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CLESIM: A SIMULATION MODEL OF THE CONVENTIONAL
LINK-I ROLL-CALL NETWORK

1. INTRODUCTION

This memorandum describes a simulation model used to evaluate the current Link-Il
(CLE) tactical data network. The baseline description of the Link- II networking protocols
used in this model was obtained from reference (a), and is summarized in section 2 of this
memorandum. The reader should already be familiar with the Link- 1 system, its networking
protocols, and its waveform. The original purpose of the model was to provide the capability
to compare the performance of the Link-11 network when the network is operating with
different modems. The model can accommodate both the currently used parallel tone modems
and the new single tone modems proposed for Interim Improved Link- II (reference (b)). The
performance measures calculated in this model are the net cycle time, die percent channel
utilization, the injected traffic rate and the normalized effective throughput.

A closed-form probabilistic model of the Link 11 Roll-Call protocol has been described
in reference (c) . This model is appropriate for analysis of the Link 11 protocol when the same
channel connects all network members, i.e., when the waveform performance is identical for
all links in the network. The probabilistic model can be used to determine the average CLE
network performance. Analysis of transient behavior, analysis for networks with different link
performance, and analysis of second-order effects that occur when the protocol breaks down
can be performed using the simulation model described here.

2. CURRENT LINK-11 NETWORKING PROTOCOL (ROLL CALL)

A representative Link-Il Net is shown in Figure 1.The channel access protocol used in
CLE is based on a centralized network control architecture. One node of the network,
designated as the Data Net Control Station (DNCS), controls the channel access of all other
nodes in the network. All the other nodes are called picket stations, or Participating Units
(PUs), and can only transmit information into the channel when prompted to do so by the
DNCS. A summary of the automatic interrogation of the pickets as described in reference (a) is
summarized here.

The DNCS polls each picket station of the network in the order established by an
address generator or by the TDS computer. The interrogation of the DNCS is composed of a
preamble, a phase reference, and a picket address. The picket station whose address was
polled then transmits the following picket reply message:

a) Preamble and phase reference (i.e., the synchronization preamble)
b) Start-of-Message code
c) Any number of TDS message frames
d) Picket stop (i.e., end-of-message) code

If a DNCS does not recognize a valid reply from a picket (i.e. if it does not recognize a
start code) within 15 frames after interrogation, the DNCS sends another interrogation to the
same picket.

Manuscript approved June 14. 1991.



Plowe Unit

Figure 1. Representative Link-i11 Network
(after MIL- STD- 188-203-lA)

If the DNCS does not recognize a valid reply to the second interrogation within 15
frames, it shall interrogate the next picket.

If the DNCS receives a start code after either the fir'st or second interrogation of a picketstation, the DNCS will not interrogate the next picket until either of the following occurs:
a) A picket stop code is recognized
b) Loss of signal presence is determined

When the DNCS determines that it is its turn to transmit TDS data, the DNCS transmits
a frame structure consisting of a preamble, a phase reference, a start code, any number of TDSmessage frames, a stop code, and the address code of the next picket to be interrogated.

The current Link-il waveform is pictured in Figure 2. It consists of five parts. These
parts are divided into frames, which are 13.3 ms long and consist of 30 bits of data (24
information bits and 6 parity bits). The preamble is 5 frames and is composed of two tones, an
unmodulated 605 Hz tone for a Doppler tone and a 2915 Hz bi-phase modulated
synchronization tone. The phase reference frame is composed of a 16 tone composite signal.
The start of message code consists of 2 frames of known data. For the purposes of this study,
an average data message was considered to be 48 information bits, or two frames. The end-of-
message code is 2 frames of known data.

The maximum information transmission rate of the network is 1800 bits-per-second
(bps); as a practical matter, the maximum throughput for nets with perfect waveform operation
is more on the order of 1000-1300 bps, because of the interactions between the roll-call
protocol performance, the number of nodes in the net, and the number of tracks reported by

each node.
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Current Link-ll Waveform

Modulation = 4 - DPSK

Transmission from one picket

Preamble R ISOM Da Dama Data EOM

! I

TDS Data Messages
Preamble - 5 frames of known data
R - Reference; 1 frame
SOM -Stan of Message; 2 frames (60 Bits)
Data - 2 frames (60 Bits); 48 information bits
EOM - End of Message; 2 frames (60 Bits)

Frequency Format

Preamble
Doppler

Relative Sync

Power

605 2915

Data

Doppler 1 l z

605 935 2365 2915
I I

Data

Figure 2. Link- 1I Waveform Specification (Audio Baseband)
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3 SIMULATION PROGRAM OVERVIEW

The program design language for the simulation is C. This version of the program hasbeen run and tested on an Apple Macintosh 11 using Lightspeed rm C. While not tested in otherenvironments, every attempt has been made to use routines and #include files commonly foundin the standard UNIX programming environment; at present, all program 1/0 is supported
using the UNIX command-line interface, stdin, stdout, and stderr.

CLE performance is computed using an event-driven simulation of a Finite-StateMachine (FSM), representing the sequence of states that occur in the Link-I I Data Net Control
Station (DNCS). For each node k, the DNCS can be performing one of the following
processes:

- sending and waiting for a response to the first interrogation of node k
- sending and waiting for a response to the second interrogation of node k
- processing the reply from node k

A model of the DNCS FSM is shown in Figure 3. Transition probabilities in thesimulation model are determined by the link and waveform characteristics defined for the
scenario being simulated Using the transition probabilities and a random number generator,the simulation determines which of the three paths will be taken to complete the roll-call
interrogation of a given PU. Statistics are computed as a function of the state transitions and
reported at the conclusion of the simulation run.

