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ABSTRACT

MICHAEL N. BOUCHER. Comparative Mutagenicity of Urinary Metabolites of
Nitropolycylic Aromatic Hydrocarbons 1-Nitropyrene, 2-Nitrofluoranthene,
and 3-Nitrofluoranthene. (Under the Direction of Dr LOUISE M. BALL)
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(ﬁih), and(§9hitrof1uoranthene (3 Rats were injected intra—

peritoneally with specific doses and their urine was analyzed for
mutagenicity by an Ames plate incorporation assay using Salmonella
Typhimurium. Resulting data yielded revertant excretion rate plots used
for comparative analysis. To achieve maximum mutagenicity, 1-NP's
urinary metabolites required exogenous activation by 59, 2-NFA's did not
vary significantly with §9 activation, while 3-NFA's was decreased by S9
metabolism. 2-NFA's mutagenic metabolites' revertant excretign rate was
a guarter of the rates of . NFA's and 1-NP's mutagenic metabolites. The
strongest mutagenicity of urinary metabolites during the 48 Brs after
injection was from 1-NP which was double the amounts from 3-NFA and 2-
NFA. pHowever, the estimated totai urinary mutagenicity showed 1-NP and
2—NFJ§§Btentially created equal amounts while 3-NFA 's amount was only
half 1-NP's amount. All three compounds' urinary mutagen excretion

rates are formation rate limited.
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I. INTRODUCTION

1-Nitropyrene (1-NP) and nitrofluoranthenes (NFA) are prevalent
air pollutants contributing significantly to mutagenic activity of
ambient organic particles in both cities and rural areas (Aray, et al
88; Ramdahl, et al 86; Tokiwa, et al 87). The everyday operation of
combustion engines exhausting into the atmosphere built these
pollutants' concentrations high enough to initiate scientific concern
for human health. Assessment of 1-NP's mutagenicity is fairly complete
implicating 1-NP as a potent mutagen and furthering concern about the
carcinogenicity of Nitro-PAHs. The task continues to correlate current
results to human risk and better categorize other nitroarenes and air
pollutants according to their notential mechanisms of action.

This study provides a preliminary investigation into the
mutagenicity of actual in vivo metabolites of 2-NFA and 3-NFA.
Characterization of 1-NP's in vivo fate and in vitro mutagenicity is
established while only in vitro studies for 3-NFA and 2-NFA are
available. This study uses the Ames bacterial assay to examine the
mutagenicity of urinary metabolites of 2-NFA and 3-NFA. Sprague Dawley

rats are injected intra-peritoneally with varying doses of 1-NP, 2-NFA,




and 3-NFA dissolved in acetone. Developed Excretion Rats Plots
illustrate each compounds' mutagenicity and kinetics. Considering the
past in vitro research results of the NFAs and using this study's in
vivo results for all three compounds, preliminary characterizations of

the urinary mutagenic metabolites of 2-NFA and 3-NFA are established

using 1-NP as the reference point.




II. LITERATURE REVIEW

II. A. Background
II. A. 1. Formation of Nitro-PAHs

1-NP and 3-NFA are immediately formed by-products of combustion
due to the interactions of nitrogen oxides (NOx), nitric acid, and"
fluoranthene molecules produced by incomplete combustion of fosail fuels
(Pitts, et al 85; Ramdahl, et al 86). 1-NP, 3-NFA, and 2-NFA can be
formed any time after combustion during atmospheric chemical
interactions between the by products fluoranthene and dinitrogen
pentoxide (N,0) catalyzed by a OH radical with NOx (Pitts, et al 85;
Ramdahl, et al 86; Zielinska, et al 87). Atmospheric conditions of
radiant energy, constituents' concentration and degradation rates,
organic particle interactions, and other forms of natural conditions
determine the rate of nitro-PAH formation. 2-NFA has been found in the
most abundance of the nitro-PAHs on ambient organic particles, although
not found directly in diesel emissions as are 1-NP and 3-NFA (Aray, et
al 87; Ramdahl, et al 86). Nitro-PAH formation even occurs in the
charring process of some foods (Kinouchi, et al 86). 1All three
compounds are prevalent air pollutants due to their organic particle

host sheltering them from external degradation forces.




II. A. 2. Biological Reactivity of Nitro-PAEs

Nitro-PAHs can be absorbed via inhalation and/or ingestion during
normal everyday exposure. (King et al, 83; Bond & Sun 86; Bond, et al
86). Research has shown Nitro-PAHs require biological activation and
many are considered potent mutagens and subsequently, potential
carcinogens (Ball, et al 84; Ball and King 85; Ball and Lewtas 86;
Consolo, et al 89; Hirayama, et al 88). Indeed, Howard (et al 83) and
Dietrich (et al 88) showed 1-NP and 3-NFA metabolites can form a DNA
adduct. DNA adducts are suggestive of a chemical's carcinogenic
potential because they are proof of the chemical's ability to directly
interact with DNA.

In vivo metabolism of Nitro-PAHs involves many factors due to the
enterchepatic circulation. The compound may undergo oxidation,
acetylation, and conjugation in the liver where the conjugated
metabolite may then be transported to the intestines. Intestinal flora
may reduce the metabolite while B-Glucuronidase- and Sulfatase-
containing hacteria may deconjugate the metabolite allowing absorption
into the enterohepatic circulation. Ball (et al 84) demonstrated the
importance of gut flora in the metabolism reduction of nitro-PAHs
followed by N-acetylation to the mutagenic acetylated metabolites.
Oxidation of Nitro-PAHs via the liver's mixed function oxidase results
in ring epoxidation and ring hydroxylation (King, et al 87; Howard,
et al 85; Ball, et al 84; King et al 84). Oxidative and reductive

pathways are both believed to produce DNA adducts (Djuric, et al 86).




Additionally, Ball (et al 84) found ring oxidation is a major route for ‘
nitro-PAH metabolism in vivo. Time dependence of specific metabolite
production signified the activity of the enterohepatic circulation in
nitro-PAH metabolism (Ball & King, 85). Several bacterial strains.are
capable of these pathways, but unfortunately multiple strains can not
easily be used simultaneously. The use of urinary metabolites provides
a non-invasive look at in vivo metabolism. Bacterial strains recreate a
pseudo metabolism model to view the resulting body's exposure to
reabsorbed potentially mutagenic metabolites via the enterohepatic
circulation.

Characterizing nitro-PAHs via animal metabolism is limited in
scope since human P-450 metabolism of nitro-arenes may differ greatly
from rodents', questioning the rodent model's reliability as predictors
of human metabolism (Howard, et al 90). Consequently, no direct human
health risks can be inferred, but we can develop a preliminary appraisal
of nitro-PAHs' in vivo metabolism, mutagenicity, and potential

carcinogenicity.

