For a large number of physical simulation problems the state equations are partial
differential equations. Though the number of techniques for solving these systems
can be bewildering in their number, the most important techniques can be divided
into two major classes: finite difference algorithms and weighted residual meth-
ods. We have decided to focus on weighted residual methods because most of the
techniques of interest in our application area are of the weighted residual type.

There are a vast number of implementations of numerical algorithms based on
particular weighted residual methods, most often for particular partial differential
equations, but to our knowledge there have been no previous attempts to build
a system that generates a numerical solver for a wide class of weighted residual
methods.

We describe the basic principles behind the weighted residual method in Sec-
tion 4.1. In Section 4.2 we give a brief illustration of how the weighted residual
method is used to generate particular numerical codes in fluid mechanics. Finally,
in Section 4.3 we use the weighted residual method, along with a number of other
ideas, to reduce some questions about fluid flow to questions about a system of
ordinary differential equations.

4.1 General Approach
Let
Lu=f (6)

be a partial differential equation, where L is a partial differential operator and u is
a function of {zy,...,zm}. The weighted residual method assumes there exists a
{pcssibly infinite) set of trial functions {¢;} such that, for some choice a;,

4= Z aid; (7)
0<s< Y

is an approximation to u, the solution of (6). The ¢; are function of some subset
of {z1,...,Zm} while the a; are functions of the remaining variables. Substituting
(7) into (6) we have residual error

Re(d)=1L z a;di | - f.

0<i<N

The goal of a weighted residuar method is to choose the g, in a fashion that mini-
mizes Rg(#) in some global sens-.

Il




A set of equations for the a; can be deduced by choosing a set of weighting
functions, w, and requiring the inner product of Rg(i) with the weights to vanish,
i.e.

/ij[-;(ﬁ) dv =0 (8)

If the ¢; are functions of all of the variables {z|,...,zs}, then the resulting equa-
tions are algebraic in the a,. When L is a linear differential operator, the resulting
equations are linear. Applying L to the components of the expansion and rewriting

(8) we have
> a;/wj Lé;dV =/w,fdv
0<i<N

For certain operators L and known ¢, and w, the integrals above can be tabulated.
Thus the bulk of the symbolic computation inherent in the reduction of (8) to
systems of equations in the a, can be performed a priori. However, if the ¢, and w,
are supplied by the user and, especially, if L is non-linear then symbolic computation
is unavoidable in the application of the weighted residual method.

If the ¢; involve a subset of {z,...,zm} then (8) will be a system of ordinary
differential equations. Often the ¢, are functions only of the spatial variables and
the a, are functions of time. This is the situation in the two examples considered
here. In Section 4.2 the partial differential equation is first discretized in time
and then the weighted residual method is applied, producing a system of linear
equations that need to be solved. In Section 4.3, the weighted residual method is
applied directly to the spatial variables resulting in a system of ordinary differential
equations for the a;.

A wide variety of different integration schemes fall into this general framework.
If the w; are chosen to be the same as the ¢; we get a Galerkin projection. This is
especially convenient if the ¢, are orthogonal and eigenfunctions of L. The system
of linear equations are then diagonal. The resulting technique is called a spectral
method. The most common spectral method chooses ¢ = etkx

The finite element method discretizes the computational domain €2 into a number
of elements, Q;,...,Qn. It then chooses the ¢; to be continuous functions that are
zero everywhere except within §,. A Galerkin projection then gives the equations
for the a;.

In general, determining the linear equations or ordinary differential equations
that need to be solved from (8) is a rather painful process that must be petformed
by hand. By taking advantage of methods from symbolic computation we can
largely automate this process.

4.2 Numerical Example

In this section we illustrate how the weighted residual method is used to produce
a numerical code for a problem that arises in the study of turbulent channel flow.
This example illustrates the complexities that arise in practical applications of the
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weighted residual method. A simplification of one of the equations that arose in
Kim, Moin and Moser’s study of turbulence in a channel flows (6] is

dg(z,y,t)
at

where z and y are the spatial dimensions of the the problem (only two are needed
for this illustration). A is a known non-linear function of g and other functions that
occur in the problem. In practice it can be a fairly complex expression and more
than one partial differential equation be involved.

In solving this problem, discretization must occur in three different dimensions—
time and the two spatial dimensions. Three different schemes will be used: An
implicit finite difference scheme for time (t), a spectral method for the z dimension
and a Galerkin type method using Chebyshev polynomials for the y dimension.

These three schemes are used in three successive steps. First, time is discretized
and the value of g(z, y, t) at the n*® time step is denoted by g"(z,y) = g(z, y,n At).
Second, ¢"(z,y) is discretized in the r dimension using Fourier expansion with
coefficients g7 (y). Finally, §7(y) is discretized using Chebyshev polynomials in the
y dimension with coefficient 9% ;- That is,

=y = ), G
0<k<N,

= Z Z gz'j:rj(y)eQxik:/Lg.

0<k<N, 0K <N,

= h(g) + 7-9%0, ©)

At this point the coefficients are numbers, and if done properly they are solutions of
linear equations. Once these linear equations have been solved we can reconstruct
g(z,y,t) by summing the series.

Each of these transformations can be automated using symbolic techniques. In
practice, their application is not completely straightforward. The following para-
graphs illustrate this with some comments on the implementation of these tech-
niques using symbolic computation.

The first step is to perform the time-wise discretization. We denote by ¢" =
g"(z,y) the function that corresponds to g at the n** time step. The most straight-
forward discretization would be the explicit formula

gn-H. — gn
At

But this is known to be relatively unstable.

Figure 5 gives a number of different discretization techniques that can be used
for ordinary differential equations. For this particular problem no one of them
is completely satisfactory. For instance, the explicit methods (Euler or Adams-
Bashforth [2 4]) are not sufficiently stable when applied to the entire equation.
The implicit methods require the solution of a non-linear equation at each time
step (because of the nonlinearity of k) and are thus too costly.

1
—_ n S T2.n
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( f(z") Explicit Euler
f(z*th Implicit Euler
n n+41 n
""_“_‘_x_" = &#(2—2 Crank-Nicolson
At 1 e
3 [3f(a:") - f(a:""l)] 274 Adams-Bashforth
| 1—1,, (23f(z") = 16f(z""!) + 5f(z"~?)] 3" Adams-Bashforth

Figure 5: Discretization techniques for 2(¢) = f(x)

The solution is to use an explicit scheme on the nonlinear terms and an implicit
scheme on the linear terms. Using the second order Adams-Bashforth formula for
the linear terms a2nd the Crank-Nicolson formula {3] for the linear terms yields

gn+l - gn

1 n n- l n 2. n
= 5 (3h(e™) = hg™ ™) + 5 (V3" + V).

2Re
In a symbolic manipulation system this process is quite simple. The differential
equation is first converted to a sum of terms form. Each term is then examined to
see if it is linear in g. If so, an implicit formula is applied to each term, otherwise
an explicit one. The results of these replacements are then added together and
simplified.

The terms that involve g”*! can be isolated on the left hand side to give

At At
n+l _ 2nkl 0 ny _ n-1 n
" - ==V 5 (3h(¢7) — h(g"71) +¢" +

Again the symbolic processing involved is straightforward, each term is examined

and placed on one side of the equation or the other based on its dependence on
gn-H_

sVt (10)

At a given time step, each of the terms on the right hand side of (10) is known
and can be computed directly. The next step is to compute the Fourier transform
of this equation, eliminating the functional dependence on z.

@y = D Gr(yerirlls
0<k<N:

Thus the £** mode the Fourier transform of the left hand side of (10) is

At At EN\Z 9t
F - —2 ndl { _ andl | 50 4; 2-n+1 f - k
k{ (1 2Re ) g } 9 Re \ " Ok L; oy?




So for each k we need to solve the equation:

At E\: &
Py (42 (2) - 2 ) ot
+ 35 (41 (L,) ay2> g

(11)
= fk{% (3h(g") - h(g"'l)) +g” + A-V2 “}

2Re

This equation is finally discretized in y by expanding §2(y) in terms of Chebyshev

polynomials:
Y @),
0<j<Ny

where gj ; are numbers. The Chebyshev expansion of the left hand side of (11) is

At kE\? 92
sntl 2 =) _ s+l
%t oRe (4” () ayz)g"

~n At k ~n ZT' ~n
= 2 BITW+ (41 (L,) Ti(y)d+' + -E;_g(l)gkjl)

0<]<N

2 2
- 5 (52 ) )] oo -3y

0Lj<Ny

The last term in this sum causes some problems because it is not expressed
as a sum of Chebyshev polynomials, but as a sum of their derivatives. However,
derivatives of Chebyshev polynomials can be expressed as a sum of Chebyshev
polynomials by repeated application of the formula

fale) _ TH) |, Ti(e)
(r+1)(n+2) (n2-1) (n=-1)(n-2)

or by solving the tridiagonal system it implies. At this point, we have converted
the problem of advancing time in (9) to solving systems of linear equations and
computing Fourier and Chebyshev transforms.

For other basis and weight functions, and for other differential equations, very
similar approaches are used. Simple symbolic methods (arithmetic operations and
some simplification) are used to reduce the projection process to a sequence of
integral. In the case discussed here, all of the integrals could be performed by table
lookup. In the next section the integrals will have to be performed numerically.

= 4T, (z),

4.3 Proper Orthogonal Decomposition

By discretizing the spatial dimensions but not the time dimension, we can reduce the
Navier-Stokes equations to a system of ordinary differential equations. If the proper
basis functions are chosen and sufficient terms are used the dynamical behavior of
the ODE’s should closely approximate that of the Navier-Stokes equations.
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Figure 6: Coordinate System for a Channel

Lumely [9] has suggested using this approach to study the behavior of the turbu-
lenr boundary layer of a fluid moving over a flat plate. Within the boundary layer
bursts can be observed that are spatially and temporally somewhat periodic [7]. It
would be interesting to know if these periodic phenomena manifests themselves in
the ordinary differential equations where more powerful mathematical techniques
can be used to analyze their behavior.

This reduction and detailed study of the resulting dynamical systems was origi-
nally performed by John Lumley, Philip Holmes and their students [1]. As we shall
see the ordinary differential equations that result are extremely complex and are
best generated by symbolic techniques.

Fluid flow is governed by the Navier-Stokes equations. In the absence of external
forces the dimensionless form of these equations is

g—:+(v-V)v= —V1r+évzv, (12)

V-v=0 (13)

where v denotes the velocity field of the fluid and Re is the Reynolds number of
the fluid. Flows with small Reynolds numbers tend to be rather steady, while flows
with Reynolds numbers greater than 2300 are generally turbulent. In order to write
the equations in a dimensionless form, characteristic lengths need to be defined in
each of the three dimensions. We denote these different characteristic lengths by
Ll, Lz and L3.

If f(z1,z2,23) is function of position in the channel, we will denote by (f) its
spatial average in a plane parallel to the walls of the channel:

(f(:llz2l:c3)) = Z:Ts/f(zl)z%z:‘!)dzldz&
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where L, and L3 are characteristic dimensions in the z; and x3 directions respec-
tively. Within this plane the turbulent flow is relatively homogeneous. Variations
occur in the orthogonal direction. Thus (f(z,,z2,z3)) is a function of only the
distance from the wall, z,.

The streak structure that we are interested in is not a function of the mean
velocity of the fluid, only its fluctuations. Denoting

(v} =(U(z2),0,0)=U

we can determine U(z3) exactly:

z3 .1:2
U(xz) = Re/ (uruz) dzf + Reud (Ig - TIZ) , (14)
0

where ur is the dimensionless wall shear velocity and H is the half height of the
channel. Applying this to (12) we get the Reynolds averaged Navier-Stokes equa-
tions:

du, L du [ [T 2 z2
+ Re — axl [L <ulu2)d.1:2+u7-( Q—E)]
2z2 \ Ou; du,
+ Reuz &y [(UIUZ) +ud (l - —H—)] + Z u; (ﬂ; <u,5-g>)
1<js3

= -p; + —Rl-évzu,'.
(15)
These are the equations to which we will apply the weighted residual method.
Notice that while the Navier-Stokes equations are quadratic these equations for
the velocity fluctuation are cubic due to the quadratic behavior of the mean velocity

in (14).

4.3.1 Eigenfunction Projections

Because the flow is homogeneous in the plane parallel to the wall, we can use a
Fourier expansions in the in z; and z3 directions (parallel to the wall). We assume
we are given a set of basis functions in the inhomogeneous direction. These basis
will not be known numcrically, but rather will be provided numerically. These
basis functions are called the “empirical eigenfunctions.” Expanding the velocity
fluctuation u just along r; and z3 dimensions we have

Z u(z2, t; k1, k3)e BT,

kl -0
ky=-co

u(zh 2,23, t) =

1
vLiLs

Each of the 0(z,, {; k1, k3) can be expanded in series based on the empirical eigen-
functions:

W(zs, b k1, k3) = Zai':is 1B (22)-
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Combining these two expansions gives the following representation of the velocity
fluctuation field:

Z Z ar:;:,(t 2:1(1:‘L:x+r}':3)¢(lh(x2)_ (16)

n=lj=-c0
k;——m

u(zy, z2,73,t) =

\/’TL_

Notice that (186) is actually three equations, one for each component of u. We
denote the components of ¢,= L by

(n) = { 5n) (n) (n)
klkl <¢‘hi; 2"1*;’0;’:1“3>

In addition we use the following identity, which can be computed by almost any
symbolic system.

Ly ply | 05 2 LiLy ifp; =p3=0.
/ / e2xx(rll-zl+-r§-z;)dl_ldzs ={ 1Lz MU pr =p3 (17)

0 otherwise.

Rather than compute the projection of the entire differential equation, we will
illustrate the technique using the following term from (15),

du; z2
Reut— [z, -2 ).
Tor, \° H
We can ignore the Re u% term since it is a constant.
Our goal is to compute fk, i, such that

3u,- 1‘% (n) 2:i(%-'l-:|+ zr3) 4(n
m(=-3) -7 T s Sl 09)

n=lk;=-co
k;..—oo

The fk x, are functions of the a,c k . They are obtained by taking inner products
(mtegrals) of (18) with the orthonormal basis functions. The first two inner products
are Fourier transforms, that is

f-k Ea = _I__/L: _-I_-/Ll —a&. (2:2 _ i%) c_zxkl.n/Ll dz, e-2:k,:,/l,_, dzs
VI3 Jo VLI Jo 9z H

The final inner product takes the form

IS?IZ; / fklk3¢k ks dz.

The final term of U is a polynomial in z, and is easily dealt with. The Fourier
transform gives

2 Ixik 2
Z2\ | _ n 2wiky 2 3
fhka {ul.lu%‘ (1:2 - H) } I (’- g:lk; Ll éll‘k,) ur (1;2 — _1{)
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(+ (var 1 k1 k3)
(integral (* (zeke-sazpled-function
(lambda (x) (- x (/ (* x ) H)))
(dot-product (eigen 1 k1 k3)

(conjugate (eigen m k1 k3))))
:lower-bound 0

:upper-bound X2))
Figure 7: Weyl code {or integral
The Galerkin projection is just a simple integral, so

2 22 IC L2
z5 SRy ) 2 t Je
Ge {u;.lu:‘} (22 - 7{')} = u} Z ,k,/ (1’2 ) OS.,),:.,"E:., dz,

The result many symbolic computations like this is the system of ordinary dif-
ferential equations shown in Appendix A.

