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Description of Progress

Dexterous Manipulation

One of the great deficiencies of today's robots is their lack of flexibility. Most industrial
robots are capable only of simple and repetitive tasks, such as spot welding or spray painting.
There are two main reasons for this deficiency. First, typical end-effectors use a very
simple two stick structure. Second, dexterous manipulation (manipulation by grippers with
independently moving fingers) is not well understood. Effective techniques for dexterous
manipulation would have application within a wide range of areas, including industrial
assembly, decontamination of nuclear plants, and exploration of remote environments (e.g.,
ocean bottoms or space).

We are developing a new strategy, finger tracking [Rus90,Rus91], for the autonomous.
manipulation of objects by multifinger robot hands. Most of the earlier efforts devoted to
understanding dexterous manipulation have been devoted to grasping or to manipulation
for task-specific problems. The finger tracking paradigm reorients an object with a series
of rotations effected by fine finger motions, in which the hand maintains contact with the
object at all times. It is common for humans to reorient an object using "extra" fingers -

those not needed for grasping. Finger tracking captures and formalizes these ideas.
Our notion of manipulation refers to the reorientation of an object by a mechanical

hand. The reorientation is accomplished by fine finger motions, with the object held in the
hand through the entire process.

Definition 1 Manipulation is the reorientation of a part inside the grip, while maintaining
the grip.

This definition implies that the reorientation is accomplished with respect to a system
of coordinates which is fixed on the robot hand. In the process of reorientation, the grasped
object undergoes a Euclidean motion, composed of a translation and a rotation. We are
interested in measuring rotations, and therefore we abstract out the translational component
of the motion.

Definition 2 Two congruent objects have equivalent orientation if there is a pure transla-
tion that takes one into the other.

We see two basic types of manipulation based on the relationship between the object
and the hand. In the first kind, the object is passive inside the grip. The object is fixed with
respect to the fingers involved in the grip in the reorientation step. Its motion follows the
finger motions. We call the algorithms which result from such an interaction finger walking
algorithms. In the second type of relationship, the object is active inside the grip. The
internal forces of the grip are used to move the object relative to the grasping fingers. The
manipulator produces motion by applying forces which take into consideration the geometry
of the object. We call the manipulation algorithms which result from an active interaction
between the fingers and the object finger tracking algorithms. Both finger walking strategies
and finger tracking strategies are common in human manipulation. We have experimented
with both strategies using Newton, our simulator for rigid-body dynamics. Our most recent
efforts have been focused on finger tracking.
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In order to make the idea of finger tracking precise, let 0 be the object to be manipulated
and-let H be the dexterous robot hand. We assume that H has enough fingers for a good
grasp of the object. The hand als, has some additional fingers, which we call free fingers.
Some of the fingers are used to constrain the object by restricting its d( trees of freedom,
while the other fingers are used to generate its motion. In a typical manipulation problem,
we are given the number of fingers n of the hand. Fingers from a subset of size m < n - 1

are used to grasp the object, usually by assigning each finger to a separate face. The size
of m depends on the contact type [MNP90,MSS87,Ngu86]. Once the object is grasped, the
m fingers stay fixed in space and the ob ,;ct is constrained to maintain continuous contact
with them. In addition to the m giaspi-tg fingers that constrain the degrees of freedom,
the object is also in contact with a free finiger, which tracks along some curve on a different
face. This process causes the object to move rdative to the grasping fingers.

The free finger tracks a continuous trajectory, while at each instant, the m + 1 fingers
hold the object in a grasp with some desired property, for instance equilibrium. Using this
technique, we can generate the reorientation of a grasped object by commanding a simple,
sliding motion for the tracking finger.

The most fundamental question within this framework is exactly how to generate some
desired motion. The answer should allow us to program a robot to take an object from a
given initial orientation to a goal orientation, or to determine when such a program does
not exist.

To answer this question, we have broken the problem into two components. The first is
related to the fact that this form of manipulation is defined as a constraint problem. Thus,
an -important aspect is finding an algorithm to determine the configuration space for the
motion of the object to be manipulated. The second component has to do with finding
the manner in which the robot must use its fingers to generate some desired trajectory for
the object to be manipulated. This involves finding efficient tracking algorithms. We have
established a framework in which to adress these algorithmic questions, by using Lie algebra
properties.

Some of our results are summarized below:

e The configuration space for a polyhedral object. For the case of a polyhedral object held
by a robot hand with four frictionless point contacts, we have obtained an algorithm
to describe the configuration space as a manifold given by a closed form equation.
We have analyzed the properties of the configuration space, and have shown that it is
diffeomorphic to the rotation group SO(3). Furthermore, we have shown that for this
configuration space, the vertices of the polyhedron can move in a space-filling way.
A consequence of this result is that the structure of the configuration space is quite
complex, which makes finding finger tracking algorithms non-trivial.

e Finger tracking for a polyhedral object. Under the same assumptions as above, we
have shown that the differential motion of the tracking finger is given by a 4 x 4
linear system. This surprising result is very feasible computationally, especially in the
context of simulation.

* Polygons in the plane. Our newly developed, framework for dexterous manipulation
has been used to express earlier results [Rus90] for polygons; these results were origi-
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nally obtained in a more ad hoc malner. Virtually the same algorithm used to deter-
mine-the configuration space for polyhedra can be used to determine the configuration
space for polygons.

Robustness for polygons. The planar case has a number of geometric properties that
we have been able to exploit -in order to generate robus+ rotation algorithms. The
uncertainty inherent in the real world makes robustness an important feature for any
realistic manipulation algorithm. Our rotation algorithms are robust in the sense
that some of the-a priori knowledge requirements of the geometry of the object to
be rotated and the necessity for precise calculations based on this geometry can be
replaced by sensing. The result of our efforts is a condition on the geometry of the
polygon to be rotated that guarantees robust rotations by an arbitrary rotation angle.
We have shown that for convex polygons, the condition can be checked in 0(n) time,
with O(nlog n) preprocessing.

We ae currently investigating the possibility of extending the robustness results from
the planar, polygon case to the 3-dimensional, polyhedron case. We are also developing
configuration space algorithms for 3-dimensional objects with curved faces. Another area
ifn which we-have made progress is -the experimental verification of our results. We are using
Newton, the-simulator for rigid-body dynamics developed by our group, to verify our finger
trackingalgorithm for rotating polyhedra.
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LEAST CONSTRAINT:

A Framework for the Control of
Complex Mechanical Systems

Dinesh K. Pai"
Department of Computer Science

CorneU University
Ithaca, NY 14853

Abstract
We describe an approach to control in which control ac- *max-height*
tions are specified as weakly as desired. We use large implicit constraint
time-varying sets of non-zero measure as desired goals in- in *safe-height
stead of specific trajectories, maintaining that we do not |sfehegh

TA
care where in such a region we actually are. Inequality
constraints and their conjunctions are used to describe : hrinking cylinder
such regions. The constraints are satisfied at run time to

produce the control. The approach has been successfu~ly %stance foo . desred foot position
used to produce human-like walking in simulation. | feasible region

We also describe an implemented programming envi- -
ronment for this approach. We discuss the representation Z
of control computations using computational graphs and
automatic differentiation for efficiency. Constraint satis- Figure 1: Biped walking machine
faction is performed using a fast relaxation method.

LC) which we believe facilitates the expression of con-
1 Introduction trol programs for complex mechanical systems and is ef-

ficiently implementable as well. An early version of the
We are concerned with controlling high degree of free- framework was presented in [29).
dom mechanical systems which have to accomplish several Section 2 describes the LC approach and how motions
simultaneous tasks. Such systems include robot arms, are expressed in it. Section 3 discusses the data struc-
multi-fingered hands, walking machines, mobile robots, tures for representing control computations in LC and
and simulated mechanical systems used in computer an- the algorithms used to perform these computations effi-
imation. The system typically has redundant degrees of ciently. Section 4 describes the solution of the inequality
freedom for each task, but may have to accomplish a large constraints that arise.
number of tasks simultaneously. The system may also
be autonomous and reactive, which means that a large
amount of the "programming" will be done at execution 2 The Least Constraint Ap-

The complexity of the system implies the following: proach

1. The ease with which complex tasks are expressed 2.1 Motivation
and composed is critical.

2 The efficiency of the control computations ; very Consider the problem of controlling the human-like walk-
important. ing machine of Figure 1 to walk dynamically in three

3. Simulation of the mechanical system is necessary to One approach to programming such a task is to pick

gain insight into the control programs and to aid

their development, some periodic trajectory for the joints, and attempt to
track it. However, it is not clear that this is the natural

These demands are frequently contradictory. We propose characterization of the task. Indeed in problems of this
a framework called "Least Constraint" (abbreviated as type, a major gorl of the process of developing a control

'Supportedin part by ONR Grant N00014-88K.o591. ONR program is to discover the task requirements.

Grant N00014-893-1946, and NSF Grant DMC-86.17355. The We would instead like to pregram such machines in-

author would like to thank L.-M. Reissell for innumerable dii- crementally, by specifying assertions about its behavior.
cussions and J Cremer for comments at a short notice. We can specify several requirements for walking. for in-



stance. (i) the foot should clear the ground during the The topological properties of the domains D. are left
swing phase of the leg, (ii) the swing foot should be moved somewhat open - in theory, a doman system could be
to a location suitable for dynamic balance by foot place- expressed in terms of arbitrary manifolds; in practice.
ment, and so on. however, the domains will be copies of R". for var.,ing

When the machine is controlled to satisfy these require- r.. Non-Euclidean domains, such as SO 3). are current,:
ments. it may turn out that the requirements were inade- treated using their coordinate charts.
quate - for example, one may find that there is nothing A motion specification in LC now consists of a s.ystem
to prevent knee flexion from becoming so large that walk- of time.varying inequality constraints Fo. a E A. on the
ing is impossible. In this case one would like to modify domains D1. here each constraint P is expressed b.
the existing program by merely adding neu, assertions: for
example, by adding the assertion that the pelvis should P -fZ(t), t < . ,20
be above a certain height. This is not possible in current where
robot programming languages. The LC framework was , -R E A
designed to address these problems.

is a smooth map, and z(t) denotes a time-dependent tra-
2.2 Least Constraint Iramework jectory in Di.

The interpretation of the constraint function is that
In the LC framework, motions are expressed by means of the system is controlled to make the -pecified expres-!, -
time- and state-dependent assertibns. These assertions P,, := f.(z(t), t) < 0 true at all times t.
are defined using inequality constraints which describe Such P. and 'heir conjunctions
the set of allowed states as a function of time. The con-
straints are solved at run time to produce a motion sat- P . P.,
isfying them. a

Since complex mechanical systems have large statespaces, it is not convenient or natural to express all of are executable LC motion programs.
As an example, Figure 1 depicts some constraints on

the constraints in a single space. For instance, the walk- the position of the foot for the walking machine.
ing machine in Figure 1 has a 28-dimensional state space. The solution of the constraints is achieved by produc-
For convenience of expression, users define derived vari- ing a trajectory z(t) E Do such that the derived con-
ables in terms of the basic (e.g.. state) variables - an straints
example of this is the definition of task and end-effector
coordinates for robot manipulators. LC generalizes such P. := f.((li, o ...o 10, )(z(L)),t) <0
constructions to allow the creation of arbitrary, user de-
finable quantities which are natural to the tasks and the obtained by lifting t'ie oiginal constraints using the :,nk-
constraints being expressed. One can isolate small groups ing maps are satisf.e at all times t. In LC. this is done at
of variables into domains on which to focus. For example. run time at discrete time steps tk. at every time step t,.
the foot collision constrair.ts in the above walking exam- a feasible point z(t,) is produced, and is used to compute
pIe are best expressed in a separate foot position domain, the control u.

In LC. users define a domain system, {D. . i E I), We have implemented a programming environment us-
related by linking functions ing Common Lisp and the X window system to develop

and execute LC programs. In this environment, users de-
: D,(i,j) E L C I , (1) fine variables, domains and linking functions. and express

which satisfy the basic consistency condition that all di- constraints in these domains. Exact partial derivatoes

agrams of the following form commute. can be efficiently computed using automatic differentia-
tion. The environment interacts with a simulator of rigid

im) body mechanics. "Newton- [8.14]. LC accepts models

.. ......- - Dj of multi-body mechanical systems described in Newton
and generates the o:mputational graph (see Section 3)

I / w for the simultaneous computation of forward kinematics
"" " of user specified features on each body, differential kine-

matics, and inverse dynamics. The control programs c-.n
h. A be tested by sending the control output produced by LC

I, to the simulator. Tools are provided for debugging con-

All domains Di are connected to a basic domain Do by trol programs and for visualizing constraints. Finally.

compositions of linking functions the control programs can be translated into straight line
programs in other languages (currently Lisp and C) for

Do O , D efficiency.

Briefly, the motivation for using domain systems is that 2.3 Examples
they allow a constraint on a subdomain A. to be lifted
to ,a equivalent constraint on the basic domain Do using We have deliberately left open issues such as how the s ,-
compositions of linking functions. tem is used, the rature of the constraints, and the choice
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Figure 2: Toleranced move near singularity. Figure 3: Place on Table

of basic variables. LC is intended to be a general pro- If we now wish to place the object at a particula: o-
gramming framework, rather than a solution to a specific cation on the table, this is achieved by adding the cone-
problem. In this section, we present examples of the ap- shaped constraint marked f, in Figure 3. If it is required
plication of LC to robot programming. The examples are that the center of mass of the arm be above a smail re-
simple for the sake of presentation. but illustrate the use gion of the base during the motion, a new variable x,
of LC. is defined in terms of the joint angles and base position.

and the constraints ri < rz < Z,.

Example 1. Figure 2 depicts a 2-link planar robot ma-

nipulator which is to be controlled to move along a Example 3. We have used the LC framework to success-
straight fire passing through the singular configuration fully program the human-like machine in Figure 1 to walk
(corresponding to the end-effector location (0.0)), from dynamically in three dimensions [30!. In each qualitative
the point (1.0.0.0) to (-1.0.0.0) with an average speed state of the machine, such as -standing on the left leg
of at least t. We assume that this is a pure kinematic while stepping with the right." constraints are imposed
problem - i.e.. the basic variables are the joint angles to achieve a large number of simultaneous tasks such as
t, and t2 , which are tracked by a separate low level con- foot placement for dynamic balance, torso orientation.
troller. We are allowed a tolerance of < around the nom- maintenance of pelvis height. collision avoidance with the
inal straight line. ground during swing, inter-leg collision avoidance. joint

The assertion that the end-effector position (z2.12) is limit avoidance. etc.
within c of the nominal straight line is expressed by the
constraint functions

2.4 Discussion
fl (;)= 1 - • (4)

(Y2 12- (5) Oneofthe main advantages ofthe LC framework is that it
enables and perhaps encourages subtasks to be expressed

and finally the end-effector is "pushed" along the tube by weakly. This reduces the number of arbitrary decisions

specifying the constraint function which have to be made. such as arbitrarily picking a tra-
jectory in Example 2. The program reflects the user's

fpUh.,(Z2, t) = (Z2 - 1.0) - Vt (6) intention better and is easier to maintain. It is also eas-
ier to do "redundancy maintenance.- i.e.. to retain the

Our constraint satisfaction p.ocedure is robust near sin- exces degrees of freedom available to perform a task.
gularities (Section 4) ann the robot executes the pose- LC introduces certain object-oriented features to robot
changing motion shown. programming. Motion programs are easy to combine. in-

herit. and specialize for new tasks. This is particularly
Example 2. Figure 3 depicts the task of placing an ob- important for complex systems for which programs are
ject in the robot's band on the table. In a robot pro- developed incrementally (see Examples 2 and 3.)
gramming language such as VAL [34], this will have to

Typical users will use libraries of higher-level com-be expressed by abitrarily commanding a paticular mo- -pound programs for common LC idioms. The following

tion to an arbitrar; point on the table. In LC, the task is a rbrils o coms.

is programmed i.% placing constraints in the hand posi-

tion domain. The hand is constrained to stay within the e The obstacle: These constraints encode the free
boundaries of the table by the constraints f, and f2. The space in the environment (e.g.. '21.4.10.7]). Care
constraint f: ,naves down at constant speed v from height must be taken to grow the constraints or to ,mp,,se
h. so that afte: a time of h/v the end-effector is on the velocity constraints in order to account for the brak-
table top. Note that the exact location on the table top ing characteristics of the manipulator near the I>-
is unspecified. stacle.



a The interval: This is a special case of the obstacle There is a close connection between satisfying con-
idiom. and restricts the range of a variable, as in the straints and avoiding obstacles -- obstacles are -hard-
case of joint angle limits [17], speed limits. etc. inequality constraints. Conversely one can think of -on-

e The pusher. This a time-dependent constraint which straints as being virtual obstacles in abstract spaces.
moves the system in a given direction, without re- which can change and move over time under the pro-
stricting motion orthogonal to this direction. Equa- grammer's control. In particular, our approach shares
tion 6 is an example. several features with the use of artificial potential fields.

proposed Dy Khatib f 1] (see also. for example. !12.27.!5*
* The funnel (23]: Here the constraints define a set However. there are important differences.

which contracts over time. Thus the system can be First. LC generalizes the notion of obstacles to con-
brought to a desired configuration without overly stra,... in arbitrary, user-defined domans. This is sup-
restricting its trajectory. A canonical example of ported by a programming framework to describe these
a funnel is a contracting ball. constraints conveniently, and a constraint satisfaction

* The toleranced move: A moving ball with fixed ra- system which solves the constraints. Thus LC should be
dius is an example. Example I provides another in- applicable to a broad range of motion control tasks.
stance of a toleranced motion. Another difference is the specification of motions out-

side the natural constraints imposed by obstacles and

2.5 Relationship to other approaches joint limits. In potential function approaches the mo-
tion is specified by constructing a scalar function o such

Current approaches to programming complex mechanical that the system behaves like a gradient dynamical system
systems may be broadly classified as follows: with o as potential. The specification of a motion using

* Explicit approaches: These consist of approaches a potential function is concise - a single scalar function
which allow users to explicitly specify the mo- encodes global dynamic behavior of the system. How-
tion of the robot. e.g.. by prescribing trajectories, ever. this has the drawback that it is difficult for users
These include robot-level programming languages to specify potential functions for complicated behasiors.
(e g, [34.331) While these approaches allow fine Thus the potential functions encountered in the Literature
control of the motion, they are hard to program and are extremely simple or are generated by special purpose
force users to make arbitrary decisions in order to planning programs (see [19,). In LC motions are specified
execute a motion. by time varying constraints. Each constraint has an intu-

* Implicit approaches. In these approaches, the users itive meaning as an assertion. The construction of corn-

only specify the high-level, global goals of the mo- plicated potential functions by adding simpler potentials

tion and the system plans a motion that achieves the together does not necessarily result in easily predictable
h ibehavior: but, joining two constraints will always pro-goals. These include the approaches of motion plan- dc oinwihstsisbt osrns h tt

ning (e.g., [21.15.22,11.9.201) and optimal trajectory duce motion which satisfies both constraints. The state

planning [3.32.61. These methods are powerful when is manipulated by time-varying constrwnts in a manner

they are well matcned to the problem. Howeer this reminiscent of pushing operations '24! and may be viewed

is frequently not the case; for example, t may not as a generalization of pushing to user-defined spaces.
e iWe believe that these features make constraints easierbe important that the trajectory minimize a spe-

cific functional such as energy along the trajectory. to specify and visualize than potential functions.

More generally, these approaches do not facilitate
modification of the planned motions by the users. , Representing Computations
Finally, they axe typically computationally expen-
sive and need to be executed off-line. 3.1 Computational Graph

LC is an intermediate approach between the explicit
and implicit. sharing some features of both. The domain system of Section 2.2 is implemented in LC as

LC is higher level th-n the explicit approaches - a computational graph (or Kantorovich graph) &31.16-. In
one need not specify motions explicitly but rather more a typical constraint satisfaction computation. one needs
weakly as a set of constraints. On the other hand. by to compute the value of each constraint, and the gradi-
moving the constraints and restricting the feasible set. ents of the violated constraint functions. These compu-
one has a degree of explicit user control on the motion. tations are efficiently performed using the technique of

LC is lower level than the implicit approaches. It automatic differentiation. Computations of derived van-
has no built-in application specific knowledge. The con- ables, e .pecially for kinematics, differential kinematics.
straints are satisfied locally, and LC cannot guarantee and dynamics. contain many common subexpressions. the
that the motion generated at one time will not cause a elimination of which is also a major source of efficiency.
failure (e-g. there may be no feasible point in a small The computational graph is a useful data structure for
neighborhood of the current state) at some time in the achieving these goals.
future An additional planning layer may be necessary to A computational graph can be described as follows ,s!e
avoid s'ach situations. On the other hand. for problems Figure 4 for example). A function f. .' - R' is said to
such as controlling reactive, autonomous systems (e.g.. be factorable if every component of f Ls a function com-
[W), this lack of guarantees is not a critical issue. putable fr,,.-n the basic and derived variables b. means 4

I~ '4
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Figure 4: Computational graph for 2-link robot Figure 5: Augmented computationai graph for 2-1lm11

a finite sequence of elementary operations.
We represent a factorable function as a graph as fol- ample in Figure 4. In the exampic 3y2,'04 is the same

lows- let IVe be the set of m vertices corresponding to as z2, the z-coordinate of the end-effector positkon. and1
the m coordinates of the domain of f. V0 be vertices need not be recomputed.
corresponding to the n coordinates of the range. and In the reverse mode, the additional cost of computkig
VC be the intermediate quantities in the computation all the partials of a function is very small. An upper
of f. Let G(V. E) be a directed graph with vertex set bound was derived by Baur and Strassen [2.25.
V = {Vr U Vu U V6) and edge set E. Let 0 be the set of Let f be a rational function of m variables......z,
basic operaticns. With each vertex we associate an oper- for which the computational graph has r1 G) vertices. of
ation by the function .. V - t with the understanding which p(G) are multiplications/divisions. Then
that the operation w(v) is applied to the ordered list of
immediate predecessors of v in G. I(G') < 5r{G)

Figure 4 depicts a computational graph for the y- p(G) < 3p(G) (7)
coordinate of the end-effector position of a 2-link robot Thus the cost of computing all the partials of a scalar
manipulator. function is at most a small constant multiple of the cost

Vertices of the graph acoectgto doaons d s of merely evaluating the function- The extension to tran-
mains, and the subgraph connecting two domains defines scendental functions and exponentiation is strzightfor-
their linking function. The basic domain Do consists of ward (25]. Our experience is that the above bounds are
all the independent variables in the system's computa- conservative- Also. it is frequently the case that the func-
tional graph. i.e. the set of all vertices with in-degree 0.
which are not marked as constants. Frequently, the basic tion has been computed before the gradient is required. in

doman i idntial o te stte pac ofthesystm.which case the cost of computing the gradient is reduced
domain is identical to the state space of the system. by r(G) (or /(G)).

