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ABSTRACT

Several heuristics and algorithms have been developed to find miniwal sum-of-

products expressions in binary logic. Most of them use prime implicants during min-

imization process.

An efficient search strategy has been developed for finding minimal sum-of-products

expressions for multiple-valued logic (MVL) functions by using the constrained

implicants set concept. The search space can be considerably reduced over the only

other known exact minimization technique and exhaustive search.

The primary goals of this research are to:, (1) examine whether the constrained

implicant set concept can be efficiently used in binary logic, and; (2) develop a heuristic

called the constrained implicant set heuristic (CISH). The general idea of the CISH is

to select the minterm with the least implicant cover size and find the implicant with the

largest minterm coverage that covers a selected minterm.

In this research, the implementation of the CISIt is presented, the performance

analysis of the CISH is shown by comparing with other heuristics (Maximum Imphcant

Heuristic, Espresso II) with respect to the average number of the product terms, the

average computation time, and the average memory usage.
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THESIS DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or re-

sponsibility for the accuracy, completeness, or usefulness of any information, apparatus,

prcduct, or process disclosed, or represents that its use would not infringe privately

owned rights., Reference herein to any specific conunercial products, process, or service

by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute

or imply its endorsement, recommendation, or favoring by the United States Govern-

ment. The views and opinions of the author expressed herein do not necessarily state

or reflect those of the United States Government and shall not be used for advertising

or product endorsement purposes.
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I. INTRODUCTION

A. MOTIVATION

The primary goal of good design in binary logic is to find a realization of a given

function at minimal cost. There have been several different costs in binary logic design.

The number of the gates is a commonly used cost. Another cost is the number of

product terms used in the sum-of-products expression of the given function. This crite-

rion has become especially important in recent years with the introduction of PAL's

(programmable array logic) and PLA's (programmable logic arrays). There has been a

corresponding increase in interest in algorithms for finding the fewest number of product

terms needed to realize the given function.

An efficient search strategy has been developed for finding a ninimal sum-of-

products expression by using the constrained implicant set concept in multiple-valued

logic. The search space can be considerably reduced over the only known exact min-

imization techniques by using the constrained implicant set concept [Ref. l J. A primary

motivation of this thesis is to see if the constrained implicant set concept cat, be ex-

tended to binary logic.,

A new heuristic for binary functions is described which is called the constrained

implicant set heuristic (CISI1). An analysis of the performance of tie CISH has been

done by clrnparing the results of the average number of sum-of-products term, co npu-

tation time, and memory usage with two existing algorithms 1) MNiximum mplicant

lleu ,tic (1MII1) and 2) Espresso II.



B. NATURE OF THE PROBLEM

The goal of logic nlininization is to find a minimal sum-of-products expression of

a binary function. This problem has received considerable attention for some time.

Early methods such as Quine-McCluskey [Ref. 2], and iterated consensus [Ref. 31 begins

the minimization by finding all prime implicants of the function. The finding of prime

implicants is used by most heuristics minimization methods.

The interest in heuristic methods is due to the large computation times required by

exact minimizations algorithms, I-or examnle, a 10 variable binary function can have

as many as 5904 prime Implicants while a function with 20 variables can have as many

a 174,339,220 prime implicants. "lhe relationship between the number of the prime

impficants and number of the variables (n) has been shown as 3"1n in the worst case.

[Refs. 4, 5: p. 491

It is possible to find an exact minimal sum-of-products expression for a logic func-

tion ,ith a small number of variables or simple functions with larger number of variable.

When the number of the variable increases or the function becomes more complex, then

more computation time is needed to extract the exact minimal solution. Sometimes

findinm, neailv minimial solution of a function in shorter computation time has more ina.

portance and advantage than finding an exact minimal representation in very long

computation time [Ref., u].

The exact minimal sum-of-products expression can be solved by enumeration., In

-this method, al! possible solutions aie tried and then the one ha~ing the fewest number

of sum-of-products is chosen. This mcthod needs very long computation time due to

large number of possibilities of potential solutions. Besides, it has beet shown that ex-

tracting 1 ;,mimai sum-f.p oducts solutions from a complete set of prime iniplicants is



an NP-hard problem. The best known algorithms for such problems require exponential

time [Refs. 1, 7: p. 246].

C. THESIS OUTLINE

Notation and definitions are given in Chapter II. The constrained implicant set

heuristic is introduced in Chapter III. Chapter IV and Chapter V discuss the

comparision results and performance with Maximum Implicant Heuristic and Espresso

I1.



11. BACKGROUND AND DEFINITIONS

A. DEFINITIONS IN BINARY t 8 ~GIC

In this section, we briefly summarize fundamental definitions used in binary logic

[Refs. 2,31.

Definition 1:

A literal is a variable or the complcment of a variable. Examples: w, x, T, 7

Definition 2:

A product term is a single literal or a B~oolean product of thc literals. Examples:

~ yW:

Definition 3:

A tninerm is a product term where a literal of each variable appears exactly once.

Examples: i~xZ, WXy'.'.

Definition 4:

A logic function F(xx,.-,xj covers a !ogic function P( x, x,,... , xj) if for every

input combination such that P = 1, then F= 1.

Definition 5:

Let I be a product term of function f If a fis nonzero for all minterms covered by

1, then I is an implicant of the function. Examples' iT~

4



Definition 6:

Let I be an implicant of the function f., I can be said prime implicant of the function,

if it is not covered by any other implicants of the function f

Definition 7:

A minterm is said to be distinguished-I]-cell of f if this mi'nterm is covered by only

one implicant of thef.

Definition 8:

A prime implicant I is said to be an essential prime iniplicant if it covers a

distinguished- I -cell off.

Definition 9:

Let AON, Aorr, AMc be sets of assignments of values to variables of functionf respect

to minterni values

* AO" is the set of Minterins off.

e AIFF is the set of assignments of values to the variables such that f is 0.

* AD~C is the set of assignmnents of values to variables such that/ is don't care.

Definition 10:

A function f can be considered to have a cy~cle if it has more than one midnimal

sum-of-products expiession. Example: see the function in Figure 6 on page 17,

Definition 11:

Let o, and #i be niiterms such that complementing one literal in a )ields fl. Minterm

ai and f/ ai e callcd IDit cci *.cighbuis.



B. BACKGROUND IN MULTIPLE-VALUED LOGIC

The constrained implicant set concept was originally developed from the work of

finding absolute minimization in multiple-valued logic by Jon T., Butler and P. Tirumalai

[Ref. 1]. Absolute ninimization tries to find the absolute minimal realization of a

function by doing an exhaustive search of all possible solutions, An algorithm for ab-

solute minimization is i;troduced in Appendix A,

As stated before, absolute minimization needs considerable computation time. The

search spact is also very large in absolute minimization. This space can be made smaller

by applying a limitation rule: constrain some impljcants and establish the constrained

implicant set to Fnd minimal solution. The constrained implicant set concept signif-

icantly reduces search space as well computation time to get exact minimal solution in

multiple-valued logic [Refs. 1,91.

Definition 12

R (a) is a constrained implicant set of minterm a For functionf, if

where I is an imphcant off [Ref. 11

Lemma 1 :

If R(a) is a constrained implicant set, then every possible sum-of-products ex-

pression forfhas to contain at least one implicant in R(a) IRef, 1.

Definition 13:

P4(o) is a minimal constrained iinplicMant set of a function if and only if

6



0 < I <~)I:. I (fl) I

for all other minterms P off, where R(o) is a constrained implicant set [Ref. 1].

The search space can be represented as a tree where each node represents a function

and each edge corresponds to implicant of the upper level function. The root node is tile

given function to be minimized. The functions at the next level down from the root node

can be obtained by subtracting an implicant from the root node. Subtracting an

implicant from a function corresponds to setting I's or don't cares in the function cov-

ered by the implicant to don't cares.

If the root function has implicants, the root function has branches or subf-

unctions. Further, each subfunction has a maximum of -l descendents. It can be seen

that when the root function has many implicants, the search space is large. This situ-

ation can produce large computation time needed to find the minimal solution of the

function.. That is, the solution is to try each possible path on the search space where the

shot test path (having the fewest number of the implicant) is chosen as the minimal ex-

pression of the lunction (Refs., 1, 8 ].

By using Lemma I, the search space can be made smaller., At least one implicant

from the constrained implicant set has to be in the minimal sum-of-products expression

of the function. When F(a) is chosen as small as possible. there are fewer choices than

for larger size R(a), This decreases the computation time because there are fewer paths

to be examined.. [Ref., 81

Example 1:

This example illustrates the search space of a specific function and the finding of

eract minimal solution of a f in search space by using absolute minimization algorithm

and constrained implicant set concept.,

7
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Figure 1. Example Function for Creating Search Spice

A five variable function with sixteen niinternis is chosen. The function and exact

minimal solution is shown in Figure 1.

Let

j(v,w,xy,z) = .,m(1,5,6,7.11,12, 13, 15, 16, 17, 18, 22, 24, 26, 27,28)

1 he numbers enclosed in parenthesis on the right hand side correspond to minterms in

the binary representation. For example, initerm .= 15 corresponds to assignment

01111. Specific pfiime imlplicants in an exact minimal solution are represented by a

capital letter as seen in Figuie 1.

'l he search spaces for the gik en function aile illustliated in Figute 2 on page 10 and

Figure 3 on page 11. Because of the diflicult. of showing all possible search paths, only

one search path is shown as example (that which gi'es the exact miiinal solution).

Each node function is indicated b. a solid dot in search spa,-c. 'I hese node functions can

SU



be found by subtracting an implicant of the function from the root function as described

on page 7.

The node functions on the search path chosen as an example are represented by

letters NF, These functions at the next level down from the root node can be obtained

by subtracting the implicant (that shown by capital letter in Figure 1) from the root

node. These node functions are stated at the bottom of the Figure 2 and Figure 3.

The search space to find exact minimal solutionf is shown in Figure 2. The given

function f has fourteen prime implicants, and thus it has fourteen branches from the root

as described in absolute maininization. The search space is very large, wide and deep,

because there are many node function3 and subbranchcs in the search space off (i.e.,

2,162,160 possible branches)., All possible search paths must be investigated at each in.

div'dual node to find the exact iminimal solution.,

On the other hand, the constrained inplicant set concept can be applied to f., A

search space has been created for the same function as shown in Figure 3 on page 11.