4.3.2 Numerical Computation

Having produced a symbolic system of ordinary differential equations like that
shown in Appendix A we must still compute each of the coefficients. This can
itself be a rather complex undertaking without the proper abstractions. Consider
for instance, the a piece of the sample term computed in the last section:

L 2
() Z2) () (n)e
Cp ks L (I2 - H) oikllsolk‘l3 dI

The product of the two eigenvectors ofk) . QS. ). really means the dot product:

és?x*a¢::x):: ¢(1?;~;¢(123:; é("')xh (:Z*: + ou')x*; g'::::
Furthermore, each of the components of the of the eigenvectors are complex valued
functions that are only known by their numerical values at selected points.

To deal with this problem we have extended Weyl [15] for this problem to include
anew type of a object, a “sampled function.” A sampled function is a function from
R — € (or R) that is represented by its value at certain points. When evaluated at
other points, its value is automatically interpolated (extrapolated) form the values
at which it is known. Like all objects in Weyl, arithmetic with sampled functions
can be performed usm? the usual Lisp operators, including conjugation.

The eigenvectors ¢ &k, are just (Weyl) 3-vectors of sampled functions. Being
3-vectors we can use the dot-product operator to multiply them. The whole ex-
pression can thus be computed as shown in Figure 7. Notice that the Weyl code is
a direct translation of the more mathematical form given above.
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The resulting system of differential equations is somewhat complex. as indicated
in Appendix A. One of these equations, when using only a single eigenfunction. has
the form

ay = 6.1a; +2.1a1a3 + 1.1a203 + 0.4a3a] + 0.3a5a;

(19}
- (3.0aya} +3.7aza; + 2.4a3a35 + 1.3a5a; + 0.6asa;)a;.

where we have only given the coefficients to one decimal place for conciseness. The
a, are complex valued functions, so to numerically integrate the equations. each
a; must be converted to a pair of real valued functions. For (19) this gives the
following pair of equations.

Z; = 6.izy + 2.1{z2zy + o) + 1-1{(z322 + yay2) + 0.4{zs23 = y31n)
+0.3(zs 24 + ysys) — 3.0(zF + ¥7)z1 + 3.7(23 + B)=
+ 2.4(:§ + y§)z; + 1.3(:3 + yf)z; + 0.6(z§ + y:::)::l,

g1 = 6.1ys — 2.1(z2y1 — Y221} — LU(Zayz2 — yaz2) — 0.4(=4y3 — ysr3j
— 0.3(zsys — yszs) — 3.0(z3 + y})yn +37(=3 + B)m
+2.4(23 + ¥ + L.3(22 5+ ) + 0.6(z2 + P)uy.

Currently, we are integrating these equations with the LSODE package [5, 10].
A typical integration is shown in Figure 8. There are periodic bursts of behavior.
where the equations become very stiff. We are currently generating the Jacobians of
these equations symboliczlly to speed the calculation during the stiff regimes. Since
the right hand sides of these equations are polyvnomials, symbolic differentiation
does not cause the expressions to grow.

The bersts of activity in Figure 8. when converted into a velocity fiuctuation.
cotrespond to the periodic formation of the counter-rotating vortices. Thus the
reduced system of ordinary differential equations has the same qualitative behavior
has the far more complex Navier-Stokes equations. We zre currently studying how
to make this correlation more quantitztive and how the cocrelation with physical
behavior depends upon the number of empirtical eigenfunctions used.

One should note that for a2 modest number of empirical eigenfunctions. the size of
the system of ordinary differential equations becomes very large 2nd their formation
and manipulation without symbolic techniques would be impractical.

5 Conclusions

In this paper we have advocated the construction of special purpose simulators for
particular scenes, rather than building 2 general purpose simulator. Towards this
end, we have discussed one possible approach to the construction of ar environment
to enable the construction of such simulators. We have particularly fc  ssed on the
use of symbolic techniques to transform differential equations into executable code.
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Figure 8: Typical Amplitudes

We have outlined two major areas in which symbolic computation can be ef-
fectively used in numerical computations: (1) transforming differential equations
into equations that more accurately address the questions being asked of the sys-
tem under study, and (2) the formation of the numerical integration code itself
from libraries of technique fragments. Both of these techniques suggest different
organizations of symbolic computation systems than we currently have available.
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Abstract

This paper presents a framework for reasoning about
robust geoemtric algorithms. Robustness is formally
defined and a data structure called an approzimate
polygon is introduced and used to reason about poly-
gons constructed of edges whose positions are uncer-
tain.

A robust algorithm for point location in an approx-
imate polygon is presented. The algorithm uses only
the signaiure of the point (not its location) to de-
termine whether the point i inside or outside the
polygon.

An approximate polygon could, by shifting its
edges back and forth within their error bounds, in-
duce a large number of different line arrangements.
The cell C, with signature a in one such arrangment
will be different than the cell C} with signature o
in another arrangement. This paper proves that, re-
gardless of their positions and shapes, the cells C,
and C/, are always to the same side of the polygons
which induce their respective arrangements.

Introduction

Most geometric algorithms assume that perfect “real”
arithmetic is available. When these algorithms are
implemented they often fail because this assumption
is not borne out; that is, these algorithms are not
robust. This failure occurs because either the input
or the intermediate calculations are imprecise, leading
to inconsistent decisions by the slgorithm.

This paper presents a framework for reasoning
about robust geometric algorithms which operate on
polygons. Rodusiness is formally defined and a data
structure called an approzimate polygon is introduced
and used to reason about polygons constructed of
edges whose positions are uncertain.

A robust algorithm for point location in an approx-
imate polygon is described. The interesting aspect of

this algorithm is that in addition to the polygon’s
position being uncertain, the point’s position in the
plane does not have to be known; only the point’s
signature is important (that is, its left/right relations
to the edges of the polygon). The point location al-
gorithm has immediate practical application to solid
modeling, particularly in the robust intersection of
polyhedra.

An approximate polygon could, by shifting its
edges back and forth within their error bounds, in-
duce a large number of different line arrangements.
In each of these arrangements some points with a
given signature o may ot may not appear, and if
they appear, they may be to the interior or to the ex-
terior of the polygon which induces the arrangement.
An interesting uniqueness theorem is presented which
states that in all such line arrangements, the points
with signature « in each arrangement are always to
the same side of the polygon which induces that ar-
rangement.

Practical Applications

The point location algorithm has immediate practical
application to solid modeling. In particular, a solid
modeler performing an intersection operation needs
to determine whether an edge of one polyhedron in-
tersects a face of another. This is achieved by cal-
culating the intersection of the edge with the plane
in which the face lies, and then asking whether this
point of intersection is on the interior of the polygon
representing the face. If the boundary of the face and
the location of the point of intersection are known
precisely then this is a trivial problem.

However, polyhedra usually have overconstrained
faces and vertices, and the ezact locations of the ver-
tices, edges, and faces of the polyhedra can require
a very large number of bits to represent. Since the
input is rounded off to a small number of bits the lo-
cations of these featurvs are imprecise. In addition,
the location of the point of intersection can be com-




pletely unknown, particularly in ill-conditioned cases
in which the intersecting edge lies very close to the
plane of the face. Thus there is an important practi-
cal application for a point location algorithm which
handles uncertainty in the face boundary and in the
point location.

An approximate polygon can represent a face
whose boundaries are not known exactly, and the
point location algorithm presented in this paper can
determine whether a point whose location is also un-
certain lies on the interior of such a face. Since both
the location of the boundary and the location of the
point are uncertain, the algorithm must make use of
some other information. This other information con-
sists of the signature of the point; that is, its position
(left or right) with respect to each edge of the bound-
ary. It is a reasonable assumption that such informa-
tion exists since the signature is often derivable from
logical information available in the solid modeler (for
example, see Karasick’s moaeler (5]).

Background

The theory of approximate polygons is based upon
the “representation and model” approach of Hoff-
mann, Hopcroft, and Karasick [4]. In this approach
the algorithm operates on a computer representation,
but presents output as though it were operating on
some mathematical model corresponding to the rep-
resentation.

An approximate polygon is a computer represenia-
tion of some real, mathematical polygon, the model.
The model is rarely explicitly constructed by the algo-
rithm. An approximate polygon P,.p can be thought
of as a set of constraints on the topology and position
of the implicit model polygon. Any real polygon P
satisfying these constraints is considered a model for
Prep.

Under the representation and model approach, the
definition of robustness is very close to that of Fortune
[2). Consider a geometric problem P as a function
from an input space consisting of models to an out-
put space, P : Z — O, and consider an algorithm A as
function from a different input space consisting of rep-
resentations to the same output space, 4 : R — O.
Given a representation z..p, the set of its models is
denoted MODELS(z,.p). This leads to a definition of
robustness:

An algorithm A for a problem P is robust if

V z,ep € R, 3 z € MODELS(Zrcp)

such that A(z,.,) = P(2).

Note that we can pick an arbitrary z €
MODELS(Zrep). It could be that there are two mod-
els z! and z? such that P(z!) # P(z?). In this case
the algorithm could choose to output either P(z?)
or P(z?%) and would still be considered to be robust.
This leads to a definition of consistency:

A probiem P and a representation R
are congistent if

VZ,p €R, Vz!,2? € MODELS(Zrep),

P(z!) = P(z?).

A definition of correctness would be similar to that
of robustness, except that the model and representa-
tion spaces would be identical and MODELS(Zrep) =
{zrep}-

In evaluating geometric algorithms which use the
representation and model approach, the criteria of
robustness and consistency should be used in place of
the usual criterion of correctness.

Note that, unlike in Fortune’s work [2], there is
no notion of stability in the definition of robustness.
That is, there is no notion of the distance between the
representation z,.p and the model z which allows us
to say “the implementation is stable if z is near z..,".
However, bounds on the models can be achieved by
ensuring that MODELS(Z,.p) is sufficiently small.

Other approaches

The approach with approximate polygons is most
similar to that of Milenkovic’s hidden variable
method [6]. His method constructs arrangements of
pseudolines which are constrained to lie within strips
of fixed width. The pseudolines can be considered asa
model and the strips as a representation. Milenkovic's
pseudoline arrangement algorithm can then be said
to be provably robust in the sense of the above def-
inition. It is interesting to note that, as with many
algorithms of the “representation and model” variety,
the model is never explicitly constructed.

There are several other approaches to building ro-
bust algorithms (where “robust” is defined differ-
ently). Sugihara [10, 11, 12] emphasizes removing
redundant decisions from the algorithm in order to
maintain topological consistency. Salesin, Stolfi, and
Guibas (8] use what they call epsilon geometry to rea-
son about the amount of perturbation of the input re-
quired for certain epsilon predicates to be true. Con-
struction of robust algorithms is based upon these
epsilon predicates. Dobkin and Silver (1] keep track




of roundoff error and, when the error becomes too
large, increase precision and backtrack to some ear-
lier point in the computation. Segal and Sequin (9]
alter the symbolic data to make it more amenable to
precise computation, and signal the user when tol-
erances on the input become too large. (Milenkovic
also alters the symbolic data in his “data normaliza-
tion” approach [6].) Greene and Yao [3] discretize the
problem domain, allowing the algorithm to perform
exact computations.

In the remainder of the paper approximate poly-
gons are defined, some of their properties are enumer-
ated, the point location algorithm is outlined, and the
uniqueness theorm for point location in an approxi-
mate polygon is presented.

Definitions

A polygen P = (e1,e3,...e,) i3 an ordered list of di-
rected edges, where each edge e; lies on a line ¢; and
only intersects the edges e;.; and e;4; at its end-
points. Each edge is directed such that the interior of
the polygon it to its right.

An approximate polygon closely mirrors the ap-
pearance of a real polygon, as shown in Figure 1.
The approximate polygon consists of an ordered list
of bands corresponding to the edges of the model. The
position of the bands in the plane constrains the line
equations of the model.

(. AR

Figure 1: An Approximate Polygon

Just as real polygons are based upon lines, approx-
imate polygons are based on swaths: A swath S; is
the region between two lines £¢*! and £i®. These lines
have the restriction that Vz £i*(z) > £%(z). The
restriction causes the lines to be parallel and conve-
niently defines the region between them as

Si={z|4"(z) 2 0 A £*(z) < 0}.

Just as an edge is part of a line, a band is part
of a swath. Assuming for now that an approximate

polygon is represented by an ordered list of swaths,
a band B; of an.approximate polygon P, having
swaths S, is the shaded region in Figure 2, defined as

Bi=SnE_,nEi,,

i [ {ziev¥(z) <0} ifi/jisconvex
e £} = { (1050

if i/ is reflex.

Bi+l
AL ot
-
Y iR
G l
in
Ix'+l

Figure 2: The Pieces of a “Band”

It will be useful to define the corners of 2 band
as ¢, ¢*?, cM, and cP°, where A, 1, i, and o denote
head, tail, ia and out. The definitions are shown in
the following table, and depend on whether the bands
adjacent to the corner make a convex or a reflex turn.
In Figure 2 the tail of B; is convex, so the definitions
for ¢** and ct® are choeen from the “convex” column of
Table 1. Since the head of B; is reflex, the definitions
of ¢* and ¢#° come from the “reflex” column.

| convex |  REFLEX
S S A
R N U Bl
Moy g o nogyo g0 0 8y,
N B el T 4 ) I A L 3

Table 1: Defining the Band Corners

An approzimate polygon P,.p is an ordered list of
bands! B; which lie on swaths S;. Bin B; = 8 iff
i and j differ by more than one. A real polygon P
is a model for an approximate polygon P, if the
following constraints are met:

1 When given as input to an algorithm, the bands are defined
exactly with Hoating point numbers. Subsequent computation
on the bands is also done exactly {with extended precision. if
necessary).




1. There is a one-to-one correspondence between
the lines £; of P and the swaths S; of P..p. As-
sume that £; corresponds to S;.

2. Each line £;(z) = 0 must lie between the corners
of band B;. That is, it must satisfy the following
four constraints (see Figure 2):

6(c¥) <0, £4(c*) >0,

LMy <0, &(cM)>0.

It will be useful later on to talk about the span of
a band. This is the set of points swept out by all
lines which fit within the band. The left and right
of a band are the set of those points to the left and
right of the span. By convention, the interior of the
approximate polygon is to the right of the band. In
Figure 3 the shaded region is SPAN(B;) and to its left
and right are LEFT(B;) and RIGHT(B;). For a band
B;, define the set of lines satisfying Condition 2 above
as LINES(B;).