3.2 Automatic Differentiation 4 Constraint Satisfaction
Automatic differentiation is a technique for efficiently
computing exact derivatives of factorable functions (see LC separates the specification of constraints and the tech-
(31,16,13] for recent surveys)- It differs from standard nique used for satisfying them. Thus different constraint
symbolic differentiation in that by using the underlying satisfaction algorithms can be used. We describe he:e a
computational graph data structure, the growth of ccum- non-linear extension of the relaxation method ;i;. which
motn subexpressions due to differentiation is automati- can efficiently handle constraints in multiple domains
cally controlled; it differs from numerical differentiation The method is local and iterative. The local nature or

in that the method is exact and results in no loss of sig- the method makes it fast enough to be implementable in
nificant digits. real time. It exploits the knowledge of a good starting

We have implemented both forward and reverse modes point for the iteration - the solution to the constraint
of automatic differentiation. The computation of par- satisfaction problem at the previous time step.
tial derivatives is implemented as augmentation of the
original computational graph to produce a new graph 4.1 Constraints in a single domain
G' that computes both the function and its derivatives.
This leads to additional savings since the expressions for First ct..1sider the case in which all constraints are ex-
the partials are frequently already present in the com- pressed in one domain. The method we use for constraint
putational graph and are found using simple expression satisfaction is similar to the relaxation method for inear
matching algorithms- Figure 5 depicts the augmented inequali:ies [I], but is extended to nonhnear inequat.-
computational graph of the 2-link robot kinematics ex- using Newton's method.



Let V = R' be the domain. z E V. and let the system This method is preferable to methods which choose
of inequality constraints be the steepest descent and the estimate of the distarce :n

the specification domain A . Although the latter choice
fi(z) < 0,i = ..... n. (8) makes it easier for the user to anticipate the behavior

of the constraint satisfaction algorithm. it is also more
Let r& ne the kth iterate at time-step £, and expensive, in effect requiring the computation of 1' or

Vf,(zh) D-- This also leads to numerical problems when the
ni= (9 Jacobian matrix DI is singular or ill conditioned. This is

l~fAz)l important in robotics applications, where motion in the

d f(zh) (10) vicinity of kinematic singularities is sometimes desirable
I f,(zhfl }or inevitable (281.

The general situation involves :onstraints expressed in
Then each iteration is: several related, and possibly overappuig. domains and s

I For each i = 1. n compute f,(?). If all f.z) _< handled similarly by lifting each constraint funct-on f. n
0. terminate. domain D. to the basic domain D by using a composition

2. Else, let j be such that d, = max. di. of the linking functions provided.

z =Zk - pid,+o)n (11) 4.3 Cost per iteration

P E (0, 2] is the relaxation parameter. and o is a Let c, be the cost. in mu.tiplications. of computing each
small offset, of the n constraint functions f.. The cost of computing

all the f. is V < = c,. where the -<- case arises if the
The behavior of the above algzorithm hasbenalyde.been analyzed share computations. The t.st of constraint Violation

in the case of linear Ji by (1.26). The algorithm 3 then in Step 1 of the iteration costs V and this is fixed by
globally convergent, with positive offsets o having the ef-
fect of inducing convergence in a finite number f steps. i[J, > 0} be the active or violated constraints. Then the

The behavior in the non-linear case is similar in a suffi-

ciently small neighborhood of the feasibe. set. The global update in Step 2 costs

convergence property is lost. but this is not a serious prob- U < 12c, !12)
lem since we are typically solving the inequalities starting E "
near the feasible set. Finally, the convergence can Le lin- CEA

ear with a large convergenrct ratio when the inclualities Here we assume tzit ci > dim Do and terms of the order
are ill conditioned. Choc'ing relaxation parameter p > I of dim Do are ignored. The cost of computing the gradient
can significant.y improve convergence. We are currently is actually bounded by 3c.. but of this c, has alrea-dy been
investigating the tradeoffs with other methods that have accounted for ;n V. The total cost of each iteration .s
super-linear convergence but are more expensi'e per it- V + u.
eration. Note that U is very small when only a few constraints

The algorthm works well in practice. Step I of each are violated, and is at mc.st twice the cost of merely check-
iteration can be computed in parallel to check violated ing if any constraints are violated.
constraints. The gradient required in equations 9 and
10 is efficiently computed using automatic d'iferentiation.
and utilizes the effort already expended in computing fi. 5 Conclusions

4.2 Constraints in multiple domains The basic idea of the approach to control described in
this paper is 'Least Constrairn - by which we mean

Since LC users specify constraints in different domains, that we specify control actions as weakly as desired. This
possibly related by linking functions, the single domain permits motions specifications to better reflect the .set s
case above has to be extended to handle multiple do- intentions, and makes the programs easier to maintain.
mains Consider the case of two domains t and V 2. and Another contribution of this work is our use of corputa-
further assume that A1 is defined in terms of V2 by a tional graphs for the efficient computation of a constraint
smooth linking map I : D2 - Di. Let f' be a constraint function and it's derivatives. This leads to an :nexpenso'e
in Pt and f2 be a constraint in -. constraint satisfaction algorithm that has the aurliary

It is computationally advantageous to perform the de- benefit that it is robust near s=gularties.
scent in V2 _ We ift f' to az equivalent constraint We have used the LC framework on a small range
fP = ft o I in V2. Thus Vfi = D1rV f1, making the of problems. including the task of programming a sim-
method robust near sirgularities. ulated human-like biped machine to walk dynamica ly

Also. it is not necessary to explicitly compute the ma- Our experience indicates that LC is a useful programing
trix Dir - we directly compute Vfi bj differentiat- approach for complex systems with several constraints
ing fi using automatic differentiation saving the cost of However. the method can perform pooriy when the cun-
the dim Vt x dim V2 multiplications for the matnix-vector straints are dl-condittoned and the feasible set a smau
product DIT Vf'. and disconnected. For such cases, we are cons denng
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Shape Control in Implicit Modeling

Baiinhg Guo-
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Abstract Ini dlesigiiig free-formn surfaces. one often encounters
various shape requirements, such as a nice pat tern of re-

Recently, implicit patches have emerged as alternatite flection lutes and iestrictions onl tile nonuiniint radius of
modeling primitives for three dimensional objects lo cillt nic . Ailig all thet shape iciienits. cnkx-
designing three dimensional models, one often encoun- it * i"1. lI niost lam.til a.id~ th l most fickpuenll ieklimsted
ters; various shape requests. This paper develops tech- oi&'. fI 'mIt papci. ,e w t~ iio% to mlaiplate t Ie 4.oii-
niques for satisfying such requests through shape con- tiol points uf a quadiic patch or a cubi,. patch sc, that
trol. Jvi particular, we show how to achieve thle convexity thle pat ch become Convex.
of quadric patches or cubic patches.

1.1 Previous work
1 Introductio[ ow-degiee implicit siiifaces ate extenksivel y used inl thle

The end goal of geometric modeling is to design and existing solid muodelinig and giaphics systems, as mod-
to manipulate three dimensional models represented 1) cling pminiives [IIN8.3]. andt geomet ric opetatiolts onl
free-form surfaces. Traditionally, free-forin surfaces are low-doeg implicit sIurfilces ale well understood toss).
built from parametric patches. Parametric patches are Implicit '.urfaces ale also very useful in muface fitting
successful as far as design and rendering are considered. [PlKb9] and blending [11087. NMS85, 111187. Bi82].
but manipulating three dimensional models with para- Many*% authors have addressed the shape contiol of
metric pathes poses fundamental difficulties. For exam- impijlicit patches [Sed185, WNMW86, BW'9O]. [in lartic-
pie, parametric patches are not closed under swveeping ulai. lBlooiumthal and Wyvdl [BW)O] discussed shape
and convolution. The intersection of two parametric coiitiol using skeleionis. and Sedeuberg poinited out that
patches are extremely difficult to represent and evalu- the Bel ii't(iii-Bezici represecitation ate siutable for con-
ate (11186]. uolling lie siiuil)C of imlicit p~atchies [Seds5])

One way to avoid these problems is to build fiee-
form surfaces from low-degree implicit patches. Implicit 12 Overview
patches are closed under all common operations inl ge-
ometric modeling [Baj88I, and the intersections of low- Tl'li, Ipel is, oigaiiid as follows,. Mftck gi~ ing somle
degree implicit patches can be computed efflicientlyfOSS]. lsakgioumid iiifoiiatitii itt Scctioii 2. %%u kicsciibe the
Recent re..earch shows that quadric and cubic Implicit ba-sic _ii1Aj~c Lonilul Itit liue ill Sectioni .3. stitu I
patches are flexible enough for building arbitrary thiee sli t,%% l toacli %t h( icix iof quiiat patchu.s
dimensional models [Guo9O, Guo9 1]. anmd cubiw patchi("

A major reason that parametric patches have be-
come so popular iii computer graphics is their good
shape control properties. In this paper, we tackle thme 2 Bernistein-Bezter representation
shape control issues ofimplicit patches. Using Bernstein- (Givemti a tetrlmedlomi I'wi %Iih "itiCes X1. X2. X.3 - 1i11d x4.Bezier representation of polynomials, we canl cont rol t lie oeCl lY1011Pi pc -
shapes of implicit patches through nmanipuilat iing Leii n aiCXie. iy1OitPii~a~a
control points.

*This work is supported by DARPA under O1NR contract p X,
N00014-861(-0591, NSF Grant DIC.86.t7355, and( ONRt Grntt
N00014-89J- 19416.
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Figure 2: Function values of a univat iaie cubic function

Having understood the effect of the control points, surface. Come~x Objects and con~ex surfaces arc related
we use the control points to control the shiape of the in that if' a comiex simrmea( is, tloscd and it bounds, a
surfaces. Consider thle problem of interpolating points poinit 'tJ'l %%ill finlite %oluiiie. dil lIli, pilit set is a
and lines in space by a surface S(f). Since the %,allies Convex Ob~ject.
of f at a vertex of thle tetrahedron [XiX2 X3X4I is equal DeLfiming a couwex suiifacu ini teris. of (.alistiaii cur-
to the value the control point at the vertex, setting Lte %.Lttle is iiwt eoii'.iiiciit M ieni dkaling %w it iniphet sr
control point to zero forces thle S(f) to pass through f a Ies So %V(! UM, the def~liiin Of COMNe SuilfaCeS inl
the vertex. This method of interpolating a points canl tiins of tle langeut plane.,. Lt-t an imiplicit surface
be generalized to a method of interpolating the edges of '5(f) l1iaC a tangenit planie S( Px) at poinit x E 5(f).
the tetrahedron [XIX2X3X 4 ]. Thle tur ace .5(f) is conv'ex at the point x if thle surface

Moving on to the problem of c-titrolling the taaigent S(f) is, inl the half space hounded b% S Px ) mnd pointed
plane of S(f), we consider the tangent plane of S(f) at to 1)' -Vf(x). Ani iimplicit patch is comiex if its pri-
the vertex Xt. The tangent plane at x, is defined by its iaiQ sin face is coil%(.. at e' (i. point oii thle imiplicit
the gradient Vf(xi). From Section 2, we know that patch.

Not ice tlite ielat jonship betweenl tilie convexity of tlic
b(A..)el e' =~(Vfx1 ),x1 -Xi),j= 23,4. suiface S(f) anmd tlite comi exitY~ of tilie pl)yniomial f. A

kpoly% liil f i.s con vex ove i le t etia lied ion V if for any

Since the vectors xj - x1 (j = 2, 3,4) are three linearly topii. n l h etlein

independent vectors, the above relation inmplies t hat thle Jx +Y I
control points next to x, completely determne the gra- f( 2 : (fx)+ f (y)).
dient Vf(xi).

More sophisticated examples of shape coiitrol are It i, cas-, to slio%% that if thie pol ' iionial f is, coii',ex
easy to come by. The restriction of f to anl edge of oler th ltetialiedroii 1. mtlen the iiiplicit patch defined
the tetrahedron [X1 X2XaX4] is a univariate polynomial. as the puttion of S(f) ins ide V is, coni x. Ilo'cier. the
If the control points on the edge are all positive or all COlii"ise is 11ot tiiie.
negative, then the surface S(f) does not iiitersect the Nlli'atud 1) thle design of lpaiamiiiiic coiie x sur-
edge. Otherwise, the si~rface S(f) intersects thle edge fai.is~i ll i ('AG D hmc obtalied limiani results"
exact once if there is exactly one sign chaiige in t lie list ohit lhie uii'xit.% coiiditins of poh. niiiiahs o',cr tnan-
of control points along die edge. Similar statei'.ls ca gl [c')1 ]. it is, iossibk to geiieralize thesec results,
be made for the fa''s Of [XI X2X3X4]. to plI 'iliiiial.s m11et raliedra [D.NIl88. t 11us oObtaiing

"ii flicic-it conditions for i ipl icit pat dies to be Coiivex.
II owve i. tilie con vexl% itCoiidit ions Obtained t1116i way are

4 Achieving convexity ofteii ovel',' lestilic' "v. So illi(the following. we deiive
tlie Convexity conidit ions of ani implicit patch directly%

As an application of the techniques for shape conitrol. fioiii tilie defiiio n of a coin x iiiiplicit patch.
we derive the coiivexity condition of an implicit patch in Let p' = (ri. r, . jbe a p)oint close to R pont0 P
terms of its control points. Throughout this section. ve n. 7 . . 7-1) OnIli-il fa* .;( fj. The Taylor expanisioni
concentrate onl the iminplicit patch (ferilned[ as thle port ion of f. %%it hIiighie( om dei tciills olni tted . is
of a surface S(f) inside a tetrahedron V =[Xi X2X3X41*

The reader is familiar withl convex objects as a set
of points in three dimensional space such that the line f (P)' = f P + r: gL -
segment connecting two poitnts in tile set is contaied' r -

in the set. Convex surfaces are often definedh as surfac-.
whose Gaussian curvatures are positive over the emit,
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1 4 if i tile th eI Inic coordinate. I,)and (r) satisfy

_2 (r, - ri)(rj - T,) (1) t he co,.sti,it.

I 4

The first term on the right-hand side of the above Zr, = I and Zr = I.
equation, f(p), vanishes because p is on S(f). Moving
on to the second term, we notice that this term is the
same as the left-hand side of the tangent plaie equationt To (.itillate t lie COtit laulit .)). te .. I).til te - " ,at p, fot a, il (.). The uelh I,

r,-,) = 0. (

Z ,j(P),,j > ) (6)

So the definition of a convex implicit surface implie-
that S(f) is convex at p if for ;i hittuaiy (a.,a.) with

,2f U 2f O-f 02f ;)2fZ (r - - ., 0 (3) a'j (P) =(7)__ ____--
Orir1  Or40r&, Or,dOr4  UrJr 4

The condition (6) s tile condlition fot the t, rface S(f)
for all p. Introducing new variable ai =r.; - ,,We call to be convex at tle point p.
write (3) as App.ly ig t lie coidition (6) to eve.y poI it an im-

O9 0f > 0. lpicit palh, we Ihave tlie followintg theoren.& an- Tlheoreiu 1 .It timpblil e lc t (ii onv( t li 3 x 3
:0(tltit .1 = (tt, ) t4 po iI't dtflirit foi all poit, p oil

The ar's satisfy the constraint li m ,,,plici tpatcl.

4 Ptoof: Obviou- fto th lie al)ove arguiintls. A
0 (-) ,(.talizing wlie conv(xity condlion, for hivariateai = 0 (5) polynontal would give a ,ufficient condition requiriig

I he mat i\t A to he poitiV(" d(lfinite over the elitie tetra-
liedrot a, ol)po- ed 1o thlie miplicit patcll TIle coiilition

in Ilh.ot en I i- ,,ici h '.- re'it(cliv(.



Although Theorem 1 gives a condition for the cont- %,e
vexity of an implicit patch, the condition is hard to use4

because checking the condition for the infinitely many Q...(17) E Ill,,+,I+". +
points on the implicit patch is impossible. So it, thle rest l
of the section, we use Theorem 1 to derive the convex-
ity condition of anl implicit patch in terms of its control b2 +. !'4,n_ )a,'ol,

points. Since thle left-hand bide of inlequlality (1I) is a convex
If f is a degree k polynomial given by coniiiat ionk of Q,,, (or), thle inequality (I1I) is % ahd over

tilie entire tel ralied ion ciicloiiig the cubic patch if and

f =Z b,, Bk (r), onily if thle iniequality is, valid -,t I lie v'ei t ices, ofti lie tet ra-
IAI=k A lieioi. i.e.

then ..(a1() > 0. for lin = 1. 2.3. ..

L9 fSo tilie cu W)c patclh is Coinvex if i lie i iieq ii ailie' ill (8)
.- k(k -1) M i+e.+c) Bk- 2 (r), hold" foi in; = 1,.2.3. . withI const ant

and A =(a,)(p)) is a 3 x 3 symmetric iatrix whose .Au importantl obhser~ation is that for each in. the
entries are homogeneous degree k - 2 pol.%nomialb iii abhot knloicl l is, exactly% tilt 'aliti.a Ill( con'ecxit%
(r,). From linear algebra, A is positive definite if and Wcondil iou foi a qulad nic pailk. VI uieg tilt h rnilmolo'gy of
only if C( , A ). wve can ,ay ' %that a cubic paltcli iiicide a letralie-

(hii is come x if lie sitbpolYnoin i i at t lie v'ert icesz of

all 0 1 :,a2 0 an JA > . () tlie lt l ledmol ;ti e Coiivex.
a 2a 0 ll2 >0an A 0. () Acknowvledgeiihent: I would like to thlaiik Prof.

J . I lo pcroft fo r picovid ing i lie 111)O it . gimid ance. and

In order to decide whether A is positive definite for all ec~ioii g('eiit foi lii'. wvoi k.
points p on an implicit patch, we have to determinie thle
signs of the minimum values of thle quantities listed iii Referenices
(8) under thle following the constraints,

(lBaj$8] C 'lajaj. G3eomietric iiodeliiig withI alge-
A~P) =0. (9) brauic sil aces. Technical Repol t CSD-TR-

$2.(o.Sc. Pudue U niversilv. 1988.
i +,r2 -r-. +T 4 =1, and r. !0 (i = 1. 2. 3,4). (10) 82 on )i.Pl

Her th costains carcteizeth pontsoi (le it- f 3l1i$21 J. M~inni. A genem alizat iou of algebraic stir-

plicit patch. The inequality constraints aiid nonlinear fc iwn.A.1TatcinolGah
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ABSTRACT
Modeling and simulating collections of physical object,, which are subject to a wide
variety of physical forces and interactions is exceedingly difficult. The construction of
a single simulator capable of dealing with all possible physical processes is completely
impractical and. it seems to us. wrong-headed. Instead, we propose to build custom
simulators for single, particular collections of physical objects and where pre-specified
physical phenomena are involved. For such an approach to be practical, an environment
needs to be provided that facilitates :he quick construction of these simulators. In this
paper we describe the essential features of such an environment and describe in some
detail how a general implementation of the weighted residual method, one of the more
general classes of of numerical integration techniques, can be used.

Keywords: Simulation, physical modeling, computational fluid dynamics. symb.li, .,n,.
putation, weighted residual method, soft'vare development tools.

1 Introduction

We are interesteI in building software systems that simulate reality-especially
when several different physical phenomena are involved in the simulation. Depend-
ing on the nature of the objects in a scene, their behavior may be governed by
rigid body dynamics, fluid flow, quantum mechanics or other families of laws. The
forces that act on these objects are gravitation and electromagnetism for macro-
scopic systems, and weak and strong interactions for systems at atomic scales. In
addition, many observable properties of physical systems, including superconduc-
tivity, semiconductors and chemistry, are manifestations of statistical averages of

detailed lower level behavior. These macroscopic phenomena are usually simulated
through their own models-it being prohibitively expensive to simulate from first
principles.

Besides the computational costs, the complexity of dealing with all physical phe-
nomena and mechanisms would make such a simulator ferociously difficult to build.
Rather than build such a general purpose simulator we propose a new program:
Build special purpose simulators tuned for a particular configuration of physical
objects and where a particular set of physical phenomena are involved. Such a
simulator should be less complex than a general purpose simulator, which must
be prepared for any eventuality. The specialized simulator will only have to con-
sider a known system of equations with known parameters. It will consist of more
straight-line code and will have fewer parameters and thus should be easier to tune
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for high performance/parallel computer architectures. However, each new problem

configuration would require the creation of a new simulator.

To make this endeavor practical, we are combining a wide array of techniques

from artificial intelligence, computer algebra, compiler technology and code trans-

forms to provide an environment that vastly simplifies the process of building special

purpose simulators. In effect, one builds a "simulator generator" that crafts a cus-
tom simulator for a particular configuration of physical objects. Such a simulator

generator will generate the particular set of differential equations that model the

scene and then will generate a piece of code for the explicit equations that apply to

the problem. This approach has a number of advantages:

" More sophisticated mathematical techniques can be used to generate the sys-

tems of equations to be solved.

o Conformal mapping techniques can be applied to the non-linear differ-

ential equations to simplify and regularize boundary conditions.

o Averaging and perturbation techniques can be applied to reduce tile

order of the equations.

" Numerical techniques specialized to the equations being solved can be used.

" Software can be retargeted to different computer architectures relatively easily.

