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1 INTRODUCTION 2

1 Introduction

1.1 Background

The hydrodynamic yield algorithm is often used to estimate yields for under-

ground nuclear events. For this algorithm, it is assumed that. under certain

conditions, the yield of an underground nuclear explo6ion can be reasonably

well determined from measurements of the propagation of the explosion-

produced shock wave through the ambient geological medium. If the explo-

sion is spherically symmetric and the measurements are taken in a pressure

regime which far exceeds the yield strength of the medium (the so-called

hydrodynamic regime), the shock radius appears to grow as a power-law

function of time. In particular, for some range of t. the position of the shock

front is assumed to be given by the generalized Taylor blast-wave solution: 1

W3  j1/

where t is time after explosion, R, is the distance from the center of the ex-

plosion, and W is the yield of the device. The parameters a and b have been

empirically determined and are assumed to be independent of the material

medium and device yield over a wide range of geologic media and yields.

'The original derivation by Taylor,1131 for shock waves propagating in air. gave b = 2

since he assumed a gamma-law gas with constant r. For shocks in non-ideal materials
such as rock a more general form is required.
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This equation has formed the basis of the h.drodynamic-yield determina-

tion techniques used on U.S. nuclear events since the early 1960's.

We have analyzed shock time-of-arrival (TOA) data from 43 U. S. nuclear

events with yields greater than 40 kt, detonated in a number of different

media. Some of the questions which we have attempted to address in this

analysis are: 1) Can we reliably estimate the yield-of a nuclear event from

TOA data alone, using the 'standard" hydrodynamic yield algorithm based

on Eqn. (1)? 2) If so, what are the confidence limits which can be placed on

such yield estimates and how do these limits scale with variations in yield?

3) Are there any significant variations in these results for different working

point media (e.g., basalt, tuff. granite)?

In this analysis we have. for simplicity, assumed that the geometry is

spherically symmetric and that the events are fully coupled. For relatively

large yields in reasonably small zero-room volumes, these are e. idently good

assumptions. As the explosive yield becomes small or as the cavity size

becomes large, nonspherical effects or decoupling may become important.

1.2 The strong-shock algorithm

Here we present a brief description of the hydrodynamic or strong-shock

yield algorithm as it is presently applied.[8] Figure 1 shows an example of
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a typical (R,.t) data set from a U. S. nuclear event, obtained in this-case

using the SLIFER [9 1 measurement technique. The data are presented in

Shock Radius vs Time

0

0

4.0 0.2 0.4 0. 0., 1'.0 1.2
Time (ms/kt' )

Figure 1: Scaled shock radius vs scaled time data for a typical nuclear event.

scaled form where the scaling factor for both R, and t is the cube root of

the official yield for the event, but the details of the algorithm are largely

unaffected by this scaling. The most difficult part of the algorithm is making

a proper determination of the region of data to analyze. Equation (1) can
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be rearranged to give an explicit expression for the-algorithmic yield:

W L 3/.1 -b)(2)

With this equation, given a. b. and a data set such as that shown in Fig-

ure 1, obtained from CORRTEX,(4 SLIFER, or another time of arrival

measurement technique. one can reformulate the data as algorithmic yield

vs time, as is shown plotted in Figure 2. Again, the quantities are scaled

appropriately using the official yield for the event. There is an extremely

steep region of the curve before about 0.23 scaled ms. followed by a rela-

tively flat region between 0.23 and 0.45 scaled ms, which is in turn followed

by an almost linear rise in W out to about I scaled ms. The very steep

portion of the curve before 0.23 scaled ms is not valid data. This data is

probably due to energy flow along channels near the gauge cable, causing

a shock wave which arrives considerably earlier than the expected free-field

shock and which is of sufficient magnitude to crush the cable. This feature

is common in records from cables located in or near the device emplacement

hole. The rising portion of the curve above 0.45 scaled ms is beyond the

range of applicability of the algorithm owing to the increasing dominance

of medium strength effects at the lower shock stress levels. Only the "flat"

region of the data from 0.23 to 0.45 scaled ins is used in the determination
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Alaorithmic Yield vs Time

*- I

V2,
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Figure 2: The ratio of algorithmic yield to official yield vs scaled time for
the same event.

of the hydrodynamic yield, W,,jj. The yield is computed by arithmetically

averaging over the approximately constant values obtained from the (R.t)

pairs within the algorithmic region,[61 although least squares fitting over

the interval has been tried -s well[81 with negligible change in the results

obtained.