SPAN(B;) = {z|3¢e€ LINES(B;), £(z) =0}
RIGHT(B;) {z |Vt € Lines(B;), £{(z) < 0}
LEFT(B;) {z |V L € LiNES(B;), ¢(z) > 0}

.,
\., 3!0[
LeF1(B,)
‘ B:-\\ . .... iy -
~y i WWBY

RGHT( B,)

Figure 3: The sPAN of a Band

Some useful properties follow from the previous
definitions (these are stated without proof).

1. An approximate polygon is closed and simple.
Edge e; lies completely within B;.

Edges e; and e;4; intersect within B; N Biy;.

o

. All models of an approximate polygon are sim-
ple.

[J1)

. SPAN(B;) N SPAN(B,41) = B, N B4,.

6. If z ¢ SPAN(B,) then in all models, z lies to the
same side of ¢;.

7. If z € SPAN(B;41) — B; then in all models z lies
to the same side of e;.

Robust Point Location in
Approximate Polygons

The point location problem would be simple if the ex-
act location of the point were given. However, in most
practical applications the point’s location is known
only to be within some region of uncertainty. In par-
ticularly ill-conditioned situations this region of un-
certainty can be as large as the polygon itself.

Some practical applications (geometric modelers,
for example) can, from other information, logically
deduce the LEFT/RIGHT status of the point with re-
spect to each edge of the polygon. Call this L/
sequence the signature. If the polygon’s location is
known exactly, then in the induced line arrangement
a cell decomposition can easily determine whether all
points with a given signature lie inside or outside the
polygon. It is a different matter, however, when there
is uncertainty in the polygon’s location. If uncer-
tainty is modeled with an approximate polygon then
the following questions must be answered:

Question 1 {Robustness) Given an
approximate polygon P.., and a signature
a € (L[R)*, does P.., have a model P in
which the induced line arrangement con-
tains a cell with signature o, and is the cell
INSIDE or OUTSIDE the model P?

Question 2 (Consistency) Consider
that an approximate polygon can have two
models, P! and P3?, which induce two dif-
ferent line arrangments. These two arrange-
ments each contain a cell with signature o
(call them C! and C?). Then is it possible
that C! is INSIDE P! and C? is ouTsIDE P%?

If the answer to Question 2 were affirmative then
the signature a and the approximate polygon Fr.p
would not be sufficient information to determine
point location, and the problem would not be con-
sistent. The Uniqueness Theorem which is presented
later proves that this is not the case.

Some final definitions

A signature P (v) is a string in (L|R)*. The signature
denotes the relation of the point v to each edge ¢




of the polygon P. The iy element of aP(v) is the
relation of the point v to edge e; of the polygon P.
aP(v) = R means that v is to the right of edge ¢; in P
and of (v) = L meaus that v is to the left of edge ¢;
in P. The superscripts will be dropped if the polygon
in question 18 evident.

Refer to Figure 3 for the following definitions. A
half-region is similar to a half-space, except that it
has a polygonal boundary. The following half-regions
R; and L; consist of those points which, in at least
onemodel P, are either ON e; or to the RIGHT or LEFT
of e;, respectively, in that model. Given some a;(v),
tae half-region H; is that region in whose interior v
must lie if it is to have a;(v) as the i* component of
its signature. The interior of the cell C, consists of
those points which have signature o in at least one
model.

R; = sPAN(B;) URIGHT(B;)

L; = sPAN(B;) ULEFT(B;)

- R; ifa.-:R
”“{ L ifa;=t

7
Co= n H;
i=1

The next two lemmas will be used to construct the
point location algorithm. The first lemma shows that
for each point in C, there exists some model in which
the point has signature a; the second lemma shows
how to determine whether the point is INSIDE or oUT-
SIDE that model.

Lemma 1 (Model Existence) Given an approzi-
mate polygon P,., and a signatsre @, construct C, as
described above. Then for each point v on the interior
of Cq, there ezists some model P € MODELS(P..p) in
which v has signatxre .

Proof Since v € C,, for each i, v € H; and there is
some edge ¢; in the band B; which has v to the side
specified by a;. These edges join to form a model
polygon P in which v has signature a. O

Lemma 2 (Point Location)

Given an approzimate polygon F..p, a model poly-
gon P € MODELS(P,,p), and a point v which has a
signature a wilk respect to P, the following are true:

1. If v is strictly te the interior of P,.p (that is, it
does not lie on any band B;) then a, v INSIDE P.

2. If v is strictly to the ezterior of P.ep then
v OUTSIDE P.

3. If v € B;, but v € B;1y, then v INSIDE P iff
a; =R,

4. Ifv € BiNBiyy and the i/i+ 1 corner is convex,
then v INSIDE P iff a; = R and a;41 =R.

5. Ifv€ BiN By, and the i/i + 1 corner is reflex,
then v INSIDE P iff a; =R or aj31 =R.

Proof In Figure 4 the cases 1 through 5 are demon-
strated by the points z; through z5. O

Figure 4: Cases for the Point Location Lemma

Given the Model Existence Lemma and the Point
Location Lemma, a point location algorithm can be
developed. This algorithm will construct the region
Ca, pick a point from its interior, and apply the rules
of the Point Location Lemma to determine whether
the point is INSIDE or OUTSIDE the model in which it
has signature a. The following Uniqueness Theorem
shows that if one such point is INSIDE its model poly-
gon then all such points are INSIDE their respective
model polygons (similarly for oUTSIDE).

Theorem 1 (Uniqueness) Given an approzimate
polygon Pr,p and a signature «, if for some model
polygon in MODELS(P,.p) there is a point with signa-
ture a whick is INSIDE the polygon, then, for every
model polygon, all points whick have signature o with
respect to that polygon are INSIDE that polygon (sim-
ilarly for OUTSIDE).
Proof in Appendiz A.

Point Location Algorithm

The Model Existence Lemma, Point Location
Lemma, and Uniqueness Theorem combine to form
the point location algorithm shown in Figure 5. Note
that the algorithm is quite simple and never actually
constructs the model polygon.

Lemma 3 (Robustness) The point location algo-
rithm is robust.




1. Compute C,.

2. If C, = @ then no model of P,., induces
a cell with signature a.

3. Pick a point w on the interior of C,.

4. Apply the Point Location Lemma to de-
termine whether w is INSIDE or OUTSIDE
of the models in which it has signature
a.

Figure 5: Point Location Algorithm

Proof This follows directly from the Model Exis-
tence Lemma and the Point Location Lemma. O

Lemma 4 (Consistency) The approzimate poini
location problem is consistent.

Proof This follows directly from the Uniqueness
Theorem. 0O

Lemma 5 (Complexity) The point location algo-
rithm has time complezity O(n?).

Proof Step 1 of the algorithm can be accom-
plished by computing the arrangement of half-regions
in O(n?) time. This i~ done by computing the ar-
rangement of the 3n lines which define the n half-
regions H;, then joining adjacent cells which are sep-
arated by a line segment which is not part of the
boundary of some H;. Those cells separated by a line
segment which is part of the boundary of some H;
will have signatures which differ in a single position,
so the signature of each cell can be found in constant
time.

The remaining stepes of the algorithm take constant
time. Step 3 is easily accomplished given the convex
decomposition of €, which is computed simultane-
ously with C, itself. Thus, the overall running time
is O(n?). O

Summary

Most geometric algorithms are not robust; they fail
due to inexact input or with inexact intermediate
computations. This paper has introduced (a) formal
definitions of robustness and consistency, and (b) the
notion of an approzimate polygon, along with several
of its properties, With these, one can formally de-
velop robust and consistent algorithms that deal with
inexact polygons.

One such algorithm for point location in an approx-
imate polygon has been presented. The algorithm is
particularly suited for practical application in a solid
modeler because it assumes uncertainty in both the
polygon position and the point position. The point

_location algorithm has been proved robust, and the

point location problem has been shown to be consis-
tent.
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Appendix A

Theorem 1 (Uniqueness)

Given an approzimate polygon P,., and a signature
a, if for some model polygon in MODELS(P,.p) there is
a point with signatyre a which is INSIDE the polygon,
then, for every model polygon, all points which have
signature o with respect to that polygon are INSIDE
that polygon (similarly for OUTSIDE).

Proof (by coniradiction): Let a*(z) be the signa-
ture of point z in model P*. Let ef be edge ¢; in
model P*. Then assume the following:

3P!, P? € MODELS(Pr.p), Ju,v € R,

uINSIDE P! A vouTsiDE P? A al(u) = a*(v).

The theorem is proved by showing that there is
some edge ¢; which always separates u and v, violat-
ing this assumption.

Lemma 6 One of u or v must lie within the bound-
ary of Prep.

Proof Assume that neither u nor v is within the
boundary. Then by the initial assumption and the
Point Location Lemma u and v lie on opposite sides of
the boundary. Say u is inside and v is outside. Then
the segment o must traverse both of the parallel
sides of some band B, as shown in Figure 6. From
the definition of the corners of B; and the definition




of SPAN(B;), u and v lie to different sides of sPAN(B;).
Then by Property 6 u lies to one side of all models of
P,.p and v lies to the other side. Thus, in the models
Pl and P?, a}(u) # a?(v) and the initial assumption
is contradicted. O

Figure 6: TT crosses some B;

From Lemma 6 assume without loss of generality
that u lies in the boundary of P,.

Lemma 7 The point u lies in some band B; such
that a}(u) = R and a?(v) =R.

Proof u is INSIDE P! by the initial assumption
and is in some band by Lemma 6. If u € B, and
u & Biii, then by the Point Location Lemma u is to
the RIGKT of el. Choose i = k. If u € ByN By then
by the Point Location Lemma u is to the right of at
least one of ¢} or e}, ,. Choose i to be kor k+1to
satisfy the lemma. Then by the initial assumption,
a}(u) = R means that a?(v) = R also. O

Lemma 8 On the segment UG there is some point
z # v which is inside P3. Furthermore, e} does not
intersect Uo belween z and v.

Procf

Case 1: u € B;, bst u € Bigy.  If a?(u) = R,
then u INSIDE P? (by the Point Location Lemma), so
choose z = u and we are done. Otherwise consider
the case in which a?(u) # R.

Refer to Figure 7. The point u lies in B; and not in
Bi_1, so by Property 7, in all models P, u is to the
same side of e¥_,. In particular, a}_;(u) = a?_,(u).
By the initial assumption, a}_,(u) = o?_;(v), so
a?_,(u) = a?_i(v). By a similar argument for e,41,

Figure 7: z exists if u € B;

a? (v} = a?,;(v). Thus u and v lie between two
lines touching the endpoints of €?.

Since a?(u) # R and since by Lemma 7 a?(v) =&,
T must cross the line defined by e?. But u and v lie
between the two lines touching the endpoints of e?,
so UU must cross the edge e?. Since by Property 4 all
models P are simple, there is a small neighborhood
to the right of e? which contains only points interior
to P. The segment T passes through this neighbor-
hood, so there is some point z # v on v which is
INSIDE P32, and X Ne? = 0.

Figure 8: z exists if u € B; N Bi41

Case 2: u € BiNB;;1. Referto Figure 8. By an
argument similar to Case 1, u and v must lie to the
same side of ef_; in all models P*, and must lie to
the same side of e%, , in all models P¥. If u INSIDE P?

then choose z = u and we are done. Otherwise, if u




OUTSIDE P? then the edges ef and e?,, must separate
u and v. Thus the segment T¥ must cross either e? or
e?,,, and in doing so must pass through a neighbor-
hood of interior points to the right of the edge that
it c.osses. Therefore there is some point z # v on 7o
which is INSIDE P?, and ZvNe? = 9. O

Lemma 9 [n P? there is some edge e}- which crosses
U such that a?(u) = R and &?(v) = L. Furthermore,
e;‘-' can be chosen such that no other e? crosses wv
between e? and v.

Proof From lemma 8, G7 contains a point z which
is INSIDE P?, and by the initial assumption, v ouT-
SIDE P2 From the Jordan curve theorem we know
that 7 must cross the boundary of P? on some edge
e? with z to the inside (right) of e? and v to the out-
side (left) of e?. From the ordering of points along
w0 (4 < z < v), if a¥(z) = R then a}(u) = R also. If
there are many candidates for eJ?, choose that which

is closest to v to satisfy the second part of the lemma.
a

Lemma 10 B;NB; =9

Proof If | — j| > 1 then by the definition of an
approximate polygon B; N B; = 8. Sc we only have
to consider |i — j| < 1. But by Lemma 9 7 intersects
U between z and v, and by Lemma 8 e? does not
intersect U7 between z and v. So e} # e? and hence
i%j.

Assume that j = i—1. Then, by the initial assump-
tion, a¥(v) = L means that a}(u) = L. By Lemma 9,
a?(u) = R. Since u is to different sides of ¢, in P?
and P?, u must lie in SPAN(B;). Since u also lies in
B;, by Property 5 u lies in the corner B; N B;.

Suppose corner i/j is convex. Since u INSIDE P!, by
the Point Location Lemma o}(u) = R and o} (s} = R.
But, by the initial assumption, a}(u) = R means that
a?(v) = R, contradicting lemma 9. So corner i/j is
not convex.

Suppose corner i/j is reflex. Refer to Figure 9. By
Lemma$, o?(v) = R and a}(v) =L, and by Lemma7,
a}(v) = r. But if G5 is to intersect ¢} then it must
also intersect e? closer to v, as shown in the Figure.
This contradicts Lemma 9, which states the ? is the
closest intersection to v. So corner i/j is not reflex.

Thus the assumption is false that j #i-—1. By a
similar argument j # i + 1. Therefore B; N B; = 0.
o

Lemma 11 u € SPAN(B;) - B;
Proof: By lemma 9, a?(u) = R and a?(v) = L. By
the initial assumption, a?(v) = L means that o} (v) =

Figure 9: T7 must intersect e? closer to v

L. Since a;(u) is different in models P! and P?, u
must lie in sPAN(B;). From lemma 10, y cannot lie
in B; since it already lies in B;. O

Lemma 12 Define k such that B; N By is closest to
u. Then u and v are on opposite sides of .

Proof Refer to Figure 10. Note that k¥ = j £ 1,
otherwise B; and B; wouldn't intersect at all. In any
model P the point u and the edge ¢; are on opposite
sides of the line defined by e; (u € sPAN(B;) - B, by
lemma 11, and since B; is closest to u, it separates
u from the rest of B;, which contains ¢;). Thus 75
must intersect ¢? at some point z to the side of e?
which is opposite to u. From the ordering of points
along ¥ ((u < z < v), v must also be opposite to u.
a

Lemma 13 a}(u) = ai(u).

Proof By Lemma 12, u € sPaN(B;) — Bj. By
Property 5, SPAN(B;) NSPAN(Bg) = Bi N B, so with
a bit of algebra we can conclude that u ¢ SPAN(By)-
Then by Property 6, a}(u) = ai(x). O

By lemma 12 there is some edge e} in model P?
such that a?(u) # a?(v), and by lemma 13, a}(v) =
a?(u). So al(u) # ai(v). But this contradicts the
initial assumption, so the theorem is proved by con-
tradiction.

o




Figure 10: u and v are on opposite sides of e?
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Abstract

This paper presents a polynomial time algorithm for determining whether a given univariate
rational function over an arbitrary field is the composition of two rational functions over that
field, and finds them i{ so.