This new approach to simulation and modeling is replete with new problems that

need to be studied and new technologies that need to be developed and applied. In

this paper we sketch a general framework for simulator generation and consider some

of the components in detail. It should be noted that we are sketching a simulation

and analysis framework that is to be used not only for Newtonian mechanics but
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also for problems that are driven by electrodynamics, relativistic mechanics and/or
quantum mechanics as well as aggregate models like solid state theory. galactic
dynamics, chemical kinetics and fluid dynamics. Thus one should exercise caution
when extrapolating from experience in just one simulation domain.

The process of performing a simulation is shown in Figure 1. We begin with
the observable scene to be simulated. An observable scene is those properties of
the system that ba be observed and are independent of the physics used to model
the behavior of the scene. By applying the laws of physics to the scene state equa-
tions are generated whose solution describes the evolution of the scene with time.
within certain regions of validity. The state equations are then converted into code
that numerically computes the scene's state changes. As time advances, the state
equations may cease to be valid and must be changed. Similarly. the geometric or

topological characteristics of the scene itself may change. These effects are indicated
by the shaded "feedback" arrows in Figure 1.

The state of a physical system is determined by the values of a set of state
variables, which may include a subset of the observable parameters of the objects
in a scene. The result of applying the physical laws to a scene are a set of state

equations that constrain the state variables over time. For instance, for clocked
boolean logic circuits, there is a finite set of state variables, each of which ranges
over {true, false}, time is modeled by a sequence of discrete events occurring on
clock edges and the state equations are boolean equations. For rigid body dynamics,
there is a discrete set of state variables that have continuous values, time is modeled
as a sequence of irregularly spaced events and the state equations are ordinary
differential equations. In fluid dynamics, there is a continuo.zs number of of state
variables, one for each point in the (continuous) fluid, and their values range over

a continuous vector space. The state equations are partial cfferential equations.
Once the state equations of a scene have been genera, 2d (the middle box of

Figure 1), general mathematical techniques can be used to convert them into a
form where numerical information about their state variables can be determined.

Examples include conversions of ordinary differential equations into finite differ-
ence formulas by Runge-Kutta methods, or the conversion of partial differential
equations into systems of linear equations by finite element methods. We call the
process of converting a system of equations into an effective computational form a
discretization.

These computation structures can then be converted to actual programs (or
codes) that numerically simulate the scene. If something is known about the archi-
tecture of the computer that will run the program then especially fast codes can

be generated by symbolic elimination of variables, unrolling of loops or duplication
of code. Each of these options may be appropriate because of cache sizes, vec-
tor processing structures or interprocessor communication costs. Other echniques
of compiler theory are also appropriate and should be carefully considered at this
point. More radical transformations like changing the order of the discretization

or the discretization method itself may also be appropriate. This entire process of
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converting state equations into computational structures and then into executable
code is indicated in the right half of Figure 1.

This paper discusses each of these steps in the simulation process. In Section 2 we
discuss one approach to representing scenes, their components and the underlying
physics. Once the state equations have been generated, they can be directly sol.ed
numerically, yielding the trajectory of the scene from a given set of initial conditions.
The approach we are pursuing is discussed in some detail in Section 4.

However, occasionally some property of the trajectory is of interest-not the tra-
jectory itself. We argue that by using symbolic techniques, we can often transform
the differential equations that describe the system into other equations whose solu-
tions more precisely answer the questions being asked. Solving these transformed
equations is often substantially easier than solving the original system. However.
substantial (non-numeric computation) is required to produce the transformed equa-
tions. In Section 3 we illustrate how averaging techniques can be applied to reduce
the dimension of the problem being solved and more directly answer the questions
of interest. This technique is classical, but we fell is representative of the type of re-
duction that will be valuable in the future and is possible by the general framework
being proposed.

In the domain in which we are working (fluid dynamics), the state equations
are partial differential equations. A wide variety of different methods are available
for their numerical solution. Many of these methods can be subsumed within the
general mathematical framework of weighted residual methods. Because we have
access to the state equations in symbolic form, we can directly apply the weighted
residual methodology to the differential equations of the problem to produce a
computational structure based on a wide variety of different techniques including
finite element, spectral and collocation methods. This approach is discussed in
Section 4. In Section 4.1 we describe the general principles behind the weighted
residual method. In Section 4.2 we use the weighted residual method to produce
a spectral method computational structure for a problem in fluid dynamics. This
particular example illustrates the complexity of the codes generated in the study of
turbulent fluid dynamics.

In Section 4.3 we give another illustration of the weighted residual method in
fluid dynamics, but this time the result of the discretization process is not a system
of linear equations, but rather a system of ordinary differential equations. This is
another example of where symbolic techniques can be used to convert a numerical
problem into one that more directly provides the desired answers.

2 Scenes and Laws of Physics

This section makes more precise what we mean by scenes and physical laws. Sec-
tion 2.1 discusses scenes while Section 2.2 discusses the components of a physics
and some their functions.
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2.1 Scenes

When describing a physical system that is to be simulated, we distinguish the
observable properties and characteristics of the system from those properties and
characteristics that are required by a particular physical model. The former are
components of the observable scene, while the later belong to the physical laws
and models that are to be applied to the scene. For instance, the charge, mass
and position of an electron are components of the scene, but the electric field is a
characteristic of a physical model that might be used to determine the effect of the
electron on other charged particles. Fields in physics are not themselves directly
observable. It is only through their effect on other objects that their existence can
be ascertained. The effect of one object on another is the purpose of a physics
and thus fields are artifices used to facilitate the physics itself. (Recall that general
relativity replaces a gravitational field by bending of the fabric of space itself. For
small masses these disparate mechanisms give the same predications.)

Similarly, the "ether" of nineteenth century physics belongs to a set of physical
laws, and is not intrinsic to the scene. Ether is posited by nineteenth century
physics and is not, itself, observable. A more modern example is the wave function
of quantum mechanics. It cannot be observed in the scene but is essential for a
particular set of physical laws. In all of these cases the physics used to analyze the
system imposes additional parameters (e.g., wave functions) or objects (e.g., fields
or ether) as an aid in specifying the physics itself.

A scene consists of a number of objects (rods, resistors, fluids. etc.) and connec-
lions (hinges, electrical nodes, etc.) between them. The constraints constrain the
behavior of two or more objects in some fashion. For instance, a hinge between two
rods requires that the rods remain connected, while an electrical node connecting
the pins of two resistors ensures that the two pins always have the same potential.

In addition, the objects possess a number of "observab!e" properties, e.g., the
position and momentum of a particle. These properties are those aspects of the
state of the object that may be observed in the scene, and thus are independent
of the physics used to model the behavior of the scene. The observable properties
may be redundant and related by some equations. For instance, the observable
properties of a particle include the particle's mass (m), position (r), velocity (v).
momentum (p) and kinetic energy (T), where

dr
V T

p -my,

2 -M

For some models of physics, like Newtonian mechanics, the observable parameters
actually correspond to state of the physics. That is, the observable position and
momentum are actually the position and momentum of the object in the physics.
In other models, e.g. quantum mechanics, the observables are derived from the
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their correspondents. That is the quantum mechanical position and momentum of
a particle are not interchangeable with the observable position and momentum of
the particle.

2.2 Physics

The properties of an observable scene are not necessarily appropriate for simula-
tion. Instead, the physical laws translate the scene into one where the new scene's
objects are described using state variables. For instance, a two dimensional scene
that consists of a heavy bob at the end of a rigid. massless rod whose other end is
hinged (i.e.. a two dimensional pendulum) might have constitutive parameters of
the length of the rod (1) and the mass of the bob (m)-see Figure 2. The observable
parameters in the scene might be the position of the bob ((z, y) E H2). However.
when formulating a simulation, one would probably use the deflection of the rod
from vertical (0 E [-:r, r)) as the state variable of the system. The position of the
bob can be derived from 0 by

(z,y) = (c: + tsin0, c. + tcosO).

Each set of physical laws acts similarty. It must construct from an observable
scene an interpretation scene that consists of objects. state variables that are appro-
priate to the physical model and the manifold structure in which the state variables
lie. A correspondence also needs to be provided between state variables in the in-
terpretation scene and quantities in the obser-able scene. The combination of the
state variables, their manifold. and the correspondence we call an interpretction
scene or just an inlerpretalion. Examples of interpretations are the generalized
coordinates of Hamiltonian mechanics (which were used in the pendulum example)
and the wave funct;ons of quantum mechanics.
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A description of a physics consists of (1) the domains of validity of the physics,
(2) a method to generate an interpretation scene from an observable scene and (3)
how fields and energies are to be derived from the resulting interpretation scene. In
addition we must have a formulation of mechanics that allows us to combine the
fields and energies produced by the different sets of physics to generate the state
equations. Examples of formulations are Lagrangian and Hamiltonian mechanics.
both of which can be applied outside the domain of Newtonian mechanics.

The physical laws that apply to a scene are kept separate from the scene and
should be expressed independently of their application to a particular scene. There
should be one (or more) descriptions of rigid body dynamics and one (or more)
descriptions of electrodynamics. These descriptions include the "laws of physics"
(e.g., F = ma for rigid body dynamics, or Maxwell's equations), specifications of
when the particular laws are applicable and procedural specifications of how to

apply the laws to a particular scene.
We call a set of physical laws a physics. Each physics has a limited range of ap-

plicability (until the Grand Unified Theory is discovered). Among the components
of a physics is a specification of how forces and energies of objects in a scene can be
computed. There are multiple physics's, some of which are compatible with each
other over certain ranges of state variables and some of which are incompatible.
For instance, Newtonian ochanics and classical electrodynamics are compatible
for small masses and slow.. noving macroscopic particles. Electrodynamics merely
introduces a new force, which is characterized by Coulomb's law. Quantum me-
chanics and general relativity seem incompatible.

This approach ensures that different physical considerations are dealt with sep-
arately. For instance, one should be able to simulate an electric motor by applying
both rigid body dynamics and electromagnetics to a scene that consists of the rotor
and stator of the motor, with the appropriate constitutive *roperties. We believe
that greater modularity will result from this approach, althougn it places a premium
on the symbolic techniques.

3 Harmonic Balance

When setting up a system of differential equations that models some physical sit-
uation, it is often easier to generate the equations in terms of state variables that
are different from the ones that the user is really interested in. For instance, for
a mechanical system it may be easiest to generate equations in terms of cartesian
coordinates while the interesting behavior might best be expressed in terms of radial
coordinates, or angular momenta or even averaged angular momenta. Each of these
conversions can be performed after the numerical solutions are generated, however,
using symbolic techniques to perform this conversion before the integration process
makes generating an accurate solution easier.

To illutxate this approach we will use a more sophisticated type of coordinate
change that -Iso facilitates an averaging technique. Thus we will ultimately generate
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differential equ. ons for the average values of the variables of interest.
A large variei of simple oscillatory type systems can be modeled by differential

equations of the form

=-X + h(xy). (I)

For h(x, y) = (1- x2 )y we have the van der Pol equation [14], for h(z, y) = (1 y2 )y
the Rayleigh equation [12], etc. When c = 0 (1) reduces to a simple harmonic
oscillator, whose solution is:

x(t) = ro cos(t + Oo), y(t) = i(x) = -ro sin(t + Oo), (2)

where i0 and Oo are constants set by the initial conditions. In the x-y plane (the
phase plane), the solutions are circles centered at the origin. The term ch(x, y) of
(1) acts as a perturbing non-linear damping factor on the solution to the harmonic
oscillator. An example of the behavior of this damping factor cap be seen from the
van der Pol equation where h(x, y) = (1 - x2 )y:

(3)=-X + C(1 - XI)y.(3

The phase plot of the van der Pol equation, for c = 0.6 and various initial conditions,
is shown in Figure 3.

In the phase plane, (3) has a stable limit cycle of radius approximately 2. If the
initial conditions of the -3ystem are outside the limit cycle, the system will cycle
inwards around the limit cycle continuously getting closer. If the starting point is
inside the the limit cycle the system will oscillate outwards towards the limit cycle.
From a physical point of view we mht have two basic questions:

* What is the average amplitude of t&.f-h'i. cycle?

" How quickly does the system converge to the '"mit cycle?

We can study the behavior of the non-linear oscillator by as ,r,-.ng thi.-'olu,,i
is of the form (2) but allow the constants to be time varying functio..., .

x = r(t)cos(t + 0(t)),

y = r(t) sin(t + 0(t)).

Substituting these expressions into (1) gives the following system of equations

cos(t + €) - sin(t + €)(1 + $) = rsin(t + 0),

rsin(t + €) + cos(t + 0)(1 A. ) = eh(rcos(t + 0), rsin(t + €)).

When solved for and ,, which must be done symbolically, we have
r = Eh(rcos(t + 0), rsin(t + 0))sin(t + 0)

= - ih(r cos(t + 4), rsin(t + 0)) cos(t + 0).

8
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Figure 3: van der Pal Oscillator

The solution to this system of equations gives the amplitude of the system. which
is closer to what we are looking for. In a physical system we probably don't care
about the phase information. We are more interested in the asymptotic behavior of
the system. This can be obtained by averaging these equations over one oscillation,
i.e. t to + 27r:

is = c 2z h(rcos(t + n ),hrsin(t + s))sin(t + o)yda,

dt2) 12 jh(r cos(t + 0k), r sin(t + 0S)) cos(t + q5) dt.

In the r- coordinate system, the van der Pal equation becomes

r(= - r2 cos2(t + 0)) sin2(t + ))

C)= I r2 cos2(t + 0)) sin( + )) cos(t +4))

When, averaged, the equation for becomes
d~~r~ = 2 r( rO2 +o2( + )sin (t + ) r 5= ~ ( +4r ) co -( +1)sin(t +) cot + - )

do s)dt 2 (5)

The solution of this equation is precisely the evolution of the "average" amplitude
of the oscillation without any additional information. Notice that we have been able
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to reduce the order of the equation by one by averaging out the phase information.
In Figure 4 we have shown the evolution of the a solution of (4) for two starting
points, one inside and one outside the limit cycle, using a solid line. The dotted
lines indicate solutions of the averaged equation (5) from the same two starting
points.

On the stable limit cycle of the system, (r) will vanish, so by solving

08 = -2

we see that the average radius of the limit cycle is 2, which is independent of the

initial conditions. This can also be observed from Figure 4.
The rate at which a solution approaches the limit cycle can be determined by

solving (5):

r(t) = (4c le 1 /

This type of perturbation analysis has been used by in celestial mechanics since

the time of Laplace and Lagrange. The particular problem we consider here, the
behavior of solutions of equations of the form (1) was discussed in some detail by
Poincari [11]. More recently Krylov and Bogoliubov (8] have demonstrated the use
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of averaging techniques in a wide variety of problems. For a more modern treatment,
one might look at [13].

4 Weighted Residual Methods

For a large number of physical simulation problems the state equations are partial
differential equations. Though the number of techniques for solving these systems
can be bewildering in their number, the most important techniques can be divided
into two major classes: finite difference algorithms and weighted residual meth-
ods. We have decided to focus on weighted residual methods because most of the
techniques of interest in our application area are of the weighted residual type.

There are a vast number of implementations of numerical algorithms based on
particular weighted residual methods, most often for particular partial differential
equations, but to our knowledge there have been no previous attempts to build
a system that generates a numerical solver for a wide class of weighted residual
methods.

We describe the basic principles behind the weighted residual method in Sec-
tion 4.1. In Section 4.2 we give a brief illustration of how the weighted residual
method is used to generate particular numerical codes in fluid mechanics. Finally,
in Section 4.3 we use the weighted residual method, along with a number of other
ideas, to reduce some questions about fluid flow to questions about a system of
ordinary differential equations.

4.1 General Approach

Let
Lu = f (6)

be a partial differential equation, where L is a partial differential operator and u is
a function of {xl ... , x,,). The weighted residual method assumes there exists a
(pc.s.ibly infinite) set of trial functions {i} such that, for some choice ai,

it= Z aii (7)
O<s<N

is an approximation to u, the solution of (6). The Oi are function of some subset
of {x 1 ..... x} while the aj are functions of the remaining variables. Substituting
(7) into (6) we have residual error

RE(fI) = L (OZNai~i) - f.
(O~i<N

The goal of a weighted residiai method is to choose the a, in a fashion that mini-
mizes RE() in some global seiL, .
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A set of equations for the ai can be deduced by choosing a set of weighting
functions, w, and requiring the inner product of RE(fz) with the weights to vanish.
i.e. J wRE(fi)dV = (8)

If the Oi are functions of all of the variables {x ,... xn}, then the resulting equa-
tions are algebraic in the a. When L is a linear differential operator, the resulting
equations are linear. Applying L to the components of the expansion and rewriting
(8) we have E ai wj LidV =J wf dV

O<i<N

For certain operators L and known 0, and w, the integrals above can be tabulated.
Thus the bulk of the symbolic computation inherent in the reduction of (8) to
systems of equations in the a, can be performed a priori. However, if the 6, and w,
are supplied by the user and, especially, if L is non-linear then symbolic computation
is unavoidable in the application of the weighted residual method.

If the Oi involve a subset of { xl,...,Xml then (8) will be a system of ordinary
differential equations. Often the 0, are functions only of the spatial variables and
the a. are functions of time. This is the situation in the two examples considered
here. In Section 4.2 the partial differential equation is first discretized in time
and then the weighted residual method is applied, producing a system of linear
equations that need to be solved. In Section 4.3, the weighted residual method is
applied directly to the spatial variables resulting in a system of ordinary differential
equations for the ai.

A wide variety of different integration schemes fall into this general framework.
If the wj are chosen to be the same as the 0i we get a Galerkin projection. This is
especially convenient if the 0, are orthogonal and eigenfunctions of L. The system
of linear equations are then diagonal. The resulting technique is called a spectral
method. The most common spectral method chooses Ok = e'k x.

The finite element method discretizes the computational domain Q? into a number
of elements, .1v.... ,fN. It then chooses the 0i to be continuous functions that are
zero everywhere except within f2,. A Galerkin projection then gives the equations
for the ai.

In general, determining the linear equations or ordinary differential equations
that need to be solved from (8) is a rather painful process that must be performed
by hand. By taking advantage of methods from symbolic computation we can
largely automate this process.

4.2 Numerical Example

In this section we illustrate how the weighted residual method is used to produce
a numerical code for a problem that arises in the study of turbulent channel flow.
This example illustrates the complexities that arise in practical applications of the
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weighted residual method. A simplification of one of the equations that arose in
Kim, Moin and Moser's study of turbulence in a channel flows [6] is

og(X,y,t) = h(g) + v2g (9)
at Re ()

where x and y are the spatial dimensions of the the problem (only two are needed
for this illustration). h is a known non-linear function of g and other functions that
occur in the problem. In practice it can be a fairly complex expression and more
than one partial differential equation be involved.

In solving this problem, discretization must occur in three different dimensions-
time and the two spatial dimensions. Three different schemes will be used: An
implicit finite difference scheme for time (t), a spectral method for the x dimension
and a Galerkin type method using Chebyshev polynomials for the y dimension.

These three schemes are used in three successive steps. First, time is discretized
and the value of g(x, y, t) at the nth time step is denoted by g'(x, y) = g(x, y, n t).
Second, g'(x,y) is discretized in the x dimension using Fourier expansion with
coefficients '(y). Finally, '(y) is discretized using Chebyshev polynomials in the
y dimension with coefficientgk',j. That is,

g"(X,Y)= E n~~

O<k<N,

Z E j n , 7 ( ,, 2 ;ikx/lL .

O<k<N O<j<Ny

At this point the coefficients are numbers, and if done properly they are solutions of
linear equations. Once these linear equations have been solved we can reconstruct
g(x, y, t) by summing the series.

Each of these transformations can be automated using symbolic techniques. In
practice, their application is not completely straightforward. The following para-
graphs illustrate this with some comments on the implementation of these tech-
niques using symbolic computation.

The first step is to perform the time-wise discretization. We denote by g' .

g'(x, y) the function that corresponds to g at the n 1h time step. The most straight-

forward discretization would be the explicit formula

9 n+1 - 9n =5 h(g") + -V 9"
AtRe

But this is known to be relatively unstable.
Figure 5 gives a number of different discretization techniques that can be used

for ordinary differential equations. For this particular problem no one of them
is completely satisfactory. For instance, the explicit methods (Euler or Adams-
Bashforth [2 4]) are not sufficiently stable when applied to the entire equation.
The implicit methods require the solution of a non-linear equation at each time
step (because of the nonlinearity of h) and are thus too costly.

13



fAz" )  Explicit Euler

A(n,+l) Implicit Euler

- n f f(X,+,) + f (2' Crank-Nicolson

22
I [3f(x n ) - f(xn-l)] 2 nd Adams-Bashforth

I [23f(x') - 16f(xn - ') + 5f(Xn-)] -2 d Adams-Bashforth

Figure 5: Discretization techniques for i(t) = f(x)

The solution is to use an explicit scheme on the nonlinear terms and an implicit
scheme on the linear terms. Using the second order Adams-Bashforth formula for
the linear terms and the Crank-Nicolson formula [3] for the linear terms yields

gn~ - g 1 1
A+ -- I (3h(g') - h(gn-1)) + I- (V 2gn+l + V 2 gn).

In a symbolic manipulation system this process is quite simple. The differential
equation is first converted to a sum of terms form. Each term is then examined to
see if it is linear in g. If so, an implicit formula is applied to each term, otherwise
an explicit one. The results of these replacements are then added together and
simplified.

The terms that involve g'+' can be isolated on the left hand side to give

n+l _ Atv2 n+1 = t (3h(g') - h(g'-')) +gn + -ev 2 g . (10)

Again the symbolic processing involved is straightforward, each term is examined
and placed on one side of the equation or the other based on its dependence on
gn.

At a given time step, each of the terms on the right hand side of (10) is known
and can be computed directly. The next step is to compute the Fourier transform
of this equation, eliminating the functional dependence on x.

g"(x,y) =(y)e

O<k<N.