The method described here leaves room for a certain amount of inter-
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pretation by the individual analyst, particularly in the determination of

the time interval over which to apply the appropriate averaging operation.

Historically. this step in the yield determination process has been done by

hand, so that slight differences in computed yields could be calculated for

the-same event by different analysts working from the same data set. We

have developed an automated procedure for choosing the so-called "algorith-

mic window" for a particular data set such as that shown in Figure 1 and

have implemented the procedure in a comp,'ter program. The algorithmic

time windows determined by this procedure for the 43 events considered in

this report are very similar to those fuund by Eilers el aIL16 and the recal-

culated yields using these new windows are typically within 1% of the Eilers

ef al values. This new procedure does not therefore supply any advantage

over the existing one in terms of giving better answers, but simply codifies

the process of selecting the appropriate time window, thereby removing a

measure of human judgement and variability from the yield determination

process, in a manner which is consistent with current practice.
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2 Analysis

Our primary task for this project was to estimate the uncertainty associ-

ated with employing thehydrodynamic yield algorithm to determine nuclear

yields for underground events. For-our hypothetica test we are to assume

the data is obtained from CORRTEX measurements from cables emplaced

in a satellite hole configuration. With properly placed satellite holes, con-

tamination of the data 6y such phenomena as pipe flow should not be a

problem For this analysis, we assume spherical symmetry for the outgoing

shock front, and that the event is fully coupled.

In order to ascertain the overall uncertainty in the application of the-al-

gorithm, we begin by estimating the primary sources of uncertainty andztheir

magnitudes. 'The algorithm is based on a very simple equation. Eqn. (2).

with only two independent variables. R., and t. and a very simple hypoth-

esis, namely that Eqn. (2) holds for some range of t, given particular fixed

values of a and b, independent of geologic material. Thus. our first task

will be to obtain uncertainty estimates for the measured quantities R, and

1, and to judge the degree of generality with which the above hypothesis

fits the observed data for the range of different media represented in the

records available to us. These estimates will be based largely on a statistical
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analysis of the (R,,t) data in our database, as well -as current information

on the state of the -art in drilhng and surveying (for determining relative lo-

cations of gauges and the explosion center) and in timing technology. After

these constituent uncertainties have been estimated, the three-point analysis

method of Binninger and Wright [3 "141 will be applied to obtain the resulting

overall uncertainty in yield determinations produced by the strong-shock al-

gorithm The three-point methodology is an analysis tool which has proven

useful in evaluating the effects of the individuai uncertainties involved in

the application of a more complicated procedure. We will also attempt to

determine whether the 'blackout region", which severely reduces the like-

lihood of getting useful shock time-of-arrival measurements in the extreme

radiation environment near the device, places any significant restrictions on

the utility of the strong-shock algorithm over any substantial portion of the

yield domain of interest.

There are a number of factors which may reduce the effectiveness of yield

determination techniques based on the strong-shock algorithm. First, the

time-of-arrival (TOA) measurements must be taken in the hydrodynamic re-

gion of the blast, a region whose radius scales with yield and may therefore

become prohibitively small for low-yield events. There is also a minimum

stand-off distance inside which measurements are either impractical or use-
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less. High neutron and gamma radiation levels close Eo the device may

cause vaporization, melting or ionization of gauge elements. Also, in the

very near-field, non-ideal effects due to finite source size (Eqns. (1) and (2)

assume a point source) and finite cavity size become apparent. These are

factors which even in the best of circumstances can limit the usefulness of

algorithms based on Eqn. (1). Uncertainties in the relative locations of the

gauges with respect to the effective center of the explosion may also influ-

ence our ability to ma.e accurate yield determinations-using this algorithm.

These uncertainties may be related to limits on the absolute accuracy with

which the gauges may be placed or determined (drillins and surveying).

limited knowledge of the location of device, or offset of the effective cen-

ter of the explosion (ECE) from the location of the original device center.