Path 1 Path 2 Path 3

Stage k

1R

Figure 3. Finite State Machine (FSM) Representation of the
Current Link-Il Roll-Call protocol.
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3. 1. Representation of States

States are stored and accessed in a typed data structure, represented (using C as the
design language) as follows:

typedef struct
I
long int ncf;
int type , pu, collision,tdsmsgs_sent,

missed_eom,missedreply;
double collis_.end;

) state;

The <state.type> can be one of the three defined constants: intero 1, intero 2, and
reply, representing, respectively, the first interrogation state, the second interFogation state, and
the reply processing state. The state.pu can be any integer from I to number_pus, where
number_pu s <= the defined constant max num-pu. The states will at times be denoted
(I1,k), (12,k , and (R,k), respectively. So far, this is identical to the probabilistic model in
reference (c), and we have simulated the roll-call protocol performance without collision effects
as a cross-check on the accuracy and performance of both models, confirming each model.
The additional fields in the data structure are used to denote special events that may have
occurred during the state, such as a missed-reply, a collision between an interrogation and
reply, the number of messages sent by the tactical data system, and whether the exit from the
reply state occurred because of an EOM detection or a missed EOM.

The FSM maintains two state variables, current-state and nextstate; it uses a
procedure get next state() to compute the next_state from the current_state. This procedure
uses the input arrays that define the probabilities of preamble synchronization, start-of-
message detection, and end-of-message detection; these probabilities define the state-transitions
in the absence of missed-reply or collision effects, and are used to cross-check the performance
of the probabilistic and simulation models. When collision-detection is turned on in the
simulation, however, get next stateO uses the auxiliary state variables (i.e., missed-reply,
collision, et. al.) as well as the primary state variable to determine the next state.

3.2. Computation of State Transition Probabilities

The state transition probabilities are computed using waveform performance data for
each link that is provided as an input specification of the scenario. These probabilities are
computed by the procedure compute transition probabilitesO using the waveform performance
parameters stored in the two-dimensional arrays prob syncti][j], prob_som_detect[i][j],
probeomderect[i][j], and probadddetectfi]fj]. These arrays correspond, respectively, to
the waveform probability of synchronization, probability of detection1 for the start-of-message
code and end-of-message code, and the probability of address detection, for the link from node
i to node j.

State transition probabilities are stored in the array state trans.prob[k][l][j]; the size of
this array is 3 x 3 x max numpu , and the k,lj entry is the probability of transition from
state.type k to state.type 1 for node j. Transition probabilities are computed according to the
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following rules, which assume independence between stages, no memory (this is a markov

process !), and no collisions between transmissions [i] :

• transition probability from [intero_lpu_D] to [reply,pu 3D]

trans prob[intero I [reply][puID] = probsync[dncsID[pu_ID] *
prob_add detect[dncsID] IpulD] *
probsync [puID] [dncs_ID] *
prob somdetect[puID] [dncsID];

* transition probability from [intero_2,puID] to [reply,pu 3D]

trans prob[intero_-2][reply[puID] = trans_.prob[intero_ 1] [reply] [puID];

• transition probability from [interoj,pu_ID to [intero_2,pulDJ

transprob[interojl][intero_2][puID] = 1 - trans-prob[intero- 1 I[reply] [puID];

" transition probability from [intero-2,pu-3D] to Jintero_l,(pu_ID+l)mod N]

trans-prob[intero_2][intero l][pu ID) = 1 - probsync[dncsIDI[pu ID) *
probadd detect[dncsID] [puID] *
prob sync[puID][dncsID] *
probsomdetect[puID][dncsIDl;
= 1- transprob[intero 1] [reply][puID];

" transition probability from [replypuID] to [interoj,(pu_ID+)mod NJ

transprob[reply][interol] [pu_ID] = probeom detect[pu_ID][dncs_ID] +
some other stuff that depends on the performance
of the signal-loss detection circuit;
= 1; (i.e., we assume a perfect exit from the reply
processing state to the interrogation of the next !);

NOTE: ALL OTHER TRANSITION PROBABILITIES IN THE MODEL ARE ZERO.

3.3. Analysis and Statistics Collection

The general program flow in the CLE simulation is as follows:
initializeo;
get.program controlinputo;
get-analysis inputparameterso;
doanalysis(;
do__esultsO;

1 When collisions between transmissions are modelled, transient modifications to the state are generated and
stored in the auxiliary fields of the state variables ; no permanent changes in the state-transition probabilites
are computed for collision events.
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Do analysisO is the key top-level procedure. Basically, do_analysisO is a counting
process aimed at determining the total number of preamble frames, phase-reference frames,
start and stop codes, and message frames sent during the net cycle; the counting loop also
tracks the total time that the channel is idle for any reason, whether for propagation delays or
time waiting for a reply to the interrogation. From these calculations, the procedure computes
the total time spent in traversing the state space. The net cycle time is defined as the time it
takes between successive entries into state (I1,1). The procedure keeps a running estimate of
the mean and variance of the network cycle time, as well as estimates of the channel utilization
for each contributor to channel usage, and the injected traffic rate. The counter processing is
modified when collision detection is turned on, to track the traffic injected by missed replies,
and to monitor channel occupancy. The analysis sequence is as follows:

compute transition-probabilitieso;
current~state = init-stateo;
next-state = init stateo;
while (not done)

{
next-state = get next stateo; /* some of the calculations *

/* may depend on the next state */
counttransmissions(; /** do all the bookkeeping *****/
count-syncssento;
countaddressessent(;
countsom-sentO;
count_eomsento;
count mi sentO;
count msgsscoUidedo;
counttds msgssento;
count-tds-msgs rcvdo;
countinterrogations(;
count_successfulinterrogationso;
count_collisionsO;
count idle-timeO;
advance clocko;
updatesceno;

Results are produced as message-trace listings, and tabular text summaries of statistical
performance. Of the various forms of output that can be selected using command-line
arguments, only the message trace and tabular outputs are fully functional; none of the alternate
graphic output forms for whi2.i- command-line selectors have been defined are functional at
present.

