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ABSTRACT

Several heuristics and algorithms have been developed to find mininral sum-of-
products expressions in binary logic. Most of them use prime implicants during min-
imization process.

An efficient search strategy has been developed for finding minimal sum-of-products
expressions for multiple-valued logic (MVL) functions by using the constrained
implicants sct concept. The search space can be considerably reduced over the only
other known exact minimization technique and exhaustive search.

The primary goals of this research are to: (1) examine whether the constrained
implicant set concept can be efficiently used in binary logic, and; (2) develop a heuristic
called the constrained implicant set heuristic (CISH). The general idea of the CISH is
1o select the minterm with the least implicant cover size and find the implicant with the
largest minterm coverage that covers a selected minterm.

In this rescarch, the implementation of the CISH is presented, the performance
analysis of the CISH is shown by comparing with other heuristics (Maximum Implicant
Heuristic, Espresso 11) with respect to the average number of the product terms, the

average computation time, and the average memory usage.
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THESIS DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, apparatus,
prcduct, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specilic commercial products, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment. The views and opinions of the author expressed herein do not necessarily state
or reflect those of the United States Government and shall not be used for advertising

or product endorsement purposes.
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I. INTRODUCTION

A. MOTIVATION

The primary goal of good design in binary logic is to find a realization of a given
function at minimal cost. There have been several different costs in binary logic desig\n.
The number of the gates is a commonly used cost. Another cost is the number of
product terms used in the sum-of-products expression of the given function. This crite-
rion has become especially important in recent years with the introduction of PAL’s
{programmable array logic) and PLA’s (programmable logic arrays). There has been a
corresponding increase in interest in algorithms for finding the fewest number of product
terms needed to realize the given function.

An eflicient search strategy has been developed for finding a minimal sum-of-
products expression by using the constrained implicant set concept in multiple-vaiued
logic. The search space can be considerably reduced over the only known exact min-
imization techniques by using the constrained implicant set concept [Rel. 1. A primary
motivation of this thesis is to sce if the constrained implicant sct concept can be ex-
tended to binary logic.

A new heuristic for binary functions is described which is cailed the constrained
mplicant set heuristic (CISH).  An analysis of the performiance of the CISH has been
done by comparing the results of the average number of sum-of-products term, conipu-

tation time, and memory usage with two existing algorithms 1) Maximum Implicant
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B. NATURE OF THE PROBLEM

The goal of logic minimization is to find a minimal sum-of-products expression of
a binary function. This problem has received considerable attention for some time.
Early methods such as Quine-McCluskey [Ref. 2}, and iterated consensus [Ref. 3] begins
the minimization by finding all prime implicants of the function. The finding of prime
implicants is used by most heuristics minimization methods.

The interest in heuristic methods is duc to the large computation times required by
exact minimizations algorithms. I'or examnle, a 10 variable binary function can have
as many as 5904 prime implicants whilc a function with 20 variables can have as many
as 174,339,220 prime implicants. The relationship between the number of the prime
impiicants and number of the variables (#) has been shown as 3"/n in the worst casc.
[Refs. 4, 5 p. 49]

It is possible to find an exact minimal sum-of-products expression for a logic func-
tion with a small number of variables or simple functions with larger number of variable,
When the number of the variabie increases or the function becomes more complex, then
more computation time is needed to extract the exact minimal solution. Sometimes
finding nearly minimal solution of a function in shorter computation time has more im-
portance and advantage than [inding an exact minimal representation in very long
computation time [Refl o).

The exact minimal sum-of-products expression can be solved by enumeration, In
this method, all possible solutions aie tried and then the one having the fewest number
of sum-of-products is chosen. This method needs very long computation time due to
iarge number of possibilities of potential solutions. Besides, it has been shown that ex-

tracting minunal sum-of-pioducts sojutions from a complete set of prime implicants is

to




an NP-hard problem. The best known algorithms for such prob'ems require exponential

time [Refs. 1, 7: p. 246).

C. THESIS OUTLINE
Notation and definitions are given in Chapter II. The constrained implicant set
heuristic is introduced in Chapter Il1I. Chapter IV and Chapter V discuss the

comparision results and performance with Maximum Implicant Heuristic and Espresso

11,



II. BACKGROUND AND DEFINITIONS

A. DEFINITIONS IN BINARY I ¢ GIC
In this section, we briefly summarize fundamental definitions used in binary logic

[Refs. 2,3),

Definition 1:

A literal is a variable or the complement of a variable. Examples: w, x, #, X

Definition 2:

A product term is a single literal or a Boolean product of the literals. Examples:

wyZ, Xpz, ws

Definition 3:
A minterm is a product termx where a literal of each variable appears exactly once.

Examples: wxj'z, wxy?,

Definition 4:
A logic function F(x,, x;, ..., x,) covers a logic function P(x, x,, ..., x,) if for every

input combination such that P=1, then F=1.

Definition S:
Let I be a product term of function f. 1f a f'is nonzero for all minterms covered by

I, then 1 is an implicant of the function. Examples: wZ,jz .




Definition 6:
Let I be an implicant of the function . | can be said prime implicant of the function,

if it is not covered by any other implicants of the function f.

Definition 7:

A minterm is said to be distinguished-1-cell of f if this minterm is covered by only

one implicant of the f,

Definition 8:
A prime implicant 1 is said to be an essential prime implicant if it covers a

distinguished-1-ccll of /.

Definition 9;

Lot A%, AOT | APC be sets of assignments of values to variables of function frespect

to munterm values
¢ A% js the set of minterms of f,
® A% is the set of assignments of values to the variables such that fis 0.

® AP js the set of assignments of values to variables such that f'is don't care.

Definition 10:
A function f can be considered to have a ¢ycle if it has more than one minimal

sum-of-products expiession. Lxample: see the function in Figure 6 on page 17.

Definition 11:
Let o and § be minterms such that complementing one literal in a yields f. Minterm

o and [ e calicd Direct Neighbois,




B. BACKGROUND IN MULTIPLE-VALUED LOGIC

The constrained implicant sct concept was originally developed from the work of
finding absolute minimization in multiple-valued logic by Jon T. Butler and P. Tirumalai
[Ref. 1]. Absolute minimization tries to find the absolute minimal realization of a
function by doing an exhaustive search of all possible solutions. An algorithm for ab-
solute minimization is introduced in Appendix A.

As stated before, absolute minimization needs considerable computation time. The
search spacc is also very large in absolute minimization. This space can be made smaller
by applying a limitation rule: constrain some implicants and establish the constrained
implicant set to fnd minimal solution. The constrained implicant sct concept signil-
icantly reduces search space as well computation time to get exact minimal solution in

multiple-valued logic [Refs. 1,8].

Definition 12 : -

R («) is a constrained implicant sct of minterm o« for function f, if

Re)=UI

where | is an imphcant of £ [Ref. 1]

Lemmal:

If B(a) is a constrained implicant set, then every possible sum-of-products ex-

pression for fhas to contain at Jeast one implicant in R(x) [Ref. 1.

Definition 13:

B(o) is a minimal constramed implicant set of a function if and only if



0<|R(x)| < [R(B)I

for all other minterms f§ of f, where R(«) is a constrained implicant set [Ref. 1].

The search space can be represented as a tree where each node represents a function
and each edge corresponds to implicant of the upper level function. The root node is the
given function to be minimized. The functions at the next level down from the root node
can bc obtained by subtracting an implicant from the root node. Subtracting an
implicant from a function corresponds to setting 1's or don't cares in the function cov-
ered by the implicant to don't cares.

If the root function has ¢ implicants, the root function has ¢ branches or subf-
unctions. Further, each subfunction has a maximum of £-1 descendents. It can be seen
that when the root function has many implicants, the search space is large. This situ-
ation can produce large computation time needed to find the minimal solution of the
function. That is, the solution is to try each possible path on the search space where the
shortest path (having the fewest number of the implicant) is chosen as the minimal ex-
pression of the function [Refs. 1, 8 ).

By using Lemma 1, the search space can be made smaller. At least one implicant
from the constrained implicant set has to be in the minimal sum-of-products expression
of the funcuon. When B(a) is chosen as small as possible, there are fewer choices than
for larger size R(e) . This decreases the computation time because there are fewer paths

to be examined. [Ref. 8]

Example 1:
This example illustrates the search space of a specific function and the finding of
exact minimal solution of a fin search space by using absolutc minimization algorithm

and constrained implicant set coneept,
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Figure 1. Example Function for Creating Search Space

A five variable function with sixteen minterms is chosen. The function and exact
minimal solution is shown in Figure 1.

Let

flew,xpiz) = Zm( 1,5,6,7. 11,12, 13, 15,16, 17, 18, 22, 24, 26, 27, 28 )

The numbers enclosed in parenthesis on the right hand side correspond to minterms in
the binary representation. For exaiple, minterm o= 15 corresponds to assigmnent
01111, Specific prime implicants in an cxact minimal solution arc represented by a
capital letter as seen in Figuie 1.

The scarch spaces [or the given function arce illustiated in Figuie 2 on page 10 and
Figure 3 on page 1. Because of the difliculty of showing all possible search paths, only
onc scarch path is shown as cxample (that which gives the exact minimal solution).

Each node {function is indicated by a solid dot in scarch spuce. These node functions can

o
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be found by subtracting an implicant of the function from the root function as described -
on page 7.

. The node functions on the search path chosen as an example are represented by
letters NF., These functions at the next level down from the root node can be obtained
by subtracting the implicant (that shown by capital letter in Figure 1) from the root
node. These node functions are stated at the bottom of the Figure 2 and Figure 3.

The search space to find exact minimal solution fis shown in Figure 2. The given
function f has fourteen prime implicants, and thus it has fourteen branches from the root
as described in absolute minimization. The search space is very large, wide and deep,
because there are many node functions and subbranches in the search space of / (i.e.,
2,162,160 possible branches). All possible search paths must be investigated at each in-
dividual node to find the exact minimal solution.

On the other hand, the constrained inplicant set concept can be applied to /. A
search space has been created for the same function as shown in Figure 3 on page 11.