It is conceivable that, under the circumstances of a verification situation.

accurately determined point-of-origin and explosion-time fiducials may not

be readily available. The effect. of each of these elements would evidently

become more pronounced for small yields. Our effort on this project has

been aimed toward quantifying the effects of each of these and other factors

on our ability to accurately make yield determinations from hydrodynamic

shock location measurements

We have attempted to quantify what we felt were the primary sources
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of uncertainty associated with the application of the strong-shock algorithm

to yield determination and treaty verification. One of the most important

questions which must be asked pertains to the primary assumption of the

strong shock algorithm itself. How well does Eqn. (1) -fit data for hydro-

dynamic shock location in a wide variety of different geologic media using

fixed values of a and b, and with what degree of confidence may it be ap-

plied in even the most ideal of situations? This question has been addressed

elsewhere,[6 '8} but our approach is from a somewhat different perspective.

The parameters a and b have both been empirically determined. [6) There

are a number of considerations involved in the determination of the parame-

ter b. It is clear that the location of the shock front and its velocity s',tisfy an

equation like (1) at every instant for some pair of values a and b. It is likely

that the appropriate value for b will lie somewhere between 0.4 (the ideal gas

limit) and 1 (the linear wave limit), with the lower value applying near the

source, and b - -1 as R - oc. Choosing a particular value for b effectively

selects a portion of the shock location history corresponding to-that value.

It was observed( 51 in numerical experiments using realistic material models

that the value b = 0.475 is sufficiently small to select an algorithmic region

which is relatively insensitive to geologic media (i.e., is within the hydrody-

namic regime), and is large enough to avoid many of-the perturbations due
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to emplacement geometry (e.g., pipe flow or cavity effects) which may be

evident in the near-source region for many tests. This value has been used

to successfully determine yields for a large number of underground nuclear

tests executed in a range of different geologic media.[6 ,8] For this -analysis,

we assume a fixed value of b = 0.475.

2.1 Nuclear shot data.

For this analysis, we have considered shock time of arrival data- from 43

U. S. DOE underground nuclear tests occurring between 1962 and 1983 and

published in Eilers ei al,6ll Goldwire and Geil [8] and Bass. [2] These repre-

sent all of the close-in (hydrodynamic) shock time-of-arrival records readily

available to us for use in this analysis. All of the events in our database

had yields greater than forty kilotons. Most of the data were obtained us-

ing the CORRTEX experimental technique, while the remainder come from

SLIFER records. -in all cases, the published "official yield" was used as the

actual yield for each event. For most of the events considered here. the of-

ficial yields were determined primarily from radiochemical yields, increased

by calculated or estimated underground enhancements. However, for some

events hydrodynamic yields were considered in the official yield determina-

tion, so that an entirely independent yield measure was not available for
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analysis.

We digitized the (W.) data points from Goldwire and Geil[81 for use in

this analysis. From these data. using Eqn. (1) we were able to reconstruct

what we felt was a reasonable representation of the original (R, t) data sets.

The range of the data for each shot to be used in our analysis of the standard

yield algorithm was taken from the Eilers et a! paper, 6] so that we would be

duplicating as closely as possible the the "standard" implementation of the

algorithm. This range of useful data defines, for our purposes, the so-called

algorithmic region for each shot.

With this information, our first analysis effort was to attempt to place

some uncertainty estimates on the value of the parameter a from Eqn. (I).

With a set of shock radii vs. time data, Eqn. (1) may be solved by linear least

squares for af t, which minimizes the sum of the squares of the deviations

between the official and computed yield at each data point in the algorithmic

region. Let the sum of the squares of the deviations be given by

2 w ) 2= Z o- ( )3/(,b))2

then it is easy to show that

OE= W (Rb/(b) , 

where-the above summations are taken over the (R,.t,) data pairs within
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the algorithmic region for a particular shot. Using this technique, we are

able to find a best value for the parameter a (in a least-square sense) -for

each-of the 43 events, and an associated standard deviation aoi', measuring

the spread in the -distribution about a/,, of the ai's generated-by the data,

where

= (aoit - ,)= Z i,. -, (5)