This search space has fewer branches (i.e., 8 ) and fewer node functions (i.e., 384). Dc.

finitions and rules to create a search space and finding the minimal solution is discussed

in Section C and Chapter III.,

As a results of the coiparision of the two search spaces in Figure 2 and Figure 3,

we see that although the same implicant are chosen, the absolute minimization algo-

rithm has many more branches at each node Lianction. Applying the constrained

implicant set concept to the nininiiation of function reduces the number of branches

and node functions to be examined. Therefore, the program needs less time to find the

minimal solution.
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C. DEFINITIONS USED IN CISH

In this section, the fundamental measures used in CISI! is defined.

Definition 14:

Let ICS(a) denote implicant cover size of minterm c. The implicant cover size is the

number of the implicants that cover rninterm o.

When ICS(a) is calculated for rninterm o, the minterm a is not counted as an

implicant in CISIt. On the other hand, there is an exception. That is, if a minterm does

not have any direct neighbor, it is counted as an implicant in calculating 1CS(a).

Therefore, the nfinterm with no direct neighbor has same ICS(a) (i.e., 1) as the minterm

with only one direct neighbor.

Definition 15:

Let MC(!) denote the minterm coverage of implicant I. The minterni coverage is the

number of the nfinterrns that are covered by I.

MC(I) is used to deternine the importance or the cost of I during the minimization

process., The cost of the implicant is introduced in the minimization as the number of

niinterms covered by 1, 1 he implicant with the highest ,IC(1) is chosen in the rini ri-

zation process.

In CISII, each minterm covered by a selected implicant I turns to a don't care term.

Each new don't care term covered by I is subtracted from MC(I), So the don't care term

affects the MC(l). Therefore, the MC(I) changes during the minimization process in

CISi!.

12



D. MEASURES USED IN CISH

1. Clustering Factor

ICS(a) is a measure of the degree to which other minterms cluster around 0(.,

It shows how many minterms with which a ninterm a can combine. The lower ICS(a)

is, the fewer combinations exist.

Example 2:

To illustrate these definitions, consider the following four variable function with

ten minterms. Let

JIw,xj,z) = Zn( 0. 3, 4, 7, 8, 9, 10, 11, 14, 15)

The functionf is illustrated in Figure 4 on page 14.

The ICS(o)'s for each ninterm in Figure 4 are shown in the corresponding up-

per left corner. For example, the minterm rA = 0 has ICS(a)= 2, Two iriplicants (1,, 12)

cover this minterm, where 1,f= fi and 1, = .Yi . In general, minterms in the center

of a cluster have a higher ICS(a). For example, niinterm 0 = 11 is in the middle of a

cluster of I's and it has a high ICS(a) (7), while minterm a = 4 is remote and has a low

ICS(a) (i.e., 1 ).

2. Use of lmplicants

As an experimental result, using all implicants rather than prime implicants of

function f in calculating ICS(a) provides more information about minterms and

iinplicants. We believe that only using the prime implicants set off may miss some in-

formation about clustering of nfinterm with neighboring niinterms. Therefore, all

implicants of given function are counted in 1CS(o,).

13
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Figure 4. An Example on Calculationi of JCS(a)

Examuple 3:

This example illustrates the advantage of the using iniplicants versus plitie

iniplicants to calculate JCS(oc). The samne function in Example 1 is used. The ininterin

located at 00 10 1 (i.e., cx= 5) is chosen as sample nlintcrni t~i show changing of I1CS(a).,

The ICS(a) of each niinterin that is counted by usiag both )riwle iMlica1ts (Figure 5.a)

and all iniplicants (Figure 5.b) are shown in page 15.,

In Figure 5.a, only prinec implicants aic considered to calculate ICS(Q)., All

mninternis have same ICS(a) (i.e., 2). It shows that all niintcrnis have thc same clustering

with thicir neighbors. Thus, all of them all equally likely candidates as the starting point

for the miinimization.

Oin the other hiand, if all possible inplicants are counted in lCS(O') we have the

the situation slioxN n in I'icuie 5.b. InI that Case, thle ICS(CY) of each mlinitcrm is niot tile

14
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00 1 1 1 1

2 2 2 2

01 1 1 1 1

2 2 2 2

11 1 1 1 1

2 2 2 2

10 1 1 1 1

(a)

vwx

yz 000 001 011 010 110 111 101 100
2 4 2 4

00 1 1 1 1

2 4 4 2

011 1 1 1

4 4 2 2

11 1 1 1 1

2 4 24

10 1 1 1 1

(b)

Figure 5. Use of Dilfereait Sets to Calculate ICS()
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same as in Figure 5.a. The ICS(a) shows more accurately the clustering and coupling

strength among the minterms. Besides, the importance of the minterms to be starting

point for minimization is significantly changed (i.e., ICS(o= 5)= 4). The minimization

can start any one of the eight minterms where their ICS(x) = 2. These minterms are

1-, 6, 11, 12, 17, 22, 27, 28.

There is a special case that either use of all implicants or prime implicants can-

not provide any advantage over other set in calculating ICS(a). This case occurs when

the set of all implicants and is identical to the set of all prime implicants; that is, when

each implicant of the function is a prime implicant.

Example 4:

This example illustrates the special case in calculation of ICS(Oc). A four vari-

able function with eight minterms is used as an example. It is shown in Figure 6 on

page 17. ICS(a) of each minterm in Figure 6 is shown in the corresponding upper right

corner.

Let

Aw,xy,z) = -m(O, 2, 4, 5, 10, 11, 13, 15),.

It can be seen that the ICS(a) is the same for each minterm whether all implicants or

prime implicants are counted in ICS(c). Thus, there is no advantage in using prime

implicant or all implicant in calculating ICS(a).,

3. Effects of Don't Care Terms

From the definition of ICS(a), all implicants should be considered in counting

ICS(o). If it is desired to find the ICS(ot) during the minimization process, it is necessary

to consider all don't care terms as I terms. Changing the don't care terms to 1 terms in

16
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rigure 6. Special Case in Calculation of ICS(a)

substeps of the mininization gives the original root function (that wc count ICS(v) at

the very beginning). Therefbrc, ICS(u) of each minterm will remain unchanged through

the nilujinization process. Thus, it is enough to calculate the ICS(O.) of each nuinterm

once at the beginning of the minimization. It means that the don't care terms that in-

troduced during the mininization process don't affect the ICS(.) of each ninterm.

MQI) is allected by don't care terms introduced during the minimization

process. The impoitance of' the implicant is inverscly proportional to the number of

minternis changed to don't care at each niode function in the nmiinimization. Fach

minterm changed to don't care and covered by I icduces the importance (increases the

cost) of the I for next node function in minimization. 1lhe cost of I is determined by

,MC(l).

The new don't care terms coveicd by selected implicant I arc subtracted firom

MC(I). The implicant that covc. s 1 \ er miitci is has highci cost (is less important) with
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respect to an implicant that covers many minterms during the minimization process.

So each don't care term introduced to the remaining function affects MC(l) and in.

creases its cost. Therefore, MC(1) should be updated during the minimization process

in CISH,



III. CONSTRAINED IMPLICANT SET HEURISTIC

A. INTRODUCTION

This heuristic discussed in this section is named after the constrained implicant set

heuristic (CISH) because the original concept has been developed under the same name

in multiple-valued logic minimization [Ref. 8]. The idea is to extend the constrained

implicant set concept in multiple-valued logic to binary minimization.

The CISH has two computational phases: 1) constrain and select a minterm ac-

cording to its implicant cover size and 2) constrain and select an implicant with respect

to its minterm coverage. The selection of the nfinterm differs from other exact minini-

zation algorithms due to the difference in its rules of decision.

The selection of the implicant which covers a selected minterm depends on its cost

to the mininization. CISl I chooses an implicant and investigates its effect on the future

selection of minterms and implicants.

B. MINIMIZATION ALGORITHM OF CISIi

The general steps of CISII are described (see Appendix G for the C program listing)

in this Section. In the algorithm below, f denotes the function to be minimized.

All information about minterms, the implicants, and necessary sets are initialized

once and updated in the recursive part of the heuristic.,

1. Initialization

* Form the uncovered ninterm set (UMS) from all minterms off

* Form the don't care set (DCS) from all don't care minterms off (Initially, this is
empty).,

e Form the implicant set (IS) from all implicants off.

* Tally the M1C(l) for each implicant I in IS.,

9 Find the ICS(I.) of each minteim in U1S.
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2. Recursive Algorithm

Apply the following steps recursively to a function f until the function consists

of only don't care or 0 terms.

* Select an uncovered minterm a with the lowest JCS(a) from UMS. If more than
one such minterm exists, the one with smaller binary representation is selected.

0 Construct the constrained implicant set CIS(a) that includes all implica,.ts that
cover minterni a.

* If ICS(a) 0 2, select the implicant I,(a) with the lowest MC(I).

* If ICS(a) - 2 and MC(l) = 2 for each of the two implicants in CIS(a), apply the
extended search technique (ES 7) to select ],(i).

* Put 1,(a) into the mininized sum.of-products set (MSP).

* Find the minterms in UMS that are covered by 1,(a).

* Remove these minterms from UMS, and place them into DCS.

* For each implicant in IS that covers at least one new don't care term, subtract the
number of new don't care terms covered by 1(a) from MC(l). If the MC(1) - 0,
remove 1(o.) from IS.

3. Extended Search Technique (EST)

AppI this search technique, if there is a minterm with ICS(a) = 2 in the recur-

sive part of' the heuristic.

* Compute ICS(fl) of each direct neighbor fl of a.

* Choose a fl with ICS(fi) = 1CS(a) (= 2), if such a #exists. Select 1,(a) that covers fl
and a.

* Otherwise, select a neighbor fP of a with the smaller ICS(fl). Select I,(a) that covers
P3 and a.