I1. A. 3. Anmalytical Techniques
II. A. 3. (a). In Vivo Betabolisa Study

Six week old, male, Sprague Dawley rats were selected for this in
vivo metabolism study. These rats are fairly ccmpetent nitroarene

metabolizers and cytochrome P-450 participates in nitro-reduction by
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Sprague Dawley rat liver microsomes (Belisario, et al 90). Although the
extent of P-450 epoxidation { nitroarenes differ between species
(Howard, et al 88), a majority of previous research has accepted the
Sprague Dawley rat as the standard model (Ball & King, 85; Belisario, et
al 90; Howard, et al 85; Howard, et al 88). To minimize confounding
between rat samples, all rats were treated identically. Acclimatization
time, food, water, cage type, injection and collection times, age, and
gender were consistent for all rats,

In vitro studies have shown similar metabolism rates for both 1-NP
and NFAs so in vivo rates could be proportionally similar. 1-NP's past
metabolism research shows 2 majority of the dose is excreted in the
first 24 hrs, approxinatoly 15% in urine and 40% in feces (Ball, et al
84; Ball & King, °5; Kinouchi, et al 90). Considering Stocking's (89)
findings of 2-NFA's slow in vitro metabulism, an extended collection
period of 48 hrs ensured the majority of sample was collected. Omly
urinary metabolites were collected as the fecal metabolites should not
significantly elevate mutagenicity levels above background in Salmonella
Typhinurium strains as evidenced by 1-NP (Ball, et al 84).

Initial excretion of 1-NP metabolites before 8 hrs primarily
consisted of the nxidative products, diols and hydroxy metabolites,
which are not potent mutagens. After 8 hrs, the enterohepatic
circulation enabied ring oxidation, nitroreduction, and N-acetylation

metabolism to occur creating the potent mutagen 6-hydroxy-NAAP




with peak mutagenicity levels attained around 12 hrs (Ball & King, 8S;
Howard, et al 85; Kinouchi, et al 86). Shorter collection periods were
required to better characterize the initial portion of excretion. DMSO
proved to be an inefficient transport for nitro-PAds into tae systemic
system (Ball, et al 85) while acetone provided an increased delivery
efficiency. Less than 2% of metabolites excreted degrade by bacteria or
enzymes between collection and analysis (Ball, et al 84). Immediately
freezing samples upon collection and storage in a dark freezer ensured

samples authenticity until use in the Ames assay.

II. A. 3. (b). Ames Salmonella Assay

The Ames Salmonella Typhimurium assay is widely accepted for

chemical and urinary mutagenicity research and specifically, the TA98
strain is frequently used for, and most responsive to nitro-PAH (Ball et
al 84; Ball et al 85; Howard, et al 87; Zeiger, et al 87; Zielinska, et

al 87). Salmonella Typhimurium strain TA98 is modified with a -1

frameshift disabling its histidine production capability. Lacking a
repair mechanism, a frameshift mutation is required to reset the gene
frame for proper function. Nitroreductase is a key metabolic activity
of TA98 as nonreductase deficient strains decrease mutation rate of
1-NP, a known nitroreductase dependent mutagen (Consolo, et al 89). The
bacteria is grown in a histidine deficient medium with the chemical of

interest. Reversion back to the wild state capable of producing




histidine is evidence of a frameshift mutation of the genome. The
assumption is that any chemical able to effect a mutation of the genome
is capable of other unidentifiable mutations of the genome presenting it
as a potential carcinogen. Many mutagens require exogenous activation
by S9, a mammalian system which provides a mixed function oxidase
dependent on a NADPH, glucose-6-phosphate electron generating system.

S9 is from Aroclor 1254 induced animals which provides a wide range of
P-450 mixed function oxidases (Maron & Ames, 83). The Ames bacterial
assay has an overall positive predictive value of only 62% (Temmant, et
al 87), however, is over 90% efficient in correlating mutagenic

nitroarenes as carcinogenic in rodents (Zeiger, 87).

II. A. 3. (c). Toxicokinetic Analysis

Toxicokinetics has progressed rapidly over the past two decades
becoming an extremely useful tool for invasive and non-invasive in vivo
studies. Particularly of ianterest to this study is the analysis of
urinary excretion data. The urinary excretion rate of a compound is
identical to the plasma concentration level over time (Shargel & Yu,
85). Excretion rate data provide a profile of intermal workings of the
animal. Excretion rate models consider the whole animal as one
compartment, however, the flux in and out of the animal may vary with

time providing more than one rate constant outlined by Figure 1.




Dg =t D8 Vo pore——s Figure |  One-compartment pharmaco-
kinetic model tor first-orger grug absorption
and first-order elimination

(Reprinted from Shargel and Yu, 85)

The rate of uptake and excretion of a substance is a function of
the rate constants, Ka, and Ke, which can both be estimated from
excretion rate data. The standardized method using an Excretion Rate
Plot is shown in Figure 2 (Shargel & Yu, 85). The slope of the terminal
end of the profile estimates the excretion rate constant, Ke, while Ka,
is the residue slope created by excretion line's data points subtracted
from the initial positive slope’s data points. If Ka >>Ke, then the Y
intercept is the total cumulative amount of substance excreted which
also equals the total area under tue curve (AUC). Also if Ka>>Ke then
the substance’s excretion rate is formation rate limited (Sharge! and
Yu, 85). The AUC can also be determined by using the linear excretion
rate to estimate the X intercept and calculating the AUC via the
trapezoidal rule. Once the AUC is known, a Sigma Minus Plot, Figure 3
(Shargel and Yu, 85), can plot the amount left fo be excreted over time.
The Sigma Minus Plot’'s slope Letter estimates the excretion rate
constant Ke since all excretion rate data are used rather than just the

last few terminal values.
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II. B. 1-Nitropyrene Mutagenicity Characterization

In vitro experiments initially charted each of 1-NP's metabolites
which were eventually found via in vivo research. The mutagenicity of
1-NP in vitro metabolites is decreased by S9 while curiously, its
urinary metabolites are activated by S9 (Ball, et al 84). 1-NP's in
vivo pathway significantly differed from the in vitro route due to the
in vivo metabolism process, however, both paths essentially achieved
similar active mutagenic metabolites.

The majority of the dose after injection of rats was excreted in
bile as glutathione, cysteinylglycine, and cysteine conjugates (Bond, et
al 85; Howard, et al 85; Kinouchi, et al 90). Intestinal flora in the
intestines play significant roles in reducing 1-NP and metabolizing i .5
conjugates to reactivated metabolites enabling reabsorption via the
enterohepatic circulation (EHC) (Ball & King, 85; Howard, et al 85;
Kinouchi, et al 86; Kinouchi, et al 90). These reabsorbed metabolites
could be hydrolyzed in intestine and reduced by bacterial nitroreductase
to reactive n-hydroxyl arylamine (NAA) derivatives (Ball & King, 85;
Howard, et al 85; Kinouchi, et al 86; Kinouchi, et al 90). This
transformation to NAA may be common for all nitroarenes, but to what
extent is unknown (Ball & King, 85; Kinouchi, et al 90). The metabolite
6-hydroxy-NAAP accounted for the highest portion of urine mutagenicity
excreted at 12 hours after dosing and required S9 for maximuw bacterial

mutagenicity (Ball, et al 84; Ball & King, 85). 89 may further




12
metabolize the 6-OR-NAAP metabolite by esterification eventually
generating a nitrenium ion. Similarly, the parent, 1-NP undergoes in
vitro nitroreduction to a hydroxylamine or nitrenium ion (Ball, et al
84). Howard (et al 83) showed the nitrenium ion formed by 1-NP can form
a dG:C8 adduct N-(deoxyguanosin-8-yl)-l~-amino-fluoranthene. However, 1-
NP metabolites reduce easier to DNA adducts than the parent 1-NP
(Djuric, et al 86). The excretion pathways of 1-NP appear to be
independent of exposure concentration where fecal remains the major
route accounting for twice as much as the urine route (Ball & King 85;
Bond, et al 85). The fecal does not contain significant mutagenic
metabolites while very little parent 1-NP remained unmetabolized in the

urine (Bond, et al 85; Howard, et al 85; Ball and King, 895).