. This search space has fewer branches (i.c., 8 ) and fewer node functions (i.c., 384). De-
finitions and rules to create a scarch space and finding the minimal solution is discussed
in Section C and Chapter 111,

As a results of the comparision of the two search spaces in Figure 2 and Figure 3,
we sec that although the sume implicant are chosen, the absolute minimization algo-
rithm has many more branches at eiach node function. Applving the constrained
implicant set concept to the minimization of function reduces the number of branches

and node functions to be examined. Therefore, the program needs less time to {ind the

minimal solution,
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Figure 2.  Search Space for Absolute Minimization
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C. DEFINITIONS USED IN CISH

In this section, the fundamental measures used in CISH is defined.

Definition 14:

Let ICS(x) denote implicant cover size of minterm &. The implicant cover size is the
number of the implicants that cover minterm .

When JCS(x) is calculated for minterm «, the minterm « is not counted as an
implicant in CISH. On the other hand, there is an exception. That is, if a minterm does
not have any direct neighbor, it is counted as an implicant in calculating ICS(«).
Therefore, the minterm with no dircct neighbor has same JCS(a) (i.e., 1) as the minterm

with only one direct neighbor,

Definition 15:

Let MC(1) denote the minterm coverage of implicant 1. The minterm coverage is the
number of the minterms that are covered by I,

MC(1) is used to determine the importance or the cost of I during the minimization
process. The cost of the implicant is introduced in the minimization as the number of
minterms covered by 1. The implicant with the highest MC(l) is chosen in the minimi-
zation process.

In CISH, each minterm covered by a selected implicant I turns to a don’t care term.
Each new don't care term covered by 1 is subtracted from MC(I). So the don’t care terin
affects the MC(l). Therefore, the MC(I) changes during the minimization process in

CISH.




D. MEASURES USED IN CISH
{. Clustering Factor
ICS(«) is a measure of the degrec to which other minterms cluster around a.
It shows how many minterms with which a minterm o can combine. The lower ICS(a)

is, the fewer combinations exist,

Example 2:
To illustrate these definitions, consider the following four variable function with

ten minterms. Let

fwoepz)= ) m(0.3,4,7,8,9,10, 11, 14,15)

The function fis illustrated in Figure 4 on page 14.

The ICS(«)’s for cach minterm in Figure 4 are shown in the corresponding up-
per left corner. For example, the minterm =0 has ICS(a)=2. Two implicants (I, I,)
cover this minterm, where I,= WyZ and I, = XjZ . In general, minterms in the center
of u cluster have a higher JCS(x). For example, minterm a=11 is in the middle of a
cluster of 1's and it has a high ICS(«) (7), while minterm « =4 is remote and has a low
1CS(o) (i.e., 1).

2. Use of Implicants

As an experimental result, using all implicants rather than prime implicants of
function f in calculating ICS(x) provides more information about minterms and
implicants. We believe that only using the prime implicants set of f may miss some in-

formation about clustering of minterm o« with neighboring minterms. Therefore, all

implicants of given function are counted in ICS{o).
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Figure 4. An Example on Calculation of JCS(a)

Example 3:

This example illustrates the advantage of the using implicants versus prime
implicants to calculate JCS(x). The same function in Example 1 is used. The minterm
located at 00101 (i.c., «=15) is chosen as sample minterm to show changing of 1CS(«).
The ICS(o) of cach minterm that is counted by usiag both >rime implicants (Figure 5.a)
and all implicants (Figure 5.b) arc shown in page 15,

In Figure 5., only prime huplicants are considered to calculate ICS(a). All

minterms have same /CS(e) (i.c., 2). It shows that all minterms have the same clustering

with their neighbors, Thus, all of them all cqually likely candidates as the starting point

for the minimization.
On the other hand, if all possible nnplicants are counted in /CS(¢) we have the

the situation shown in Piguie 5.b. In that case, the ICS(o) of cach minterm is not the

14
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Figure 5. Use of Differeat Sets to Calculate 1CS(a)




same as in Figure 5.a. The ICS(«x) shows more accurately the clustering and coupling
strength among the minterms. Besides, the importance of the minterms to be starting
point for minimization is significantly changed (i.e., ICS(a=5)=4). The minimization
can start any one of the eight minterms where their /CS(a)=2. These minterms are
a=1,6, 11, 12, 17, 22, 27, 28.

There is a special case that either use of all implicants or prime implicants caa-
not provide any advantage over other set in calculating JCS(«). This case occurs when
the set of all implicants and is identical to the set of all prime implicants; that is, when

each implicant of the function is a prime implicant.

Example 4:

This example illustrates the special case in calculation of ICS(x). A four vari-
able function with eight minterms is used as an example. It is shown in Figure 6 on
page 17. ICS(a) of each minterm in Figure 6 is shown in the corresponding upper right
corner.

Let

fwxpd) =) m(0,2,4,5,10,11,13,15).

It can be seen that the ICS(a) is the same for each minterm whether all implicants or
prime implicants are counted in ICS(a). Thus, there is no advantage in using prime
implicant or all implicant in calculating J/CS().
3. Effects of Don’t Care Terms
From the definition of /CS(«), all implicants should be considered in counting
ICS(a). 1fit is desired to find the ICS(a) during the minimization process, it is necessary

to consider all don't care terms as 1 terms. Changing the don’t care terms to | terms in

16
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substeps of the minimization gives the original root function (that we count ICS(«) at
the very beginning). Therelore, JCS(a) of cach minterm will remain unchanged through
the minimization process. Thus, it is enough to calculate the ICS(e)) of cach minterm
once at the beginning of the minimization. It means that the don’t care terms that in-
troduced during the minimization process don't atfect the ICS(a) of each minterm.

MC) i allected by don't care terms introduced during the minimization
process. The impoitance of the implicant is inverscly proportional to the number of
minterms changed to don’t care at each node function in the minimization. Each
minterm changed to don’t carc and covered by | 1educes the importance (increases the
cost) of the I for neat node function in minimization. The cost of [ is determined by
MC(1).

The new don't care terms covered by selected implicant I are subtracted from

MC(1). The mnplicant that covers fewer nunterms has higher cost (is less important) with




respect to an implicant that covers many minterms during the minimization process.
So each don’t care term introduced to the remaining function affects MC(l) and in-
creases its cost. Therefore, MC(1) should be updated during the minimization process

in CISH.

1%



III.  CONSTRAINED IMPLICANT SET HEURISTIC

A. INTRODUCTION

This heuristic discussed in this section is named after the constrained implicant set
heuristic (CISH) because the original concept has been developed under the same name
in multiple-valued logic minimization [Ref. 8]. The idea is to extend the constrained
implicant set concept in multiple-valued logic to binary minimization.

The CISH has two computational phases: 1) constrain and select a minterm ac-
cording to its implicant cover size and 2) constrain and select an implicant with respect
to its minterm coverage. The selection of the minterm differs from other exact minimi-
zation algorithms due to the difference in its rules of decision.

The selection of the implicant which covers a selected minterm depends on its cost
to the mininization. CISH chooses an implicant and investigates its eflect on the future

selection of munterms and implicants.

B. MINIMIZATION ALGORITHM OF CISH

The gencral steps of CISH are described (see Appendix G for the C program listing)
in this Section. In the algorithm below, f denotes the [unction to be minimized.

All information about minterms, the implicants, and necessary sets are initialized
once and updated in the recursive part of the heuristic,

1. Initialization
¢ Form the uncovered minterm set (UMS) from all minterms of f.

¢ Form the don't care set (DCS) from all don’t care minterms of f (Initially, this is
empty).

¢ [orm the implicant set (/) from all implicants of f.
e Tally the MC() for each implicant I in JS.

¢ [ind the ICS(e) of each minterm m LMS.



2. Recursive Algorithm
Apply the following steps recursively to a function f until the function consists

of only don't care or 0 terms.

¢ Select an uncovered minterm a with the lowest /CS(«) from UMS . If more than
one such minterm exists, the one with smaller binary representation is selected.

¢ Construct the constrained implicant set CIS(e) that includes all implica..ts that
* cover minterm a.

o If ICS(x) # 2, select the implicant I,(a) with the lowest MC(1).

o IfICS(x) = 2 and MC(l) = 2 for each of the two implicants in CIS(«), apply the
extended search technique (EST) to select 1 («).

e Put I(e) into the minimized sum-of-products sct (MSP).
¢ Find the minterms in UMS that are covered by 1,(a).
¢ Remove these minterms from UAMS, and place them into DCS.

¢ For each implicant in IS that covers at least one new don't care term, subtract the
number of new don’t care terms covered by I(a) from MC(I). If the MC(I) = 0,
remove I(») from IS.

3. Extended Search Technique (EST)
Apph this search technique, if there is a minterm with /CS(e)=2 in the recur-

sive part of the heuristic,
e Compute ICS(f) of each direct neighbor # of a.

¢ Choose a fi with ICS(f) = ICS(0) (=2), if such a fexists. Select I (a) that covers f
and a.

¢ Otherwise, select a neighbor # of o with the smaller ICS(f). Select I(«) that covers
f and a.

C. EXPLANATION OF CISH
In this section, the algorithin described in Section I111.B is explained by using ex-

amples.
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Initialization Part:

All information about minterms and implicants are found and prepared for the re-
cursive phase. Mainly, three basic working sets (UMS, DCS, IS) and two basic meas-
ures (ICS(e), MC(1)) of CISH have been formed.

Firstly, the UMS is formed. This set includes the minterms that belong to A% of
function f. DCS is assumed to be empty at the initialization part. DCS and UMS are
complimentary sets. When UMS decreases, DCS increases. The IS initially includes all
implicants of the function. IS gets smaller as a result of some implicants being removed
during the minimization process.

Two basic measures of CISI1 are formed in initialization part. These are A{{(1) and
1CS(e).  All minterm’s ICS(e) arc computed. The CISII computes the /CS(a) the
column-row oirder. For example, the minterm o= 1 (i.c., binary representation 0001) is
evaluated earlier than minterm a = 2 (i.e., binary representation 0010).

MC(1) is calculated by counting the number of the minterms covered by I. For example,
if 1 covers 4 minterms, its MC(1) is equal to 4. But, the MC(l) of cach I will change

during the minimization process as mentioned in Section 11.C.

Recursive Part:

Recursive part is the second computational phase of CISIl. The purpose of the re-
cursive part is to select the minterm with the lowest /CS(x), then constrain and select the
implicant that has the lowest cost to the minimization. All of the minimization has been
done in this part of heuristic. All the steps shown in Section I111.B are explained by
Example 6 and 7 in this section.