1 Introduction

The problem of determining if a function can be written as the composition of two “smaller” functions
f(z) = g(h(x)) has been of interest for a long time. Until now, work has focused on the univariate,
polynomial version of this problem: When can the polynomial f(z) be written as g(h(z)), where
both g(z) and h(z) are polynomials? The original work in the symbolic computation community
was presented in 1976 [2], but the algorithms, which in the worst case required exponential time,
were not published until 1985 {3]. This was soon followed by the work of Kozen and Landau [11] who
provided a polynomial time algorithm for decomposition of polynomials over fields of characteristic
zero, which did not require factorization o. polynomials. Some additional improvements and analysis
of the positive characteristic case where then presented by von zur Gathen [23, 21, 22]. A number
of other papers have since been published on different extensions and variations of this problem [1,
7,5, 4].

All of these results deal with polynomial decomposition. The generalization to rational functions,
which has significantly wider applicability, appears to be a far harder problem. Notice that in the
polynomial case, the degree of g and A must divide the degree of f. This limits the number of
different polynomials that must be considered and even allows one to solve the problem by looking
for solutions of non-linear algebraic equations (admittedly in exponential time). When f, g and A
are rational functions, there is no immediately obvious bound on the degrees of the numerators of
g and A, since the numerator and denominator of g(h(z)) could have a common factor. In fact, no
such common factor can arise, as we prove below.

Furthermore, we demonstrate that in the rational function case, g and h can be determined from
f in polynomial time. This algorithm is valid even if the charactertistic of the field is positive,
which for the polynoraial case is not a completely resolved problem. One other difference between
our approach and other approaches, is that in this paper we obtain a decomposition over the fie:d
of definition of f(z). Thus we may fail to find rational function decompositions that exist over

*This research was supported in part by the Advancad Research Projects Agency of the Department of Defense
under Office of Naval Research Contract N00014-88-K-0591, the National Science Foundation through graat IRI-
9006137, the Office of Naval Research through contract N0O0O14-39-J-1946 and in part by the U.S. Army Research
Office through the Mathematical Science [nstitute of Cornell University.




algebraic extensions. Such issues do not arise for the corresponding problem of polynomials over a
field of characteristic zero, but do for polynomials over fields of finite characteristic.

Section 2 provides some general background material. In Section 3 we present the new algo-
rithms for rational function decomposition. Finally, we comment on previous work in and give some
conclusions in Section 4.

2 Preliminaries

Let f(z) be a rational function in z with coefficients in a field k. We extend the notion of degree of a
polynomial by defining the degree of f(z), denoted by deg f, to be the maximum of the polynomial
degrees of the (relatively prime) numerator and denominator of f. The degree of the field k(z) over
k(f(z)) is the degree of f, if f is a polynomial. This remains true even if f is a rational function,
as shown by the following proposition.

Proposition 1 Let k(z) be an eztension of the field k(f(z)) where f(z) is a rational function of
degree n. Then (k(z):k(f(z))] = n.

Proof: Denote the numerator of f(z) by p(z) and the denominator by ¢(z). We can instead consider
the isomorphic fields k(y) = k(f(z)) and

k(y)[z)/(p(z) - yq(z)) = k(z).

P(z,y) = p(z) ~ yg(z) is primitive as a polynomial in y since p(z) and g(z) are relatively prime.
Since it is linear in y it is irreducible. Therefore, the degree of z over the field k(y) is

deg, P(z,y) = max(deg p,degq) =deg f.

O

Let f(z) = g(h(z)) be a rational function decomposition over a field k. The following proposition
provides bounds on the degrees of g(z) and h(z) in terms of the degree of f(x). In principle, this
result gives an algorithm for rational function decomposition, albeit an exponential time algorithm.

Proposition 2 Assume f(z), g(z) and h(z) are elements of k(z) such that f(z) = g(h(z)). Then

deg f = (degg) - (deg h)
Proof:

Consider the fields shown in Figure 1. The degrees of the extensions are [k(z):k(h(z))] = degh,
[k(z): k(f(z))] = deg f and [k(y): k(g(y))] = degg. k(h(z)) is an algebraic extension of k(f(z))
inside k(z). Thus,

deg f = (k(z): k(f(2))]
= [k(z): k(h(z))] - [k(h(z)):k(f())]
= [k(z): k(h(2))] - k() : k(9(9))]
= (degh) - (deg g),
using Proposition 1. 0

A function that is the ratio of to linear polynomials is called a fractional linear function, viz.

Mz) = (az + b)/(cz + d).




F(h(z)) ~2— k(y)

K(f(2)) ~=— k(g(v))

" Figure 1: Fields involved in decomposition

Fractional linear functions have degree 1. If two fields k(f1(z)) and k(f2(z)) are isomorphic then
there exist rational functions such that

fi(z) = Ri(f2(z))
fr(z) = Ra(f1(z)) = Ra(Ru(f2(2)))

By Proposition 2 (deg R,) - (deg R;) = 1 and R, and R; must be fractional linear functions.
We say that two rational functions are linearly equivalent if there exists fractional linear functions

A1 and A, such that
f(z) = Ai(g(A2(2))).

Two decompositions (polynomial or rational function)

f=g10g20--+09n

=hjohzo---0h,

are said to be equivalent if m = n and g; is linearly equivalent to k;.
The link between field structure and function decomposition comes from Ldroth’s theorem, which
was proven by Liroth [15] for £ = C and by Steinitz in general [18].

Proposition 3 (Liiroth) If k ¢ X C k(z) then K = k(g(z)) where g(z) is a rational function in
z over k.

An elementary proof of Liiroth’s theorem may be found in van der Waerden [20]. An effective
proof appears in Weber [24] §124, and in English in Schinzel [17].

The key insight in studying functioral decomposition is the following corollary of Liroth’s the-
orem.

Proposition 4 Letk be an arbitrary field and f(z) a rational function over k. There is a one {o one
correspondence between the lattice of subfields between k(z) and k(f(z)) and the rational function
decompositions of f(z) up to equivalence.

Proof: If f(z) has a nontrivial decomposition f(z) = g{(h(z)), then k(h(z)) will be an intermediate
field between k(z) and k(f(z)). Conversely, if K is field intermediate between k(z) and k(f(z))
then it must be of the form k(h(z)), where h(z) is a rational function in z. k(h(z)) is canonically
isomorphic to k(y) as shown in Figure 1, where ¢4(y) — h(z). k(f(z)) is in*>rmediate between




k(y) = k(h(z)) and k, so by Liiroth’s theorem, there is a rational function g(y) such that k(f(z)) =
k(g(y)). Thus f(z) is linearly equivalent to g(h(z)). O

The following two propositions follow from Proposition 2 and are quite useful.

Proposition 5 Let k be an arbitrary field and g, and g, relatively prime elements of k[z]). Then
for all polynomuals h(z) € k{z], g1(h(z)) and gs(h(z)) are relatively prime.

Proof: Without loss of generality assume that degg; > degg. Define g(z) to be the ratio of g,(z)
and g;(z). Since g; and g, are relatively prime and degg; > deg g7, degg(z) = degg;. Let

a(h(z)) _ filz)
0:(h(2)) ~ fz)’

f(z) = g(h(z)) =
where f, and f; are relatively prime. Thus

deg fi(z) < deggi(h(z)) = (degg;) - (deg h),

where equality holds if and ouly if g;(h(z)) and g2(h(z)) are relatively prime. Furthermore, deg f; >
deg f2 so deg f = deg f1. By Proposition 2

deg f(z) = (deg g) - (deg h) = (degg1) - (deg h)

so deg f1(z) = (deg g1) - (deg h) and g1(h(z)) and g2(h(z)) are relatively prime. O

The argument of previous proposition applies equally when h(z) is a rational function. In this
case, it is best to view g, and g, as bivariate homogeneous functions of the same degree, which gives
the following result.

Proposition 6 Let g; and g2 be relatively prime, homogeneous polynomials in two variables. If hy
and hq are also relutively prime polynomials, then gi1(hy, ha) and go(hy, hy) are also relatively prime.

Notice that the requirement that g1 and g; be homogeneous is necessary as the following example
shows:
gi(z,y)=z+1

92(z,y) =y -2 {gl(hhh?) =t+1
h(t) =t ga(h1, hy) = £ - 1
hao(t) = 2 + 1

As a consequence of Proposition 6, rational function decomposition can be viewed as a coupled
polynomial decomposition problem, viz.

fi(z,y) = g1(hi(z, y), ha(z, 9)),
fa(z,y) = ga(hi(2, ¥), ha(z, 9)),

where f,, g; and h, are homogeneous polynomials and the pairs {fi, f2}, {91, 92} and {hy, h2} have
the same degree.

3 Rational Function Decomposition

The bounds of Propasition 2 provide significant insight into rational function decompaosition. In
particular, if the degree of f(z) is prime, then it has no non-trivial decomposition. A simple, expo-
nential time algorithm for determining a decomposition can be constructed by using undetermined




coefficients. Assume that deg f = rs and we are looking for a decomposition f(z) = g(h(z)), where
degg = r and degh = s. We can write g and h in termns undetermined coefficients, e.g.

()= 2@) g tar 4t
94(Z)  Gre12" +grp2Z™ " ot gorgr

There are 2r + 2 undetermined coefficients in g(z) and 2s 4 2 in A(z). By Proposition 6, we can
treat the numerator and denominator of f(z) independently. Equating the coefficients of z* in the
following equations gives a system of 2rs + 2 algebraic equations in the ¢; and A,.

foz™ + o+ Sy
= goh,,(.t)r b SRR g,-hd(.‘c)r
fr:+l17" +"'+f2n+l

= g,.th(z)" e+ gz,-th(z)'

Any decomposition of f(z) is a solution to this system of equations. Conversely, any solution to this
system for which degg = r and degh = s gives a decomposition of f(z). However, this approach is
not very efficient. Nonetheless, it does demonstrate the existence of an algorithm.

The efficient techniques that have been developed all tend to be divided into two phases, com-
puting h(z) and then given h(z) computing g(z). (The hard part is finding h(z).) We discuss the
phases out of order for simplicity. Determining g from f and h is discussed in Section 3.1, while the
determination of A is discussed in Section 3.2.

3.1 Determining g from f and &

The most direct way to obtain g(z) such that f(z) = g(h(z)), when f and h are known is to explicitly
solve the linear equations for the coefficients of g(z) that arise from (1). This approach is discussed
in detail by Dickerson 5, 4] as “computing the left composition factor.” In this section we present
a simple analytic technique that relies on reversion of power series and is valid when the coefficient
field has characteristic 0. i

Let A; be a fractional linear function such that f = A; o f has a zero at 0. Define h and A,
similarly. If f = goix then

f(z) = (A7 0 Go Mn) o h(2),

and g(z) = (/\;1 0§ o As)(z). So without loss of generality we can assume f(0) = A{0) = 0.
h(z) has a power series expansion of the form

h(z) = hez' + hpgr 2ttt + -
Using standard techniques [10] we can obtain a power series in t for z in t = h(z)

z=h7l(e) = At bt

Replacing z by this power series in the power series for f(z) we get a power series in ¢. If there
are any fractional powers then there does not exist a “left composition factor.” Compute the first
2r terms of the power series expansion of f(h~!(z)) at 0. The (r,r) Padé approximate [16] to this
power series is the only possible candidate for g(z). This power series technique may be easier to
program than Dickerson’s technique, and using fast power series techniques [12] it might have better
asymptotic complexity.




k(z) Ela}/(fla)=t) = F

k(h(z))

E1g]/(h(B) - 1)

k(f(z)) ——— k()= F
Figure 2: Field Structure

3.2 Determination of h

For rational function decomposition, we determine hA(z) by explicitly determining a subfield of k(z)
and then use a consttuctive version of Liiroth’s theorem to compute a generator for the subfield.
The tower of fields we will be working with is shown in Figure 2. Note that the fields on the same
horizontal line in Figure 2 are isomorphic. By Proposition 3 every subfield of F is of the form
k(h(z)) and there exists a rational function g such that g(h(z)) = f(z), since k(f(z)) lies between
k(y) = k(h(z)) and k. Thus every non-trivial subfield of F yields a non-trivial decomposition of
f(z)-

To illustrate our procedure consider the following example:

z2+1 2241
f(‘)=(z2-2)°(z2+2)
_ 224 +622+5 _ fu(z)
T zA 462247 fa(z)’

where f, and fs are relatively prime. We want to find an intermediate field between k(z) and
k(f(z)). Our first step is to convert these fields to a more conventional form. If E = k(t) = k(f(z))
and Efa] = k(z) then « satisfies the minimal polynomial

f4,2) = fa(2) = tf2(2) = (t +2)Z* + (6 + 6) 2% + Tt + 5.
This polynomial’s factorization over E{qa] is
f,2) =(Z ~ a)(Z + a)((t +2)2% + (t +2)a?® + 6(¢ + 1)). (2)

Over a proper subfield of E[a], f(t, Z) will not factor so much. In particular, over a subfield it
cannot have a linear factor. Given (2), the only possible factors of f(t, Z) over the subfield E[3] are
Z —a? and ((t +2)2°% + (t + 2)a?® + 6(¢t + 1)). Thus E[G] must contain the coefficients of these two
polynomials. If E[8] is the smallest subfield of E[a] for which f(t, Z) has such a factorization, then
it must be generated by the coefficients of these two polynomials. In this case we can assume that
B = a?, whose minimal polynomial is

h(t,Z) = (t +2)2° + (6t +6)Z + Tt + 5. (3)

To convert E[B] back to the form k(f(z)) we obeerve that the elements of E[S3] are rational
functions in z over k by Liiroth's theorem. When ¢ is replaced by f(z), (3) must have linear factors,




viz.
- 3z2 +4
_ 2
h(f(z),2) = (Z - 2°) (Z—m),
which leads to the intermediate fields k(z?) and k((3z% + 4)/(22% + 3)). These two fields are

isomorphic by the fractional linear map r + (3z +4)/(2z + 3). Using the k(z?) as the intermediate
field, we have k(z) = z%, and thus the irreducible decompaosition:

228 + 62245 2z° +6z+5 4
- = [ .
4 +62%2 47 2462+ 7

The original decomposition is equivalent to this one since

i +1 (z+1) 2
oz

1:2+2= r+2

241 222 4+ 6z +5 -2z 41
={- of ——

z2 -2 2+ 6z 47 z-1

_ This basic approach is applicable to the general problem except for deciding which factors of
f(t, Z) should be recombined to generate a factorization over a subfield of E{a]. We could try all
possible combinations of factors of f(t, Z) until we find one that yields a proper subfield of Efa].
However, in the worst case this would require an exponential number of trials. Instead, we use a
version of Landau and Miller’s algorithm BLOCKS in (14] to find a non-trivial block, which will
generate a proper subfield of E[a]. As pointed out by Kozen and Landau {11}, this algorithm only
requires that the extension Efa]/E be separable. Kozen and Landau may need to examine as many
as O(n'°5") non-trivial blocks to find a decomposition. However, in our case, any non-trivial block
will give a rational function decomposition. These techniques allow us to decide which factors of
f(t, Z) should be recombined in polynomial time.