Thus the kth mode the Fourier transform of the left hand side of (10) is

A'{(1 ~V2) g. g+ + At (r2r+ ( k ) 2 _9,',l+ )

14



So for each k we need to solve the equation:

{+1 A 1' 2 ( 2k 22}a2

=. k-. (3h(gn) - h(gn-')) + gn + -tV2gn}

This equation is finally discretized in y by expanding gn(y) in terms of Chebyshev
polynomials:

4(y)= Z kT (Y),
O<j <1N,

where are numbers. The Chebyshev expansion of the left hand side of (11) is

g+12 ( k\ 
2 0At(4

g L 9k,j A(Y) + 4 2  _ ..jkJ + d2T (# )
jn At - ( Ti (y) gnt

O<j<Ny e (Y) +T.L

+ d-i g" J(y) dy gt',
+O2j<Nt (A ke L ,I/ TJ() - 2 kJ_o:5 < < ii- I

The last term in this sum causes some problems because it is not expressed

as a sum of Chebyshev polynomials, but as a sum of their derivatives. However,

derivatives of Chebyshev polynomials can be expressed as a sum of Chebyshev

polynomials by repeated application of the formula

T"+,(_2 TW(z) __T:'-2(W 4T

(n + 1)(n + 2) (n2 - 1) ((n - 1)(n - 2)

or by solving the tridiagonal system it implies. At this point, we have converted

the problem of advancing time in (9) to solving systems of linear equations and

computing Fourier and Chebyshev transforms.

For other basis and weight functions, and for other differential equations, very

similar approaches are used. Simple symbolic methods (arithmetic operations and

some simplification) are used to reduce the projection process to a sequence of
integral. In the case discussed here, all of the integrals could be performed by table

lookup. In the next section the integrals will have to be performed numerically.

4.3 Proper Orthogonal Decomposition

By discretizing the spatial dimensions but not the time dimension, we can reduce the

Navier-Stokes equations to a system of orditiary differential equations. If the proper

basis functions are chosen and sufficient terms are used the dynamical behavior of
the ODE's should closely approximate that of the Navier-Stokes equations.

15



X:1

Figure 6: Coordinate System for a Channel

Lumely (9] has suggested using this approach to study the behavior of the turbu-
lcn, boundary layer of a fluid moving over a flat plate. Within the boundary layer
bursts can be observed that are spatially and temporally somewhat periodic (7]. It
would be interesting to know if these periodic phenomena manifests themselves in
the ordinary differential equations where more powerful mathematical techniques
can be used to analyze their behavior.

This reduction and detailed study of the resulting dynamical systems was origi-
nally performed by John Lumley, Philip Holmes and their students [1]. As we shall
see the ordinary differential equations that result are extremely complex and are
best generated by symbolic techniques.

Pluid flow is governed by the Navier-Stokes equations. In the absence of external
forces the dimensionless form of these equations is

ov +(v .V)v = + V2V'Re (12)

Vv V=0 (13)

where v denotes the velocity field of the fluid and Re is the Reynolds number of
the fluid. Flows with small Reynolds numbers tend to be rather steady, while flows
with Reynolds numbers greater than 2300 are generally turbulent. In order to write
the equations in a dimensionless form, characteristic lengths need to be defined in
each of the three dimensions. We denote these different characteristic lengths by
L1, L2 and L3 .

If (X1,X 2, X 3 ) is function of position in the channel, we will denote by (f) its
spatial average in a plane parallel to the walls of the channel:

(f(z1,X2,z 3 )) = L- 1 If(Xl,2, 3)dzId3,

16



where LI and L3 are characteristic dimensions in the x, and X3 directions respec-
tively. Within this plane the turbulent flow is relatively homogeneous. Variations
occur in the orthogonal direction. Thus (f(l,X 2,X3)) is a function of only the
distance from the wall, x2.

The streak structure that we are interested in is not a function of the mean
velocity of the fluid, only its fluctuations. Denoting

(v) = (U(X 2 ), 0, 0) = U,

we can determine U(x 2 ) exactly:

U(X 2) = Re (uIu 2)dx +Reu. - , (14)

where UT is the dimensionless wall shear velocity and H is the half height of the
channel. Applying this to (12) we get the Reynolds averaged Navier-Stokes equa-
tions:

dui 9u O 2f
+ Re hoUi 2 X2

+_ U2 2X Ox,
+ Re U2l [(ulu2)c T _) + u ( 2 - ) +u-f >] (oS,_ O3R(

-Pi + 2 Ui.

Re
(15)

These are the equations to which we will apply the weighted residual method.
Notice that while the Navier-Stokes equations are quadratic these equations for

the velocity fluctuation are cubic due to the quadratic behavior of the mean velocity
in (14).

4.3.1 Eigenfunction Projections

Because the flow is homogeneous in the plane parallel to the wall, we can use a
Fourier expansions in the in x, and X3 directions (parallel to the wall). We assume
we are given a set of basis functions in the inhomogeneous direction. These basis
will not be known numtrically, but rather will be provided numerically. These
basis functions are called the "empirical eigenfunctions." Expanding the velocity
fluctuation u just along x, and X3 dimensions we have

u(zE 2 , 3 ,t)- 1 ti,; k 3,

k3= -CO

Each of the il(z 2 , t; k1, k 3 ) can be expanded in series based on the empirical eigen-
functions:

00

fi(X2, t; ki, k3) = k -k3(t ' O("k'X2)

n=1
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Combining these two expansions gives the following representation of the %elocity
fluctuation field:

u( ,, 2, 3, t)= 1 L (t)e+)
~- Z Z (16)

= k,=-Co
k3=-(o

Notice that (16) is actually three equations, one for each component of u. We
denote the components of 0(n) by

(-) I€(~,,) , , .l- )

In addition we use the following identity, which can be computed by almost any
symbolic system.

jLT Ie XI LI3 ifPI P3 0- (17)d0 0 otherwise.

Rather than compute the projection of the entire differential equation, we will
illustrate the technique using the following term from (15),

2 49ui 
X2

We can ignore the Re u- term since it is a constant.

Our goal is to compute fn) such that

)u= 1 EO fCO
- X2- - = 3 I: e___ I 2r(-xk 3 ( )-

The A3 af ts t 3 They are obtained by taking inner products
(integrals) of (18) with the orthonormal basis functions. The first two inner products
are Fourier transforms, that is

1o L3i eL, ,U,, 2
= 1 1  (-2 _ 2) e

2
1k11/LI dx) e- 2k3 rL3 dX3

The final inner product takes the form

n=) 
=L] -0 d 2.

The final term of U is a polynomial in X2 and is easily dealt with. The Fourier
transform gives

k2 {U. (X2 - E a( . '3)4
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(* (var 1 kI k3)

(integral (* (make-sa-pled-function
(lambda (x) (- x ( (* x x) H)))

(dot-product (eigen 1 k1 k3)

(conjugate (eigen a ki k3))))
:lower-bound 0

:upper-bound X2))

Figure 7: Weyl code for integral

The Galerkin projection is just a simple integral, so

~uiI4 (X2-~) U 7jLa (X2 - dZ2

The result many symbolic computations like this is the system of ordinary dif-
ferential equations shown in Appendix A.

4.3.2 Numerical Computation

Having produced a symbolic system of ordinary differential equations like that
shown in Appendix A we must still compute each of the coefficients. This can
itself be a rather complex undertaking without the proper abstractions. Consider
for instance, the a piece of the sample term computed in the last section:

,L 2  2a(f) t) ((n)L dX2
kk 3  r2 -I 1 i 

0 3

The product of the two eigenvectors () .(n) really means the dot product:- si& klk3 °

t, 3 ik z, " " I kZ k,., I,.Z;, .. 2 k, O21 , , , 3., ,zk.3 O ,1,,3'

Furthermore, each of the components of the of the eigenvectors are complex valued
functions that are only known by their numerical values at selected points.

To deal with this problem we have extended Weyl [15] for this problem to include
a new type of a object, a "sampled function." A sampled function is a function from
R - C (or R) that is represented by its value at certain points. When evaluated at
other points, its value is automatically interpolated (extrapolated) form the values
at which it is known. Like all objects in Weyl, arithmetic with sampled functions
can be performed using the usual Lisp operators, including conjugation.

The eigenvectors , are just (Weyl) 3-vectors of sampled functions. Being
3-vectors we can use the dot-product operator to multiply them. The whole ex-

pression can thus be computed as shown in Figure 7. Notice that the Weyl code is
a direct translation of the more mathematical form given above.
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The resulting system of differential equations is somewhat complex. as indicated
in Appendix A. One of these equations, when using only a single eigenfunction. has
the form

ii = 6.1al + 2.1ala; + l.la2aG + 0.4a 3a" + 0.3a 4 a( (19)
- (3.Oala; + 3.7a2 a; + 2.4a 3a + 1.3a 4a; + 0.6asa;)a.

where we have only given the coefficients to one decimal place for conciseness. The
a, are complex valued functions, so to numerically integrate the equations. each
ai must be converted to a pair of real valued functions. For (19) this gives the
following pair of equations.

=i 6.1:l + 2.!(z2zl + Y2yl) - !.l(z 3z2 + Y3Y-) + O.4(Z 4 z 3 + Y4Y3)
+ 0.3(XSZ4 + ys) - 3.0(4 + yj)z, + 3.7(z2 + ')_-

+ 2.4(z4 + y)z, + 1.3(z, - y )z, + 0.6(z + ),,

= 6-1y, - 2 .1(z2y1 - y2z.i) - 1.1(z 3Y2 - y3z2) - 0.4(Z 4y3 - y-r 3 )

- 0.3(zsy4 - Y.SZ 4 ) - 3.0(4 + yt)yj + 3.7(x; - Yj).i
+ 2.4(] + y )y, + 1.3(x' " + )Y1 + 0.6(X 2 + 7)Y'-

Currently, we are integrating these equations with the LSODE package [5, 101.
A typical integration is shown in Figure 8. There are periodic bursts of behavior.
where the equations become very stiff. We are currently generating the Jacobians of
these equations symbolically to speed the calculation during the stiff regimes. Since
the right hand sides of these equations are polynomials. symbolic differentiation
does not cause the expressions to grow.

The bursts of activity in Figure 8. when converted into a velocity fluctuation.
correspond to the periodic formation of the counter-rotating vortices. Thus the
reduced system of ordinary differential equations has the same qualitative behavior
has the far more complex Navier-Stokes equations. We are currently studying how
to make this correlation more quantitative and ho-s the correlation with physical

behavior depends upon the number of empirical eigenfunctions used.
One should note that for a modest number of empirical eigenfunctions. the size of

the system of ordinary differential equations becomes very large and their formation
and manipulation without symbolic techniques would be impractical.

5 Conclusions

In this paper we have advocated the construction of special purpose simulators for
particular scenes, rather than building a general purpose simulator. Towards this
end, we have discussed one possible approach to the construction of ay environment
to enable the construction of such simulators. We have particularly fR ssed on the
use of symbolic techniques to transform differential equations into executable code.
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Figure 8: Typical Amplitudes

We have outlined two major areas in which symbolic computation can be ef-
fectively used in numerical computations: (1) transforming differential equations
into equations that more accurately address the questions being asked of the sys-
tem under study, and (2) the formation of the numerical integration code itself
from libraries of technique fragments. Both of these techniques suggest different
organizations of symbolic computation systems than we currently have available.
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Abstract this algorithm is that in addition to the polygon's
position being uncertain, the point's position in the

This paper presents a framework for reasoning about plane does not have to be known; only the point's
robust geoemtric algorithms. Robustness is formally signature is important (that is, its left/right relations
defined and a data structure called an approzimate to the edges of the polygon). The point location al-
polygon is introduced and used to reason about poly- gorithm has immediate practical application to solid
gons constructed of edges whose positions are uncer- modeling, particularly in the robust intersection of
tain. polyhedra.

A robust algorithm for point location in an approx- An approximate polygon could, by shifting its
imate polygon is presented. The algorithm uses only edges back and forth within their error bounds, in-
the signature of the point (not its location) to de- duce a large number of different line arrangements.
termine whether the point is inside or outside the In each of these arrangements some points with a
polygon. given signature a may or may not appear, and if

An approximate polygon could, by shifting its they appear, they may be to the interior or to the ex-
edges back and forth within their error bounds, in- terior of the polygon which induces the arrangement.
duce a large number of different line arrangements. An interesting uniqueness theorem is presented which
The cell Ca with signature a in one such arrangment states that in all such line arrangements, the points
will be different than the cell Cc with signature a with signature a in each arrangement are always to
in another arrangement. This paper proves that, re- the same side of the polygon which induces that ar-
gardless of their positions and shapes, the cells C rangement.
and Cc are always to the same side of the polygons
which induce their respective arrangements. Practical Applications

The point location algorithm has immediate practical
Introduction application to solid modeling. In particular, a solid

modeler performing an intersection operation needs
Most geometric algorithms assume that perfect "real" to determine whether an edge of one polyhedron in-
arithmetic is available. When these algorithms are tersects a face of another. This is achieved by cal-
implemented they often fail because this assumption culating the intersection of the edge with the plane
is not borne out; that is, these algorithms are not in which the face lies, and then asking whether this
robust. This failure occurs because either the input point of intersection is on the interior of the polygon
or the intermediate calculations are imprecise, leading representing the face. If the boundary of the face and
to inconsistent decisions by the algorithm, the location of the point of intersection are known

This paper presents a framework for reasoning precisely then this is a trivial problem.
about robust geometric algorithms which operate on However, polyhedra usually have overconstrained
polygons. Robustness is formally defined and a data faces and vertices, and the ezact locations of the ver-
structure called an approximate polygon is introduced tices, edges, and faces of the polyhedra can require
and used to reason about polygons constructed of a very large number of bits to represent. Since the
edges whose positions are uncertain, input is rounded off to a small number of bits the lo-

A robust algorithm for point location in an approx- cations of these features are imprecise. In addition,
imate polygon is described. The interesting aspect of the location of the point of intersection can be corn-



pletely unknown, particularly in ill-conditioned cases Note that we can pick an arbitrary z E
in which the intersecting edge lies very close to the MODELS(Zrep). It could be that there are two mod-
plane of the face. Thus there is an important practi- els z1 and x 2 such that P(z l ) $ P(z 2). In this case
cal application for a point location algorithm which the algorithm could choose to output either P(z')
handles uncertainty in the face boundary and in the or P(z2) and would still be considered to be robust.
point location. This leads to a definition of consistency:

An approximate polygon can represent a face
whose boundaries are not known exactly, and the
point location algorithm presented in this paper can A problem *P and a representation 7
determine whether a point whose location is also un- are consistent if
certain lies on the interior of such a face. Since both
the location of the boundary and the location of the V z'eP E " V zli 2 E MODELS(Xrep),

point are uncertain, the algorithm must make use of P(z1 ) = (X2).
some other information. This other information con-

sists of the signature of the point; that is, its position
(left or right) with respect to each edge of the bound- A definition of correctness would be similar to that
ary. It is a reasonable assumption that such informa- of robustness, except that the model and representa-
tion exists since the signature is often derivable from tion spaces would be identical and MODELS(Xr7 p) -
logical information available in the solid modeler (for {:rcp}.
example, see Karasick's modeler [5]). In evaluating geometric algorithms which use the

representation and model approach, the criteria of
Background robustness and consistency should be used in place of

the usual criterion of correctness.
The theory of approximate polygons is based upon Note that, unlike in Fortune's work [2], there is

the "representation and model" approach of Hoff- Noti ofataunlie in te efinitiontof r es

mann, Hopcroft, and Karasick (4]. In this approach That is, there is no notion of the distance between the

the algorithm operates on a computer representation, representation zrof and the model z which allows us

but presents output as though it were operating on to say "the implementation is stable if z is near zs .

some mathematical model corresponding to the rep- towever, bounds on the models can be achieved by

resentation. eer, that oneL modes c ie ved by

An approximate polygon is a computer representa- ensuring that MODELS(Zrp) is sufficiently small.

lion of some real, mathematical polygon, the model.
The model is rarely explicitly constructed by the algo- Other approaches
rithm. An approximate polygon Prep can be thought The approach with approximate polygons is most
of as a set of constraints on the topology and position similar to that of Milenkovic's hidden variable
of the implicit model polygon. Any real polygon P method [6]. His method constructs arrangements of
satisfying these constraints is considered a model for pseudolines which are constrained to lie within strips
Prep. of fixed width. The pseudolines can be considered as a

Under the representation and model approach, the model and the strips as a representation. Milenkovic's
definition of robustness is very close to that of Fortune pseudoline arrangement algorithm can then be said
[2]. Consider a geometric problem P as a function to be provably robust in the sense of the above def-
from an input space consisting of models to an out- inition. It is interesting to note that, as with manyputinition. it:is"interestingctosnote thatgasiwith.many
put space, P :I - 0, and consider an algorithm A as algorithms of the "representation and model" variety,
function from a different input space consisting of rep- the model is never explicitly constructed.
resenation8 to the same output space, A : R-0. There are several other approaches to building ro-
Given a representation Zrep, the set of its models is bust algorithms (where "robust" is defined differ-
denoted MODELS(Zrep). This leads to a definition of ently). Sugihara [10, 11, 12] emphasizes removing
robustness: redundant decisions from the algorithm in order to

maintain topological consistency. Salesin, Stolfi, and
An algorithm A for a problem P is robust if Guibas (8] use what they call epsilon geometry to rea-

son about the amount of perturbation of the input re-
V Ztep E *R, 3 x E MODELS(Zrep) quired for certain epsilon predicates to be true. Con-

struction of robust algorithms is based upon these
such that A(Zrep) = 7P(z). epsilon predicates. Dobkin and Silver [1] keep track
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of roundoff error and, when the error becomes too polygon is represented by an ordered list of swaths.
large, increase precision and backtrack to some ear- a band B of an.approximate polygon Prep having
lier point in the computation. Segal and Sequin (9] swaths S, is the shaded region in Figure 2, defined as
alter the symbolic data to make it more amenable to
precise computation, and signal the user when tol- Bi = Si n E.-1 n E'
erances on the input become too large. (Milenkovic r{z [i()<0} ifi/jisconvex
also alters the symbolic data in his "data normaliza- where El = {Z I l"(z) _>0) if i/ is coex.

tion" approach [6].) Greene and Yao [3] discretize the ( { z ) 01 if i/i is reflex.

problem domain, allowing the algorithm to perform
exact computations.

In the remainder of the paper approximate poly-
gons are defined, some of their properties are enumer-
ated, the point location algorithm is outlined, and the . ciWi Bi+!
uniqueness theorm for point location in an approxi- ....
mate polygon is presented. S. . co

D efi n itio n s ed ge Bi -n . I - w

A polygon P = (ehe2,...e,) is an ordered list of di- Bi." .... 1-^
rected edges, where each edge ei lies on a line ti and
only intersects the edges ei-I and ei+1 at its end- A

points. Each edge is directed such that the interior of li+)
the polygon it to its right.

An approximate polygon closely mirrors the ap-
pearance of a real polygon, as shown in Figure 1. Figure 2: The Pieces of a "Band"
The approximate polygon consists of an ordered listof bands corresponding to the edges of the model. The It will be useful to define the corners of a band
position of the bands in the plane constrains the line as cti, c", chi, and ch* , where h, t, i, and o denote
equations of the model. head, tail, ia and out. The definitions are shown in

the following table, and depend on whether the bands
adjacent to the corner make a convex or a reflex turn.
In Figure 2 the tail of Bi is convex, so the definitions
for c" and c", are chosen from the "convex" column of
Table 1. Since the head of Bi is reflex, the definitions
of c1 i and cho come from the "reflex" column.

CONVEX REFLEX
n.n 1 in-

cto eiit n tout in

chi ttun n tt in
i+1 n ti+

Figure 1: An Approximate Polygon
Table 1: Defining the Band Corners

Just as real polygons are based upon lines, approx-

imate polygons are based on swaths: A swath Si is
the region between two lines £i' and 1"'. These lines An approzimate polygon Prep is an ordered list of

have the restriction that Vz t"(z) > lfu(z). The bands' Bi which lie on swaths Si. B n Bj = 0 iff
restriction causes the lines to be parallel and conve- i and j differ by more than one. A real polygon P
niently defines the region between them an is a model for an approximate polygon Prep if the

following constraints are met:

Si = {z I £"(z) > 0 A t*ut(z) < 0}. I When given as inputto an algorithm, the bands ae defined
exactly with floating point numbers. Subsequent computation

Just as an edge is part of a line, a band is part on the bands is also done exactly (with extended precision. if
of a swath. Assuming for now that an approximate necessary).

3



1. There is a one-to-one correspondence between 6. If z 0 SPAN(B,) then in all models, z lies to the
the lines ti of P and the swaths Si of Prep. As- same side of ej.
sume that 4i corresponds to Si. 7. If z E SPAN(Bj+I) - Bi then in all models z lies

2. Each line 4j(z) = 0 must lie between the corners to the same side of ei.
of band Bi. That is, it must satisfy the following
four constraints (see Figure 2): Robust Point Location in

e,(c") < 0, e,(co) 0, Approximate Polygons
e (chs) _ 0, e.(cho) > 0.

The point location problem would be simple if the ex-
act location of the point were given. However, in most

It will be useful later on to talk about the span of practical applications the point's location is known
a band. This is the set of points swept out by all only to be within some region of uncertainty. In par-
lines w his is then the band. The left and right ticularly ill-conditioned situations this region of un-
liaanes whiche it with thse a n tthe left and certainty can be as large as the polygon itself.
of a band are the set of those points to the left and Some practical applications (geometric modelers,
right of the span. By convention, the interior of the for example) can, from other information, logically
approximate polygon is to the right of the band. In ddc h ETRGTsau ftepitwt e

Figure 3 the shaded region is SPAN(Bi) and to its left deduce the LEFT/RIGHT status of the point with re-

and right are LEFT(Bi) and RIGHT(Bi). For a band spect to each edge of the polygon. Call this L/R

Bi, define the set of lines satisfying Condition 2 above sequence the signature. If the polygon's location is
as LINES(Bi). known exactly, then in the induced line arrangement

a cell decomposition can easily determine whether all
points with a given signature lie inside or outside the

SPAN(Bi) = {z 3 f E LINES(Bi), e(z) = 0} polygon. It is a different matter, however, when there
is uncertainty in the polygon's location. If uncer-tainty is modeled with an approximate polygon then

LEFT(Bi) = {z V t E LINES(Bi), t(z) > 0} the following questions must be answered:

Question 1 (Robustness) Given an
approximate polygon P,., and a signature
a E (LIR)", does P,.,p have a model P in
which the induced line arrangement con-
tains a cell with signature a, and is the cell
INSIDE or OUTSIDE the model P?

