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Abstract

The multi-segmented deformable mirror system is proposed as an element for a portion of a ballistic
missile defense system. The size of the mirror required for this defense function requires that the
mirror be developed in segments, and then these segments should be phased together to produce
one continuous, large optic. The application of multivariable control system synthesis techniques
to provide closed-loop wavefront control of the deformable mirror system is the problem discussed
in this thesis. The method of H6, control system synthesis using loop-shaping techniques was used
to develop a controller that meets a robust performance specification. The number and location of
sensors was treated as a design variable, and the structured singular value (p) was used to determine
the performance robustness of the deformable mirror system. Decentralized control issues are also
addressed through the use of necessary conditions in an effort to determine a suitable decentralized
control structure with performance similar to that of the centralized controller.
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Chapter 1

Introduction

In 1984, President Reagan challenged the scientific community to develop a system that could be

used to protect the United States from a ballistic missile attack. The development of such a system

was organized under the Strategic Defense Initiative (SDI). The structure analyzed in this thesis

is one element proposed for a portion of this defense system. The deformable mirror system is a

multi-segmented reflective mirror proposed for deployment on a space platform. The size of the

mirror required for this portion of the defense system requires that the mirror be developed in

segments, and then these segments will be "phased" together to produce one continuous, large

optic. The phasing of each of these segments is the application problem addressed in this thesis.

The multivariable, highly integrated, deformable mirror system structure requires very precise

control action. Many control synthesis techniques have been developed to address multivariable

systems. This thesis applies the technique of H, loop-shaping to meet the performance require-

ments. This technique provides a method of incorporating control performance objectives into the

design of the control system. This chapter introduces the deformable mirror system problem and

discusses some of the available approaches that can be used to address the synthesis of the control

system. The contribution of the thesis and an outline of the organization conclude this chapter.

1.1 Problem

The problem addressed in this thesis is the segment phasing of separate optics into an integrated

optic. This is a low-bandwidth problem requiring the integrated surface of the optic to appear as

a single mirror. Each individual optic contains force actuators to align each mirror. The figure of

the integrated optic will be used to measure the performance. The results of this thesis will be a

control system design to meet the required performance given a level of uncertainty in the model.

The uncertainty that is used in this model attempts to reflect the imperfect nature of the model

versus the actual system. Simulations are shown to illustrate the effect of this uncertainty on



performance. The simulations will be used to determine the success of applying the control action

to the models of the deformable mirror system.

After it is shown that the performance requirements can be met using a centralized controller,

analyses are conducted to determine if a decentralized structure exists. The use of decentralized

control would simplify the controller design and reduce the number of on-line computations leading

to simpler hardware requirements.

1.2 Available Approaches

Multivariable control system synthesis techniques have been used with varying levels of success

over the past two decades. Optimization techniques using quadratic norms led to Wieiier-Hopf

and Linear Quadratic Gaussian (LQG) or H2 control synthesis methods. The application of these

synthesis methods requires a description of a particular power spectrum of the disturbance signals.

H 2 control systems can be sensitive to modeling errors because the norm is not suited for robustness

analysis. There is no easy way to incorporate modeling uncertainty into the optimization problem

that yields the compensator.

H, control designs also minimize the quadratic norm of the error, but they are based on

minimizing a class of disturbances or a class of spectra. The H" norm is an induced norm or a

measure of maximum error over the class. Furthermore, the H, norm is compatible with robustness

analysis and can be used to incorporate bounded modeling uncertainty into the design. Through

the use of singular values, multivariable "Bode" plots can be generated with interpretations similar

to the Single Input Single Output (SISO) systems. The magnitude of various transfer function

matrices can be measured using frequency dependent singular values. One method of designing

H, controllers is through the use of functions that bound the singular value plots of matrix

transfer functions of interest. This method is referred to as "loop-shaping," where the controller

performance specifications are appended to the plant model. Control synthesis is then performed

on this "augmented" plant. An acceptable controller found for the augmented plant model will

meet the pe-formance requirements of the original plant model.

The maximum singular value is a sufficient measure of stability for a system in the presence

of plant uncertainty, however, conservatism arises because the structure of the uncertainty cannot

be incorporated. This means that uncertainty is "lumped" together to measure the stability. The

nature of multivariable systems, specifically singular values, can make this "lumping" arbitrarily

conservative. A non-conservatve measure of robust stability and robust performance, called the

structured singular value or p. was :9troduced by Doyle [6] in 1982. Through the use of a variation

of the small-gain theorem, Doyle developed the "small it" theorem where the uncertainty structure



is exploited. The structured singular value also allows for the performance requirements to b,'

incorporated into this uncertainty structure, thus providing a method to determine if performance

is achieved with uncertainty present.

1.3 Thesis Contribution and Outline

The primary results of this thesis are the selection of sensors and the synthesis of a controller that

satisfies the deformable mirror system performance requirements. H, loop-shaping techniques

are employed to develop the controller, and the structured singular value is used to measure the

robustness. Possible decentralized structures are examined through the use of necessary coi. 'tions

on robust stability. These necessary tests provide a means of reducing the number of possible

decentralized structures to a manageable level.

Following this introductory chapter, this thesis is organized as follows:

Chapter 2 provides a description of the deformable mirror system including details of the struc-

tural model, performance reuirements, and the development of the model into a format useful for

control synthesis.

Chapter 3 gives an overview of robust control concepts and develops tLe tools used in this

thesis for analysis. The use of the structured singular value is developed by reviewing the small

gain and small p theorems. The application of the structured singular value to robust performance

is discussed.

Chapter 4 details the specific problem statement addressed in this thesis. Through discussion of

some of the issues encountered in developing a controller for the deformable mirror system, several

subgoals are developed.

Chapter 5 presents the results of the open-loop plant analyses and provides an initial sensor

selection used for the closed-loop analyses. Details concerning controllability and observability

are provided, and the importance of balancing is shown with respect to the determination of

controllability and observability. The open-loop poles and zeros are tested and the results provided.

Chapter 6 provides the details of the conitrollers designed for the deformable mirror system.

Three separate cases are used in the development of the controller, and the method of H, loop-

shaping is presented. All of the weighting matrices used in the development of the H, controller

and the evaluation of the robust performance are provided, and results of each case are presented.

Chapter 7 contains the decentralized systen analyses performed in an effort to determine the

existence of a decentralized control structure. The term "structure" refers to the partitioning of

the controller into a block-diagonal form. Through the use of necessary tests thousands of potential

structures are eliminated, and a manageable subset restlts. More stringent tests are then applied

I



in an effort to determine a suitable decentralized structure.

Chapter 8 presents the conclusions and topics for future research on the deformable mirror

system.

Appendix A develops the relationship between the if, norm and the rms performance require-

ment.

(3I



Chapter 2

Description of Deformable Mirror
System

2.1 Overview

The deformable mirror system is a multi-segmented reflective optical system composed of a rigid,

fixed circular center segment and six deformable petals (DPs) whose vertical positions, orientations,

and shapes are actively controlled. The six DPs form an annulus about the rigid circular center,

so that the composite deformable mirror system forms a large circular optic. A schematic of

the deformable mirror system is shown in Figure 2.1, and a top-view of the system is shown in

Figure 2.2. As seen from Figure 2.1, a laser source generates a beam that travels through a hole

in the fixed center optic, reflects off the convex secondary mirror to expand the beam, and then

reflects off of the primary mirror (fixed center optic and DPs) to produce the output beam. The

primary mirror has a focal length such that the beam energy is focused on the desired target.

Many optic systems proposed for deployment in space require large surfaces with very tight

figure specifications. The capability exists to manufacture small optical systems with a very tight

figure specification. Unfortunately, as the size of the optic increases, the capability to maintain

a tight figure specification decreases. Furthermore, the ability to accurately measure and assess

the figure of the optic decreases with the size of the optic. One technique used to circumvent

this problem is to produce small optics with tight figure specifications and combine these smaller

optics into a larger optic. This eliminates the problen of fabricating a large optic but adds several

difficulties to the control system design problem.

The practice of using several smaller optical systems to produce one larger system requires the

"phasing" of each optic. Therefore, the control system needs to sense the position of each DP

and phase these segments into one large optic. This thesis addresses the issue of robust wavefront

control or "phasing" each optic in the presence of uncertainty. A detailed description of the system

model is discussed below.

10
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2.2 Structural Model Description

The ten meter diameter primary mirror consists of the fixed center optic and the six DPs. The

primary mirror model is a finite element representation generated through modal analysis of each

DP and the support plate. Each DP has a general parabolic figure with a focal length of 12 m and

contains 18 force actuators for figure control (108 figure actuators total) and 6 segment phasing

actuators (36 segment phasing actuators total). The figure actuators deform each DP to actively

produce specified shapes. The segment phasing actuators translate the DPs in a rigid body sense

for petal to petal alignment.

The deformable mirror system model maps actuator forces to wavefront error at 56 finite element

surface nodes (per petal). The wavefront error is defined by

WFE = 2Z, e6(t!et *) (2.1)

where

Z unit vector in the global z-direction

= unit normal vector

,!= wavefront vector

and

* denotes the vector dot product

A simple example of wavefront error is shown in Figure 2.3, where a nominal surface with a normal

vector, Z, is tilted by an angle of a. The reflection of this tilt produces an output vector tilted by

an angle of 2a. The vector, U, shows the reflection of the wavefront from the nominal surface. The

wavefront error is the projection of the wavefront vector in the global z-direction.

12
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Prospective edge sensor locations are related to the finite element nodes located on the edge

of each DP as shown in Figure 2.4. These sensors measure displacements normal to the edge,

displacements in a radial direction along the edge, and displacements in the z-direction. The number

and location of the edge sensors is considered a design variable, and through analyses described

below, the number of edge sensors required will be determined. There are 7 sensor locations

per radial edge and 5 sensors per circumferential edge leading to 216 possible edge displacement

measurements.

The figure sensor measures the wavefront error of each petal and interpolates these measure-

ments to the surface node locations of the finite element model. Figure control using each DP is

not addressed in this thesis.

2.3 Performance Requirements

Most optic system requirements are specified in terms of a wavelength error over the aperture of

the optic. The deformable mirror system is to have a corrected wavefront figure of A/101. This

means that the "rms figure" of the deformable mirror system cannot exceed A/10, where A specifies

the wavelength of the laser used in the measurement source. This figure control requirement is a

nearly static requirement (< 0.1Hz).

'A is assumed to be 6328 A, the wavelength of a He-Ne laser. The requirement is based on specifications of many
current systems using the He-Ne laser only as a diagnostic tool.

13



Based on the above performance specification, norm bounds must be generated to apply H 2

and H... control system synthesis. The performance specification is interpreted as the "rms figure"

of the optic, which can be expressed as the L 2 norm [21]:

je12 6 3 .2 8 pm (2.2)
10

A discussion of norms is provided in Chapter 3.

2.4 State Space Model and Control System Block Diagram

The finite element model is manipulated to generate the standard state matrices, and the state

equations are

X= Ax + Bu (2.3)

y = Cm + Du (2.4)

The only dynamics modeled are associated with the six segment phasing actuators per DP which

are modeled as springs. This produces a full rank D matrix. The time constants of the actuators

are assumed much faster than the dynamics of the structural system. Therefore, the structure

appears to act "instantaneously" to the inputs at the actuators. It is assumed that the bandwidth

of the wavefront control system will not excite any modes except those modes associated with the

segment phasing actuators. The natural frequencies of the actuators are less than 2 Hz. This

implies that the structure is expected to act statically to inputs at the segment phasing actuators.

The states consist of the six positions and velocities associated with each DP, resulting in a 72

state model. There are 150 total force inputs in this model including the 144 figure and segment

phasing actuators (108 + 36) and an additional 6 inputs for disturbances, one at the base of each

DP.

Figure 2.5 shows the block diagram for the deformable mirror system. In this figure, K(s)2

refers to the compensator or controller, G(s) refers to the plant, and Se(s) refers to the segment

phasing sensor. As can also be seen from Figure 2.5, the primary disturbance source analyzed

occurs at the output of the plant, Dt(s), and for this thesis, the reference input, R(s), is set to 0.

The actual performance is the wavefront of the composite optic (center and 6 segments). The

measure of the performance will be evaluated at a discrete set of points related to the Finite Element

Model (FEM) of the DPs (E(s)). These measurement locations are chosen to maximize the robust

performance. Details of the methods used to determine the measurement locations are presented

later.

21n this document, notation for the Transfer Fuinction Matrices will be denoted by their dependence on s or w.
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Chapter 3

Overview of Robustness Analysis
Techniques

The purpose of this chapter is to give a brief exposition of robustness analysis techniques and the

tools that will be used in this thesis. For a more detailed treatment of these properties, the reader

is referred to [5,16].

3.1 Overview

The purpose of robust control is to design a controller to achieve a given level of performance in

the face of a given level of uncertainty. A robust controller still meets the performance requirement

because the effect of unknown or uncertain dynamics of the plant are incorporated into the synthesis

of the controller. Two key developments enable the incorporation of uncertainty into the synthesis

of a controller.

In 1976, Youla, Jabr, and Bongiorno [23,24] showed that it is possible to parameterize all

stabilizing controllers for a particular system by searching over the space of all stable transfer

functions. This parameterization guarantees that the resulting "optimal" controller will yield an

asymptotically stable closed-loop system regardless of whether or not the plant is proper, stable,

or minimum-phase. Later, Zames described a method of measuring performance in terms of the

co-norm rather than the 2-norm [25]. While the quadratic or 2-norm can measure the energy of

a signal of a system, the co-norm can be used to measure the "gain" of a system. The use of the

H, norm unifies performance and robustness analysis. This lead to a new method of synthesizing

cuiiLiullef k,,uwi- as t1, control.

These two developments provided a framework for Doyle, who developed a powerful tool for

testing "robust stability" and "robust performance" in 1982 [6] called the structured singular value

or p. Using the H, performance objective and norm bounded uncertainties, Doyle exploited the

structure of the uncertainty and, using a variation of the small-gain theorem, developed p as a
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nonconservative measure of robust performance.

With these developments and some enhanced computational algorithms, it is possible to express

a performance requirement, establish bounds on the uncertainty, and synthesize a controller to meet

the performance requirement. If no controller can be found that meets the performance requirement,

a trade-off between the requirements and the uncertainty is necessary. In other words, if the

control requirement cannot be satisfied, the control designer either needs to lower the performance

specifications, or learn more about the system in order to lower the uncertainty bounds.

The remaining sections of this chapter describe the performance analysis tools (the H 2 norm

and the H,, norm) and the robust stability concepts.

3.2 Performance Analysis Tools - Transfer Function Norms

Performance analysis can involve many different concepts depending on the system analyzed and

the performance requirement. If an error signal is to be minimized for disturbances having a

fixed power-spectrum, a quadratic minimization of the rms error is appropriate. This type of

problem occurs if a disturbance source is steady, i.e. 60 Hz noise in power supplies. For this

particular case, H2 or Linear Quadratic Gaussian (LQG) methods are appropriate. In other cases,

the disturbance spectra may include a class of signals, including impulses and narrow-band sign'als of

various frequencies. For this class of problems, the minimization of the system gain is appropriate.

