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1 Introduction

The A or B statistically based design allowable value is a statistic which is less than

the first or tenth percentile of the population with probability .95. That is, the value

is a 95% lower tolerance limit for the percentile. In Figures 1A and 1B, a graphical
display is shown for the B allowable value probability density function for sample sizes

of n equal to 10 and 50 from a standard normal population. The dotted vertical lines

indicate the tenth percentile of the population and the probability that the allowable
is less than or equal to the tenth percentile is .95 for the design allowable value

probability density function. The graphical display of the allowable value density

functions show much less dispersion for n = 50 than for n = 10. Therefore, small

samples will usually result in lower allowable values. In, 1 2, 3, 4, 5, various procedures

are described for determining the statistical design allowable values.

The motivation for the work described in this paper resulted from a need by the

aircraft industry to obtain a less conservative, statistically based material design value
from a small sample of composite material strength data. Here, 'conservative' is to be

interpreted to mean 'excessively low', which corresponds to a design engineer's use of
the word. Statistical conservatism, that is a confidence exceeding the nominal levcl
of .95, need not be present for 'engineering conservatism' to be a problem.

The use of small samples reduces the amount of testing and consequently the

manufacturing cost of composite aircraft structures. For example, in order to qualify
a composite material to be used in the manufacture of a commercial aircraft, the
FAA,6 requires property values for tension, compression, and shear tests subjected
to the enviromental conditions: hot-wet, cold-dry, and room temperature for three
separate batches of material. In the development of a composite tail section by one
of the major aircraft companies the cost of testing was more than 20 million dollars.
In addition to the cost, excessively conservative allowable values can also result in

an over-design situation, since the value often provides information in determining a
structural design.

In order to avoid the penalty associated with using small samples in the tolerance
limit computation, a procedure is introdu(,d in this paper involving pooling a largc

'Military Handbook 17B, Army Materials Technology Lab.ratory, Polymer Matrix Composites, Volume

1, Guidelines, 1988.
2 Neal, D. M., Vangel, M. G., and Todt, F., "Determination of Statistical Based Composite Material

Properties" in Engineered Materials Handbook, Composites, C.A. Dostal, ed., American Society of Metals

Press, Metals Park, Ohio, Vol. 1, 1987.3 Neal, D. M., Vangel, Ni. G., "Statistical Based Material Properties - A Military llandbook-17 Perspec-

tive", MTL TR 90-5, U.S. Army Material Technology Laboratory, Watertown, Massachusetts 02172-0001,
1990.

4 Neal, D. M. and Spiridigliozzi, L., "An Efficient Method for Determining the 'A' and 'B' Design Al-

lowablesn, ARO Report 83-2, U.S. Army Laboratory Command, Army Research Office, P.O. Box 12211,

Research Triangle Park, North Carolina 27709-2211, 1983.
5 Shyprykevich, P.,"The Role of Statistical Reduction in the Development of Design Allowables for Com-

posites", Test Methods for Design Allowables for Fibrous Composites; 2nd Vol., ASTM STP 1003, pp.
111-135, 1989.

6Soderquist, Joseph, National Resource Specialist for Composites (FAA), Pivate Conversation



sample with a smaller one in order to obtain the allowable value. This is done in
order to reduce the inherent variability that occurs from applying the smaller data
set alone.

In the pooling process the larger data set should be obtained from prior available
test results or from less expensive tests. Ideally, both samples should be from the
same material, test, and enviromental conditioning process. In the pooling process it
is assumed that for a given material (eg., graphite-epoxy) there are similar classes of
failure modes.

In order to avoid the uncertainties involved in identifying a statistical model from a
small sample when computing the allowable value, this paper introduces two nonpara-
metric methods (Ferguson, 7 and the Modified Hanson-Koopmans, s ) In applying the
Bayesian nonparametric method, the larger set represents the prior and the smaller
one the empirical data. In the Modified Hanson-Koopmans method an ordered array
of strength measurements is obtained from the pooled data sets. The tolerance limit
is determined from a specific ratio of ordered values multiplied by a factor determined
from the sample size of the pooled data.