A synopsis of the key procedures in the simulation follows.
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3.3.1. Determination of the Next State in the Roll-Call Protocol

The procedure get next stateO determines the next state in the roll-call protocol, based
on the current state and the state-transition probabilities. The routine draws a number from a
uniform distribution over the interval [0,1], compares it to thresholds defined by die array
statetrans.prob[][][], and uses the comparison to determine the next state. If the transition is
from reply to intero 1,then the function sets thenextstate.pu = (currentstate.pu + 1) modulo
the number of nodes in the net; it also skips the states where the DNCS would be interrogating
itself. Note that the interrogation sequence is fixed in this model: nodes are interrogated in
numerical order by PU number. and the DNCS is always the first node. node 0. in the list.

If collision detection is turned off, the state variables are set by one of the procedures
called by getnextstateO : normal interol(), normal intero2(), normalreplystateo, or
interol_missedeomO.

If collision detection is turned on in the model, then the state variables may be set
additionally by the procedures intl w col() or int2_wcol(), depending on the current state
and any of the auxiliary state variables <state.missed_reply, state.collis end>. These
additional procedures generate transient modifications of the auxiliary variables state.collision,
state.missed eom, or state.missed reply. These variables will modify the state sequence and
the statistics collection until the collision event terminates. After the collision event, state
transitions are defined as above. A detailed analysis of collision events is presented below.

3.3.2. Analysis of Collision Effects in the Roll-Call Protocol.

The probabilistic model of the Link- 11 Roll-Call protocol described in reference c) has
several advantages. It is a closed-form model that provides results readily for a variety of
network performance parameters, Also, it incorporates several key waveform performance
parameters that permit study of modem tradeoffs and their effects on network performance.
The probabilistic model, which is the basis for the default operating mode in this simulation,
has some assumptions and limitations that merit examination and discussion. All of these
assumptions and limitations are based inherently on the underlying model of the roll-call
protocol as a process in which the probability of state transitions depends solely on the current
state, i.e., we have assumed that the roll-call pro.ocol is a Markov process.

The first of the assumptions is that stages in our model are independent. The path (and
performance metric) for one stage does not affect the path/performance of succeeding stages.
The roll-call protocol has no memory of the path taken to reach a given state and, other than
knowledge of whether it is performing the first or second interrogation of a picket unit, has no
memory of past success or failure in its interrogations. This means that the protocol does not,
for instance, modify the polling cycle based on the interrogation success rate of each picket
unit. Under the current Link 11 specification, such modification could be performed by the
tactical data system (TDS) using some unspecified method, with the Link II data terminal set
accepting its picket address for each interrogation from the TDS. Our model is invalid for such
a possible mode of operation.

The second assumption is that there are no false alarms in the system, e.g., a picket unit
will not declare an address detection erroneously and proceed to transmit a reply. A false-
synchronization and reply is considered to be an extremely unlikely event, and is excluded
from our model. Of more concern is the possibility of false alarm for end-of-message
detection, or, actually, premature declaration of end-of-message. A premature end-of-message
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declaration would result in lost TDS messages in the reply; if the DNCS were the unit that
prematurely declared end-of-message, it would send an interrogation to the next picket unit in
the poll with the possibility of a collision with the reply. We have assumed that the probability
of false declaration of end-of-message is zero.

The most critical assumption that has been made is that there are no simultaneous
transmissions on the channel that would result in a collision. However, collisions can occur in
the Link-Il roll-call protocol when a PU responds to an interrogation, but t'-e DNCS fails to
detect the reply start code (including the preamble and phase reference). In this case, the
DNCS will wait for the missed-reply timeout period, and transmit another interrogation.

Collisions will change the transition probabilities in an actual roll-call system. For
example, if a missed-reply is of even moderate length (typically, greater than two M-series
messages) it will still be in transmission when the DNCS protocol controller sends its
interrogation. The probability of this interrogation failing is less dependent on waveform
parameters than it is on the fact that it is colliding with a reply. In a high signal-to-noise
channel, the probability of interrogation failure after a collision is effectively one, conditioned
on the failure of the preceding interrogation. If the reply is of moderate length (typically, 15
M-series messages) then the first interrogation that collides will be followed by a second
interrogation that will also collide with the reply, etc. Clearly, the independence and no-
memory assumptions are valid only if the probability of collisions is very small, ideally zero.

Unfortunately, the probability of a collision is not zero, or even very small. It is a
function of the same waveform performance parameters that have been included in the
probabilistic model. Calculation of the collision probability is straightforward, and equals :

Pcollision[k] = Psync[d] [k]*Paddtld]Iik) -
Psync[d][k]*Padd[d][k]*Psync[k][d]*Psom[k][d]

The relationships between the probabilities of missed-interrogation, successful interrogation,

and collision are illustrated in Figure 4.

Prob collision)

Prob (reply received) Prob ( missed interrogation)

0 

Psync Padd Psync Psom Psync Padd

Figure 4 - Relationships between waveform performance parameters
and the probabilities of missed-interrogation, successful

interrogation, and collision

The dependence of the probability of collision on the synchronization and address-
detection performance of the waveform is illustrated in Figures 5 and 6. For perfect address-
detection and SOM-detection, and a symetric channel between the DNCS and the PU, the
probability of collision is at most 0.25, occurring when the probability of synchronization is
one-half; as the probability of SOM-detection degrades, the probability of collision can
increase, however.
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In the simulation, whenever collision detection is selected as a command-line option,
these relationships are used by the procedure get next stateO to determine if the reply was
missed and, on that basis, to modify the polling sequence.

The polling sequence is modified for the duration of the collision. The procedure
end of collision_timeO accepts as its input the number of tds messages sent in the reply
involved in the collision, and computes the time at which the collision ends, i.e., it computes
the time at which the reply will cease transmission. Based on the reply end-of-transmission,
the type of collision is determined. The following analysis is the general form for determining
the collision type and its effects; at present, collisions are computed only at the DNCS and the
PU being interrogated. Since the propagation delays are generally much less than the durations
of replies, interrogations, and timeouts, this is considered a reasonable approximation to the
collisions that would occur at any PU. The simulation will require some modification to
calculate collisions exactly and independently at each PU, however. For either case, the
analysis of the collision type is based on the following.