In effect, the minimization of the system gain corresponds to minimizing the maximum response

over all disturbances in a class of disturbance spectra. This minimization involves the induced

norm, and is commonly referred to as H,. optimal control. This section details the H 2 and H,

norms used in control system analysis.

3.2.1 Definition of the H 2 Norm

This section provides an overview of the use of the H 2 norm in control system analysis and synthesis.

All developments in this section are shown without proof. For a more detailed description, the

reader is referred to [5].

The normed vector space (Ln, 11"112) is defined as the set of square-(Lebesgue) integrable functions

such that

and the norm is defined as

II11f = ( fTU)f(j)dj) (3.1)

Physically, this set is used to model finite energy signals. The subspace of L'(R) consisting of the
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functions that satisfy [8]

f(1) = 0, 1 < 0

is defined by L'(R+). It can be shown that the Laplace transform of every signal in L'(R+) and

denoted by £(L'(R+)) exists and satisfies

1. f(s)1 exists for s E C+ and I is analytic in C+

2. sup,> Of7.[fI(a + Jw)][,(a + jw)],dw < oo

3. lim,o f (a + jw) = f(JM) exists aimost everywhere and f E L2j )

where C+ denotes the right-half s-plane.

As a consequence, the set L(L'(R+)) can be identified with the boundary value function f(jwd).

The set of all functions that satisfy 1), 2), and 3) above is denoted by H'(C+) and the identification

is made that
H'(C+) = L(L'(R+))

Using this relationship between the L 2 and H2 spaces, the vector H2 norm can be found from the

application of Parseval's Theorem to Equation 3.1, yielding

V112 = (_ I ( J) )d) 1) (3.2)2wr

For matrix transfer functions, G(jw), the (operator) H2 norm of a transfer function is given by

IIGI12 = rJ - G w G (w)]dw} (3.3)

These two norms provide a base for the definition of the H2 problem.

3.2.2 H 2 Analysis

The H2 norm developed above can be directly applied to the deformable mirror system. The H 2

problem is defined as finding the stabilizing controller K which minimizes the cost function

j 1r[(Ted(jUJ))(T,,d(jw))]dw (3.4)

which is equivalent to an LQG problem [13]. This problem can be interpreted as minimizing the

rms value of the output signal e when the system is driven by a white noise2 disturbance d. In

other words, the minimization is carried out against a fixed power spectral density. The solution

of this minimization problem can be found using Riccati equations {1].

'With a slight abuse of notation, time domain functions and frequency domain functions are denoted by the same

symbol. In areas where this notation is not straightforward, the dependence on time or frequency will be included.
2Through the addition of filters, "colored" noise inputs can be treated in the same manner.
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Therefore, the H 2 optimal control problem uses the H2 norm of the closed-loop transfer func-

tion between the disturbance inputs and the error vector in the design and analysis procedures.

The disturbance input is specified as white noise with unit variance. Under these conditions, the

minimization of the error vector through the minimization of the H2 norm of Td results in the

optimal solution. As has been discussed above, there are many problems where the disturbances

come from a class of spectra, and only a bound on the disturbance is known. This fact motivated

the H. problem.

3.2.3 H, Analysis

As seen in Section 3.2.1, the H 2 norm provides a means of determining the average power of the

error function, Ted(jw). A different measure on the error function is the maximum amplification of

the energy of a system. The tool that provides this measurement is known as the H, norm. This

section provides the definition of the H, norm.

To facilitate the definition, assume that the vector signal, e(jw) E H', is generated from an

input vector signal, d(jw) E H2, and the transfer function matrix, Ted(jw). If this transfer function

matrix, Td : H' --+ H' is applied to the input signal, the maximum gain from the disturbance

input, d(Jw), to the error output, e(jw) can be determined. This maximum gain forms the definition

of the H, norm.

IITedll = max I -TeddI2 = max'F(Ted(jw)) (3.5)
Ild1120O 11dJ12  -wE i

Applying this to the deformable mirror system, again the requirement is to reduce the 2 norm of

the error vector, e. For the H , norm case, we search over all frequencies for the maximum gain of

the transfer function Ted. By minimizing the H, norm, we are reducing the 2 norm of the error

vector, e (See Appendix A). The H,. norm can 3ilso be used with the small gain theorem to unify

stability robustness concepts.

3.3 Robust Stability Concepts

Robust stability implies that a closed-loop system is stable for a set of open-loop plants. Using

the Nyquist stability tests in a multivariable setting, it is desired to determine some conditions

that will assure system stability given uncertainty. This section provides an overview of the robust

stability problem through the formulation of the small gain problem. Then, through application

of a small p theorem, the structured singular value is developed as a tool that can be applied to

determine performance robustness. All results are provided without proof. For more details, the

reader should consult [5,8,16].
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Figure 3.1: Block-Diagram for Small Gain Theorem

WVI  U1 + U

Figure 3.2: Feedback System for Stability Analysis

3.3.1 Small Gain Concepts

The small gain theorem gives conditions under which a "bounded-input" produces a "bounded-

output". Consider the block diagram shown in Figure 3.1, where T represents some matrix transfer

function and A represents an unstructured (full block) uncertainty. The motivation for the small

gain theorem is to determine conditions on A that will make the nominally stable T unstable.

Therefore, the small gain theorem looks at the affect of an unstructured perturbation on the stable

system T. The small gain theorem states that a sufficient condition for internal stability, given that

A is stable, is

IIATIK. < 1 (3.6)

The small gain theorem can be used to determine internal stability properties of a system. Consider

the feedback system shown in Figure 3.2, where the plant is represented by P, and the controller

is denoted by K. The feedback system is said to be internally stable if the four transfer functions

from v, and v2 to ul and u2 are stable.

Extending the small gain theorem to robust stability, a multiplicative output uncertainty is

added to the plant as shown in Figure 3.3. This defines a new plant

P=P+AP
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Figure 3.4: Reduced Block Diagram for Robust Stability Analysis

The only information that is known about the uncertainty, A, is that it is bounded from above.

Without loss of generality, this bound is often selected as unity, so that

<(A(jw))< 1, VW (3.7)

It will be shown later that if this is not the case, weighting functions can be used in order to assure

that the uncertainty, A, satisfies Equation 3.7. The only information known about the uncertainty

is the bound. Therefore, the uncertainty is called an unstructured uncertainty. The question posed

is, "How large can A be so that internal stability is maintained?" Through manipulation of the

block diagram, a reduced block diagram is obtained as shown in Figure 3.4. This is a generalized

structure used for robustness analysis. With this structure, the following theorem can be stated

[16].

Theorem 3.1: [Morari [161, p. 238] Assume that M and A are stable. Then the closed-loop

system of Figure 3.4 is stable for all perturbations A (;(A) <_ 1) if and only if one of the following
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I A A

Figure 3.5: M-A Block Diagram for Robust Performance Analysis

three equivalent conditions is satisfied

del(I - MIA (j3w)) € 0, Vw,VA 3 F(A) < 1 (3.8)

p(MI A(jw)) < 1, Vw, VA 3:(A) < 1 (3.9)

a=:r"f(Mi I(j.U)) < 1, vW (3.10)

- = 1lM 1 x 1l < 1 (3 1 1)

where p(.) denotes the spectral radius.3

Proof: See [16].

Utilizing this theorem for robust stability, the next step is to incorporate the performance

requirements in order to determine a robust performance measure. This can be done by adding

a fictitious performance "uncertainty" block [6]. When including this performance block, we add
"structure" to the uncertainty block, A.

3.3.2 Structured Singular Value-

If we take Figure 3.4 and look specifically at the performance map from v to e, a performance block

can be connected between e and v such that Figure 3 5 results. If we now combine the inputs. 5,

3 The spectral radius is defined a.,

p(M) max IA,(M)I
I
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and v, and the outputs, 6i and e, into two composite vectors, v/ and e', it is obvious that we again

have a reduced block diagram of the form of Figure 3.4, where

AM [ 0  A] (3.12)

Again using the small gain theorem, we can state the performance robustness requir,ment in terms

of the stability robustness problem analyzed in Section 3.3.1. There is one slight problem to just

repeating the analysis in Section 3.3.1. As stated above, the uncertainty A used in the analysis

of Section 3.3.1 is considered an unstructured uncertainty. Obviously, Equation 3.12, details a

structure to AM. This structure can be incorporated through application of the structured singular

value. Using the following definition of t will allow a variation of the small gain theorem to be

applied [16].

Definition 3.1: (Morari (16], p. 249) The function p(M), called the Structured Singular

Value (SSV) is defined such that p- 1 (M) is equal to the smallest F(A) needed to make (I - MA)

singular. If no A exists such that del(I - MA) = 0, then p(M) = 0.

Utilizing this definition, a test for robust stability and robust performance can be formulated.

Before presenting the theorem, let us define the set, X,, of all complex perturbations with a specific

block diagonal structure and spectral norm less than Y.

X, = { A = diag{Ai,A 2 ,'".Am}17(Ai) 4

By selecting A E X,, it can be easily shown that robust stability is guaranteed via the small gain

theorem if and only if

del(I- MA) $ 0 VA E X,

-= p(MA) < l VA E X,

or robust stability will be guaranteed only if

L, < F'- I(M) (3.13)

It should be noted that Equation 3.13 is only a sufficient condition because in the original small

gain theorem, the perturbation set includes all A such that 3(A) < 1. Here, we have restricted the

set of A to X,. This condition can be arbitrarily conservative. The "small p" theorem determines

a new bound for robust stability.

Theorem 3.2: [Morari [16]. p. 249] Assume that M and A are stable. Then the closed-loop

system is stable for all perturbations A E X,=l if and only if

p(M(jw)) < 1, Vw (3.14)
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Proof: See [16].

By concentrating on the block, A,, that makes the quantity del(I-MA) singular, the structured

singular value utilizes the small gain theorem while taking advantage of the structure. The basic

limitation is that

7(A,) < 1, VW

Through the use of weighting functions, this condition can always be satisfied (Chapter 6). There-

fore, by establishing the performance as another A block, the test for robust stability actually

becomes a test for robust performance. The structured singular value is used extensively in Chap-

ter 6 as a test for robust performance of the deformable mirror system.

An important point to note when studying the small p theorem is the fact that the system

inputs and system outputs are normalized (i.e. IV'112 < 1 and Ile'112 < 1 in Figure 3.5). The fact

that the nomalization is with respect to unity allows some straightforward observations of the "size"

of M. If JIMiI > 1, the system will amplify disturbances in the error vector. In contrast, the

system will attenuate disturbances and remain stable if JIMJ!OO _< 1. The structured singular value

provides a non-conservative measurement of the "size" of M.

The actual calculation of p is done via bounds on p. It is shown in [16] that the structured

singular value is bounded from above by the maximum singular value of a weighted matrix and

bounded from below by the spectral radius of a weighted matrix. Many of the tests shown in

Chapter 6 refer to these bounds in order to show the conservativeness of using the singular value

in cases where the uncertainty block has structure. The bounds are given below without proof.

p(UM) < p(M) < "(DMD - 1 ) (3.15)

The weighting matrices U and D can be adjusted to yield a tight bound on the calculation of p.

In Equation 3.15, U is a unitary matrix with the same block diagonal structure as A, and D is a

diagonal matrix D = diag{dI} where the size of each I, is equal to the size of the blocks, A,.
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Chapter 4

Problem Statement

This chapter defines the issues and the goals for the deformable mirror system. As stated earlier,

the primary goal is to choose the number and location of sensors and design a controller to meet

a robust performance specification. In attaining this goal, several issues need to be resolved and

several subgoals are established in an attempt to extend the usefulness of the control synthesis

methods to other large-scale problems. This chapter provides a "road-map" of the steps used in

developing a robust controller for the deformable mirror system.

4.1 Issues Addressed

This section details the issues involved in developing a robust controller for the deformable mirror

system. In addition to the issue of meeting the performance requirements, there are several issues

raised in dealing with an integrated structure of the size of the deformable mirror system. This

concerns the issue of the simulation of the deformable mirror system models. The performance of

the controllers synthesized is evaluated through the use of computer simulations, so the size and

numerical condition of the problem figures prominently. Finally, decentralized control is addressed

in reference to the deformable mirror system.

4.1.1 Simulation Issues

As described in Chapter 2, the deformable mirror system has a complex model representation. With

72 states, 36 inputs, and a possibility of 216 sensor measurements, performing simulations with this

model is not a trivial task. The physical size of the model will make the computations burdensome,

and numerical conditioning problems are prevalent. The simulation and design software package,

MATLAB [4], is used exclusively for the simulations. A majority of the MATLAB algorithms used

have been developed for numerical robustness, and this increases the confidence in the simulation

results. Still, the application of the analysis tools described in Chapter 3 can have numerical
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difficulties in calculating the performance. Chapter 6 details the actual synthesis of the controllers

for the system models which includes the appending of states of weighting functions to the 72 plant

states. This greatly increases both the size and complexity of the model, and simulations become

even more difficult. The physical size of the model is an issue that faces many large simulations,

and a natural attempt to minimize the size of the model is to concentrate on a subset of the model

and attempt to extend the results to the full model.

If the deformable mirror system is examined in an attempt to model a subsystem and extend the

results to the full model, an obvious subsystem is a single DP. Each DP has six separate actuators

for inputs and the control action can be thought of as regulating positions and velocities in three

translation and three rotation modes. Therefore, the model of a single petal will contain only 12

states, 6 inputs, and a possibility of 57 sensor measurements (7 sensor locations along each radial

edge and 5 sensor locations along the circumferential edge). A conjecture is made that a single

petal model can be simulated to determine sensor locations and robust performance, and then these

results can be applied to the full 6 petal model. Each sensor measures wavefront error relative to

a specific edge in a specific direction. Therefore,. a simulation of one petal can be thought of as

a special case of the full model where only one petal is perturbed. With the highly integrated

structure of the deformable mirror system, the results from the single petal model scaled in one

case and did not fully scale in a second case. Chapter 6 compares simulations for a single petal

model and two cases of a full model.

4.1.2 Performance Issues

From the earliest years of control synthesis, a fundamental trade-off has been made: performance

versus uncertainty. The performance requirement for the deformable mirror system is to be met

in the presence of uncertainty. If this requirement cannot be met, two choices exist. Either the

performance requirement needs to be loosened, or the knowledge of the plant model needs to be

improved to lessen the uncertainty. With the realization that control synthesis and simulation can

provide a large amount of information to system designers before the system is built, control theory

is beginning to be applied much earlier in the system design process. Therefore, the trade-off for

the deformable mirror system is that the knowledge of the plant will need to be increased in the

event that robust performance cannot be achieved.