II. C. Characterizations of Nutagenicity of 2- & 3-Nitrofluoranthene

3~NFA is strongly mutagenic in bacterial strains containing nitro-
reductase (Ball, et al 86), however 2-NFA is considered a weaker mutagen
more closely related to 1-NP's levels. Nitroreduction and O-
esterification have both besn identified as slightly preferential
metabolic activators for 2-NFA and 3-NFA respectively (Consolo, et al
89). 2-NFA (Zielinska, et al 87; Belisario, et al 90) and 3-NFA
(Consolo, et al 89; Bellisario, et al 90; Howard, st al 88; Stocking, 89)
like, 1-NP (Ball & King, 85) were shown to be dependent on

nitroreduction in vitro whers as their metabolites are more dependent on
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esterification (McCoy, et al 83; Consolo, et al 89). Both NFAs are less
dependent than 1-NP on nitroreductase in vitro, however, a reductase
lacking bacterial strain still decreased 3-NFA activity by 49-69%
(Consolo, et al 89). Moreover, 3-NFA in vitro metabolism pathway is
through epoxide intermediates (Howard, et al 88) and the resulting

phenolic metabolites' mutagenicity remain unexplained (Consolo, et al

89). 2-NFA is less active and more dependent on nitroreductase than 3-
NFA, but less affected by S9's mixed function oxidase (Zielinska, ét al
88). Like 1-NP, 2-NFA's mutagenicity was decreased slightly by S9 as
was its iIn vitro metabolites 9-hydroxy-2NFA and 8-hydroxy-2NFA
(Zielinska, et al 87). 3-NFA's in vitro mutagenicity like 1-NP's, is
decreased by S9 in the bacterial strain TA98 but unlike 1-NP's in vivo
metabolites, 3-NFA does not produce in vitro metabolites more dependent
on 59 (Consolo, et al 89). Specifically, the 3-NFA-8-0l metabolite was
as mutagenic as its parent 3-NFA, but other 3-NFA metabolites were 10
fold less mutagenic (Consolo, et al 89). This implies 3-NFA metabolites
further metabolism may result in detoxification indicating not all
nitro-PAHs' metabolism mechanisms are alike (Ball & Williams, 86).
Stocking (89) demonstrated in vitro reduction of 3-NFA efficiently
produced only the 3-AFA metabolite while reduction of 2-NFA produced 2-
AFA vwhich itself underwent acetylation to form 2-NAAFA, but at a
considerably slower rate. Indeed 1-NP and 2-NFA metabolites have been

shown to retain a strong dependence on nitroreduction while 3-NFA's
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primary in vitro metabolites were largely dependent on O-esterification
(Consolo, et al 89). Unlike the hepatic metabolism of 1-NP shown to
involve both ring oxidation and nitroreduction (Ball, et al 84; Howard,
et al 85), NFAs were shown to only undergo ring hydroxylation in aerobic
and only reduction in anaerobic conditions (Belisario, et al 90).
Metabolism of these nitro-PAHs seems to be very dependent on their
environment suggesting their metabolism may depend on their in vivo
kinetics. Metabolism may also vary with the in vivo model used as P-450
metabolism of 3-NFA and 1-NP vary greatly between species (Howard, et al

88).

II. D. Metabolism Kinetics of 1-NP, 2-NFA, and 3-NFA

1-NP metabolism in vivo has been well characterized. Initial
metabolites excreted are phenols and dihydrodiols which rapidly give way
in the 8-12 hr period to the acetylated 6-OH-NAAP constituting the
majority of the 1-NP dose excreted. Since very little actual parent
compound remains unmetabolized, the terminal clearance rate is truly the
metabolites’ excretion rate. Expanding the comparative picture to
estimate NFAs' response, metabolism kinetics provides key evidence as to
metabolism opportunities, although NFAs' metabolism rate remains highly
varied. 3-NFA in bacterial strains undergoes 90% metabolism to 2-AFA in
6 hrs (Stocking, 89). 2-NFA metabolism is slower with 10% of the parent

metabolized in 6 hrs while in 24 hrs, 80% of the parent is metabolized
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to 2-AFA and 15% of the parent is metabolized to 2-NAAFR. 2-NFA's
nonlinear metabolism rate currently is attributed to a secondary
nitroreductase or an oxygen sensitive reductase which is activated
(Stocking, 89). 2-NFA and two metabolites, 8 and 9-hydroxy 2-NFA depend
on nitroreduction and O-acetylation in vitro (Zielinska, et al 87), no
in vivo metabolic pathways have yet been described. Comparing exposure
dose to urinary metabolite mutagenicity over time, 1-NP metabolites
become more mutagenic as the enterohepatic circulation provides
opportunity for acetylation for mutagenic metabolite production (Ball,
et al 84; Ball & King, 85). The combination of a fast metabolism rate
predicted by Stocking (89) and the detoxifying action of metabolism
implies most 3-NFA urinary metabolites may be direct acting mutagens
(independent of S9 activation) while 2-NFA's metabolites can only be

estimated to undergo more acetylation than metabolites of 3~NFA.




III. MATERIALS AND METHODS

III. A. Materials
III. A. 1. In Vivo Metabolism Study Materials

Six week old Sprague Dawely rats whose weights ranged from 200-230
grams were purchased from Charles River while the plastic metabolism
cages (Nalgene) and animal isolation booth were provided by Department
of Laboratory Animal Medicine (DLM), University of North Carolina,
Chapel Hill. Granular rat chow was supplied by DLM and ground to powder
form. Nitro-PAHs injected: 1-nitropyrene (99.7% purity) was purchased

from Midwest Research Institute (Kansas City WO); 3-nitrofluoranthene

purchased from Chemsyn Inc. (Lenexa, Ks); and 2-nitrofluoranthene was
synthesized and purified by Dr Louise Ball (Dept. of Environmental
Science and Engineering, UNC) according to procedures outlined by
Kloetzel (et al 1955). HPLC grade acetone was supplied by Fisher
Scientific and sterile single use syringes were supplied by Bector
Dickerson & Co. (Rutherford, N.J.). Sterile 0.22 and 0.40 micron

filters were purchased from MSI (Westboro, MA).