The Reduced Ratio Method,9 another procedure for computing small sample de-
sign allowables, was also evaluated. This method is commonly used by the aircraft
industry. For example, a U.S. helicopter company routinely uses this method for ob-
taining allowables from six specimens tested in tension at 180°F. In the analysis an
additional, previously obtained sample of at least thirty room temperature tension
test results are included in order to reduce variability in the allowable estimate.

2 Determination of Allowable Values
Nonparametric Bayesian Method

The nonparametric Bayesian,7 allowable value is obtained from the following. Let
{x,} represent the current empirical data which the allowable value is to represent
and {tj}) the larger prior data set obtained from previous test results.

In the analysis the cummulative density function (CDF) of the prior (larger data
set) is written as

Fo(t) = a((-oo, t])/a(R) (1)

where a(R) is the sample size and a((-co, t]) represents the number of values less
than t from {t1}7. The CDF of the smaller sample {x,} is

n

F,(lt I x 1,,...,x ) = Z6.j((-oot])/n (2)

7 Ferguson, T. S., "A Bayesian Analysis of Some Nonparametric Problems", Annals of Statistics, Vol. 1,
No. 2, 209-230, 1973.

SVangel, N1. G., "Lower Tolerance Limits for Log-Convex Distributions", to be published.
9 Metallic Materials and Elements for Aerospace Vehicle Structures, MIL-IIDBK-5C, 15 September 1976,

pp. 9-14.
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where n is the sample size and the sum over i of &i (t) is equal to the number of x,
values less than or equal to t. For example,

if t = 1, 2, 3, 4, 5
and x = 6, 7, 8, 9, 10

then F,,( 5 I 6, 7, 8, 9, 10) = 0.
If t = 11, 12, 13, 14, 15

then F( 11 16, 7, 8, 9, 10) = 1.

The posterior distribution for {x} ' is then written as

1, CX, -, X.x) = P. Fo~t) + (I - P.)F, Ct I X1, X, ...x), (3)

where
(R) (4)

An example of a Bayes estimate for x = 1 when

t = 1, 2, 3, 4, 5
and x = 1, 2, 3, 4, 5 is

P, = PnFo + (1 - Pn)fn = (.5)(.2) + (.5)(.2) = .2.

3 Nonparametric Tolerance Limit on the Bayesian Quantile
Estimate

The allowable value as described previously is a tolerance limit ,;n the quantile es-
timates. The process for obtaining that limit is shown in this section. Initailly, a
random sample F(Y) of size M = a(R) + n is assumed independent of the mixture
of the prior and empirical data sets shown in Equation 3. By ordering a sample of
Y1,Y2,...,YM1 values, the probability density function for Y, 1< i < M can be written
as a Beta distribution,

fL,(z) = r(M)zA-,(1 (5)-)--

r(uM)r((1 - u)M) (5)

where z(j) = F(Yj)) and i = uM with u representing the CDF value corresponding to
the ith ordered number. The tolerance limit Y' for Yq is

P(Yq > Y') = I - a = P[F(Yq) F(Y')] (6)

where Y is the 100q'h percentile of Y. Since
PY>Y)= q r(M)zuM-1(j ),.,-

P(Y - ) = Jo r(uM)r((1 -u)M) d- (7)

from Equation 5, a 1 - a tolerance limit on Y can be obtained by solving for u from
the following. In the case of the B allowable compotation, a = .05 and q = .10
Equation 7 can be written as

J r(uM)r((l -)M) dz --. 9.5. (8)
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See Table I for tabulation of u and M values that satisfy Equation 8.

Solving for u in Equation 8 determines the lower tolerance limit of the CDF of
sample size M where the i" ordered value is equal to uM. Obtaining a lower ordered
CDF value from Equation 3 that is approximately equal to a u determines the 1 - ce
tolerance limit of the qth quantile of the posterior CDF for a sample size M.