Question 2 (Consistency) Consider
that an approximate polygon can have two
models, P1 and p 2 , which induce two dif-
ferent line arrangments. These two arrange-
ments each contain a cell with signature a
(call them C1 and C2). Then is it possible

Figure 3: The SPAN of a Band that C1 is INSIDE P1 and C2 is OUTSIDE p 2?

Some useful properties follow from the previous If the answer to Question 2 were affirmative then
definitions (these are stated without proof). the signature a and the approximate polygon P,,p

1. An approximate polygon is closed and simple. would not be sufficient information to determine
point location, and the problem would not be con-

2. Edge e, lies completely within Bi. sistent. The Uniqueness Theorem which is presented
later proves that this is not the case.3. Edges el and eil intersect within B, n B,+r.

4. All models of an approximate polygon are sim- Some final definitions
pie. A signature aP(v) is a string in (LIR)*. The signature

5. SPAN(B,) n SPAN(B,+l) = B, n B,+,. denotes the relation of the point v to each edge e,

4



of the polygon P. The ith element of aP(v) is the 4. If v E Bin Bj+j and the i/i+ I corner is convex,
relation of the point v to edge ei of the polygon P. then v INSIDE P iff ai = R and ai+j = R.
af(v) = i means that v is to the right of edge ej in P
and ar(v) = L means that v is to the left of edge e 5. If v E Bi n Bi+ and the i/i + 1 corner is reflex,
in P. The superscripts will be dropped if the polygon then v INSIDE P if a, = R or a,.. = R.
in question is evident.

Refer to Figure 3 for the following definitions. A Proof In Figure 4 the cases 1 through 5 are demon-
half-region is similar to a half-space, except that it strated by the points z, through Z5. 03

has a polygonal boundary. The following half-regions
Ri and Li consist of those points which, in at least
one model P, are either ON ei or to the RIGHT or LEFT
of ei, respectively, in that model. Given some ci(v),
tie half-region Hi is that region in whose interior v *
must lie if it is to have a,(v) as the it ' component of
its signature. The interior of the cell (%, consists of ,.

those points which have signature a in at least one 4
model.

R = SPAN(Bi) U RIGHT(Bi)

Li = SPAN(Bi) U LEFT(Bi)

H. Rifai=a
Li if ai = L

n

= Hi Figure 4: Cases for the Point Location Lemma

i=1
The next two lemmas will be used to construct the Given the Model Existence Lemma and the Point

point location algorithm. The first lemma shows that Location Lemma, a point location algorithm can be
for each point in (, there exists some model in which developed. This algorithm will construct the region
the point has signature a; the second lemma shows C%, pick a point from its interior, and apply the rules
how to determine whether the point is INSIDE or OUT- of the Point Location Lemma to determine whether
SIDE that model, the point is INSIDE or OUTSIDE the model in which it

has signature a. The following Uniqueness Theorem
Lemma 1 (Model Existence) Given an approzi, shows that if one such point is INSIDE its model poly-
mate polygon P,p and a signature a, construct (% as gon then all such points are INSIDE their respective
described above. Then for each point v on the interior model polygons (similarly for OUTSIDE).
of C,, there ezists some model P E MODELS(Pep) in
which v has signature a. Theorem 1 (Uniqueness) Given an approzimate

Proof Since v E (%, for each i, v E Hi and there is polygon Prp and a signature a, if for some model
some edge ej in the band Bi which has v to the side polygon in MODELS(Prep) there is a point with signa-
soeifiedge ey in The andgeswhichnh to them sodel ture a which is INSIDE the polygon, then, for every
spec ifi by h v Thes egsintfr m a m l model polygon, all points which have signature a with

respect to that polygon are INSIDE that polygon (sim-

Lemma 2 (Pot Location) ilarly for OUTSIDE).

Given an approzimate polygon Prp, a model poly- Proof in Appendiz A.

gon P E MODELS(Pp), and a point v which has a
signature a with respect to P, the following are true:

1. If v is strictly to the interior of Pr,p (that is, it The Model Existence Lemma, Point Location
does not lie on any band B,) then a, INSIDE P. Lemma, and Uniqueness Theorem combine to form

the point location algorithm shown in Figure 5. Note
2. If v is strictly to the ezierior of Prep then that the algorithm is quite simple and never actually

v OUTSIDE P. constructs the model polygon.

3. If v E Bi, but v 0 Bi*i, then v INSIDE P iff Lemma 3 (Robustness) The point location algo-
ai = R. rithm is robust.



One such algorithm for point location in an approx-

1. Compute C,,. imate polygon has been presented. The algorithm is
particularly suited for practical application in a solid

2. If C 0, = 0 then no model of Pep induces modeler because it assumes uncertainty in both the
a cell with signature c. polygon position and the point position. The point

. Plocation algorithm has been proved robust, and the
3. Pick a point w on the interior of Ca. -point location problem has been shown to be consis-

4. Apply the Point Location Lemma to de- tent.

termine whether w is INSIDE or OUTSIDE
of the models in which it has signature Acknowledgments
a .
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Lemma 5 (Complexity) The point location algo- Appendix A
rithm has time complezity 0(n 2 ).

Proof Step 1 of the algorithm can be accom- Theorem 1 (Uniqueness)

plished by computing the arrangement of half-regions Given an approzimate polygon Pr,,p and a signature

in 0(n 2) time. This i- done by computing the ar- a, iffor some model polygon in MODELS(Prep) there is

rangement of the 3n lines which define the n half- a point with signature cz which is INSIDE the polygon,

regions Hi, then joining adjacent cells which are sep- then, for every model polygon, all points which have

arated by a line segment which is not part of the signature a with respect to that polygon are INSIDE

boundary of some Hi. Those cells separated by a line that polygon (similarly for OUTSIDE).

segment which is part of the boundary of some Hi Proof (by contradiction): Let ak(z) be the signa-
will have signatures which differ in a single position, ture of point z in model Pk. Let ei be edge ei in
so the signature of each cell can be found in constant model pk. Then assume the following:
time.

The remaining steps of the algorithm take constant 3p', p2 E MODELS(Prp), 3lu, V E R',
time. Step 3 is easily accomplished given the convex
decomposition of (% which is computed simultane- u INSIDE P1 A v OUTSIDE p 2 A ai(u) = a2(v).
ously with (% itself. Thus, the overall running time The theorem is proved by showing that there isis 0(n2 ). 0 Tetermi rvdb hwn htteei

some edge ek which always separates u and v, violat-
ing this assumption.

Summary Lemma 6 One of u or v must lie within the bound-

Most geometric algorithms are not robust; they fail ary of P,p.

due to inexact input or with inexact intermediate Proof Assume that neither u nor v is within the
computations. This paper has introduced (a) formal boundary. Then by the initial assumption and the
definitions of robustness and consistency, and (b) the Point Location Lemma u and v lie on opposite sides of
notion of an approzimate polygon, along with several the boundary. Say u is inside and v is outside. Then
of its properties. With these, one can formally de- the segment I'Y must traverse both of the parallel
velop robust and consistent algorithms that deal with sides of some band B,, as shown in Figure 6. From
inexact polygons. the definition of the corners of Bi and the definition
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Of SPAN(Bi), u and v lie to different sides of SPAN(Bi).
Then by Property 6 u lies to one side of all models of
Prep and v lies to the other side. Thus, in the models
PI and P2, ac(u) 6 a(v) and the initial assumption
is contradicted. 0

VU

B/..

Figure 7: z exists if u E Bi

ai+1(u ) = a?+,(v). Thus u and v lie between two
u lines touching the endpoints of e?.

Since a(u) 6 i and since by Lemma 7 a?(v) = R,
rU must cross the line defined by e?. But u and v lie

Figure 6: -a- crosses some Bi between the two lines touching the endpoints of e,2

so TiU must cross the edge e?. Since by Property 4 all
models P are simple, there is a small neighborhood

From Lemma 6 assume without loss of generality to the right of e? which contains only points interior
that u lies in the boundary of Prep. to P. The segment TU passes through this neighbor-

hood, so there is some point z v on -v which isLemma 7 The point u lies in some band Bi such INSIDE p 2, and 2vr e?
that al(u) = R and a?(v) = R.

Proof u is INSIDE PI by the initial assumption
and is in some band by Lemma 6. If u E Bk and
u 0 B*,, then by the Point Location Lemma u is to
the RIGHT of el. Choose i = k. If u E B n Bk+, then
by the Point Location Lemma u is to the right of at
least one of el or e+ r.Choose i to be k or k + I to
satisfy the lemma. Then by the initial assumption,
a(u) = R means that ct?(v) = R also. 13

Lemma 8 On the segment U' there is some point
z t v which is inside p 2 . Furthermore, e? does not
intersect Vv- betweex z and v.

Proof
Case 1: u E Bi, but u 0 B- *. If at?(U) = R,

then u INSIDE P2 (by the Point Location Lemma), so
choose z = u and we are done. Otherwise consider Figure 8: z exists if u E Bi ni Bi+i
the case in which ao?(u) $ R.

Refer to Figure 7. The point u lies in Bi and not in Case f: u E B n B+ 1. Refer to Figure 8. By an
Bi-, so by Property 7, in all models ph, u is to the argument similar to Case 1, u and v must lie to the
same side of In particular, Ot (u) = a? (u). same side of ek in all models Pk, and must lie to
By the initial assumption, al(u) = 4.t(v), so the same side ofe, + inalmodelsPb . IfuINSIDE P2

= a,-(v). By a similar argument for e,+1, then choose z = u and we are done. Otherwise. if u



OUTSIDE p 2 then the edges e? and e2+, must separate
u and v. Thus the segment IU must cross either e? or
e2+j, and in doing so must pass through a neighbor-
hood of interior points to the right of the edge that I
it c,osses. Therefore there is some point z $ v on u"v
which is INSIDE p 2 , and -- fn e?= 0. 0

Lemma 9 In P2 there is some edge eq which crosses u
- such that cq(u) = R and -(v) = L. Furthermore, ...... V

eq can be chosen such that no other e2 crosses u
between eq and v.

Proof From lemma 8, 10 contains a point z which
is INSIDE p 2, and by the initial assumption, v OUT- Figure 9: OF must intersect eq closer to v
SIDE P2. From the Jordan curve theorem we know
that TV must cross the boundary of p 2 on some edge
eq with z to the inside (right) of e2 and v to the out-
side (left) of eq. From the ordering of points along L. Since aJ(u) is different in models p1 and P. uI must lie in SPAN(Bj). From lemma 10, u cannot lieU (u < X < v), if aq(x) = R then cr;(u) = R also. if

1 in B since it already lies in Bi. 0
there are many candidates for eq, choose that which
is closest to v to satisfy the second part of the lemma.
0 Lemma 12 Define k such that Bj n Bk is closest to

u. Then u and v are on opposite sides of 4.
Lemma 10 Bj n Bi = 0

Proof If Ii - ji > 1 then by the definition of an Proof Refer to Figure 10. Note that k = j ± 1,
approximate polygon Bi n Bj = 0. So we only have otherwise Bj and Bk wouldn't intersect at all. In any
to consider Ii - ji < 1. But by Lemma 9 eq intersects model P the point u and the edge ei are on opposite
101- between z and v, and by Lemma 8 e? does not sides of the line defined by ek (u E SPAN(Bj) - B, by
intersect -Tv- between z and v. So e? A eq and hence lemma 11, and since Bt is closest to u, it separates
iA j. u from the rest of Bi, which contains ej). Thus

Assume that j = i- 1. Then, by the initial assump- must intersect eq at some point z to the side of e
tion, ac(v) = L means that aj(u) = L. By Lemma 9, which is opposite to u. From the ordering of points

2 (u) = R. Since u is to different sides of e, in P1  along wu ((u < z < v), v must also be opposite to u.
and p2, u must lie in SPAN(Bi). Since u also lies in 0
Bi, by Property 5 u lies in the corner Bi n B,.

Suppose corner i/j is convex. Since u INSIDE P1, by
the Point Location Lemma !(u) = Rand (4(u) = R.S ~~~ (I I g.) 2(

But, by the initial assumption, a((u) = R means that Lemma 13 C4(u) k4(u).
24(v) = R, contradicting lemma 9. So corner i/i is

not convex. Proof By Lemma 12, u E SPAN(Bi) - B,. By
Suppose corner i/j is reflex. Refer to Figure 9. By Property 5, SPAN(Bj) nSPAN(Bk) = Bk n BL., so with

Lemma9, (4(u) = Rand a2(v) = L, and by Lemma 7, a bit of algebra we can conclude that u SPAN(Bk).
a?(v) = R. But if W' is to intersect eq then it must Then by Property 6, aku) k cr(u) 0

also intersect eq closer to v, as shown in the Figure.
This contradicts Lemma 9, which states the eq is the
closest intersection to v. So corner i/j is not reflex.

Thus the assumption is false that j $ i - 1. By a By lemma 12 there is some edge e in model p2

similar argument j # i + 1. Therefore Bj n B, = 0. such that a2(u) 0 a2(v), and by lemma 13, a,(u) =

0 (4(u). So a(u) 6 a2(v). But this contradicts the
initial assumption, so the theorem is proved by con-

Lemma 11 u E SPAN(Bi) - Bj tradiction.

Proof: By lemma 9, (4(u) = R and (4(v) = t. By 0

the initial assumption,4a?(v) = L means that (4(u) =

8
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Abstract

This paper presents a polynomial time algorithm for determining whether a given univariate
rational function over an arbitrary field is the composition of two rational functions over that
field, and finds them if so.

1 Introduction

The problem of determining if a function can be written as the composition of two "smaller" functions
f(z) = g(h(x)) has been of interest for a long time. Until now, work has focused on the univariate,
polynomial version of this problem: When can the polynomial f(z) be written as g(h(z)), where
both g(z) and h(z) are polynomials? The original work in the symbolic computation community
was presented in 1976 [2], but the algorithms, which in the worst case required exponential time,
were not published until 1985 [3]. This was soon followed by the work of Kozen and Landau [11] who
provided a polynomial time algorithm for decomposition of polynomials over fields of characteristic
zero, which did not require factorization o. polynomials. Some additional improvements and analysis
of the positive characteristic case where then presented by von zur Gathen [23, 21, 22]. A number
of other papers have since been published on different extensions and variations of this problem [1,
7, 5, 4J.

All of these results deal with polynomial decomposition. The generalization to rational functions,
which has significantly wider applicability, appears to be a far harder problem. Notice that in the
polynomial case, the degree of g and h must divide the degree of f. This limits the number of
different polynomials that must be considered and even allows one to solve the problem by looking
for solutions of non-linear algebraic equations (admittedly in exponential time). When f, g and h
are rational functions, there is no immediately obvious bound on the degrees of the numerators of
g and h, since the numerator and denominator of g(h(x)) could have a common factor. In fact, no
such common factor can arise, as we prove below.

Furthermore, we -lemonstrate that in the rational function case, g and h can be determined from
f in polynomial time. This algorithm is valid even if the charactertistic of the field is positive,
which for the polynomial case is not a completely resolved problem. One other difference between
our approach and othet approaches, is that in this paper we obtain a decomposition over the fied
of definition of f(z). Thus we may fail to find rational function decompositions that exist over

*This research was supported in part by the Advanced Research Projects Agency of the Department of Defense
under Office of Naval Research Contract N00014-88-K-0591, the National Science Foundation through grant IRI-
9006137, the Office of Naval Research through contract N00014--89-J-1946 and in part by the U.S. Army Research
Office through the Mathematical Science Institute of Cornell University.
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algebraic extensions. Such issues do not arise for the corresponding problem of polynomials over a
field of characteristic zero, but do for polynomials over fields of finite characteristic.

Section 2 provides some general background material. In Section 3 we present the new algo-
rithms for rational function decomposition. Finally, we comment on previous work in and give some
conclusions in Section 4.

2 Preliminaries

Let f(z) be a rational function in x with coefficients in a field k. We extend the notion of degree of a
polynomial by defining the degree of f(x), denoted by deg f, to be the maximum of the polynomial
degrees of the (relatively prime) numerator and denominator of f. The degree of the field k(x) over
k(f(z)) is the degree of f, if f is a polynomial. This remains true even if f is a rational function.
as shown by the following proposition.

Proposition 1 Let k(x) be an extension of the field k(f(x)) where f(z) is a rational function of
degree n. Then (k(x):k(f(z))] = n.

Proof: Denote the numerator of f(x) by p(x) and the denominator by q(z). We can instedd consider
the isomorphic fields k(y) " k(f(x)) and

k(y)[x]/(p(z) - yq(x)) -5 k(x).

P(z, y) = p(z) - yq(x) is primitive as a polynomial in y since p(x) and q(x) are relatively prime.
Since it is linear in y it is irreducible. Therefore, the degree of z over the field k(y) is

deg- P(x, y) = max(deg p, deg q) = deg f.

0
Let f(z) = g(h(x)) be a rational function decomposition over a field k. The following proposition

provides bounds on the degrees of g(z) and h(x) in terms of the degree of f(z). In principle, this
result gives an algorithm for rational function decomposition, albeit an exponential time algorithm.

Proposition 2 Assume f(z), g(z) and h(z) are elements of k(z) such that f(z) = g(h(z)). Then

deg f = (deg g) . (deg h)

Proof:
Consider the fields shown in Figure 1. The degrees of the extensions are [k(z): k(h(z))] = deg h,

[k(z): k(f(z))] = degf and [k(y) :k(g(y))] = degg. k(h(z)) is an algebraic extension of k(f(z))
inside k(z). Thus,

deg! f (k(x):k(f(x))I

= [k(z): k(h(z))] • [k(h(z)): k(f(z))]

= [k(z): k(h(z))]. [k(y): k(g(y))]

= (deg h) . (deg g),

using Proposition 1. 0
A function that is the ratio of to linear polynomials is called a fractional linear function, viz.

A(z) = (ar + b)l(cz + d).



k(x)

k(f(z)) 'Ph k(g(y))

Figure 1: Fields involved in decomposition

Fractional linear functions have degree 1. If two fields k(fl(z)) and k(f 2(z)) are isomorphic then
there exist rational functions such that

fl(z) = Ri(f 2 (z))

f2(z) = R2 (fl(z)) = R2(R:(f 2 (z)))

By Proposition 2 (deg RI) . (deg R2 ) = 1 and R, and R 2 must be fractional linear functions.
We say that two rational functions are linearly equivalent if there exists fractional linear functions

A, and A2 such that
f(z) = Al(g(A2(z))).

Two decompositions (polynomial or rational function)

f =glog2o ogm

= hi o h2 o...o h

are said to be equivalent if m = n and gi is linearly equivalent to hi.
The link between field structure and function decomposition comes from LUrolh's theorem, which

was proven by Lfiroth (15] for k = C and by Steinitz in general [18].

Proposition 3 (Liroth) If k K C k(z) then K = k(g(z)) where g(z) is a rational function in
z over k.

An elementary proof of Liroth's theorem may be found in van der Waerden [20J. An effective
proof appears in Weber [24] §124, and in English in Schinzel [17].

The key insight in studying functional decomposition is the following corollary of Lfiroth's the-
orem.

Proposition 4 Let k be an arbitrary field and f(z) a rational function over k. There is a one to one
correspondence between the lattice of subfields between k(z) and k(f(z)) and the rational function
decompositions of f(z) up to equivalence.

Proof: If f(z) has a nontrivial decomposition f(z) = g(h(z)), then k(h(z)) will be an intermediate
field between k(z) and k(f(z)). Conversely, if K is field intermediate between k(z) and k(f(z))
then it must be of the form k(h(z)), where h(z) is a rational function in z. k(h(z)) is canonically
isomorphic to k(y) as shown in Figure 1, where ph(Y) P-- h(z). k(f(z)) is ind:rmediate between



k(y) = k(h(x)) and k, so by Lairoth's theorem, there is a rational function g(y) such that k(f(z)) =

k(g(y)). Thus f(z) is linearly equivalent to g(h(x)). 0
The following two propositions follow from Proposition 2 and are quite useful.

Proposition 5 Let k be an arbitrary field and g, and g2 relatively prime elements of k[x]. Then
for all polynomials h(x) E k(z], gl(h(z)) and g2(h(x)) are relatively prime.

Proof: Without loss of generality assume that degg > degg. Define g(z) to be the ratio of gj(x)
and g2(z). Since g, and g2 are relatively prime and degg, > degg 2, degg(z) = deggj. Let

f(z) = g(h(z)) = gI(h(z)) _ f:(z)

g2(h(x)) f2(z)'

where f, and f2 are relatively prime. Thus

degfi(z) < deggi(h(x)) = (deggi) (deg h),

where equality holds if and only if gl(h(z)) and g2 (h(z)) are relatively prime. Furthermore, deg f, >
deg f 2 so deg f =deg fl. By Proposition 2

deg f(z) = (degg) . (deg h) = (degg 1) . (deg h)

so deg fi(x) = (deg gt) " (deg h) and g1 (h(z)) and g2 (h(z)) are relatively prime. 0
The argument of previous proposition applies equally when h(x) is a rational function. In this

case, it is best to view g, and g2 as bivariate homogeneous functions of the same degree, which gives
the following result.

Proposition 6 Let g, and g2 be relatively prime, homogeneous polynomials in two variables. If h,
and h2 are also relatively prime polynomials, then gj(hj, h2 ) and g2 (h1 , h2) are also relatively prime.

Notice that the requirement that g, and g be homogeneous is necessary as the following example
shows:

g1(z,y ) = z + I

g2(z,y)=y-2 - . g 1(hi,h 2)=t+I

hi(t) = t j g2(hi, h2) = t-1

h2 (t) = t2 + 1

As a consequence of Proposition 6, rational function decomposition can be viewed as a coupled

polynomial decomposition problem, viz.

f,(z, y) = gj(hI(z, y), h2(z, y)),

f2(z, y) = g2(ht(z, y), h2(z, y)),

where f,, gi and h, are homogeneous polynomials and the pairs {fl, f2), {gl, g} and {h 1 , h2} have
the same degree.