The simulation distinguishes between three types of collisions: fatal, interior, and tail-
end. A fatal collision is one in which all data in the reply is lost, and occurs because the
erroneous interrogation corrupts the modem and/or crypto synchronization preamble so that
demodulating and decrypting the tactical data system (TDS) messages is impossible. An
interior collision occurs when the erroneous interrogation is received after a node has
synchronized to the reply and started to decrypt TDS messages, and the interrogation ceases
before the reply end-of-message (EOM) code. A tail-end collision occurs when the erroneous
interrogation collides with some TDS messages and the EOM.

To simplify the analysis somewhat, a fatal collision occurs if the erroneous
interrogation overlaps any portion of the reply preamble, phase reference, start of message, or
the crypto preamble that is the first portion of the TDS message. In general, there may be some
receiver capture mechanism or sufficient difference in signal strengths that might allow another
PU to receive the reply, but complete loss of data cannot occur because of a collision event if
these conditions are not met. We do not consider situations in which a fatal collision occurs
and a PU is still able to correctly decode and decrypt the reply message. The timeline for a fatal
collision is shown in Figure 7. For this figure and those which follow, we use the following
notation:

d = the data net control station ID;
k = node k in the network;
j = node j in the network;
Tprop (dj) = the propagation delay from the DNCS to node j;
Tresponse = PU response time from address recognition to

transmission of reply ;
Tsync = duration of preamble and phase reference symbols;
Tadd = duration of address code;
Tsom = duration of the start-of-message code;
Ttimeout = missed-reply timeout duration at DNCS;
TM = duration of the crypto synchronization preamble;
Ttds = duration of a tactical data message

11



Fatal Collision between Interrogation 2 ,and Reply Preamble, SOM, and TDS M:
interrogation is lost, all TDS data is lost

rop (dncs,k) F*prop (dIcsk+1)
- I - I __ i -- , (c.k

Interro2 - PU #k IInterrol1 - PU #(k+l) I I
!Tr beJPRef L dd - ., Ij Preambl ej PRef IAdd./ , ,- -. _- -.

DNCS
I I\I\ I

- Preamblej P Ref I SOMkI TDS Message~ EOM
PU #k

T rekrise e, ~I~r -1lb -. i- t I \\

- I on Message EOM I
PU #(k+1) I

I -.-- Tprop(k~k+l)
t=O

Figure 7 - Timelines for Link-Il collision event: fatal collision
between missed PU reply and DNCS interrogation

Two boundary conditions must be satisfied for a fatal collision to occur at a given node.
The first is that the interrogation preamble must arrive before the end of the crypto-
synchronization preamble. The second is that the interrogation address code must arrive after
the start of the reply preamble. Our assumption is that when these two conditions are satisfied,
correct demodulation of the crypto synchronization preamble is impossible; without the crypto-
synchronization preamble, decryption of the TDS messages in the reply is impossible and
therefore all the TDS data is received in error.

An interior collision occurs when the reply crypto-synchronization preamble is correctly
received, but the erroneous interrogation introduces errors into the TDS messages that
comprise the body of the reply message. Our assumption is that only the TDS messages
overlapped by the erroneous interrogation are received in error, and that this number will
always be the same for all interior collisions since the interrogation length is always the same.
An interior collision is illustrated in Figure 8.

The two boundary conditions that must be satisfied for an interior collision are that the
interrogation preamble must be arrive after the end of the reply crypto-synchronization
preamble, and that the interrogation address code must arrive before the reply EOM code.

12



The number of messages K lost because of the collision is the number of messages
overlapped by an interrogation:

K = (Tsync + Tadd) where [xl is the smallest integer greater than x.F 'Ttds |

A tail-end collision occurs when the interrogation preamble overlaps the reply EOM
code. Our assumption here is that the number of TDS messages received in error is a function
of the time-of-arrival of the interrogation preamble relative to the EOM. A tail-end collision is
illustrated in Figure 9. The boundary conditions for this event are that the interrogation
preamble arrives before the end of the reply and the interrogation address arrives after the EOM
code.

The number of messages lost in a tail-end collision are the number of messages
overlapped by the interval starting with the interrogation preamble and ending with the reply
end-of-message. This number is

Interior Collision between Interrogation 2 ,and Reply Preamble, SOM, and TDS MI:
interrogation is lost, someTDS data is lost (equal to length of interrogation)

(,.k) I I(dncsk+)

lnteno 2 -PU At .teroI - Pu #(k+1)

A reagblPRef Ad. i o
DNCS Pi\

TI\I 
I

--- L - J - Preamb PRef I SOM colo- ego n I E°M
PU #(k+ 1) I

I -. Bp L._ Tp,op(,J,+l)

Figure 8 - Timelines for Link- 11 collision event: interior collision
between missed PU reply and DNCS interrogation
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K = [ (Toverlap) where F x is the smallest integer greater than x;=F Tds I|'

Toverlap is the portion of the reply starting at the arrival of the interrogation preamble
and ending at the start of the EOM-code.

The collision analysis is summarized in Figure 10 and in Table 1. The type of collision
is determined by comparing a parameter that depends solely on the roll-call protocol design and
differential propagation delays for the collision scenario; the decision regions are defined solely
by message parameters. Figure 10 illustrates the boundary conditions and collision region for
each type. The number of messages lost in the collision depends on the type of collision, and
is likewise dependent on the message parameters, protocol-design, and differential propagation
delays.