It is important to select the first minterm intelligently during the minimization
process in CISH. The importance of the minterms is determined by /CS(a). As men-

tioned i Chupter 11, /CS(v) 1s a measurc of how many possible combinations a minterm




has with neighboring terms. A lower /CS$(«) means that fewer combinations exist. The
minterm with lower /CS() gains importance with respect to the minterms having higher
ICS(a) in CISH, because the minterm with lower /CS(x) tends to be isolated and the
minterm with a higher JCS(«) tends to be in the middle of the cluster of 1’s.

If a function has ¢ minterms, the search space of the function has £ main branches
(see Figure 11 in Section D). CISH selects the minterm with the lowest JCS(a) in
UMS, then selects the main branch that includes the seleccted minterm. All of the min-
imization process in CISH is done in this main branch and its subbranches. CISH does
not make a search to find the minimal expression of the function for any one of the re-
maining ¢-1 main branches. One of the properties of CISII is to find a near minimal
solution by searching only one main branch of over-all search space. That's why the
sclection of the minterm is very important. The selection of minterm is done at every
node function generated [rom root function by heuristic rules. The sclection of minterm
with the lowest /CS() reduces the search space significantly (unlike the exact minimi-

zation algorithms such as Quine-McCluskey).

Example §:
1o illustrate the effects of the selection of minterms in minimization, consider the
following four variable function with eight minterms.

Let

S x gz = m(0,1,2,3,4,7,9,10).

ya

Two possible minimal solutions for the given function are shown in Figure 7 on page

23.
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Figure 7. Importance of Selection of Minterm

If the minimization begins at any onc of the minterms in the center of a cluster (i.e.,
o=0, 1, 2, 3), the prime implicant that corresponds to ¥ will be included in the solution
sct; This prime implicant is indicated by a dashed line in Figure 7.a. Four additional

implicants are necessary to cover the remaining minterms with /CS(e)= 1. The sum-of-




products expression of f includes five product terms. The implicant #X is redundant in
the minimization of f.

If the minimization begins with any one of the minterms such that ICS(a)=1 (i.e.,
a=4, 7, 9, 10), the minimal solution will have four prime implicants as seen in

Figure 7.b. The sum-of-products expression of f for two solutions are written below:

Sw, X, 9,2) = Wiz + Xyz + Wyz + XyZ + WX

Sw, x, ,2) = WyZ + Xyz + wyz + XyZ

The CISH constructs the CIS(a) after selection of minterm from the implicants in
IS. A group of implicants in IS is constrained by using ICS(«). All implicants in CIS(a)
cover the minterm, a.

The selection of implicants is equivalent to breaking the coupling between that
implicant and its neighbors. The candidate implicant should have the lowest cost to
minimization in CISH. [Ref. 9]

The coupling strength is introduced as the minimization cost. The MC(1) is used as
the cost of implicant to minimization. The implicant with the lowest cost has the highest
MC(l). The implicant with the highest MC(l) covers the largest area in the function.
The largest area can contain don’t care terms as well as [ terms,

The chosen implicant in CIS(a) is to be a prime implicant due to the prime implicant
theorem. The prime implicant theorem states that a minimal sum-of-product must al-
ways consist of a sum of prime implicants. [Ref. 10: p. 206)

At least one of the implicants in CIS(«) should be a prime implicant and it contains
the fewest literals among other implicants that cover minterm a. Naturally, the prime
implicants always have higher J/C(I) than non-prime implicants in CIS(a). The strategy

of CISH is to always select an implicant that covers minterm o with the lowest cost.
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This rule provides for that selected implicant being one of the prime implicants having

the highest MC(I) in CIS(a).

Extended Search Technique:

This technique is applied only for the special case when the ICS(«) of a minterm &
equals two. It indicates that minterm « is covered by only two implicants and at least
one of them should be chosen as a part of the solution. If the A C(I) of these implicants
is not equal to two, CISII selects the implicant with the highest MC(1). On the other
hand, if the MC(I) of each implicant in CIS(e) equals two, it indicates that the minterm
a is covered by two implicants, that none of them covers don’t carc terms, and their cost
to the minimization process is equal. In this case, the best and the most efficient
implicant should be chosen in CIS(x). The purpose of the EST is to minimize the neg-
ative impact for future minterm sclection as well as implicant selection by choosing the
most efficient implicant in CIS(x).

In LST, CIS11 finds the two direct ncighbors § of minterm a. It checks the ICS(f)
of fi. If a B exists such that ICS(B) = ICS(«) (=2), it selects the implicant in CIS(«) that
covers both f and a. If both dircct neighbors have the same ICS(f) such that
ICS(f)=ICS(2), CISH selects the neighbor with smaller binary represcntation, then
chooses the implicant that covers both § and a. If none of its direct neighbors have the

same JCS(B) as ICS(e). CISH then selects the £ with smaller /CS(f).




Example 6:

To illustrate the application of EST in CISI, consider the following a four variable
function with eight minterms. Options for the minimization of f will either 1) not apply
EST (Figure 8.a) or 2) apply EST (Figure 8.b) as shown on page 27.

Let

fw,x,p,5)= Y m(2,3,5,6,7,9,11,13).

There arc four minterms (i.e., a=35, 9, 11, 13) to be sclected due to their ICS(a) (i.c.,
2). The CISH selects the minterm a= 35 (located at 0101) according to column-row or-
der, The sclected minterm has two implicants that cover it (01-1, -101), that is,
CIS70101; has implicants I,(¢) and I,(«x) represented in binary as 01-1 and -101 respec-
tively,

Figure 8.a shows the case when EST is not applied. Since two implicants (I,(a),
I,(e)) have the same cost for minimization (i.c., MC(I)= 2), the one of them must be se-
lected. If 1,(#) is selected as the implicant to be placed in the solution set, then
Figuie 8.a shows the minimal sum-of-products expression of the function.

On the other hand, if EST is applied, after selection of the minterm o=, its dircct
neighbors arc found as f,=0111 and fg,=1111. Since ICS/0111,=4 and
ICS71111,=2, EST selects 1111 which has lower value. In words, the implicant I(«)
(that covers the o and f,) is the best and the most efficient implicant to minimize nega-
tive impact for future selection of minterms and implicants at the next node function.

It can be scen that if £ST is not applied, there may be a negative impact to min-
imization of function. The minimal solution obtained in this way has four product
terms.  EST provides a better minimal solution for the same function . The munimal

solution has oniy three product terms as shown in Figure 8.b.
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Figure 8.  Application of Extended Search Technique

The process described above is illustrated in Figure 9 on page 28. ‘I he minimization

(apphying EST) is indicated by bold hnes, located on the right branch fiom the root.

27




UMS = { 2,3,5,6,7,9,11,13
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Figure 9, Constrained Implicants in Extended Search Technique

The sclected minterms and implicants in binary representation is placed next to these
lines. Another solution (without applying £S7) 1s indicated by italic {ont located on left
branch fron: e root,

The selected implicant 1(e) is placed into MSP. CISH finds the minterms covercd
by L(e) in UMS. It turns those mintenins to the don't care terms and puts them into

DCS. CISII updates the cost of the implicant mi IS that covers at least one of the new

"8




don’t care term. Updating of the cost of I(a) is done by subtracting the number of newly
| introduced don't care terms (covered by I(e)) from MC(]).

For any implicant I, if MC(1)=0, then it is removed from IS. The rumber of
implicants in the IS gets smaller in each recursive step. The computation stops when

UMS is empty.

D. A WALKTHROUGH EXAMPLE OF CISH

It is instructive to examine the application of the CISH. A four variable function
with eight minterms is used as an example. The input function has been shown in
Figure 10 on page 30.

Let

fw,xp,2)= ) m(3,4,5,7,9,13,14,15).

All information about minterms and implicants are presented in Table 1 and Table 2
on page 32. For simplicity, binary representation of cach implicant is indicated by a
capital letter in Table 1,

The sets of CISH constructed in the initialization part are listed below:

UMS=1{3,4,57,9,13,14,15}

1S = { 4(2), BQ2), C(2), DQ), £(), F(2), G(2), 12), J2) }

There ate eight main branches in the search space. These branches are showa in

Figure 11 on puge 34, CISIl can begin minimizauon from any one of these four
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Figure 10, Instructive Example for CISH

branches (=13, 4, 9, 14), because their 7/CS(e) are the same and the lowest in the UMS
(i.e., ICS(a)=1). By using ICS(c), CISH reduces the scarch space [rom eight branches
to four branches.

It is assumed that minterm o=13 is sclected to begin minimization among four
minterms with ICS(a) = 2. CIS(¢) is constructed with respect to o= 3. This set consists
of only implicant B in IS. Implicant B covers o=3 and = 5. The scts of CISII are
updated with the rules of the heuristic, For example, the costs of implicant L, F, [
change in IS. The cost of cach implicant is indicated in parenthesis next to the
implicant. The new sets of CISII and costs of the implicants are shown below and cor-

responding to the leftmost node at level 1in Figuie 11 on page 34.

UMS={4,59,13,14,15}




IS = { A(2), C(2), D(2), E(3), [(1), G(2), I(1), J(2) )

DCS={3,7)

MPS={B)

Table 1. INFORMATION ABOUT IMPLICANTS

mplan ()| B0 Bepson [ gy | Mo Cowred
A olo. 2 4.5
B 0-11 2 37
C 1-01 2 9, 13
D 11- 2 14, 15
E -1l 4 5,7, 13, 15
F 01.] 2 5.7
G -1 2 13, 15
I <111 2 7,18
J -101 2 513

Table 2. INFORMATION ABOUT MINTERMS

e )| ke T icso) | Comdh
3 0011 1 B
4 0100 1 A
5 0101 4 AEF,]
7 0111 4 B.E,F,I
) 1001 1 C
13 1101 4 C.E.G.J
14 1110 1 D
15 Il 4 D.E.G, I
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UMS includes six minterms and CISH chooses three of them to start the minimiza-
tion, since, their JCS(e) is smaller than others. These are a=4, 9, 14 and their ICS(«)
are equal. 1t is assumed that a=4 is selected. CIS(a) contains only implicant 4. 4

covers a=4 and 5. The new sets of CISH becomes:

UMS = {9,13,14,15)

IS = { C(2), D(2), E(2), G(2), (1), J(1) }

DCS=1{3,4,5,7)

MPS={A, B)

Implicant F was removed from IS because it would cause the highest cost for all future
minimization processes (i.e., MC(I) = 0).