IIX. A. 2. In Vitro Ames Assay Materials
Agar-Agar was purchased from U.S. Biochemical Corp (Cieveland, OH).
Sodium Azide, 2-nitrofluoranthene, ampicillin trihydrate, and crystal

violet were purchased from Aldrich (Milwaukee, WI). B-Glucuronidase,
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NADP, and Glucose-6-Phosphate were supplied by Boehringer Mannheim (West
Germany). Dextrose was purchased from EM Science (Cherry Hill, NJ). L-
histidine, biotin, magnesium chloride, potassium chloride for the Vogel-
Brunner medium and S9 salt solution, along with molecular biology grade
Dimethyl Sulfoxide were acquired from Fisher Scientific (Fairlawn, NJ).
2-Anthramine was purchased from Sigma Chemical Co (St Louis, Mo). Oxide
broth was supplied by Oxoid Ltd (Basingstoke, Hants, England). S9 from
Aroclor 1254 treated male rats purchased from Maltox Molecular
Toxicology, Inc. (College Park, MD). Phosphate Buffer, PH=7.5, was
ottained from the Linberger Cancer Research Center’'s Tissue Culture

Facility (UNC,Chapel Hill). Salmonella Typhimurium strain TAS8 was

obtained from Dr. Bruce Ames, University of California at Berkeley.

III. B. Methods
III. B. 1, In Vivo Metabolism Study

After a one week acclimatization period, Sprague Dawley rats were
injected intra-peritoneally through a 25g needle with varying doses of
1-NP, 2-NFA, and 3-NFA of 2 mg, 1 mg, and 0.5 mg in 0.2 ml and 0.1 ml
acetone solutions. Three rats were used for each chemical and one
control animal per dose received a pure acetone injection. Immediately
after the injecticn, rats were placed in plastic metabolism cages in a
controlled, pathogen free envircnment located in the DLM facility,

Beryhill Hali, UNC. A sealed insulated dry ice box located underneath
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the cage collected and immediately froze urine samples during the 48 hr
collection period. A picture of this apparatus is shown in Fig. 18,
Appendix A. Urine was collected at intervals 0-4 hrs, 4-8 hrs, 8-24
hrs, 24-36 hrs, and 36-48 hrs and sterilized by filtration with a 0.4
micron pore size filter and stored at -80 C in darkness until
mutagenicity analysis. Rats had continuous access to drinking water and
powdered rat chow.

After a brief visual inspection of the injection site for
unabsorbed chemical and general appearance of intra-peritoneal cavity,
the carcass was incinerated by DLM, UNC. Metabolism cages were cleaned
with 95% ethanol solution, then washed with a soap solution and rinsed
after each animal’s use. All contaminated syringes and materials were
doubled bagged, labeled, and disposed of as trace carcinogenic waste
through the UNC's hazardous material collection department. Vinyl lab
gloves, surgical face mask, and lab coat were worn during animal

handling, urine collection, and cage work.

III. B. 2. In Vitro Ames Assay

Mutagenicity analysis was via a Salmonelia Typhimurium plate

incorporation test using TA98 strain with and with out S-9 fraction as
outlined by Ames’ 82 publication. Quality assurance of the strain was

pefformed on the master plates made from frozen permanents stored at

-80° C. Sample colonies for each master plate were verified for proper
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characteristics of histidine dependency, rfa, crystal violet, and UV
light sensitivity, and ampiciliin resistance. A colony was picked off
the master plate and incubated in 25 mls of nutrient broth in a dry,
dark, shaker at 37° C for 16 hrs to develope an approximate
concentration of 1.5 x 10° cell/ml. Acceptable urine samples (see
Results’ paragraph IV. A.) were resterilized through a 0.22 micron
filter and divided into three undiluted volumes ranging from 75 ul to
250 ul for 2 mg dosed rat samples and two undiluted volumes ranging from
100 uL to 250 ul for 1 mg dosed rat samples. Two control O mg dosed
rats’ samples were evaluated for background urine mutagenicity for each
assay. B-glucuronidase, 100 units/plate, was included in the top
overlay to account for glucuronide conjugate metabolite formation. One
half ml of 100% activity Aroclor induced S9 (40 ug/100 ulL) was added to
half the plates for each sample. The top agar mixture was vortexed at
low speed for 3 - 4 seconds and poured evenly on to the agar plate.
Plates were allowed to solidify on a level surface for approximately 30
minutes then placed inverted in a 100% humidity, 37° C dark incubator
for 24 hours. Samples with insufficient amounts of urine to complete an
assay were combined with other samples from the same time period and
chemical if necessary. The 2 mg dese of 1-NP's G-/ hr sample and the 4-
8 hr sample were combined by time period. All 1 mg doses required
combination of the O~4 and 4-8 hr samples for each rat maintainiug

separation between individual rats’' urine. Duplicate positive controls
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using 2-nitrofluorene (50ug) evaluated the responsiveness of the strain
while duplicate control plates with 2-anthramine (23 ug) evaluated S9’s
background activity. Duplicate spontaneous reversion plates verified
TA98's background activity and provided a zero dose revertant value for
future analysis. Only plates producing twice the spontaneous reversion
count were considered evidence of mutation. Since a limited number of
samples can be run at any one time, the Ames assay is capable of only a
finite number of samples per assay. Samples were stratified by
collection time and dose for the assays. This stratification
compensated for individual assay variances allowing each compound to
receive equal assay bias reducing error in their future comparisons.

The mutagenic activity of each sample was determined by least
squares linear regression analysis using the spontaneous revertant rate
as the zero dose point. Assay results were recorded as revertant/dose
and converted to a revertant/hr rate for each individual sample. When
more than one Revert./Dose linear regression line was able to be
determined, an average value was used in calculating the revertant rate
and the standard deviation identified as error. The background
reversion rates of the control rats were subtracted from the PAH dosed
animals’ rates to prcduce linear scale and logarithmic scale Revertant
Excretion Rate Plots. These plots were used to calculate revertant
excretion rates which in turn were used to estimate the total cumulative

revertants excreted.
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III. B. 3. Quality Assurance of Samples
Before, during, and after the in vivo metabolism study, the rats’
health, physical condition, eating and drinking habits, and urination
volumes were monitored and recorded. Persistence of an unusual
observation when confirmed by the visual autopsy caused exclusion of the
rat. The brief autopsy examined the injection site and intestines to

confirm the compound was properly delivered to the rat.

III. B. 4. Toxicokinetic Analysis

Revertants are an indirect measure of the mutagenic species being
excreted. No quantitative results concerning the physical number of
mutagens can be inferred from the information provided since the number
of revertants produced per mutagenic metabolite is unknown. However,
this information can provide an overall view of the mutagen excretion
for comparative analysis.

The Logarithmic Revertant Excretion Rate Plot’s profile for each
compound indicated the animal system appeared to be a one compartment
model with first order kinetics concerning mutagen excretion. Applying
product excretion kinetic analysis to the revertant data, the combined
pseudo absorption and formation rate constant, Ka, and the revertant
excretion rate constant, Ke, were estimated. Identifying the highest
and lowest possible slopes for each rate constant accounted for the

error in the plotted points and for the assumption of a single
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compartment model. The lack of data points immediately after injection
required the area under the curve, (AUC), be calculated to estimate the
resulting range of total cumulative revertants. A Sigma Minus plot
using all five values of the Excretion Rate Plot was developed using the
AUC values to provide a more accurate estimation of the ex.retion rate
constant. Lastly, the combined absorption and formation rate constant,
Ka, was estimated accounting for error using the total cumulative
revertant value, AUC, as the Y intercept for the Logarithmic Revertant

Excretion Rate Plot.