Tailend Collision between Interrogation 2 ,and Reply Preamble, SOM, and TDS MI
interrogation is lost, some TDS data and Reply EOM is lost

~T timeout

Tp -( tdncs,k) I I Tprop (dncs.k+1)

DNCS -. n r-i
In=rro2= PU Nk Interro- 1 = PU *(k+ 1) I

I _damb PRefIAdd.-, --------- bPRefAdd.

I\ I I ' N *'T \ ' sl

PU #k -- - I Preambl4 PRef SOl TDS Message EOM

Tresponse I

PU #(k+l) I Preambl PRef Sou I TDS Meion regon

t=o

Figure 9 - Timelines for Link-i1 collision event: tail-end collision
between missed PU reply and DNCS interrogation
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(alon MetriT - po ) +( TwP, (dj) - (To (d,k) + T P. (kj) ))

Decision Reions:

" (Tl.y.+T) (T n+T., + TMI ) (T.,+ TM 4 N(T - Tt) (Twn + T.+T-TM + N(j)T w, +T.,)

I I I I I

Coliions j Collsions I collisions

Figure 10: Decision regions for collision-type determination

Collision Type Number of Messages Lost

Fatal N(j) ; where N(j) is the number of messages
transmitted by node j

Interior K (Tsync + Tadd)]
=F Ttds

Tail-End K (Toverlap) 2)

=F Ttds I

Note 1:, where rxl is the smallest integer greater than x;

Note 2: Toverlap = (Tsync + Tsom + TMI + N(j)Ttds) -
(Ttimeout - Tresponse )+ (Tprop (dj) - (Tprop (d,k) + Tprop (kj)))

Table 1: Message-loss computation versus collision type

With the preceding as a theoretical basis, the procedure count msgs collidedO uses
these relationships to determine the number of messages lost to collisions during the roll-call
protocol. The type of collision is computed by the procedure collision rype(, and stored in the
auxiliary field <state.collision>, as one of the defined constants <fatal, interior, tailend, none>.
The other counting routines in the program (e.g., count-syncssentO, countsomsentO, etc)
account for the additional message components that are transmitted during collision events.
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3.3.3. Raw Statistics Collection

Raw statistics in the model are collected in several variables. One set is used for
computing statistics for each net cycle, another set is used for computing cumulative statististics
over the entire simulation run. The net-cycle raw statistics are the following:

int preambles sent;
mt phase refssent;

int somsent;
int eom sent;
sit addFesses sent,
int mi sent;
int dncsmgssent;
int tdsnsg s_sent;
mt msgscollided;
long int tds msgsrcvd;
int replies sent;
irt numinterrogations;
int successfulinterrogations;
int numcollisions;
int numlost msgs;

A slightly different set of raw statistics are accumulated over the entire simulation run:
long int number of transmissions ;
long int tot interrogations;
long int tot successfulinterrogations;
long int tot-collisions;
long int tot-lostmsgs;
double totalfpreambleduration;
double totalphase ref duration;
double total startstopduration;
double total address duration;
double tota-dead time ;
double total-data-duration;

3 3.4. Computation of Interrogation Success Rate, Traffic Injection Rate, and NCF
Duration

These routines compute the summary performance statistics for traffic injection rates,
interrogation success rate, and net cycle duration:

compute avgsuccessrateO
compute var_.successrateO
computeavg inject rate
compute var inject rate()

computeavgrncf durationO
compute var ncf durationO

Statistical summaries are computed using cumulative values and mean-square values
accumulated during the simulation run. These routines are straightforward computations using
the raw statistics collected during the simulation run.
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3.3.5. Computation of Channel Utilization Statistics

The following routines are used to collect channel-utilization statistics for each net
cycle:

compute_ncf _dhama_eq_gb_preutil()
compute_ncf _dhamaeqdbhdrutil()
compute_nqcf dhama__eq_net mngmnt util()
compute_ncf _dhama_eq inject_util()

These routines are straightforward, and compute channel utilization factors that may be
compared to those generated by the Link-Il Improvement Simulation Model (LEISIM), written
by the Rockwell-Marconi Joint-Venture Team. LEISIM generates channel utilization statistics
for the Dynamic Handoff Assigned Multiple Access (DRAMA) protocol (reference (b)). For
comparison purposes between the performance parameters for this model and for LEISIM, the
following definitions are applied:

Sncf dhama eq gb_pre util is the channel utilization in the roll-call protocol incurred
by the preamble, phase references, and the times when the channel is idle; the
statistic is generated for each net cycle frame by taking the ratio of the sum of the
duration of all preamble and phase references sent, plus the channel idle time, to
the duration of the net cycle frame.

* ncf dhama eqdbhdrutil is the channel utilization in the roll-call protocol incurred by
the start code and the stop code; these codes are considered the closest analog in
the Link-Il roll-call protocol to the data-block headers used in DHAMA. The
statistic is generated for each net cycle frame by taking the ratio of the sum of the
duration of all start and stop codes sent to the duration of the net cycle frame.

" ncf dhamaeqnet mngmnt util is the channel utilization in the roll-call protocol
incurred by the address codes sent by the DNCS when interrogating PUs; these
codes are considered as the closest analog to the network management traffic
generated by the DRAMA protocol. The statistic is generated each net cycle frame
by taking the ratio of the sum of the duration of all addresses sent to the duration of
the net cycle frame.

• n~f dhana eqinjectutil is the channel utilization in the roll-call protocol incurred by
all tactical data messages sent (i.e., injected) into the network; TDS MESSAGES
THAT ARE LOST BECAUSE OF A COLLISION BETWEEN A REPLY AND
AN INTERROGATION ARE NOT INCLUDED IN THIS STATISTIC. The
statistic is computed at the end of the net cycle frame by taking the ratio of the
duration of all tds messages injected during a net cycle frame to the duration of the
net cycle frame.