From-these results, namely, hij and a/i t for-each sho.-, we may determine

the best a for all of the events together by constructing the weighted average

of the individual values according to:

= an/anZ 1/. (6)

where the an and -,. are now simply -the a it and ofi, from Eqns. (4) and (5)

for each event, and the summations are now taken over the 43 shots. The

weighted standard deviation a which is to be used as our measure of the

uncertainty associated with the overall parameter d, is then computed from:

12 = E (an - a) 2 / a n (7)

In a similar manner, we can also construct the best a and associated standard

deviation for any subset of the database, such as for the shots taken in

alluvium, basalt, or some other material. Some of these results are shown
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Table 1: Parameter a statistics for different media.

Category a a No. cases

Alluvium 6.176 0.043 3
Basalt 6.162 0.063 2
Granite 6.221 - 1
Rhyolite 6.115 0.094 8
Tuff:

Partially Saturated 6.107 0.054 3
Saturated 6.064 0.075 25

Tuff/Rhyolite 6.143 - I

All shots 6.085 0.082 43
Basalt and Granite 6.164 0.062 3

in Table 1. The value of i = 6.085 which we obtained as the best value for

all 43 events-agrees well with the Eilers et al 6} value of a = 6.093. The o

associated with each a provides a measure of how well these events fit within

the framework of the algorithm with fixed values of a and b.

Note that this estimate of the uncertainty in a necessarily includes a

contribution due to the uncertainty in the determinationof Wo. the official

yield. For example, it is conceivable that a single value of a is in fact correct

for all of these events, and that the observed scatter is due entirely to error in

the official yield determination. Although this is indeed possible, the stated

official yields are our best available estimates of the actual yields, and in the

absence of other independent measurements, these must be regarded as the
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true yields for the events in this study.

In Figure 3 the af1 t's computed using Eqn. (4) are shown plotted as

a function of the density of the event medium. The best linear fit in the

least-squares sense to these points is also shown, suggesting a possible small

systematic density dependence for the parameter a.

a vs Density

A

AAA A

1.5 1.75 2.00 2 25o 2.0.75 
3.00

Specific Density
Figure 3: Parameter a plotted as a function of medium density.

A second-source 
of uncertainty associated with application of the hydro-dynamic yield algorithm stems from uncertainty 

in our knowledge of R ,
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the precise location of the shock front with respect to the effective center

of the explosion. In this simplified analysis in which we assume that the

shock is-spherically -symmetric, the primary causes of uncertainty in R, are

the uncertainties in the locations of particular points on the CORRTEX

or SLIFER cable with respect to the device-or more properly, the effec-

tive center of explosion (ECE)-due to survey error, and uncertainty in the

shock front location-due-to cable dynamic crush length uncertainty. Using

state of the art technology, drill holes can be surveyed to accuracies of less

than 0.01% of the hole depth,W11 ] or 1 cm at 100 meters. Dynamic crush

length uncertainty, or the uncertainty associated with the exact location of

the crush front on the cable, is claimed to be about ±15 cm -f~r SL[kFER

and ±3 cm for CORRTEXJ 6] Our analysis of the data, based on the scat-

tering of the data points about an ideal smooth curve, suggests the overall

uncertainty in R, for all 43 events (including both SLIFER and CORRTEX

records) to be about ±-18.5 cm at the 2a level. These data may reflect un-

certainties in R, due to the above factors as well as other factors not listed

here, such as nonspherical shock propagation or cavity effects.

In a verification situation, limited knowledge of emplacement geometry

may make it difficult to-predict a priori the location of ECE, and accurate

explosion time fiducials (to establish t = 0) may not be available. These
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problems have been addressed in a limited sense for 1-D (spherical) geometry

by Goldwire. [7 It seems clear that,-in the real world of m' '.iple dimensions,

these types of systematic uncertainties in R, and/or ! .... .- ,Tectively re-

moved by employing two or three CORRTEX cable rui. -!outed around

the device emplacement hole. Clean records from two inde:,endent measure-

ments could be used to establish one unknown (either ,'-.... r i = 05 if the

other were known), while three independent mcasurements could estabiish

both.