IV. RESULTS

IV. A. Quality Assurance of Urine Samples

Eighteen of the forty eight rats used provided acceptable samples
for use in this study. Table 4 outlines the reasons for exclusion of
any rat or selective sample. Notably, at least two rats were used for
analysis of each injected compound. Both the 1 mg and 2 mg doses were
analyzed whereas the 0.5 mg dose provided an insufficient revertant rate
beyond the 8th hour of collection.

Analysis of Ames assay results revealed an 18 September assay of
the 8 - 24 hr period samples was unusable for compounds 2-NFA and 3-NFA
due to an unusually high revertant rate for the control urine shown in
Fig. 37 in the appendix. Fortunately, two other acceptable assays were

completed for this sample period.

IV. B. MNutagenicity of Urine Samples

Least squares linear regression analysis'of each Ames Assays'
Revertants vs Dose plots are presented in Figures 19 through 36 in
Appendix A and their numerical slope data listed in Table 5. All future
results were based on these linear regression lines whose regression
coéfficients, Table 6, averaged 0.91 + 0.07, indicating the strong
revertant-dose relationship of the metabolites. Revertant/Dose values

were converted to Revertant/Hour rates, Table 7, allowing comparisors
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between samples. Linear axis revertant excretion rate plots for the 2
mg doses Figures 4, 5, and 6 compare rats’ mutagenicity excretion rates.
These figures also illustrate the significant difference in urination
rates between rats during the first 8 hour period of the in vivo study.
The extremely low revertant rates of the control rats confirm the
treated rats’ revertant rates are direct results of the injected nitro-

PAHs.

IV. B. 1. 1-NP’s Urinary Mutagenicity

Maximum mutagenicity required exogenous activation by S9 and was
excreted between 7 ~ 14 hours after injection of the 2 mg dose and 7 -
20 hrs for the 1 mg dose extrapolated from excretion rate plot, Fig. 7.
The direct acting mutagenicity behaved similarly but only provided 30% +
10% of the activity, shown in Excretion Rate Plots, Figures 8 and 9.

The 1 mg dose provided approximately 33% + 13% of the total
activity achieved by the 2 mg dose for S9 activated mutagenicity.
Moreover, the direct acting mutagenicity in the 2 mg dose was 15% + 5%

higher than the 1 mg dose.

IV. B. 2. 2-NFA’s Urinary Mutagenicity
2-NFA’s maximum mutagenicity occurred between 7-24 hrs period for
both S9 activated and direct acting mutagens for both 1 mg and 2 mg

doses, as shown in Figures 8 and 9. However, S9 dependent mutagenicity
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equaled the direct acting mutagenicity for the 1 mg dose. Doubling of
the dose resulted in S9 activated mutagenicity increasing 40% + 30%

while direct acting mutagenicity rose 27% + 3%.

IV. B. 3. 3-NFA's Urinary Mutagenicity

Maximum mutagenicity was direct acting and excreted between 4-10
hrs for the 2 mg and similarly was excreted between 0-15 hrs for the 1
mg dose shown in Fig. 7. Exogenous activation by S9 decreased this
mutagenicity by 45% + 30% for the 2 mg dose, Fig. 9, and 70% + 25% for
the 1 mg dose, Fig. 8. Doubling the dose raised direct acting

mutagenicity 40% + 27% and indirect acting mutagenicity 20% + 15%.

IV. C. Toxicokinetic Analysis of Revertant Excretion Data
IV. C. 1. 1-NP's Toxicokinetic Analysis

Extrapolation of the logarithmic Excretion Rate Plot's, Fig. 10,
terminal end yielded a range of 4,850 + 2,530 Revert/(48 hr to
infinity). Extrapolation of this terminal rate estimates the total
mutagenicity produced was 41,478 + 3,700 revertants. The Sigma Minus
Plot, Fig. 11, estimated Ke, the Excretion Rate Constant’s range was -
0.061 + 0.015 (1/hr). The combined absorption/formation rate constant
Ka was estimated at 1.14 (1/hr) as shown in Fig. 17. The revertant
exéretion rate constant Ke is 18 times smaller than Ka, thus mutagen

excretion is formation rate limited.
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IV. C. 2. 2-NFA’'s Toxicokinetic Analysis

Extrapolation of the Logarithmic Revertant Excretion Rate Plot’s,
Fig. 12, terminal end showed the upper bound of the revertant excretion
rate was actually O rev/hr accounting for error. Therefore the highest
excretion rate and the "best fit" excretion rate were used. The
terminal end’s cumulative revertant rate was 11,680 + 8,500 Revert/(48
hr to infinity). Extrapolation of the terminal rate indicates the total
mutagenicity was 25,448 + 14,170 revertants. The Sigma Minus Plot, Fig.
13, estimated the revertant excretion rate constant, Ke, was - 0.016 +
0.058 (1/hr). The combined absorption/formation rate constant Ka was
estimated at 1.14 (1/hr) as shown in Fig. 17. The revertant excretion
rate constant Ke is 40 times smaller than Ka, thus mutagen excretion is

formation rate limited.

IV. C. 3. 3-NFA's Toxicokinetic Analysis

Extrapolation of the Logarithmic Revertant Excretion Rate Plot's,
Fig. 14, terminal end yielded a revertant rate of 1,944 + 1,497
Revrt/hr. This value estimated the total revertants excreted was 23,240
+ 4,000 revertants. The Sigma Minus Plot, Fig. 15, estimated the
revertant excretion rate constant, Ke, was - 0.079 + 0.0043 (1/hr). The
combined absorption/formation rate constant Ka was estimated at -1.14
(1/hr) as shown in Fig. 17. The revertant excretion rate constant Ke is
15 times smaller than Ka, thus mutagen excretion is formation rate

limited.
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TABLE 4

QUALITY ASSURANCE OF SAMPLES

Compound Amount # Acceptable Unacceptable Rats and
Injected (mg) Rats Reasons
1-NP 2 mg 5 2 died
2 poor physical health
very ill

1 inadequate injection

1-NP 1 mg 2 1 inadequate injection

2-NFA 2 mg 2 1 poor physical health
Obstructed/bloated intestine

1 mg 2 1 poor physical health

Abnormal looking intestine

3-NFA 2 mg 2 1 poor physical health
Internal fluid in cavity
1 mg 3
Controls 2 mg 4 2 died
1 mg 5 1 died
All 0.5 mg 0 11 Dosed too low for Mutagenic

analysis
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LINEAR REGWESSIUN VALUES FUR KEVERTANT VS ulsE FLUTS

PN CR RV~
LU UNU SAMPLE S -4 RS 4-8 HRS 8-24 HRS 8-74 HRS ¢4-36 HR-36-48 Hks
Fev/ul  Rev/ul  Rev/ull  wev/ul  =ev/ul  Rev/ul
samp le Sample Sample | Jampie 2 Lample  Sampie