An example of this would be if there were only prior data {t3 } and a B allowable
value is required where

t = 5, 6, 7, 8, 12, 16, 20, 25,...,40 and
Fo(t) = .033, .066, .099,...,1.0,

then M = 30 and u = .034 from Table I. The allowable value t, is determined from the
approximate solution of u ; F(t) resulting in tj = 5; therefore, the first ordered value
of the prior represents the B allowable value, which is the same as the nonparametric
quantile sign test,'0 result, when the sample size is 30.

4 The Nonparametric Modified Hanson-Koopmans (MHK)
Procedure

A nonparametric procedure (MHK),8 for estimating the allowable value is introduced
for any sample size greater than or equal to 2. The method is a modification of
Hanson-Koopmans," process. The modification has reduced the conservatism in
computing property values when compared with the original method.

The method involves the following. Let xl,...,xn be the order statistics of an
independent and identically distributed sample from a continuous distribution F.
Assume that F is log-convex, that is -log F(x) is a convex function. The class of log-
convex functions includes a large enough group of distributions so that the following
procedure involving log-convex functions can be considered nonparametric for most
purposes.

The Hanson-Koopmans lower tolerance limits are of the form

Ts = kx,. + (I - k)z,, (9)

where r < s and k > 1. The tolerance limit T, can be negative, even if the distribution
F is zero for any negative values. A practical sohtion to this problem is to apply the
Hanson-Koopmans approach to the log of the data x, that is,

T, = klogxr + (1 - k) log x,, (10)

and then obtain by exponentiation the following

- = klIogx + e - k) I og x, (1)

'°Cono',r, W. J., "Practical Nonparametric Statistics', John Wiley and Sons, 1980, p. i II.
"llanson, D. L. and Koopmans, L. It., "Tolerance Limits for the Class of Distributions with Increasing

Ilazard Rates", Annals of Mathematical Statistics, Vol. 35, 1964.
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For most distributions of interest, T, still provides conservative tolerance limits,
although technically f, is valid for a class of distributions smaller than the log-convex
class corresponding to Tr,.

In order to determine the B allowable value, the r, s, and k values are obtained
for a given n in Table II. Tables are also available for the A allowable in Reference S.

5 Allowable Computation for Normal and Weibull Models

The following small, single sample, data set allowable computation procedures were
included for comparison purposes. This comparison is made with respect to the
results obtained from the other methods described in this paper.

The normal PDF is

f'v(x) = 1(12)

where y and or are the mean and standard deviation. The normal allowable is

Av = X- As, (13)

where KA is a factor obtained from Reference 1 and X and s are the sample mean
and standard deviation.

The Weibull allowable computation is as follows. The Weibull PDF is

fiv(x) = (14)

where f6 and a are the shape and scale parameters and the Weibull allowables can be
written as

Aw = &[-log(PI)I , (15)

where the PA's are tabulated in Reference 3 with & and 3 being the maximum like-
lihood estimates for a and f6 obtained from an algorithem also shown in Reference
3.

6 The Reduced Ratio Method (RRM)

The Reduced Ratio Method,' determines an allowable value for a smaller data set
{S,}n by introducing an indirect computation procedure involving a larger, previously
obtained set of data, {LI.

The first step is to determine the mean of L, that is L = = L,. The second

step requires obtaining the ratios RI=SI/L, R2 =S2/L, ..., R=S,/L and the mean
(ft) of the Ri's. The reduced mean, k?" is then obtained from

R* = R -1(.%-) Vit/ lA, (6



where t(.95) is the .95 quantile of the t distribution for n - 1 degrees of freedom and
VR is the standard deviation of the R,'s. The next step is to compute an allowable
(LB) from the L sample using some single sample procedure such as described in the
previous section. After obtaining LB the allowable SB for S is determined as follows

SB = LBR . (17)

7 The Pooling Process

The pooling process, as previously mentioned, requires combining a smaller data set
S (the one represented by the allowable) with a larger set L obtained from prior test
results. In the MHK process the objective is to represent S with a combined data
set of S and L with sample size m = ns + nL. In the Bayes method the prior is
represented by L and the empirical data by S.