The uncertainty sources that can occur in the deformable mirror system include uncertainty in

the modeling of the plant, uncertainty in the sensors, uncertainty in the force actuators, uncertainty

in the tolerance of physically building the deforinable mirror system, etc. This analysis, though,

only addresses uncertainty in the sensors. The quality of the sensors can greatly affect the closed-

loop performance, and different sensors could be suggested should the closed-loop performance

26



not meet the specification. It is possible, through methods explained in Chapter 6, to model

the sensor accuracy as a function of frequency. This makes it possible to model a sensor with

frequency characteristics of a high degree of accuracy over low frequencies and poor accuracy over

high frequencies. This same frequency dependence is also present in the deformable mirror system

dynamic model where the plant model is also more accurate over low frequencies than at high

frequencies.

4.1.3 Control Design Issues

H 2 controllers are designed to minimize the quadratic norm of an error function with inputs of

known power spectrum as discussed in Chapter 3. This minimization over a fixed disturbance

spectra has been widely used over the past 30 years. One weakness of H 2 controllers can be

observed when the knowledge of the input power spectrum is unknown except for a bound. For

this particular problem, H, controllers are developed. H, controllers are still designed to minimize

the quadratic norm of an error function, but the power spectra of the disturbances is not known.

The disturbances belong to a class of spectra for the H, controller solution.

Whereas the H2 controller provides a condition on the H 2 norm of the transfer function from

disturbance inputs to outputs, the H, controller provides a condition on the induced 2-norm or

H, norm. The power spectra of a disturbance source does not need to be known, only the fact that

the disturbance source is bounded. This intuitively leads to a more robust controller, because the

controller is developed for a set of "unknown" disturbances. H 2 controllers function on the nominal

plant and minimize the error signal based on a disturbance source with a fixed spectrum, while

H, controllers function on an uncertain plant and minimize the error based on a minimization of

the maximum system gain for a set of disturbances. To achieve this additional robustness, though,

H, controllers tend to sacrifice performance.

H, control synthesis is used for the deformable mirror system. The goal of this thesis is

to synthesize a controller to meet the robust performance specification. Using a deterministic

development of uncertainty in the sensor, a general bound is established. This establishes the

problem in a format suitable for H, control synthesis. H, control synthesis was chosen for the

additional flexibility of incorporating the uncertainty into the synthesis procedure.

4.1.4 Decentralized Control Issues

With the prospect of increasingly complex systems, there is a need to develop and apply decentral-

ized control techniques. The size and integrated nature of the structure of the deformable mirror

system provides an example for decentralized control. The definition of decentralized control as

used here means that the controller is block diagonal. This is done by searching for a block diagonal
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plant structure and treating the off-diagonal portion of the plant as an uncertainty. Then separate

controllers can be designed for the block diagonal portions of the deformable mirror system plant,

and the overall control action is assured to be stable. This type of decentralized control has a nice

property in that a subsystem can fail yet the overall control system will remain stable. It is also

important to determine the effect on performance from the use of a decentralized controller when

compared to a centralized controller.

In order to design a decentralized controller, a decentralized plant structure needs to be iden-

tified. This structure Lkes the shape of a block-diagonal plant, where subsystems function inde-

pendently. Each subsystem relies on a subset of the total inputs and outputs. The criteria for

identifying a decentralized structure includes a requirement that the system remain stable if a

subsystem were to fail. The method of choosing a decentralized structure is very important, and

the ease in testing several potential decentralized structures is critical in a model the size of the

deformable mirror system. Consider the issue of selecting input-output pairs of a system with n

candidate inputs and n candidate outputs. The number of distinct subsystems with m inputs and

m measurements that can be selected for the closed loop control is [18]

n)2

where (n)= n:!
M m!(n -m)!

This means that the total number of distinct square subsystems of an n x n system is

n )2

M--1

where each subsystem corresponds to a selected subset of the candidate measurements and inputs.

For the deformable mirror system, with 36 inputs and 36 outputs (assuming 36 sensors are chosen

from the possible 216), the number of distinct subsystems is in excess of 4 x 1020.

With this outrageously large number of distinct subsystems. simple tests for decentralizability

need to be used. Even with these simple tests, all of the possible subsystems are not tested in

this thesis. The tests that are used provide a basis for "narrowing down" the number of possible

candidate subsystems to a manageable subset. Stronger tests are then applied to this subset to

determine if decentralized control is a valid alternative for the deformable mirror system.

With the above issues, separate subgoals are established to determine items of interest. The

desire is to develop a framework that can be generally applied to other large structural systems.
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4.2 Goals

In satisfying the primary goal of developing a robust controller, several subgoals are established

to address the issues described above. These subgoals identify specific areas that are addressed in

the following chapters and attempt to generalize the results that will be presented in Chapter 6 to

similar systems. The generalizations are not mathematically proven and are not rigorous. They

only provide a framework to begin asking the correct questions and attempting to understand the

answers.

The first subgoal that is established is to develop a thorough analysis of the single petal model,

and to apply this knowledge to the full model. This is a critical step in this effort. As discussed

earlier, size limitations make analysis of the full model extremely difficult. If the analysis completed

on the single petal can be "scaled" to the full model, then it is possible to complete a great deal

of the design effort on a subset of the full model, and apply the results directly. This may not be

possible, though. The first subgoal, therefore, is to determine if this "scaling" of single petal results

to the full model is valid.

The second subgoal is to determine the "optimal" sensor selection method. The analysis will

show an extreme sensitivity to the location of the sensors for the deformable mirror system. A

method needs to be developed to select the sensor locations. This method can range from something

as simple as attempting to make the problem as well conditioned as possible to an analysis of

the robust performance for different sensor combinations. As will be shown in Chapter 6, robust

performance of the deformable mirror system cannot be achieved for the selection of sensor locations

that seem to be intuitively correct. The matheiiatical tools developed in Chapter 3 along with

open-loop properties described in Chapter 5 begin to provide a framework for sensor selection.

The final subgoal is to determine a suitable decentralized control structure. The need to simplify

the deformable mirror system model to a model that can be analyzed and implemented is a prevalent

theme of this work. The ability to decentralize the deformable mirror system into more manageable

pieces would represent a significant accomplishment. Therefore, several tests are applied in an

attempt to identify a valid decentralized control structure. However, the highly integrated nature

of the deformable mirror system make this subgoal unattainable for the full model.

4.3 Conclusions

The primary task of developing a robust controller for the deformable mirror system can provide

several subtasks that will provide a method to generalize the results of this analysis to different

problems. Many multivariable control problems have difficulties with the physical dimension of

the system model or a method to select the number of sensors required to meet the performance

29



requirement. It is intended that solutions of these issues for the deformable mirror system will

provide a starting point for analysis of similar systems. As more knowledge is gained as to how

these issues have been resolved for different types of systems, a more mathematical treatment can

follow.
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Chapter 5

Open-Loop Plant Analyses

The analysis of the open-loop plant model of the deformable mirror system involves four main areas.

The first area is the selection of sensor locations based on the physics of the model. This simple

analysis provides a starting point in determining the number of sensors required to adequately meet

the performance requirements. The second area of analysis uses the information of the number of

sensors required to find a method of placing these sensors. For this analysis, the sensors were

placed to reduce the condition number of the open-loop plant at d.c. Taking advantage of the

dynamics incorporated in the model, controllability and observability tests were used to determine

if the sensor selection meets the requirements for control synthesis. Model balancing and possible

model reduction is also discussed. The final analysis addresses the open-loop poles and zeros and

potential impacts on closed-loop design.

5.1 Basic Sensor Selection Requirements

In order to adequately control the deformable mirror system, all degrees of freedom need to be

determined. Each direction and rotation of each DP and combinations need to be known in order

to develop a control signal to account for this motion. In a rigid body sense, this requirement is

straightforward. The number of sensors required is the number of degrees of freedom that need to

be controlled. For a dynamic model, there is a possibility that the dynamics will provide additional

information so that the number of sensors required can be reduced. The analysis completed in

this section uses the rigid body as a baseline, and then a reduced sensor placement is tried. In

the following sections, this reduced sensor placement is found to meet all of the requirements for

synthesis of a controller. The dynamics of the model allowed a reduction in the number of sensors

required.

A single petal contains 6 force actuators capable of moving the DP in 6 Degrees-of-Freedom

(DOF): translations in the x-axis, y-axis, and z-axis; and rotations about the x-axis, y-axis, and

31



Optic

Figure 5.1: Example of Sensor Locations - Single Petal Model

z-axis. Because each sensor measures the relative difference between petals in one-axis only, a

minimum of 6 sensors measuring the 6 DOF are required in a rigid body sense to adequately

determine the complete position of the single DP. Therefore, 6 sensors are chosen for the single

petal model as the minimum number of sensors required. An example of 6 sensors for the single petal

model is shown in Figure 5.1, where arrows denote the axes sensed and 9 denotes a displacement

into the page (z-direction).

The selection of sensors for the full model case is not quite as straight forward. One simple way

is to extend the 6 sensors per petal to the entire model. This would produce 36 sensor locations.

Figure 5.2 shows possible sensor locations for the full model based on 36 sensors. If no dynamics

were included in the deformable mirror system model, 36 sensors would be the minimum number

of sensors required to measure all of the associated degrees of freedom. Because a dynamic model

of the structure is available, the possibility of finding a suitable structure with less than 36 sensors

exists. The initial method used to find a candidate system was to again look at the full model with

36 sensors and attempt to reduce the sensors in a logical fashion.

Through studying Figure 5.2, a candidate sensor selection system would be to remove some of

the sensors along the radial edge. Trying to alternate tangential and normal sensors, Figure 5.3

is developed. This results in a 24 sensor model. As will be shown below, this model meets the

requirements for controller synthesis.
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For purposes of decentralized control, it is still useful to analyze the system with 36 sensors, and

therefore, this system will be addressed in the remaining open-loop analyses as well as Section 6.3,

(H, Controller Solution). The single petal model and the full model with 24 sensors will form the

baseline of the closed-loop synthesis and analyses.

5.2 Plant Condition Number

Generally, linear multivariable plants with a "large" condition number are inherently difficult to

control [17]. Minimizing the condition number of the plant is sound engineering practice, and this

section provides the effort to assure that the plant is well-conditioned.

The condition number is defined by

Kf{G(j*w)} = (G(jw)) (5.1)

ai(G(jw))

where

"(G(jw)) = Maximum Singular Value of G(jw)

a(G(jw)) = Minimum Singular Value of G(jw)

The condition number reflects the coupling of inputs to outputs. Well-conditioned means that the

different input directions produce similar magnitude outputs. There is no one channel that requires

a significant increase in gain in order to affect the output. Ill-conditioned means,

IC{G(jw,)} > 1

Therefore, an ill-conditioned system is strongly dependent on the input direction. To achieve tight

control of an ill-conditioned plant, the controller should compensate for the strong directionality by

applying large inputs in the directions where the plant gain is low and small inputs in the directions

where the plant gain is large. This suggests a controller similar to G [20]. Due to uncertainty,

the direction of the large input to the low plant gain may not correspond exactly, and there is a

possibility of amplifying the input signal to a much greater degree than modelled. This often leads

to instability and poor performance.

'Ihe sensor locations and directions were selected to minimize the condition number of the

plant at d.c. A search method was developed that selected sensors based on the minimization

of the condition number of the plant. An initial guess was input into the iteration process, and

the iteration process continued until the condition number no longer changed. For the single petal

model, Figure 5.4 shows the sensors selected that yield the lowest condition number, and Figure 5.5

shows a plot of the condition number for sensors shown in both Figure 5.1 and Figure 5.4. Note

that the sensor locations shown in Figure 5.4 are not syrmetric. Sensor I is not located at the
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edge of the DP but is located one finite element node in from the edge toward the center optic.

The best conditioned single petal plant model does not have any two sensors located at the same

finite element node. Figure 5.5 shows that the single petal is well conditioned for the frequency

range of interest.

Figure 5.6 shows the open-loop singular value plot of the single petal model. This figure shows

the relatively "fiat" open-loop response of the single petal model to approximately 2 Hz, where the

resonant mode of the segment phasing actuators appear. The desired bandwidth of the system, as

described in Section 2.3, should maintain performance accuracy to a frequency of 0.1 Hz. This is

an order of magnitude below the resonance seen in Figure 5.6, and it will be shown later that this

requirement is difficult to meet for the full model.

Using the same iterative process described above, the sensors that yield the best conditioned

plant for the full rmodel, 36 sensors, were chosen and are shown in Figure 5.7. Note that the minimum

plant condition nimber again results from a selection of sensors with no apparent symmetry. The

condition number of the sensors from both Figure 5.2 and Figure 5.7 are shown in Figure 5.10.

As can be seen, the condition number increases drastically at ; 2 Hz. The disturbance rejection

requires the performance to be maintained to frequencies of 0.1 Hz. Therefore, the condition number

of the full model with 36 sensors at 2 Hz should have minimal effect on the control design.

The same procedure was repeated for the full model, 24 sensor case, and the sensors are shown
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in Figure 5.9. Again, note that the minimum plant condition number results from a selection of

sensors with no apparent symmetry. The condition number of the sensors from both Figure 5.3

and Figure 5.9 are shown in Figure 5.10.

The sensor locations suggested by this analyses as yielding the best-conditioned plant still need

to be tested to assure that observability of the system is maintained. Therefore, with the sensors

selected for the minimum condition number of the model, observability and controllability of the

models are tested.

5.3 Controllability and Observability

Controllability describes the coupling between the actuator inputs and the modes of the plant

dynamics, while observability describes the coupling between the plant's modes and the output

measurements. For a system to have optimum performance, the system must be observable and

controllable. This means that inputs to the system will affect all of the plant's modes which are

observable by the output measurements.

The state-space realization of a system is not unique. Different state-space matrices, A, B, C,

and D, yield the same input-output response. The reason this occurs is due to the fact that each

state matrix performs a different mapping, and it is the total map (inputs to outputs) that describes

a system. It is useful to specifically describe the mappings found in an ordinary state equation,

x= Ax + Bu
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y =Cm +Du

where u represents the inputs, y represents the outputs, and x represents the states.

For a system to be controllable, the coupling between the inputs and the states must be "com-

plete," while for a system to be observable, the coupling between the states and the outputs must

be "complete." Formal definitions of controllable and observable can be found in [2].