There are only two minterms to begin the next selection and constraining implicant.
These are a=9, 14 and they arc equal in /CS(0). So we can arbitrarily sclect the one
with smaller binary representation, i.c., minterm a=9 is selected. The CIS(a) includes
only implicant C.

After selection of C, the sets are updated as shown below;

UMS={14,15}

1§ = { D(2), L(1), G(1), I(1) }

DCS=1{3,4,57913}

MPS={A.DB,C}



Now, only one minterm is in UMS ( o=14). CIS(«) consists of only implicant D.

D covers a=14 and a=15. The sets of the CISH become :
UMS=¢
IS=¢
DCS={3,4,57,9,13,14,15}
MPS={4,B,C,D})
The minimal sum-of-products expression of f'is the UMS or;
Siw,x,0,2)=010~4+0~114+1-014+111-
= Wxy + Wyz + Wiz + wxy

All branches and constrained implicunts arc shown in Figure 11 on page 34. The
constrained paths are shown with bold lines, located on the left branch from root. An-
other search path is shown by sclection o= § at the very beginning of the minimization.
This path, located on the right branch from the root, gives another possible solution,

without applying CISIL.
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IV. COMPARATIVE RESULTS

In this thesis, all test results were obtained by running sample functions on the VAX
11/785 and ISI workstations. Different number of sample functions (4100) were ran-
domly generated. The input functions are generated for different variables with different
number of minterms, (i.e., 9 variable function with 475 minterms or 7 variable function
with 120 minterms). Each algorithm was applied to these sample functions, then the
avcrage number of product terms, average computation time, and average memory usage
are recorded. The computation time for 9 variable functions and larger is very large.
This explains why we did not simulate more than 9 variables. This thesis investigated

three algorithms: 1) CISH, 2) M1 (sce Appendix B), 3) Espresso I (see Appendix C).

A. PERFORMANCE COMPARISON

The performance measures are recorded and compared. These are 1) the average
number of product terms, 2) the average computation time, and 3) the average memory
usage.

The average number of product terms will show us the advantage of the each algo-
rithr.. For each set of sample input functions, the average number of product terms (sec
Avpendix D) is computed. From these data points, a curve is plotted to indicate the
a\crage number of product terms as a function of the number of the variables. The plot
is shown w1 Figure 12 on page 30.

In this exponential-growing shaped figures, it is observed that:

¢ The differences in the number of average products terms among these algorithms
are not signiiicant. Less than 1% of testing functions are difTerent.

o When the purnaber of vanables gets larger, the curve grows up exponentially. This
1s chieflv due to the fact that both the number of minterms and mnplicants increase
exponentialiy and they make the computation time longe,

(981
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Figure 12.  Average Number of Product Terms

From Figure 12, the CISII performs as well as the other two algorithins (MII,

Espresso 11).

B. TIMING COMPARISON
Both VAX 11,785 and ISI woikstations at NP'S can measure a program’s compu-
tation time in UNIX environment. In this section, timing comparison counts the aver-

age computation timie for cach group of input functions.
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Figure 13.  Average Computation Time

The decision rules for selecting the minterm ~ and the nuplicant I(a) in cach algo-
rithm are different. Generally, an algorithim that has complex rules to select o and (o)
takes longer computation time. The CISH uses more complex decision rules than MII1
and Espiesso 1. It may appear that CISIH needs moie computation time than other
algorithms. However, the computation time of the CISI is shorter than MII1, although
it 1s not as fast as Espresso 11. The graphical 1esult is shown in Figuie 13, Espresso 11
outperforms the other two heuristics. This might be due to smaller constant in compu-

tation complexity. The numectical results are shown in Appendix L.
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C. MEMORY COMPARISON

The average memory usage is measured for each algorithm (see Appendix ). From
thesc data points, a curve is plotted to indicate the average memory usage as a function
of the number of the variables. The plot is shown in Figure 14 on page 38.

It is expected that a heuristic or algorithm based on tabular method neceds more
memory to store the information for keeping track of cach term during the minimization

process. The M1 is based on a tabular method, thus it needs a lot of memory space.




The CISH selects and constrains the minterm o and imp;licant I(e}). As a natural con-
sequence, CISH uses less memory than MIH due to heuristic strategy.

A sophisticated dynamic memory scheme was used in Espresso II, so that it de-
mands less memory than the other two heuristics (MIH, CISH),

To summarize:
® There has been significant difference among the memory usage of each algorithm.

¢ Direct covering and tabular method used in CISH and MIH needs more room to
store the information about terms than the decomposition technique used in
Espresso 11.

¢ If we usc dynamic memory allocation in CISH, the memory requirement will be
reduced.




V. DISCUSSIONS AND CONCLUSIONS

A. DISCUSSIONS

There is no significant difference among these algorithms with respect to number
of -product terms. The small difference in the average number of product terms origi-
nated from the application of EST to CISH. Recall that in EST, we compute ICS()
of a given minterm, then constrain and select the implicant I,(«) with respect to the re-
lationship among direct neighbors of minterm « (i.e., one step look-ahead).

Naturally, a further look-ahead while selecting the I(x) may provide a better se-
lection of implicants. The exponential growth of the number of all possible implicants
restricts the practical use of & look-aheads for k % 1. The application of EST provides
better solutions for CISH over MIH. On the other hand, the best solutions are provided
by Espresso ]I.

From the computation time results, the CISH runs faster than MIH in all testing
conditions. This time efficiency is a result of the decision rules employed in CISH (that
takes advantages of the properties of the constrained implicant set concept). On the
other hand, Espresso Il runs faster than the other two heuristics as a results of the be-
havior of the algorithin based upon the unate paradigm (see Appendix C). Typical
PLA’s produce shallow recursion trees terminating quickly at unate leaves in search
space. This benefit is used in Espresso 11.

The memory comparison shows that MIH and CISH need more room to store the
information about the minterms and the implicants to operate efficiently. On the other
hand, Espresso II uses less memory by dealing primarly with matrix representation of

the function and the minimuzation. It is believed that usc of more memory makes

40




heuristics slower, since memory intensive programs tend to run slower than cpu intensive

programs.

B.

CONCLUSIONS

One of the primary goals of this research is to examine whether the constrained

implicant set concept in multiple-valued logic can be efficiently used in binary minimi-

zation. It is seen that the binary minimization of a given function can be done efficiently

by using the constrained implicant set concept.

In the development of the CISH and from comparative results, we have the follow-

ing observations:

The constrained implicant set concept reduces the search space significantly in the
binary minimization.

CISH does not lose run time efficency unlike MIH because the heuristic finds the
solution and stops eatlier than M1

Direct covering fits well with the constrained implicants set concept. On the other
hand, it does not provide cfliciency on the computation time as much as the de-
composition technique docs, such as Espresso 11.

In the cyclic case, applying EST provides better results than MIH, On the other
hand, using only one step look-ahead in ES I may loosc the optimality. However,
it is not practical to have more than one look-ahead, that requires longer compu-
tation time and larger memory space.

By constraining implicants with the cost factor, it is possible to find near and good
nuinimal sum-of-products expressions.

1t is possible to get a near and good minimal solution by only searching the main
branches of the scarch space.

The memory usage can be decreased by using the dynamic memory allocation like
Espresso 11, Originally CISH uses the static memory allocation.

Generally, Espresso 11 is more ellicient than CISH. This is not surprising since our

heuristic is an initial unoptmized prototype. Espresso Il on the other hand is the

product of considerable effort by a very large team over a long period which has con-

centrated on producing a production quality software package.
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Directions for Future Research

It is our hope that the ideas and heuristic described in this thesis represent a plateau
for the development of two-level binary minimization. The minimization problem is in
principle difficult, and future developments will exploit fundamentally new ideas. Here,

we briefly describe directions in which future research might be pursued.

¢ In CISH, function is represented in the form of the truth table. All the minimiza-
tion process is done by using the data structure. On the other hand, Espresso 11
uses the matrix representation of function and the minimization. This provides
increased speed of execution. This matrix representation can be applied CISH.

¢ Direct covering technique is applied to CISH. It is obtained that decomposition
technique can provide faster and more accurate solutions in minimization like
Espresso 11. The constrained implicants set concept can be improved by using the
decomposition technique instead of direct covering.

o The speed of execution can be increased by applying the concept of unate paradigm
to CISH. Actually, CISH reduces the search space significantly. On the other
hand, we belicve that using the concept of unate paradigm reduces the search space
(that already reduced by applying the constrained implicant set concept).

o The function applied to CISH includes only the 1 and 0 terms. The CISH can be
improved by using the don’t carc terms at the beginning of the minimization. We
hope that using the don't care terms at the beginning of the minimization with 1
terms helps reduce the computation time and use less memory space.

o CISH is developed using only the single output case. The heuristic can be modified
to be used in the minimization of the multi-output case. We believe that CISH
provides more efficient results than MIH in the multi-output cases.
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APPENDIX A. ABSOLUTE MINIMIZATION ALGORITHM

This algorithm is taken from [Ref. 1].
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algorithm absolute_minimization;

f « input_function;

cur_best_soln_sct « best solution from the Pomper and Armstrong,
Besslich and Dueck and Miller heuristics;

cur_best_soln_size « number of implicants in best solution;

cur_partial_soln_set « ¢,

cur_partial_soln_size « 0 ;

minimize(f);

stop
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procedure minimize(f);
¢ « some essential implicant set of [;
while (( there exists another implicant in ¢) and ( cur_partial_soln_size + 1 <
cur_best_soln_size ) ) do
begin
I« the next implicant in ¢

cur_partial_soln_set « cur_partial_soln_set {1}
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cur_partial_soln_size « cur_partial_soln_size + I,
if( for all assignments X of values to X, f{x) = Oor f(x) = r)
then
begin
cur_best_soln_set « cur_partial_soln_set; .
cur_best_soln_set « cur_partial_soln_size
end
[[backtrack 1]
else if ( cur_partial_soln_size + 1 < cur_best_soln_size ) then
minimize( f - I);
cur_partial_soln_size « cur_partial_soln_size - 1,
cur_partial_soh._set « cur_partial_soln_sct - {I}
end

return

i o e o o ot e ok oo o ol R oo oo o o ook ol oo A o ik e oo ok ook ol o ok ok ok

/* The subtraction of an implicant I from a function {] as described by [ « f- 1,
takes into account the value of the input_function. Let x be assignment of
values to variables X. Then, f « -1 means

for(all assignments x of values to X) do

begin

if(( ix) = r)or (input_ function(x) = r) or (f{x) < I (x) and input_function(x)
=r-1))
then fix) «r

else [(xn) « fix) - T (x)
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end

*/
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APPENDIX B. MAXIMUM IMPLICANT HEURISTIC

The Maximum Implicant Heuristis (MIH) is developed by modifying the
Quine-McCluskey Algorithm (QM). MIH is based on obtaining the switching function
as a near minimal sum-of-products. MIH differs from QM with respect to the two basic

approaches. These are stated below:

¢ Incorporation of A%, A%F, AC sets of function at the beginning of the minimiza-
tion

* Approaching to solve the cyclic case for a given function
The differences between two algorithms are explained by showing the main steps of

QM. QM is an exact minimization algorithm. It consists of two main parts shown be-

low [Ref. 2: p. 58}
¢ Generation of the prime implicants

o Extraction of a minimum prime cover

Modifications are done in these main parts of QM.