Ve estimate that the uncertainty in the measurement of t itself is neg-

ligible compared to those in a and R, since, with modern timing devices.

measurements can be made to almost arbitrary precision.

2.2 Blackout region

We also investigated the possible significance of the so-called "blackout re-

gion" inside of which TOA measurements would be precluded because of the

severe radiation environment at shot time. Beat generated by the intense

neutron and gamma ray fluxes close to the radiating nuclear device may lead

to vaporization, melting or ionization of the TOA gauge elements, prevent-

ing valid time of arrival measurements in this region. Electromagnetic -pulse

(EMP) and induced Compton currents in cables and dielectrics can also
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severely degrade measurements in the near-source--region. We obtained es-

timates of the radiation fluence levels at which CORRTEX hardware could

Sul Vive and successfully operate, typical n--f -fluences from a modern ra-

diative device, and an effective absorption coefficient for 7-rays in -a dense

rock medium (e.g .ranite). [ 12 1 Ignoring any systematic dependence of the

source spectrum on yield, we assume that the-output fluence from the device

is proportional to the yield. This leads to the equation,

rB e B Cw. (8)

where rB is the radius of the blackout region, and the constant of propor-

tionality may be determined from the above estimates. Carrying out this

procedure, we obtain a curve for the -estimated radius of the blackout region

in a dense rock material. This curve is plottec in Figure 4. Also shown are

two curves showing the approximate-extent of the algorithmic window for

the strong shock yield algorithm, using 0.16 ms/kt'/ 3 and- 0.60 ms/kt' /3 .

This (estimated) srner limit of the algorithmic region lies clearly outside of

the estimated blac.out region, suggesting that radiation effects of this sort

probably do not significantly restrict the regioa cf -validity of the strong-

shock algorithm in media of this type.
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Measurement Region
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Figure 4: Blackout region and algorithmic window (estimated).

2.3 Three-poini analysis

• -. We --ow have identified certain error-sources associated with the strong-shock

yield determination methodology, and have established-reasonable estimates

of their constituent uncertainties. In the simplified situation considered here.

the primary sources of uncertainty are believed to reside in the measurement

of R, with respect to the effective center of explosion, and in the degree of

universality associated with Eqn. (1) using constant values for a and b. The
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next step is to assess how these constituent uncertainties affect the overall

uncertainty for the yield determination method as a whole. To accomplish

this, we employ the three-point analysis of Binninger and Wright. This

methodology provides a quick and easy way to evaluate and rank the effects

of the above uncerf %inties which are involved in-the application of the-yield

algorithm. The results provided by the three-point method have been shown

to compare favorably to those produced by more mathematically rigorous

statistical methods such as Monte Carlo.131

To implement the three-point method, we first produce nominal, upper

and lower bound values (at the 95%- confidence level) for each of the variables

which we wish to include in the uncertainty analysis. This is essentially the

2a level for normally distributed random variables, so here we use

a = {5.921,6.085.6.249}

(9)
RS = {Ro - 18.5cm, Ro, R0 + 18.5cm}.

The value for Ro is computed using Ro = aibW -b)13 with a = 6.085, b =

0.475 and t = 0.38 ms x W113 , where W is the yield in kilotons. This value

for t is chosen to place it exactly in the center of the nominal algorithmic

window which ranges from 0.16 to 0.60 scaled milliseconds. Clearly, Ro is

yield dependent, while a is not Tcr a given yield event, we now construct

a table of the yields which would be predicted from a single measurement
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using each combination of values in (9). As an example, for a 1 kt shot.

these values would, according to Eqn. (2), generate a table of W values as

shown in Table 2.

Table 2: One kiloton example.

Ro values

3.658 3.843 4.028

5.921 0.882 1.169 1.529 med = 1,169
a 6.085 0.754. 1.000 1.308 med = 1.000

values
6.249 0.648 0.859 1.124 med = 0.859

med = 0.754 med = 1.000 med = 1.308

To quantify the effect of-the uncertainty in a, for example, on the total

dispersion in W, the variate a is fixed at its lower bound values, and then

values of W are determined according to the values of Ro. These values for

W are ordered according to ascending values of /o as shown in the first row

of the matrix in Table 2. Similarly, the-values of W are determined over the

range of Ro for a fixed at its nominal value (refer to the middle row), and

then for a fixed at its upper value (third row).