The definitions provide the meaning of controllable and observable systems, but they do not

provide explicit tests. The controllability and observability of a system can be evaluated using the

controllability and observability grammians [12] defined as:

G, = eA'BBT eA Trdr (5.2)

Go = eA TrCTCeAdr (5.3)

The controllability grammian, G , has full rank it and only if the system is completely controllable,

and the observability grammian, G0 , has full rank if and only if the system is completely observ-

able. Controllability (and observability) is not usually a "yes" or "no" decision. The degree of

controllability and observability can be determined through observation of the condition number

of the controllability and observability grammian. The condition number provides a measure of

how close a matrix is to losing "rank". Therefore, the evaluation of the condition number of the

controllability and observability grammian provides information on how controllable or observable

a system is.
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Figure 5.11: Controllability Grammian Singular Values - Full Petal Model

A system is said to be minimal if it is both completely controllable and observable. This is

an important issue in modern control synthesis. If a plant has an uncontrollable and unobservable

mode, this mode should be neglected when synthesizing a controller. The requirement of minimality

is a necessity in optimizing a controller for a given plant.

As was discussed above, plant dynamics may make it possible to gather information on outputs

without having to specifically measure the output. Equation 5.3 illustrates that observability is

determined from both the A and C matrices. Therefore, for a dynamic model, it should not be

surprising that a system with fewer measurements than inputs can be observable.

The sensor locations chosen for the three different models (single petal model, full model with 36

sensors, and full model with 24 sensors), minimum condition number case, provide an observable

system. The system is also controllable. This does not appear to be the case, though, when

looking at the singular values of the controllability grammian, shown in Figure 5.11. Note the

sharp decline after the 3 6 th singular value in Figure 5.11. This would seem to suggest that only

36 modes are controllable. As will be seen in Section 5.4 by balancing the model, all 72 modes are

controllable. Note that the selection of sensors does not affect either the A or B matrices, therefore,

the controllability grammian is the same for both full petal models.

The observability grammian singular values are shown for the full model with 24 sensors in Fig-

ure 5.12 and the full model with 36 sensor in Figure 5.13. Both of these cases are for the minimum

condition number models. Through evaluation of the condition number of the observability gram-
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mian, the 36 sensor model is "more" observable than the 24 sensor model (i. e. X(G 36 ) < (G.24)).

Also note the same type of decline at the 3 6th singular value as seen in the controllability gram-

mian. If only using the unbalanced model, a control designer could claim that only 36 modes are

observable. Again, Section 5.4 shows that with proper balancing, the deformable mirror system

models are completely observable.

5.4 Balancing and Model Reduction

When dealing with a system that has many states, balancing the model and model reduction

become important issues. This section provides the background needed to understand the concepts

of balancing and reducing the model. As stated earlier, one of the first requirements in synthesizing

an optimal controller is that the plant model needs to be minimal.

Assuming that the plant is indeed both controllable and observable (which is the case for the

models of the deformable mirror system), it is desired to balance the controllability and observability

of the states. In other words, it is desired to make a state as hard (or as easy) to control as it is to

observe. One obvious way to do this would be to force the controllability grammian in Equation 5.2

to equal to the observability grammian in Equation 5.3. If we require these grammians to be equal

and diagonal, the diagonal elements are referred to as the Hankel Singular Values (HSV). The HSVs

provide a tool that can be used for model reduction.

A large HSV indicates a state that is both easy to control and observe, while small HSVs

indicate states that are neither easy to control nor observe. The technique proposed in [15] is to

eliminate the small HSVs by truncating the associated transformed states from the plant model.

As long as the system retained does not have a HSV equal ,o zero, the reduced model will be

both controllable and observable, hence minimal, and the model will be balanced. This becomes

important in preparing the numerics of the plant for control system synthesis.

The three model cases addressed in this chapter do not have a significant difference between the

largest HSV and the smallest HSV. Therefore, the plant models are balanced but not truncated.

This result says that all states of the model are both controllable and observable. This appears to

be in contrast to the plots shown in Section 5.3. The controllability and observability plots showed

a marked decrease at 36 states. The results of the balancing illustrate that the decrease seen in the

unbalanced model were due to scaling and not uncontrollable or unobservable modes. A typical

plot of the HSV for the full model with 24 sensors is shown in Figure 5.14.

To further illustrate the properties of balancing, the controllability grammian singular values

for the balanced model are shown on the same plot (Figure 5.15) as the controllability grammian

singular values shown in Figure 5.11. As can be seen from Figure 5.15, the balanced controllability
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Figure 5.14: Hankel Singular Values - Full Model with 24 Sensors

grammians do not show a marked decrease at 36 modes. Notice the 2 order of magnitude drop in

the unbalanced controllability grammian singular values at the 37th singular value. The magnitude

of the maximum singular value of the balanced controllability grammian singular value to the

minimum singular value of the balanced controllability grammian is less than 1 order of magnitude.

This example illustrates the importance of balancing.

5.5 Open-Loop Poles and Zeros

Poles of the open-loop plant located in the right-half plane yield unstable plants. There are many

methods available for testing the open-loop stability of a plant model. One method is to test the

real parts of the eigenvalues, A, of the state A matrix. If

Re[A(A)] < 0

the system is stable. The deformable mirror system is open-loop stable.

In a Single-Input Single-Output (SISO) sense, zeros of a transfer function relate to frequencies

of the input signal which produce no output. In a multivariable system, the idea of a zero is similar.

Instead of a SISO transfer function, multivariable systems have matrices of SISO transfer functions,

for example;

G(s) = I-3
s-3 32+4
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In this simple example, it is not clear what the zeros are of the system, G(s).

Transmission zeros are defined as the zeros of the Smith-McMillan form [14]. The Smith-

McMillan form of a rational matrix uses elementary row and column operations to generate a

pseudo-diagonal rational matrix. The zeros of this form have similar characteristics to the SISO

zeros.

The transmission zeros of the deformable mirror system include zeros in the open right-half

plane. These zeros are referred to as nonminimum phase zeros. Nonminimum phase plants that

require the sensitivity function to be less than one over some frequency range implies that the

sensitivity function is necessarily greater than one at other frequencies [9]. The result of the non-

minimum phase zeros is that these zeros impose constraints on the closed-loop system design.

Therefore, the transmission zeros will limit the achievable performance for this system. The limita-

tion of performance is the main issue raised by the transmission zeros in the open right-half plane.

A more detailed discussion on the effects of transmission zeros is given in [9].

5.6 Conclusions

This chapter has detailed the open-loop analyses performed for the models of the deformable

mirror system. An initial sensor position was chosen based on the geometry of the structure,

and then the sensor positions were modified to reduce the condition number of the plant. This

produces three distinct models that will be carried forward to the closed-loop system; a single petal
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model with 6 sensors, the full model with 24 sensors, and the full model with 36 sensors. Each

of these three models were tested for controllability, observability, and transmission zeros. All of

the models are controllable and observable, and each model does contain transmission zeros in the

open right-half plane (nonminimum phase zeros) which will impose limitations on the closed-loop

performance. Each of the models were balanced, but there was no clear benefit in truncating the

models. Chapte' 6 details the closed-loop performance of the three models chosen in this chapter.
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Chapter 6

Closed-Loop System

This chapter describes the closed-loop analyses that are performed in order to determine the per-

formance robustness of the deformable mirror system. The deformable mirror system uses the

position sensors to generate an error signal that is fed to the controller. The controller acts on this

error signal in an attempt to null the error through the use of actuator commands at the petals.

Before the analyses are presented, the sensor uncertainty and the application of the robust control

specifications are developed. The method of augmenting the weighting functions applied to the

deformable mirror system is described. The H. controller solution is then presented for three

plant model cases of the deformable mirror system.

6.1 Sensor Uncertainty

This section details the sensor uncertainty included in the analysis of the performance robustness

of the deformable mirror system. As discussed in Chapter 4, the only uncertainty source considered

in this thesis is uncertainty in the sensors.

It is assumed that the sensor has a multiplicative uncertainty at the output as shown in Fig-

ure 6.1. This implies that if the nominal sensor is described by Senom(s), then the actual sensor

Se(s) is described by

Se(s) = Seom(s) + ls,(s)AscSeom(s) = (I + 1s,(s)As,)Seom(s) (6.1)

where lse(s) represents a weighting function on the uncertainty and Ase(s) represents a bloc': of

uncertainty.

The incorporation of the sensor uncertainty into the system block diagram enables the use of

a formulation that has become standard in multivariable control analysis and synthesis. To place

a problem into this "standard form" requires block-diagram manipulation. Figure 2.5 detailed the

system block diagram. This block diagram is repeated in Figure 6.2 for convenience. If the full

sensor block including uncertainty is now included in Figure 6.2, Figure 6.3 results.
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The sensor uncertainty is defined as

L ,,u(jW) = lse(jw)A~e (jw)

where the weighting function, ls,(s), provides a tool for adjusting the uncertainty. Using this

weighting function, the sensor uncertainty ASe is bounded by unity so that

F(Ase(Jw)) < 1 Vw

Through application of the small gain theorem as discussed in Chapter 3, a sufficient condition for

robust stability is

7[ls(jW)M(jW)] < 1, VW (6.2)

where M(jw) represents the transfer function from Si to So in Figure 6.3. The purpose of the

weighting function, lse(j7w) becomes evident, because the weighting function allows the designer

to satisfy the requirements of the small gain theorem (F(Ase) < 1). This places the problem

into a similar format of transfer function matrix and uncertainty shown in Figure 3.4, where the

uncertainty block is A,.

The initial sensors chosen for the deformable mirror system have a bandwidth of 1 Hz with

a single-pole roll-off. The frequency response of Senom(s) is shown in Figure 6.4. Note that the

sensor levels off at -80 dB. This is done for two reasons. The first involves the constraints of H"

synthesis using state-space methods. As will be explained in Section 6.3, this requires a full rank

D matrix for the sensor in this case. This is accomplished by adding a zero to the transfer function

representation of the sensor. A second reason is that this simulates the possibility of small signals

being passed through the sensor at high frequency. The sensor is to be accurate to within 10%

up to 1 Hz, and then the accuracy degrades at a rate of 20 dB/dec. This provides information

needed to establish the uncertainty weight, lse(s). The uncertainty weight is shown in Figure 6.5.

It needs to be emphasized that the uncertainty here is for each sensor individually. Therefore, the

uncertainty block, ASe(S) is diagonal.

With the sensor and sensor uncertainty weight now described, the analysis can proceed in

placing the problem in a form for robust control system analysis.

6.2 Robust Control Specifications

This section details the specifications applied to the deformable mirror system to produce a con-

troller that meets the robust performance specifications. An H, controller was used for loop shap-

ing. This section details the augmentation of the deformable mirror system models with weights

in order to place the problem in a proper form for H, controller synthesis. Details concerning
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the weights used for each of the various transfer function matrices are then provided. This section

concludes with the description of the weight used to measure the performance robustness.

6.2.1 Plant Augmentation

One method of designing controllers is through the use of loop shaping tech,'iques. A system

requirement is provided to the control designers in terms of performance and robustness goals.

These goals are then applied to various transfer functions within the control system model in order

to design controllers to meet the requirements.

The method of loop shaping augments the system requirements to the dynamics of the sys-

tem model. If a controller exists for the augmented system, then the controller will meet the

requirements of the original system. If no controller can be found to meet the requirements of the

augmented system, an iteration is required to lessen performance requirements or uncertainty. -

The requirements of the deformable mirror system have been specified as a disturbance rejection

requirement. Therefore, disturbance input effects at Di(s) are to be minimized at the output, E(s).

The transfer function matrix relating DI(s) to E(s) is called the sensitivity function, H(s), and is

represented by

H(s) = (I + G(s)K(s)Se(s)) - 1  (6.3)

Another important transfer function matrix is the complementary sensitivity function, denoted by

T(s), relating the plant outputs at Z(s) to the system output, E(s). This transfer function matrix

describes the closed-loop performance of the system.

T(s) = (I + G(s)K(s)Se(s))-1 G(s)K(s)Se(s) = H(s)G(s)K(s)Se(s) = I - H(s) (6.4)

The complementary sensitivity matrix transfer function provides a relationship of the plant outputs

before the additive disturbance inputs to the system outputs after the additive disturbance inputs.

Equation 6.4 also illustrates the trade-off between the sensitivity matrix transfer function and the

complementary sensitivity transfer function. Ideally, the sensitivity matrix transfer function should

be made as "small" as possible over a finite frequency range for good disturbance rejection. Also,

ideally the complementary sensitivity matrix transfer function should be made as close to unity as

possible over a finite frequency range for good setpoint tracking.

The final transfer function matrix used in the synthesis of a controller for the deformable mirror

system is the transfer functi-,i from the disturbance inputs DI(s) to the control inputs U(s). This

transfer function can be used to specify the bandwidth requirements of the actuators. This transfer

function will be called the control input function, denoted by Ce(s), in this thesis and is found from

C,(s) = -K(s)Se(s)(I + G(s)K(s)Se(s)) - 1 = -K(s)Se(s)H(s) (6.5)

50



The singular value Bode plots of these three transfer function matrices provide a framework for

robust multivariable control system design. Through the use of each of these equations, bounds are

chosen that each individual transfer function matrix must satisfy. These bounds are then combined

to provide a mixed sensitivity analysis. This means that the bounds on each transfer function

matrix must be met individually in order to satisfy the conditions for the synthesis of a controller.

The singular values of the sensitivity function H(jw) are "shaped" to satisfy a bound denoted

by IH(s). Therefore

-f(H (j.,)) <5 jtH(J, )-' I, V d(6.6)

results. Here,.IliH(jw)-I is the desired disturbance attenuation factor. The functional description

for 1H(jw) is provided below.

In a similar manner, the complementary sensitivity function T(jW) and the control input func-

tion Ci(jw) are also shaped to satisfy bounds as shown below.

"F(T(j',-)) < JlT(jw )-11, Vw, (6.7)

-(C,(jw)) _ IC(,30 I, VW (6.8)

Again, the functions used and their frequency responses are detailed in the section below.

With these bounds established, it is necessary to augment the block-diagram shown in Figure 6.3

to a modified system reflecting the weights. This augmented transfer function is shown in Figure 6.6.

The shaded area shown in Figure 6.6 represents the augmented plant, P(s). Simplifying Figure 6.6

through notation, Figure 6.7 represents the "standard" problem format, where

0 Senom SenomG P11 P12 P1 3
0 1HJ IHG P21 P22 P923

P(s)-- 0 0 C: - P3 1 P32 P33  (6.9)
-ITSe -ITSenom -lTSenomG P4 1 P 42 P 43

-is, -Senom -SenomG P51  P5 2 P 53

This figure is very useful in synthesizing multivariable controllers. The outputs are combined into

one vector, W such that

W Y 2a

Y3a

and the transfer function from D, to W is evaluated for different controllers. As will be shown in

Section 6.3, the state-space representation for P(s) allows the problem to be specified in a format

suitable for H, control synthesis.

Before describing the control system synthesis, the weighting functions are provided.
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6.2.2 Sensitivity Weighting Function

The deformable mirror system requirements described in Chapter 2 detail a specification on the

sensitivity function, H(s). It is desired to synthesize a controller such that Equation 6.6 is satisfied

where IlH(S)l is a desired disturbance attenuation factor.