C. EXPLANATION OF CISII

In this section, the algofithm described in Section 1II.B is explained by using ex-

arnples.
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Initialization Part:

All information about nntcrms and implicants are found and prepared for the re-

cursive phase. Mainly, three basic working sets (UMIS, DCS, IS) and two basic meas-

ures (ICS(a), MC(1)) of CISt! have been formed.,

Firstly, the UAS is formed. This set includes the minterms that belong to AON" of

function f. DCS is assumed to be empty at the initialization part. DCS and UMS are

complimentary sets. When UMS decreases, DCS increases. The IS initially includes all

implicants of the function. IS gets smaller as a result of some implicants being removed

during the minimization process.

Two basic measures of CISl I are formed in initialization part. These arc MC(l) and

ICS(a). All minterm's ICS(a) are computed. The CISI computes the ICS( ) the

column-row oider. For example, the minterin a= I (i.c., binary representation 0001) is

evaluated earlier than minterm a = 2 (i.e., binary representation 0010).

MC(l) is calculated by counting the number of the minterms covered by I. For example,

if I covers 4 minterms, its MC(l) is equal to 4. But, the AIC(l) of each I will change

during the minimization process as mentioned in Section II.C.

Recurshe Part:

Recursive part is the second computational phase of CISIl. The purpose of the re-

cursive part is to select the minterm with the lowest ICS(a), then constrain and select the

implicant that has the lowest cost to the minimization.. All of the minimization has been

done in this part of heuristic, All the steps shoxn in Section 111.1 are explained by

Example 6 and 7 in this section.

It is important to select the first ininterm intelligently during the ninimization

process in CISII. The importance of the ininterms is deternined by ICS(a), As men-

tioned in Chapter II. ICS(u) is a neasWc of how many possible combinations a mintein
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has with neighboring terms. A lower ICS(oc) means that fewer combinations exist. The

minterm with lower ICS(a) gains importance with respect to the minterms having higher

ICS(oa) in CISH, because the minterm with lower ICS(a) tends to be isolated and the

minterm with a higher ICS(a) tends to be in the middle of the cluster of l's.

If a function has minterms, the search space of the function has main branches

(see Figure 11 in Section D). CISH selects the minterm with the lowest ICS(a) in

UMS, then selects the main branch that includes the selected minterm. All of the min-

imization process in CISH is done in this main branch and its subbranches. CISH does

not make a search to find the minimal expression of the function for any one of the re-

maining -l main branches. One of the properties of CISII is to find a near minimal

solution by searching only one main branch of ovcr-all search space. That's why the

selection of the minterm is very important., The selection of minterm is done at every

node function generated from root function by heuristic rules. The selection of minterm

with the lowest ICS(o.) reduces the search space significantly (unlike the exact minimi-

zation algorithms such as Quine-McCluskey).

Example 5:

'1 o illustrate the effects of the selection of minternis in inimization, consider the

following four variable function with eight minternis.

Let

flw, xIy, 0) = m( , 1, 2, 3, 4, 7, 9, 10).

I wo possible minimal solutions for the giseni function are shown in Figure 7 on page
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Figure 7. Importance of Selection of M intermt

If the iniimization be-ins at anty one of thc inunteinis in the center of a cluster (i.e,,

o, = 0, 1, 21, 3), the prinie iniplicant that corresp~onds to FUh will be induded in the Solution

set, This Primc implicant is indicated by a dashcd line in Figure 7.a. [our additional

implicants axe nececssary to co~ er the remnaining nnnterms with JCS(c,)= 1, The suml-of-
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products expression off includes five product terms. The implicant iiY is redundant in

the minimization off.

If the minimization begins with any one of the minterms such that ICS(a)= I (i.e.,

a-4, 7, 9, 10), the minimal solution will have four prime implicants as seen in

Figure 7.b. The sum-or-products expression off for two solutions are written below:

JAw, x,y, z) - Wy + xyz + wyz + xyz + WY

The CISII constructs the CIS(a) after selection of minterm from the implicants in

IS. A group of implicants in IS is constrained by using ICS(c). All implicants in CIS(a)

cover the minterma,

The selection of implicants is equivalent to breaking the coupling between that

implicant and its neighbors. The candidate implicant should have the lowest cost to

minimization in CISH. [Ref. 9]

The coupling strength is introduced as the minimization cost. The MC(l) is used as

the cost of implicant to minimization. The implicant with the lowest cost has the highest

AIC(l). The implicant with the highest MC(l) covers the largest area in the function.

The largest area can contain don't care terms as well as 1 iernis.,

The chosen implicant in CIS(o) is to be a prime implicant due to the prime implicant

theorem. The prime implicant theorem states that a minimal sum-of-product must al-

ways consist of a sum of prime implicants. [Ref 10: p. 206]

At least one of the implicants in CIS(a) should be a prime implicant and it contains

the fewest literals among other implicants that cover minterm o., Naturally, the prime

implicants always have higher MC(l) than non-prime implicants in CIS(a)., The strategy

of CISIL is to ahvays select an implicant that covers minterm a with the lowest cost.

24



This rule provides for that selected implicant being one of the prime implicants having

the highest MC(I) in CIS(a).

Extended Search Technique:

This technique is applied only for the special case when the ICS(a) of a minterm a

equals two. It indicates that minterm a is covered by only two implicants and at least

one of them should be chosen as a part of the solution. If the Mf C(l) of these implicants

is not equal to two, CISII selects the implicant with the highest AC(I). On the other

hand, if the MC(I) of each implicant in CIS(a) equals two, it indicates that the minterm

a is covered by two implicants, that none of them covers don't care terms, and their cost

to the minimization process is equal. In this case, the best and the most efficient

implicant should be chosen in CIS(o)., The purpose of the EST is to minimize the neg-

ative impact for future minterm selection as well as implicant selection by choosing the

most efficient implicant in CIS(a).

In iST, CISII finds the two direct neighbors P? of minterm a . It checks the ICS(fl)

of fi. If a fl exists such that ICS(fl) = ICS(a) (= 2), it selects the implicant in CIS(a) that

covers both f; and a. It' both direct neighbors have the same ICS(fl) such that

ICS(f)= ICS(o.), CISIt selects the neighbor with smaller binary representation, then

chooses the implicant that covers both # and a, If none of its direct neighbors have the

same ICS(fl) as ICS(a). CISII then selects the fl with smaller ICS(fl).
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Example 6:

To illustrate the application of EST in CISI1, consider the following a four variable

function with eight minterms. Options for the minimization off will either 1) not apply

EST (Figure 8.a) or 2) apply EST (Figure 8.b) as shown on page 27.

Let

flw, x,.Y,z) m( 2, 3, 5, 6, 7, 9, 11, 13).

There are four minterms (i.e., a = 5, 9, 11, 13) to be selected due to their ICS() (i.e.,

2). The CISH selects the minterm a= 5 (located at 0101) according to column-row or-

der., The selected minterm has two implicants that cover it (01-1, -101), that is,

CIS(0101) has implicants 1,(a) and 12(a) represented in binary as 01-1 and -101 respec-

tively.,

Figure 8.a shows the case when EST is not applied. Since two iniplicants (1,(U),

12(t.)) haN e thc same cost for minimization (i.e., MC(l) = 2), the one of them must be se-

lected. If I (v) is selected as the implicant to be placed in the solution set, then

Figuie 8.a shows the minimal sum-of-products expression of the function.,

On the other hiand, if ES7' is applied, after selection of the minterm a = 5, its direct

neighbors are found as f,=0lll and f 2=1111. Since ICS,0111)=4 and

ICS,1111)= 2, EST selects 1111 which has lower value. In words, the implicant 12(a)

(that covers the a and/l2) is the best and the most efficient implicant to minimize nega-

tive impact for future selection of minterms and implicants at the next node function.

It can be seen that if ESIT is not applied, there may be a negative impact to min-

iinization of function. I lie minimal solution obtained in this way has four product

terms. EST provides a better niinimal solution for the same function . The minimal

solution has only three product terms as sho%%ii in Figure S.b.
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Figure 8. Application of Extended Search Iechnique

The process desclibed above is illustrated in Figure 9 on page 28. 1 he inini/ation

(appl\inyz ESI) is indicated by bold lines, located on the right branch fiom the root.
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Figure 9. Constrained lmlieiCants in Extended Search Technique

The selected minterms and implicants in bilnary reprcscutation is placed ncxt to these

lines. Another solution (N\ithout applying ESI) is indicated by italic lont located on left

branch frow. '.Iie root.,

The selected implicant 1,(a) is placed into .1ISP. CISII finds the ninterms co~cred

by I,(.) in UMIS. It turns tbese mintci in, to the don't care terms and puts then into

DCS., CISI I updates the cost of the implicant il IS that covers at least one of the new



don't care term. Updating of the cost of 1(a) is done by subtracting the number of newly

introduced don't care terms (covered by 1(a)) from MC(I).

For any implicant I, if MC(I)= 0, then it is removed from IS. The xumber of

implicants in the IS gets smaller in each recursive step. The computation stops when

UMS is empty.

D. A WALKTHROUGH EXAMPLE OF CISI

It is instructive to examine the application of the CISH. A four variable function

with eight nfinterms is used as an example. The input function has been shown in

Figure 10 on page 30.

Let

flw, x,y,z) Zn( 3, 4, 5, 7, 9, 13, 14, 15).