Furthermore, observe that Trager's polynomial time reduction of factorization over algebraic
extensions [19], which was used by Landau to show that factoring over algebraic number fields is
polynomial time [13] is applicable here also, so the factorization of f(t, Z) over the function field
E|[ca] can be done in polynomial time.

The coefficients of such a factorization generate the intermediate field E[f]. Since we are seek-
ing any intermediate field, a single coefficient that is not in E suffices. The minimal polynomial
of for that coefficient can be determined using resultants and square free decomnpositions to give
E(B)/(ps(t, B)). h(z) is then deduced from a linear factor of ps(f(z), Z), which need only be fac-
tored over k. (Factoring bivariate polynomials is polynomial time by Kaltofen [9].)

It is worth commenting on the practicality of this algorithm. Its dominant cost is the factorization
of f(t, Z) over k(t)[a], which is about as costly as factoring a polynomial of degree (deg f)?. Given
the practical difficulties of factoring polynomials of degree greater than about 100, it seems that it
will be very difficult to determine the decomposition of f(z) if the degree of f(z) is greater than
about 10.

3.3 Characteristic p case

Determining any decomposition, as opposed to determining a decomposition with a particular degree
pattern over a field of characteristic p is only slightly more difficult than the characteristic 0 case,
using the technique of Section 3.2. Assume that chark = p and f(z) is a rational function over k.
The decomposition of f(z) may no longer be unique, but Proposition 4 shows that there is still a one
to one correspondence between the inequivalent decompositions of f(z) and the fields intermediate
between k(z) and k(f(z)).




k(z)

E; = k(z° ~ z) \

Ez= k(z:p“)

Figure 3: Field Structure for f(z) = zP +P° — zP’+1 _ zp7+p 4 ppt1

Referring to Figure 2, let f(t, Z) be the (irreducible) minimal polynomial of @ over E. If f t,2)
is separable, then Ef{a] is separable over E and a subfield can be computed using the techniques of
the previous section. If f(t,Z) is inseparable then it can be written as

ft,2) = f(t,2%"),

for some positive value of u. Furthermore, f is separable over E. Clearly, the field E[caP"] lies
between Efa] and E and thus a linear factor of f(f(z), Z) will give a decomposition factor of f(z).
Since E[a?"] is separable over E, the techniques of the previous section can be used to find additional
right decomposition factors. Left decompositions factors can be found from the fields E{a?’], which
lie between Efa] and E[a?"] for 1 <i < p.

It is worth noting that even the pathological example suggested by Dorey and Whaples [6]

f(z) =zP*o(zP +z) o (2P - 1),
= (2P ~ 2?" 7P+l _ 2P 4 2) 0 2P,

= gP P _ gL _ Pt ppdl
is can be handled straightforwardly, since the derived polyncmial
f(t,2) = 2°°49° — 20°+p _ 2P°¥1 4 Zp+l _y

is separable. The fields associated with the two decompositions of f(z) are shown in Figure 3.

In the case of polynomial decomposition, notice that f(t, Z) is inseparable if and only if f(z) is
a rational function of z?. Thus the distinction made by von zur Gathen [21, 22] between “tame”
and “wild” might more appropriately be made on whether or not f(z) is a rational function in z?.

Note that this approach only finds some decomposition of f(z). It cannot find a prescribed one.
In particular, if one is looking for a decomposition f(z) = g(h(z)) where p| deg g then the extension
k(z)/k(f(z)) may be inseparable and we would thus ..ave no algorithm for finding intermediate
fields. This problem is raised in [22].




4 Conclusions

The technique is used to find the h(z) in Section 3.2 is reminiscent of the technique proposed by
Kozen and Landau [11] for decomposition over arbitrary fields. However, they studied intermediate
fields between k(a)/(f(a)) and k. While there is an intermediate field between k() and k whenever
f(z) is decomposable, the existence of an intermediate field daes not guarantee a decomposition. By
using intermediate fields between fields k(t){a]/(f(a)—t) and k(t), we avoid much of the complexity
of their approach since any such intermediate field does lead to decomposition of f(z).

It is tempting to conjecture that Propositions 5 and 6 can be generalized to more variables, but
the straightforward generalization is not true, as pointed out in Section 2. It would be interesting
to know in what way it can be generalized.

This work has benefited from discussions with Barry Trager and Dexter Kozen. Susan Landau’s
comments on an earlier version of this paper where quite helpful. The diagrams in this paper were
typeset using Paul Taylor’s commutative diagram macros for BTgX.
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Automatic surface generation using implicit cubics

Baining Guo

Abstract

Modeling physical objects with low-degree algebraic surfaces shows promise for applications
where manipulating and reasoning about physical objects are important. In this paper, we
present an algorithm for free-form surface constructions using implicitly defined cubic surface
patches. The input data for the algorithm is an arbitrary polyhedron with a normal prescribed
at each vertex of the polyhedron. Using a Clough-Tocher like splitting scheme, the algorithm
constructs a smooth piecewise cubic surface interpolating the vertices of the polyhedron and the
prescribed normal at each vertex. The free-form surface construction in the algorithm is local
and quadratically precise. In addition, the shape of the free-form surfaces can be manipulated
through a set of intuitive shape parameters without knowing the details of the algorithm. The
implementation results are reported.

Keywords: Geometric modeling, object representation, free-form surface, Bernstein-Bezier
representation, implicit patch, design.

1 Introduction

While developing a geometric modeling system for representing, manipulating and reasoning about
physical objects, we derived and implemented an algorithm for constructing geometric models for
smooth objects of arbitrary shapes and topologies. Such geometric models are important for solid
modeling, computer-aided design, visualization. computer graphics, and robotics.

The geometric models of arbitrary smooth objects are represented by closed free-form surfaces.
The algorithm we drive generates a free-form surface from the input data of an arbitrary polyhedron
with a normal prescribed at each vertex of the polyhedron. Using a Clough-Tocher like splitting
scheme, the algorithm constructs a smooth piecewise cubic surface interpolating the vertices of the
polyhedron and the prescribed normals.

The algorithm we derive has the following features. First, the algorithm is local, so modifying a
piece of input data affects only nearby surface patches. Second, the algorithm has quadratic preci-
sion, which means that if the input data is taken from a quadric surface, the algorithm reproduces
the quadric surface. Finally, the shape of the free-form surfaces produced by the algorithm can be
controlled through a set of intuitive shape parameters without knowing the details of the algorithm.

An important motivation of our work is to construct geometric models that facilitate manipulat-
ing and reasoning about physical objects (Hopcioft aud Krafft 1986; Hoffmann 1989). Traditionally.
the building blocks for free-form surface constructions are parametric patches. As far as design and
display are concerned, parametric patches are very successful. But when it comes to manipulating
and reasoning about physical objects, parametric patches run into serious problems. Parametric
patches are not closed under some elementary vperations in geometric modeling, such as sweeping
and Minkowski sum (Bajajand Kim 1987). The intersection of two parametric patches is extremely



difficult to represent and evaluate (Hoffmann 1989) because the algebraic degree of the intersection
is prohibitively high. As an example, we notice that in general the intersection of two commonly
used bicubic patches is a space curve of degree 324 (Hopcroft and Krafft 1986).

These problems can be avoided by building free-form surfaces from low-degree implicit patches.
Implicit patches are closed under all common operations required by a geometric modeling system
(Bajaj 1989), and the intersection of two degree n implicit patches has degree n?, which is small if
n is. Low-degree implicit patches also allow the use of algebraic techniques as opposed to numerical
techniques in reasoning about physical objects (Hopcroft and Krafft 1986). These features make
implicit patches a superior choice for applications where manipulating and reasoning about physical
objects are important. In addition, from a practical point of view, implicit patches are compact to
store and relatively easy to ray trace.

An inviting class of implicit patches for free-form surface constructions is the class of quadric
patches. When the input data is a polyhedron without normals prescribed at its vertices, a free-
form surface can be constructed using quadric patches. However, quadric patches have fundamental
limitations that make it impossible to allow prescribing normals in the input data. Roughly speak-
ing, when a free-form surface is constructed by replacing the facets of the input polyhedron with
quadric patches, they introduce a correlation between the normals at the adjacent vertices of the
input polyhedron. We have investigated the role of quadric patches as primitives for free-form
surface constructions, and we hope to report the results elsewhere.

Being able to prescribe the normals in the input data is important. Prescribing normals is a
measure to control the patches in the free-form surfaces so that only a few patches are needed for
representing a smooth object that would otherwise requires thousands of polygons to approximate.
One way to overcome the limitations of quadric patches is to split the edges of the input polyhedron,
as was done by Dahmen (Dahmen 1989). However, from a theoretical point of view, Dahmen’s
method cannot handle arbitrary input polyhedron because his method requires the existence of
“transversal systems”, which no one know: how to construct in general; from a practical point
of view, splitting the edge of the input polyledron causes oscillations in the free-form surfaces,
making it impossible to produce free-form surfaces of pleasing shapes. In this paper, we show that
the limitations of quadric patches can be overcome by cubic patches.

1.1 Previous work

There is a rich literature on surface constructions using parametric patches, and a recent survey can
be found in (Mann et al. 1990). Modeling complex objects with implicit patches was introduced
in recent years and is becoming an increasingly prominent area of research. General techniques
for implicit modeling are developed by researchers vorldwide (Nishimura et al. 1983; Bloomenthal
and Wyvill 1990; Dahmen 1989). In particular, many authors have demonstrated the power of
implicit patches in deriving blending surfaces (Blinn 1982; Middleditch and Sears 1985; Hoffmann
and Hopcroft 1987; Rockwood and Owen 1987) and in surface fitting and approximation (Bajaj
and Thm 1989; Patrikalakis and Kriezis 1989).

Sederberg proposed using Bernstein-Bezier representation of implicit patches in free-form sur-
face constructions (Sederberg 1985). Subsequently. various techniques are developed for construct-
ing free-form surfaces using implicit patches (Patrikalakis and Kriezis 1989; Bajaj and Thm 1989
Moore and Warren 1990; Sederberg 1990). In paiticular, Patrikalakis et al.. Sederberg. and Bajaj
et al. demonstrated the complications and pitfalls of modeling with implicit patches (Patrikalakis
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and Kriezis 1989; Bajaj and Thm 1989; Sederberg 1990).

Dahmen (Dahmen 1989) gave an algorithm for constructing free-form surfaces from quadric
patches. But the algorithm cannot handle arbitrary polyhedra, and the splitting scheme in the
algorithm prevents it producing pleasing shapes. There are also algorithms for constructing free-

form surfaces with implicit patches of degree six and degree five (Moore and Warren 1990; Bajaj
1990).

2 Conceptual overview

The algorithm described in this paper builds free-form surfaces from the input data of a polyhedron
with a normal vector prescribed at each vertex of the polyhedron. The input data is denoted by
(P, N), where P is an arbitrary polyhedron with vertex set {xj,---,Xx}, and A" is a set of normals
{nj,---,nx} with n, being the normal vector prescribed at x,. The facets of P are assumed to be
triangular.

The basic idea of the algorithm is very simple. The free-form surface to be built must be
in the neighborhood of the input polyhedron P, so we construct a neighborhood T of P using
tetrahedra and creat a cubic polynomial for each tetrahedron used. By ensuring C! conditions
between adjacent tetrahedra, we obtain a global C! function that is a cubic polynomial in each
tetrahedron. The zero contour of this global C'! function within the neighborhood X is the free-form
surface to be generated.

The following three aspects are crucial to the success of the algorithm.

1. The construction of a neighborhood T of the input polyhedron using tetrahedra. The neigh-
borhood must locally contain the tangent plane determined by the prescribed normal at each
vertex of the input polyhedron P, and the neighborhood must have the same topology as the
polyhedron P.

o

A scheme for defining a globally C?! function which is a cubic polynomial over each tetrahedron
within the neighborhood £. The scheme must leave free control points in the definition of
each cubic polynomial so that the zero contour of the cubic polynomial can be controlled by
these free control points.

3. A mechanism to control the cubic polynomial defined for each tetrahedron so that the zero
contour of the cubic polynomial inside the tetraliedron is a single-sheeted cubic patch without
holes, extraneous sheets, self intersections, or other topological anomalies.

These three aspects will be stressed throughout the development of the algorithm.

3 Algorithm details

Now we address the three aspects of the algorithm in detail. In this paper, we use [X;---Xn] to
denote the convex hull of point set {xy,---.x,}.
3.1 The construction of the neighborhood ©

The basic spatial elements used to build the ncighborhood T of the polyhedron P are tetrahedra.
Tetrahedra are chosen for two reasons. one. tettaliedra are simple and flexible three dimensional
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Figure 1: Filling gaps between two double tetrahedra

spac 2 units; two, tetrahedra facilitate the use of Bernstein-Bezier representation, which is the base
for this work.

The neighborhood ¥ is constructed as follows. For each facet F = [x;x2%3] of the polyhedron
P, two _ ints x4 and y4 off each side of the facet are chosen, and they determine tvo tetrahe-
dra, [x1x2X3%4] and [x1%2x3y4]. These two tetrahedra form a double tetrahedron denoted by
([x1x2x3x4], [X1x2x3y4]). Consider an adjacent fecet F' = [x}x,x3] and its double tetrahedron
([x1x2x3x}], [xix2x3y4]). Between the double retrahedra of facets F and F’, there are two gaps.
One gap is between the tetrahedra [xjx2x3x}] and [x;x2x3X4]; the other is between [x;X2x3y:]
and [x)x2X;y5]. The first gap is filled with a pair of tetrahedra [x/x,x3x4] and [x¥'x,x3x}], and
the second gap is filled with another pair of tetrahedra. [y{x;x3y.] and [y¥x,x3y%]. Here x¥ and
y{ are points on the line segments [x4x}] and [y,y’] respectively. All these are shown in Figure 1.

As an auxiliary geometric structure for the free-form surface construction, the neighborhood &
must satisfy the following condition. At each vertex x, of the polyhedron P, the neighborhood S
should locally contain the tangent plane defined by n,. In other words, there is a disk D around
the vertex x; in the tangent plane at x; such that

DcCZ.

3.2 A scheme for enforcing C! conditions over £

Having built a neighborhood T of the polyhedron P. we construct a C! function f over the neigh-
borhood X so that

f(x,-)=0, Vf(x;)=n;, i=1,---,k. (1)

The zero contour of f within T is the free-form surface to be generated.

The construction of f can be outlined as follows. First, we split the the tetrahedra that have
facets of P as faces: the neighborhood T is kept the same except some of its tetrahedra are split.
Then, the function f is defined by constructing a cubic polynomial for each tetrahedron within the
neighborhood E.