Recall that the deformable mirror system is required to bound the "rms figure" by a magnitude

of -L where A = 63.28 pm for frequencies < 0.1 Hz. Therefore, this bounding information can
10

be used to generate lH(s) - 1 . For this analyses, it is assumed that the disturbance inputs are

bounded by IID11I2 < 100jm. This requires a constant scaling factor that needs to be applied to

the performance specification of -L. Therefore, the equation for the sensitivity function weight for
10*

each manipulated variable becomes

100 s + 2r
lH(s) - 63.28 10(s + 0.2) (6.10)10

where the first fraction represents the normalizing constants for the robust performance specifi-

cation. The second fraction is a normalized filter with a d. c. gain of 0 dB. It is important to

remember that when this filter is actually applied, this results in

H I : _ jHjI -'

Therefore, the performance is bounded by the inverse magnitude of the weight, 1H(Jw). The bound,

H(s) - , is shown in Figure 6.8.
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6.2.3 Complementary Sensitivity Weighting Function

The weighting function associated with the complementary sensitivity function can be related

to the sensor uncertainty weight [16]. This provides information on the "shape" desired of the

complementary sensitivity function. The shape should be approximately the inverse magnitude of

the sensor uncertainty weight. To gain better performance in the low frequency range, the actual

bound for the complementary sensitivity weight is lowered. Figure 6.9 illustrates the "shape" of

the complementary sensitivity function weight. As can be seen when comparing this figure with

Figure 6.5, the d. c. gain of JlT(s)-l1 is approximately 6 dB where the uncertainty bound has a d.c.

gain of 20 dB. As will be seen from the complementary sensitivity function plots detailed below,

the actual d.c. magnitude of JIT(s)- I has only a minor effect on the H, control synthesis for this

problem.

The transfer function equation describing the complementary sensitivity function weight for

each manipulated variable is

IT(s) = 1O(s + 50) (6.11)s + 1000

The cut-off frequencies were chosen arbitrarily in an attempt to maximize performance of the

complementary sensitivity function. The only limitation on the cut-off frequencies is [4]

WJHi < W aI

This requirement means that the 0 dB crossover frequency of 1H must be sufficiently below the 0
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Figure 6.9: Complementary Sensitivity Function Bound

dB crossover frequency of IT for the performance requirements to be achievable.

6.2.4 Control Input Weighting Function

The weighting function for the control input C, was set to a constant

C,(s) = 3 x 10-3I (6.12)

The primary reason this weight is included is to assure that the augmented system is "well-posed"

for a state-space solution of the H, controller. In Section 6.3, the general requirement for this

weight will be explained more fully. It will be shown that the synthesis of an H, controller for the

deformable mirror system is very sensitive to changes in this weight.

With the bounds on the sensitivity, control input, function, and complementary sensitivity func-

tion established, it is possible to combine these bo is tc 'orm a "mixed sensitivity" bound. This

"mixed sensitivity" bound becomes the "cost" function for the H, controller. Before proceeding

into the H, controller solution, the performance bounding weight will be described. This will

complete the description of all weighting functions used in the deformable mirror system control

synthesis and analysis.

6.2.5 Robust Performance Weighting Specification

The establishment of the robust performance weight parallels the development of the sensitivity

function weight, IH(s). The sensitivity function weight was established through the performance
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requirements of the deformable mirror system. The robust performance weight is the same weight.

The difference occurs in where the weights are applied. As seen from Figure 6.6, the sensitivity

function weight is applied to the output E resulting from the disturbance input D1 . The robust

performance weight will be applied as described in Chapter 3. This enables the performance

robustness to be analyzed with the structured singular value in a stability robustness analysis. A

plot of the performance robustness bound j1p(jw)! - 1 is shown in Figure 6.10.

6.3 H , Controller Solution

This section details the design of the H, controller for the deformable mirror system. In syn-

thesizing H, controllers, three different models were used. The first model was a single petal

model with 6 inputs and 6 outputs. The second model was the full 72 state model with 36 inputs

and 24 outputs, and the third model was the full 72 state model with 36 inputs and 36 outputs.

The third model was employed to set-up some simple decentralized control system tests. All three

cases described used the sensor selection based on optimizing the condition number of the plant as

described in Chapter 5.

Each model was analyzed in the same manner. As shown in Figure 6.6 and shown in Equa-

tion 6.9, the deformable mirror system plant and sensor models have been appended with the states
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of various weighting functions. The overall H, cost function becomes

IITWDI ,. <- 1 (6.13)

where
[IHH1

TWD = CCC, (6.14)
[1TT]

An important property of singular values is

max {F(A),T(B)} < [ A] <v"- max"S(A),-(B)}

This property allows that Equation 6.13 implies Equation 6.6, Equation 6.7, and Equation 6.8.

Therefore, Equation 6.13 is sometimes called a "mixed-sensitivity" cost function.

The solution of the H, control problem for the deformable mirror system was obtained for the

augmented system shown in Figure 6.11. This figure does not include the uncertainty block, and

the uncertainty was not used in the calculation of the H, controller but rather in the analysis of

the performance after the controller had been designed.

The augmented plant, PK(s), utilizes the lower block of P(s) shown in Equation 6.9:

P22 P23IP32  P33
PK(s) = P4 P43  (6.15)

P52 P53

The state equation representation for the augmented plant can be found from the state space

representations of each transfer function matrix. The state space representation for the augmented

plant becomes

A B1 B2 1
PK(s) = C Dii D12  (6.16)

C2 D2 1 D22
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where
AG 0 0 0

A = BSeCG Ase 0 0 1
BIHCG 0 AIH A (6.17)

-BTDSeCG -BITCse 0 Al,

0

B= Bs. (6.18)
- BIT Ds

BG

B 2 = BsDc (6.19)

BLTDSeDG

DIHCG 0 CiH 0 1
C1 = 0 0 0 0 (6.20)- Dt Ds,!CG -Drs I Tr

ITD~C IT CSe 0 COT

C=[D -DsCG Cs, 0 0] (6.21)

D1
mil 0 (6.22)

- DIT DSe J
D DLHDG 1

D12 = Dc (6.23)
D ITDse!DG

D21 = [Ds.] (6.24)

D 22 = [-DsDg] (6.25)

In order to calculate an H, controller, certain conditions on PK(S) need to be met. In addition

to the usual controllability and observability conditions, the "two-Riccati" formulae that define the

controller [7] also require the following conditions to be satisfied:

1. rank(D12 ) = dim(Y) < dam(W)

2. rank(D2 1 ) = dim(u) < dsm(D)

The augmented plant for the deformable mirror system meets these requirements. Condition 1

requires that the matrix, D12 , have full column rank. This means that all of the controls are included

in the error vector. All of the weights used in the augmentation have full rank D matrices. The

plant matrix is also full rank. Therefore, this condition is satisfied without including the constant

term for the weight, C,. The control input function weight is used as an additional weighting

tool. In many cases, the original plant does not contain a feedforward D matrix. Therefore, the
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requirement for Dc. to be full rank is needed to satisfy Condition 1. Condition 2 requires the D21

matrix to be full row rank. This requires that noise must be included in all of the measurements.

To satisfy this condition, DSe must be full row rank. This is the reason that the sensor Inc]udes a

finite zero in the transfer function matrix. Therefore, Condition 2 is also satisfied. The problem is

now in a form for computation of an H,, controller.

6.3.1 Case 1: Single Petal Model Results

The single petal model consists of the 6 input, 6 output, 12 state model using the sensors chosen

for the best conditioned plant. This small model enables the computation of an H. controller to

be completed very rapidly. This section details the results of the controller designed for this model.

It should be noted that the use of an augmented plant greatly increases the size of the state-

space. For the single petal model, the augmented A matrix contains 30 states. Therefore, the H"

controller generated will also contain 30 states. This produces numerical problems in the cases

using the full model.

In order to evaluate the adequacy of the controller, several singular value plots are used. Fig-

ure 6.12 shows the maximum singular value plot for the transfer function matrix between the input,

D, and the error, W. In order to have a valid solution for the H, controller, the maximum singular

vaiue.of this transfer function matrix should be less than I for all frequencies as shown by Equa-

tion 6.14. Figure 6.12 illustrates this by showing the singular values of the cost function shown in

Equation 6.14. The fact that F(TwD) is almost I for low-frequencies suggests that the controller

is nearly H,. optimal. This means that the solution is nearing equality for the bound shown in

Equation 6.14. For the given bounds, the H, optimal solution is the "best" solution.

The singular value plots of the sensitivity and complementary sensitivity matrix functions are

shown in Figure 6.13 and Figure 6.14 respectively. From the results seen in Figure 6.12, it is

expected that both the sensitivity singular values and the complementary sensitivity singular values

are bounded by their respective weights. Note the way the sensitivity singular values "follow" the

weight, lH(s)- 1 . Also note the "flat" performance of the complementary sensitivity function. This

indicates that outputs of the plant, Z are tracked at the output, E. This is the type of performance

desired of the closed-loop system.

Figure 6.15 shows the singular value plot of the control input transfer function matrix, Ci(s).

The requirement for F(C,(jow)) is

F(C,(jw)) < IC-7i = 50.43dB

This is satisfied as can be seen in Figure 6.15. Note the "peaking" of control effort between 1 Hz and

10 Hz. In a sense, this illustrates the area that the controller is forced to work "hardeqt." Through
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manipulation of all of these weights, it was seen that the control synthesis was very sensitive to

changes in the sensitivity weight I(s) and the control input weight, C.

With the controller calculated, the performance is next evaluated. Figure 6.16 shows the struc-

tured singular value plot, and the structured singular value exceeds 1. This implies that robust

performance will not be met given the uncertainty magnitude of the sensor.

As a comparison with the other bounds, Figure 6.17 shows the maximum singular value, 7,

and the spectral radius, p. In this case, the maximum singular value is not less than 1 for any

frequency range. This illustrates the bounds on /i described in Equation 3.15. In order to meet the

performance robustness specification, the sensor uncertainty must be reduced.

Through iteration on the sensor uncertainty, it was determined that a sensor accurate to within

1% to 1 Hz will enable the performance robustness specification to be met. Therefore, a modi-

fied uncertainty bound for the sensor is shown in Figure 6.18. Then performance robustness was

determined using this reduced uncertainty, and the plot of the structured singular value is shown

in Figure 6.19. The reduction of the sensor uncertainty produced the expected results, and the

structured singular value now shows that performance robustness is maintained. Figure 6.20 details

the maximum singular value, p, and the spectral radius. In this case, F shows that robust per-

formance is not evident using this performance measurement tool. However, using p, performance

robustness is demonstrated. This illustrates the meaning of non-conservative. Using T as the per-

formance measurement tool would require reducing uncertainty or the performance requirement
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while p shows that no reduction is necessary.

The sensor positions shown for the example case, Figure 5.1, were used for comparison to the

results shown above. It was found that a controller could not be synthesized to meet the sensitivity

weight bound. Therefore, the example measurement points were unable to provide the performance

robustness required of this system.

With the performance robustness requirement met on the single petal model, these results will

be used on the full model case with 24 sensors. For the results to truly scale to the full model

case, the reduced uncertainty and the weighting matrices applied in the synthesis of the controller

should yield a system that meets the performance robustness requirement.

6.3.2 Case 2: Full Model - 24 Sensors

The full model with 24 sensors utilizes the entire 6 petals with 36 inputs and 72 states. The same

weighting functions, lH(s), IT(s), and C(s), were applied to this model as to the single petal model

and an H,, controller was calculated.

As was noted above, the augmented state-matrices contain many states. For this case, the

augmented A matrix contains 144 states. Therefore, the controller will also contain 144 states.

When using the state matrix format to generate the open-loop system, GK, the state-space contains

288 states. This shows how quickly the state dimension can increase, and the evaluation of the

transfer function matrices via state-space methods may not be wise. Instead, the transfer function

matrices can be generated and the multiplications can be carried out on the reduced dimension

input-output maps. It is better to calculate G(jw) and K(jw) at each frequency and multiply the

matrices, GK(jw) = G(jw)Kh(jw).

Figure 6.21 shows the maximum singular value plot for the transfer function matrix between

the disturbance input D1 and the weighted performance vector W. For the H, controller to have

a solution as posed in Equation 6.14, the maximum singular value, "(TWD) K 1 Vw. As with the

single petal case, Figure 6.21 shows that a valid solution was obtained for the H,, controller.

The singular value plots of the sensitivity function and complementary sensitivity function

are shown in Figure 6.22 and Figure 6.23. The sensitivity singular values are "shaped" by

the sensitivity weighting function, IH(s) -1 , and the sensitivity singular values are bounded by this

function. The plot of the complementary sensitivity function is also bounded by the complementary

sensitivity function weight, IT(S) - '. As hoped, the singular value plots of case 2 resemble the

singular value plots described above for case I.

Figure 6.24 shows the singular value plot of the control input transfer function matrix. C,(s).

Note that "T(Cj(jw)) has a similar shape when compared to the single petal plot shown in Fig-

ure 6.15. The performance robustness was evaluated for the case of the reduced sensor uncertainty,
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and a plot of p is shown in Figure 6.25. It is seen that p is bounded by 1. Therefore, this controller

yields robust performance for the deformable mirror system.

To complete the results for this case, the maximum singular value, p, and the spectral radius

are shown in Figure 6.26. The primary reason F and p are calculated is to determine how well p

was calculated and what benefit there may be in using p. The calculation of p in both case 1 and

case 2 show the reduction expected from exploiting the structure of the uncertainty.

The results shown indicate that case.1 scales to the results for the full model. This provides a

useful result. The amount of uncertainty tolerated can be determined in the single petal case and

then applied to the full model case using 24 sensors. It will be shown below that this scaling does

not hold entirely for the full model using 36 sensors.

It was again observed that for the initial set of sensors chosen for the 24 sensor case (see Chap-

ter 5, Figure 5.3) the sensitivity function was unable to meet the performance requirement, even

after relaxing the bounds on the control input function and the complementary sensitivity function.

This initial set of sensors was compared with the sensors selected through the minimization of the

condition number of the plant. The difference in the d.c. value of the condition number appears to

be small in Figure 5.10. Perhaps the fact that the performance requirement could not be met with

the original selection of the 24 sensors suggests only a numerical problem, but the best disturbance

rejection properties were obtained using the sensors selected through the minimization of the plant

condition number.
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6.3.3 Case 3: Full Model - 36 Sensors

The full model with 36 sensors utilizes the entire 6 petals with 36 inputs and 72 states. Again,

the same weighting functions, lH(s), IT(s), and Ce(s), were applied to this model as to the two

preceding cases and an H, controller was calculated. As the number of sensors increases, so does

the number of states of the sensor, sensitivity weighting matrix, and complementary sensitivity

weighting matrix. The augmented state space now contains 180 states. The open-loop system loop

gain, GK, contains 360 states. This case clearly illustrates the advantages of using transfer function

matrix formats versus manipulating the state-space models to determine the various performance

functions.

