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INTEGRATION LOSSES AND CLUTTER-DOPPLER SPREAD
FOR A SPACE-BASED RADAR CAUSED BY IONOSPHERIC

SCINTILLATION DURING A SOLAR MAXIMUM

1. INTRODUCTION

Recent work (Mokole 1991; Mokole and Knepp 1991) analyzed the effect of ionospheric scin-
tillation on the total integration loss and clutter-Doppler spread for a space-based radar (SBR)
system in a 1030-km orbit with a carrier frequency between 130 and 1500 MHz. These efforts used
data that were taken at the end of a period of solar minimum (1977). Although a fair portion of the
1977 data experienced severe scintillation, it is not representative of worst-case scintillation effects.
Consequently, results are obtained from additional data corresponding to a period approaching so-
lax maximum (1979). These results are compared to those derived from the 1977 data to determine
how much worse the system impact is.

Although a solar cycle lasts an average of eleven years, the time between a solar minimum
and a solar maximum is not necessarily 5.5 years. In fact, for this particular cycle, the minimum
occurred in the middle of 1976, and the maximum occurred at the beginning of 1980. The average
sun spot number, which is one parameter that characterizes solar activity, had a fairly flat valley
about the minimum until the end of 1977. At this point, it steeply rose to a maximum in two years
(Allnutt 1989). The 1979 data were taken very near the peak, while the 1977 data were measured
very near the solar minimum.

The 1977 and 1979 data come from the same experiment, the Defense Nuclear Agency's Wide-
band, satellite, experiment of 1976-1979 (Fremouw et al. 1978). The 1979 data were measured at
Kwajalein. Table 1 summarizes the information on the eleven individual satellite passes that are
selected for this work. These passes occurred on a range of days from mid-June through the end
of July. The designation, KWAJN 16212, means that the ground site at Kwajalein received signals
from the Wideband satellite on day 162 of 1979 between 12:00 and 13:00 universal time (UT).
According to (National Geophysical Data Center), this time frame corresponds to daily smoothed
sunspot numbers between 135 and 218, with monthly averages of 149.5 (June) and 159.4 (July).
These values are associated with maximal and nearly maximal solar activity. Therefore, these data
are more representative of the most severe scintillation conditions.

Since the analytical foundation for processing the data has been discussed previously (Mokole
and Knepp 1991; Knepp and Mokole 1991; Mokole 1991), only the results from earlier work based
on the 1977 data and from processing the 1979 data are presented. The complex decorrelation time
(r0), the total integration loss (TIL), and the clutter-Doppler spread caused by scintillation (oax)
are addressed in that order.
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Table 1 - Summary of Wideband Passes at Kwajalein in 1979

Pass UT UT Local Time Local Time
Designator Day Start End Start End

KWAJN 16212 162 12:34 12:51 00:34 00:51
KWAJN 17012 170 12:36 12:53 00:36 00:53
KWAJN 17012 170 12:36 12:53 00:36 00:53KWAJN 17312 173 12:50 13:07 00:50 01:07

KWAJN 17812 178 12:38 12:56 00:38 00:56
KWAJN 18112 181 12:52 13:09 00:52 01:09
KWAJN 18312 183 12:27 12:44 00:27 00:44
KWAJN 18413 184 13:06 13:23 01:06 01:23
KWAJN 20212 202 12:45 13:02 00:45 01:02
KWAJN 21111 211 11:43 11:59 23:43 23:59
KWAJN 21113 211 13:27 13:42 01:27 01:42
KWAJN 21212 212 12:21 12:39 00:21 00:39

2. COMPLEX-SIGNAL DECORRELATION TIME (To)

Figures 1 and 2 show histograms of the values of r0 for the 1979 Kwajalein and 1977 Ancon
data at 137.6748, 413.0244, and 1239.0730 MHz. At both locations, as the frequency increases, the
percentage of r0 decreases at the smaller values and increases at the larger values. In particular,
58.86% (26.32%), 17.44% (3.40%), and 0.05% (0.10%) of the T"0 are less than 0.256 s at VHF,
UHF, and L-band, respectively, for the Kwajalein (Ancon) datasets; and 17.45% (4.89%), 44.81%
(34.11%), and 70.76% (84.40%) of the 70 are greater than 4.5 s at the same frequencies. At VHF
and UHF, the percentages of small r0 are greater for 1979, which confirms that scintillation was
worse in 1979. The reverse is true at L-band, where the percentages are less than 0.1%. These
trends are confirmed in Fig. 3, where the distribution of 70 is plotted for both years. For both sets
of data and for each frequency, the minimum value of TO is 24 ms.