Madification 1:

The first modification to develop MIH is done at the first part of QM. The MI1I
does not include the don’t care terms while generating all prime implicants. 1t uses only
the minterms that belong to A% and A% of given function at the beginning. On the
other hand, QM can consider A%, A%, A2 of function. Use of the don’t care terms in
‘the minterm list makes generation of all the prime implicants more complex. The more
compi.tation time and memory space is necessary to find prime implicants. Thus, a
modification has been done to save the computation time and memory space. This

modification is reflected to development of MIH as not including A< of a given function
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at the beginning of minimization and dealing with only the function with A" and AoFF

in its minterm list.

Modification 2:

QM algorithm sets up a covering table that shows all of the prime implicants and
minterms covered by prime implicants. The essential prime implicants are removed from
this covering table, then a reduced covering table is formed. Secondary essential prime
implicants are found and removed from last covering table. A new covering table is set
up by remaining minterms and prime implicants [Refs. 2: pp. 59-64, 11; pp. 146-156).

In fact, it occurs in last reduced covering table, there is more than one possible cover
for given function. It is said that function has cyclic case. This cyclic case is solved by
apllying the Petrick Algorithm in QM. Petric Algorithm can be stated as producing all
possible covers for the function in covering table and selection of the one of the covers
requiring the smallest number of prime implicants and literals [Ref. 2: p. 64].

Producing all possible covers for the function necds more computation time and
memory requirement. All possible covers in last reduced covering table must be found
in QM. The reason is: QM quarantees exact minimal solution by scarching all possible
covers and selecting once having the fewest number of product terms.

The second modification is made at this part of QM. The reason is to avoid
spending a lot of computation time to find all possible covers and using more memory
place.

The modification can be stated as: 1) find the maximum implicant that covers the
largest arca in the last reduced covering table and 2) declare it being in the solution set.
The minimization process is continued after removing the maximum prime implicant
from this covering table, then establishing a new reducing table. If function still has a

cyclic case, the same process is apphied untl no ¢vclic case exists,
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The example about applving Petrick Algorithm in QM and breaking the cyclic case

in MIH can be found in [Ref. 2: pp. 64-65].

Minimization Algorithm of M1H:

In summary, the MIH (for finding a near minimal sum-of-products expression to a

given function) follows the step given below.

Find the set of all prime implicants of the function by using minterms that belong
to A% and A% of the given function.

Construct a covering table from all generated prime implicants.
Identify all of the essential prime implicants and form a reduced covering table.
Identify secondary essential prime implicants and reduce the covering table again.

If there is a cyclic case in reduced covering table, break the cyclic case by selecting
the maximum prime implicant to find a minimal cover for remaining minterms,
Apply this process until no cyclic case occurs in reduced covering table.

Observations on MIH:

The most important observations about MIH are stated below:

Most of the steps of both algorithms (MI1H, QM) are identical. If a function does

not have any cyclic case during its minimization process, MIH and QM can be
considered as the same algorithm.

The MIH provides a near minimal sum-of-products expression for given function

as a results of not {inding all possible covers to solve cyclic case in reduced cover-
ing table,
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APPENDIX C. ESPRESSO 1l

Espresso 11 is a set of algorithms for logic minimization which basically follows the
sequence of top-level transformation of iterated expansion-reduction pionereed by MINI
[Ref. 5: p.13].

The fundamental definitions used in explanation of Espresso 11 are summarized be-

low:

Definition :

A logic function f is monotone increasing (monotone decreasing) in a variable x, if
changing x, from 0 to 1 causcs all the outputs of f that change, to increase also from 0
to 1 (f[rom 1 to 0). A function that is either monotone increasing or monotone de-

creasing in x, is said to be monotone or unate in x,.

Definition :
A function is said to be unate function, if it is unate in all its variables. Example:

f= xl:irz ’*" :\.:2'\‘3

Theorem :

‘The Shannon expansion theorem states that a function can be expanded about any
chosen variable that is, to produce an equivalent expression for the function in which the
chosen variable appears once in uncomplemented [orm and once in complemented form.

The statement of the theorem is:

ST X gy A ey X)) = X100 X, B )+ X AN X, 00 0,y Xy)
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Algorithms of Espresso 11 based on a single basic strategy: a recursive divide and
conquer. It basically uses decomposition technique. Decomposition is based upon
Shannon Expansion. The Shannon Expeansion uses the cofactors of a logic function.
Since Espresso 11 uses the benefit of unate functions in Shannon expansion.

The algorithms of Espresso II form a logic minimization tools which actieves both
robust performance and quality results. Iterative improvement produces well-minimized
cover with high confidence, while unite paradigm together with special-case handling
ensures recasonably efficient execution for a broad range of incoming problem [Ref. 5:
pp. 161-162].

Spced of execution in Espresso I1 is based on the unate paradigm. Typical PLA’s
producc shallow recursion trees terminating quickly at unate leaves. Espresso 11 uses
this benefit to trim the recursion tree and balance it judiciously. Besides, using matrix
representation for representing logic function and minimization process in Espresso 11
requires less memory, and the operations to be exccuted faster than other forms of rep-
resentation of function [Ref. 5: pp. 44-46}.

The objectives of Espresso 11 are to minimize:
¢ The number of the product terms in the cover (NPT)
¢ The number of literals (not don't care ) in the input parts of the cover (NLI)

¢ The number of literals in the output part (NLO)

The Espresso I1 minimization procedure defines a vector objective function

O =(NPI,NLI,NLO)

and continues to iterate through into main minimization loop until none of the threc

components of @ have been reduced since the lust past through the loop [Ref. 5: pp.

54-535}




Espresso 11 minimization involves seven basic routines and the sequence of oper-

ations carried out by Espresso 11 is outlined below:
¢ Complement : Computes the complement of PLA’s and the don’t care set.
e Expand: Expand each implicant into a prime and remove covered implicant.
o Essential-Primes : Extract the essential primes and put them in the don’t care set.
¢ Irredundant Cover : Find a minimal (optionally minimum) irredundant :over.
¢ Reduce : Reduce each implicant to a minimum essential implicant.
¢ [Iterate : Expand, irredundant cover, reduce until no improvement.

o Lastgrap : Try reduce, expand and irredundant cover one last time using a different
strategy. If succesful, continue the iteration.

® Makesparse : Include the essential primes back into the cover and make the PLA
structure as sparse as possible.

The widely description and explanation of over-all Espresso 11 program can be ob-

tained at Rell 5.




APPENDIX D. AVERAGE NUMBER OF PRODUCT TERMS

Table 3. AVERAGE NUMBER OF PRODUCT TERMS

Numbet of Vari- Espresso 11 MIH CISH

I 1.000 1.000 1.000
2 2.450 2.450 2.450
3 3.450 3.430 3.480
4 2,000 4.010 4.000
5 6.100 0118 6112
6 10.500 10.660 10.567

17.000 17.268 17.256
2 33.160 313473 33.475
9 46.320 46.992 26.990




APPENDIX E. AVERAGE COMPUTATION TIME

Table 4. AVERAGE COMPUTATION TIME (SEC)

Number of Vari- Espresso I MIH CISH
1 0.000 0.000 0.000

2 0.400 0.890 0.420

3 0.490 5.760 1.070

4 0.960 6.010 1.300

5 1.060 6.480 1.952

6 1.070 6.860 1.780

7 1.100 7.976 3.690

1.446 11.410 5.830

1.824 24,704 19.992




APPENDIX F. AVERAGE MEMORY USAGE

Table 5,  AVERAGE TOTAL MEMORY USAGE (KBYTE)

Numb:lr)lgg Vari- Espresso 11 MIH CISH -

i 3.600 1.180 2.160

2 13.90 7.660 8.980

3 64.160 10.950. 16.150
4 77.000 36.720 45.786
5 96.960 57.980 77.400
6 103.200 73.170 100.22
7 112.552 115.090 92.670
8 127.080 189.670 137.060
Y 138.576 . 319.696 219.480
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APPENDIX G. PROGRAM LISTING