All information about minterms and implicants are presented in Table I and Table 2

on page 32. For simplicity, binary representation of eact implicant is indicated by a

capital letter in Table 1,

The sets of CISI constructed in the initialization part are listed below:

U31S= { 3, 4, 5, 7, 9, 13, 14, 15 )

IS = ( A(2), B(2), C(2), D(2), E(4), F(2), G(2), 1(2), J(2))

DCS = 0

CIS(a)

There ai e eight main branches in the search space. These branches are shown in

Figure II on page 34. CISII can begin niinfiiization from any one of these four
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Figure 10. Instructive Example for CISII

branches (a = 3, 4, 9, 14), because their 1CS(a) are the same and the lowest in the UMIS

(i.e., ICS(c)= 1)., By using ICS(cx), CISII reduces the search space from eight branches

to four branches.,

It is assumed that mi'ntern o.= 3 is selected to be-in minimization among four

minterms with ICS(a) = 2. CIS(c) is constructed with respect to o: = 3., This set consists

or only implicant B in IS. Implicant 1) covers o.= 3 and c= 5., The sets of CISI I ale

updated with the rules of the heuristic., For example, the costs of implicant E, F, I

change in IS. The cost of each implicant is indicated in parenthesis next to the

implicant. The new sets of CISI I and costs of the implicants are shown below and cor-

responding to the leftmost node at lexcl I in Figume II on page 34.,

UMS {4, 5, 9, 13, 14, 15)
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IS = ( A(2), C(2), D(2), E(3), F(l), G(2), 1(1), J(2)]

DCS= (3,7)

MPS={ B)

Table 1. INFORMATION ABOUT IMPLICANTS

Impllcant (l(a)) Binary Represen- MC(I) Minterm Covered
tation '_by I(ac)

A 01). 2 4,5
B 0-11 2 3,7
C 1-01 2 9, 13
D 111. 2 14, 15

E -1-1 4 5, 7,13. 15
F o1.1 I 5, 7

G 11-1 2 13, 15
i .111 2 7,15
J -101 2 5, 13

Tahle 2. INFORMATION ABOUT MINTERMS

Minterm (2) Binary Represen- ICS{0) Covered by
tation Implicant

3 00 11 1 B

4 0100 1 A
5 0101 4 A, E, F, J

7 0111 4 B. E, F, I

9 1_01 1 C
13 1101 4 (. E. G. i
14 1110 1 1)
15 1111 4 D. E. G, 1
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UMS includes six minterms and CISI I chooses three of thenm to start the minimiza-

tion, since, their ICS(a) is smaller than others. These are a = 4, 9, 14 and their ICS(O.)

are equal. It is assumed that a = 4 is selected. CJS(a) contains only implicant A. A

covers cc = 4 and 5., The new sets of CISH becomes:

UIS=(9, 13, 14, 15)

is=(C() D(2), E(2), G(2), ](I), J(l)}

PCS = 3, 4,5,7)

IPS = (A,)B )

Implicant F was removed from IS because it would cause the highest cost for all future

minimization processes (i.e., MC(l) = 0)

There are only two minterms to begin the next selection and constraining implicanit.

These are ot 9. 14 anhd they are equal i ICS(a.). So we can arbitrarily select the one

with smaller binary representation, i.e., m-interm a= 9 is selected. I he CIS(&.) includes

ODNy implicant C.

After selection of C, the sets are updated as shown below.,

UMS = ( 14, 15 )

IS ={D(2), E(l), G(l), 1(1))

DCS= 3, 4, 5.7,9, 131

.MPS= A. B, C
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Now, only one minterm is in UMS ( a = 14). CIS(a) consists of only implicant D.

D covers o.= 14 and a= 15. The sets of the CISII become

UMS = 4)

is =4)

DCS ={ 3, 4, 5, 7, 9, 13, 14, 15)

M,,S ( A, B, C, D )

The minfial sum-of-products expression off is the UMS or:

fl w,x,y,z)=00- +0- 11 + 1 -01 + Ill -

, x-: + -Fvz + w:z + wxy

All branches and constrained implicants arc shown in Figure 11 on page 34. The

constrained paths are shown,with bold lines, located on the left branch from root. An-

other search path is shown by selection a = 5 at the very beginning of the miininfization,

1 his path, located on the right branch from the root, gives another possible solution,

without applying CISII.
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IV. COMPARATIVE RESULTS

In this thesis, all test results were obtained by running sample functions on the VAX

11/785 and ISI workstations. Different number of sample functions (4100) were ran-

domly generated. The input functions are generated for different variables with different

number of minterms, (i.e., 9 variable function with 475 minterms or 7 variable function

with 120 minterms). Each algorithm was applied to these samplz functions, then the

avcrage number of product terms, average computation time, and average memory usage

are recorded. The computation time for 9 variable functions and larger is very large.

This explains why we did not simulate more than 9 variables. This thesis investigated

three algorithms: 1) CISli, 2) MIII (see Appendix B), 3) Espresso II (see Appendix C).

A. PERFORMANCE COMPARISON

The performance measures are recorded and compared. These are 1) the average

number of product terms, 2) the average computation time, and 3) the average memory

usage.

The average number of product terms will show us the advantage of the each algo-

rithn,. T or each set of sample input functions, the average number of product terms (see

A?,penijx D) is computed. From these data points, a curve is plotted to indicate the

acrage number of product terms as a function of the number of the variables. The plot

is shown in Figure 12 on page 36.

In this exponential-growing shaped figures, it is observed that:

* The diflercnces in the number of average products terms among these algorithms
are not sigfijV.JIt. Less than 1% of testing functions are different.

0 When t1w il-nuiber of variables gets larger, the cur\.e grows up exponentially. This
is ch1icOl duc to the fact that both the number of mintermns and implicants increase
exponentially and the3 make the computation time long.
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From Figure 12, thc CISI 1 pcr-forms as wvell as the other two algorithms (MIII,

Espresso 11),

13. TIMING COMPARISON

Both VAX 1 1,785 and ISI woikstations at NPS canl measure a program's compu-

tationl time ill UNIX environment, Ill this section, timing comparison counts the aver-

age computation timec for each group of input functions,
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Thec decision rules for selecting the minteim r and the implicant 1(a) in each algo-

rithm are difkcrent. Generally, an algorithm that hias comDplex rules to select 0. and I((x)

takes longerci computation timec. The CISI uses miore complex decision rulcs than NMIII

and Espiesso 11, It miay appear that CISI needs ma10e com1putation tinic than othcr

algorithmns. However, the computation timec of the CISI I is shorter than INIIII, although

it is not us fast as Espresso 11. '1lhe graphical iesult is shown1 in Yl1iguze1 13. Espresso 11

outperforms the other two hew istics, This inight be due to smaller constant in coznpu-

tation comple)Ixit).. The ziunietical results aWe shownV in Apni-))Jx 1E.
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C. MEMORY COMPARISON

The average memory usage is measured for each algorithm (see Appendix F)., From

these data points, a curve is plotted to indicate the average memory usage as a function

of the number of the variables, The plot is shown in Figure 14 on page 38,.

It is expected that a heuristic or algorithm based on tabular method needs more

memory to store the information for keeping track of each term during the minimization

process., The N1111 is based on a tabular method, thus it needs a lot of memory space.,
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The CISH selects and constrains the minterm a and implicant I(a). As a natural con-

sequence, CISH uses less memory than MiI- due to heuristic strategy.

A sophisticated dynamic memory scheme was used in Espresso II, so that it de-

mands less memory than the other two heuristics (MIH, CISI).,

To summarize:

* There has been significant difference among the memory usage of each algorithm.

* Direct covering and tabular method used in CISH and MIH needs more room to
store the information about terms than the decomposition technique used in
Espresso II.

* If we use dynamic memory allocation in CISH, the memory requirement will be
reduced.
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V. DISCUSSIONS AND CONCLUSIONS

A. DISCUSSIONS

There is no significant difference among these algorithms with respect to number

of product terms. The small difference in the average number of product terms origi-

nated from the application of EST to CISH. Recall that in EST, we compute ICS(ot)

of a given minterm, then constrain and select the implicant 1,(M) with respect to the re-

lationship among direct neighbors of nnterin a (i.e., one step look-ahead).

Naturally, a further look-ahead while selecting the I,() may provide a better se.

lection of implicants. The exponential growth of the number of all possible implicants

restricts the practical use of k look-aheads for k 0 1. The application of EST provides

better solutions for CISH over MI. On the other hand, the best solutions are provided

by Espresso II.

From the computation time results, the CISH runs faster than MIH in all testing

conditions, This time efficiency is a result of the decision rules employed in CISH (that

takes advantages of the properties of the constrained implicant set concept). On the

other hand, Espresso II runs faster than the other two heuristics as a results of the be-

havior of the algorithm based upon the unate paradigm (see Appendix C). Typical

PLA's produce shallow recursion trees terminating quickly at unate leaves in search

space. This benefit is used in Espresso 1I.

The memory comparison shows that MIIi and CISH need more room to store the

information about the minterms and the implicants to operate efficiently. On the other

hand, Espresso II uses less memory by dealing primarly with matrix representation of

the function and the miniimzation. It is believed that use of more memory makes
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heuristics slower, since memory intensive programs tend to run slower than cpu intensive

programs.

B. CONCLUSIONS

One of the primary goals of this research is to examine whether the constrained

implicant set concept in multiple-valued logic can be efficiently used in binary minimi-

zation. It is seen that the binary mini mization of a given function can be done efficiently

by using the constrained implicant set concept.

In the development of the CISII and from comparative results, we have the follow.

ing observations:

* The constrained implicant set concept reduces the search space significantly in the
binary minimization.,

9 CISI! does not lose run time eflicency unlike M1- because the heuristic finds the
solution and stops earlier than MIII.

* Direct covering fits well with the constrained implicants set concept. On the other
hand, it does not provide efliciency on the computation time as much as the de-
composition technique does, such as Espresso 11.

* In the cyclic case, applying ES ' provides better results than Mitt, On the other
hand, using onlN one step look-ahead in ESrF may loose the optiniality. l lowever,
it is not practical to have moic than one look-ahead, that requires longer compu-
tation time and larger memory space..

# By constraining implicants with the cost factor, it is possible to find near and good
minimal sum|-of-products expressions.

* It is possible to get a near and good mi'nimal solution by only searching the main
branches of the search space.

* The memory usage can be decreased by using the dynanic memory allocation like
Espresso II. Originally CISII uses the static, memory allocation.

Generally, Espresso 1I is more efficient than CISlI. This is not surprising since our

heuristic is an initial unoptimized prototype. Espresso 11 on the other hand is the

product of considerable effort b\ a very large team over a long period which has con-

centrated on producing a production quality software package.
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Directions for Future Research

It is our hope that the ideas and heuristic described in this thesis represent a plateau

for the development of two-level binary minimization. The minimization problem is in

principle difficult, and future developments will exploit fundamentally new ideas. Here,

we briefly describe directions in which future research might be pursued.,

* In CISH, function is represented in the form of the truth table. All the minimiza-
tion process is done by using the data structure. On the other hand, Espresso II
uses the matrix representation of function and the minimization. This provides
increased speed of execution. This matrix representation can be applied CISH.