To show the splitting scheme, we take a facet {x;x,x;3] and its double tetrahedron ([x;x2x3Xy].
[x1%2%3y.]) s an example. Let w be a point in the facet {x;x;x3]. We split the double tetrahedron
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Figure 2: The C?! conditions between two adjacent double tetrahedra

into six tetiahedra: [x,x,wx4) and [x,x,wy4] for 1 < 7 < j < 3. For symmetry and robustness
reasnns, w is often chosen to be the centroid of triangle [x;x2x3], while y4 and x4 are chosen to be
on the line that passes throug!: w and is perpendicular to [x3xsx3).

T'he construction of cubic po., nowials over the tetrahedra within T takes two steps. Consider a
facet ¥’ = [x|xyx3) adjacent to facet F = [x;x,x3] and the double tetrahedron of F’, ([x}x2x3x}],
[xix2%3y4]). The facet F' and its double tetrauedron are split at the centroid w’ of F' in the
same way thav ([®1%,X3X4], [X1X2%3y4]) is split at w. Dor the facets F and F’, the first step takes
place over tetrahedra Vi = [Xoxsxqw], V2 = [x2Xax W), Wi = [xax3xX|x4], W2 = [xax3x]x}],
V] = [xox3yaw], V3 = [xoxcyiw!], Wi = [x2x3y1y<), and Wy = [x2x3y]y4) as in Figure 2. We
construct the cubic polynomials cver tetrahedra Wy, W5, W7, and W. At the same time, the cubic
polvnomials over tcirahedra Vi, V2, VY, and 17 are partially determined through C! conditions,
The same process is carried out between every pair of adjacent facets of P, so at the end of the first
step, the cubic polynomials “wer the tetrahedia [x,x,x4w] and [x,x,y,w] are partially constructed
for all i < j < 3. Tuer, the second step completes the construction of these cubic polynomials




according to C! conditions.

Now we describe the first step in detail. Throughout this description, we assume i = 1,2
whenever i appears. By doing so we are taking advantage of the symmetry of the problem in
consideration.

Let the cubic polynomials f, over V,, f/ over 17, g, over W,, and g/ over W, be expressed in
Bernstein-Bezier forms as follows.

filz) = > d\B(m), (2)
JAl=3

gi(z) = Y WBAB3(p:), (3)
|Al=3

i(z)= ) BT, (4)
[M=3

and '

gi(z) = > d\B3(p}), (3)

[Al=3

where 7,, 7/, p} and p, are the barycentric coordinates on V;, VY, W/, and W, respectively. We call
the ayx’s, by’s, ca’s, and dy’s the control points of the cubic polynomials f,, f/, g, and g respectively.
Our task is to determine these control points.

For notaticnal convenience, if two tetrahedra sharing a common face, we equal the control
points of the associated cubic polynomials on the common face to ensure C° continuity. Hence
such control points will be defined only once.

All the control points over tetrahedra V;, 17/, 1V, and W/ that can be determined from the
input data are as follows. The fact that the zero contours of f;, f!, g,, and g/ pass through x2 and
x3 implies

@hago = @hgge = 0
0300 = @30 = Y
¢b300 = €go30 = 0,
bo300 = booso = 0,
and
doz00 = doo3o = 0.

More control points are determined by the normals at the vertices x; and x3. For example,
1 1 .
Qgespet = §(n1,w -X;), J=2,3.

Similar expressions are used to determine the control points a;e, 4ok forj=2,3and k = 1,4, c:;, et
for j =2,3, b}, for j = 2,3,and dj,;, ., forj =2,3.

Before determining the rest of the control poiuts according to C! conditions, we have to choose
some control points to be free control points whose values will be left unspecified at this point. This
is because creating a piecewise cubic C! function f over the neighborhood T is only an intermediate
step in the free-form surface construction. Having dcfined a cubic polynomial whose zero contour

passing through some vertices of a tetrahedion does not guarantee the existence of a taut cubic




Figure 3: A handle on a cubic patch

patch inside the tetrahedron. There may not be a cubic patch inside the tetrahedron at all, or even
there is, the cubic patch can have self intersections, holes, and extra sheets. Figure 3 is a more
dramatical example: a handle appears on an otherwise nice cubic patch. If this cubic patch is in a
free-form surface constructed from the input polyliedron P, the topology of the free-form surface
is bound to be different from that of P.

We choose the following free control points aby,,,, (j = 1,2,3,4), ch ., (5 =1,2,3,4), bygoys
and diyy, for fo, £y g1, and g respectively. The intuition of these control points are as follows.
Control points @}, (7 = 1,2,3) are equivalent to the function values and gradients at x4 and xj,
and the control point b}y, enables us to have complete control of the function values of g, along the
line segment [x4x}]. The same statement can be made about control points c; iy (J=1,2,3,4)
and digo;. In 3.3, we will explain how these fiee cor.trol points affects the associated cubic patches.

Now we determine the rest of the control poiats to ensure C! conditions. Consider the C!
conditions across faces [x2x3x4] and [x2x3x}]. Suppose

n_ pl 1 Al 1
Xy = Bix1 + 3px2 + B3%3 + Byxy




and
xY = B3, + B3xq + Bix3 + B2x4.

Then, the C! conditions are the following.

i i i i i £ 0
1002 = Blaigo2 + 3240102 + B3a0012 + Baaho03s

b1 = Biaior + Biabaor + Biabiny + Biabiors (6)

blon = Bidion + Bhadysy + Biabos + Biaboras (M)
and .

biro = Biaiio + Baabaro + Biabize + Biabys- (8)

The first three equations can be viewed as the definitions for the control points bi,q,, b%o;1, and
bi110) leaving ajo;; and ajq; to be determined. Equation (8) will be treated later.
Moving on to the C! conditions across [x2x3x/]. we see that if

" I
X] = f1Xq + foXy,

then the C! conditions are the following.

bhooo = H1bboor + 1253001, (9)

blozo = 110} 101 + H2bZi0ps (10)

biaoo = H1bloyy + H2bdoyy, (11)
and

biito = 1168111 + K205 (12)

Again, the first three equations can be viewed as definitions for control points bingq, biggq, 2nd
biag0; and the last equation will be treated later. Notice that big,, and b};q, in the above equations
are defined earlier by the equations (6) and (7).

Finally, we consider the C! conditions across faces [x2X3¥4], [X2x3y?], and [x;x3y4]. All the
control points of g; and some of the control points of f] can be fixed in the same way as the control
points of f; and g¢;. In doing so, we also have two equations left untreated.

d1110 = M @110 + ¥2%0210 + 1300120 + Yio111 (13)
and
divio = Mehiny + Mo, (14)
where the coefficients 7’s and 4’s come from the following relations:
Y1 = 7%+ v3%e + 133 + 1iv4
and
Yy = mya + p2yh.
Now we collectively treat the equations (8), (12), (13), and (14) as promised. These equations

can be rewritten as

1 2 JE a1, [) [ -
MCor11 + M2Co111 = V19110 + 7280210 + V380120 + VaCo111 (15)




and
R . : o .
1100117 + 1203111 = Bialyio + Bhabaro + Biabyao + B4agiy1- (16)

Here c§;1; can be determined from a*'s through the C! conditions across [x;x2x3] and [x]x2x3),
i i i i i
Co1:1 = @181110 T @280210 + @3Q0120 T X4Q0111, (17)

where the a’s come from
1 1 1
Y4 = ajX; + ajxs + adxs 4+ alxy
and
! 2.7 2 2,7
¥4 = aiX) + a3X, + a%x;; + agXy.

The equations (15), (16), and (17) form a system of six linear equations with six unknowns,
ad1115 @110, and chyy;. When the points x4, X}, Y4, and y} are in general position, the system
always has a solution. It may happen that theie is a family of solutions, in which case we choose a
solution as follows. Using the degree-elevation pioperty of Bernstein-Bezier representation, we can
compute default values for ai;;o and ci,,, from tle prescribed normals. A solution to the system
can be selected from the family of solutions according to these default values.

This finishes the first step in the construction of the cubic polynomials over the tetrahedra
within the neighborhood . Now g, and g/ are completely constructed, while f, and f! are partially
constructed.

The second step completes the construction of f, and f/. For this purpose, we shift our focus to
the double tetrahedron ([x;x;%3x4], [X1X2X3y4]), which has been split into tetrahedra [x,x2x4w],
[x1x3%4 W], [X3x2X4W], [X3X2y4W], [X3X2y4W], and [x3Xoy. w].

Consider the problem of completing the construction of the partially constructed cubic poly-
nomials for tetrahedra U; = [x2x3x4w], U2 = [x;x3x4w], and U3 = [x;x2x4w]. Denote the cubic
polynomials for U; by _

hi(vi) = Y a\B}(vi),
|Al=3
where v, is the barycentric coordinate of U,. It is easy to recognize that polynomial h; is the same
as fi in the first step. More generally, the paitially constructed functions A, is the result of carrying
out the first step for [x;x2x3] and the facet sharing edge [XmXn] (m # i,n # i,1 < m,n < 3) with
[¥1x2x3). We denote f1, ¥, and 7y by hy, Uy. and v, in the second step to reflect the new symmetry.

The task. of ensuring C?! conditions between U,’s is greatly simplified by taking advantage of
the fact that w € [x1x2x3]. The control points over U, can be divided into four groups. The i-th
group, called i-th layer, is the set of af\l A2AsAy such that Ay = i. Because w € [X;X;x3], the C'!
conditions between U, and U, only involve contiol points from the same layer. So we can satisfy
the C* conditions by examining each layer as if we were working on bivariate polynomials.

For the 0-th layer, the contiol points af\l apag0 are defined previously for all A; < 1. Determining
the rest of the control pcints in this layer is exactly the famous Clough-Tocher interpolation in
finite element analysis. Figure 4 illustrates a standard solution (Farin 1986).

For the 1-th layer, the control points a),  ,, are defined earlier for all A; = 0. Since this layer
can be viewed as a bivariate quadratic function. the known control points uniquely determine the
rest of the control points within the layer through the C! conditions (Farin 1986).

The control points in the 2-th and 3-th layeis ate trivially determined by the the function value
and gradient at x.
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Figure * The Clough-Tocher bivariate splines

To complete the second step, we carry out the same argument for tetrahedra [x;x2ysw],
[x2x3y4w], and [x1X3y4w]. As for the C! conditions across [x1x,x3], notice that these condi-
tions only involve control points from the 0-th layer and the 1-th layers. From equation (17) and
the way the control points in the 1-th layer aie determined, it is easy to see that the C! conditions
across [X;Xegx3) are indeed satisfied.

Therefore, we have constructed the global C! function f satisfying (1). If the free control points
are chosen so that a "nice” cubic patch is obtained inside each tetrahedron within the neighborhood
T, then the zero contouvr of f inside the neighboiliood T is the free-form surface to be constructed.

3.3 Obtaining and controlling the cubic patches

As we mentioned earlier, creating a C? function f over the neighborhood £ according to (1) is only
an intermediate step. In general, such a function raiely yields the free-form surface we expect. The
problem is that some of the control points of a cubic polynomial strongly affect the zero contour
of the cubic polynomial inside the associated tetialiedron. If we let these control points be decided
by the C! conditions, then the zero contoui of the cubic polynomial inside the tetrahedron exhibits
various behaviors undesirable for free-form surface constructions.

The following situations may occur for the zero contour of a cubic polynomial inside a tetrahe-
dron.

1. There is no zero contour in th iu csior of the tetrahedron even though the zero contour is
known to pass through several vertices of the tetrahedron.

w

There are self-intersection points, or singular points on a cubic patch.

3. There are holes on a cubic patch caused by tlie zero contour of the cubic polynomial leaving
and coming back to the tetrahedron. Sce the left figure in Figure 3.

4. There are multiple sheets of the zero coutour inside the tetrahedron. See the left figure in
Figure 6.




Figure 5: Avoiding holes in a cubic patch




Figure 6: Avoiding extra sheets in a cubic patch

5. More dramatically, there may be even handles etc. on a cubic patch. See Figure 3.

Notice that we listed singular points togetlier with self intersection because for implicit patches,
singular points appear where self intersections occur.

We use tetrahedra [x;x;wxy) in Figure 2 as an example to explain how the situations listed
above can be avoided by controlling the free control points we have chosen. Ii. this example, the
free control points are the function value h3(x4) and the gradient Vh3(x4). The same argument
with minor modifications applies to the cubic polynomials defined for other tetrahedra.

Situation one can be avoided by properly chioosing the function value at x4. Consider the line
segment from the centroid of [x;x2w], p, to x,4. If the function value h3(x4) is chosen to be have
a sign opposite to that of the function value at p. then there must be a point on the line segment
[x4p] where the cubic polynomial is zero. In other words, the zero contour passes through the
interior of the tetrahedron [x;x,wx4].

Situations two through five can be avoided by euforcing monotonicity conditions on the cubic
polynomial along the direction from w to x4. A function is monotone in direction « if the directional
derivative along « is positive. Let the cubic polynomial in [x;x,x,w] be

h3(V3) = Z (IAB§(U3)-
|Al=3

A sufficient condition for the cubic polynoiuial Ly to be monotone along the direction form w to
x4 within the tetrahedron is that

Ap_etget — @y 2 0. forall A with A; > 1. (18)




e Location of shape parameter

Figure 7: The shape control scheme

When A; > 1, the condition (18) can be enforced by the function value and gradient at x4. As for
A1 = 1, the control points involved in (18) are completely determined from the prescribed normals
in the input data, so the monotonicity conditious may not be satisfied for certain input data no
matter how the free control points hz(x4) and Vhj(x,) are chosen. But remember the prescribing
normals in the input data is only a measure to control the behavior of each cubic patch. If we
choose these normals within proper ranges, the condition (18) can be enforced.

In practice, the free control points are computed using the degree-elevation property of Bernstein-
Bezier representation. The idea is to extend the effects of prescribed normals to the free control
points. A quadric polynomial g over the tetialiedron [x;x,x3x4) can be determined from the fact

q(x¢) =0, Vq(x;) = n;, i=1,2.3.

and the value g(x;) which is referred to as a shape parameter. If this is done for all facets of
the input polyhedron P, then quadric polynomials over tetrahedra such as [x2x3x{x4] can be
determined also. These quadric polynomials aie tlen degree elevated to cubic polynomials, whose
control points corresponding to the free contiol poiuts are given to the free control points. This
method of choosing free control points works very well in practice. From our experience, the ranges
of free control points within which the cubic patches behave well are fairly large. As long as the
free control points are not in the relative small "had™ ranges, the cubic patches are in good shape.

Figure 5 and Figure 6 are two examples of Luw the above method works in the setting of Figure
2. In Figure 6, the left figure has an extra slieet due to badly chosen free control points. In the
right figure, the badly chosen free control points are corrected using the above method. Figure 5 is
similar except the problem is the hole in the left figure.

3.4 Features of the algorithm

The above free-form algorithm has several features. From the description of the algorithm. it is
easy to see that the free-form construction in the algotithm is local. In the following, we discuss the
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e Location of shape parameter

Figure 8: Figure 7 with a shape parameter decreased

quadratic precision of the algorithm, and how to control the shape of the free-form surface without
knowing the details of the algorithm.