3. TOTAL INTEGRATION LOSS (TIL)

The TIL is a combination of coherent and noncoherent summation and is considered for a
coherent integration time of 0.256 s and for a specific, frequency-diverse waveform (Mokole and
Knepp 1991). The waveform consists of bursts of pulses at each of four distinct frequencies (one
look) that axe repeated six times with random time separations between looks. Thus the target
dwell has 24 bursts, and each burst consists of 128 pulses. Because the data occur every 2 ms, the
128 pulses per burst correspond to the coherent integration time of 0.256 s.

In the hypothesized radar system, the returned pulses within each burst are coherently added,
yielding a power for each burst. These outputs are summed noncoherently to obtain the combined
output of both integrators (total integration). The intent of using such a waveform is (1) to select
a coherent integration time so that the samples within a burst are essentially coherent, (2) to
separate frequencies so that the bursts comprising each look are statistically independent, and (3)
to choose a minimum separation between looks that insures the statistical independence of bursts
from different looks. Satisfying (1) minimizes the loss of noncoherently integrating the outputs
of all bursts. The applicability of assumptions (1) and (2) depends respectively on whether the
coherent integration time is less than T0 and on whether the frequency separation is greater than
the coherence bandwidth of the ionospheric channel (Knepp 1983).
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To relate the processing of this waveform to the data, the following procedure is followed. The
T"o statistics and the coherent integration time are used to generate a cumulative distribution of the
coherent integration loss (CIL) per frequency burst. In turn, a distribution of the TIL (Figs. 4 and
5) is generated from the distribution of the CIL. Three special cases provide insight in determining
bounds on the actual TIL:

A. all bursts from all looks are completely coherent;
B. the bursts in each look are completely coherent, but the looks are statistically inde-

pendent; and
C. the bursts from all looks are statistically independent.

The numbers 1 (Case A), 6 (Case B), and 24 (Case C) represent the number of statistically inde-
pendent (noncoherent) bursts in the processed return.

In practice, it is believed that separating the looks, so that they are statistically independent,
is practicable. Consequently, the system response to the waveform lies somewhere between Cases
B and C, that is, between the curves labeled 6 and 24 in Figs. 4 and 5. Each set of three
curves qualitatively has the same form. However, quantatively, for each location, the distribution
approaches unity sooner as the frequency increases. As one expects for the more severe ionospheric
conditions of the Kwajalein data, the TILs are greater, except for L-band at the 0.999-level, which
corresponds to the reversal in trend of 70 that is mentioned earlier (Fig. 3). Table 2 summarizes
this. For example, for 95% of the data at Kwajalein, the bounds for the TIL at VHF, UHF, and
L-band are 2.54, 0.70, and 0.06 dB, respectively; whereas, the TILs at Ancon are 1.30, 0.30, 0.02
dB, respectively.

Table 2 - TIL for Selected Percentages at Kwajalein/Ancon

TIL @ VHF TIL '0 UHF TIL 0 L-band
(dB) (dB) (dB)

95.0 2.54/1.21 0.70/0.29 0.06/0.03
99.0 3.13/1.64 0.92/0.46 0.10/0.05
99.9 3.97/2.21 1.24/0.70 0.20/0.59
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Fig. 1 - Occurence percentage of T at VHF. UHF, and L-band for 1979 Kwajalein

satellite passes. Although not pictured, 4.81%, 34.03%, and 84.29% of the -To
are > 4.5 sec at VHF. UHF, L-band, respectively.
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satellite passes Although not pictured. 17.45%, 44.81%, and 70.45% of the -To

are > 4.5 sec at VHF, UHF. L-band, respectively.
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Fig. 4 - Cumulative distribution of the total integration loss (Ml) for

Kwajalein with a coherent integration time T(, of 0.256s at VHF. UHF.