9 Direct covering technique is applied to CISH., It is obtained that decomposition
technique can provide faster and more accurate solutions in minimization like
Espresso II. The constrained implicants set concept can be improved by using the
decomposition technique instead of direct covering.

9 The speed of execution can be increased by applying the concept of unate paradigm
to CISH. Actually, CISII reduces the search space significantly. On the other
hand, we believe that using the concept of unate paradigm reduces the search space
(that already reduced by applying the constrained implicant set concept).

* The function applied to CISH includes only the I and 0 terms. The CISLI can be
improved by using the don't care terms at the beginning of the minimization. We
hope that using the don't care terms at the beginning of the minimization with I
terms helps reduce the computation time and use less memory space.

* CI S I is developed using only the single output case. The hcurictic can be modified
to be used in the minimization of the multi-output case, Wc believe that CISII
provides more efficient results than MIll in the multi-output cases.
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APPENDIX A. ABSOLUTE MINIMIZATION ALGORITHM

This algorithm is taken from [Ref. 1].

algorithm absolutejni nimization;

f -- inputjfunction;

cur-best soln set -best solution From the Pomper and Armstrong,

Besslich and Dueck and Miller heuristics;

cur-best solnisize number of implicants in best solution;

curpartialsolnset

curpartial_solnsize ,- 0

minimize();

stop

procedure minin-ize(l);

-" some essential implicant set of f;

ishile (( there exists another implicant in 0) and ( cur partialsoln_ size + 1 <

curbestsolnsize ) ) do

begin

I *- the next implicant in ¢

cur partial soln_set +- curpat ti,d_solanet .J 14
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curjpartial soli size 4-cur~partial-soin-size + 1;

if( for all assignments x of values to X, qx) = 0 or 1Rx) =r)

then

begin

cur-best-soln-set 4-cur-partial-soln-set;

cur best-soin-set 4-curpartial-soln size

end

[[backtrack]

else if ( cur-partial-soln-size + I < cur-best-soln-size) then

minimize( f - 1);

cur partial soln size cur partial soin_size - 1;

cur partials Aol-set cur partialsoln..sct - (1)

end

return

;Thc subtraction of an implicant I fromn a function f, as described by f~ f - 1,

takes into account the value of the input function. Let x be assignment of

values to variables X., Then, f +- f - I means

for(all assignments x of values to X) do

begin

if(( fkx) = r ) or ( input_ function(x) =r) or (fRx) ! I (x) and input function(x)

- r -1 )

then fRx) r

else f'(X) 4-f(x) - I (X()
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end
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APPENDIX B. MAXIMUM IMPLICANT HEURISTIC

The Maximum Implicant lieuristis (MIH) is developed by modifying the

Quine-McCluskey Algorithm (QM). MlI is based on obtaining the switching function

as a near minimal sum-of-products. M IH differs from QM with respect to the two basic

approaches. These are stated below:

* Incorporation of A011, AOrF, Avc sets of function at the beginning of the minimiza-
tion

* Approaching to solve the cyclic case lbr a given function

The differences between two algorithms are explained by ,howing the main steps of

QM., QM is an exact minimization algorithm. It consists of two main parts shown be-

low [Ref. 2:, p. 581:

* Generation of the prime implicants

e Extraction of a minimum prime cover

Modifications are done in these main parts of QM.

Modification 1:

The first modification to develop Mitt is done at the first part of QM. The Mii

does not include the don't care terms while generating all prime implicants. It uses only

the minterms that belong to A0 and A91' of given function at the beginning. On the

other hand, QM can consider A19-1, AoFr , ADc of function. Use of the don't care terms in

the minterm list makes generation of all the prine implicants more complex. The more

compl.ration time and memory space is necessary to find prime imnplicants. Ihus, a

modification has been done to save the computation time and memory space. This

modification is reflected to de elopmcnt of .M -I as not including A,- of a giN en function
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at the beginning of minimization and dealing with only the function with AN¢ and AOFF

in its minterm list.

Modification 2:

QM algorithm sets up a covering table that shows all of the prime implicants and

minterms covered by prime implicants. The essential prime implicants are removed from

this covering table, then a reduced covering table is formed. Secondary essential prime

implicants are found and removed from last covering table. A new covering table is set

up by remaining minterms and prime implicants [Refs. 2: pp. 59.64, 11: pp. 146-1561.

In fact, it occurs in last reduced covering table, there is more than one possible cover

for given function. It is said that function has cyclic case. This cyclic case is solved by

apllying the Petrick Algorithm in QM., Petric Algorithm can be stated as producing all

possible covers for the function in covering table and selection of the one of the covers

requiring the smallest number of prime implicants and literals [Ref. 2: p. 64].

Producing all possible covers for the function needs more computation time and

memory requirement. All possible co~ers in last reduced covering table must be found

in QM., The reason is: QM quarantees exact minimal solution by searching all possible

covers and selecting one having the fewcst number of product terms.

The second modification is made at this part of Q.M. '[he reason is to avoid

spending a lot of computation time to find all possible covers and using more memory

place.,

The modification can be stated as: 1) find the maximum implicant that covers the

largest area in the last reduced covering table and 2) declare it being in the solution set.

The minimization process is continued after removing the maximum prime implicant

from this co\ering table, then establishing a new reducing table. If function still has a

cxclic case. the same process is applied until no cxclic case exists.

47



The example about applying Petrick Algorithm in QM and breaking the cyclic case

in MIH can be found in [Ref. 2: pp. 64-65].

Minimization Algorithm of MIII:

In summary, the MIII (for finding a near minimal sum-of-products expression to a

given function) follows the step given below.

* Find the set of all prime implicants of the function by using minterms that belong
to AON and AOFF of the given function.

* Construct a covering table from all generated prime implicants.

* Identify all of the essential prime implicants and form a reduced covering table.

* Identify secondary essential prime implicants and reduce the covering table again.

* If there is a cyclic case in reduced covering table, break the cyclic case by selecting
the maximum prime implicant to find a minimal cover for remaining minterms.
Apply this process until no cyclic case occurs in reduced covering table.

Observations on MIH:

The most important observations about Mil- are stated below:

* Most of the steps of both algorithms (M11, QM) are identical. If a function does
not have any cyclic case during its minimization process, MiII and QM can be
considered as the same algorithm.

* The Mil- provides a near ninimal sum-of-products expression for given function
as a results of not finding all possible covers to solve cyclic case in reduced cover-
ing table.,
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APPENDIX C. ESPRESSO 11

Espresso 1I is a set of algorithms for logic minimization which basically follows the

sequence of top-level transformation of iterated expansion-reduction pionereed by MINI

[Ref. 5: p.13].

The fundamental definitions used in explanation of Espresso II are summarized be-

low:

Definition

A logic function f is monotone increasing (monotone decreasing) in a variable x, if

changing x, from 0 to 1 causes all the outputs off that change, to increase also from 0

to I (from 1 to 0). A function that is either monotone increasing or monotone de-

creasing in x, is said to be inanotone or unaie in v,.

Definition

A function is said to be unate funciion, if it is unate in all its variables. Example:

f= xJT- +x2Tx3

Theorem :

I he Shannon expansion theorem states that a function can be expanded about any

chosen variable that is, to produce an equivalent expression for the function in which the

chosen variable appears once in uncomnplemented form and once in complemented form.

The statement of the theorem is:

J *x i X2 ,:., ),, .... , X) xifJtX. XJ. .. , , . , X )+X 2 ... 0, '..X )
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Algorithms of Espresso II based on a single basic strategy: a recursive divide and

conquer. It basically uses decomposition technique. Decomposition is based upon

Shannon Expansion. The Shannon Expeansion uses the cofactors of a logic function.

Since Espresso II uses the benefit of unate functions in Shannon expansion.

The algorithms of Espresso II form a logic ninimization tools which actieves both

robust performance and quality results. Iterative improvement produces well-minimized

cover with high confidence, while unite paradigm together with special-case handling

ensures reasonably efficient execution for a broad range of incoming problem [Ref. 5:

pp. 161-162].

Speed of execution in Espresso II is based on the unate paradigm. Typical PLA's

produce shallow recursion trees terminating quickly at unate leaves. Espresso II uses

this benefit to trim the recursion tree and balance it judiciously. Besides, using matrix

representation for representing logic function and minimization process in Espresso II

requires less memory, and the operations to be executed faster than other forms of rep-

resentation of function [Ref. 5: pp. 44-461.

"l he objectives of Espresso I1 are to ninimize:

e The number of the product terms in the cover (NPT)

* The number of literals (not don't care ) in the input parts of the cover (NLI)

* The number of literals in the output part (NLO)

The Espresso II minimization procedure defines a vector objective function

() = (APT, NLI, NLO)

and continues to iterate through into main minimization loop until none of the three

components of qP have been reduced since the last past through the loop [Ref. 5: pp.

54-551
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Espresso II minimization involves seven basic routines and the sequence of oper-

ations carried out by Espresso 11 is outlined below:

* Complement : Computes the complement of PLA's and the don't care set.

* Expand : Expand each implicant into a prime and remove covered implicant.

* Essential-Primes : Extract the essential primes and put them in the don't care set.

* Irredundant Cover: Find a minimal (optionally minimum) irredundant ,over.

e Reduce: Reduce each implicant to a minimum essential implicant.

e Iterate: Expand, irredundant cover, reduce until no improvement.

* Lastgrap : Try reduce, expand and irredundant cover one last time using a different
strategy. If succesful, continue the iteration.

* Makesparse : Include the essential primes back into the cover and make the PLA
structure as sparse as possible.