Quadratic precision is a measure of accuracy of free-form surface algorithms in terms of how
well the algorithms can reproduce a known suiface if the input data is taken from the surface. A
question that users often ask about a free-foim surface algorithm is that if the input data is taken
from a sphere, can the algorithm reproduces the sphere. For the algorithm we derive, the answer
is yes. In fact, the algorithm reproduces all quadurics.

Notice that the input polyhedron P, prescribed normals at the vertices of P, and the shape
parameters completely determine the free-foim suiface. If the input data is taken from a quadric
surface and the shape parameters are from the quadric surface, then the algorithm will produce
the same quadric surface. To ensure the shape patameters are properly chosen so that all quadric
surfaces can be reproduced, we must give certain default values to the shape parameters. For
example, an easy way to do so is as follows. Randomly choose enough vertices of P so that these
vertices determine a quadratic polynomial ¢ sucli that the zero contour of q passes though the
chosen vertices, then compute the the shape parameters by evaluating g.

An important feature of the algorithm we derive is that it allows the users to control the shapes
of the free-form surfaces produced by the algoiithu without knowing the details of the algorithm.
This feature is very important for applicatious like CAD/CAM, where the designers manipulate
the shape of the free-form surfaces to achieve functional or aesthetic design objectives.

Recall that for each facet, the cubic polynumials over the double tetrahedron containing the
facet is not completely fixed. A double tetralicdion has a vertex outside P, and we call the vertex
the apez of the double tetrahedron. At the apex of the double tetrahedron of each facet, the value
of the cubic polynomials is left as a shape parameter, as was shown in 3.3.

If we think of the algorithm as producing tlie glubal function f over the constructed neighbor-
hood T of P, then the value of f at each apex is a shape parameter. Since the interior of the
free-form surface is exactly the region whete f < 0. decreasing a shape parameter at a apex pulls
the free-form surface towards the apex. Motcover. only nearby quadric patches are affected by
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Figure 9: An example of shape control

this shape parameter because the free-form surface construction in the algorithm is local. So, the
apexes form a net which controls the shape of the free-form surface through the sho .. parameters
at the apexes.

Figure 7 and Figure 8 illustrate a two dimensional analogy of this shape control scheme. The
situation in the three dimension is the same but harder to draw. Figure 9 is an example of two
free-form surface having everything identical except the shape parameters.

4 Conclusions

We have presented an algorithm for generating fice-form surfaces from the input data of an arbitrary
polyhedron with a normal prescribed at each vertex of the polyhedron. The algorithm constructs a
smooth piecewise cubic surface interpolating the vertices of the input polyhedron and the prescribed
normal at each vertex. The free-form surface construction is local and quadratically precise. In
addition, the free-form surface produced can be manipulated through a set of intuitive shape
parameters without knowing the details of the algorithm.
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Fignre 10: A skewed dodecahedron




Figure 11: A tea pot




Figure 10 and Figure 11 illustrate some iinplemented results. Figure 10 is a skewed dodecahe-
dron with 12 points, 20 facets, and 80 patches; Figure 11 is a tea pot with 45 points, 72 facets, and
266 patches. These two pictures, as well as the pictures shown earlier, are generated by polygonizing
the cubic patches and rendering the resultant polygon using Gouraud shading.

We hope to incorporate the free-form surface algorithm into a geometric modeling system and
to experiment designing, manipulating, and reasoning about complex smooth objects.
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Abstract

The recent explosion of interest in physical system simulation may
soon lead to realistic animation of passive objects, such as sliding blocks
or bouncing balls. However, complex active objects (like human figures
and insects) need a control mecharism to direct their movements. We
present a paradigm that combines the advantages of physical simula-
tion and algorithmic specification of movement. Tke animator writes
an algorithm to control the object and runs this algorithm on a phys-
ical simulator to produce the animation. Algorithms can be reused or
combined to produce complex sequences of movements, eliminating the
need for tedious keyframing. We have applied this paradigm to control
a walking biped. The walking algorithm is preserted along with the
results from testing with the Newion simulation system.

1 Introduction

This paper describes a new paradigm for the control and animation of complex
active objects such as the human figure. This spproach allows the animator
to control an object through an algorithm which specifies certain “intuitive”
variables as a function of time and of world state. In the case of human figure
walking, the animator might write an algorithm which controls the acceleration
of the figure’s center of mass at one point in the animation, and which controls
the angle of the knees at another point. The algorithmic approach to animation
allows this to be done with ease, as demonstrated by the walking algorithm
presented in Section 6.




Witkin and Kass [WK88| have combined physical simulation and key-
framing to produce realistic animation of their jumping Luxo lamp. With
their approach the animator uses spacetime constraints to specify several key
points for selected variables. These variables may be positions, velocities,
forces and so on. Combining spacetime constraint equations with the La-
grangian equations of motion and discretizing over time yields a system of
equations that are solved to produce the motion. Since the system is gen-
erally underconstrained (having multiple solutions) a solution can be chosen
to minimize the power, fuel comsumption and so on.

Our algorithmic approach is similar in that the animator can control
accelerations and forces, but differs in that the constraints can be added
or removed “on the fly” as the algorithm sees changes in the world state
which might not be predictable. In the case of human figure walking the
algorithm might, as the foot touches the ground, remove a foot positioning
constraint and add a leg stiffening constraint. The exact point of contact
is not predictable in advance. Additionally, the algorithmic approach frees
the animator from considering the dynamics of impact and other changes in
kinematic relationships, which are handled automatically by the simulation
component of our system. Incorporating impact into the work of Witkin
and Kass would require either guessing the impact points beforehand or
incorporating a “force field” approach as described in Section 2.

Other work on combining control and simulation has been done by Barzel
and Barr [BB&8|. Their method of dynamic constraints adds fictitious forces
which pull the simulated objects into specified positions. By doing this in the
framework of a simulation system, the movement of complex physical objects
can be simulated with little work on the part of the animator. A limited form
of control is achieved by attaching forces to points on the object and dragging
these points.

Various other approaches to combine control and physical simulation have
been explored. Wilhelms [Wil87] blends kinematic and dynamic formula-
tions, Isaacs and Cohen [[C87] incorporate inverse dynamics in their simula-
tion system, and Brotman and N-travali [BN88| use dynamics and optimal
control to interpolate between key frames.

Some further ins.ghts on control can be gained from examining the current
literature in the field of robotics. While this field deals with controlling real,
physical objects, some of the techniques can be applied to produce simpler
animation.

Researchers in robotics have taken various apprcaches ‘o reduce the com-
plexity of control programs for physical objects. The computed torque
method (see [Cra86]) for robot arms can be viewed as simplifying control
by reducing the gripper to a unit mass. The control program can ignore the
dynamics of the robot arm, only concerning itself with the position of the




end effector as a function of time.

In building his one-legged hopping machine, Raibert [Rai86] partitioned
control along three intuitive degrees of freedom: Lopping, forward speed and
body posture. This resulted in surprisingly simple control programs for the
hopping robot. For multi-legged machines, Raibert introduced the idea of a
“virtual leg” which was defined in terms of the robot’s physical legs. This
again led to simplified control programs.

Both the computed torque method and Raibert’s virtual leg demonstrate
that a proper choice of control variables can lead to simplified control pro-
grams. The problem with this approach is that there is often no simple
closed-form mapping of these control variables on.o the forces and torques
needed to control the object. In some cases a complete system of equations
must be numerically solved to make this mapping. This is called “inverse
dynamics” and is typically rejected by robotics researchers as being too ex-
pensive to use in real-time control. For the purposes of animation, however,
it is ideal.

This is the basis of our algorithmic approach to control. This approach
advocates the selection of a small set of intuitive variables which are used
by the algorithm in controlling the object. The algorithm constrains these
variable with constraint equations, which, when combined with the standard
Newton-Euler equations of motion, produce a system of equations describing
the motion of the simulated object. The system of equations is maintained
by our general purpose physical simulator, called Newton. The Newton sim-
ulator is responsible for integrating the motion of the simulated objects over
time to produce the animation. As described in the next section, Newton
also automatically updates the system of equations as kinematic relation-
ships in the simulation change (one such change would occur as the biped’s
foot touches the ground). Finally, Newton provides an interface to allow the
algorithm to add and remove constraint equations to and from the system
of motion equations.

In the event that the control algorithm underconstrains the motion of
the object, constrained optimization techniques are used to choose a motion
that optimizes some criterior while satisfying the constraints imposed by the
algorithm. Our decision to allow control programs to underconstrain the con-
trolled object — necessitating the use of constrained optimization techniques
- is based on the realization that control algorithms often require many fewer
control variables than there are degrees of freedom in the controlled object.
A robot modeled after the human figure may have as many as two hundred
degrees of freedom [Zel82|, while the contirol program for such a robot would
only require twenty or thirty degrees of freedom to accomplish its task. In
programming our walking biped we used at most eleven of its sixteen degrees
of freedom at any given instant.




In summary, the algorithmic approach presented in this paper allows the
algorithm to constrain a small set of intuitive variables. The algorithm is
allowed to underconstrain the motion of the object, in which case a motion
ts chosen which optimizes some criterion while obeying the constraints. The
Newton simulator incorporates the constraint equations into its automat-
ically maintained system of motion equations and integrates over time to
produce realistic animation.

Section 2 outlines the relevant background of the Newton simulation sys-
tem. Section 3 describes in detail the algorithmic approach, while Section 4
looks at some low-level controllers used by the walking algorithm. Following
this, Sections 5 and 6 outline the biped model and the walking algorithm.
and present results from testing the algorithm.

2 Overview of Newton

The walking algorithm described in this paper has been designed and tested
using the Newton simulation system, part of a large research effort in mod-
eling and simulation at Cornell University. The development of Newton was
inspired by the reed for more general-purpose, flexible simulation systems.

Extensive mechanical engineering research has led to many developments
in physical system simulation. The ADAMS [Cha85| and DADS [HL87|
systems are examples of large state-of-the-art systems from the mechani-
cal engineering domain. In many ways such systems are very sophisticated:
efficient formulations of mechanism dynamics are supported, fancy numer-
ical techniques for solving equation systems are used, object flexibility and
elasticity are often handled, and so on. Recent work by graphics and ani-
mation researchers [BB88,IC87,MW88,Hah88| in what is termed physically-
based modeling has generally been less sophisticated but has placed greater
emphasis on animation of interesting high-degree-of-freedom mechanisms.

A number of things are still lacking in all of these systems. Typically they
have almost ignored geometric considerations and represented objects simply
as point masses with associated inertias and coordinate systems. Geometric
modeling techniques have matured enough to allow object representations
used by dynamic simulations to include a complete geometric description
usable by a geometry processing module. Furthermore, impact, contact, and
friction are typically handled by current systems in an ad hoc or rudimentary
manner, if at all. In some cases, for instance, any possible impacts must be
specified in advance: in others, a kind of “force field” technique is used, in
which between every pair of objects there is a repelling force that is negligible
except when objects are very close togeilier. In addition, the desire to manip-
ulate high-degree-of-freedom objects suggests that a module for specification
of control algorithms should be a significant part of a dynamics system.




2.1 Newton Architecture

Using Vewton, a designer can define complex three-dimensional physical vb-
jects and mechanisms and can represent object characteristics from a wide
range of domains. An object is made up of a number of “models,” ecach
responsible for organization of object characteristics {from a particular do-
main. In mosc simulations the basic domains of geometry, dynamics, and
controlled behavior are modeled. A dynamic modeling system, for example,
is responsible for maintaining an object’s position, velocity, and accelera-
tion, and for automatically formulating the object’s dynamics equations of
motion. A geometric modeling system is respounsible for information about
an object’s shape, distinguished features on the object, and computation
of geometric integral properties such as volume and moments of inertia. [t
also detects and analyzes obje~t interpenetrations so that an interference
modeling system can deal with collisions between objects.

Newton is composed of three main components: the definition and repre-
sentation module, the analysis module and the report system. The definition
module analyzes high level language descriptions of Newton entities and orga-
nizes the corresponding data structures. The analysis component implements
the top-level control loop of simulations and coordinates the working of vari-
ous analysis subsystems. The report system handles generation of graphical
feedback to users during simulations as well as recording of relevant infor-
mation for later regeneration of animations.

2.2 Dynamic Analysis in Newton

A comp' 'x physical object is modeled as a collection of rigid bodies related
by constraints. Newton-Euler equations of motion are associated with each
individual rigid body.! At the time an object is created the equations are of
the form

mr =0

Juwt+wx Jw=0.

where m is the mass, 7 is the second time derivative of the position (ie. the
acceleration), J is the 3 x 3 inertia matrix, and w and w are the rotational
velocity and acceleration, respectively.

A specification that two objects are to be connected with a spherical
hinge is met by the addition of one vectorial constraint equation and the
addition of some terms to the motion equations of the constrained objects.
For a holonomic constraint such as this one, the second derivative of the
constraint equation can be used along with the modified motion equations

! Newton is capable of using dynamics formulations other than the one¢ outlined here. We
are also working on incorporating non-rigid bodies into the system.




to solve for object accelerations and reaction forces. Thus, the equations
above become

mr, = Fhmgc
Jlu.ll T Wy A Jl\-"l = ¢ X Fhmg:
MmaTy = "'Fhmgc
Jgi;.lz T+ W X Jzu)z = (2 X —Fhlngc

'Fl ':—(dl X cy +uwy x(wl A C|) =i:2 +\;)2 K Cy + Wy K (u)2 X Cz),

where ¢, is the vector from object i's center of mass to the location of the
hinge and Fh,png. is the constraint force that keeps the objects together. Note
that the last equation above is the second time derivative of the holonomic
constraint equation ry + ¢; = 7, + ¢; for spherical joints. Other kinds of
hinges commonly used in Vewton include revolute or pin joints. prismatic
joints, springs and dampers, and rolling contacts.

If gravity is present during the simulation the system will automatically
add gravitational force terms to the objects’ translational motion equations.
The system keeps track of the constraints responsible for the various terms
in the motion equations. Thus, constraints, and their corresponding motion
equation terms, can be removed at any time without necessitating complete
rederivation of the system of motion equations.

Using this method of dynamics formulation, closed-loop kinematic chains
are handled as simply as open chains. Though the formulation does lead to
a large set of equations, the matrices are very sparse and often symmetric.
Thus, acceptable efficiency is achieved by the use of sparse matrix solution
techniques.

2.3 Event handling, impact and contact

Newton, unlike many other simulation systems (though see 'Fea85:), can
automatically and incrementally reformulate the motion equations as excep-
tional events occur during simulations. One kind of exceptional event is a
change in kinematic relationship between objects. Figure 1 shows a block
that was initially sliding along a table top. After some time the edge of
the table is reached and the contact relationship changes from a plane-plane
contact to a plane-edge contact. Still later the contact is broken altogether.
These changing contact relationships are automatically detected by Newton.
The system of motion equations and the related constraint equations are
automatically maintained by Newton to reflect these changing relationships.