If both the means and variances of S and L are known to be equal, then the pooling
process can be easily justified. Unfortunately, this is seldom the case. Therefore, the
following transformation is suggested. Let L, and S, be the data from sets L and S
respectively and define the new data sets S' and L* by

s Si -S (18)
S

and
L I= (19)

where L and .9 are the data set means. This procedure involves reducing the mean of
S and L to a common mean of zero for S- and L'. In addition, the transformed data
sets, S' and L', have standard deviations equal to the CV's of S and L. Schematics
of this transformation are shown in Appendices A and B.

It is suggested that an equality of variance test between S" and L" be made in
order to determine if an excessively large difference in variance exists. The Siegel-
Tukev nonparametric rank sum method,' 2 proved effective in testing for equality of
variance although for small samples (less than ten), the test on equality of variance
will result in a certain amount of uncertainLv.

8 Allowable Values for S* from Pooled Data

8.1 Bayes Solution

In the Bayes application let the smaller sample x (newly obtained data) of size ns
be represented by the S" values and the larger sample t (the prior) with ni, values by
L'. Initially, u in Equation 8 is obtained from Table I for Ml equal to the combined
sample sizes of S' and L" in order to determine the allowable for S. CDF values are

1
2
Siegd, S. and Tukey, J. W., "A Nonparametric Sum of Ranks Procedure for Relative Spread in Unpaired

Samples" , Journal of American Statistical Association, September. 1960.
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determined from Equation 3 where t = L' and x, = S* i = L ..... ,n. Equating the CDF
value that corresponds to u determines the ordered (0M) value of P. Inverting F. so
that the corresponding ordered test result is obtaincd then determines the allowable
value S .

8.2 The Modified Hanson-Koopmans Method

The nonparametric s solution for obtaining allowable values involves pooling the val-
ues from S' and L' and letting the combined ordered array of values be x in Equation
11 with sample size n = ns + nL. Let this value be denoted S (in place of !&,). This
method is very simple to apply yet provides results for any sample size greater than
2.

9 Transformation Procedure in Determining Allowable

The allowable value for S' is not sufficient since S and L were the original data sets
involved in the analysis and their magnitudes differ from S" and L-. Therefore, the
following transformation is required:

SB =S,"BS. 9S + S.-(20)

where SB is the required allowable value for the sma!i sample S. The gns values
represent the lower 95% confidenc: value for the mean of the S values. The purpose
in using .s instead of S is to adjust for the variability in estimating the mean S9
of the small sample S. This variabilitv in S directly effects the computation of the
allowable SB. This often results in SB values being greater than the pa percentile of
the population of S more than 5. of the time. This is counter to the requirement for
an allowable value as described in the introduction.

10 Results and Discussions

10.1 Coverage Rates from MHK, Bayes, and RRIM

In Tables III IV, and V the coverage rate results are tabulated from the application
of the MIHK, Bkyes, and RRMX\ procedures, as functions of the coefficient of %ariations
(CV(i)) foe both the small sample S and the large sample L. The coverage rate
represents the percent of values less than the 10% pt. (B allowable) or the 1% pt. (A
allowable) of a population of values representing the data set. The data was obtained
by randomly- selecting values from either a normal or Weibull distribution with the
specified CV's.

The mean and standard deviation are identified as: m(l) and s(l) for the Lirger
sample L and m(2) and s(2) for the smaller sample S. The sample sizes are usually
n(l) = 30 and n(2) = 6 for the large and small data sets respectively. CV([) and
CV(2) have similar representation for the two samples.

7



In Table III results from randomly selected values obtained from normal distribu-
tions with sample sizes of 30 and 6 show that for differences in the CV's less than
20% an acceptable coverage rate can be obtained from all methods since the rates
are greater than 95%. The MHK and Bayes methods provide acceptable results even
for a 60% difference in the CV values although they fail to obtain the desired 95%
minimum. The RRM coverage results with 40% differences in CV's fail to provide
acceptable coverage as shown in both the A and B allowable computation. The A
allowables could not be computed using the Bayes method since an amount of data
much greater than 36 would be required. The A allowable tables for u and M have
not been computed because of the excessively large data set requirements. When
CV(1) = .12 and CV(2) = .10, greater variability in L than S, the coverage is much
greater than required, therefore, resulting in potentially over conservative estimates
for the S allowable. This will usually be the case when CV(1) > CV(2).