The widely description and explanation of over-all Espresso II program can be ob-

tained at Ref. 5.
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APPENDIX D. AVERAGE NUMBER OF PRODUCT TERMS

Table 3. AVERAGE NUMBER OF PRODUCT TERMS
Number of Vari-aubles Espresso II MIH CISH

1 1.000 1.000 1.000

2 2.450 2.450 2.450

3 3.480 3.480 3.480

4 4.000 4.010 4.000

5 6.100 6.118 6.112

6 10.500 10.660 10.567

7 17.000 17.268 17.256
9 33.160 33.473 33.475

9 46.320 46.992 46.990
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APPENDIX E. AVERAGE COMPUTATION TIME

Table 4. AVERAGE COMPUTATION TIME (SEC)_______

Number of Vari- Epes 1MHCS
ables Epes IMHCS

1 0.000 0.000 0.000

2 0.400) 0.890 0.420

3 0.490 5.760 1.070
4 0.960 6.010 1.300

5 1.060 6.480 1,952
6 1.070 6.860 1.780

7 1.100 7.976 3.690

8 1.446 11.410 S.830

9 1.824 24.704 19.992
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APPENDIX F. AVERAGE MEMORY USAGE

Table 5. AVERAGE TOTAL MEMORY USAGE (KBYTE)

Number of Vari- E . . ....... .
ables Espresso II MIH CISH

1 3.600 1.180 2.160

2 13.90 7.660 8.980

3 64.160 10.950. 16.150

4 77.000 36.720 45.786

5 96.960 57.980 77.400
6 103.200 73.170 100.22

7 112.552 115.090 92.670

8 127.080 189.670 137.060

9 138.576 319.696 219.480
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APPENDIX G. PROGRAM LISTING

#include <stdio. h>

#define maxint 32767
#define maxvars 10 /*Max # of variables in a product term.*/
#define maxcint 65535 /*2**(maxVars)-l*/
#define maxcubes 1000 /*Max # of cubes to allocate per level*/
#define TRUE 1
#define FALSE 0
#define Function
#define max 5
typedef struct cube

Int tt[maxvars]; /*Bits 1 for uncomplemented variables.*/
int ff[maxvarsl; /*Bits 1 for complemented variables.*/
int ics; /* degree of clustering of minterm */
int oldics; /* degree of clustering of minterm */
int ic; /* minterm coverage of each implicant */
int selected; /* flag of selected implicants in SOP */
int track; /* to keep track of implicants,cubes */

]Cube;

int numvar; /* number of the actual variables */
int m,n; /* counters for loops */
int aux,auxl; /* variables for temporary impicants */
int naux,nauxl; /* variables for temporary cubes */
int numminterm; /* number of the minterms */
int num -product; /* number of the sum_of_product terms */
int countimpl; /* counter for implicants cover cube */
int numcubes[maxvars]; /* flag to indicate levels and cubes */
int covered[maxvars][maxcubes]; /* flag to indicate covered minterms */
int J, k,kl,p,rc,r,rm,rl,rk,rz; /* Index into the cubes,covered array */
int found; /* flag to keep track of covered imp */
int isonum; /* counter for remainder minterms */
int temp; /* dummy variable for implicant cube */
int small,high; /* variable for selection sorting */
int num_implicant; /* number of all implicants in funct. */
int sub,subl; /* temporary variables */
int dumduml; /* temporary variables */

Cube cubes[maxvars+l][maxcubes+]]; /* Cube representation for minterms */
Cube temporarycube; /* temporary cube for manipulation */
Cube tempcube; /* temporary cube for manipulation */
Cube implcubes[maxvars+l][maxcubes+l]; /* cube representation for impl. */
Cube tempi[l][max] /* temporary implicant */
Cube nebor[l][max]; /* temporary neighbor cubes

FILE *fpil,*fpol; /* pointers for the files

Function main (argc, argv)
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int argc;
char **argv;I

int i,k;
found = FALSE;
for ( re=O; m <= maxvars ; m++ )

numcubes[m] = 0; /* initialization for all level */}
for ( re=O; m < numvar ; m++ )

for i=O; i < maxcubes ; i++ )

covered[m][i] = FALSE
cubes[ m][ i]. ics=O;
cubes[ m] i]. oldics=O;
cubes[ m] [ i]. ic=O;
cubes[ m] [i]. selected =0;
cubes[ m] [i] track =0;
for ( k=O; k < numvar ; k++ )
I

cubes [m] [].tt[k] =0;

cubes[ m] i], ff k] =0;

/* Read the minterm from input file */

readfile(argv[ 1]);

for ( m = 0; m < numvar; m++ ) /* For all level except the last */
0for(j =0; j < numcubesm]]; j++) /* For all cubes at this level */I

for (k =j+l; k < nuincubes[in] ; k++) 1* other cubes at this level*/
I
if( rc=combinable(&cubes[ m] [j] ,&cubes[ mi] [k] ))

Tcovered[ m][j] = TRUE; /* mark the cubes as covered */covered[in] [k] = TRUE; /* mark the cubes as covered */

/* Combine into an (m+l)-cube store in tempcube */

combine(&cubes[n] [ j] ,&cubes[m] [k] ,&tempcube);
found = FALSE ; /* See if it is generated before */
for (p=O; p < numcubes[m+1]; p++)
I
if ( r = equalcubes(&cubes[m+l][p] ,&tempcube))

found = TRUE;

if(! found)
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/* add this as new implicant of higher level *
for(k10O; k1 <nunivar; kl++)

cubes[ni+l] [numcubes[m+l]] .tt[kl] = tempcube. ttfkl];
cubes[m+l] [numcubes[m+l]1. ff[kl] = tenipcube. ff[kl];

numcubeslm+l] -numcubes[m+l] + 1;

/* Find all possible implicant of function *

for Cm0O ;mi < nunivar ; mn++)

for (J= 0; j < numcubes[m]; J++)

ifC(m -0) && (ICcovered[0][j])))

num.inipl1icant 4-I;
teinpsnumimmplicant- 1;
change(&cubes[n] [J] ,&implcubes 0] [temp]);

if((m I= 0) && (coveredlniljlj))

nui..impl1icant++;
* tepnumjimplicant -1;

change(&cubes(i] [jJ ,&implcubes[ 01[temp]);

if((m 1=0) && (Icovered[in][j]))

num -imiplicant++;
tenip=nuijmpl icant -1;
change(&cubes[n] [j] ,&implcubes[0] ftenp] );

/* find the Iniplicant Cover Size (ICS) *
----------------------------------------------- *

for( rr=0; mn < nun...iinterm; ui++)

for( n=0; n < numimplicant; n++)

if(rm irnp..covsize(&cubes 0] [i] ,&implcubesf O][n] ,&temporarycube))

cubes[ 01 [ m]. ics++;
cubes[ 0] [ ni],, o oldics++;
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/* find Minterm Coverage MC(I) *
/*---------------------------*

for(m0O; m < num...implicant ;m++)

impicubes 0] [in]. ic coverage..size(&implcubes[0] [ml);

for( i0; i< numujinterm; i++)

smalli;
for(ji+1; j'numminterm; j++)

if(cubes[0] [j].ics<cubes[0] [small].ics) I
smallj;

swap(&cubes[ 0][small] )&cubes[0] [ii ,&teinporarycube);

/* Application of CIS to find minimal sum expression *
/* --------------------------------------------- *

fpolfopen(" cis. o" "1);

REC:' for( i; i<numminterm; i++)

if(cubes[0][O].ics inmaxcint && cubes[0][i].ics 1= maxcint)

swap(&cubes[ OIL i],&cubes[3] [01 ,&temporarycube);
break;

for(i0O; i < numjimplicant; i++)

hi gh i;
for(ji+l; j<numjimplicant; j++)

if(implcubes[O][j] .ic > implcubes[0][high]. ic)I
swap(&implcubes[ OIL ii,&implcubes[ O][high] ,&temporarycube);

1* Extended Search Technique
/* --------------------------------------- *

if ((cubes[ 0] [ 0 .ics == 2))

aux=O;
aLx1=O;
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sub=0;
subl10;
naux=O;
nauxl=O;
for(in0O;mi<nuijmplicant; m++)

if(rlcover(&cubes( 1] ,&iinplcubes 0][(i] ,&tenipcube))

sub++;
dumisub - 1;
swap(&tenpi[ 01[dun] ,&iinplcubes( 0 ]m,&tempcube);
temnpi[0] (duil. track = m;

if (temnpi[ 0) [0] . ic > temnpij[01 [ 1]. ic)

teinpi(0](0].selected =1;
auxciteinpi[ 01 [0]track;
auxltenpi[ 0] 1] track;
swapC&tenpi[ 0][0] ,&implcubes( 0] aux] ,&teniporarycube);
swap(&tenpi[0] El] ,&iwplcubes[ O](aixi] ,&ternporarycube);

for(JO; J<nun...iintern; j++)

if((rzmcovsr(&cubes( 0] [Jj,&implcubes( 0] 1aux] ,&temporarycube)) &
(cubes[ 0][ J].ics I = maxcint )

cubes[ 0[J)j.ics a tuaxcint;
isonum++;
for(kO; k<numjimplicant; k++)

ifC(rcover(&cubes[0]J i] ,&iniplcubes[ 01(k),&temporarycube)) &&
(impleubes[0][k].selected t= 1) && (iinplcubes[0][k]. ic>0))

-implcubes([ k]. ic;

if(isonum = numn.mintern)

goto EXIT;

goto REC;

/* --------------------------------

if(tempi 0] [1]. ic > tempi[0] [0]. ic)

temrpi [0] [ 1)selected = 1;
aux=t--rnpi[ 0] [ 1] .track;
aiixltempi[ 0)10) 0] track;
swap(&terrnpi[ 0] [ 1] ,&iniplcubes[ 0] [ aux] ,&terrpc--be);
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swapC&tempi[0][0] ,&implcubes[ 0][auxi] ,&tempcube);
for(jO; J<num..minterm; j++)

if((rzcover(&cubes[0] [j] ,&implcubes[ 0] aux] ,&tempcube)) &&
(cu~bes[ 0] [j] .ics I = niaxcint )

cubes([0] [ jics = tuaxcint;
isonum++;
for(k0; k~num,..implicant; k++)

if((rcover(&cubes( 0] i] ,&implcubes[ 0][k] ,&teznpcube)) &
(iuipleubes[0] (k].selected 1= 1) && (implcubes[0] (k]. ic >0))

-- implcubes[ 0] [ k]. ic;

wfisonum - num-.minterm)

goto EXIT;

goto REC;

if ((tempi[ 0] [0]. ic -1) && (tempi[ 0] 1] .ic -1))

for(mO; m<nium~jinterm; m++)

if(rl=combinable(&cubes[0](in] ,&cubes[ 0] [01,&tenipcube))

subl+
dulsubl - 1;
swap(&nebor[0] [duinlj ,&cubes[ 01][m,&tempcube);
nebor[0][dumll.track = m

