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1. Introduction

Given data x obtained under a parametric model indexed by finite-dimensional 0, the Bayesian
learning process is based on

1(0;x)p(O) ()p(O~x) =d 11
f (;x)p() dO

the familiar form of Bayes theorem, relating the posterior distribution, p(O Ix), to the likelihood, 1(0; x),
and the prior distribution, p(O). If 0 = (0, iv), with interest centering on 0, the joint posterior distribu-
tion is marginalized to give the posterior distribution for 0.

p(OIx) = f p(O, Vx) dv. (1.2)
If summary inferences in the form of posterior expectations are required-for example, posterior
means and variances-these are based on

E[m(O)Ix] = f m(O)p(OIx) dO, (1.3)

for suitable choices of m(.).

Thus, in the continuous case, the integration operation plays a fundamental role in Bayesian
statistics; be it for calculating the normalizing constant in (1.1), the marginal distribution in (1.2), or
the expectation in (1.3). However, except in simple cases, explicit evaluation of such integrals will
rarely be possible and realistic choices of likelihood and prior will necessitate the use of sophisticated
numerical integration or analytic approximation techniques (see, for example, Smith et al, 1985, 1987,
Tierney and Kadane, 1986). This can pose problems for the applied practitioner seeking routine,
easily implemented, procedures. For the student, who may already be puzzled and discomforted by the
intrusion of too much calculus into what ought surely to be a simple, intuitive, statistical learning
process, this can be totally off-putting.

In the following sections, we shall address this problem by taking a new look at Bayes theorem
from a sampling-resampling perspective. This will be seen to open the way both to easily imple-
mented calculations and to essentially calculus-free insight into the mechanics and uses of Bayes
theorem.

2. From densities to samples

As a first step, we note the essential duality between a sample and the density (distribution) from
which it is generated. Clearly, the density generates the sample; conversely, given a sample we can
approximately recreate the density (as a histogram, a kernel density estimate, an empirical c.d.f. or
whatever).

Suppose we now shift the focus in (1.1) from densities to samples. In terms of densities, the
inference process is encapsulated in the updating of the prior density, p(O), to the posterior density,
p(O Jx), through the medium of the likelihood function, l(0;x). Shifting to samples, this corresponds to
the updating of a sample from p(4) to a sample from p(8 Ix) through the likelihood function l(0;x).

In section 3, we examine two resampling ideas which provide techniques whereby samples from
one distribution may be modified to form samples from another distribution. In section 4, we illustrate
how these ideas may be utilized to modify prior samples to posterior samples, as well as to modify
posterior samples arising under one model specification to posterior samples arising under another.
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3. Two resampling methods

Suppose that a sample of random variates is easily generated, or has already been generated,
from a continuous density g(0), but that what is really required is a sample from a density h(O) abso-
lutely continuous with respect to g(0). Can we somehow utilize the sample from g(O) to form a sam-
ple from h(0)? Slightly more generally, given a positive function f(O) which is normalizable to such a
density h(O) = f()/f f(O) dO, can we form a sample from the latter given only a sample from g(O) and
the functional form of f(0)?

3.1 Random variates via the rejection method

In the case where there exists an identifiable constant M > 0 such that f(O)/g(O) < M. for all B.

the answer is yes, and the procedure is as follows (see, for example, Ripley, 1986, p. 6 0):

(i) generate 0 from g(0);

(ii) generate u from uniform (0, 1);

(iii) if u < f(O)/Mg(O) accept 0; otherwise, repeat (i)-(iii).

Any accepted B is then a random variate from h(0) = f(O)/f f(O) dO.

Hence, for a sample 0i , i = 1.... n, from g(B), in resampling to obtain a sample from h(O) we
will tend to retain those 0i for which the ratio of f relative to g is large, in agreement with intuition.
Resulting sample size is random. Since it may be shown that the probability of acceptance of a ran-
dom 0 from g is 4-, expected sample size for the resampled 0i's is in.