#finclude <stdio.h>

- jidefine maxint 32767
jidefine maxvars 10 /*Max ## of varisbles in a product term.*/
fidefine maxcint 65535 /*2%%(maxVars)-~1%/
f#define maxcubes 1000 /*Max # of cubes to allocate per level¥®/
fidefine TRUE 1
fidefine FALSE 0
fidefine Function
fidefine max 5
typedef struct cube {
Int tt[maxvars]; /*Bits 1 for uncomplemented variables.*/
int ff[maxvars]; /*Bits 1 for complemented variables.*/
int ics; /% degree of clustering of minterm */
int oldics; /% degree of clustering of minterm ¥/
int ic; /* minterm coverage of each implicant ¥*/
int selected; /* {lag of selected implicants in SOP %/
int track; /% to keep track of implicants,cubes ¥/
jCube;
int numvar; /% number of the actual variables ¥/
. int m,n; /% counters for loops %/
int aux,auxl; /* variables for temporary impicants ¥/
int naux,nauxl; % variables for temporary cubes %/
int num_minterm; /* number of the minterms */
' int num_product; /* number of the sum_of_product terms */
int countimpl; /* counter for implicants cover cube ¥/
int numcubes|maxvars]; /* flag to indicate levels and cubes 7/
int covered|maxvars] [ maxcubes]; /* flag to indicate covered minterms ¥/
int j, k,kl,p,rc,r,rm,rl, rk,rz; /* Index into the cubes,covered array */
int found; /* flag to keep track of covered imp */
int isonum; /% counter for remainder minterms */
int temp; /% dummy variable for implicant cube */
int small,high; /* variable for selection sorting */
int num_implicant; /* number of all implicants in funct. ¥/
int sub,subl; /% temporary variables */
int dum,duml; /¥ temporary variables ¥/
Cube cubes[maxvars+l])[maxcubes+l]; /* Cube representation for minterms */
Cube temporarycube; /% temporary cube for manipulation */
Cube tempcube; /¥ temporary cube for manipulation */
Cube implcubes[maxvars+1][maxcubes+1]; /* cube representation for impl. ¥/
Cube tempi{1}[max]} /% temporary implicant */
Cube nebor| 1} |[max]; /% temporary neighbor cubes */
FILE *fpil,*fpol; /% pointers for the files %*/

Function main (arge, argv)

wn
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int arge;
char #*argv;

int 1i,k;
found = FALSE;
for ( m=0; m <= maxvars ; m++ )

numcubes[{m] = 0; /* initialization for all level
for ( w=0; m < numvar ; m++ )
for ( 1=0; i < maxcubes ; i++ )

covered[m)[1] = FALSE ;
cubes[m] [ 1]. ics=0;
cubes|m] [ 1] . 0ldics=0;
cubes[m} [ 1]. ic=0;
cubes[m][1].selected =0;
cubes{m][1].track =0;

for ( k=0; k < numvar ; k++ )

cubes{m][1]. tt[k]=0;

cubes[m] [ 1] . ££[ k] =0;

/* Read the minterm from input file ¥/

readfile(argv[1]);

for ( m = 0; m < numvar; m++ ) /* For all level except the last ¥/
for(j =0; j < numcubes{m]; j++) /* For all cubes at this level */

for (k =j+1; k < numcubes[m] ; k++) /* other cubes at this level*/
{

if( rc=combinable(&cubes|m][ j] ,&cubes[m][k]))
{
covered[m}[ j] = TRUL; /* mark the cubes as covered ¥/
covered[m] [ k] = TRUE; /* mark the cubes as covered */

*/

/* Combine into an (m+l)-cube store in tempcube */

combine(&cubes[m](;] s&cubes|m] [ k] &tempcube),

found = FALSE ; /* See if it is generated before */

for (p=0; p < numcubes[m+1], p++)
if ( r = equalcubes(&cubes{m+1][p] ,&tempcube))
{

found = TRUE;
}

]
if(! found)
{
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/* add this as new implicant of higher level */
for(kl=0; k1 <numvar; kl++)

cubes|[m+1] [ numcubes|[m+1]]. tt[ kl]= tempcube. tt[kl];
cubes{m+1] [ numcubes[m+1] ]. ff{ k1] = tempcube. ff[kl];

numcubes|[m+1] =numcubes[m+l] + 1;

/* Find all possible implicant of function %/
/*

for (m=0 ;m < numvar ; m++)
for ( j= 0; § < numcubes[m]; j++ )
if((m == 0) && (! (covered[0][i])))
num_implicant++;
temp=num_implicant-1;
change(&cubes[m] [ j] ,&implcubes| 0] [ temp)] );
if((m 1= 0) && (covered[m)|[ j]))
num_implicant++;
. temp=num_implicant-1;
change(&cubes|[m] [ j} ,&implcubes| 0} [ temp] );
]
if((m 1=0) && (!covered[m]{j]))
{
num_implicant++;

temp=num_implicant-1;
change(&cubes[m] [ j] ,&implcubes| 0] [ temp] );

/* tind the Implicant Cover Size (ICS) */

for( w=0; m < num_minterm; m++)
for{ n=0; n < num_implicant; n++)
{

if(rm = imp_cov_size(&cubes[0][m] ,&implcubes{ 0] [n] ,&temporarycube))

cubes[ 0} [m] . ics++;
cubes{ C] [ m]«oldics++;
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/* find Minterm Coverage MC(I) */
/* ------------------------------- % /

for(m=0; m < num_implicant ;mt++)

implcubes|[ 0} [m].ic = coverage_size(&implcubes[0][m]);

for(i=0; i< num_minterm; i++)

small=i;
for( j=i+1; j<num_minterm; j++)

if(cubes[0][ j]. ics<cubes|[ 0]} [small].ics){
small=j;

1
swap(&cubes[ 0] [ small] ,&cubes[ 0] [ 1] ,&temporarycube);

fpol=fopen("cis.o","w");

REC: for(i=0; i<num_minterm; i++)
if(cubes[0}[0].ics == maxcint && cubes[0][i].ics != maxcint)
swap(&cubes| 0] [ 1] ,&cubes[ 0] [ 0] ,&temporarycube);

break;

}
for(i=0; i < num_implicant; i++)

high=i;
for(j=i+l; j<num_implicant; j++)

if(implcubes[0][j].1ic > implcubes[0][high].ic){
swap(&implcubes| 0] [ j] ,&implcubes| 0] [ high} ,&temporarycube);

/* Extended Search Technique :5
/ A g U g g gy e

if((cubes{0][0].ics = 2))
{

aux=0;
aux1=0;
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sub=0;

subl1=0;

naux=0;

naux1=0;

for(m=0; m<num_implicant; m++)

{if(r1=cover(&cubes[0][0],&implcubes[O][m],&tempcube))

sub++;

dum=sub -~ 1;

swap(&tempi[ 0] [ dum] ,&implcubes| 0] [ m] ,&tempcube);
tempi[ 0] [dum]. track = m;

1€(tempi[0][0].ic > tempi[O0][1].ic)

tempi[ 0] [0].selected = 1;

aux=tempi[ 0} | 0}. track;

auxl=tempi[ 0] [1]. track;

swap(&tempi[ 0] [ 0] ,&implcubes{ 0] [ aux] ,&temporarycube);
swap(&tempi[ 0] [ 1] ,&implcubes| 0] [ auxl) ,&temporarycube);

for( §=0; j<num_minterm; j++)

if((rz=cover(&cubes{ 0][ j] ,&implcubes( 0] [ aux] ,&temporarycube)) &&
(cubes|{0][ j]. ics != maxcint ))

cubes[ 0] [ j]. ics = maxcint;
isonum++;
for(k=0; k<num_implicant; k++)

{
if((r=cover(&cubes[0][ j] ,&implcubes| 0] [k] ,&temporarycube)) &&
(implcubes{ 0] [k].selected != 1) && (implcubes[0}{k].ic>0))

«-implcubes{0}[Kk]. ic;

}
}
!

if(isonum == num_minterm)
{
goto EXIT;

}
goto REC;
]

/1': -------------------------------------- ve /

i€(tempi[0][1]).ic > tempi[0][0]. ic)

tempi[0][1].selected = 1;

aux=tempi{ 0} [ 1] track;

auxl=tempi[ 0} | 0] . track; ’
swap(&tempi[ 0] [ 1} ,&implcubes{ 0] [ aux] ,&tempcube);
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swap(&tempi[ 0] [ 0] ,&implcubes| 0] [ aux1] ,&tempcube);
for(j=0; j<num_minterm; j++)

1f((rz=cover(&cubes[ 0] [ j] ,&implcubes| 0] [ aux] ,&tempcube)) &&
(cnbes{ 0] [ j].ics != maxcint ))

cubes{ 0][ i} . ics = maxcint;
isonumi+;
for(k=0; k<num_implicant; k++)

1f((r=cover(&cubes[0][ j] ,&implcubes[ 0] [ k] ,&tempcube)) &&
(implcubes[0][k).selected != 1) && (implcubes[0][k]}.ic >0))

--implcubes[ 0] [k]. ic;

}
]

1
if(isonum == num_minterm)

{
goto EXIT;

}
goto REC;
}

if((tempi[O][O].ic == 1) && (tempi[0][1].ic == 1))
for(m=0; m<num_minterm; m++)
{
if(xl=combinable(&cubes] 0] [m] ,&cubes][ 0] [ 0] ,&tempcube))

subl++;

duml=subl - 1;
swap{&nebor[ 0] [ duml] ,&cubes[ 0] [ m] ,&tempcube);
nebor{ 0] [ duml]. track = m;

if((nebor[0][0].o0ldics == 2)&&(nebor{0][1].o0ldics = 2))
if(rl=cover(&nebor[0)[0] ,&tempi[ 0] [ 0] ,&tempcube))

tempi[ 0] [ 0] .selected = 1;

aux=tempi[ 0] [ 0] . track;

auxl=tempi|{ 0] [ 1]. track;

swap(&tempi[ 0] [ 0] ,&implcubes| 0] [ aux] ,&temporarycube);
swap(&tempi[ 0] [ 1] ,&implcubes| 0] [ auxl] ,&temporarycube);
naux=nebor[ 0] { 0] . track;

nauxl=nebor{ 0] [ 1}. track;

swap(&nebor| 0] [ 0] ,&cubes[ 0] [ naux] ,&temporarycube);
swap(&nebor{ 0] [ 1] ,&cubes[ 0] | nauxl] ,&temporarycube);
for( j=0; j<num_minterm; j++)
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if((rz=cover(&cubes| 0] [ j] ,&implcubes| 0] [ aux] ,&temporarycube)) &&
(cubes[0]]j].ics 1= maxcint ))

cubes[ 0] [ j]. ics = maxcint;
isonumt+;
for(k=0; k<num_implicant; k++)

{if((r=cover(&cubes[0][j],&implcubes[O][k],&temporarycube)) &&
(implcubes[0][k].selected != 1) && (implcubes[O0]{k].ic > 0 ))

-=implcubes[ 0} [k]. ic;