3 Rational Function Decomposition

The bounds of Proposition 2 provide significant insight into rational function decomposition. In
particular, if the degree of f(z) is prime, then it has no non-trivial decomposition. A simple, expo-
nential time algorithm for determining a decompo6ition can be constructed by using undetermined



coefficients. Assume that deg f = rs and we are looking for a decomposition f(z) = g(h(x)), where
deg g = r and deg h = s. We can write g and h in terms undetermined coefficients, e.g.

g() = gn(z) gozX + gil- 1 +.. + grg~)=gd(X ) gr+ "r + gr+2 Xr-1 +...- + g2r+L"

There are 2r + 2 undetermined coefficients in g(z) and 2s + 2 in h(z). By Proposition 6, we can
treat the numerator and denominator of f(z) independently. Equating the coefficients of z' in the
following equations gives a system of 2rs + 2 algebraic equations in the gi and h,.

fozl-3 +... + 1r,
= goh,(x)" +.. + ghd (X)"

f_,+Il-r +___+ f,,+l

= gr+Ihn(z)- + + g2 .+.hd(z)'

Any decomposition of f(z) is a solution to this system of equations. Conversely, any solution to this
system for which deg g = r and deg h = s gives a decomposition of f(x). However, this approach is
not very efficient. Nonetheless, it does demonstrate the existence of an algorithm.

The efficient techniques that have been developed all tend to be divided into two phases, com-
puting h(z) and then given h(z) computing g(z). (The hard part is finding h(z).) We discuss the
phases out of order for simplicity. Determining g from f and h is discussed in Section 3.1, while the
determination of h is discussed in Section 3.2.

3.1 Determining g from f and h

The most direct way to obtain g(z) such that f(z) = g(h(z)), when f and h are known is to explicitly
solve the linear equations for the coefficients of g(z) that arise from (1). This approach is discussed
in detail by Dickerson [5, 4] as "computing the left composition factor." In this section we present
a simple analytic technique that relies on reversion of power series and is valid when the coefficient
field has characteristic 0.

Let A! be a fractional linear function such that I = Af o I has a zero at 0. Define h and Ah

similarly. If o= h then
f(z) = (A "1 o 4 o Ah) o h(z),

and g(z) = (A7I o§ o Ah)(z). So without loss of generality we can assume f(0) = h(O) = 0.
h(z) has a power series expansion of the form

h(z) = hizi + ht+lz t+ l +'"

Using standard techniques [101 we can obtain a power series in t for z in t = h(z)

z = h-(t) = h'l/' + h'2t2/ t +....

Replacing z by this power series in the power series for f(z) we get a power series in t. If there
are any fractional powers then there does not exist a "left composition factor." Compute the first
2r terms of the power series expansion of f(h-'(z)) at 0. The (r, r) Padi approximate (16] to this
power series is the only possible candidate for g(z). This power series technique may be easier to
program than Dickerson's technique, and using fast power series techniques [121 it might have better
asymptotic complexity.



k(z) E(a]l(f(a) - t) = F

k(h(x)) - Ef/(h(,3) - t)

k(f(x)) k(t) = E

Figure 2: Field Structure

3.2 Determination of h

For rational function decomposition, we determine h(z) by explicitly determining a subfield of k(z)
and then use a constructive version of Liiroth's theorem to compute a generator for the subfield.
The tower of fields we will be working with is shown in Figure 2. Note that the fields on the same
horizontal line in Figure 2 are isomorphic. By Proposition 3 every subfield of F is of the form
k(h(z)) and there exists a rational function g such that g(h(z)) = f(z), since k(f(z)) lies between
k(y) = k(h(z)) and k. Thus every non-trivial subfield of F yields a non-trivial decomposition of
fAz).

To illustrate our procedure consider the following example:

(Z2 + 1) 0 (2 + 1)

2x' + 6z 2 +5 f,(z)
zX4 + 6z 2 + 7 fd(z)'

where f,, and fd are relatively prime. We want to find an intermediate field between k(z) and
k(f(z)). Our first step is to convert these fields to a more conventional form. If E = k(t) = k(f(z))
and Eta] = k(z) then a satisfies the minimal polynomial

f(t, Z) = f,,(Z) - tfd(Z) = (t + 2)Z4 + (6t + 6)Z 2 + 7t + 5.

This polynomial's factorization over E(a] is

f(t, Z) = (Z - o)(Z + c,)((t + 2)Z 2 + (t + 2)0 2 + 6(t + 1)). (2)

Over a proper subfield of E[a], f(t, Z) will not factor so much. In particular, over a subfield it
cannot have a linear factor. Given (2), the only possible factors of f(t, Z) over the subfield EP] are
Z - a2 and ((t + 2)Z 2 + (t + 2)a2 + 6(t + 1)). Thus E[P] must contain the coefficients of these two
polynomials. If E[] is the smallest subfield of E[at] for which j(t, Z) has such a factorization, then
it must be generated by the coefficients of these two polynomials. In this case we can assume that

-= a2, whose minimal polynomial is

h(t, Z) = (t + 2)Z 2 + (6t + 6)Z + 7t + 5. (3)

To convert E(,3] back to the form k(f(z)) we observe that the elements of EP/] are rational
functions in z over k by Liroth's theorem. When t is replaced by f(z), (3) must have linear factors,



), Z) = (Z - X) ( 22 + 3

which leads to the intermediate fields k(x 2 ) and k((3: 2 + 4)/(2X2 + 3)). These two fields are
isomorphic by the fractional linear map: - (3z + 4)/(2x + 3). Using the k(: 2) as the intermediate
field, we have h(z) = x2, and thus the irreducible decomposition:

2:4 +6z 2 +5= 2:2+6:+5 o
0:2.

2z' + 6x2 + 5 2x 2 + 6zx + 57 2
:4+6:2+7 - 2+6x+7

The original decomposition is equivalent to this one since

X2 +1 = o2

X2_7 2 +6x+7 - X 9

This basic approach is applicable to the general problem except for deciding which factors of
1(t, Z) should be recombined to generate a factorization over a subfield of E[a]. We could try all

possible combinations of factors of !(t, Z) until we find one that yields a proper subfield of E[a].
However, in the worst case this would require an exponential number of trials. Instead, we use a
version of Landau and Miller's algorithm BLOCKS in [14] to find a non-trivial block, which will

generate a proper subfield of E[or]. As pointed out by Kozen and Landau [11], this algorithm only
requires that the extension E[a]/E be separable. Kozen and Landau may need to examine as many
as O(n loSn) non-trivial blocks to find a decomposition. However, in our case, any non-trivial block
will give a rational function decomposition. These techniques allow us to decide which factors of

f(t, Z) should be recombined in polynomial time.
Furthermore, observe that Trager's polynomial time reduction of factorization over algebraic

extensions [19], which was used by Landau to show that factoring over algebraic number fields is

polynomial time [13] is applicable here also, so the factorization of j(t, Z) over the function field
E[a] can be done in polynomial time.

The coefficients of such a factorization generate the intermediate field E[j. Since we are seek-
ing any intermediate field, a single coefficient that is not in E suffices. The minimal polynomial
of for that coefficient can be determined using resultants and square free decompositions to give
E[3]/(pD(t, 0)). h(:) is then deduced from a linear factor of po(f(:), Z), which need only be fac-
tored over k. (Factoring bivariate polynomials is polynomial time by Kaltofen [9].)

It is worth commenting on the practicality of this algorithm. Its dominant cost is the factorization
of f(t, Z) over k(t)[a], which is about as costly as factoring a polynomial of degree (deg f)2. Given
the practical difficulties of factoring polynomials of degree greater than about 100, it seems that it
will be very difficult to determine the decomposition of f(z) if the degree of f(:) is greater than
about 10.

3.3 Characteristic p case

Determining any decomposition, as opposed to determining a decomposition with a particular degree
pattern over a field of characteristic p is only slightly more difficult than the characteristic 0 case,
using the technique of Section 3.2. Assume that char k = p and f(z) is a rational function over k.
The decomposition of f(z) may no longer be unique, but Proposition 4 shows that there is still a one
to one correspondence between the inequivalent decompositions of f(z) and the fields intermediate
between k(z) and k(f(:)).



k(x)

E2 k( - r)

E3= k(zP+l)

E= k(zP 
- z)/

Eo = k(f(z))

Figure 3: Field Structure for f(z) = zP3+P2 - zP'+' - zP2+P + xP+1

Referring to Figure 2, let f(t, Z) be the (irreducible) minimal polynomial of o over E. If ](t, Z)
is separable, then E(a] is separable over E and a subfield can be computed using the techniques of
the previous section. If 1(t, Z) is inseparable then it can be written as

i(t, Z) = f(t, ZP'),

for some positive value of p. Furthermore, f is separable over E. Clearly, the field E[aP ] lies
between E[a] and E and thus a linear factor of 1(f(z), Z) will give a decomposition factor of f(z).
Since E[aP"] is separable over E, the techniques of the previous section can be used to find additional
right decomposition factors. Left decompositions factors can be found from the fields E(orP], which
lie between E(a] and E(rP ] for 1 < i < u.

It is worth noting that even the pathological example suggested by Dorey and Whaples [6]

f(z) = ZP+' 0 (zP + Z) o (ZP - ),

- (ZP 
2 
- z -

p+I - X
p 

+ z) 0 X
P +

= zP 3+P 2 - P 
3
+ - zP 2

+P + XP+I

is can be handled straightforwardly, since the derived polync-nial

(t, Z) = z P'+P - z P + P - Z P'+ 1 + Z '+1 - t

is separable. The fields associated with the two decompositions of f(z) are shown in Figure 3.
In the case of polynomial decomposition, notice that f(t, Z) is inseparable if and only if f(z) is

a rational function of z. Thus the distinction made by von zur Gathen [21, 22] between "tame"
and "wild" might more appropriately be made on whether or not f(z) is a rational function in zP.

Note that this approach only finds some decomposition of f(z). It cannot find a prescribed one.
In particular, if one is looking for a decomposition f(z) = g(h(z)) where pl degg then the extension
k(z)/k(f(z)) may be inseparable and we would thus Lave no algorithm for finding intermediate
fields. This problem is raised in (22].



4 Conclusions

The technique is used to find the h(x) in Section 3.2 is reminiscent of the technique proposed by
Kozen and Landau (11] for decomposition over arbitrary fields. However, they studied intermediate
fields between k(a)/(f(a)) and k. While there is an intermediate field between k(a) and k whenever
f(z) is decomposable, the existence of an intermediate field does not guarantee a decomposition. By
using intermediate fields between fields k(t)(a]/(f(a)-t) and k(t), we avoid much of the complexity
of their approach since any such intermediate field does lead to decomposition of f(z).

It is tempting to conjecture that Propositions 5 and 6 can be generalized to more variables, but
the straightforward generalization is not true, as pointed out in Section 2. It would be interesting
to know in what way it can be generalized.

This work has benefited from discussions with Barry Trager and Dexter Kozen. Susan Landau's
comments on an earlier version of this paper where quite helpful. The diagrams in this paper were
typeset using Paul Taylor's commutative diagram macros for I TEX.
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Automatic surface generation using implicit cubics

Baining Guo

Abstract

Modeling physical objects with low-degree algebraic surfaces shows promise for applications
where manipulating and reasoning about physical objects are important. In this paper, we
present an algorithm for free-form surface constructions using implicitly defined cubic snrface
patches. The input data for the algorithm is an arbitrary polyhedron with a normal prescribed
at each vertex of the polyhedron. Using a Clough-Tocher like splitting scheme, the algorithm
constructs a smooth piecewise cubic surface interpolating the vertices of the polyhedron and the
prescribed normal at each vertex. The free-form surface construction in the algorithm is local
and quadratically precise. In addition, the shape of the free-form surfaces can be manipulated
through a set of intuitive shape parameters without knowing the details of the algorithm. The
implementation results are reported.

Keywords: Geometric modeling, object representation, free-form surface, Bernstein-Bezier
representation, implicit patch, design.

1 Introduction

While developing a geometric modeling system for representing, manipulating and reasoning about
physical objects, we derived and implemented an algorithm for constructing geometric models for
smooth objects of arbitrary shapes and topologies. Such geometric models are important for solid
modeling, computer-aided design, visualization, computer graphics, and robotics.

The geometric models of arbitrary smooth objects are represented by closed free-form surfaces.
The algorithm we drive generates a free-form surface from the input data of an arbitrary polyhedron
with a normal prescribed at each vertex of the polyhedron. Using a Clough-Tocher like splitting
scheme, the algorithm constructs a smooth piecewise cubic surface interpolating the vertices of the
polyhedron and the prescribed normals.

The algorithm we derive has the following features. First, the algorithm is local, so modifying a
piece of input data affects only nearby surface patches. Second, the algorithm has quadratic preci-
sion, which means that if the input data is taken from a quadric surface, the algorithm reproduces
the quadric surface. Finally, the shape of the free-form surfaces produced by the algorithm can be
controlled through a set of intuitive shape parameters without knowing the details of the algorithm.

An important motivation of our work is to construct geometric models that facilitate manipulat-
ing and reasoning about physical objects (Hopciuft and Krafft 1986: Hoffmann 1989). Traditionally.
the building blocks for free-form surface constructions are parametric patches. As far as design and
display are concerned, parametric patches are very muccessful. But when it comes to manipulating
and reasoning about physical objects, parametriL patches run into serious problems. Parametric
patches are not closed under some elementary uperations in geometric modeling, such as sweeping
and Minkowski sum (Bajaj and Kim 1987). The intersection of two parametric patches is extremel
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difficult to represent and evaluate (Hoffmann 1989) because the algebraic degree of the intersection
is prohibitively high. As an example, we notice that in general the intersection of two commonly
used bicubic patches is a space curve of degree 324 (Hopcroft and Krafft 1986).

These problems can be avoided by building free-form surfaces from low-degree implicit patches.
Implicit patches are closed under all common operations required by a geometric modeling system
(Bajaj 1989), and the intersection of two degree n implicit patches has degree n2 , which is small if
n is. Low-degree implicit patches also allow the use of algebraic techniques as opposed to numerical
techniques in reasoning about physical objects (Hopcroft and Krafft 1986). These features make
implicit patches a superior choice for applications where manipulating and reasoning about physical
objects are important. In addition, from a practical point of view, implicit patches are compact to
store and relatively easy to ray trace.

An inviting class of implicit patches for free-form surface constructions is the class of quadric
patches. When the input data is a polyhedron without normals prescribed at its vertices, a free-
form surface can be constructed using quadric pttches. However, quadric patches have fundamental
limitations that make it impossible to allow prescribing normals in the input data. Roughly speak-
ing, when a free-form surface is constructed by replacing the facets of the input polyhedron with
quadric patches, they introduce a correlation between the normals at the adjacent vertices of the
input polyhedron. We have investigated the role of quadric patches as primitives for free-form
surface constructions, and we hope to report the results elsewhere.

Being able to prescribe the normals in the input data is important. Prescribing normals is a
measure to control the patches in the free-form surfaces so that only a few patches are needed for

representing a smooth object that would otherwise requires thousands of polygons to approximate.
One way to overcome the limitations of quadric patches is to split the edges of the input polyhedron,
as was done by Dahmen (Dahmen 1989). However, from a theoretical point of view, Dahmen's
method cannot handle arbitrary input polyhedron because his method requires the existence of
"transversal systems", which no one know. how to construct in general; from a practical point
of view, splitting the edge of the input pol3hedron causes oscillations in the free-form surfaces,
making it impossible to produce free-form surfaces of pleasing shapes. In this paper, we show that
the limitations of quadric patches can be overcome by cubic patches.

1.1 Previous work

There is a rich literature on surface constructions using parametric patches, and a recent survey can
be found in (Mann et al. 1990). Modeling complex objects with implicit patches was introduced
in recent years and is becoming an increasingly prominent areat of research. General techniques
for implicit modeling are developed by researchers vorldwide (Nishimura et al. 1985; Bloomenthal
and Wyvill 1990; Dahmen 1989). In particular, many authors have demonstrated the power of
implicit patches in deriving blending surfaces (Blinn 1982; Middleditch and Sears 1985; Hoffmann
and Hopcroft 1987; Rockwood and Owen 1987) and in surface fitting and approximation (Bajaj
and Ihm 1989; Patrikalakis and Kriezis 1989).

Sederberg proposed using Bernstein-Bezier representation of implicit patches in free-form sur-
face constructions (Sederberg 1985). Subsequently. various techniques are developed for construct-
ing free-form surfaces using implicit patches (Patrikalakis and Kriezis 1989; Bajaj and Ihm 19S9O
Moore and Warren 1990; Sederberg 1990). In paiticular, Patrikalakis et al., Sederberg. and Bajaj
et al. demonstrated the complications and pitfl. uf modeling with implicit patches (Patrikalakib
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and Kriezis 1989; Bajaj and Ihm 1989; Sederberg 1990).
Dahmen (Dahmen 1989) gave an algorithm for constructing free-form surfaces from quadric

patches. But the algorithm cannot handle arbitrary polyhedra, and the splitting scheme in the
algorithm prevents it producing pleasing shapes. There are also algorithms for constructing free-
form surfaces with implicit patches of degree six and degree five (Moore and Warren 1990; Bajaj
1990).

2 Conceptual overview

The algorithm described in this paper builds free-form surfaces from the input data of a polyhedron
with a normal vector prescribed at each vertex of the polyhedron. The input data is denoted by
(P, YI), where P is an arbitrary polyhedron with vertex set {x 1,.--, xk}, and V is a set of normals
{nl,- -- , nk} with n, being the normal vector prescribed at x,. The facets of P are assumed to be
triangular.

The basic idea of the algorithm is very simple. The free-form surface to be built must be
in the neighborhood of the input polyhedron P. so we construct a neighborhood E of P using
tetrahedra and creat a cubic polynomial for each tetrahedron used. By ensuring C' conditions
between adjacent tetrahedra, we obtain a global C' function that is a cubic polynomial in each
tetrahedron. The zero contour of this global C' function within the neighborhood E is the free-form
surface to be generated.

The following three aspects are crucial to the success of the algorithm.

1. The construction of a neighborhood E of the input polyhedron using tetrahedra. The neigh-
borhood must locally contain the tangent plane determined by the prescribed normal at each
vertex of the input polyhedron P, and the neighborhood must have the same topology as the
polyhedron 'P.

2. A scheme for defining a globally C' function which is a cubic polynomial over each tetrahedron
within the neighborhood E. The scheme must leave free control points in the definition of
each cubic polynomial so that the zero contour of the cubic polynomial can be controlled by
these free control points.

3. A mechanism to control the cubic polynomial defined for each tetrahedron so that the zero
contour of the cubic polynomial inside the tetrahedron is a single-sheeted cubic patch without
holes, extraneous sheets, self intersections, or other topological anomalies.

These three aspects will be stressed throughout the development of the algorithm.

3 Algorithm details

Now we address the three aspects of the algorithm in detail. In this paper, we use [xi---xi] to
denote the convex hull of point set {xl,,..xn}.

3.1 The construction of the neighborhood E

The basic spatial elements used to build the neighborhood E of the polyhedron P are tetrahedra.
Tetrahedra are chosen for two reasons. one. tetialhedra are simple and flexible three dimensional
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X x X 4

Y4 Y4I

Figure 1: Filling gaps between two double tetrahedra

spa( units; two, tetrahedra facilitate the use of Bernstein-Bezier representation, which is the base
for this work.

The neighborhood N is constructed as follows. For each facet F = [xIx 2x 3] of the polyhedron
P9, two ints x4 and Y4 off each side of the facet are chosen, and they determine two tetrahe-
dra, [XIX2X3X4] and [XlX2X3Y4]. These two tetrahedra form a double tetrahedron denoted by
([xIx 2x 3x 4], [xIx 2 x3y 4 ]). Consider an adjacent frcet F' = [x',x 2x 3 ] and its double tetrahedron
([XIx 2x 3x' 41 [x'x 2 x3y4]). Between the double retrahedra of facets F and F'. there are two gaps.
One gap is between the tetrahedra [XIx 2x 3x'4] and [xix 2x 3x 4 ]; the other is betxmeen [xjx 2 x3y 4 ]
and [X'1x2 x.y4]. The first gap is filled with a pair of tetrahedra [X','x 2x3x 4 ] and [Xjx 2X3 X'4 , and
the second gap is filled with another pair of tetrahedra. [Yl X2x 3y4 ] and [yj'x 2x 3y ]. Here x and
yj are points on the line segments [x4x'] and [y4y ] respectively. All these are shown in Figure 1.

As an auxiliary geometric structure for the free-form surface construction, the neighborhood E
must satisfy the following condition. At each vertex x, of the polyhedron P. the neighborhood E
should locally contain the tangent plane defined by n,. In other words, there is a disk D around
the vertex xi in the tangent plane at xi such that

DC .

3.2 A scheme for enforcing C' conditions over

Having built a neighborhood E of the polyhedron P. we constiact a C' function f over the neigh-
borhood r so that

f(xi) = 0, 'f(xi) = ni, i = 1,-,k. (1)

The zero contour of f within - is the free-form surface to be generated.
The construction of f can be outlined as follows. First, we split the the tetrahedra that have

facets of P as faces: the neighborhood E is kept the same except some of its tetrahedra are split.
Then, the function f is defined by constructing a cubic polynomial for each tetrahedron within the
neighborhood E.

To show the splitting scheme, we take a facet xIX2 X3I and its double tetrahedron ([X1% 2 X3X4 j.
[XIX2X3 y4 ]) as an example. Let w be a point iii the facet [xIx,x]. We split the double tetrahedron
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Figure 2: The C 1 conditions between two adjacent double tetrahedra

into six tetiahedra: [xxwx4] and [x,xwy4,] for 1 < i < j < 3. For symmetry and robustness
reasons, w is ofteD chosen to be the centroid of triangle [xIx 2x 3], while Y4 and x 4 are chosen to be
on the line that passes throug.t w and is perpendicular to [xIx 2x 3].