Using the same weighting matrices as for the above 2 cases, the H, controller did not have

a solution. This means that the bound shown in Equation 6.14 could not be satisfied with the

current weighting functions. A reduction of the control input weighting constant by a factor of 3.

Cc = 1 X I0- 3

enabled the calculation of an H, controller.

Figure 6.27 shows the maximum singular value plot for the transfer function matrix between

the disturbance input D, and the weighted performance vector W. As with the prior 2 cases,

Figure 6.27 shows that a valid solution was obtained for the H,. controller with the reduction of

the control input weight. The assumption is that the added numerics of the additional sensors
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violated the bounds shown in the cost equation, Equation 6.14. For the full model case using 36

sensors, the bounds produced a problem with no solution. Relaxing the control input function

bound enabled the solution of Equation 6.14.

The singular value plots of the sensitivity function and complementary sensitivity function are

shown in Figure 6.28 and Figure 6.29. With the relaxed control input weighting function, the

sensitivity singular values are "shaped" by the sensitivity weighting function, IH(s)- 1 , and the

sensitivity function maximum singular value is bounded by this weight. The plot of the comple-

mentary sensitivity function is also bounded by the complementary sensitivity function weight,

IT(s) - i . Figure 6.30 shows the singular value plot of the control input transfer function matrix,

C,(s). Again, note that F(C,(jw)) has a similar shape when compared to the previous 2 cases.

The performance robustness was evaluated for the case of the reduced sensor uncertainty (same

as case 2), and a plot of p is shown in Figure 6.31. It is seen that p is not bounded by 1. There

is a small frequency range where p exceeds 1. Therefore, the full model using 36 sensors does not

meet the performance robustness specification. It should be noted that in increasing the number

of sensors from the full model using 24 sensors to the full model using 36 sensors, the performance

vector increased in number of elements from 24 t(, 36. This induces a scaling difference that accounts

for the fact that performance robustness was not maintained in this case.

When the uncertainty is reduced to a sensor accurate to within 0.1% for frequencies less than 1

Hz. the performance robustness can now be achieved for case 3. With the large dimensionality of
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the state-space for case 3, the prospect of iterating on sensor uncertainty is very time consuming.

Figure 6.32 shows the plot of/u for the robust performance case using the more accurate sensor.

The fact that an H, control solution to Equation 6.14 could not be found for case 3 without

reducing the control input weight demonstrates that caution needs to be used when extending the

results from case 1 to case 3. The differences appear to be numeric, because as the control input

weight was relaxed and the uncertainty was reduced, the results have the same "shape" as .the

results presented for case I and case 2. Based only on numerics, the additional sensors in case 3

negatively affected the results. For case 3, the uncertainty had to be reduced in order to meet the

performance robustness specification.

The original sensor locations chosen in Figure 5.2 failed to yield a controller that attenuated

the sensitivity function. All attempts at shaping the sensitivity function for the full model using

36 sensors failed except for the case where the condition number was minimized. It was observed

that at least one singular value of the sensitivity function remained above 0 dB for low-frequencies.

If the sensitivity function equation is examined again

H(s) = (I + G(s)K(s)Se(s)) - 1

the failure to "shape" H(s) appears to happen when

!_((G(jw)K(jw)Se(j w)) , 0
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In other words, the product G(jw)K(jw)Se(jw) is singular.

6.4 Conclusions

This chapter has presented the H, control solution results for three cases consisting of a single

petal model, a full model using 24 sensors, and a full model using 36 sensors. It was observed that

for the first two cases, the robust performance requirement could be met only for sensors accurate

to within 1% for low frequencies. The results from the single petal model scaled to the second case,

and without modifying weighting matrices or uncertainty, case 2 repeated the results shown for the

single petal model. However, this was not the case for the full model using 36 sensors.

It was observed that for case 3, the additional 12 sensors used when comparing the results to

case 2 negatively affected the robust performance. The control input weight was reduced in order

to provide an H,, solution, and the sensor accuracy increased to 0.1%. This difference is attributed

to the increase in the size of the performance vector from 24 measurements to 36 measurements.

Each of the original position locations first presented in Chapter 5 for the three cases were used

to compare the impact of sensor selection and disturbance rejection. It was observed that the best

disturbance rejection was found for the sensors chosen by minimizing the plant condition number.

The example sensor locations chosen for the full model using 36 sensor was unable to attenuate the

sensitivity function.
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Chapter 7

Decentralized Control System
Analyses

This chapter details the analyses applied to both the single petal model and the full model with

36 inputs and 36 outputs in an attempt to determine a decentralized control structure. The tests

employed are necessary conditions that allow the designer to eliminate prospective structures very

quickly and concentrate only on those structures that may yield adequate decentralized perfor-

mance. This chapter is divided into four sections, detailing the importance of decentralized control,

some simple tests for Decentralized Integral Controllability (DIC), the j interaction measure, and

concluding with some decentralized performance degradation tests.

7.1 Importance of Decentralized Control

Let P(s) be a square, n x n rational transfer function matrix relating the vector of system inputs

u to the vector of system outputs y, and let e be the error signal input to the controller K. The

vector inputs, outputs, and error signal are partitioned in the same manner with

U = [UIl,U2,.. .Um]T

Y = [Yl,Y2, ---. m]
T

e = [el, e2,.., e,

For this thesis, the definition of decentralized control means that

Ui = Ktei

Rearranging the input-output maps allows the controller to be d ,fined as block-diagonal.

Figure 7.1 shows the block-diagonal structure of the controller. By constraining the controller

to this block-diagonal structure, performance degradation is ex ,Vcted when compared to a "full"
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Figure 7.1: Diagonal Controller Block Diagram

centralized controller (i.e. Kij 54 0 ' 0 j). The advantages gained by using a block-diagonal

controller can result in simplifying both the hardware required and the design procedure [16].

For cases such as electric power stations, ui and Vi could be physically close but ui and yj

(i 0 j) might be separated by long distances. The communication links required of a centralized

controller in this case would be very expensive. The fact that the decentralized controller could

significantly simplify the hardware is a trade that needs to be made when addressing the perfor-

mance. Decentralized control also can allow for separate subsystems to fail without catastrophic

impact on system performance. If the controller for the large power networks was centralized, a

failure in the controller could result in the loss of power for large areas of the country. This does

not occur because decentralized controllers can localize the failure as well as the control.

If the plant that needs to be controlled is also block diagonal (i. e. Pij = 0 (1 54 j)), then

each controller Ki can be designed for the isolated subsystem Pi1 with no loss in performance.

Extending this idea slightly, if Pi3 is "small", then it should still be possible to design a controller

Ki with a "small" loss in performance. The advantage of the block-diagonal controller is that fewer

controller parameters need to be chosen than for the centralized case. It is very important that at

the minimum, stability is maintained if a failure occurs in a controller sub-block.

To design decentralized controllers, two problems need to be addressed. The first issue involves

which inputs should be paired with which outputs. The second issue is how to design each indi-

vidual controller block. As shown in Chapter 4, the pairing problem can produce many different

combinations. Therefore, efficient and simple tests are needed to reduce the number of control

structure possibilities to a manageable level. The tests employed in this thesis are necessary condi-

tions used to eliminate structures that will not maintain stability or a measure of performance. The

second issue concerning the control design has already been presented. in part, through Chapter 6.

Once a structure has been identified, the design of each individual block can be done with the
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method that best suits the problem (H 2 , Ho,, Classical Techniques, etc.).

An important point to note is that these tests only use open-loop plant information. Therefore,

the application of these tests utilize information that should be available. By manipulating different

interactions of the plant structure, these necessary conditions can reduce the number of potential

structures that are not decentralizable.

7.2 Necessary Conditions for Decentralized Integral Controlla-
bility

This section describes the tests that can be used for Decentralized Integral Controllable (DIC)

plants and presents results of the application of these tests to the single petal model.

7.2.1 Description of Tests

A centralized controller uses the complete plant output information to correct for the error. There

is normally some cross-coupling that does not make it possible to totally decouple the system into a

block-diagonal structure. Therefore, the coupled error from the off-diagonal blocks normally leads

to a degradation in performance as compared to the performance obtained in using a centralized

controller. Thi; section describes some tools that are used in the deformable mirror system to

determine the existence of a decentralized structure.

For a system to be Decentralized Integral Controllable (DIC) [16], the closed-loop system shown

in Figure 7.1 must be stable and each iadividual decentralized closed-loop system must be stable.

This means that the loss of a "channel" of information does not affect the entire stability of the

closed-loop system. Unfortunately, necessary and sufficient conditions do not exist for DIC. So,

tests for DIC are only necessary conditions. These tests are meant to reduce the set of possible

controllers to a manageable set. The five necessary conditions are shown in Equation 7.1 through

Equation 7.5 [Morar [16], p. 363-364].

del(P+(O)) > 0 (7.1)

Re.)A,(P+(O)C(O))} > 0 : V ,, for all diagonal C(O) > 0 (7.2)

Re{fA(P+(O))} > 0 V , (7.3)

Re{Ai(L(O))} > -1 V9, where L = (P -/P)P- 5 =,. P,,] (7.4)

RGA: A,(P(0)> 0V (7.5)

These conditions are proven in [16], where P+(0) is derived from setting the diagonal elements

of P(0) to positive values, and the RGA refers to the Relative Gain Array, which is defined as
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A(M)' = Mx(M- 1 )T. As presented above, these conditions are for a completely decentralized

case, i.e., the controller is diagonal. Most of these results can be extended to the block-diagonal

case. In this thesis, the tests are used as shown above.

Equation 7.1 is implied by Equation 7.3 and is therefore redundant. Equation 7.2 is difficult to

apply due to the need of a controller. With the emphasis in this thesis on open-loop plant tests,

Equation 7.2 will not be used. Therefore, the tests shown in Equation 7.3 through Equation 7.5

are used to evaluate DIC foi the single petal model (i.e., the case 1 model used in Chapter 6).

Using these three necessary conditions, test 1 refers to the conditions implied by Equation 7.3, test

2 refers to the conditions implied by Equation 7.4, and test 3 refers to the conditions implied by

Equation 7.5.

7.2.2 Results of Application of DIC Tests to the Single Petal Model

As discussed above, these conditions are only necessary, simple tests to determine if a system is

DIC. It is important to remember that a particular system that satisfies these tests is not necessarily

DIC. On the other hand, a system that does not satisfy these tests is not DIC. Therefore, the true

utility of these tests is to eliminate structures that are not DIC through the failure of one of the

tests.

Equation 7.3 through Equation 7.5 were applied to the single petal model. To aid in the

diiscussion of these tests, Figure 7.2 shows the single petal with sensors numbered and the actuators,

located in the center, numbered. Using the set of all possible input-output pairings, each of the

three tests were applied to the plant's d.c. gain

P(o) = D - CA- 1 B

The first test requires P'(0). This matrix is derived from P(0) by multiplying each column in

P(0) containg a negative diagoi.al element by - 1. This makes all of the diagonal elements of

P+(0) positive. The requirement for P+(0) is obtained as a result of specifying that all individual

loops must be stable [16]. Using Equation 7.3, 10 possible DIC structures were found. They

correspond to tL.- following pairs using the same input actuator ordering. These results are shown

in Figure 7.3, which also shows that actuators acting in the "z-axis" are paired with sensors that

sense "z'" displacements while actuators acting in the plane are sensed by tangential and radial

sensors. Although these 10 possible structures look promising, the other two tests need to be used

to determine if a structure exists that passes all three tests.

The second test 'rom Equation 7.4 was used to find input-output pairings in a similar manner

as test 1. All possibie pairings vere tested. The matrix, L(O), plays a key role in determining t.e

'Here. x refers to an element by element multiplicatioF.
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Figure 7 3: Input-Output Ordering of Possible DIC Structures Using Test I
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Input Number Sensor Number

1 1 12 2 2 2 2 4  4 4 4 4 4 5 5 5 5 6 6
2 3 3 1 1 3 3 3I1 I 1 3 3 31 1 3 31 1

3 2 5 4 5 4 5 5 2 5 6 1 2 5 2 6 1 2 2 5
4 4 3 3 ! 1 1 3 3 2 21 1 3 2 2 1 4 4

5 5 2 5 4 5 4 6 5 2 5 5 5 2 4 4 4 45 2
6 6 6 6 6 6 6 4 6 6 3 6 6 616 3 6 _6 3 3

Figure 7.4: Input-Output Ordering of Possible DIC Structures Using Test 2

Input Number Sensor Number

i 12 2 2 2 3 3 4 4 ! 4 5 5 5 5

2 3 1 3 I 1 1 1 31 3 t 3 3
3 4 5:4 5 2 5 2 5 2 5 2 4 2 4

4 3 3 1 1 4 4 3 3 1 113 3 1 1

5 5 1 452 52 52 4,24 2
6 6 6 6 6 6 6 6 16 6 6 66

Figure 7.5: Input-Output Ordering of Possible DIC Structures Using Test 3

relative errors arising from the use of a diagonal plant, P, instead of the full plant, P. Through

testing the real part of the eigenvalues of L(O), tWe input-output pairs shown in Figure 7.4 were

found that meet the bounding requirement of Equation 7.4. It can be seen from examination of

Figure 7.4 that 19 input-output pairs meet the requirements of Equation 7.4. Also, 10 of the

19 input-output pairs are the same 10 input-output pairs that passed the first test. These 10

input-output pairs are shaded in Figure 7.4.

The third test using Equation 7.5 was then employed. By its name, the Relative Gain Array

(RGA) provides information on the condition or relative gain of a plant. The advantages in using

the RGA are

1. The RGA is scaling independent.

2. All rows and columns of the RGA sum to one.

The second advantage of the RGA will be exploited in Section 7.4. The test described by Equa-

tion 7.5 uses the RGA as another necessary condition for DIC. The single petal model had 14

sensor pairs that satisfied Equation 7.5, and these results are shown in Figure 7.5. It can be seen

that the same 10 input-output pairs that met requirements from both the first and second tests

also meet the requirements from Equation 7.5. Therefore, any of these potential input-output pairs

may produce a decentralized integral controller. Remember that Equation 7.2 was not used.
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Figure 7.6: Comparison of DIC Controller Magnitude and Hinf Controller Magnitude

Using these results, a DIC controller was designed for the single petal model. The input-output

pairing selected was {[1,4], [2, 3], [3, 2], [4, 1], [5, 5], [6, 6] corresponding to column 7 in Figure 7.3

where the notation, [Input#, Outipu#] is used. A simple lead-lag filter was used for the controller,

K(s), for each SISO pair. It was found that a sufficient design could be obtained using the same

lead-lag filter for each SISO plant, and therefore, the diagonal controller developed has the form

K(s) = k1(s)I (7.6)

The SISO representation for kf(s) is

kf(s) = 3000 s +0.6 (77)

Using Equation 7.7, the bode magnitude plot of the controller is shown in Figure 7.6. Also

shown in Figure 7.6 is the maximum singular value of the single petal model controller calculated

in Chapter 6 using H, synthesis techniques. Note the attenuation at 2 Hz of the H, controller.