The MHK and Bayes methods' ability to provide acceptable coverage when the
CV's are .16 for the small sample and .10 for the large sample shows that the methods
are quite robust with respect to differences in the spread of the data sets. In actual
engineering application it is unlikely that the material being considered in the design
(small sample) would have a variability 60% greater than that of the previously tested,
similar material (large sample).

In Table IV, the small sample data set was randomly selected from a Weibull distri-
bution where the shape and scale values were computed so that they were equivalent
to the tabulated mean and CV's. The larger data set was obtained from a normal
distribution. The results are similar to those in Table III for the MHK and Bayes
methods. The Table IV RRM results show a reduction in the coverage when com-
pared with those in Table III, an example is the 78.8% coverage for the A allowable
in Table III compared to 48% in Table IV for differences in the CV's of only 40%.

These results indicate that the RRM is sensitive to the statistical model assump-
tion in representing the test data while the MHK and Bayes methods are much less
sensitive. Since MHK and Bayes are nonparametric methods, this robustness to the
model assumption could be expected.

In Table V data was obtained from normal distributions with CV's of .10 and
.16 for L and S respectively. The coverage percent and range of allowable values are
tabulated with respect to increasing sample sizes of both L and S for the RRM and
MHK procedures. Results show that increasing sample size for L with constant small
sample size for S of 6 causes the RRM process to perform poorly since the coverage
is reduced from 86.6% to 73%. The only advantage is the reduction in the range
of the allowable from 17 to 14 which is not very significant. Increasing the sample
size of S from 6 to 15 also shows a somewhat unsatisfactory result since a 81% to
72.8% reduction in the coverage occurs. These coverage reductions are the inherent
weakness in the method which is vulnerable to situations where L has a much smaller
CV than S. The range reduction from 15 to 10 could be considered an improvement
since there is less spread in the allowable estimate. Unfortunately, this advantage is

8



removed because of the coverage loss. This implies that many more (much greater
then 5%) allowable values will be greater than the 10% pt. of the population of
material strength measurements. This situation could result in an overly optimistic
allowable value ard therefore a potential under-design situation.

MHK results provide reasonably acceptable coverage for all the combinations of
sample size for both L and S. That is, results show, at least for the cases considered,
that the method is robust to a variety of sample sizes for both L and S. The range of
the allowables is affected by the sample sizes particularly for the case MHK(15,6) vs.
MHK(30,15). The MHK method can provide a smaller range on the allowable but
will not make significant improvements on the coverage capability when the sample
sizes are increased. In the results for MHK(60,6) and MHK(15,6) the coverage is 88%
and 92.8% showing that increasing the sample size of L can reduce the coverage. This
is the result of sample L's increased influence in the allowable computation which the
analyst should be aware of when applying the MHK method. It is suggested that the
ratio of sample sizes n(2)/n(1) should not be any smaller than .2.

10.2 A Comparison Study: Single Sample Vs. Two-sample Allowable
Computation

In Figures 2 through 5 a comparison is made between the multi-sample methods
(MHK, RRM, and Bayes) and the single sample Weibull and normal methods with
respect to the coverage percentage and the spread in the allowable estimates. In
Figures 2 and 3 results were obtained by using a random selection of data from normal
distributions. The N(6) and W(6) designations represent results from applying 6
data values to the Normal and Weibull allowable computation procedures. MHK(36)
results are for the Modified Hanson-Koopmans method using a single sample with 36
data values from the S population distribution. CV's of .10 and .14 are introduced for
L and S in order to represent a possible difference in the spread of the two data sets.
The ordinate values" (A) shown in the figure represent the 9 5 1h percentile value of
the allowable simulation results. Ideally, the values should be located on the dotted
line for optimum coverage. Values above the line indicate that coverage has not
been achieved. Those below the line provide the coverage. This can also identify an
excessively low allowable value. In the second part of the figure the vertical dotted
lines represent the spread in the allowable estimates (1 to 99 percent of all the data
from the simulation results).