The effect of a on the dispersion in W is then determined from the sum of

the absolute differences between values in each column (measured from the

median in each column). Observe that for this example the sum of absolute



2 ANALYSIS 23

differences taken over the three columns of the matrix is 0.949:

V. = W., - medl
; .,

= 10.882 - 0.7541 + 10.754 - 0.7541 + 10.648 - 0.7541

+ 11.169 - 1.0001 + 11.000 - 1.0001 + 10.859 - 1.0001 (10)

+ 11.529 - 1.3081 + 11.308 - 1.3081 + 11.124 - 1.3081

= 0.949.

A similar procedure is used for R, this time taking the absolute differ-

ences across each row. Summing these differences for each row in Table 2

we get

VR, =Z IW, -med, I
3 1 (11)

= 1.677.

The relative contribution of the uncertainty in a or R, to the total disper-

sion in W is found by dividing the sum of the absolute differences found for

each component source of uncertainty by the total sum of those calculated

for both a and R,. Thus

0.949
a contributes: 0.949 36%. (12)0.949 + 1.677

and
1.677

R, contributes: 64%. (13)
0.949 + 1.677-
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This procedure may be repeated for any desired nominal yield to generate

the curves in Figure 5, which show the relative contributions of the a and

R, uncertainties as a function of yield for 0 < W ( 150kt.

.Uncertainly Contribution vs Yield

a

KEY
aa

---------------------------------------------------

o.o 25.0 50.o 7i.0 100.0 12i5. 150.0
Yie!d (kt)

Figure 5: Relative contributions of uncertainties in a and R, as a function
of yield.

To estimate the uncertainty in yield which is produced by these sources,

we use the three-point method results from Table 2 to construct the ap-

propriate log-normal distribution corresponding to these results. The log-
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normal parameters estimated from the three-point results include the me-

dian W112 and fl, where 6 is a measure of the dispersion exhibited by a

log-normal variate. The log-normal distribution f(W) is defined-by

f(W) W-1 exp{-(ln W -In W 12)
2/2 2), W > 0. (14)

The procedure followed to quantify these parameters is as follows:

Wt/2 = median value determined from array of W values,

I )nW,:j/2)' (15)

P2 = E
N-1

For our I kt example, we get the log-normal parameters W11 2 = 1.0 and /6 =

0.273. With the distribution thus defined, we-can compute the probability

that W lies below a certain value, say WF , from the equations
IWF

F(WF) X0 j -I exp.{-(ln z - In W1 1/ 2 )2 /23 2 d
727 foaWlm

= - exp{-Z 2/2, 2} d (16)

=~ {1+ef (n(WHIWii 2 ))
- I_{ +erf['C~ W/) }-

where erf(z) is the standard error function.i1 ] Solving Eqns. (16) for F =

95%, we can compute the 95% confidence level yield threshold, W95%, for

a given yield determination. In our example, if a 1 kt yield determina-

-tion were madeby applying the strong-shock yield algorithm to a given set

of TOA data, and assuming that the foregoing assumptions are true, then
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solving Eqn. (16) with W1/2 = 1 kt and F 95% we get W9 % = 1.57 kt.

That is, we can be 95% certain that the true yield of the measured-event is

below 1.57 kt. A similar procedure may be used to compute the any confi-

dence limit, WF, for any nominal yield W1 2. Figure 6 shows the quantity

(WF - W)/W (the fractional yield uncertainty) plotted as a function of the

nominal yield, W, at the 95, 85, 75 and 65 per cent confidence levels. Each

curve shows the threshold yield (at a particular level of confidence) under

which we would expect a given event to fall, if the algorithmic yield had

been determined as W. Thus, for example, if the algorithmic yield for a

particular event is, say, 100 kt then our analysis indicates that we can be

95% confident that the true yield does not exceed this value by more than

27%. For large yields, the fractional uncertainty at the 95% confidence level

appears to asymptote to about 24.5%. This is because the uncertainty in

R, becomes relatively less significant for large yields (see Figure 5), and

the yield uncertainty becomes more dominated by the contribution from

the algorithmic parameter, a. which is independent of the magnitude of the

yield. As the yield approaches zero, the uncertainty in R,-becon' relatively

more important and the fractional uncertaintyin the determination of W in-

creases dramatically, with fractional yield uncertainties (at 95% confidence)