/*------------------------*

if((nebor[0][0].oldics = 2)&&(nebor[0][l].oldics 1= 2))

if(rlcover(&nebor[0] [01 ,&tempi[0] (0],&tempcube))

tempi[0][0].selected = 1;
auxtempi[0][ 0].track;
auxltempi[ 01[1],track;
swap(&tempi[ 0](0] ,&implcubes[ 0](aux] ,&temporarycube);
swap(&tempi[ 01(1],&implcubss[ 0] auxi] ,&temporarycube);
nauxnbor[ 0][ 0]track;
nauxlnebor( 01[1] tra(;k;
swap(&nebor[ ]01] ,&cubes 0] [naux] ,&temporarycube);
swap(&nebor[ 01(1] ,&cubes[ 0][nauxi] ,&teiporarycube);
forQ0; j<numn iinterm; j++)
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if( (rzcover(&cubesl 0][jI ,&implcubes[0] [aux] ,&teniporarycube)) &&
(cubes[O][j].ics != maxcint )

cubes[ 0] [j] .ics = maxcint;
isonum++;
for(k=O; k<num..implicant; k++)

if((r=cover(&cubes[ 0] [j],&implcubes[ 01[k] ,&temporarycube)) &
Cimplcubes[O][k].selected 1= 1) && (implcubes[0][k].ic > 0 )

-imp lcubes[ 01 [ k]. ic;

if(isonum -num..minterm)

goto EXIT;

goto REC;

eis e

tempi[0][l].selected =1;
auxteipiL 011].track;
auxlteipi(0] [0] track;
swap(&tenipi[ 0](1] ,&implcubes[ OILaux] ,&tempcube);
swap(&tenpi0] (0] ,&implcubes[O] [auxi] ,&tempcube);

nauxnebor[ OIL0].track;
naux1=nebor[ 0j1)1]track;
swap(&nebor[L 01],&cubes[ 01[nauix],&temporarycube);
swap(&nebor[ 0]l,&cubes[0] [nauxi] ,&temporarycube);
for(JO; j<iium..minterm; j++)

if((rzcover(&cubes[ 0] ],&implcubes[01 Laux] ,&tempcube)) &&
(cubes[0][jJ.ics != maxcint )

cubes[0][J]l.ics = maxcint;
.3onum+4;
,or(kO; k<numjimplicant; k++)

if((rcover(&cubes[OI]f ,&implcubes[0][k] ,&tempcube)) &&
(implcubes[O][k].selected != 1) &&(implcubes[0j[k]. ic>0))

-implcubes[ 0]J[ k]. ic;

if(isonum ==num-minterm)

goto EXIT;

goto RIEC;



1* -- - - - -- - - - -- - - - -- - - -

if((nebor[0f[l1].oldics =2) && (nebor[0][0].oldics != 2))

if(rlcover(&nebor[01(1] ,&tempi[ 01(1] ,&tempcube))

tempi[0][1].selected = 1;
auxtempi[ 01 1].track;
auxl=tempi[0] [01 .track;
swap(&tempi[ 0] f] ,&implcubes[ 0][faux] ,&tempcube);
swap(&tempil 0] [01,&implcubes[ 0][auxi] ,&tempcube);

naux-nebor[ 0][E 0]track;
nauxl-nebor[ 0111] .track;
swap(&nebor[0] [01 ,&cubes[ 011naux] ,&temporarycube);
swap(&nebor[ 0] [1],&cubes[0] [nauxi] ,&temporarycube);
for(J0O; J~num..,minterm; j++)

if((rzcover(&cubes[0] [j] ,&implcubes[0] [aux] ,&ternpcube)) &&
(cubes[0][J].ics 1= maxcint )

I
cubes[ 0] [J] .ics =maxcint;
isonum++;
for(kO; k<numjnmplicant; k++)

if((r=cover(&cubes[ 0] [ii,&iniplcubes[0] [k] ,&tempcube)) &
(inplcubes[0][k].selected 1= 1) && (irnplcubes[0][k]. ic>0))

-implcubesl [kI. ic;

if(isonum = num-.minterm)

goto EXIT;

goto REC;

else

tempi[0][0].selected = 1;
aux=tempi[ 0] [01track;
auxltempi[ 01 f1] .track;
swap(&tempi[ 01 [0] ,&implcubes[ 01[aux] ,&temporarycube);
swap(&tempi[0] [1] ,&implcubes[0] [auxil ,&tenlporarycube);

nauxnebor[ 0[] 1. track;
nauxlnebor[ 0] . track;
swap(&nebor[0 [0] ,&cubes[0] [naux] ,&temporarycube);
swap(&nebor( 0][1] ,&cubes[0] [nauxi] ,&temporarycube);
for(jO; j<inunminterin; j++)
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if((rzcover(&cubes[0] [j] ,&imPlcubes 0] [auxi ,&temporarycube)) &&
(cubes[0J[j].ics f= maxciit )

cubes[0](JI.ics = axcint;
isonum++;
for(kO; k<numnimplicant; k++)
I
if( (rcover(&cubesf 0][jJ ,&iniplcubes( 01 k] ,&temporarycube)) &&

(implcubes[0][k].selected 1= 1) && (implcubes[O3[kJ.ic>0))

I

I

goto Exrr;
I

goto REC;

I

/*-----------------------------......

if((nebor(0j(0J.oldics t=2 && nebor[0][1].oldics !=2)
(neborlOIO] ].oldics -2 && neborf 0) [1].oldics =2))
I

tempi[0](.0].selected = 1;
aux=tempi[O]lIl. track;
auxltempi[ 01[1j track;
swap(&tempi(0](0] ,&implcuhes[0] [aux] ,&temporarycube);
swap(&tempi[ 0] 1] ,&implcubes OJI auxi] ,&temporarycube);
nauxnebor([ 0]track;
nauxl=nebor[l 0].track;
swap(&niebor[ 01[0] ,&cubes[ 0][nauxj ,&temporarycube);
swap(&nebor[ 0]l,&cubes[ 01[nauxi] ,&temporarycube);
for(j0; j<num-juinterm; j++)

if((rzcover(&cuibes[0] [ii,&,mplcubes[ 0]!aux] ,&temporarycube)) &&
(cubes[0][jJ.,ics != maxcinL~)

cubes[ 0] 1j] .ics = maxciit;
isonum++;
for(kO; k<nuni..implicant; k++)

if((rcover(&cubes[ 0][Jii,&irnplcubes[0Jjlk],&temporarycube)) &&
(implcubes[0][k] .selected !1) &,& (implcubes[0]fk],ic->0))

-impicubesf 0 [k]. ic;

if(isonum ==num-minterm)
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goto EXIT;

goto REC;

/* ----------------------------------------- *

if((tempi[0][0].ic 2) && (tempi[0][1].ic = 2))

for(zn0; m<numjninterm; m++)

if(rlconbinable(&cubes[ 1] O,&cubes[f 0] l,&tempcube))
I
subl++;
dumlsubl - 1;
swap(&nebor( 0] duni],&cubes 0] [i] ,&tempcube);
nebor[0]fduml]..track = mn;

I
if((riebor[0](0].oldics -2) && (nebor[O][1l.oldics 1=2))

if(rl=cover(&nebor[ ]01(1,&tempil ]01(1,&tenipcube))

teipi[](0].selected = 1;
auxtempi[ 0J(0] track;
auxl=tempi[ 0] 1].track;
swap(&tempi[0] [01 ,&implcubes( 0] aux] ,&temporarycube);
swap(&tempi[ 0] )&implcubes[ 01[auxi] ,&temporarycube);

nauxnebor[0] (0].track;
nauxlnebor[ 0][l 1]track;
swap(&nebor[ 01[0] ,&cubesj 0] naux] ,&teinporarycube);
swap(&niebor[01(1] ,&cubes[0] [nauxi] ,&teinporarycube);

for(jO; J<nuniminterm; j±+)

if((rzcover(&cubes[0] [j] ,&implcubes[0] faux] ,&temporarycube)) &&
(cubes[0][j].ics != maxcint )

cubes[0][j].ics = maxcint;
isonumH-;
for(kO; k<numjimplicant; k++)

if((rcover(&cubes[ 0] j] ,&implcubes[0] [ki ,&tenporarycube)) &
(implcubes[O][kj.selected != 1) && (iiplcubes[0J[k].ic>0))

- implcubes[ 0] [ k). ic;

if(isonium = nunimintern)

goto EXIT;
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goto REC;

else

tempi[0][l].selected =1;
auxtempi[ 01[ 11 track;
auxl=tenpi[0][0].track;
swap(&tempi[ 01[1] ,&implcubes[ 0][ aux] ,&tenipcube);
swap(&tempi[0][0] ,&implcubes[ 01[auxi] ,&tewpcube);

naux-nebor[ 0] 0] track;
nauxlnebor[0] [1].track;
swap(&nebor[0] [01 ,&cubes[ 0][1naux] ,&temporarycube);
swap(&nebor[ 0] [1],&cubes[0] [nauxi] ,&temporarycube);
for(JO; j<numminterm; j++)

if((rzcover(&cubes[ 0] i] ,&irplcubes[ 01[aux] ,&tempcube)) &
(cubes[0][j].ics != maxcint )

cubes[0][J].ics = maxcint;
isonum++;
for(k=0; k<numjimplicant; k++)

if((rcover(&cubes[ 0] i] ,&implcubes 0] [k] ,&tempcube)) &&
(implcubes[0] [k].selected 1= 1) && (irplcubes[0][k].ic>0))

-impicubes[O] Ek]. ic;

if(isonum =num-minterm)

goto EXIT;

goto REC;