The Figure 2 results show that the MHK and Bayes methods can provide an
almost optimum computed B allowable. The RRM approach fails to provide the
coverage since results show an 87% rate. Normal distribution for single sample (S)
of 6 provided reasonably good coverage as expected since the -ata was originally
obtained from a normal model. The Weibull results were overly conserv ative, possibly,
because an incorrect model was assumed for the data (normal). MIIK(36) results were
excellent as expected since the 36 values applied to the model were all from the normal
distribution representing the data sample S.

9



Evaluation of the models' capabilities with respect to spread in the allowables
showed the two-sample methods' allowable values to have much less variability than
those of the single data set methods.

The results in Figure 3 are similar to those in Figure 2 except that the A allowable
was computed. The Bayes method was omitted since a very large data set would
have been required. A spread in excess of 50 was determined from applying the
single sample normal analysis with the 1% point showing an allowable of -12. This
result can discourage the engineers from using statistical procedures for obtaining
design allowables. In this case, the single sample method, although statistically correct,
provides a design number that is incorrect from an engineering perspective. This result
has been the primary motivating factor in the authors' examnation of alternate small
sample procedures. The results from MHK and RRM show a more reliable range of
values for the allowable.

In Figures 4 and 5 random samples were obtained from a NASA contractor
report, 13 on composite material strength measurements. The figures identify the
names of the companies that manufactured the material and the number of speci-
mens tested. In Figure 4, the CV's of .10 and .13 were obtained from unidirectional
tension and crossply tension data. The results show that the MHK and Bayes meth-
ods are effective in obtaining a desirable allowable estimate. The RRM results are
greater than the 10% point and therefore fail to provide an acceptable allowable es-
timate. The normal and Weibull pe:form well in obtaining the proper coverage but
as shown previously the spread in allowables for N(6) and W(6) is much greater than
that of the MHK, Bayes, and RRM results.

In Figure 5, the random samples for both S and L were obtained from 230 data
values (composite short beam shear test). The results are similar to those in Figure
4 except that the normal analysis, N(6), fails to provide acceptable coverage and the
MHK and Bayes allowables are more conservative (excessive coverage). A relatively
good agreement between the coverages can be identifed by comparing MI-IK(36) and
MHK results. A reasonable correlation also exists for the spread in the allowable
estimates. This implies that MHK can perform almost as well as if 36 values from S
were applied to the MHK analysis instead of only 6 from S and 30 from L.

11 Conclusions

Results from this comparison study show that the nonparametric MHK method is
superior in determining small sample design allowables when compared to the the
results from the other procedures evaluated in this paper. The allowable values ob-
tained from the MHK method application consistently meet the coverage requirement
(95% of values less than a specified percentile of the population of all test data) for
a relatively wide spectrum of data sets. The variability of the MIIK values is much

"aReese, C. and Sorem, J. Jr., "Statistical Distribution of Mechanical Properties for Three Graphite-Epoxy
Material Systems", NASA Contract Report No. 165736, 1981.

10



lower than that of the values resulting from the small, single sample normal or Weibull
analysis.

The nonparametric Bayesian method provides acceptable allowable values al-
though this method is limited by the sample size requirements. This limitation pre-
vents the method from being as desirable as the MHK process. Another undesirable
feature is the complexity involved in applying the method.

The Reduced Ratio Method, which is currently used by the aircraft industry,
is not effective due to its failure in providing the required coverage when there are
relatively small differences between the CV's of the prior large data set and the smaller
empirical set from which the allowable is obtained. Also, increasing the sample size of
empirical data and incorrectly assuming statistical models for the data sets prevents
proper coverage.

Application of the small, single sample analysis (Normal and Weibull) results in
extremely large variability in the allowable estimate. In addition, the methods fail to
provide acceptable coverage when incorrect models are assumed.

The proposed pooling process introduced in this paper provides a desirable method
for combining the small and large data sets when there is a difference in their mean
values. Application of this process in the MHK and Bayesian analysis results in an
effective solution in obtaining economical allowable values.