and L-band. The numerical designations are defined in the text.
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Fig. 5 - Cumulative distribution of the total integration loss (MI) for

Ancon with a coherent integration time Tc0 of 0.256 s at VHF. UHF.

and L-band. The numerical designations are defined in the text
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4. CLUTTER-DOPPLER SPREAD CAUSED BY SCINTILLATION (asc)

The autocorrelation Rsc" of the envelope fluctuation A3 of the received clutter voltage, in-
curred by severe scintillation, is modeled analytically as a Gaussian function (Knepp 1983; Mokole
1991)

Rsc(r) = (Asc(t + r)A() exp - . (1)

Equation (1) implies that the spectrum of Asc (the Fourier transform of Rsc) is

1 ( f2S 3 2 (f) = V - o s exp 2 -gc 2

where the clutter-Doppler spread is 1
s: -. (3)

Analytically, Ssc spreads and orsc increases as r0 decreases. Since a greater number of small
values of 70 are measured for the 1979 Kwajalein data, one expects the cumulative distribution of
the clutter spread for Kwajalein to lie below that of the 1977 Ancon data for the smallest frequency.
Figure 6 confirms this expectation. Further, the Kwajalein curve is always below the Ancon curve
at VHF and UHF. For 99% of the data at Kwajalein/Ancon, asc is less than 7.46 Hz/4.66 Hz,
2.14 Hz/1.38 Hz, and 0.46 Hz/0.22 Hz at VHF, UHF, and L-band, respectively. Table 3 provides
spreads at chosen percentage levels. Also, note that the spectral spread decreases with increasing
frequency, which is expected since the decorrelation increases with increasing frequency. Lastly,
because the minimum value of 70 for both the Kwajalein and Ancon data at each frequency is 24
ms, the maximum clutter spread for each dataset and each frequency is 9.38 Hz.

Table 3 - asc for Selected Percentages at Kwajalein/Ancon

Percent osc 9 VHF ao:: @ U11F asc L L-band
(Hz) (Hz) (liz)

95.0 4.90/2.74 1.58/0.74 0.26/0.10
99.0 7.46/4.66 2.14/1.38 0.46/0.22
99.9 7.98/5.94 2.50/2.66 0.78/0.86
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5. SUMMMARY

The data received from two equatorial ground stations, Kwajalein in 1979 and Ancon in 1977,
are processed and analyzed. The Kwajalein data were taken at the beginning of a period of maximal
solar activity, while the Ancon data correspond to a solar minimum. As expected, the Kwajalein
data, which typify worst-case ionospheric conditions, experienced more severe scintillation than the
Ancon data. This is manifested by a weighting of the distribution of the complex decorrelation
time (T"o) for the Kwajalein dataset toward smaller values. However, the minimum value of TO for

both locations and each frequency is the same (24 ms).
A bound on the combined coherent-noncoherent integration loss (TIL), resulting from worst-

case scintillation, is obtained for a waveform tha. consists of four bursts per look and six looks per

dwell and for a coherent integration time of 0.256 s. The bound is generated from a cumulative
distribution of the TIL, which is created from ro statistics and a distribution of the coherent
integration loss per burst. The bounds for the Kwajalein data are larger than those for the Ancon
data, and both sets of bounds decrease with increasing frequency. In particular, a space-based
radar in a 1030-km orbit will suffer a TIL not exceeding 2.54, 0.70, and 0.06 dB at VHF (138
MHz), UHF (413 MHz), and L-band (1239 MHz), respectively, for 95% of the time in worst-case
conditions.

For severe scintillation, the clutter-Doppler spreads (oaws) for the data are calculated with a
simple analytical expression from the r 0-statistics. Since the Kwajalein data experienced more
severe scintillation, its cltter spreads are larger than those of Ancon. In particular, for 95% of the
time during worst-case conditions, a is less than 4.90, 1.58, and 0.26 Hz at VHF, UHF, and L-
band, respectively. However, because the minimum r0 is the same for each location and frequency,
the maximum ac are equal. Hence this maximum (9.38 Hz) is a conservative bound on how much
the total clutter spread can be reduced over this frequency range (130-1240 MHz) for worst-case
ionospheric conditions.
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