)
}
}

if(isonum == num_minterm)
{
goto EXIT;
}

goto REC;

else
{
tempi[ 0][1].selected = 1;
aux=tempi[ 0] [ 1]. track;
auxl=tempi[ 0] [ 0]. track;
swap(&tempi[ 0} [ 1] ,&implcubes| 0] [ aux] ,&tempcube);
swap(&tempi{ 0} { 0] ,&implcubes| 0] [ aux1] ,&tempcube);

naux=nebor[0][0]. track;

nauxl=nebor{ 0} [ 1] . track;

swap(&nebor{ 0] [ 0] ,&cubes[ 0] [ naux] ,&temporarycube);
swap{&nebor[ 0] [ 1] ,&cubes| 0] [ nauxl)} ,&temporarycube);
for(3=0; j<num_minterm; j++)

if((rz=cover(&cubes[0][ j] ,&implcubes| 0] [ aux] ,&tempcube)) &&
(cubes[ 0] [ j]. ics != maxcint ))

cubes[ 0] [ j]. ics = maxcint;
"sonum++;
.or(k=0; k<num_implicant; k++)

{
if((r=cover(&cubes|[ 0] [ j] ,&implcubes[ 0] [k] ,&tempcube)) &&
(implcubes[0][k].selected != 1) &&(implcubes[0][k].ic>0))

--implcubes{0}[k]. ic;

}
J

if(isonum == num_minterm)
goto EXIT;
}
goto RLC;
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[¥ memecaaa- cesamemsasmemesanna et */
if((nebor{0]}[1].0ldics == 2) && (nebor[0][0].oldics != 2))

if(rl=cover(&nebor|[0] (1] ,&tempi[ 0] [1] ,&tempcube))
{
tempi{0][1].selected = 1;
aux=tempi[ 0] [1]. track;
auxl=tempi[ 0] [ 0} . track;
swap(&tempi[ 0] [ 1] ,&implcubes| 0] [ aux] ,&tempcube);
swap(&tempi[ 0] [ 0] ,&implcubes| 0] [ auxl] ,&tempcube);

naux=nebor{ 0] [ 0] . track;

nauxl=nebor[0j[ 1]. track;

swap(&nebor| 0] | 0] ,&cubes| 0] [ naux] ,&temporarycube);
swap(&nebor[ 0] [ 1] ,&cubes| 0] [ nauxl] ,&temporarycube);
for(j=0; j<num_minterm; j++)

1f((rz=cover(&cubes[0][ j] ,&implcubes[ 0] [ aux] ,&tempcube)) &&
(cubes[0][ j}.dcs != maxcint ))

cubes[0][ j}. ics = maxcint;
isonum++,;
for(k=0; k<num_implicant; k++)

{
1f((r=cover(&cubes| 0] [ j] ,&implcubes| 0] [ k] ,&tempcube)) &&
(implcubes[ 0] [k].selected != 1) && (implcubes[O0][Kk].ic>0))
{

--implcubes[0] [k]. ic;
}

}
}

if(isonum == num_minterm)
goto EXIT;
}
goto REC;

}

else
{
tempi[ 0] [0].selected = 1;
aux=tempi[ 0] [ 0] . track;
auxl=tempi[ 0] [ 1]. track;
swap(&tempi[ 0} [ 0] ,&implcubes| 0] [ aux} ,&temporarycube);
swap(&tempi[ 0] [ 1] ,&implcubes[ 0] { auxl] ,&temporarycube);

naux=nebor|[0]{0]. track;

nauxl=nebor[0]{1].track;

swap(&nebor[ 0] [ 0] ,&cubes{ 0] [ naux] ,&temporarycube);
swap(&nebor[ 0] [ 1] ,&cubes| 0] [ nauxl1] ,&temporarycube);
for(j=0; j<num_minterin; j++)
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if((rz=cover(&cubes[0][ j] ,&implcubes| 0] [ aux] ,&temporarycube)) &&
(cubes[0][ j].ics != maxcint ))

cubes{ 0] [ j]. ics = maxcint;
isonumtt;
for(k=0; k<num_implicant; k++)

{
1f((r=cover(&cubes{ 0] [ j] ,&implcubes[ 0] [ k] ,&temporarycube)) &&
(implcubes[ 0] [k].selected != 1) && (implcubes|0][k].ic>0))

-=implcubes{ 0] [k]. ic;

}
}

if(isonum == num_minterm)
{
goto EXIT;
}

goto REC;

1f((nebor{0][0].oldics !=2 && nebor[0][1}.oldics !=2)
gnebor[OJ[Ol.oldics ==2 && nebor[0}[1}.oldics ==2))

tempi[ 0] [ 0] .selected = 1;

aux=tempi|{ 0}{0]. track;

auxl=tempi[ 0][1]. track;

swap(&tempi[ 0] [ 0] ,&implcubes| 0] [ aux] ,&temporarycube);
swap(&tempif 0} [ 1] ,&implcubes| 0} [ aux1l) ,&temporarycube);
naux=nebor[0] [ 0]. track;

nauxl=nebor{ 0} [ 1]. track;

swap(&nebor{ 0] [ 0] ,&cubes| 0] [ naux] ,&temporarycube);
swap(&nebox[ 0] [ 1] ,&cubes| 0] [ nauxl] ,&temporarycube);
for(j=0; j<num_minterm; j++)

if((rz=cover(&cubes|0][ j] ,&*mplcubes[ 0] [ aux] ,&temporarycube)) &&
(cubes[0][ j].ics != maxcint ))

cubes[ 0} j].ics = maxcint;
isonum++;
for(k=0, k<num_implicant; k++)

{
if((r=cover(&cubes{[0][ j] ,&implcubes] 0] [ k] ,&temporarycube)) &&
(implcubes[0][k].selected != 1) & (implcubes|[0][k}.ic>0))

-~implcubes[0_ {k].ic;
}
}
}
1
if(isonum == num_minterm)

{
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goto EXIT;
]
goto REC;

if((tempi[0}[0].dic == 2) && (tempi[O0][1].ic == 2))
for(m=0; m<num_minterm; m++)
{
if(rl=combinable(&cubes| 0] [ 0] ,&cubes| 0} [m] ,&tempcube))

subl++;

duml=subl - 1;
swap(&nebor| 0] [ duml] ,&cubes{ 0] [ m] ,&tempcube);
nebor| 0] [ duml]. track = m;

}
if((nebor[0][0].o0ldics == 2) && (nebor[0}[1].o0ldics !=2))

if(rl=cover(&nebor| 0] {0} ,&tempi[ 0] [ 0] ,&tempcube)})
{
tempi[ 0] [ 0] .selected = 1;
aux=tempi[ 0] ] 0] . track;
auxl=tempi[ 0] [ 1]. track; .
swap(&tempi[ 0] [ 0] ,&implcubes| 0] [ aux] ,&temporarycube);
swap(&tempi[ 0} { 1} ,&implcubes{ 0] [ aux1] ,&temporarycube);

naux=nebor[ 0] [ 0] . track; ‘
nauxl=nebor[0][1}]. track;

swap(&nebor| 0} { 0] ,&cubes[ 0] [ naux] ,&temporarycube);

swap(&nebor{ 0} { 1} ,&cubes| 0] [ naux1] ,&temporarycube);

for(j=0; j<num_minterm; j++)

if((rz=cover(&cubes| 0] [ j] ,&implcubes|0][ aux] ,&temporarycube)) &&
(cubes[0]] j].ics != maxcint ))

cubes[ 0] [ j}. ics = maxcint;
isonum++;
for(k=0; k<num_implicant; k++)

if((r=cover(&cubes|[0][ j} ,&implcubes[ 0] [ k] ,&temporarycube)) &&
(implcubes|0][k}.selected 1= 1) && (implcubes|[0][k].ic>0))

--implcubes{ 0] [k]. ic;
}
}
}
}
if(isonum == num_minterm)

{
goto EXIT;
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}
goto REC;

else

{

tempi][ 0} [ 1].selected =

aux=tempi[ 0] [ 1]. track;

auxl'temp1[0] 0] . track;

swap(&tempi{ 0 y&implcubes| 0] [ aux] ,&tempcube);
swap(&tempi[ 0 s&implcubes| 0] [ auxl] ,&tempcube);

O b=t

naux=nebor[ 0] { 0] . track;

nauxl=nebor| 0] [1]. track;

swap(&nebor[ 0 s&cubes| 0] [ naux] ,&temporarycube);
swap(&nebor{ 0 y&cubes[ 0] [ nauxl)] ,&temporarycube);
for( §=0; j<num_minterm; j++)

-0

1f({rz=cover(&cubes[ 0] [ j] ,&implcubes| 0] [ aux] ,&tempcube)) &&
(cubes[0][ j].ics != maxcint ))

cubes[ 0} j]. ics = maxcint;
isonum++;
for(k=0; k<num_implicant; k++)

{
if((r=cover(&cubes|[0][ j] ,&implcubes[ 0] [ k] ,&tempcube)) &&
(implcubes[0][k].selected != 1) && (implcubes{[0][k].ic>0))

--implcubes[0] [k]. ic;
}

}
}

if(isonum == num_minterm)
goto EXIT;
goto REC;
/ar ------------------------------------------------ */

if((nebor{0][1].0ldics = 2) && (nebor[0][0].oldics !=2))

if(rl=cover(&nebor[ 0} [ 1] ,&tempi[ 0] [ 0] ,&tempcube))

{

tempi[ 0] [0]).selected = 1;

aux=tempi{ 0} [ 0] . track;

auxl=tempif[ 0] [ 1] .track;

swap(&tempi[ 0] [ 0] ,&implcubes| 0] [ aux] ,&temporarycube);
swap(&tempi[ 0] [ 1] ,&implcubes| 0] [ aux1] ,&temporarycube);

naux=nebor[ 0] [ 0] . track;
nauxl=nebor{ 0} [ 1]. track;
swap(&netor| 0] [ 0] ,&cubes| 0] [ naux] ,&temporarycube);
swap(&nebor[ 0] [ 1] ,&cubes| 0] [ nauxl] ,&temporarycube);
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for( j=0; j<num_minterm; j++)

if((rz=cover(&cubes| 0] [ j] ,&implcubes| 0] [ aux] ,&temporarycube)) &&
(cubes[0][j].ics != maxcint ))

cubes[0][ j]. ics = maxcint; )
isonum++;
for(k=0; k<num_implicant; k++)