1 NP 40-39 3 0.74 U.s7
| NP 46+59 5.00 1.92 I Yy
1~ 47->9 3.65% 0.7
i P 47 +39 5.47 1.30 0 w4
1P Avg -39 2,14 3.5/
1-nP Avg +29 3 11 11.13
2—NF «6-39 0.27 g.17 0.45 U.<2¢
2-NF 26+59 J.19 0.41 1.09 1.9/ 0.94 1,50
2-NF 27-59 1.65 1.1 0.¢8
2-NF 27+39 1.76 | o7 3.74 1.61 0.85
3-NF 14-59 1.15 1.07 1.98 0.83 .11 0.81
3-NF 14459 0.59 0.62 0.84 0.34 0.44
3-NF 15-59 0.53 3.01 2.03 1.29 0.25 0.12
3NF 15+59 0.80 1.11 0.15%
CNTRL -39 0.11 0.04 0.115 0.086 0.02 0.04
CNTRL +39 0.12 0.09 0.116 0.14 0.07 0.1

I MG DOsE

COMPOUND SAMPLE  0-8 HRS B8-24 HRS 8-24 HRS 24-36 HRS
Rev./ul. Rev./uL Rev/uL. Rev./uL
Sample Sample | sample 2 Sample

1-NP 6-59 0.19 0.19 0.17
1-NP 6+59 2.48 £.3b 1.36
VNP /-39 0.40 0.25 0.17
1-Np 7+39 1.25 1.40 1.80 i.60
£-NF £9-59 1.00 0.36 V.24 0,10
2NF 29+59 0.90 0.45 0.28 0.25
2-NF 31-S9 0.30 0.28 0.32

2-NF 31459 0.36 0.40 0.31

3-NF 17-59 0.59 1.37 0.83

3-NF 17459 0.32 0.54 0.429

3-NF 19-39 0.89 0.33 0.30 0.02
3-NF 19+59 0.39 0.19 0.14 0.09
CNTRL -59 0.01 0.04 0.05 0.01
CNTRL +59 0.09 0.13 0.12 0.05
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TABLE 7 45
REVERTANTS/HUWWR RATE FOR ALL SAMPLES

R CE N
NP I-np | NP 1-NP 1 -NP 1-NP

Mrs 46-58  40+n9  47-53 47459 COMB-SY  CUMB+5Y9 UNTRL-S9 CNTRL +39
0 0 0 1) 0 9 0 J )

4 120.5  554.38 13.25 15

8 658.88 2069.25 10.5 2/
¢4 515.63 1351.08 //4./2 1391.59 ©45.17 1371.23 20.73 26.4
36 146.46 58.23  145.21 3.44 16.04
43 187.08 31.¢5 223.75 S51.25 cU5.42 13.33 50.4¢

I-NFA 2NFA Z-NFA ZNFA ZNFA SNFA 3-NFA

Hrs ¢6-59 26459 27-39  27+59 14-59 14459 15-59 15+59
0 0 0 0 0 0 0 0 0

4 155.5%5 103.75 849.25 427.5 86.13

8 61.79 147.25 633  1126.38 631.75 ¢435.13

24 88.78 318.6 302.71 ©0/.58 506.15 194.1  757.29 421.26
36 179.79 118.13  89.06 59.81 21.46

48 35.67 £74.58 63.33 197.5 116.07 22.92 107.33

1 MG DOSE
1-NP 1-NP 1-NP 1-NP 2-NFA 2-NFA
Hrs  6-59 6+59 7-59 7+59 29-S9 29+59 CNTRL+S9

0 0 0 0 0 0 0 0

8 195.25 608.88 235.25 197.63 16.13

24 25.04 468.67 49 302 153 160. 13 46.69
2 11.87 97.33 .67 117.35 23.13 46.5 16

24 45.88 639.5 402 99.35 81.96

ZNFA  2-NFA  3-NFA  3-NFA 3-NFA 3NFA
Hrs 31-59 31489 17-S9  17+59 19-39 19459 CNTRL-39

0 0 0 0 0 0 0 0
8 71.5 73.88 108.38 43.88 392.69 156.34  2.23
23 81.03 87.78 350.41 95.44  33.1a 1267 i
3 0

24 96.5 56.84 206.97 28.23  84.94 0

2
5.38
2.5
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V. DISCUSSION

Investigating in vivo metabolizm via a small scale study is
inherently prone to individual animal variations. Averaging only twc
values is insufficient data to do statistical analysis, thus a graphical
range method was used to provide the most reliable and understandable
presentation. Animals do not consistently urinate which generates large
standard deviations when averaging single collection pericds although
over the entire collection period individual rat's results are similar.
Two rats injected with 2 mg of 3-NFA produced revertant excretion
amounts within 25% of each other, but during specific collection periods
they varied up to 50%. The outcome is an overall error range of 50%,
double the actual difference. Accordingly more value may be placed on

the best fit lines than normally expected.

V. A. Urinary Mutagenicity

In the first 48 hours after injection, 1-NP injected rats'
cumulative urinary mutagenic?ty was twice 3-NFA's direct mutagenicity,
five times 3-NFA's indirect mutagenicity, and triple 2-NFA's indirect
mutagenicity. Estimated total revertant amounts excreted by 1-NP
injected rats remained the highest although matched by the upper range
of 2-NFA injected rat's total amount while 3-NFA injected rat's amount

remained equal to 2-NFA rat's median mutagenicity amount, as shown in

Fig. 16.
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3-NFA injected rat's maximum urinary mutagenicity excretion rate
occurred in the initial phases 4-10 hrs following injection, while 1-N?
injected rat's occurred slightly after during the 7-12 hrs following
injection, and 2-NFA injected rats had the slowest and most consistent
rate lasting a full day. This coincides with previous research results
showing peak urinary mutagenicity from 1-NP metabolism occurs in the 8 -
12 hr period after injection and is dependent on S9 activation (Ball,
et al 84; Ball & King, 85). Representing the middle of the road, 1-NP's
kinetics are bordered above by 3-NFA's fast kinetic rates and below by
2-NFA's siow kinetic rates. All three rompounds had similar Ka
constants suggesting the Ka measured may have been also representative
of the acetone carrier rather than just the compounds' structure.
Stocking (89) suggested 2-NFA to be less mutagenic than 3-NFA due
to its slower and inefficient bacterial metabolism. Indeed, 2-NFA's
slower metabolism generates a slower mutagenic production rate, however,
the duration of active mutagenic urinary metabolites being excreted is
much longer than for 1-NP. The result being a ilotal revertant output

potentially as large as 1-NP and at least as large as 3-NFA's amount.

V. B. Kinetic Relationship to Mutagenicity
The resulting mutagenicity of each compound may be directly
related to the reciprocal dependency between the metabolism process and

the kinetics involved. 1-NP has been described in the Literature Review




48
as relying strongly on nitroreduction and enterohepatic circulation for
acetylation in the liver. Our study's results show urinary mutagenicity
from 1-NP metabolism behaved as establish by several preceding studies
(Ball, et al 84; Ball and King, 85; Bond, et al 85; Howard, et al 85)
and thus underwent predicted pathways and kinetics.