The construction of cubic poj noia;,ds over the tetrahedra within E takes two steps. Consider a
facet 1' = [X'1x 2 X3] adjazent to facet F = [XlXX3] and the double tetrahedron of F', ([x'x 2x3x'],
[XlX 2X3y4]). The facet F and its double tetraLedron are split at the centroid w' of F' in the
same way that ([xix 2 x 3x 4], [xlx 2xy 14J) is split at w. !or the facets F and F', the first step takes
place over tetrahedra V1 = x2x3x4w], 2 = [X2 X3 X'4 W',, W 1  [X2 X 3 X'J'X 4 , W 2 = [x 2X3 Xlx'4 ],

V' = [x2x3y4w], V2' = [x2xy'4w], W' = [X2X3Y'y 4 !, and VV = [X2X3Y"'] as in Figure 2. We
constrtct the cubic polynomials e.ver tetrahedra WT, 1W2, 1W, and IT". At the same time, the cubic
poynomialq over tztrahedra V,, 12, V', and 1 are partially determined through C1 conditions,
The same process is carried out between every paih of adjacent facets of P, so at the end of the first
stpp, the cubic polynoml:.s wer the tetrahedia [x,xjx 4w] and [x,y 4w] are partially constructed
for all i < j < 3. _.Ler, the second step completes the construction of these cubic polynomials



according to C' conditions.
Now we describe the first step in detail. Throughout this description, we assume i = 1,2

whenever i appears. By doing so we are taking advantage of the symmetry of the problem in
consideration.

Let the cubic polynomials f, over V,, f, over V,, g, over W,, and g, over TVW' be expressed in
Bernstein-Bezier forms as follows.

fi(x) = E aXB3(7,), (2)
I1=3

gj(x) = 1 B 3(p,), (3)
IAI=3

fc'(X) = CXB3(7ir), (4)
IJA=3

and
g9(x) = E B(p ),(5)

IAI=3

where r,, 7,, p, and p, are the barycentric coordinates on 1", V', W, and V respectively. We call
the a\'s, b's, CA's, and dA's the control points of the cubic polynomials f,, f,, g,, and g' respectively.
Our task is to determine these control points.

For notaticnal convenience, if two tetrahedra sharing a common face, we equal the control
points of the associated cubic polynomials on the common face to ensure Co continuity. Hence
such control points will be defined only once.

All the control points over tetrahedra 1,, 1", IT,, and V' that can be determined from the
input data are as follows. The fact that the zero contours of f,, f,, g,, and g' pass through x 2 and
x 3 implies

a 0 3 00 = ( 0 030 = 0,
i

C0300 -- C;030 = 0,

b0o00 = b;o3o = 0,

and
db30 0 = d0030 = 0.

More control points are determined by the uormaid at the vertices x 2 and x3. For example,

1 1 j23
a2ej+el = 3(nJ-w - xj), j 2,3.

Similar expressions are used to determine the control points a2e +ek for j = 2, 3 and k = 1, 4, ceJ+C4

for j = 2,3, b2,j+,, for j = 2,3, and d2ej+, for j = 2, 3.
Before determining the rest of the control points according to C' conditions, we have to choose

some control points to be free control points who.e values will be left unspecified at this point. This
is because c-eating a piecewise cubic C' function f over the neighborhood E is only an intermeditte
step in the free-form surface construction. Having dhfined a cubic polynomial whose zero contour
passing through some vertices of a tetrahhedioa doe. not guarantee the existence of a taut cubic

6



Figure 3: A handle on a cubic patch

patch inside the tetrahedron. There may not be a cubic patch inside the tetrahedron at all, or even
there is, the cubic patch can have self intersections, holes, and extra sheets. Figure 3 is a more
dramatical example: a handle appears on an otherwise nice cubic patch. If this cubic patch is in a
free-form surface constructed from the input polyhedron P, the topology of the free-form surface
is bound to be different from that of P.

We choose the following free control points a (j = 1,2,3,4), ciY+,, (j = 1,2,3,4), b200 1,
and d 001 for f,, f., g,, and g' respectively. The intuition of these control points are as follows.
Control points a 'e (j = 1, 2, 3) are equivalent to the function values and gradients at x 4 and x',
and the control point b2o00 enables us to have complete control of the function values of g, along the
line segment [x4x']. The same statement can be made about control points ce. (j = 1, 2, 3, 4)
and d2001. In 3.3, we will explain how these flee coi.trol points affects the associated cubic patches.

Now we determine the rest of the control poiats to ensure C1 conditions. Consider the C'
conditions across faces [X2X3X.] and [x2x 3x'.] Suppose

X" = O3x + .3'x2 + 31x3 + 01xx41 l3 .



and #~t 2X + 02 p2

xi"-/l +I I 3x2 + 032X3 + -4X4.

Then, the C' conditions are the following.

-= 0'a1002 + f3a0102 + I3a0012 + /'a0003,

=/Piaol + 2+20'o a + , II + /3400102, (6)

111= 011 + 02ao111 + 03a:02 1 + f4a 0 12 , (7)

and
1 a= a11 210I3 a02l0+ O3ao120 +04a0111. (8)

The first three equations can be viewed as the definitions for the control points bi101, bs011, and
b110, leaving aloll and a1 1 to be determined. Equation (8) will be treated later.

Moving on to the C' conditions across [x2xx3X'f, we see that if

X 1 = I tX I + / 2 X 4,1

then the C' conditions are the following.

b3' 00 = ;zlb'001 + 112 b~0 1 (2

b12o= pqb 10o1 + , 2 b2o01 , (10)b~20 1 1101
#t1b611 + P2b 11 , (10)• 2

b'1200 = 11011o11 + 12bloll ,  (11)

and 12b t = plao111 + j 2ao 1  (12)

Again, the first three equations can be viewed as definitions for control points b'ooo, blo2o, and
b1200; and the last equation will be treated later. Notice that bi011 and b' 0in ab equations
are defined earlier by the equations (6) and (7).

Finally, we consider the C' conditions across faces [x2x 3 Y4], [x 2 x3 yjl, and [x2x3y']. All the
control points of o and some of the control points of f, can be fixed in the same way as the control
points of fi and gi. In doing so, we also have two equations left untreated.

d = I ,10  + 72 210 + ^a3 ' c i i (13)a 110 7an + ao10 + ' .3020 +1 7T4 0111

and
1 2d = ?1c011 + 77

2
CO1 1 1 7 (14)

where the coefficients 77's and -'s come from the following relations:

/= 2 1 2 + 2 2
= ^1X1 + j 2 X2 + y 3 X3 + 7,Y 4

and

Yi = LIyI + 112YYl.

Now we collectively treat the equations (8), (12), (13), and (14) as promised. These equations
can be rewritten as

1 2 + + +
711 C, 111 + 772COI I =Yj'aiiO ^; I21~0 Y-0aO (15)

0 -10 12 + Y~i COI 1



and
1 2iIa 0 l + 1 12aol = I-Ol"10 + /02a0210 + 3ao120 + 4iaol •  (16)

Here coI11 can be determined from a's through the C' conditions across [xIx 2x3] and [XX 2 X3],

cOl'. -- alalllO + 2a0210 + a3a0120 + a4alll? (17)

where the a's come from
Y a=x1 + 02X2 + a3X3 + a4x4

and
y 2, 2 2 2'34 aixi + a 2 x 2 + a3X3 + a4 x 4.

The equations (15), (16), and (17) form a system of six linear equations with six unknowns,
11, a 110, and c When the points x,,, x , y., and y' are in general position, the system

always has a solution. It may happen that thele is a family of solutions, in which case we choose a
solution as follows. Using the degree-elevation property of Bernstein-Bezier representation, we can
compute default values for aillo and coil 1 from the prescribed normals. A solution to the system
can be selected from the family of solutions according to these default values.

This finishes the first step in the construction of the cubic polynomials over the tetrahedra
within the neighborhood E. Now g, and g' are completely constructed, while f, and f, are partially
constructed.

The second step completes the construction of f, and fl. For this purpose, we shift our focus to
the double tetrahedron ([xlx2x3x 4], [XlX 2 X3 y4 ]), which has been split into tetrahedra [xlx 2x 4w],
[XlX 3X4W], [x3 x2 x4w], [x 3 x2 y4 w], [x3x 2y4 w], and [x3 x2y 4w].

Consider the problem of completing the construction of the partially constructed cubic poly-
nomials for tetrahedra U1 = [x 2x3 x4w], U2 = [xjx 3 x 4w], and U3 = [xlx 2x4w]. Denote the cubic
polynomials for Ui by

[A[=3

where v, is the barycentric coordinate of U,. It is easy to recognize that polynomial hl is the same
as fi in the first step. More generally, the partially constructed functions h, is the result of carrying
out the first step for [xIx 2x 3] and the facet sharing edge [xmx,,] (m 0 i, n $ i, 1 < m, n < 3) with
[Xx 2x3]. We denote fl, V1, and rl by hI, Ul. and v, in the second step to reflect the new symmetry.

The taslt of ensuring C 1 conditions between U,'s is greatly simplified by taking advantage of
the fact that w E [xIx 2x 3 ]. The control points over U, can be divided into four groups. The i-th
group, called i-th layer, is the set of a'A 3  such that A4 = i. Because w E [XIX 2X3], the C1

conditions between U, and U only involve control points from the same layer. So we can satisfy
the C1 conditions by examining each layer as if we were working on bivariate polynomials.

For the 0-th layer, the control points aA1A2Ao are defined previously for all \, _ 1. Determining
the rest of the control points in this layei is exactly the famous Clough-Tocher interpolation in
finite element analysis. Figure 4 illustrates a standard solution (Farin 1986).

For the 1-th layer, the control points aAA,AIl are defined earlier for all A1 = 0. Since this layer
can be viewed as a bivariate quadratic function, the known control points uniquely determine the
rest of the control points within the layer through the Cl conditions (Fari 1986).

The control points in the 2-th and 3-th lavei s ale trivially determined by the the function value
and gradient at x,,.

9
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o centroid of surrounding boxes
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v centroid of surrounding circles

Figure ' The Clough-Tocher bivariate splines

To complete the second step, we carry out the same argument for tetrahedra [xIx 2y4w],
[x2 x3 y4 w], and [xlx 3 y4w]. As for the C1 conditions across [xIx 2x 3], notice that these condi-
tions only involve control points from the 0-th ldyer and the 1-th layers. From equation (17) and
the way the control points in the 1-th layer aie determined, it is easy to see that the C' conditions
across [xIx 2x 3] are indeed satisfied.

Therefore, we have constructed the global C' function f satisfying (1). If the free control points
are chosen so that a "nice" cubic patch is obtained inside each tetrahedron within the neighborhood
-, then the zero contour of f inside the neighbolhood E is the free-form surface to be constructed.

3.3 Obtaining and controlling the cubic patches

As we mentioned earlier, creating a C' function f over the neighborhood E according to (1) is only
an intermediate step. In general, such a function raiely yields the free-form surface we expect. The
problem is that some of the control points of a cubic polynomial strongly affect the zero contour
of the cubic polynomial inside the associated tetiahedron. If we let these control points be decided
by the C' conditions, then the zero contoui of the cubic polynomial inside the tetrahedron exhibits
various behaviors undesirable for free-form surface constructions.

The following situations may occur for the zero contour of a cubic polynomial inside a tetrahe-
dron.

1. There is no zero contour in th ;, .::ior of the tetrahedron even though the zero contour is
known to pass through several vertices of the tetrahedron.

2. There are self-intersection points, or singular points on a cubic patch.

3. There are holes on a cubic patch cau.ed by the zero contour of the cubic polynomial leaving
and coming back to the tetrahedron. See the left figure in Figure 5.

4. There are multiple sheets of the zero ontour inside the tetrahedron. See the left figure in
Figure 6.

10



Figure 5: Avoidling holes in a cubic patch



Figure 6: Avoiding extra sheets in a cubic patch

5. More dramatically, there may be even handles etc. on a cubic patch. See Figure 3.

Notice that we listed singular points together with self intersection becadse for implicit patches,
singular points appear where self intersections occur.

We use tetrahedra [xIx 2wx 4] in Figure 2 as an example to explain how the situations listed
above can be avoided by controlling the free control points we have chosen. I:. this example, the
free control points are the function value h.3(x4) and the gradient Vh3(x 4). The same argument
with minor modifications applies to the cubic polynomials defined for other tetrahedra.

Situation one can be avoided by properly choosing the function value at x 4. Consider the line
segment from the centroid of [xIx 2w], p, to x,,. If the function value h3 (x 4 ) is chosen to be have
a sign opposite to that of the function value at p, then there must be a point on the line segment
[x4p] where the cubic polynomial is zero. In other words, the zero contour passes through the
interior of the tetrahedron [xIx 2 wVx4].

Situations two through five can be avoided by enforcing monotonicity conditions on the cubic
polynomial along the direction from w to x.,. A function is monotone in direction a if the directional
derivative along a is positive. Let the cubic polynomial in [xIx 2xIw be

= Z~~ aB(V 3).
1A1=3

A sufficient condition for the cubic polynunid h3 to be monotone along the direction form w to
x, within the tetrahedron is that

a.\-ei+C4 - (1\ _ 0. for all A with A1 > 1. (18)

12
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Figure 7: The shape control scheme

When A, > 1, the condition (18) can be enforced by the function value and gradient at X4 . As for
A, = 1, the control points involved in (18) are completely determined from the prescribed normals
in the input data, so the monotonicity conditions may not be satisfied for certain input data no
matter how the free control points h3(X4) and 7h 3(x4) are chosen. But remember the prescribing
normals in the input data is only a measure to control the behavior of each cubic patch. If we
choose these normals within proper ranges, the condition (18) can be enforced.

In practice, the free control points are computed using the degree-elevation property of Bernstein-
Bezier representation. The idea is to extend the effects of prescribed normals to the free control
points. A quadric polynomial q over the tetialiedron [XIX 2X3x4J can be determined from the fact

q(x- ) = 0, Vq(x.) = ni, i = 1,2.3.

and the value q(x~j) which is referred to as a shape parameter. If this is done for all facets of
the input polyhedron P, then quadric polynomials over tetrahedra such as [x2X3Xj'X,] can be
determined also. These quadric polynomialb die then degree elevated to cubic polynomials, whose
control points corresponding to the free contiol points are given to the free control points. This
method of choosing free control points works very well in practice. Rom our experience, the ranges
of free control points within which the cubic pa~tches behave well are fairly large. As long as the
free control points are not in the relative small "bad" ranges, the cubic patches are in good shape.

Figure 5 and Figure 6 are two examples of houw the above method works in the setting of Figure
2. In Figure 6, the left figure has an extra sheet due to badly chosen free control points. In the
right figure, the badly chosen free control poinitb are corrected using the above method. Figure 3 is
similar except the problem is the hole in the left figure.

3.4 Features of the algorithm

The above free-form algorithm has several fe.tureb. From the description of the algorithm, it is
easy to see that the free-form construction in thy v thowithini is local. In the following, we discuss the

13
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Figure 8: Figure 7 with a shape parameter decreased

quadratic precision of the algorithm, and how to control the shape of the free-form surface without
knowing the details of the algorithm.

Quadratic precision is a measure of accuracy of free-form surface algorithms in terms of how
well the algorithms can reproduce a knowni siface if the input data is taken from the surface. A
question that users often ask about a free-foirn surface algorithm is that if the input data is taken
from a sphere, can the algorithm reproduces the sphere. For the algorithm we derive, the answer
is yes. In fact, the algorithm reproduces all quadrics.

Notice that the input polyhedron P, prescribed normals at the vertices of P, and the shape
parameters completely determine the free-foii bulface. If the input data is taken from a quadric
surface and the shape parameters are from the quadric surface, then the algorithm will produce
the same quadric surface. To ensure the shape Ipatameters are properly chosen so that all quadric
surfaces can be reproduced, we must give cci taii default values to the shape parameters. For
example, an easy way to do so is as follows. Randomly choose enough vertices of P so that these
vertices determine a quadratic polynomial q huink that the zero contour of q passes though the
chosen vertices, then compute the the shape p~arameters by evaluating q.

An important feature of the algorithm we derive is that it allows the users to control the shapes
of the free-form surfaces produced by the algomithzia without knowing the details of the algorithm.
This feature is very important for applications like CAD/CAM, where the designers manipulate
the shape of the free-form surfaces to achieve functional or aesthetic design objectives.

Recall that for each facet, the cubic polyliomniAs over the double tetrahedron containing the
facet is not completely fixed. A double tetraediomi has a vertex outside P, and we call the vertex
the apex of the double tetrahedron. At the apex of the double tetrahedron of each facet, the value
of the cubic polynomials is left as a shape p~arameter, as wa shown in 3.3.

If we think of the algorithm as producing the global function f over the constructed neighbor-
hood E of P', then the value of f at each apex i:s a shape parameter. Since the interior of the
free-form surface is exactly the region wheie f < 0. decreasing a shape parameter at a apex pulls
the free-form surface towards the apex. Moieuvei. oinly nearby quadric patches are affected by
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Figure 9: An example of shape control

this shape parameter because the free-form surface construction in the algorithm is local. So, the
apexes form a net which controls the shape of the free-form surface through the sho.0 _ parameters
at the apexes.

Figure 7 and Figure 8 illustrate a two dimensional analogy of this shape control scheme. The
situation in the three dimension is the same but harder to draw. Figure 9 is an example of two
free-form surface having everything identical except the shape parameters.

4 Conclusions

We have presented an algorithm for generating fiee-form surfaces from the input data of an arbitrary
polyhedron with a normal prescribed at each ve tex of the polyhedron. The algorithm constructs a
smooth piecewise cubic surface interpolating the vei ticeb of the input polyhedron and the prescribed
normal at each vertex. The free-form surface construction is local and quadratically precise. In
addition, the free-form surface produced can be manipulated through a set of intuitive shape
parameters without knowing the details of the algorithm.
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Figlire 10: A skewed (lodecahiedron
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Figure 11: A tea pot
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Figure 10 and Figure 11 illustrate some implemented results. Figure 10 is a skewed dodecahe-
dron with 12 points, 20 facets, and 80 patches; Figure 11 is a tea pot with 45 points, 72 facets, and
266 patches. These two pictures, as well as the pictures shown earlier, are generated by polygonizing
the cubic patches and rendering the resultant polygon using Gouraud shading.

We hope to incorporate the free-form surface algorithm into a geometric modeling system and
to experiment designing, manipulating, and reasoning about complex smooth objects.
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Abstract

The recent explosion of interest in physical system simulation may
soon lead to realistic animation of passive objects, such as sliding blocks
or bouncing balls. However, complex active objects (like human figures
and insects) need a control mechanism to direct their movements. We
present a paradigm that combines the advantages of physical simula-
tion and algorithmic specification of movement. The animator writes
an algorithm to control the object and runs this algorithm on a phys-
ical simulator to produce the animation. Algorithms can be reused or
combined to produce complex sequences of movements, eliminating the
need for tedious keyframing. We have applied this paradigm to control
a walking biped. The walking algorithm is presented along with the
results from testing with the Newion simulation system.

1 Introduction

This paper describes a new paradigm fur the control and animation of complex
active objects such as the human figure. This approach allows the animator
to control an object through an algorithm which spe:ifies certain "intuitive"
variables as a function of time and of world state. In the case of human figure
walking, the animator might write an algorithm which controls the acceleration
of the figure's center of mass at one point in the animation, and which controls
the angle of the knees at another point. The algorithmic approach to animation
allows this to be done with ease, as demonstrated by the walking algorithm
presented in Section 6.



Witkin and Kass [WK88 have combined physical simulation and key-

framing to produce realistic animation of their jumping Luxo lamp. With
their approach the animator uses spacetime constraints to specify several key
points for selected variables. These variables may be positions, velocities,
forces and so on. Combining spacetime constraint equations with the La-
grangian equations of motion and discretizing over time yields a system of
equations that are solved to produce the motion. Since the system is gen-
erally underconst rained (having multiple solutions) a solution can be chosen
to minimize the power, fuel comsumption and so on.

Our algorithmic approach is similar in that the animator can control
accelerations and forces, but differs in that the constraints can be added
or removed "on the fly" as the algorithm sees changes in the world state
which might not be predictable. In the case of human figure walking the
algorithm might, as the foot touches the ground, remove a foot positioning
constraint and add a leg stiffening constraint. The exact point of contact
is not predictable in advance. Additionally, the algorithmic approach frees
the animator from considering the dynamics of impact and other changes in
kinematic relationships, which are handled automatically by the simulation
component of our system. Incorporating impact into the work of Witkin
and Kass would require either guessing the impact points beforehand or
incorporating a "force field" approach as described in Section 2.

Other work on combining control and simulation has been done by Barzel
and Barr [BB881. Their method of dynamic constrnints adds fictitious forces
which pull the simulated objects into specified positions. By doing this in the
framework of a simulation system, the movement of complex physical objects
can be simulated with little work on the part of the animator. A limited form
of control is achieved by attaching forces to points on the object and dragging
these points.

Various other approaches to combine control and physical simulation have
been explored. Wilhelms [Wi1871 blends kinematic and dynamic formula-
tions, Isaacs and Cohen [IC871 incorporate inverse dynamics in their simula-
tion system, and Brotman and N, travail [BN881 use dynamics and optimal
control to interpolate between key frames.

Some further insghts on control can be gained from examining the current
literature in the field of robotics. While this field deals with controlling real,
physical objects, some of the techniques can be applied to produce simpler
animation.

Researchers in robotics have taken various appr(,aches to reduce the com-
plexity of control programs for physical objects. The computed torque
method (see [Cra861) for robot arms can be viewed as simplifying control
by reducing the grippcr to a unit mass. The control program can ignore the
dynamics of the robot arm, only concerning itself with the position of the
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end effector as a fanction of time.
In building his one-legged hopping machine, Raibert rRai86J partitioned

control along three intuitive degrees of freedom: hopping, forward speed and
body posture. This resulted in surprisingly simple control programs for the
hopping robot. For multi-legged machines, Raibert introduced the idea of a
"virtual leg" which was defined in terms of the robot's physical legs. This
again led to simplified control programs.

Both the computed torque method and Raibert's virtual leg demonstrate
that a proper choice of control variables can lead to simpfified control pro-
grams. The problem with this approach is that there is often no simple
closed-form mapping of these control variables onto the forces and torques
needed to control the object. In some cases a complete system of equations
must be numerically solved to make this mapping. This is called "inverse
dynamics" and is typically rejected by robotics researchers as being too ex-
pensive to use in real-time control. For the purposes of animation, however,
it is ideal.