11
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Table I. M and u Values for Bayesian Basis Value Computation

M u M u M u M U

1 0.021953 51 0.044804 101 0.057686 151 0.064302
2 0.017855 52 0.045192 102 0.057856 152 0.064395
3 0.016529 53 0.045565 103 0.058023 153 0.064514
4 0.016140 54 0.045937 104 0.058188 154 0.064609
5 0.016199 55 0.046301 105 0.058352 155 0.064717
6 0.016516 56 0.046648 106 0.058517 156 0.064814
7 0.016997 57 0.046996 107 0.058670 157 0.064912
8 0.017590 58 0.047339 108 0.058837 158 0.065010
9 0.018264 59 0.047673 109 0.059006 159 0.065099

10 0.018996 60 0.048011 110 0.059156 160 0.065193
11 0.019769 61 0.048318 111 0.059313 161 0.065273
12 0.020570 62 0.048642 112 0.059454 162 0.065382
13 0.021391 63 0.048945 113 0.0596-9 163 0.065462
14 0.022223 64 0.049255 114 0.059761 164 0.065555
15 0.023060 65 0.049563 115 0.059914 165 0.065658
16 0.023897 66 0.049848 116 0.060051 166 0.065734
17 0.024729 67 0.050144 117 0.060192 167 0.065822
18 0.025554 68 0.050421 118 0.060344 168 0.065910
19 0.026368 69 0.050695 119 0.060480 169 0.065996
20 0.027171 70 0.050968 120 0.060628 170 0.066108
21 0.027959 71 0.051238 121 0.060754 171 0.066192
22 0.028734 72 0.051506 122 0.060883 172 0.066277
23 0.029491 73 0.051771 123 0.061031 173 0.066384
24 0.030233 74 0.052034 124 0.061162 174 0.066449
25 0.030959 75 0.052284 125 0.061292 175 0.066530
26 0.031666 76 0.052530 126 0.061420 176 0.066613
27 0.032361 77 0.052773 127 0.061547 177 0.066705
28 0.033033 78 0.053017 128 0.061679 178 0.066789
29 0.033695 79 0.053244 129 0.061802 179 0.066872
30 0.034339 80 0.053479 130 0.061933 180 0.066934
31 0.034967 81 0.053702 131 0.062065 181 0.067007
32 0.035577 82 0.053932 132 0.062179 182 0.067098
33 0.036172 83 0.054160 133 0.062293 183 0.067176
34 0.036754 84 0.054375 134 0.062430 184 0.067258
35 0.037328 85 0.054600 135 0.062553 185 0.067333
36 0.037884 86 0.054808 136 0.062667 186 0.067418
37 0.038420 87 0.055017 137 0.062784 187 0.067486
38 0.038952 88 0.055221 138 0.062894 188 0.067569
39 0.039461 89 0.055435 139 0.063010 189 0.067628
40 0.039964 90 0.055634 140 0.063128 190 0.067720
41 0.040459 91 0.055831 141 0.063245 191 0.067794
42 0.040944 92 0.056024 142 0.063344 192 0.067871
43 0.041409 93 0.056215 I43 0.063459 193 0.067952
44 0.041864 94 0.056417 144 0.063550 194 0.068022
45 0.042314 95 0.056599 145 0.063666 195 0.068103
46 0.042751 96 0.056781 146 0.063763 196 0.068178
47 0.043182 97 0.056960 147 0.063899 197 0.068237
48 0.043596 98 0.057153 148 0.063965 198 0.068315
49 0.044009 99 0.057332 149 0.064101 199 0.068388
50 0.044413 100 0.057502 150 0.064197 200 0.068459
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Table I1. Modified Hanson-Knoopmans Constants for Basis Value

,n r S k

2 1 2 35.177
3 1 3 7.859
4 1 4 4.505
5 1 4 4.101
6 1 5 3.064
7 1 5 2.858
8 1 6 2.382
9 1 6 2.253