greater than 37% at 5 kt, 46% at 2 kt and 57% at 1 kt. For lower levels of



2 A NA LYSIS 27

confidence, the fractional uncertainty curves are commensurately lower, but

still show a sharp rise in the low-yield limit.

fractional Yield Uncertainty vs Yield

C

KEY
0 957.

65%

........... ...... ..... ............ .......... ...

C!

0.0 25.0 60.0 75.0 100.0 125.0 150.0

Yield (kt)

Figure 6: Fractional yield uncertainty as a function of yield.
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3 Conclusions

Our-finding of yield uncertainties for the strong-shock algorithm-in the range

of 24 -28% for events with yields greater than about 40 kilotons is some-

what higher than the overall uncertainty of approximately 20% found by

Eilers et a 6] and Goldwire and Geil.[ 8] This difference is likely attributable

in large part to the differences in approach taken in the studies, and our

limiting value of 241% for high yield is fairly close to the earlier results.

These earlier studies also do noL explicitly make our assumptions of a fully

.coupled event and spherical shock propagation. However, the ranges of

yields considered effectively insured total coupling, while knowledge of the

emplacement geometry, accurate time fiducials, and appropriate choice of

the algorithmic time window assured that for the range of data considered

the shock front was essentially spherical with known ECE. In a validation

environment some of this information may not be available, so steps must

be taken to assure that measurements in the hydrodynamic (algorithmic)

,regime are also in the -region of spherical shock propagation, and a suffi-

cient number of measurements taken to be able to pinpoint the ECE and

initiation time.

We extend our results into the limit of low yields. Here we find that as the
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yield goes to zero, the fractional yield uncertainty rises sharply, with yield

uncertainties of about 33% at 10-kt, 37% at 5-kt, 46% at 2 kt and-57% at 1 kt.

Any deleterious effects on yield analysis-due to possible cavity decoupling,

timing uncertainties, asymmetric device placement or other nonspherical

geometry would of course be magnified at low yields, increasing the-level of

-uncertainty in the resultant algorithmic yields in- this regime.

Our analysis shows that the so-called "blackout region" in which mea-

surements are precluded due to the extreme radiation environment does not

appear to significantly restrict the application of the algorithm for events

surrounded by a dense geologic medium. If a significant amount of the mate-

rial between the device and- the-measurement regime is air (as in the case of

a-large emplacement cavity, for example), the range of this exclusion region

w-vuld of-course-be extended, possibly precluding valid TOA measurements

in the algorithmic region.

For fixed b = 0.475, the algc-ithmic parameter a does not show any

strong systematic media dependence, although there is e light indication of

variation with material density. Ths finding is in general agreement with

that of Goldwire and Geil. [8] Most of the data available to us were from

events executed in fully saturated tuff (25 out-of 43 shots), with few shots

in each of six other types of geology. We believe that there is sufficient data
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to establish that a does not vary much with geology, but useful conclusions

about the magnitude of the variation which might be used to fine-tune the

algorithm require more data in media other than tuff.

Finally, we must mention that our analysis is based upon a special data

set, in particular, one in which all of the records have some valid algorithmic

data. A more representative sampling of data records may include records

without any valid data in the algorithmic region (due primarily to aspherical

shock propagation or cavity effects). Such cases may be difficult to detect

without independent knowledge of the device yields. Using satellite holes

for CORBTEX reduces this risk by avoiding pipe-flow problems, but the

effect may be similar for a small yield event taking-place in a relatively large

cavity, since the algorithmic region is necessarily close to the cavity wall

in these cases. This effect may be increased by asymmetric placement or

detonation-of the device. Care must be taken to apply our results in such a

way that our assumptions of total coupling and spherical shock propagation

are valid.
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