This is the basis of our algorithmic approach to control. This approach
advocates the selection of a small set of intuitive variables which are used
by the algorithm in controlling the object. The algorithm constrains these
variable with constraint equations, which, when combined with the standard
Newton-Euler equations of motion, produce a system of equations describing
the motion of the simulated object. The system of equations is maintained
by our general purpose physical simulator, called Newton. The Newton sim-
ulator is responsible for integrating the motion of the simulated objects over
time to produce the animation. As described in the next section, Newton
also automatically updates the system of equations as kinematic relation-
ships in the simulation change (one such change would occur as the biped's
foot touches the ground). Finally, Newton provides an interface to allow the
algorithm to add and remove constraint equations to and from the system
of motion equations.

In the event that the control algorithm underconstrains the motion of
the object, constrained optimization techniques are used to choose a motion
that optimizes some criterion while satisfying the constraints imposed by the
algorithm. Our decision to allow control programs to underconstrain the con-
trolled object - necessitating the use of constrained optimization techniques
- is based on the realization that control algorithms often require many fewer
control variables than there are degrees of freedom in the controlled object.
A robot modeled after the human figure may have as many as two hundred
degrees of freedom [Zel82j, while the control program for such a robot would
only require twenty or thirty degrees of freedom to accomplish its task. In
programming our walking biped we used at most eleven of its sixteen degrees
of freedom at any given instant.
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In summary, the algorithmic approach presented in this paper allows the
algorithm to constrain a small set of intuitive variables. The algorithm is
allowed to underconstrain the motion of the object, in which case a motion
is chosen which optimizes some criterion while obeying the constraints. The
.Newton simulator incorporates the constraint equations into its automat-
ically maintained system of motion equations and integrates over time to
produce realistic animation.

Section 2 outlines the relevant background of the Newton simulation sys-
tem. Section 3 describes in detail the algorithmic approach, while Section 4
looks at some low-level controllers used by the walking algorithm. Following
this, Sections 5 and 6 outline the biped model and the walking algorithm.
and present results from testing the algorithm.

2 Overview of Newton

The walking algorithm described in this paper has been designed and tested
using the Newton simulation system, part of a large research effort in mod-
eling and simulation at Cornell University. The development of Newton was
inspired by the need for more general-purpose, flexible simulation systems.

Extensive mechanical engineering research has led to many developments
in physical system simulation. The ADAMS [Cha851 and DADS [HL87]
systems are examples of large state-of-the-art systems from the mechani-
cal engineering domain. In many ways such systems are very sophisticated:
efficient formulations of mechanism dynamics are supported, fancy numer-
ical techniques for solving equation systems are used, object flexibility and
elasticity are often handled, and so on. Recent work by graphics and ani-
mation researchers [BB88,IC87,MW88,Hah88 in what is termed physically-
based modeling has generally been less sophisticated but has placed greater
emphasis on animation of interesting high-degree-of-freedom mechanisms.

A number of things are still lacking in all of these systems. Typically they
have almost ignored geometric considerations and represented objects simply
as point masses with associated inertias and coordinate systems. Geometric
modeling techniques have matured enough to allow object representations
used by dynamic simulations to include a complete geometric description
usable by a geometry processing module. Furthermore, impact, contact, and
friction are typically handled by current systems in an ad hoc or rudimentary
manner, if at all. In some cases, for instance, any possible impacts must be
specified in advance: in others, a kind of "force field" technique is used, in
which between every pair of objects there is a repelling force that is negligible
except when objects are very close toget.her. In addition, the desire to manip-
ulate high-degree-of-freedom objects suggests that a module for specification
of control algorithms should be a significant part of a dynamics system.
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2.1 Newton Architecture

Using Newton, a designer can define complex three-dimensional physical ob-
jects and mechanisms and can represent object characteristics from a wide
range of domains. An object is made up of a number of "models," each
responsible for organization of object characteristics from a particular do-
main. In most simulations the basic domains of geometry, dynamics, and
controlled behavior are modeled. A dynamic modeling system, for example,
is responsible for maintaining an object's position, velocity, and accelera-
tion, and for automatically formulating the object's dynamics equations of
motion. A geometric modeling system is responsible for information about
an object's shape, distinguished features on the object, and computation
of geometric integral properties such as volume and moments of inertia. It
also detects and analyzes obje"t interpenetrations so that an interference
modeling system can deal with collisions between objects.

Newton is composed of three main components: the definition and repre-
sentation module, the analysis module and the report system. The definition
module analyzes high level language descriptions of Newton entities and orga-
nizes the corresponding data structures. The analysis component implements
the top-level control loop of simulations and coordinates the working of vari-
ous analysis subsystems. The report system handles generation of graphical
feedback to users during simulations as well as recording of relevant infor-
mation for later regeneration of animations.

2.2 Dynamic Analysis in Newton

A comp' "x physical object is modeled as a collection of rigid bodies related
by constraints. Newton-Euler equations of motion are associated with each
individual rigid body.' At the time an object is created the equations are of
the form

dJ + Wx Jw = 0.

where m is the mass, i: is the second time derivative of the position (ie. the
acceleration), J is the 3 x 3 inertia matrix, and w and 61 are the rotational
velocity and acceleration, respectively.

A specification that two objects are to be connected with a spherical
hinge is met by the addition of one vectorial constraint equation and the
addition of some terms to the motion equations of the constrained objects.
For a holonomic constraint such as this one, the second derivative of the
constraint equation can be used along with the modified motion equations

'Newton is capable of using dynamics formulations other than the one outlined here. We
are also working on incorporating non-rigid bodies into the system.
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to solve for object accelerations and reaction forces. Thus, the equations
above become

1 r"1n = Fh=ge

Ji, -r-Wl A Jwl = cl X Fhnge

T 2T2 = - Fhtnge

J2'2V2 X J2 U;2 = C2 X - Fh~n-qe

i;J Wc, x c1 -'W1 x (W1 X CI) = F2 iu J2 X C2 -+W2 X (-J2 X 2)

where c, is the vector from object i's center of mass to the location of the
hinge and Fhnge is the constraint force that keeps the objects together. Note
that the last equation above is the second time derivative of the holonornic
constraint equation r, + ci = r2 -c 2 for spherical joints. Other kinds of
hinges commonly used in Newton include revolute or pin joints, prismatic
joints, springs and dampers, and rolling contacts.

If gravity is present during the simulation the system will automatically
add gravitational force terms to the objects' translational motion equations.
The system keeps track of the constraints responsible for the various terms
in the motion equations. Thus, constraints, and their corresponding motion
equation terms, can be removed at any time without necessitating complete
rederivation of the system of motion equations.

Using this method of dynamics formulation, closed-loop kinematic chains
are handled as simply as open chains. Though the formulation does lead to
a large set of equations, the matrices are very sparse and often symmetric.
Thus, acceptable efficiency is achieved by the use of sparse matrix solution
techniques.

2.3 Event handling, impact and contact

Newton, unlike many other simulation systems (though see !Fea85;), can
automatically and incrementally reformulate the motion equations as excep-
tional events occur during simulations. One kind of exceptional event is a
change in kinematic relationship between objects. Figure 1 shows a block
that was initially sliding along a table top. After some time the edge of
the table is reached and the contact relationship changes from a plane-plane
contact to a plane-edge contact. Still ln.er the contact is broken altogether.
These changing contact relationships are automatically detected by Newton.
The system of motion equations and the related constraint equations are
automatically maintained by Newton to reflect these changing relationships.

During the course of a simulation, a variety of events can occur that
require special processing. Newton's event handler is primarily responsible
for detection and resolution of impacts, for analysis of continuous contacts
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Figure 1: Changing Kinematic Relationships

between objects and corresponding maintenance of temporary hinges, special
kinds of hinges that model one sided constraints between objects in contact,
and for handling of events specified by control programs that necessitate
changes in the constraint set. For example, the walking algorithm might tell
the event handler to notify it when the biped's foot touches the grounc" so
that it can change the constraint equations.

The geometric modeling subsystem is responsible for detecting and an-
alyzing impacts and interpenetrations. In the usual method of handling
impacts, the dynamic analysis module formulates impulse-momentum equa-
tions in a manner completely analagous to the formulation of the basic
dynamics equations, and solves these equations to produce the instanta-
neous velocity changes caused by the impact. The details of Newton's meth-
ods for handling impact, contact and other exceptional events are given in
f HH87,HH88,CS88,Cre89J.

3 The Algorithmic Approach

In Newton's automatically-generated equations of motion certain quantities
are considered to be unknoums. A system of simultaneous linear equations is
solved at each time step to produce values for the unknowns. These values
are integrated over time to produce the simulated motion. Typically, the
unknowns consist of accelerations and joint constraint forces, while positions.
velocities and joint control torques are knowns.

In the algorithmic approach, the programmer controls "intuitive" quanti-
ties defined as linear combinations of the unknowns. The programmer might,
for example, want to control the acceleration of the center of mass of a biped
without .expicitly controlling each component of the biped. To do this, the
algorithm must define the acceleration of the center of mass in terms of the
accelerations of the centers of mass of the primitive components of the ob-



procedure initialize

begin

add-equation " -c - " m r,
end

procedure controller( time

begin

i,, = f( time
end

Figure 2: The Format of an Algorithm

ject. Over the course of execution, the algorithm must supply the desired
acceleration of the center of mass at each point in time.

Figure 2 shows the format of a control algorithm. For the sake of clarity
the algorithms will be described in a Pascal-like notation2 . Two procedures
are always present: one to initialize the algorithm (called initialize) and
one to be executed repeatedly over the course of the task (called controller).
The controller procedure has access to the complete state of the system.
The algorithm of Figure 2 trivially defines and controls the acceleration of
the center of mass of an object (the function f must be defined elsewhere).

Defining and controlling a three-dimensional vectorial quantity like the
acceleration of the center of mass has the effect of adding three constraint
equations to the system of simultaneous linear equations that descr:be the in-
stantaneous motion of the object. By considering joint torques as unknowns
in this augmented system of equations, the system can be solved to produce
motion that satisfies the additional constraint equations. This is a simple
application of inverse dynamics.

For an object with n degrees of freedorn the control algorithm can define
and control up to n independent scalar quantities'. If fewer than n equations
are added the system of motion equations is underdetermined, and many dif-
ferent solutions could satisfy the constraints of the control algorithm. In this
case the algorithm must guide the selection of a solution by providing a
cost function which is quadratic in the unknowns. A standard numerical
optimization technique is used to compute a solution that instantaneously
(for each point in time) minimizes the cost function while obeying the algo-
rithm's constraints. This is different from the approach of Witkin and Kass

2The algorithms are, for now, written in Lisp.
'The additional definitional equations could make the system of motion equations incon-

sistent. This would be an error on the part of the control algorithm.
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jWK88], who optimize over the whole animation. This reflects the different
philosophies of the two systems: Witkin and Kass specify all of the infor-
mation beforehand, while we let the control algorithm make decisions during
the animation. Such "on the fly" decisions make it impossible to do global
optimization, but allow much more versatility in the control algorithm by
not requiring a priori knowledge of impacts and other exceptional events.

In summary, the programmer designs an algorithm in a high-level coi-
puter language to control intuitive degrees of freedom of the object. These
degrees of freedom are defined as linear combinations of the unknowns in
the object's equations of motion. An augmented linear system of equations
describes the instantaneous behavior of the object; this system can be solved
to produce the object's configuration at each point in time. If the system
is underdetermined, the algorithm can provide a cost function to guide the
choice of a solution.

In the remaining sections we describe the application of this approach to
the design of a simple walking algorithm.

4 Low-level Controllers

In designing algorithms with Newton we found ourselves frequently using PD
controllers4 and curve-fitting controllers to control the "trajectory" of many
of the defined quantities. In controlling the biped, for example, a quintic
interpolation was used to plot the trajectory of the heel, and a PD controller
was used to orient the foot before it struck the ground. A small Library of
these controllers is used in the biped algorithm, and will be described here.

PD controllers are used in the biped algorithm to control orientation,
position and joint angle. Each controller adds an equation to the system
of motion equations which defines the second derivative of the quantity in
terms of the first derivative and the quantity itself. The procedure in Fig-
ure 3 produces accelerations to move an object to within 1% of a position
x-desired within a given time delta-time. The quantities x, v and a are
data structures representing state variables of the controlled object. These
data structures are used by the add-named-equation function to create the
appropriate equation.

Execution of the procedure in Figure 3 causes a named equation to be
4A PD controller (Proportional, Derivative), also known as a "spring and damper" con-

troller, relates the second derivative of a variable linearly to the error in the variable's first
derivative and to the error in the variable itself. The equation is i- i + L(z - Zdesmrcd) = 0
for some appropriate r. PD controllers are used extensively in robotics to move robot joints
into specified positions by calculating the joint acceleration as a function of the position and
velocity errors. A good explanation can by found in [Cra86. Barxel and Barr BB881 use a
form of PD controller to achieve their dynamic constraints.
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procedure position-vith-PD( constraint-name, object,

x-desired, delta-time

var z, v, a: quantity
r: real

begin
z = get-position-quantity( object )
v = get-velocity-quantity( object )
a = get-acceleration-quantity( object

r = - delta-time / log( .01 )

add-named-equation( constraint-name,

a + v . -(z -x-desired)=0 " )
end

Figure 3: PD Controller Used in Positioning

added to the system of motion equations. This equation will continue to
affect the motion of the object until it is expLicitly removed by the control
algorithm.

A complete fist of controllers available to the bioed walking algorithm
is shown in Figure 7 at the end of the paper. Those with quintic in their
name do quintic interpolation to achieve the desired position and velocity in
the desired time. Quintic interpolation was chosen over cubic interpolation
to eliminate "jerk" (discontinuous acceleration) from the beginning and end
of the trajectory.

5 The Biped Mode'

The simulated biped is composd of a torso, two legs with knee joints and two
feet with toe joints. This modea.was adapted from a description in [McM84]
and is shown in Figure 4. The hips and ankles are three degree of freedom
spherical joints, while the knees and toes are one degree of freedom revolute
joints, making a total of sixteen degrees of freedom. The biped is about six
feet tall with moments approximating those of a human being.

We hope to improve this model by incorporating joint limits and elas-
tic tendons. McMahon suggests that, during walking, energy is stored in
stretched tendons and is released when the stretched leg swings forward

iMcM84I. This idea might be used to simplify the walking algorithm de-
scribed in the next section.

Newton's impact handling capabilities have not yet been extended to
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Time 9.7

Figure 4: Simulated Biped Model

accurately model the impact of the feet upon the ground. Instead, impact is
simulated by adding an external force and torque to the feet that holds them
level with the ground until they are released with an explicit command from
the control algorithm. This is as though the biped was walking with magnetic
shoes on a steel plate. Very shortly we expect to adapt the algorithm to
incorporate realistic impact.

6 The Walking Algorithm

An abbreviated version of the walking algorithm is shown in Figures 8 and
9, which can be found at the end of this paper. The algorithm cycles
through a set of six states: swing the right leg, land the right foot, lift
the left foot, swing the left leg, land the left foot, lift the right foot and
then repeat the cycle. In the swing phase, a quintic trajectory is plot-
ted for the swing foot with move-heel-to-target, while the stance leg is
stiffened with set-angle-with-PD and the foot is oriented for landing with
orient-with-PD (shown under START in Figure 9). In the landing phase,
the leading leg is stiffened as the foot nears the ground. Following this, the
takeoff phase flexes the trailing leg, causing the trailing foot to lift from the
ground. Once the trailing toe is bent to 10° the flexing constraint is removed
and the swing phase begins for the trailing leg.

The largest number of constraints are applied during the swing phase, as
shown in Table 1. Since the biped has sixteen degrees of freedom (DOF) it
remains underconstrained at all times. A quadratic cost function is therefore
defined (in initialize of Figure 9) in order to fully determines the motion
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Constraint Name DOF Constrained Item
TORSO-CONSTRAINT 3 torso orientation in 3 dim
L-KNEE-ANGLE 1 angle of revolute knee joint
R-IIEEL-TRAJ 3 heel acceleration in 3 dim
R-FOOT-ORIENTATION 3 foot orientation in 3 dim
R-TOE-ANGLE I a..gle of revolute toe joint

Table 1: Swing Phase Constraints

.u -P I 7. r-, I.. Or

Figure 5: Walking Cycle

of the biped. The cost function is a weighted sum of the translational and
angular accelerations, and of the difference between the torso translational
acceleration and some acceleration defined by a function F which tries to

keep the torso mid-way between the two feet.
We found that a cost function which minimizes instantaneous transla-

tional and rotational acceleration usually produces smooth motion. In the

case of the simulated biped, the cost function causes the constrained heel
acceleration to be achieved by a linear combination of small accelerations of

many components of the body, rather than a few large accelerations of those
components which are near the heel. We have observed that the combina-
tion of many small accelerations yields more stable motion than large, local
accelerations.

The walking algorithm was tested with the Newton simulation system.

Figure 5 shows ten frames in which the biped completes a full cycle of the
six phases described above. The full simulation consisted of twenty seconds

of straight-line walking on a flat surface and generated the statistics shown
in Figure 6. The version of the algorithm that produced these statistics had
the biped increase speed at 4.0 seconds, as can be seen on the graphs.
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7 Summary

We have presented an algorithmic approach to control. This approach allows
the animator to choose intuitive degrees of freedom by which to control an
object. The control algorithm adds and removes constraint equationb "on
the fly" as the world state changes; a priori knowledge of the exact mo-
ment of each state change is not required. With the algorithmic approach,
al consideration of dynamics and impact is left to the Newton simulation
system. The burden on the animator is further reduced by allowing underde-
termined specification of motion through the use of constrained optimization
techniques.

We have presented an algorithm to control a simulated biped, along with
results from its execution on the Newton simulation system. The algorithm
has the advantage of being intuitive, simple to program, and reusable.

Unlike keyframing, the algorithmic approach does not require the aninia-
tor to repeat the work of creating new key frames for every walking sequence.
Unlike keyframing, the algorithmic approach allows various algorithms to be
combined to produce long animated sequences. We believe that in the future,
animating complex physical objects will require a structured, algorithmic ap-
proach similar to that presented in this paper.

8 Future Work

We will incorporate elastic tendons and joint friction into the Newton simu-
lation system and modify the walking algorithm accordingly. From there we
hope to develop a suite of algorithms to allow a biped to walk, turn, climb
stairs, manipulate objects, and so on. In keeping with the structured ap-
proach presented in this paper we will attempt to combine these algorithms
to have the biped perform complicated tasks. In carrying an object up a

flight of stairs the high-level algorithm would combine subroutines to pick
up the object, walk to the stairs, climb the stairs and deposit the object.
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posit ion-with-PO coast ra nt -name, object, xcd,~
position-point-oith-D cons traint -namge, ob;.ct, poiut-on- object, xj, ALt
orient-with-MD cons~raint-azo. object, 1*d. at)
sot-angle-Vith-pD constraiant-neae, joint, 9,4, at)

posit ion-vith-quintic ( constraint -name, object, zd, vd. At
position-pointe-ith-qu2.nvc( constrakint-natm.. object, poult-on-object, ztj, vd, At)
orient-vith-quineic( coastrtint -name, object, 4, +j, At)
set-angle-uith-quintxc( constraint -name, joint, 68j. id, It

Figure 7: Low-level Controllers

cosc timo-im-air =0.5s
stride 0.5S
direction (1U 0 0)
inside-step-fraction = 20 %
hee-Y-strike-spe4 = -0.05 U/a
heel-1-strite-speed =0.02 m/s
foot-strike-or2..ntation =100 about (0 0 1)
torso-orientation =-10* about (0 0 1)

"r phase: itart r-swig r-land 1-lift 1-takeoff I-svizg I-land r-ift r-tkooff

procedure move-hee-to-target( constraint -nme, foot, other-foot, hip, other-hip

var target-i, target-v, hip-to-hip: vector

begin
hip-to-hip = get-position( TORSO, hip )-ge:-position( TORSO, other-hip

target-x - get-posizion( other-foot, 1ELM ) + stride x direction
+ inside-step-fraction x hip-to-hip

target-v - heei-V-strikw speed x (0 t 0) + hpX-i.s)e x dzrfctjoo0

posit ionpons -ithqunzic (coast raisn n, foot, Ir- vaxrvev-x. zarget-v. time-in-ear )
end

Figure 8: Definitions for the Walking Algorithm
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procedure ii~ttialz.

lot F = K (II + f * ~-oot)-

begin
quadratic-cost L) V 4- 20 (Ftao, - F)'
phase =START
end

procedure controller( time

begin
case phase of

START:
phase = -S WING
orient-vith-MO TOftS3-C.IYSTftAINT. TRoSO. torso-orientation, 2.0 s
move -heel-to-target ( ft-SEVt-TRAJ, ft-HEEL. L-HEEL, ft-HIP. L-HIP

set-anglo-with-MD L-INEE-AIGLE, L'193EE, 1750, 0.1 s
ortent-ixth-PD Rt-FOOT- OR I ENTTIOE, it-Fsar, foot-strike-orientation, time-in-air
sot-anglo-with-MD R-TOE-AXGLE, ft-TOE-JOUT, 00, time-in-air

It-SWING:
if distance-to-target( ft-FOOT ) < 0.01 a then

phase =K-LANDING
reooe-constraint( ft-EEL-TRAJ)
s~t-angle-uith-PD( ft-KIEE-ANGLE, ft-KNEE, 175, 0.05 s

K-LANDING:
if heel -has-touched( ft-FOOT ) then

phase = L-TAKzory
remov-constraints( ft-FOOT-OZIENTLTION. * -TOE-ANGLE * L-KNEE-ANGLE
set-azigle-with-PD L-KNEE-ANGLE, L-KNEE, 160. 0.1 s

L-TAKECOFF:
if jent-angl*( L-TOE-JOIRT ) > 100 then

phase = L-SWING
renave-constrains( L-KNEE-ANGLE)
aove-heelto-arget( L-IEEL-TI.AJ, L-NIL, I-EM, L-IdIP, &t-HIP
orient-.th-PD( L-FOOT-OXIKNTATION. L-FOOT, foo% -srike-orilent at ion, time-in-air
Set -angle-with-PO L-TOKC-ANGLE. bL-TO-JOIIT, 180O, tine-in-air

Cases L-SWING, L-LANDING. and K-TAKSOFF
ae an msos to the prcuing three caes.

andI --nd

Figure 9: A1bbreviated Walking Algorithm
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