10 1 6 2.137
11 1 7 1.897
12 1 7 1.814
13 1 7 1.738
14 1 8 1.599
15 1 8 1.540
16 1 8 1.485
17 1 8 1.434
18 i 9 1.354
19 1 9 1.311
20 1 10 1.253
21 1 10 1.218
22 1 10 1..184
23 1 11 1.143
24 i 11 1.114
25 1 !1 1.087
26 1 I 1.060
27 1 ii 1.035
28 1 12 1.010
29 1 -- 1

30 2 12 1.373
31 2 12 1.344
32 2 12 1.315
33 2 13 1.270
34 2 13 1.245
35 2 13 1.221
36 2 13 1.197
37 2 13 1.174
38 2 13 1.151
39 2 13 1.129
40 2 13 1.108
41 2 14 1.083
42 2 14 1.064
43 2 14 1.045
44 2 14 1.027
45 2 14 1.009
46 2 -- 1
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Table Ill. Simulation Results/Computing Allowable Value
Coverage Rate (%) Versus CV Differences Normal - Normal Distributions

CV Coverage Rate (%)

'B' Allowables 'A' Allowables

CV(1) CV(2) MHK Bayes, RRM MHK RRM

.10 .10 99.0 99.2 98.6 99.4 99.0

.10 .12 97.0 98.0 94.8 98.4 94.4

.10 .14 95.4 95.6 86.6 95.8 78.8
(94.6)- (93.8)- (84.2)- (92.8)- (72.8)-

.10 .16 91.8 92.6 81.0 89.4 59.4

.10 .18 88.2 89.2 72.2 83.4 41.2

.10 .20 83.2 83.0 64.2 72.6 24.6

.12 .10 99.8 99.8 99.6 99.8 100

CV(i) =s(i)/m(i), i = 1,2 m(l) = 200, m(2) = 50

Assumed Distributions are N(m(1),s(1) ), N(m(2),s(2) ) = Normal distribution
for prior and current data sets respectively

4 MHK - Modified Hanson-Koopmans
Bayes - Nonparametric Bayes (Ferguson)

RRM - Reduced Ratio Method (Mil-5)

Sample size n(1) = 30(prior), n(2) = 6(data) for cases except ()
sample size n(1) = 60, n(2) = 6
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Table IV. Simulation Results/Computing Allowable Values
Coverage Rate (%) Versus CV Differences Normal - Weibull Distributions

CV Coverage Rate (%)

'B' Allowables 'A' Allowables

CV(1) CV(2) MHK Bayes RRM MHK RRM

.10 .10 98.6 99.2 97.8 99.6 88.6

.10 .12 98.0 98.4 90.8 98.4 68.6

.10 .14 94.0 94.2 82.2 94.4 48.0
(94.2)- .. ) (90.6)* (96.0)- (63.6)-

.10 .16 89.0 89.6 73.4 8912 29.0

.10 .18 84.8 86.8 65.0 .82.0 19.6

.10 .20 76.0 76.6 57.4 69.0 14.0

.12 .10 99.8 99.8 99.4 99.6 98.2

CV(i) = s(i)/m(i) i = 1,2 m(l) = 200, m(2) = 50

Distributions N(m(1 ),s(1) ), W(a(2),b(2) )
where N and W are Normal and Weibull models

for prior and current data sets respectively

a(2) = shape parameter and b(2) = scale
determined for prescribed CV in columns 1 and 2

* sample size n(1) = 15, n(2) = 6

20



Table V. Range and Coverage (%) Versus Sample Size/Methods
Normal Distributions

Method Range (%) of 'B' Allowable Coverage (%)

(n(1), n(2)) 01 50 99 'B' Allowable

RRM (15,6) 27.19 35.55 44.28 86.6

-RRM (30,6) 29.10 36.80 44.58 81.0

RRM (60,6) 30.32 37.52 44.70 73.0

RRM (30,15) 33.42 38.23 43.84 72.8

MHK (15,6) 20.49 32.95 42.87 92.8

MHK (30,6) 25.12 34.51 43.25 91.8

MHK (60,6) 27.40 35.19 42.98 88.4

MHK (30,15) 29.06 36.17 42.07 90.0

n(1) = L sample size CV(1) = .10

n(2) = S sample size CV(2) = .16
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