A similar set of routines is used to compute the cumulative channel utilization statistics:
compute cummdhama-eqgb_preutil()
compute cummdhama eqdbhdr_util()
compute cumm_dhamaeqnet mngmntutil()
compute cummdhama_eq inject_util()

These routines are similar to the routines that compute the ncf utilization statistics. Similar
definitions for each statistic are defined, but using counters that accumulate data for the entire
simulation, rather than for one net cycle.
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3.3.6. Event Tracing During Simulation

The procedure dotraceO is the central calling point for all tracing done within the
simulation. The procedure is called with a message parameter that defines the type of trace that
will be performed. If the message tracing is turned off, then this procedure exits immediately,
otherwise, it tests the message passed to it and calls the appropriate trace procedure. The
following trace procedures are defined:

" do_s_matrixrpt() prints a report of the non-zero transition probabilities in the state
matrix.

* do s trace rptO prints a report to stdout describing the current state.
" dotransmission_rptO sends a report to stdout that describes the transmission, in a

format that gives the preamble, phase ref., start code (if present), address (if
present), tds messages (if present, it gives the number transmitted), and stop code
(if present). Presence or absence of the various components of the transmission is
determined by the state passed to the procedure when it is called.

- docollision rptO sends a report to stdout on a collision event.
• do missed eomrptO sends a report to stdout on a missed-eom event.
* do-ncf summary rptO prints a report describing the net cycle frame performance to

stdout. The performance of the network cycle frame is maintained in the following
variables: int preambles-sent; int phase refs_sent; int somsent; int eom_sent; int
addresses-sent; int tdsmsgs-sent; int replies-sent; int numinterrogations; int
successful_interrogations; double channelidle time;. The values of these variables
are added to the cumulative statistics at the end of each ncf and then reset to zero
(by another routine). This routine may be called at any time.

• dotransition rptO prints a report to stdout describing the state transition, giving the
old and new states.

* domissedreplyrptO prints a report to stdout on a missed-reply event.

Event tracing during simulation is normally turned off. It can be turned on at program
invocation by the command-line option -in.

3.4. Selecting Program Operating Modes

Various program operating modes are selectable by specifying command-line options at
program invocation. The procedure get_program_controlinput() parses the following
command line arguments to set up the appropriate control switches for the simulation:

-m generates message tracing during program execution. The program uses the
control switch mtrace, with values (TRUE/FALSE) The default mode is to
suppress message tracing.

-tab generate tabular output, with tab-separated columns of data sent to stdout.
This format is suitable for input to Cricket Graph, Excel, Kaleidagraph or some
other graphing program, to plot the output of multiple simulation runs (e.g., for a
parametric or sensitivity analysis). NOTE: ALL PROMPTS FOR DATA INPUT
ARE SUPPRESSED WHEN THIS MODE IS SELECTED, SINCE THEY WILL
INTERFERE WITH THE TABLE FORMAT. This output mode is intended for
use with command-line redirection of stdin, with the interactive input parameters
contained in the file substituted for stdin. Otherwise, you need an excellent
memory for the order and format of scenario input parameters.

18



-in [filename) accept scenario input data, such as synchronization probabilites, from
the designated filename. When this flag is selected, all scenario definition data
will be taken from the file; otherwise, the program defaults to a mode that prompts
for scenario data (in simplified form). The file name is stored in scenfile name;
the program uses the control switch getscen_from_file, with values
(TRUE/FALSE).

-c command line switch to enable collision detection in the model.
-rseed (integer) argument to input a new random seed controlling the FSM

simulation. The program uses the default value for the random seed if this control
is not set. It is an error if the input cannot be read as an integer. There is no
control flag set for this command line control; this procedure sets the new random
seed directly.

-tek generate tektronix-4014-compatible graphic output. The program uses the
control switch tekgraphics, with values (TRUE/FALSE) THIS SWITCH
DOES NOT CURRENTLY CONTROL ANYTHNG, BUT WILL BE
CORRECTLY PARSED.

-p (filename) generate postscript-compatible graphic commands output to a text
file. The program uses the control switch psgraphics, with values
(TRUE/FALSE). The file name is stored in a character array (string) called
psJilename; THIS SWITCH DOES NOT CURRENTLY CONTROL
ANYTHNG, BUT WILL BE CORRECTLY PARSED.

Any of the graphics output or tabular format commands override the message trace
command; it is a command-line error if multiple graph- or tabular- format commands are
selected and the program will abort gracefully,

NOTE: - The hyphen is a part of the command-line switch.

Each command-line switch can be used alone or in combination with other
switches. When a combination of command-line switches is used, the switches can
be in any order. When typing in a combination of command-line switches, use spaces
to separate the switches.

3.5. Running the Simulator

As noted previously, this version of the program has been run and tested on an Apple
Macintosh II using Lightspeed Tm C, Version 3.01. While not tested in other environments,
every attempt has been made to use routines and #include files commonly found in the standard
UNIX programming environment; at present, all program 1/O is supported using the UNIX
command-line interface, stdin, stdout, and stderr.

The CLE simulation program is designed to run in two input modes: the interactive
mode, and the batch-file mode. In the interactive mode, this program prompts the users for
key input parameters required to run the finite state machine. In the batch-file mode, users
have to type in the name of a file which contains all required parameters to run the program; the
file format for the batch-mode input file is given in Appendix A. The input mode is selected
using the command-line switches.

One method of generating a series of analyses in the interactive mode is worth noting
here, and is based on the use of file redirection in the UNIX operating environment. A set of
input parameters can be stored in a file, in the same order in which the parameters are requested

19



interactively by the program. This file can be supplied as input to the simulator at invocation

by redirection of stdin.