IMf I du N.J 1\lo do
3.2 Random variates via a weighted bootstrap

In cases where the bound M required in the above procedure is not readily available, we may still
approximately resample from h(O) = f(O)/ff(O) dO as follows. Given 0,, i =1 .... n, a sample from

g, calculate wi = f(Oi)/g(Oi) and then qi = wi/ i oj. Draw 0* from the discrete distribution over
j-1

(9 ..... 0.) placing mass qi on Bi . Then 0* is approximately distributed according to h with the
approximation 'improving' as n increases. We provide a justification for this claim in a moment.
However, first note that this procedure is a variant of the by now familiar bootstrap resampling pro-
cedure (Efron, 1982). The usual bootstrap provides equally likely resampling of the 9,, while here we
have weighted resampling with weights determined by the ratio of f to g, again in agreement with
intuition.

Returning to our claim, suppose for convenience that 0 is univariate. Under the customary
bootstrap, 0* has c.d.f.

P(G* '< a) = 1(_..o1(1) =L g(O) dO
i-,I

so that 0* is approximately distributed as an observation from g(O). Similarly, under the weighted
bootstrap, 0* has c.d.f.
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I
n i.

P(O* 4 a) = qil(_...a(OI) =
iml-I

?1 i-1

Es f(O) f) fa
Es g() f"() dO

so that 0* is approximately distributed as an observation from h. Note that the sample size under such
resampling can be as large as desired. We mention one important caveat. The less h resembles g the
larger the sample size n will need to be in order that the distribution of 6* well approximates h.

Finally, the fact that either resampling method allows h to be known only up to proportionality
constant, i.e. only through f, is crucial, since in our Bayesian applications we wish to avoid the
integration required to standardize f.

4. Bayesian calculations via sampling-resampling

Both methods of the previous section may be used to resample the posterior (h) from the prior
(g) and also to resample a second posterior (h) from a first (g). In this section we give details of both
applications.

4.1 Prior to posterior

How does Bayes theorem generate a posterior sample from a prior sample? For fixed x, define
f.(O) = l(O;x)p(O). If 0 maximizes l(0;x), let M = /(6;x). Then with g(O) = p(B), we may immedi-
ately apply the rejection method of section 3.1 to obtain samples from the density corresponding to f.
standardized, which, from (1.1), is precisely the posterior density p(81x). Thus, we see that Bayes
theorem, as a mechanism for generating a posterior sample from a prior sample, takes the following
simple form:

for each 0 in the prior sample accept 0 into the posterior sample with probability

(6) 1(O; x)
Mp(6) = (;"

otherwise reject it.

The likelihood therefore acts as a resampling probability; those 0 in the prior sample having
high likelihood are more likely to be retained in the posterior sample. Of course, since
p(O Ix) -c I(0,x)p(O) we can also straightforwardly resample using the weighted bootstrap with

qj = l(Oi; x) / .l(Oj;x).
j.1

Several obvious uses of this sampling-resampling perspective are immediate. Using large prior
samples and iterating the resampling process for successive individual data elements-for two-
dimensional 0, say-provides a simple pedagogic tool for illustrating the sequential Bayesian learning
process, as well as the increasing concentration of the posterior as the amount of data increases. In
addition, the approach provides natural links with elementary graphical displays; e.g. histograms, stem
and leaf displays, boxplots to summarize univariate marginal posterior distributions, scatterplots to
summarize bivariate posteriors, etc. In general, the translation from functions to samples provides a
wealth of opportunities for creative exploration of Bayesian ideas and calculations in the setting of
computer graphical and EDA tools.
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4.2 Posterior to posterior

An important issue in Bayesian inference is sensitivity of inferences to model specification. In
particular we might ask:

how does the posterior change if we change the prior?
how does the posterior change if we change the likelihood?

In the density function / numerical integration setting, such sensitivity studies are rather off-putting, in
that each change of a functional input typically requires one to carry out new calculations from
scratch. This is not the case with the sampling-resampling approach, as we now illustrate in relation
to the questions posed above.

In comparing two models in relation to the second question, we note that change in likelihood
may arise in terms of

(i) change in distributional specification with 0 retaining the same interpretation, e.g. a location,

(ii) change in data to a larger data set (prediction), a smaller data set (diagnostics), or a different
data set (validation).