During the course of a simulation, a variety of events can occur that
require special processing. Newton's event handler is primarily responsible
for detection and resolution of impacts, for analysis of continuous contacts
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Figure 1: Changing Kinematic Relationships

between objects and corresponding maintenance of temporary hinges, special
kinds of hinges that model one sided constraints between objects in contact,
and for handling of events specified by control programs that necessitate
changes in the constraint set. For example, the walking algorithm might tell
the event handler to notify it when the biped’s foot touches the grounc so
that it can change the constraint equations.

The geometric modeling subsystem is responsible for detecting and an-
alyzing impacts and interpenetrations. In the usual method of handling
impacts, the dynamic analysis module formulates impulse-momentum equa-
tions in a manner completely analagous to the formulation of the basic
dynamics equations, and solves these equations to produce the instanta-
neous velocity changes caused by the impact. The details of Newton’s meth-
ods for handling impact, contact and other exceptional events are given in

(HH87,HH88,C588,Cre89).

3 The Algorithmic Approach

In Newton’s automatically-generated equations of motion certain quantities
are considered to be unknowns. A system of simultaneous linear equations is
solved at each time step to produce values for the unknowns. These values
are integrated over time to produce the simulated motion. Typically, the
unknowns consist of accelerations and joint constraint forces, while positions,
velocities and joint control torques are knowns.

In the algorithmic approach, the programmer controls “intuitive” quanti-
ties defined as linear combinations of the unknowns. The programmer might,
for example, want to control the acceleration of the center of mass of a biped
without explicitly controlling each component of the biped. To do this, the
algorithm must define the acceleration of the center of mass in terms of the
accelerations of the centers of mass of the primitive components of the ob-
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procedure initialize

begin
add-equation " f., = _‘L,Sm‘;‘ "
end

procedure controller( time )

begin
Fen = fl time )
end

Figure 2: The Format of an Algorithm

ject. Over the course of execution, the algorithm must supply the desired
acceleration of the center of mass at each point in time.

Figure 2 shows the format of a centrol algorithm. For the sake of clarity
the algorithms will be described in a Pascal-like notation?. Two procedures
are always present: one to initialize the algorithm (called initialize) and
one to be executed repeatedly over the course of the task (called controller).
The controller procedure has access to the complete state of the system.
The algorithm of Figure 2 trivially defines and controls the acceleration of
the center of mass of an object (the function f must be defined elsewhere).

Defining and controlling a three-dimensional vectorial quantity like the
acceleration of the center of mass has the effect of adding three constraint
equations to the system of simultaneous linear equations that describe the in-
stantaneous motion of the object. By considering joint torques as unknowns
in this augmented system of equations, the system can be solved to produce
motion that satisfies the additional constraint equations. This is a simple
application of inverse dynamics.

For an object with n degrees of {reedom the control algorithm can define
and control up to n independent scalar quantities®. If fewer than n equations
are added the system of motion equations is underdetermined, and many dif-
ferent solutions could satisfy the constraints of the control algorithm. In this
case the algorithm must guide the selection of a solution by providing a
cost function which is quadratic in the unknowns. A standard numerical
optimization technique is used to compute 2 solution that instantaneously
(for each point in time) minimizes the cost function while obeying the algo-
rithm’s constraints. This is different from the approach of Witkin and Kass

2The algorithms are, for now, written in Lisp.
3The additional definitional equations could make the system of motion equations incon-
sistent. This would be an error on the part of the control algorithm.




{(WKB88|, who optimize over the whole animation. This reflects the different
philosophies of the two systems: Witkin and Kass specify all of the infor-
mation beforehand, while we let the control algorithm make decisions during
the animation. Such “on the fly” decisions make it impossible to do global
optimization, but allow much more versatility in the control algorithm by
not requiring a priori knowledge of impacts and other exceptional events.

In summary. the programmer designs an algorithm in a high-level com-
puter language to control intuitive degrees of freedom of the object. These
degrees of freedom are defined as linear combinations of the unknowns in
the object’s equations of motion. An augmented linear system of equations
describes the instantaneous behavior of the object; this system can be solved
to produce the object’s configuration at each point in time. If the system
is underdetermined, the algorithm can provide a cost function to guide the
choice of a solution.

In the remaining sections we describe the application of this approach to
the design of a simple walking algorithm.

4 Low-level Controllers

In designing algorithms with Newton we found ourselves frequently using PD
controllers* and curve-fitting controllers to control the “trajectory” of many
of the defined quantities. In controlling the biped, for example, a quintic
interpolation was used to plot the trajectory of the heel, and a PD controller
was used to orient the foot before it struck the ground. A small library of
these controllers is used in the biped algorithm, and will be described here.

PD controllers are used in the biped algorithm to control orientation,
position and joint angle. Each controller adds an equation to the system
of motion equations which defines the second derivative of the quantity in
terms of the first derivative and the quantity itself. The procedure in Fig-
ure 3 produces accelerations to move an object to within 1% of a position
x-desired within a given time delta-time. The quantities z, v and a are
data structures representing state variables of the controlled object. These
data structures are used by the add-named-equation function to create the
appropriate equation.

Execution of the procedure in Figure 3 causes a named equation to be

*A PD controller (Proportional, Derivative), also known as a “spring and damper” con-
troller, relates the second derivative of a variable linearly to the error in the variable’s first
derivative and to the error in the variable itself. The equation is 2+ % 2+ ;',—(z ~ Zgesired) = 0
for some appropriate 7. PD controllers are used extensively in robotics to move robot joints
into specified positions by calculating the joint acceleration as a function of the position and
velocity errors. A good explanation can by found in {Cra86]. Barzel and Barr [BB88] use a
form of PD controller to achieve their dynamic constraints.




procedure position-vith-PD( constraint-name, object,
x-desired, delta-time }

var z, v, @: quantity
T: real

begin

z = get-position-quantity( object )

v = get-velocity-quantity( object )

a = get-acceleration-quantity( object )

T = - delta-time / log( .01 )

add-named-equation( constraint-name,
" a4+ % v+ ,l—,(z - x-desired) =0 " )
end

Figure 3: PD Controller Used in Positioning

added to the system of motion equations. This equation will continue to
affect the motion of the object until it is explicitly removed by the control
algorithm.

A complete list of controllers available to the biped walking algorithm
is shown in Figure 7 at the end of the paper. Those with quintic in their
name do quintic interpolation to achieve the desired position and velocity in
the desired time. Quintic interpolation was chosen over cubic interpolation
to eliminate “jerk” (discontinuous acceleration) from the beginning and end
of the trajectory.

5 The Biped Mode!

The simulated biped is composcd of a torso, two legs with knee joints and two
feet with toe joints. This model. was adapted from a description in [McM84]
and is shown in Figure 4. The hips and ankles are three degree of freedom
spherical joints, while the knees and toes are one degree of freedom revolute
joints, making a total of sixteen degrees of freedom. The biped is about six
feet tall with moments approximating those of a human being.

We hope to improve this model by incorporating joint limits and elas-
tic tendons. McMahon suggests that, during walking, energy is stored in
stretched tendons and is released when the stretched leg swings forward
[McM84]. This idea might be used to simplify the walking algorithm de-
scribed in the next section.

Newton’s impact handling capabilities have not yet been extended to
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Figure 4: Simulated Biped Model

accurately model the impact of the feet upon the ground. Instead, impact is
simulated by adding an external force and torque to the feet that holds them
level with the ground until they are released with an explicit command from
the control algorithm. This is as though the biped was walking with magnetic
shoes on a steel plate. Very shortly we expect to adapt the algorithm to
incorporate realistic impact.

6 The Walking Algorithm

An abbreviated version of the walking algorithm is shown in Figures 8 and
9, which can be found at the end of this paper. The algotithm cycles
through a set of six states: swing the right leg, land the right foot, lLift
the left foot, swing the left leg, land the left foot, lift the right foot and
then repeat the cycle. In the swing phase, a quintic trajectory is plot-
ted for the swing foot with move-heel-to-target, while the stance leg is
stiffened with set-angle-with-PD and the foot is oriented for landing with
orient-with-PD (shown under START in Figure 9). In the landing phase,
the leading leg is stiffened as the foot nears the ground. Following this, the
takeoff phase flexes the trailing leg, causing the trailing foot to lift from the
ground. Once the trailing toe is bent to 10° the flexing constraint is removed
and the swing phase begins for the trailing leg.

The largest number of constraints are applied during the swing phase, as
shown in Table 1. Since the biped has sixteen degrees of freedcm (DOF) it
remains underconstrained at all times. A quadratic cost function is therefore
defined (in initialize of Figure 9) in order to fully determines the motion

11




Constraint Name DOF Constrained Item
TORSO-CONSTRAINT 3 torso orientation in 3 dim
L-KNEE-ANGLE 1 angle of revolute knee joint
R-HEEL-TRAJ 3 heel acceleration in 3 dim
R-FOOT-ORIENTATION 3 foot orientation in 3 dim
R-TOE-ANGLE i zngle of revolute toe joint

Table 1: Swing Phase Constraints
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Figure 5: Walking Cycle

of the biped. The cost function is a weighted sum of the translational and
angular accelerations, and of the difference between the torso translational
acceleration and some acceleration defined by a function F which tries to
keep the torso mid-way between the two feet.

We found that a cost function which minimizes instantaneous transla-
tional and rotational acceleration usually produces smooth motion. In the
case of the simulated biped, the cost function causes the constrained heel
acceleratior: to be achieved by a linear combination of small accelerations of
many components of the body, rather than a few large accelerations of those
components which are near the heel. We have observed that the combina-
tion of many small accelerations yields more stable motion than large, local
accelerations.

The walking algorithm was tested with the Newton simulation system.
Figure 5 shows ten frames in which the biped completes a full cycle of the
six phases described above. The full simulation consisted of twenty seconds
of straight-line walking on a flat surface and generated the statistics shown
in Figure 6. The version of the algorithm that produced these statistics had
the biped increase speed at 1.0 seconds, as can be seen on the graphs.
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7 Summary

We have presented an algorithmic approach to control. This approach allows
the animator to choose intuitive degrees of freedom by which to control an
object. The control algorithm adds and removes constraint equations “on
the fly” as the world state changes; a priori knowledge of the exact mo-
ment of each state change is not required. With the algorithmic approach,
all consideration of dynamics and impact is left to the Newton simulation
system. The burden on the animator is further reduced by allowing underde-
termined specification of motion through the use of constrained optimization
techniques.

We have presented an algorithm to control a simulated biped, along with
results from its execution on the Newton simulation system. The algorithm
has the advantage of being intuitive, simple to program, and reusable.

Unlike keyframing, the algorithmic approach does not require the anima-
tor to repeat the work of creating new key frames for every walking sequence.
Unlike keyframing, the algorithmic approach allows various algorithms to be
combined to produce long animated sequences. We believe that in the future,
animating complex physical objects will require a structured, algorithmic ap-
proach similar to that presented in this paper.

8 Future Work

We will incorporate elastic tendons and joint friction into the Newton simu-
lation system and modify the walking algorithm accordingly. From there we
hope to develop a suite of algorithms to allow a biped to walk, turn, climb
stairs, manipulate objects, and so on. In keeping with the structured ap-
proach presented in this paper we will attempt to combine these algorithms
to have the biped perform complicated tasks. In carrying an object up a
flight of stairs the high-level algorithm would combine subroutines to pick
up the object, walk to the stairs, climb the stairs and deposit the object.
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position-vith-PD( constraint-nams, object, £q, i)
position-point-vith-PD( constraint-name, object, poiuc-on‘object, z,, Nt )
orient-#1th-PD( constraint-name, object, d4, AL )

set-angle-with-PD( constraint-nese, joint, 8y, At )

position-vith-quintic{ constraint-name, object, 4, vg, At )
posiction-point-vith-quintic( constraint-sams, object, pownt-on-object, x4, vy, At )
orient-vith-quintic( coastraint-name, object, $4, b4, At )
set-angle-with-quintic( constraint-name, joins, 64, 54. At)

Figure 7: Low-level Controllers

const time-1n-alr =0.5s
stride 20.5m
direction = (10 0)
inside-step-fraction =209
heel-Y-strike-speed = —-0.05 a/s
heel~I-strike-speed = 0.02 a/s
foot-strike-orientation = 10° about (0 O 1)
torso~orientation = —10° about (0 0 1)
var phase: £tart r-swing r-land 1-1ift l-takeoff 1-swing 1-lend r-11ft r~takeoff )

procedure move-heel-to-target( constraint-name, foot, other-foot, hip, other-hip )
var target-x, target-v, hip-to-hip: vector

begin
hip~to-hip = get-position( TORSO, hip ) - get-position( TORSO, other~hip )

target-x = get-position( other-foot, HEEL ) + stride X direczion
*+ inside-step-fraction x hip-vo-hip

target-v = heel-Y-strike speed X (0 t 0) + hesl-I-rexabin-spsed x direcsion

Position-poins-with-quantic( constrains-nano, foot, UL, sazgec-x, Sarget-v, time-in-uir )
ond

Figure 8: Definitions for the Walking Algorithm
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procedure initialize

let F = Kp( %{.‘;-,“, 4 Trofa0t) = Ttorso} +K'(;'(‘;l—[oo( + Py o foot) = Ttorso)

begin

quadratic.cost = S5 £ Y77 & 20 (Figrso- F)?
phase = STAKT

end

procedure controller( time )

begin
case phase of

START:
phase = R-SWING
orient-with-PD( TORSI-CI¥STRAINT, TORSO, torso-orientation, 2.0 s )
move-heel-to-target( R-BEE!.-TRAJ, R-HEEL, L-HEEL, R-BIP, L-HIP )
set-angle-with-PD{ L-KNBE-ANGLE, L-L¥EE, 175°, 0.1 3 )
orient-w1th-PD( R-FOOT-ORIERTATION, R-FGCY, foot-strike-orieatation, time-in-alr )
set-angle-s1th-PD( R-TOE-ANGLE, R-TOE-JOINT, 0°, time-1n-air )

B-SWING:
1f distance-to-target( R-FQOT ) < 0.01 = then

phase = R-LANDING
remove-constraint( R-BEEL-TRAJ )
set-angle-with-PD( R-XYEE-LEGLE, R-K3EE, 175°, 0.05 s )

R-LANDING:
1f heel-has-touched( R-FPOOT )} then

phase = L-TAKECFF
remove-constraints( R-FOOT-ORIEETATION, R-TOE-ANGLE, L-KBEE-ANGLE )
set-angle-with-PD( L-KFEE-1EGLE, L-KEEE, 160°, 0.1 s )

L-TAKEOFF:
12 joint~angle( L-TOE-JOINT ) > 10° then

phass = L-SWING

remove-conssraint( L-KEEE-ABGLE )

move-heel-to-target( L-HEEL-TRAJ, L-HEKL, R-EEXL, L-XIP, R-BIP )

orient-s1th-PD( L-FOOT-ORIRNTATION, L-FGOT, foot-sGTiXe-orientation, time-in-air )
set-angle-with-PD( L-TOR-ASGLE, bL-TOXZ-JOINT, 130°, %ime-1a-air )

Ceses L-SWING, L-LANDING, «ni RB-TAKEOFY
are snalogoss to the preceding three cases.

end
vad

Figure §: Abbreviated Walking Algorithm
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