
UYATIOkI PAGE~, PvM Apg

AD-A 239 395 COMA o

AT DATE 3. RIPORT TYPE 9ND DATS OVR
Augst 991final report OlSep9O-3OSep9O

4. TITLE AND SUSTITLE L. FUNDING NUMBERS

Open Architectures for Formal Reasoning C: N00039-84-C-0211
T: 26

6. AUTkoR(s)

John McCarthy

7. PERFORMING ORGANIZATION NAM(S) AND AOORESS([S) 11 PERFORMING ORGANIZATION

Computer Science Department REPORT NUMBER

Stanford University
Stanford. CA 94305

~~.G SPNOIGMONITORING AGENCY NAM(S) AND APDESE)1.SOSOIGIMNTRN

sponsrin age1C y: monitoring agency: AGENCY RPORT UMBR
SPAWR 321C2ONR Resident Representative

Space & Naval Warfare Systems Mr. Paul Biddle
Command Stanford Univ., 202 McCullough

Washington, D.C. 20363-5100 Stanford, CA 94305

It. SUPPLEMENTARY NOTES

12Za. D1STRtiIuTiON ,AVAILA11LiTY STATEMENT 1211. DISTRIALUTION CODE

Approved for public release: distribution unlimited.

13. ABSTRACT (Maximum 2O woUS) .11 . 0' I

See attached report. AtA

AUG 13 1991

91-07579

4.SUBJECT TERMSis U g OPAE

7.SRi10TY CLSIIAIN .SCRT LSIIA iON l. SECURITY CLASSIFICATION 20. LIMITATION OA ASTRACT
OP RPORTOF TIS PAGE Of A1STRACT

UL UL UL Un

NSN 7S~rGO1.2&O.550(Q It'cr Io' I9 ~st"Crc;o-i~ '0V1.9

Sponsored by

Defense Advanced Research Projects Agency (DoD)
3701 North Fairfax Drive
Arlington, VA 22203-1714

"Open Architectures for Formal Reasoning"

ARPA Order No. ? (can't locate)

Issued by Space and Naval Warfare Systems Command

Under Contract No. N00039-84-C-0211, Task 26

"The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government."

i1;

K!... ..'

..

V-, V..

A

Final Report for Task 26 of Contract N00039-84-C-0211

Open Architectures for Formal Reasoning

Project Summary

This task represents an initial part of a long term project aimed at making both theo-
retical and practical advances in the field of formal reasoning. The main goal is to provide
a framework for designing and experimenting with symbol manipulation programs, and in
particular, to provide a general software architecture for implementing formal reasoning
systems and interfaces to existing software components including special purpose theorem
provers, program transformers, and databases. The kernel will be a computation system
that supports a rich collection of data structures for formal reasoning, a wide spectrum of
programming paradigms including both high-level and low level constructs, and objects as
self contained entities that may be used uniformly and independently of internal represen-
tation.

1. Kernel data structures

In [3, 2] we report recent work on a theory of binding structures. Binding struc-
tures enrich traditional abstract syntax trees by providing support for representing binding
mechanisms and structures with holes.. The goal of this work is to establish a common
core for building tools such as theorem provers, transformers, static analyzers, evaluators,
rewriters, etc. that manipulate symbolic structures. Binding structures solve problems of
variable name conflict and renaming, and provide a means for manipulating occurrences of
structures. They incorporate the notion of syntactic context. This allows for expression of
schemata within the language rather than as meta-expressions. Filling holes is a mechanism
for capturing free variables, in contrast to substitution for free variables, which avoids cap-
ture. Binding structures provide a basis for sharing a wide range of data structures among
program manipulation and mechanized reasoning programs. These include not only terms
and formulas, but proofs, rewriting contexts, specifications, etc. In developing efficient pro-
grams for manipulation of symbolic structures it is important to be able to express sharing
and updating optimizations for algorithms and to have a clear semantics of the structures
that support such optimizations. Binding structures together with the work on equivalence
of programs that operate on mutable data are a first step in this direction.

Drafts of a full version of the binding structure paper have been distributed to people
involved in implementation of theorem provers, programming environments, and program
transformation systems (among others) in order to get feed back about possible deficiencies
of the theory, and to get suggestions for additional applications. This is also a first step in
starting discussions that will hopefully lead to some agreement within the community as to
sharable data structures, and a common basis for implementation of symbolic manipulation
programs.

2

2. An Exercise in Verification

In (1] we present a formal verification of the local correctness of a mutex algorithm
using the Boyer-Moore theorem prover. The formalization follows closely an informal proof
of Manna and Pnueli. The proof method of Manna and Pnueli is to first extract from the
program a set of states and induced transition system. One then proves suitable invariants
There are two variants of the proof. In the first (atomic) variant, compound tests involving
quantification over a finite set are viewed as atomic operations. In the second (molecu-
lar) variant, this assumption is removed, making the details of the transitions and proof
somewhat more complicated.

The original Manna-Pnueli proof was formulated in terms of finite sets. This led to a
concise and elegant informal proof, however one that is not easy to mechanize in the Boyer-
Moore logic. In the mechanized version we use a dual isomorphic representation of program
states based on finite sequences. Our approach was to outline the formal proof of each
invariant, making explicit the case analyses, assumptions and properties of operations used.
The outline served as our guide in developing the formal proof. The resulting sequence
of events follows the informal plan quite closely. The main difficulties encountered were in
discovering the precise form of the lemmas and hints necessary to guide the theorem prover.

The complete formal proofs (input to the Boyer-Moore prover) appear as appendices.
Some comments on formalization techniques, difficulties, and alternatives are included as
comments in the theorem prover input.

3. Surveys

A first step in designing a architecture for formal reasoning and other symbolic ma-
nipulation systems is to survey and analyze existing systems and technologies. Work is in
progress on two surveys: one of existing theorem provers, and one of programming environ-
ment kernels and tools. In both cases a major goal is analyzing the common components
that implementations could share. In the case of programming environments we also want
to determine to what degree existing systems support sharing and interoperability, and what
is needed to make the mechanisms more widely accepted. As part of the theorem prover
survey we also want to determine capabilities of existing systems - the language, logic,
proof-theory, proof-mechanisms, means of interaction with a user, major applications, and
existence of tutorials. The resulting data is intended to help potential users find the sys-
tem that best meets their needs. It will also be used to develop requirements for general
purpose, mechanized reasoning systems capable of supporting a wide range of non-trivial
applications.

4. References

[1] Misao Nagayama and Carolyn Talcott. An nqthm mechanization of "an exercise in the
verification of multi-process programs". Technical Report to appear, Computer Science

Department, Stanford University, 1991.

[2] Carolyn L. Talcott. Binding structures. In Vladimir Lifschitz, editor, Artificial Intelli-
gence and Mathematical Theory of Computation. Academic Press, 1991.

3

[31 Carolyn L. Talcott. Towards a theory of binding structures. In Second International
Conference on Algebraic Methodology and Software Technology, AMAST, 1991.