The revertant excretion rate plot profile and this study's
analysis strongiy suggest the overall excretion of 2-NFA's mutagenic
metabolites is significantly slower than 1-NP's and apparently slower
than 3-NFA's. In vitro research has shown 3-NFA is metabolized in 6 hrs
while 2-NFA takes up to 24 hrs (Stocking, 89). 2-NFA's slower
metabolism may be counterbalanced by its longer biological half life and
subsequent increased probability of metabolism. The longer half life
may result from slow partitioning of 2-NFA and its metabolites in vivo
possibly due to structural differences discussed later. Stocking (89)
found 3-NFA to efficiently produce only 3-AFA via nitroreduction, while
2-NFA was reduced to 2-AFA which could undergo acetylation to 2-NAAFA.
2-NFA's longer biological half life and greater opportunity for
metabolism may increase its ability to form both 2-AFA and its
metabolite 2-NAAFA. 2-NAAFA may cause the indirect acting mutagenicity
found from 2-NFA metabolism similar to 1-NAAP production from 1-NP. 2-
AFA, like its isomer 3-AFA, may be responsible for the direct acting

mutagenicity.
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Moreover, 3-NFA had the fastest revertant excretion rate averaging
40% greater than 1-NP's rate and 400% faster than 2-NFA's rate. This
high revertant excretion rate for 3-NFA results may be indicative of two
situations. There may have been insufficient enterohepatic circulation
of the compound for acetylation metabolism to produce the secondary
mutagen species exhibited by 1-NP and 2-NFA. The second and more
probable sitvation is acetylation of 3-NFA may simply not produce an
active mutagenic species. Ball (et al 85; et al 86) did show further
metabolism of 3-NFA's metabolites in vitro detoxifies them, as shown
even in this study where the exogenous metabolism by S9 halved their
total mutagenicity. 3-NFA's high mutagenicity excretion rate during the
first 8 hrs was comparable to 1-NP's rate. 1-NP is known to produce
phenolic and dihydrodiol metabolites during initial hours of excretion
(Ball et al 84; Ball et al 85). 3-NFA mutagenic species' immediate
excretion and direct acting mutagenicity correlates with in vitro
results showing 3-NFA relies heavily on O-esterification producing
epoxide intermediates (Zielinska, et al 87; Consolo, et al 89)., This
may be evidence the initial and majority of its mutagenic urinary
metabolites are phenols and dihydrodiols. 3-NFA mutagenic metabolites'
fast excretion rate with inactivation of mutagenicity by further
metabolism, as seen with $9, also complies with in vitro research
(Howard, et al 88; Consolo, et al 89) discussed earlier in the

Literature Review,
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3-NFA metabolites may be excreted at a rate similar to 2-NFA, but
detoxification by further metabolism allows the revertant excretion rate
to provide a misconception of fast excretion kinetics. Indeed in vitro
results suggested 3-NFA to be more mutagenic than both 2-NFA and 1-NP
(Stocking, 89; Consolo, et al 89). Considering that 3-NFA's cumulative
mutagenicity could be only half of 2-NFA's amount, it is probable the
revertant excretion rate actually represents the detoxifying metabolism
rate of 3-NFA's mutagenic metabolites as they enter the enterohepatic
circulation and undergo additional metabolism. Without the ability to
account for the total dose excreted this theory can not be sufficiently
evaluated.

The differing excretion kinetics may signify differing substrate
binding affinities of 2-NFA and 3-NFA. The binding may be stronger for
3-NFA promoting metabolism or be stronger for 2-NFA delaying metabolism
and lengthening the biological half life of mutagens or their
precursors. This complements Stocking's (89) second implication that
the NFAs' nitro-groups may structurally affect nitroreductase's
availability to the active site according to Vance and Levin's (84)
research. Whether the mechanism is to catalyze nitroreduction, catalyze
esterification, or act as a competitor remains obscured. This
structural theory may also be relevant to the metabolism mechanism if

acetylation of 3-NFA truly does not produce active mutagenic metabolites

and acetylation of 2-NFA does result in mutagenic species.
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V. C. Dose Relationship to Mutagenicity

All three compounds appear to exhibit a nonproportional rise
between indirect acting mutagens (S9 activated) and direct acting
mutagens with increasing dose. The general observation is the
predominant mutagenic metabolites of each specific compound received a
disproportionate increase with increasing dose. This observation is not
caused by assay bias but appears to be truly dose dependent since the
nonproportional increase occurred to 3-NFA's direct acting mutagenic
metabolites and 1-NP's and 2-NFA's indirect acting mutagens. Doubling
the 2-NFA dose seems to increase the indirect acting mutagens more.
Stocking's (89) suggested a saturable process existed in the bacterial
strains metabolism of 2-NFA which may or may not be related to this
apparent event in vivo. A second possibility is the higher dose allows
a higher probability of enterohepatic circulation of products. This
would account for 2-NFA's equal quantities of indirect and direct
mutagens initially with the low dose but, then with increased dose an
increased percentage of compound undergoing reduction and acetylation
seemingly produces more indirect mutagenicity.

I suggest 2-NFA and 3-NFA are truly similar in their metabolism
pathways and mass excretion rates. Their main difference seems to be in
the metabolism mechanism and kinetics which ailows production of the

potent NAAF metabolites by nitroreduction and acetjylation. 3-NFA's

initial oxidative metabolites are easily detoxified by additional
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metabolism while 2-NFA, like 1-NP, produces a variety of mutagenic

species by additional metabolism introduced by the enterohepatic

circulation. Contrary to in vitro research, 2-NFA appears to present a

higher mutagenicity dose in vivo similar to 1-NP while 3-NFA provides a

comparatively small in vivo mutagen dose due to the in vivo metabolism

system's detoxifying action.

V. D. Conclusions

This preliminary comparison of urinary mutagenicity of 1-NP,

2-NFA, and 3-NFA provides strong evidence:

1.

Not all nitro-PAHs are metabolized to similar mutagenic
species

Revertant excretion rates of 3-NFA > 1-NP >> 2-NFA
Cumulative urinary mutagenicity from 1-NP > 2-NFA > 3-NFA
3-NFA urinary mutagenicity is direct acting and decreased by
additional metabolism.

1-NP, 2-NFA, and 3-NFA urinary mutagen excretion is formation

rate limited.
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V. E. Recommendations For Future Research

The mutagenicity dependence on kinetics seen in this study by 2-
NFA and 3-NFA has been difficult to analyze completely. Elucidation of
these kinetics is needed to better understand not only how mutagenic is
a compound but, its actual in vivo mutagen dose. Future experiments
should be geared to thoroughly study and compare structural, in vitro,
and any other in vivo studies to fully grasp any relationship related to
their kinetic mechanisms. Researchers continuing the risk assessment of
nitro-PAHs may next identify the nitro-PAH characteristics controlling
the metabolism pathways and resulting biological exposure to mutagens.

I recommend repeating this study using radiolabled compounds at 1
mg to 3 mg range doses, to track and identify the urinary metabolites
and their relationship in metabolism/excretion kinetics. Better
metabolite excretion rate plots are necessary requiring extension of the
collection period out to three days with at least four animals per dose
per chemical. Collection of urine during the initial hrs after
injection at three 4 hour intervals or two 6 hour intervals will better
characterize the absorption/formation part of the excretion rate plot.