The simple lead-lag filter does not produce the same attenuation at 2 Hz, and it will be seen that

this lack of attenuation will result in a decrease in the performance. The H, controller attenuates

the primary resonant frequency through the use of a notch-filter type of performance. It will be

shown below that the DIC controller designed from Equation 7.7 has difficulties with the . 2 liz

resonance.

Using the controller from Equation 7.7, the SISO sensitivity transfer functions were calculated

(Equation 6-3). The results are shown in Figure 7.7. Also shown in Figure 7.7 is the senstivitv

81



PlII P44
1- 100 1-"__00_. .. . ..

~ 0- 0-

a-100 -10

-_200r _200
103 100 103 10-3 100 103

Frequency (Hz) Frequency (Hz)

P22 P55

- 10 -loo-

-20- -200 "

10-3 100 103 10-3 100 103

Frequency (Hz) Frequency (Hz)

P33 P66

0 -2 ........ . 0 -
-10 00

S-20 -200I10-3 100 103 10-3 100 103

Frequency (Hz) Frequency (Hz)

Figure 7.7: SISO Sensitivity Transfer Functions - DIC

weighting function bound used in Chapter 6. This bound was used as a performance level for each

SISO system.

When each of the SISO controllers is combined to form K(s), the evaluation of the sensitivity

matrix transfer function, complementary sensitivity matrix transfer function, and control input

matrix transfer function can be completed in a similar manner to Chapter 6. For this evaluation,

the full plant, P(s), is used. This becomes an analysis exercise with the controller synthesized

from Equation 7.6 instead of an H, controller. The results from this evaluation are shown in

Figure 7.8. As can be seen from this figure, the sensitivity matrix transfer function is bounded by

the original weight at almost all frequencies except around 2 Hz. Reexamination of Figure 7.7 does

not show the individual SISO sensitivity functions exceeding the bound. No modification of the

gain or cut-off frequencies in Equation 7.7 for the individual SISO controllers was able to "force"
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Figure 7.8: Matrix Transfer Functions Using DIC; A: Sensitivity Function and Sensitivity Weight,
B: Complementary Sensitivity Function and Complementary Sensitivity Function Weight, C: Con-
trol Input Function

the matrix sensitivity function to remain within the performance bounds at Z 2 Hz. The same

"peaking" at ,t 2 Hz is also seen in the matrix complementary transfer function and the matrix

control input transfer function in Figure 7.8. Therefore, nominal performance is not maintained,

and we expect that performance robustness can not be maintained.

Using the controller from Equation 7.6, the performance robustness using a sensor accurate to

1% over low frequencies was tested. The plot of p is shown in Figure 7.9. Robust performance

cannot be maintained as shown in Figure 7.9. The frequency scale in Figure 7.9 again shows that

p exceeds 1 at frequencies between 2 Hz and 4 Hz.

The sensor uncertainty was reduced by a factor of 100 requiring a sensor accurate to within

0.01% at low frequencies. Again, the performance robustness was tested, and the plot of pa using

this more accurate sensor is shown in Figure 7.10. Again, performance robustness cannot be

maintained. Additional tests continued to reduce the sensor uncertainty, but p exceeded I for each

of these additional tests This is caused in part by the inability of the controller to attenuate the

,-t 2 Hz resonaince of the plant. The controller could not maintain nominal performance.

Finally, the performance requirement was reduced by 82%, and the plot of p is shown in

Figure 7.11. This plot shows that robust performance can now be maintained. This result is verified
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Figure 7.10: Robust Performance - Single Petal Model Using DIC - Reduced Uncertaintv
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Figure 7.11: Robust Performance - Single Petal Model Using DIC - Reduced Performance

in part by results shown in Section 7.4 described below. In order to maintain performance robustness

using a diagonal integral controller of the form Equation 7.6, the performance requirement needed

to be reduced.

This simple example shows the usefulness of the simple DIC tests and the ease in applying these

tests to a given model. The tests showed that 10 input-ouput pairs should yield proper structures

for decentralized integral control. A very simple SISO controller was designed to meet the original

performance requirement on each SISO plant, and then each SISO controller was combined to form

a system controller for the 6 x 6 single petal model. It was found that performance had to be

lowered in order to assure robustness. This is a trade that occurs often in decentralized problems.

The benefit of using a decentralized controller needs to be weighed against the cost of the loss in

performance. The H, controller solution notched out the 2 to 4 Hz frequency band to meet the

performance requirement. A modification to the SISO controller in Equation 7.7 to attenuate the

2 Hz resonance might provide better performance.

7.3 p Interaction Measure

Another test of DIC and performance degradation due to a block-diagonal controller is called the

p interaction measure [10]. The purpose of an interaction measure is to determine the performance

degradation caused by a block-diagonal controller. This section defines a specific interaction mea-

sure that, when obtained using the structured singular value, provides a sufficient condition for
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Figure 7.12: Representation of Off-Diagonal Portion of Plant as Uncertainty

achieving DIC. The p interaction measure is applied to the single petal model, and the results are

compared with the results from Section 7.2.

7.3.1 Definition

The controller, K(s), is assumed to be block-diagonal and partitioned as described in Section 7.1.

Utilizing the block-diagonal representation of the plant, the off-diagonal portion of the plant can be

represented as an uncertainty block. This can be shown by manipulating Figure 7.1, and Figure 7.12

results, where 5 is a constant. The closed-loop system with the transfer function matrix

H(s) = P(s)K(s)(I + P(s)K(s)) -  (7.8)

should remain stable (set 6 = 0 in Figure 7.12). The interaction measure imposes constraints on

the choice of H(s) to guarantee that the full closed-loop system

H(s) = P(s)K(s)(I + P(s)K(s))-1  (7.9)

is stable (6 = 1).

Through manipulations described in [10], the following matrix describing the "relative error"

becomes important in this analysis

E(s) = (P(s) - P(s))P(s)- ' (7.10)

Note that this expression for E(s) matches the d.c condition of Equation 7.3.
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To further aid in understanding the utility of Equation 7.10, Figure 7.12 can be rearranged

(6 = 1) into the equivalent form shown in Figure 7.13 which provides a form to observe the

effects of "large" errors, E, on the closed-loop system, H, Applying the multivariable Nyquist

criterion to Figure 7.1, it is shown in [10] that when E(s) is "large", H(s) has to be "small" to

avoid encirclements of the origin, but "small" H(s) implies poor performance. This illustrates the

constraints on H'(s) imposed by E(s). If the relative error, E(s) is "large", performance will suffer.

The following theorem defines this constraint using the structured singular value as a measure on

the "size" of E(s).

Theorem 7.1: [Grosdidier, et al. [10], p. 312] Assume that P(s) and P(s) have the same

right-half plane poles and that -(s) is stahLe. Then the closed-loop system H(s) is stahe if

(H(j))< p-'(E(w)) Vw (7.11)

Proof: See [10].

The computation of p(E(jw)) uses an uncertainty structure with sub-blocks dimenioned ac-

cording to the block-diagonal plant T. Therefore, this is the "tightest" norm bound available,

because the structure of the block-diagonal plant is taken into consideration. Theorem 7.1 provides

a bound on the block-diagonal closed-loop transfer function matrix, H(s), using information from

the relative error. This bound can be applied in a similar manner as the bounds in Chapter 6

for the complementary sensitivity function. The information for E(jw) is available based only

on information of the plant and the block-diagonal structure of the plant. Equation 7.11 can be

manipulated into a sufficient condition on DIC, and the following result can be used

p(E(0)) < 1 (7.12)

Equation 7.12 was applied to the single petal model using the SISO system determined in

87



Section 7.2 to compare with the results obtained using Equation 7.3 through Equation 7.5. This

comparison was done using the 10 input-output pairs that passed the three conditions in Equa-

tion 7.3, Equation 7.4, and Equation 7.5.

The structured singular value was computed for each of the ten cases shown in Figure 7.3. As

shown in Equation 7.12, p(E(O)) < 1 is a sufficient condition for DIC. The form of Equation 7.11

uses p-l(E(jt)). The use of Equation 7.11 provides a bound on the closed-loop transfer function.

Therefore, an equivalent condition to Equation 7.12 is

1-'(E(0)) > 1 (7.13)

Equation 7.13 was used, and the resulting -'(jw)) plots are shown in Figure 7.14.

It can be seen from Figure 7.3 that the only input-output pair that passed the conditions of

Equation 7.3 through Equation 7.5 was the input-output pair of{[1,4], [2,3], [3,2], [4,1], [5,5], [6, 6]}.

The plot for Column 7 shown in Figure 7.14 does indeed produce a system that is DIC. This

confirms the results obtained when designing a decentralized integral controller. These plots can

also provide performance information. Again looking at the plot for Column 7, the achievable

closed-loop bandwidth is limited to , 2 Hz. This is the same bandwidth that was observed in

Figure 7.8.

The application of the p interaction measure was relatively easy using the single petal model

with a diagonal controller structure. As the system size increases, the calculation of p becomes

more difficult and time-consuming. The information provided from this test allows the designer to

determine the performance limitations of the closed-loop decentralized system by calculating the

structured singular value of the relative error of the open-loop full plant to the open-loop block-

diagonal plant. The results presented in Figure 7.14 illustrate a more stringent test on DIC than

Equation 7.3 through Equation 7.5, but at the cost of a much more difficult calculation.

Another test for performance degradation was recently developed and is presented in Section 7.4

below. An attractive feature of the viability tests is the ease of calculation and ability to test

numerous combinations of structures quickly and efficiently.

7.4 Necessary Tests for Viability of Control Configurations

Within the last year, D. Reeves. C. Nett, and Y. Arkun developed a practical test that focuses

on the existence of a control configuration for decentralized control as described above [18]. This

section describes necessary conditions used to test for viability of control configurations and details

the results of these tests applied to the single petal model and the full model using 36 sensors.
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Figure 7.14: Interaction Measure Plots for DIC Cases

89



7.4.1 Discussion and Theorem

As shown in [18], partitioning leads to a decentralized control scheme. By determining the proper

input-output blocks, a plant can be block-diagonalized (i.e., the plant can be partitioned into inde-

pendent subsystems), and decentralized control can be applied to the full plant model. Therefore,

a partitioned system implies subsystems that can be controlled independently. A centralized con-

troller uses cross-feed information (off-diagonal information) to develop the control inputs, while

a decentralized controller "ignores" the cross-feed terms. As stated above, decentralized control

occurs when the matrix representation of the controller is block-diagonal. Overall performance

is normally degraded due to the absence of the cross-feed. Reeves, Nett, and Arkun derived a

necessary condition for low cross-feed performance degradation. This condition allows the control

designer to "sort" through the potential decentralized configurations by searching over the set of

possible subsystems and producing a quantitative measure of cross-feed performance degradation.

The test employcd is defined by looking at the effect of cross-feed degradation on the closed-

loop performance of the system using the full information from the plant P versus the loss in

performance using the block diagonal plant T. [f P does not contain any cross-feed (off-diagonal

block) terms, meaning P is already block-diagonal, there would be no loss in performance. Closed-

loop performance is compared for the complementary sensitivity function of the full plant

H = PC(I + PC)- 1

versus the complementary sensitivity function of the block-diagonal plant

H = PC(I + PC)-'

If the difference, H-7" is studied, the maximum cross-feed performance degradation can be defined

by [181

max jJ(H - H)rJ12 = F[(H - H)-'] (7.14)
riAO IITr 112

This is the worst case cross-feed performance degradation over all possible reference inputs. The

following theorem presents a viability criterion for low cross-feed performance degradation [18].

Theorem 7.2: [Reeves, et al. [18]] Suppose P is a square finite divc,..jo,,,:l l , M-r !;me

invariant (FDLTI) plant with its measurements and manipulations partitioned such that

P1I ... Pin 1
P = =PJ] "(7.15)

P. " P,

Under these conditions there exists a FDLTI controller K = blockdsag{Ki,. , K,} which achieves

(i) a[(H - n)n'] 4H, and
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(iS) '(H) < 0.707 Vw > a-

only if
3 (V) < dH Vw > W (7.16)3.414 + ar(V)

where:

.v !-A (p --T)P-1 = I - PP-1

" dH is the specified mz~rimum allowable cross-feed performance degradation, and

* U is the specified closed-loop 3dB bandwidth of the system.

Proof: See [18].

This theorem has some very nice properties. First, a quantitative measure is set forth in both

(i) and (ii). Property (ii) specifies that the complementary sensitivity function using the block

diagonal plant must lie within the -3 dB level at frequencies greater than the closed-loop crossover

frequency. This allows the designer to specify the nominal performance of the system. Property (i)

allows the designer to select the maximum allowable cross-feed performance degradation. Theorem

7.2 provides a necessary condition to determine the maximum allowable cross-feed performance

degradation, and the quantitative test is very simple to calculate. Also, the fact that Equation 7.16

is computed for frequencies at or greater than the closed-loop crossover frequency increases the

utility of this test. In systems with integral control, the outputs are controlled perfectly regardless

of how the system is partitioned. The scaling dependence of Theorem 7.2 (i.e., F(V)), though, is

one draw back to the broad application of this test.

Theorem 7.2 is based on the scaling dependent variable F(V). Therefore, each time the plant is

rescaled, Equation 7.16 has to be recalculated and compared to dH. Although the calculation for

Equation 7.16 is very efficient, the loosening of this condition to calculate a quantity that is not

scaling dependent is desirable. This is done by using the Relative Gain Array (RGA).

As described above, the RGA is independent of scaling. Also, the RGA forms lower bounds on

the condition number of a matrix as shown in [16,18]. Assuming that the plant matrix P has been

partitioned into a block-diagonal form, this block-diagonal form can be imposed on the RGA. A

property of the RGA is that various arrangements in the plant matrix only produce row\column

rearrangements in A(P) (see Section 7.2.1 for the definition of the RGA). Therefore, modifying the

input-output maps of the plant only results in rearranging the rows and columns of the RGA. If

the partial row sums of the elements lying within the diagonal blocks of the RGA are defined as

Ik = L A(P)kj (7.17)
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Figure 7.15: Illustration of Partial Row and Complementary Partial Row Sums of RGA

where k denotes the kth row and 9 denotes the ith diagonal block. The ai and /3i represent the

beginning and ending column indices, respectively, of the ith diagonal. Figur- 7.15 as taken from

[18] illustrates this computation for a 5 x 5 plant. Using this property of the RGA, Theorem 7.2

can be weakened into the following Corollary.

Corollary 7.1: [Reeves, et al. [18]] Theorem 7.2 remains valid if the following inequality

is substituted for Equation 7.16:

Af'max < dH VW (7183.414 + I[I a n_

where IHlmax = maxk IHkl.

Proof: See [18].