To unify notation, we shall in either case denote two likelihoods by 11(8) and 12(0). We denote two
different priors to be compared in relation to the first question by pl(O) and P2(0). For complete gen-
erality, we shall consider changes to both I and p, although in any particular application we would not
typically change both. Denoting the corresponding posterior densities by J51(0),/l2(0) we easily see
that

hecc12(0)P2(0)A()(42
P2(O) ()(4.2)

Letting v(6) = 12(O)p2(0)/ll(O)p1(O), we note that to implement the rejection method for (4.2)
requires sup v(O). In many examples this will simplify to an easy calculation. Alternatively, we may

directly apply the weighted bootstrap method taking S = 15(0), f = v(6)p 1(O) and wi = v(01 ). Resam-
pled 0* will then be approximately distributed according to f standardized, which is precisely 12(0).

Again, different aspects of the sensitivity of the posteriors to changes in inputs are easily studied
by graphical examination of the posterior samples.

References

Efron B (1982). The bootstrap, jackknife and other resampling plans, SIAM, Philadelphia.

Ripley B (1986). Stochastic simulation, J Wiley & Sons, NY.

Smith A F M, Skene A M, Shaw J E H, Naylor J C and Dransfield M (1985). The implementation of
the Bayesian paradigm, Communications in Statistics, Theory and Methods 14, 1079-1102.

Smith A F M, Skene A M, Shaw J E H, Naylor J C (1987). Progress with numerical and graphical
methods for Bayesian statistics, The Statistician 36, 75-82.

Tierney L and Kadane J (1986). Accurate approximations for posterior moments and marginal densi-
ties, J Amer Statist Assoc 81, 82-86.



-6-
Ut4CLASIF ED

REPIY LSIICTOO TI OCUMENTTO PAGEo8006 READ INSTRUCTIONS
REPOR DocmENTTIONPAGEBEFORE COMPLING 14 FORM

1REPORT HNwsII LtGOVT ACCCSIION No .L ACIIPIIENT'SCATALOG MUMUER

4. TITL9..EfaiE vW##6*J L TYPIK OF REPORTA &go P4110COV9111

Bayes Theorem From A Sampling-Resampling TECHNICAL REPORT
Perspective S. 111mp1ORMINo ORG.L RIEPORT NUNGIER

7. AUTOR(@) S. CONTRACT Olt GRANT NUMUE1'@i

A. F. M. Smith and A. E. Gelfand N00014-89-J-1627

S. PERFORMINIG ORGANIZATION NAMIE ANO ADDRESS 10. PRO0GRAM ELEWMNT. PROJECT. TAMK
Departrment of Statistics ANEA & WORK UNIT NUMURS

Stanford University NR-042-267
Stanford, CA 94305

It. C014TROLLING OPPICIE NAMIE AND ADDRESS IL REPORT OATS

Offie ofNava ResarchJuly 31, 1991
Offie ofNava Resarch13.NuRSER11 OF P AGES

Statistics & Probability Program Code 1111 6
Id. MaNITOARj*G AGENCY OfNE £O9 ORSS( lf .ifevat u Conhtrolin 01*es) 1S. 84CURITV CLASS. (01 dha uuPN)

UNCLASSIFIED

aS. DCECL £558 FICATION/ DOWNGRADING
SCHEDOULC

1S. OISTRISUTION STATEMENT (of hi.t Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. OISTRIUIUTIOM STATEMENT (of A.v sheireaa onfovd D1o SleaS ". It glfflaea br Popat)

14. SUPPLEMENTARY NOTES

IS. KEY WORDS (CenU~ntoan rovare o'E. fi aa...my Ad IdoneF bp Wooim~in)

Bayesian inference; EDA; graphical methods; influence; posterior distribution;
prediction; prior distribution; random variate generation; sampling-resampling
techniques; sensitivity analysis; weighted-bootstrap.

30. ASTRACT (Coamos an to.vor. side of nosooomy od Idwet 6p 51.4* mbApe

Even to the initiated, statistical calculations based on Bayes theorem can be
daunting because of the numerical integrations required in all but the simplest
applications. Moreover, from a teaching perspective, introductions to Bayesin
statistics - if they are given at all! - are circumscribed by these apparent cal-
culational difficulties. Here we offer a straightforward sampling-resampling
perspective on Bayesian inference, which has both pedagogic appeal and suggests
easily implemented calculation strategies.

DD I iTN7 1473 EDTION 01 1NOV 69 1 aSOLgTg NLSSFE
..................................................................