The compound radiolabels should quantify urinary metabolite amounts
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along with mutagenicity to better characterize potency. The percentages
of the initial dose of parent compound excreted over time should allow
investigation into the relationship between metabolism and resulting
mutagenicity and the associated kinetics. The primary metabolites of 3-
NFA and 2-NFA responsible for the direct and indirect mutagenicity need

to be identified and their formation rates determined.
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Figure 18. Metabolism cage and dry ice box apparatus for
collection and immediate freezing of the rat urinpe.
Located in isolation booth in Rerryhill Bldg, UNC.
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VII. B. Appendix B: Mathematics Used in Kinetic Analysis
VII. B. 1. Methods
VII. B. 1. 1i. Rates

Initial analysis of the data kinetics required calculating the
slopes of excretion rate plots to determine the rates’' and rate
constants’ highest and lowest possible values. The formula to determine
any slope is: (Y2-Y1)/(X2-X1). The lines selected to determine the
slopes from were those two lines which fit within the data’s error range
producing the steepest and the most shallow slopes. These two values
were listed in the form; Average Slope + Difference between the high or
low slope's value from the average slope.

[t is important to note the Y and X values used were adjusted to
reflect their true meaning. In other words, the average revertant
excretion rate during the 36 to 48 hour period was associated with the
median time value of 42 hours rather than the end time value of 48
hours. This specific example was used to provide the first value of the
terminal rate estimate where the second value was the X intercept
determined graphically as shown in Appendix A.

VII. B. 1. ii. AUC and Cumulative Revertant Counts

Once the average revertant excretion rate was determined, it was
multiplied by the number of hours from the 48 hour mark to the X
intercept values determined graphically. This produced an averegze
terminal end cumulative revertant count with a + value as described in
the previous paragraph. These two values were added separately to the
previously determined 48 Hr cumulative revertant count to produce a
total cumulative revertant count, again in the average value form with a
+ error value. This is the area under the curve (AUC).

VII. B. 1. 1iii. Excretion Rate Constant Ke

The AUC value was then used to produce a Sigma Minus Plot via
subtracting successive cumulative revertant amounts over increasing time
from the AUC value producing a Revertants-Left-to-be-Excreted vs Time
chart. This is the Sigma Minus Plot. The AUC number is therefore the Y
intercept where X = 0. Again, the highest and lowest slopes outlined
the range of excretion rate constants determined from this plot.
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VII. B. 1. iv Absorption/Formation Rate Constant Ka

Once, the excretion rate constant was determined, this slope
produced a line from which was subtracted the corresponding Y or
Revertant Values on the initial side of the Excretion Rate Plot’s curve.
[(Y of Ke) =(Y of initial curve)]= (Y of Ka)

The resulting difference produced a line with a slope representative of
the absorption/formation rate constant, Ka, sjown in Fig. 17.

VII. B. 2. Numerical Calculations and Data
VII. B. 2. i. Termina! Tail Revertant Rate Estimation
1-NP
High Value: (205 revert/hr;*(1/2)*(120 hrs- 42 hrs)= 7,995 revert.
7,995 revert)/(120 hr - 42 hr)= 102.5 rev/hr
102.5 rev/hr*(120 hr- 48 hr )= 7,380 revert in terminal tail
Low Value: (145 revert/hr)*(1/2)*(80 hrs- 30 hrs)= 3,625 revert.
(3,625 revert)/(80 hr = 30 hr)= 72.5 rev/hr

72.5 rev/hr*(80 hr- 48 hr )= 2,320 revert in terminal tail

Avg Value: 4,850 terminal tail revert + 2,530 revert

2-NFA

High Value: (235 revert/hr)*(1/2)*(220 hrs- 42 hrs)= 20,959 revert.
(20,959 revert)/(220 hr - 42 hr)= 117 rev/hr
117 rev/hr*(220 hr- 48 hr )= 20,252 revert in terminal tail

Low Value: (148 revert/hr)*(1/2)*(90 hrs- 30 hrs)= 4,440 revert.
4,440 revert)/(90 hr - 30 hr)= 74 rev/hr
74 rev/hr*(80 hr- 48 hr )= 3,180 revert in terminal tail

Avg Value: 11,680 terminal tail revert + 8,500 revert
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3-NFA
High Value: (111 revert/hr)*(1/2)*(110 hrs- 42 hrs)= 3,774 revert.
(3,774 revert)/(110 hr - 42 hr)= 55.5 rev/hr
55.5 rev/hr*(110 hr- 48 hr )= 3,441 revert in terminal tail
Low Value: (74.5 revert/hr)*(1/2)*(60 hrs- 30 hrs)= 1,117 recvert.
1,117 revert)/(60 hr - 30 hr)= 37 rev/hr
37 rev/hr*(60 hr- 48 hr )= 447 revert in terminal tail

Avg Value: 1,944 terminal tail revert + 1,500 revert

VII. B. 2. ii. Sigma Minus Plot (X' - X)

Time (Hrs) Cumulative Revertants Remaining to be Excreted

1-NP 2-NEA 3-NFA

0 41,478 + 3,700 25,448 + 14,170 23,264 + 4,000
4 39,262 25,240 21,390

8 30,986 23,680 14,272

24 9,050 16,288 4,176

36 7,310 14,500 3,276

48 4,850 11,680 1,944

VII. B. 2. 1iii Sigma Minus Piot Estimate of Ke

Ke High [Ln{41478+3700}~1n{100}}/~80
Ke Low [Ln{41478-3700}-1n{100}]/~130
Ke avg = 0.061 + 0,015 (1/hr)

-0.076
=0.046

"

2-NFA
Ke Best Fit [Ln{25448}-1n{100}}/-330 = -0.016
Ke High [Ln{25448+14170}-1n{100}}/-80 = ~0,075
Ke avg = 0.016 + 0.058 (1/hr)

3-NFA
Ke High [Ln{23264+4000}-1n{100}]/~50
Ke Low [Ln{23264-4000}-1n{100}]/-115
Ke avg = 0.079 + 0.043 (1l/hr)

-0.112
-0.046

1"
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VII. B. 2. 1iii Estimation of Ka From Ln. Excretion Rate Plot

Y=KX+I Where I is Y intercept = Ln(X')

1-NP
Time Ln(Y of Ke)=Ln(Y of Curve) = Ln(Y of Ka)
0 10.63 0 10.63
4 10.57 6.3 4,25
8 10.5 7.63 2.86

Values Plotted in Figure 17

2-NFA
Time Ln(Y of Ke)-Ln(Y of Curve) = Ln(Y of Ka)

0 10.1 0 10.1
4 10.08 4.6 5.44
8 9.7 5.97 4.04

Values Plotted in Figure 17

3-NFA
Time Ln(Y of Ke)-Ln(Y of Curve) = Ln(Y of Ka)

0 10.05 0 10.05
4 9.7 6.15 3.58
8 9.4 7.48 1.93

Values Plotted in Figure 17
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