Software Distribution

The simulator is distributed on a 3.5" double-sided 800 Kbyte disk for the Apple Macintosh.
Software included in the distribution includes the following documents and applications:

README - a text file containing information about the distribution
cle.anal.main. 7- the LightSpeedTm C project file for the simulation
cle.anal.main.c - the simulation source code
cle mil std.h - the header file containing defined constants for the Link-Il

Military Standard; this file may be changed to examine performance
changes that result if waveform and timing parameters are changed

psync.sens.test - a sample text file used to study the sensitivity of Link-ll
network performance to changes in the probability of synchronization;
this file is an example of the file structure required to run the simulator
in interactive mode and redirecting stdin.

testin2.1 - a sample text file for running the simulator in batch mode using a
predefined scenario file.

Linkl 1_sim - a stand '.lone Macintosh Application that executes the Link 11
simulation.

Running the Simulation with LightspeedThm C on the Apple Macintosh

To execute the simulation program in the Lightspeed Tm C environment, these
steps should be followed:

SIMI1: Load the simulation program.

To load the program, double click on the file name (normally, this is
cle.anal.main.c. A window which shows the project name is displayed. Double click on
cle.anal.main.. A window which contains the project is displayed.

S M2: Run the simulation program.

- Select RUN from the PROJECT menu of THINK C. A new window will be
displayed and a command "Enter Unix Command-Line" will be shown.

- To run in the interactive mode, type in any command-line switches (e.g., -in, -c, -
rseed, or combination of them) depending on which feature that users want to use. Hit
RETURN and the program will start to run. A series of prompts for waveform parameters
will be generated unless the -tab option has been selected

- To run in the batch-file mode, type in -in Ifilenamel, and any other command-line
switches (e.g., -in, -c, -rseed, or combination of them depending on which feature that users
want to use.) Hit RETURN and the program will start to run.

For example, if a user wants to run in batch-file mode with a file named scenario],
wants to enable collision detection for the simulation, wants to input a random seed of 1000,
and wants to generate message tracing during program execution, the following will be entered
on the command line:
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-in scenariol -c -rseed 1000 -m
or

-c -m -rseed 1000 -in scenariol

To stop the execution of the program, type in g-d.

Running the Simulation as a Stand-Alone Program on the Apple Macintosh

Like any Macintosh Application, the simulation can be started by double-
clicking on the application's icon, or by selecting the icon, and then selecting OPEN
from the FILE menu.

3.6 Sample Output

In this section, we provide some sample output representative of the simulations
capabilities. The output was generated in interactive mode, with redirected stdin (i.e., the
psync.sens.test file), and the -tab option; the resulting table produced by the simulator was read
into a charting program (Cricket Graph), to produce the graphs shown in Figure 11 and Figure
12.
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20-Node Conventional Unk 11 Network; high-data rate; 15 M-serla messages per node.
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Figure 11: Average injected traffic rate, corrected for missed-replies
and collision effects.(all waveform performance parameters assumed

perfect, while synchronization performance varies).
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As can be seen from Figure 11, the injected traffic rate increases when we account for
missed-replies and collision effects; this is obviously true, since we are counting traffic that
was sent (by the PU whose reply the DNCS missed) that we were not counting previously.
This represents an improvement that would arise even if there were no other effects.

There is another real effect, however, on the net-cycle-frame length that occurs. The
effect is illustrated in Figure 12, and is a decrease in the net cycle frame length when we
account for collisions. The decrease in net-cycle frame length arises because the colliding
interrogation cannot possibly generate a reply that would lengthen the cycle, assuming that PU
replies are longer than a timeout period and interrogation, which they are, generally. In the
probabilistic model, the interrogation could generate a reply that, again, assuming it was longer
than a timeout period and interrogation, would lengthen the net cycle time. The collision effect
violates the assumption of state-independence made in the probabilistic analysis; the simulation
permits study of non-Markovian state transitions, where state transitions depend on the past
history of the system (i.e., on collisions in previous states). Consequently, the decrease in
net-cycle frame length which occurs with collision effects also contributes to the apparent
increase in injected throughput, since more bits (the replies we weren't counting previously)
are sent in a shorter net cycle.

16

20-Node Conventional Link 11 Network; high-data rate; 15 M-series mmsages per node.
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Figure 12. Average net-cycle-frame length, corrected for missed-
replies and collision effects. (all waveform performance parameters

assumed perfect, while synchronization performance varies).
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4. SUMMARY

The simulation described here is intended as a tool for examining performance tradeoffs
in waveform and network design parameters for the Link-Il Tactical Data Link used by the
US. Navy and NATO. The simulation has been developed on an Apple Macintosh computer,
using C and standard operating system libraries typical of UNIX workstation; the software is
structured with the intent of porting the simulation to a UNIX workstation, though this has not
yet been done. The simulation is an event driven simulation that can be used to study time-
varying scenarios. We believe that it is a simple and useful tool for studying a wide range of
tradeoffs related to Link-Il platform deployment and waveform design issues.
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APPENDIX A: BATCH-MODE INPUT FILE FORMAT

INTRODUCTION

The input file contains all data required to run the simulation program. It contains the
number of participating units (PUs) in the network, the number of net cycles in the simulation,
each node's traffic load, and the waveform performance data for the links between each node.
Those statistical data inciude probabilities of detecting the synchronization preamble, the
probabilities of detecting the start-of-message codes, the probabilities of detecting the end-of-
message codes, the probabilities of detecting a PU address, the probabilities of detecting the
crypto-synchronization preamble (i.e, the message indicator), the probabilities of correctly
receive Link 11 messages from another node, and the propagation delays between the receiving
and the sending nodes. All of the statistical data are grouped into a link-parameter matrix, and
the traffic-load data are arranged a the traffic-load matrix.

In addition, to model time-varying scenarios, the input file contains the number of times
that nodal data are changed during the simulation. There are 3 types of changes allowed: J=
1 in which only data of in link-parameter matrix is changed, Lypf 2 in which only data in the
traffic-load matrix is changed, and y in which data in both the link-parameter matrix and
the traffic-load matrix are changed.