....................................---------

if((nebor[0][l].oldics = 2) && (nebor(0][0].oldics !=2))

if( rlcover(&nebor[ 0] [1],&ternpi[ 0] [0],&tempcube))

tempi[O[lO.selected = 1;
auxtempi[ 01[01 track;
auxl=teinpi[ 01 [ 1] track;
swap(&eempi[ 01 [0] ,&implcubes[ O][aux] ,&temporarycube),
swap(&tempi[ 0][1] ,&ianplcubes[ 01[auxi] ,&temporarycube);

nauxnebor[ 01[0] track;
nauxlnrebor[ 01 [1. track;
swap(&iiebor[ 01 [0] ,&cub~es[0] [niaux] ,&tempotarycube);I
swap (&nebor [01 [ 1] &cubest 0) [ iauxi] ,&teinporarycube);
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for(jO; J~num minterm; j++)

if( (rz=cover(&cubes[ 01 ][ ,&implcubes[0] [aux] ,&temporarycube)) &&
(cubes[ 0] [ j .ics 1=maxcint )

cubes[ 0] [ j .ics = maxcint;
isonum++;
for(kO; k<num..iplicant; k44)

if(C(r=cover(&cubes[ 0] [JI,&implcubes[ 011k] ,&temporarycube)) &&
(impicubes[O] [k] .selected 1= 1) &&(impicubes[ 0][kJ. ic>0))

-impicubesl OJ[k]. ic;

if(isonum = numuninterm)

goto EXIT;

goto REC;

else

tempi[O][1].selected = 1;
auxtempi[ 0111] .track;
auxl=tenpi[ 0][0] .track;
swap(&tempi[ 0111] ,&implcubes[0] [aux] ,&tempcube);
swap(&tempi[ 0][10] ,&implcubes[ 0][1auxi] ,&tempcube);

nauxnebor[ 0][ 0]. track;
nauxl=nebor[ 01111. track;
swap(&nebor[ 0[] 1,&cubes[0] [naux] ,&temporarycube);
swap(&nebor[ 0111,&cubes[ 0][nauxi] ,&temporarycube);
for(jO; j<nu...mintern; j++)

if((rzcover(&cubes[ 01[ii ,&implcubes[0] [aux] ,&tempcube)) &&
(cubes[ 0][ j]. ics I maxcint )

cubes[0][j].ics = maxcint;
isonum++;
for(kO; k<nurn.mplicant; k++)

if((rcover(&cubes[O][j] ,&iniplcubes[0][k] ,&tempcube)) &&
(implcubes[0][kJ.selected != 1) && (implcubes[0] [k]. ic>0))

-implcubes [ 0]11k] . ic;

if(isonum = nurn_minterm)

goto EXIT;
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goto REC;

/* -- - - - - -- - - - - -- - - - - -- - - - - -

if((nebor[0][0J.oldics =2 && nebor[O]Ii1J.oldics =2)
(nebor[01I01.oldics 1=2 && nebor[Ol].oldics 1=2))

tempi[O]E0].selected = 1;
auxtempif 0] [01track;
auxl=tempi[ 0111].track;
swap(&tempi[0] [0] ,&implcubes[0] [aux] ,&temporarycube);
swap(&tenpi[ 01[1] ,&implcubos[ Cliauxi] ,&temporarycube);

nauxnebor[0] [0].track;
nauxl=nebor[0] [1].track;
swap(&nebor[0] [01 ,&cubes[0] [naux] ,&temporarycube);
swap(&nebor[0] [1]],&cubes[0] [nauxi] ,&temporarycube);
for(j0; J<numn.mnterm; j++)

if((Crzcover(&cubes[ 0][j] ,&implcubes[ 011aux] ,&temporarycube)) &
(cubes[0][j].ics 1= maxcint )

cubes[0I[j].ics =maxcint;
isonuni++;
for(k0O; k<numjL~mplicant; k++)

if((rcover(&cubes[ 0][J] ,&implcubes[0] [k] ,&temporarycube)) &&
(implcubes[O][k].selected != 1) && (implcubes[0][k].ic>0))

-imrplcubes[ 0] [k]'.ic;

if(isonum = numiminterm)

goto EXIT;

goto REC;

/* ------------------------------------------ *

if(cubes[ 01[0]. ics !=2)

for(m=O; m<num.irpicant; m++)

if(rccover(&cubes 0] [0] ,&implcubes[ 0] [ml,&temporarycube) &&
(implcubes[ 01[rm), selected !~1) &&.S (iniplcubes[ 01[ ii],.ic >0))
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implcubeslOl[m].selected = 1;
implcubes[ 0] [m] .ic =0;
for(jO; j<nui...iinterm; j++)

if( rzcover(&cubes[ 0] [ii,&iinplcubesl 0][mi] ,&temporarycube)
&& (cubes[OIjIj.ics 1= maxcint))

cubes[0] [J]. ics = maxcint;
isonum++;
for(k0-; k<aunimiplicant; k++)

if(rcover(&cubes[ 0][ j],&implcubes 0] [kI ,&teniporarycube)
&& (iipleubes[0][k].selected != 1)&&
(implcubes[O][k].ic > 0 )

-implcubes[ 0] [ k] ic;

if(isonum ==num-.minterm)

goto EXIT;

goto REC;

EXIT: for(m0; m<numj~mplicant; m+4-)
if (impicubesi 0] [ i] .selectid = 1)

printcube(&implcubes[0] [ml);
num..product++;

felose( fpol);
printf( "%7d rill num..product);

/*--------------------------------------------------*

Function imp...cov.size( al ,a2 ,a3)
Cube *a1 ,*a2 ,*a3;

int~ i;
int v .ics;
int check;
check =0;
Vjics =0;
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/* check tnat this minterm can be covered by this implicant or not *
for~i =0; i < numvar ; i++)[
a3 ->tt[ i] = AND(al->tt[ iJ, a2->ttf il);
a3 ->ff[i =i AND(al->ff[ i], a2->ff ii);
if((a3->ttfi] = a2->ttjil) && (a3->fflli] =a2->ff[i]))

check++;

/* if all bits are same as implicant than retuns as v~ics =1 *
1* Otherwise it remains as 0. *
if check ==numvar)

return(vjics);

/*--------------------------------------------------*

Function mnt coveragesize(al)
Cube *aI;

ilit i;
int parameter;
mnt messanger;
parameter =0;

for(i=0; i < nuimvar; i+4+)[
if((al->tt[i] == 0) &&(al->ff[i] 0)

parameter++,)
if(parameter = )

ruessanger =1;)

if(paranieter 1)
messanger =2;]1

if(parameter 2f
messanger =4;1

if(Parameter ==31
messanger =8;j

if(pararneter 4(
messanger =16;]1

if(parameter 5f
messanger =32;j

if(parameter =6)1
niessanger =64;]
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if(parameter 7=
messanger =128;]1

if(parameter 8[
messanger =256;)

if(parameter 91
niessanger =512;)

return(messanger);

Function int swap(al,a2,a3)
Cube *a1,*a2,*a3;

int i;
for( i0O; i < nuinvar ; i++)

a2->tt~i] =a3->tt[i];

a3->ffli] al->ff[i];

a2->fff ii a2->ft i];

a2->ff[ 1] =a3->ff[ i];

a3->ics = al->ics;
al->ics = a2->ics;
a2->ics = a3->ics;

a3->oldics = al->oldics;
al->oldics =a2->oldics;
a2->oldics = a3->oldics;

a3->ics = al->ics;
al->ics = a'2->ics;
a2->ics = a3->ics;

a3->selected = al->selected;
al->selected =a2->selected;
a2->selected =a3->selected;

a3->track = al->track;
al->track = a2->track;
a2->track = a3->track;

/*--------------------------------------------------*
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Function int cover(al,a2,a3)
Cube *al,*a2,*a3;

int i;
int v..cover;
int check;
cheok=O;
v..,cover=O;

for(i0O; i < numvar; i++)(

a3->ff[ i] = AND(al->ff[ i],a2->ff[ i] );
if((a3->tt[ i] -a2->tt( i]) && (a3->ff[ i] a2->ff[ i]))

check++;

f(check -numvar)

v...coverl;

return( v..cover);

1*-------------------------------------------.........

Function int equalcubes(al,a2)
Cube *al,*a2;

/* if EQ return 1 else return 0 *
int i;
int v...equal;
v..equal =1;
for (i = 0; i <numvar ; i++)

if ((al->tt[ i] != a2->tt[ i] al->ff[ i] 1=a2->ff[ i]))

v...equal = 0;

return(v..equal);

/*--------------------------------------------------*

Function int combinable(al,a2)
Cube *a1,*a2);
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int i;
int v..combinable;
int cone;
cone=0; 1* 1: combinable else not *
vcombinable =0;
for (i = 0; i <numvar ; i++)

if (a-t~]I 2>ti) (l>fi =a-f~])
cone++;

if (cone =1) vcombinablel;
return(v..combinable);

/*--------------------------------------------------1

Function readfile( filename)
char *filename;

mnt ij;
Cube *cl; /* ci point to c[0][0] *

if(Cfpil=fopen(filename,"r")) =NULL)

printf(" nERROR - Cannot open designated read file n");
return;

while(? feof(fpil))t

fscanf( fpil ,"%d %d n", &nuakm..interm,&numvar);
numcubes[0] =numminterm;

for(i0O;i < num_miinterm; i++)[
for(j0;j < numvar; J++)
fscanif( fpil ,"%I"ld" )&cubes[ 011 ii. ttl j] )complement (&cubes[ 0] [ i])

........................................------------

Function int complement(al)
Cube *aiL;

int j;
for(j0O; j < numvar; j++)

if (al -> tt[j] == 1)
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al -> ff[J] = 0;

else
al -> ff[j] =1

I* ..........................................................

Function combine(al ,a2,a3)
Cube *al,*a2,*a3I
int i;

for (i x 0; 1 <maxvars ; i++)
a3->ttfi] = AND(al->ttfI] , a2->tt[J])
a3->ff[i) = AND(al->ff[i], a2->ff[i])

I* ........................................................... *1

Function int AND(ili2)
int il,i2;I
lf(il=-12) return(il);

else riaturn(O);

o ................................ .......................... 1/

Function 3.nt printcube(al)
Cube *al;

int j;

for(j-O;j < numvar; j++)Ifprlntf(fpol,"%ld",(al->tt[,j]));}
fprintf(tpol," n );

for(j-O;j<numvar;j++)[fpriritf(fpol,"%Id",al->ff[j] ); j
fprintf( fpol," n");
fpriitf( fpol ," n);

.... ............................................................ *
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Function int change(al,a2)
Cube *al,*a2;

int i;
for( i0O; i< numvar; i++)

a2->ttjjiJ = al->ttfi];
a2->ff[i] al->ff[i];
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