This result is still a quantitative, necessary condition on the cross-feed performance degradation.

The advantage is that the use of the RGA now provides a scaling independent measure of the

cross-feed component in the plant. This result provides an initial "screening" method for the set of

possible decentralized controllers. After Corollary 7.1 has been applied, the remaining decentralized

structures can be further reduced through the use of Theorem 7.2.

In Chapter 4, it was shown that the total number of possible decentralized structures for the

deformable mirror system using 36 inputs with 36 sensors was 4 x 1020. The test described in

Corollary 7.1 was applied to 107 structures for the full model using 36 inputs with 36 sensors and

all of the possible structures for the single petal model using 6 inputs with 6 sensors. These two

models correspond to the case 1 and case 3 systems studied in Chapter 6. The results of these tests

are described below.

7.4.2 Results of Application of Cross-Feed Performance Degradation Tests to
Single Petal Model

Corollary 7.1 was applied to both the single petal model and the full model using 36 sensors. This
section details the results of applying Corollary 7.1 ind Theorem 7.2 to the single petal model (case
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System Distinct Block Number of Systems Minimum dH Minimum dH
Size Structures Passed Cor 7,1 Cor 7.1 Thin 7.2

5x1 240 0.0766 0.6939
4x2 240 0.1466 0.7013

4xlxl 72 0.1616 0.6122
3x3 360 0.1475 0.7392

6x6 3x2x 1 36 0. 1475 0.4977
3xlxlxl 18 0.1712 0.5096

2x2x2 192 0.1475 0.5934
2x2x 1 x 1 48 0.1475 0.5445

2xl x 1 xIxl 24 0.1571 0.5257

lxlxlxlxlxl 4 0.1609 0.4583

Figure 7.16: Single Petal Structures Passing Theorem 7.2 and Corollary 7.1

1 - Chapter 6). The results for the single petal model provide a comparison with the results from

the DIC tests described above.

The number of structures tested in the single petal case was 923. This number includes all

of the possible input-output pairs arranged in all possible square combinations. Therefore, the

6 x 6 plant can be divided into a structure of 6 diagonal sub-blocks, a 5 x 5 sub-block and a 1 x 1

sub-block, a 4 x 4 sub-block and either a 2 x 2 sub-block or two 1 x 1 sub-blocks, etc. An arbitrary

performance degradation of 20% was set for dH in the initial calculations of Corollary 7.1. The

number of structures that were found to pass each of the various structures is shown in Figure 7.16.

All of the structures that passed Corollary 7.1 were then tested using the more stringent condi-

tions of Theorem 7.2. Not a single structure met the performance degradation requirement of 20%.

It can be seen in studying Figure 7.16 that structures that intuitively should yield a smaller value

of dH do not. In particular, it seems that the larger sub-block systems should produce a better

performance degradation variable (dH should be smaller). This is not the case if the block-structure

of 5 1 is examined in Figure 7.16. Here, it is seen that the "best" performance degradation due to

cross-feed is nearly 70% where the "best" performance degradation for the diagonal plant is only

45.8%. One possible reason for this apparent contradiction could be the scaling issue described

above. If the plant is rescaled, the performance degradation using Theorem 7.2 will change. It

was also shown in an example in [10] that block decentralized structures do not necessarily im-

ply an improvement in performance over fully decentralized structures. For the case of the single

petal model, scaling was applied and had little effect on the cross-feed performance degradation as

calculated from the conditions of Theorem 7.2.

The result of using Equation 7.16 is a little surprising considering the apparent success of the
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DIC tests described in Section 7.2. After further analysis, though, the results from these viability

tests provide some confirmation to the results found in the design of the DIC controller. A closer

examination of the particular input-output structure ([1,4],[2,3],[3,2],[4, 1],[5,5],[6,6]) used to

design the DIC controller shows that the value of the cross-feed performance degradation, dig, as

calculated from Corollary 7.1 is dH = 0.2152. Therefore, Corollary 7.1 predicts a 22% degradation

in performance if a diagonal controller is used for the given input-output ordering. Application of

Theorem 7.2 to the same structure yields a cross-feed performance degradation of 70.57%. This is

closer to the 82% reduction in performance used for the DIC.

If the cross-feed performance degradation factor is calculated for all structures of the diagonal

plant (calculating the left-hand side of Equation 7.18), the minimum cross-feed performance degra-

dation for Corollary 7.1 occurs for the input-output pairing, ([1,4], [2, 2], [3,3], [4,1], [5,5], [6,6]).

The value of cross-feed performance degradation as calculated fr -m Corollary 7.1 is 16.1%. Again,

when the more stringent Theorem 7.2 condition is applied, the cross-feed performance degradation

lowers to 70.96%. It is interesting to note that the minimum cross-feed performance degradation for

Corollary 7.1 occurs for input-output pairs that do not match z-axis sensors with z-axis actuators

and "in-plane" sensors with "in-plane" actuators.

If the cross-feed performance degradation factor is minimized according to the calculation of the

Theorem 7.2 test (calculation of the left-hand side of Equation 7.16), the input-output structure

becomes ([1,3], [2, 1], [3,2], [4, 6], [5, 5], [6,4]). This particular input-output structure yields a cross-

feed performance degradation factor as calculated by Corollary 7.2 of 45.8%. Again, the input-

output pairing does not follow the intuition of matching actuator displacement axes to sensor axes.

7.4.3 Results of Application of Cross-Feed Performance Degradation Tests to
the Full Model Using 36 Sensors

The test for Corollary 7.1 was used for 107 cases of the full model using 36 sensors. The only

structures tested were 6 x 6 x 6 x 6 x 6 x 6, 12 x 24 and 18 x 18. Out of these potential structures,

only 237 passed the cross-feed performance degradation bound of 20%. When the Theorem 7.2 test

was employed, no structure was found that met the cross-feed performance degradation bound.

The results of these tests do not eliminate the possibility of a decentralized structure for the

full model case. These results do eliminate 107 combinations for the block structures listed above.

7.5 Conclusion

This chapter has detailed some necessary tests that can be easily applied to a plant to determine

if a decentralized structure exists. These tests illustrated that a decentralized integral controller
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could be designed for a diagonal plant structure, and SISO integral controllers were designed. It

was shown that the use of these SISO controllers forced an 82% reduction in the performance in

order for robust performance to be maintained. The p4 interaction measure was introduced and

applied to the 10 structures that met the DIC requirements. The A interaction measure showed

that only 1 structure was found that met the requirements for decentralized integral controllability.

Finally, necessary tests for viability of control configurations was introduced. These tests developed

a measure of cross-feed performance degradation based on different input-output pairings and sub-

block structures. These tests were applied to the single petal model, and the results from the

Theorem 7.2 test predicted a 71% degradation in performance for the SISO case example. This

prediction compares reasonably well with the actual loss of 82% in robust performance. The

Corollary 7.1 and Theorem 7.2 tests predicted a very non-intuitive structure to result in a lower

cross-feed performance degradation. Finally, Corollary 7.1 was applied to 107 separate structures

for the full model case using 36 sensors, but no structure was found that passed Theorem 7.2 for

the same cross-feed performance degradation factor.
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Chapter 8

Conclusion

In this thesis, an H, controller was designed for the deformable mirror system to meet a set of

performance specifications detailed in Chapter 2. Loop-shaping as a method of augmenting the

performance requirement into the controller was demonstrated in the synthesis of the controller,

and acceptable controllers were synthesized to meet the robust performance specification for the

single petal model and the full model using 24 sensors. This chapter presents a summary of the

effort in this thesis and describes topics for future research.

8.1 Summary of Thesis

Chapter 2 described the deformable mirror system and established the performance requirement

in terms of a wavefront error. The state-space model of the deformable mirror was described, and

the block-diagram for the control function was presented.

The tools used in the evaluation of performance in this thesis were developed in Chapter 3.

The L 2 space was defined, and the definition of the H2 norm was developed. The H2 problem

was then presented as was the H , problem. The structured singular value was introduced as a

non-conservative measure of robust stability and performance. Using the small gain theorem as

motivation, the small p theorem was presented, and the method of using the structured singular

value as a robust performance measure was defined.

Chapter 4 provided a detailed problem statement listing issues and developing subgoals for the

synthesis of a controller for the deformable mirror system. The difficulties with the physical dimen-

sion of the models of the deformable mirror system were discussed, and the issue of sensor selection

was presented. The first subgoal established was to develop a comprehensive understanding of the

single petal model and attempt to apply this knowledge to the full model. This was accomplished,

in part, in Chapters 5, 6, and 7. The second subgoal was to determine the "optimal" sensor selec-

tion method. This second subgoal was met only initially through open-loop analyses in Chapter 5.
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The final subgoal was to determine a decentralized structure for the full model. The resolution of

this subgoal is described in more detail below.

Chapter 5 presented the open-loop analyses conducted on a single petal model and 2 full model

cases. The first full model case used 24 sensors, and it was shown that this case was fully observable

and controllable. The second full model used 36 sensors, and it was shown to also be fully observable

and controllable. The sensor selection for each of the three models was based on minimizing the

condition number of each separate plant model. This minimization proved to be sufficient in the

calculation of controllers to meet the robust performance requirement. Chapter 5 also illustrated

the importance of balancing the plant models.

The resuits of the controller synthesis and analyses were presented in Chapter 6. Three separate

cases were studied including the single petal model, the full model using 24 sensors, and the full

model using 36 sensors. The method of augmenting performance states into the synthesis problem

was developed, and the results for the single petal model and full model using 24 sensors were

almost identical. The controller synthesized was able to meet the performance specification for a

sensor accurate to within 1% for low frequencies. The results from the single petal model did not

scale fully to the full model using 36 sensors. The full model using 36 sensors required a sensor

accurate to with 0.1% for low frequencies in order to meet the robust performance specifications.

Chapter 7 detailed the decentralized analyses employed in an effort to find a decentralized

structure for the deformable mirror system. The motivation for using decentralized control was

presented, and simple tests for Decentralized Integral Controllability (DIC) were presented for

cases where a plant can be completely diagonalized. Ten cases using the single petal model were

found that met the requirements imposed by the necessary DIC tests, and a Single Input Single

Output (SISO) controller was developed to demonstrate this capability. It was shown that the

performance had to be reduced by 82% in order to maintain robust performance using the DIC

controller. Interaction measures were introduced, and the ji interaction measure was used to test

the ten structures that passed the simple DIC tests. It was found that only one structure of the ten

met the stricter requirements of the p interaction measure. Finally, viability tests were presented

and used to determine the cross-feed performance degradation caused by different decentralized

structures and input-output pairings. The tests were applied to the structure used to develop the

SISO controller, and the weaker test (Corollary 7.1) predicted a loss in performance of 21% while

the Theorem 7.2 test predicted a loss in performance of 71%. The minimum cross-feed performance

degradation was then determined for the diagonal structure, and the non-intuitive matching radial

and tangential motion sensors to "z" axis actuators was observed. Finally, the Corollary 7.1 test

was applied to 10 7 combinations of the full model using 36 sensors, and only a small subset met
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the cross-feed performance degradation requirement of 20%. When the more stringent Theorem

7.2 test was applied, no structure met the performance degradation requirement.

This summary only begins to address the problem of robust wavefront control for the deformable

mirror system. With this in mind, the following topics for future research are presented.

8.2 Topics for Future Research

To fully design a robust controller, the uncertainty sources should be incorporated into the synthesis

of the controller. This thesis synthesized a controller for the nominal plant, and then measured the

performance robustness. Using the method of p synthesis, a robust controller can be developed

that meets a robust performance requirement. The algorithms to calculate p are still being tuned,

and the computation time required to synthesize a robust performing controller for the deformable

mirror system may be prohibitive. Still, the application of p synthesis techniques might provide

more insight on the trade between uncertainty and performance.

The only uncertainty source considered in this thesis was uncertainty in the sensor. In actuality,

uncertainty will occur at numerous other locations in the deformable mirror system. To be able to

state that the deformable mirror system actually meets a robust performance requirement, each of

these additional uncertainty sources should be included in the analysis.

The success of finding a decentralized controller for the single petal model partially offsets the

failure of finding some decentralized structure for the full model. Due to computation limitations,

only a small subset of the total possible combinations was tested. The ability to find a decentralized

control structure for the full model would provide an important step in actually developing a

controller for the deformable mirror system. A decentralized structure would not be as limited to

the number of computations required of a centralized controller.

A methodology needs to be developed to determine sensor locations for feedback to the con-

troller, sensor locations used for controller synthesis, and sensor locations for evaluation points. In

this thesis, the sensors used for feedback to the controller were a subset of the sensors used for

both the controller performance points as well as the evaluation points. There is a strong need to

have some methodology to determine the selection procedures for this set of measurements. When

faced with the potential of 216 measurement locations, there is a strong motivation to reduce the

physical size of the model. Through analyses of the performance, there might be a way to determine

a subset of the potential measurements for each of the three sets of points individually. There has

been a great deal of research in this area in the chemical process industry. The parallels between

the control of multivariable distillation processes to the segment phasing control of the deformable

mirror system suggests a possible untapped area of experience.
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Finally, the segment phasing control problem represents only one problem of a complete SDI

system. The issues involved in mounting the deformable mirror system on a "noisy" structure and

rapidly rotating the structure to follow a target have not been addressed. The actual measurement

system required for the deformable mirror system has not been addressed. Only the accuracy of

edge sensors over a limited frequency band has been examined.
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Appendix A

Performance Criteria Relations

The rms performance requirement detailed in Section 2.3 was shown to relate to the 2-norm of

the error. This appendix relates the oo-norm performance criterion established in Chapter 3 to

a stochastic system with assumed zero-mean, stationary stochastic disturbance inputs of bounded

variance (standard deviation) as shown in [11]. The standard deviation of an error vector is defined

by
E{eTe} = (a.1)

Using the trace operator and the linearity of the expectation operator, Equation A.1 can also be

written in the frequency domain in terms of the power spectral density of e, 4I,,

E{JeJ = i J r[4ee(jw)]dw (A.2)

If we assume that the output error is generated from some disturbance input, d(s), and stable

transfer function matrLx, H(s)

e(s) = H(s)d(s)

the power spectral density 4)ee can be written as

'te(jw) = H(jW)4dd(jW)H T (-jw) (A.3)

Equation A.2 and Equation A.3 then imply [14]
1 fX

E{er e} = I E,? (d(J')H(J))dw (A.4)

from which the bound

E{e r e} < IIIL-[ (,'dd(w))dw (A.5)

follows. Consequently, for the case of white disturbance inputs

(dd(jw) = I
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the following result holds

a,< IeHI (A.6)

From Equation A.6, it is clear that if the input, d, is a white noise process with unity variance,

then the error variance will be unity bounded only if

IIHI.<1-

Therefore, the stochastic optimal control problem results in a performance constraint on the H,-

norm of the transfer function, H, as long as the input, d, and the error vector, e, are scaled

correctly.
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