FORMAT

The input file is created in the following format:

Line 1: number of participating units (PUs) in the network.
Line 2: number of net-cycle-frames (NCFs) that the program should run during the

simulation
Line 3: number of times that the input data is changed.
Line 4: the link-parameter data matrix. In this matrix, there shall be NxN rows where

N is the number of PUs in the network.Each row of the matrix shall be for data of
each pair of nodes (a, b). The first line of matrix shall be for the pair of nodes
(0,0), the second line shall be for the pair of nodes (0,1), the third line shall be for
nodes (0,2), and so on in that order to cover all possible pairing combination of all
PUs in the network. In this matrix, there shall be 8 columns in the following order
from left to right: pair of node-id, probability of detecting the synchronization,
probability of detecting the start of message, probability of detecting the end of
message, probability of detecting its address, probability of detecting the message
indicator, probability of correctly receive message, and propagation delay between
two nodes. NOTE: Do not use TAB to separate data columns, use space-line
only. So, data on the second line of the matrix and under the third column shall
be the probability that node I can detect the start of message sending from node 0
because the second line is for the pair of nodes (0,1), and the third column is for
the probability of detecting the start of message. If the number of rows in this
matrix is less than NxN rows, the "Insufficient Data" error will appear.

Line 5: the traffic-load data matrix. In this matrix, there shall be two columns: one to
tell the node IDs, and the other to tell the number of tracks held at that node. There
shall be N rows in this matrix where each row shall correspond to one PU. The
first row shall be for node 0, the second row shall be for node 1, and so on.
Again, do not use TAB to separate the columns of data.
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If there are changes in data input during the simulation, the following shall be added
for each change:
Line 6: specific time that the change should occur. This time is measured from the

beginning of the simulation.
Line 7: type of change (1, 2, or 3)
Line 8: new data matrix. If the type of change is 1, then the new data matrix shall be

the new link-parameter data matrix. If the type of change is 2, then the new data
matrix shall be the new traffic-load data matrix. If the type of change is 3, then the
new data matrix shall be the new link-parameter data matrix and the new traffic-
load data matrix.

NOTE: Comments can be inserted throughout the input file. However, they must be enclosed
between two pound (#) signs. There is no space between the # sign and the adjacent character
of the comment; e.g., #This is a comment#.

SAMPLE FILE

A sample of an input file is shown below for a network of 5 nodes. The data changes occur
three times during the simulation:

# Number of pu:#
5 #Line 1#

# Number of ncf:#
100 #Line 2#

# Number of change:#
3 #Line 3#

#The link parameter matrix which includes prob syncprob_somdetect,
prob_eom_detect, pro_adddetect, prob_mdetect, prob_correct_mess, propa delay.
The first row is for node (0,0), the second row is for node (0,1),
and so on.

node p syn p-som peom padd pmi p_cr me pdel#

(0,0) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 #Line 4#
(0,1) 0.780000 0.780000 0.780000 0.780000 0.780000 0.780000 0.780000
(02) 0.975000 0.975000 0.975000 0.975000 0.975000 0.975000 0.975000
(04) 0.65C000 0.650000 0.650000 0.650000 0.650000 0.650000 0.650000

(0,4) 0.078000 0.078000 0.078000 0.078000 0.078000 0.078000 0.078000
(1,0) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(1,)) 1.0 1.0 1.0 1.0 1.0 1.0 1.0

#Traffic loading matrix which includes number of track held per node.

The first row is for node 0, second row is for node 1, and so on.

node number of tracks#

0 5 #Line 5#
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I 8
2 9
3 16
4 25

#change time :#
15 #Line 6#

#change type :#
3 #Line 7#

#Since the type of change is 3, the new data matrix will be the new link parameter
matrix and the new traffic load matrix#

#The link parameter matrix which includes prob sync 9probsomdetect,
prob_eom detect, proadddetect, probmidetect. probcorrect-mess, propa_delay.
The first row is for node (0,0), the second row is for node (0,1),
and so on.

node p-syn psoM peom p add p_mi pcr.me pdel#

(0.0) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 #Line 8#
(0.1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0,2) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0,3) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0,4) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(1,0) 0.975000 0.975000 0.975000 0.975000 0.975000 0.975000 0.975000
(1,1) 0.650000 0.650000 0.650000 0.650000 0.650000 0.650000 0.650000

#The traffic loading matrix which includes number of track held per node.

The first row is for node 0, second row is for node 1, and so on.

node number of tracks#

0 6
1 8
2 9
3 14
4 15

#Line 6, Line 7, and Line 8 shall be added for each change#

#change time.#
20 #Line 6#

ichange type.#
2 #Line 7#

#Since the type of change is 2, the new data matrix is the new traffic-load
data matrizx

#The traffic loading matrix which includes number of track held per node.
The first row is for node 0, second row is for node 1, and so on.
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node number of tracks#

0 5 #Line 8#
1 8
2 9
3 16
4 25

#change time.#
22.87

#change type.*#
1

#Sine the type of change is 1. the new data matrix is the new link
parameter data mavix#

#The link parameter matrix which includes prob syncprob som -detect,
prob_eom_detect, pro_add detect, prob mi detect, probcorrect_-mess, propadelay.
The first row is for node (0,0), the second row is for node (0,1), and so on.

node p-syn psom p..eom padd p_mi pcrme pdel#

(0.0) 1.000000 1.000000 1.000000 1.000000 1.00000 1.000000 1.000000
(0,1) 0.780000 0.780000 0.780000 0.780000 0.78000 0.780000 0.780000
(0.2) 0-975000 0.975000 0.975000 0.975000 0.97500 0.975000 0.975000
(0,3) 0.650000 0.650000 0.650000 0.650000 0.65000 0.650000 0.650000
(0,4) 0.078000 0.078000 0.078000 0.078000 0.078000 0.078000 0.078000

(1.0) 1.0 1.0 1.0 1.0 1.0 1.0 .1.0
(1,1) 1.0 1.0 1.0 1.0 1.0 1.0 .1.0
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