{
i£((r=cover(&cubes] 0] j] ,&implcubes[ 0] [k] ,&temporarycube)) &&
(implcubes[ 0]} [k].selected != 1) && (implcubes{O0][k]. ic>0))

-=-implcubes[ 0] [ k]. ic;

}
}
}

if(isonum == num_minterm)
{
goto EXIT;

}
goto REC;
}

else
{
tempi[ 0] [1].selected = 1;
aux=tempi[ 0] [ 1]. track;
auxl=tempi{ 0] [ 0] . track;
swap(&tempi[ 0} [ 1] ,&implcubes| 0] [ aux] ,&tempcube);
swap(&tempi[ 0] [ 0] ,&implcubes| 0] [ auxl] ,&tempcube);

naux=nebor[ 0] [ 0] . track; )
nauxl=nebor| 0| [ 1}. track;

swap(&nebor( 0] [ 0] ,&cubes{ 0] [ naux] ,&temporarycube);

swap(&neborx[ 0] [ 1} ,&cubes[ 0] [ naux1] ,&temporarycube);

for( j=0; j<num_minterm; j++)

if((rz=cover(&cubes[0][j] ,&implcubes| 0] [ aux} ,&tempcube)) &&
(cubes{0][j]. ics != maxcint ))

cubes[ 0]} { j].ics = maxcint;
isonum++;
for(k=0; k<num_implicant; k++)

if((r=cover(&cubes[ 0] [ j] ,&implcubes[0][k] ,&tempcube)) &&
(implcubes[0][k].selected != 1) && (implcubes|[O0][k].ic>0))

--implcubes[ 0] [k]. ic;
}
}
}
}
if(isonum == num_minterm)

goto EXIT;
}
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].oldics ==2)
].oldics !=2))

b b

if((nebor[0][0].oldics == 2 && nebor[0]{
gnebor[O][O].oldics 1= 2 && nebor[0]|

tempi[ 0] [0].selected = 1;

aux=tempi[ 0] [ 0] . track;

auxl=tempi[ 0] [ 1]. track; :

swap(&tempi[ 0} { 0] ,&implcubes| 0] [ aux] ,&temporarycube);
swap(&tempi[ 0] [ 1] ,&implcubes| 0] [ auxl] ,&temporarycube);
naux=nebor[ 0] [ 0] . track;

nauxl=nebor{ 0] [ 1]. track;

swap(&nebor[ 0] [ 0] ,&cubes| 0] [ naux] ,&temporarycube);
swap(&nebor[ 0} [ 1] ,&cubes| 0] [ nauxl] ,&temporarycube);
for(j=0; j<num_minterm; j++)

1f((rz=cover(&cubes[0][ j] ,&implcubes[ 0] [ aux] ,&temporarycube)) &&
(cubes[ 0] j].ics = maxcint ))

cubes{ 0] [ j]. ics = maxcint;
isonunt+t;
for(k=0; k<num_implicant; k++)

1f((r=cover(&cubes{0]{ j] ,&implcubes| 0] [ k] ,&temporarycube)) &&
(implcubes[ 0} [k].selected != 1) && (implcubes{O0][k]. ic>0))

--implcubes| 0] [ k] .ic;

}
}

if(isonum == num_minterm)

{
goto EXIT;

if(cubes[0][0]. ics !1=2)
{
for(m=0; m<num_implicant; m++)

if(rc=cover(&cubes[0]| 0] ,&implcubes| 0] [m] ,&temporarycube) &&
(implcubes{ 0] [m].selected != 1) &% (implcubes[0][m].1c >0))
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{

implcubes{0] [m].selected = 1;
implcubes| 0} [m]. ic = 0;
for(j=0; j<num_minterm; j++)

if(rz=cover(&cubes[ 0} [ j] ,&implcubes| 0] [ m] ,&temporarycube) -
&& (cubes[0][ j].ies != maxcint))

cubes[0][ j]. ics = maxcint; .
isonumt+;
for(k=0; k<aun_implicant; k++)

if(r=cover(&cubes[0][ j] ,&implcubes| 0] [ k] ,&temporarycube)
&& (implcubes{0][k].selected != 1)&&
(implcubes[0j[Kk].ic > 0 ))
{

~-implcubes[ 0] [Kk]. ic;
}

}
}

if(isonur == num_minterm)
goto EXIT;
}

goto REC;

EXIT: for(m=0; m<num_implicant;m++){
if(implcubes|{ 0]} [m].selected = 1)
{

printcube(&implcubes| 0] [m] );
num_product+t;

]

}
fclose(fpol);
printf("%d n",num_product);

Function imp_cov_size(al,a2,a3)

Cube *al,*a2,%a3;

i

int i,

int v_ics;

int check; .
check =0;

v_ics =0;
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/* check tnat this minterm can be covered by this implicant or not */
for(i =0; i < numvar ; i++) |
a3 ->tt]i] = AND(al->tt[i], a2->tt[i]);
a3 ~->ff[i] = AND(al->ff[i], a2->ff[i]);
. if((a3->tt[i] == a2->tt{i]) && (a3->ff[i] = a2->ff[1]))

check++;

. 1

/* if all bits are same as implicant than retuns as v_ics =1 */
/¥ Otherwise it remains as O. %/

if{ check == numvar)
v_ics=1;

return(v_ics);

Function int coverage_size(al)
Cube *al;

int {i;

int parameter;

int messanger;
. parameter = (;

for(i=0; i < numvar; 1i+){
if((al->tt[i] == 0) && ( al->{f[i] == 0)){
parameter++; }}
if(parameter == 0){
messanger =1; }

if(parameter == 1){
messanger = 2;}

if(parameter == 2){
messanger =4;}

if(parameter == 3){
messanger =8;}

if(parameter == 4){
messanger = 16; ]

if(parameter == 5){
messanger = 32; ]

if(parameter ==6){
nessanger = 04;}
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if(parameter == 7){
messanger = 128;}

if(parameter == 8){
messangexr = 256; }

if(parameter == 9){
messanger = 512; }

return(messanger);

/* B L T T T T TR, meRammee- e sEn .- T L T TR - */

Function int swap(al,a2,a3)
Cube Yal,¥a2,%a3;

int i;
for( 1=0; 1 < numvar ; i++)

{
a3->tt
al=->tt
a2->tt

al->tt[ i
a2->tif i
a3->tt[1];

we

- e
iy
.-

a3->ff
al->ff
a2->ff{i

[
—
i

al->ff[i
a2->ff{i
a3->{f[ 1

-

[N
f

]
e

a3->ics
al->ics
a2->ics

al->1ics;
a2->ics;
a3->ics;

a3->o0ldics
al->oldics
a2->oldics

al->oldics;
a2->oldics;
a3->oldics;

al->jics = al->ics;
al->ics = al2->ics;
a2~>ics = a3~->ics;

a3->selected = al->selected;
al->selected = a2->selected;
a2->selected = a3->selected;

a3=>track
al~->track
a2-=>track

al->track;
a2->track;
a3->track;




Function int cover(al,a2,a3)
Cube *al,*a2,¥*a3;

int i;

int v_cover;
int check;
check=0;
v_cover=0;

for(i=0; 1 < numvar; i++){
a3->tt[i] = AND(al->tt[i],a2->tt{1]);
a3->ff[ 1] = AND(al->ff[i],a2->ff[1]);
if((a3->tt[i] == a2->tt{i]) && (a3->ff[i] == a2->ff[i]))

check++;

}
}

if( check == numvar)
v_cover=l;

return(v_cover);

}

/'o‘c ------------------ P T e T N L L L T a'v/

Function int equalcubes(al,a2)
Cube ¥al,*a2;

/* if EQ return 1 else return 0 ¥/
int i
int v_equal;
v_equal =1;
for (i = 0; i <numvar ; i++) {
if ((al=>tt]i] != a2->tt{i] al->ff[i] != a2->ff[1]))
{

v_equal = 0;

return(v_equal);
T cecomencesnenen . ——— */

Function int combinable(al,a2)
Cube *al,%al;




R

int i;

int v_combinable;

int cone;

cone=0; /* 1. combinable else not */

v._combinable =0;
for (i = 0; i <numvar ; i++) |
if (((al=>tt[i] != a2->tt[i])) ((al->f£f[i] 1= a2->£f£f[1])))

conet+;

}

if (cone ==1) v_combinable=];
return({v_combinable);

}

Function readfile(filename)
char *filename;

{
int 1,3;
Cube *cl; /¥ ¢l point to c[0][0] */

if((fpil=fopen(filename,"r")) == NULL)

printf(" nERROR - Cannot open designated read file n");
return;

}
while(! feof(£fpil)){

fscanf(fpil,"%d %d n", &num_minterm,&numvar);
numcubes[ 0] = num_minterm;

for(i=0; 1 < num_minterm; i++){

for(j=0;j < numvar; j++)

fscanf(fpil,"%1d" ,&cubes[0][i].tt[ j]); complement(&cubes|0][1]);

Function int complement(al)
Cube *al;
{
int j;
for(j=0; j < numvar; j++)

if (al -> tt[j] == 1)
{



al -> ff{j] =

else
al -> ff[j] =1 ;

/* LA AL A L XL LA AR AR LA LA R LE NS Mo Goshnnnee LR A B A A L R K4 LA N */

Tunction combine(al,a2,a3)
Cube **al,*a2,%al ;

{
int i;
for (1 = 0; 1 <maxvars ; i++) {
a3->tt[ 1] = AND(al->tt[i], a2->tt[1]) ;
?3->£f[i) = AND(al->ff[1], a2->ff[i]) ;

J¥ cemmincas e mMEEesccssmURSAEHEEeREREEEECEEREE .. ¥/
Function int AND(11,12)

int 11,12;

{

f(il==12) return(il);

else raturn(0);

]

Function int printcube(al)

Cube ™al ;
{
int j;
for( j=0; j < numvar; j++){fprintf(fpol, "%ld",(al >tt[j])) }
fprintf(tpol,’ )
for( j=0; j<numvar; j++){fprintf(fpol,’ %ld ,ale >ff[J]), }
fprintf( fpol,’ n");
fprintf(fpol,’ n'");
}
/* ---------------------------------------------------------- ':r/
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Function int change(al,a2)
Cube %*al,%a2;

int i;
for( i=0; i< numvar; i+t)

a2->tt{ 1] = al->tt[i];
a2->ff[i] = al->ff[i];
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