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The need for a new time dependent neutron and gamma radiation transport code
that can model some anisotropic flux characteristics, have a flexible spatial dis-
cretization for different.geometries, have the-ability to model strong energy depen-
dency, possess an inherently stable scheme for time discretization, and use a stable
iteration algorithm led to the development of FMP2DT (Finite element, Multigroup,
P,, 2-Dimensional, Time dependent). Using spherical harmonics to discretize the
flux’s angular dependency, a P; angular flux approximation was made to model
anisotropic flux behavior. Finite elements were used to discretize its spatial depen-
dency. The Galerkin procedure was used to develop the finite element equations for
both XZ slab and RZ cylindrical geometries. An implicit method, Euler’s backward
differencing scheme, was used to discretize in time to insure time step stability. A
multigroup approximation allows modeling systems that have a strong energy de-
pendency. The source options include fission, inhomogeneous sources, and delayed
neutrons. Gamma sources may be independent inhomogeneous sources or the result
of particle interactions. The solution algorithm used invokes an incomplete Cholesky
conjugate gradient method, which has inherent numerical stability. FMP2DT was
benchmarked for both slab and cylindrical geometries. Two problems were selected

to demonstrate FMP2DT’s applicability. Both involved the observation of the neu-




tron flux decay after pulsing a source. First, the UNM AGN-201 reactor, initially at
a critical state, was subjected to a-pulsed neutron source at its center. The spatial
decay of the neutron flux was observed to determine the time in which the funda-
mental-mode begins te dominate. This information is important for what is called
Rossi-alpha experiments because it indicates the proper time to gate counters so
that data is not influenced by higher modes. Second, a uranium logging problem
was addressed. A 14 MeV neutron source was turned on-for 10 microseconds and the
flux decay at differing spatial points was observed. This information sh.wed that
the counters need to be calibrated for different distances from the source because
a distinct flux decay behavior was observed at each spatial calculation. For both

problems, FMP2DT showed that knowledge of the flux decay physics is important

to obtain accurate counting data.




Abstract

The need for a new time dependent neutron and gamma radiation transport code
that can model some anisotropic flux characteristics, have a flexible spatial dis-
cretization for different geometries, have the ability to model strong energy depen-
dency, possess an inherently stable scheme for time discretization, and use a stable
iteration algorithm led to the development of FMP2DT (Finite element, Multigroup,
P,, 2-Dimensional, Time dependent). Using spherical harmonics to-discretize the
flux’s -angular dependency, a P; angular flux approximation was made to model
-anisotropic flux behavior. Finite elements were used to discretize its spatial depen-
dency. The Galerkin procedure was used to develop the finite element equations for
both XZ slab and RZ cylindrical geometries. An implicit method, Euler’s backward
differencing scheme, was used to discretize in time to insure time step stability. A
multigroup approximation allows modeling systems that have a strong energy de-
pendency. The source options include fission, inhomogeneous sources, and delayed
neutrons. Gamma sources may be independent inhomogeneous sources or the result
of particle interactions. The solution algorithm used invokes an incomplete Cholesky
conjugate gradient method, which has inherent numerical stability. FMP2DT was
benchmarked for both slab and cylindrical geometries. Two problems were selected
to demonstrate F'MP2DT’s applicability. Both involved the observation of the neu-
tron flux decay after pulsing a source. First, the UNM AGN-201 reactor, initially at
a critical state, was subjected to a pulsed neutron source at its center. The spatial
decay of the neutron flux was observed to determine the time in which the funda-
mental mode begins to dominate. This information is important for what is called
Rossi-alpha experiments because it indicates the proper time to gate counters so

that data is not influenced by higher modes. Second, a uranium logging problem




was addressed. A-14-MeV neutron source was turned on for 10 microseconds and the
flux decay at differing spatial points was observed. This information showed that
the counters need to be calibrated for different distances from the source because
a distinct flux decay behavior was observed at each spatial calculation. For both

problems, FMP2DT showed that knowledge of the flux decay physics is important

to obtain-accurate counting data.
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differencing scheme, was used to discretize in time to insure time step stability. A
multigroup- approximation allows modeling systems that have a strong energy de-
pendency. The source options include fission, inhomogeneous sources, and delayed
neutrons. Gamma sources may be independent inhomogeneous sources or the result
of particle interactions. The solution algorithm used invokes an incomplete Cholesky
conjugate gradient method, which has inherent numerical stability. FMP2DT was
benchmarked for both slab and cylindrical geometries. Two problems were selected

to demonstrate FMP2DT’s applicability. Both involved the observation of the neu-

vi




tron flux decay after pulsing a source. First, the UNM AGN-201 reactor, initially at
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1 - Introduction

Interest in nuclear power for both space exploration and terrestrial use has increased
in the technical community in the recent years. Potential space missions that will
demand dependable power levels beyond conventional sources are now being con-
sidered with-new enthusiasm. President Bush has recently expressed his desires for
the nation to become committed to putting a space station in orbit and developing
a lunar ba. that will act as stage for the exploration-of Mars. There are sugges-
tions within the civilian community that the development of manufacturing plants
in space is receiving strong consideration. Nuclear power is seen as a feasible source
of the energy needed to accomplish these goals.

Likewise, developing strong concerns of possible greenhouse effects from using
fossil fuels is renewing interest in developing small terrestrial nuclear reactors with
passive safety designs. Even some established critics of nuclear power suggest that
nuclear power would be acceptable if reactor designs with new passive safety features
are developed. It is evident that nuclear reactors will be included in future energy
considerations.

Therefore, development of new analytic tools is desirable to enhance reactor de-
signs. This research resulted in developing a new finite element code which will be
used in reactor design, development, and analysis, or for any time dependent radia-

tion transport problem defined in XZ or RZ geometries.

1.1 Research Objectives

The object of this research was the development of a new neutron and gamma ra-

diation transport code with the followin, characteristics. It must be able solve two




dimensional time dependent problems in either XZ slab or RZ cylindrical geometry.
The angular flux must be defined so that some anisotropic flux behavior can be
modeled. The spatial discretization must be adaptable to both XZ and RZ geome-
tries, as well as future options that may be incorporated later. The code must have
the ability to model systems that have strong energy dependency. And finally, if a
system is-modeled involving-one or more fissile isotopes, the source must include a
delayed neutron contribution.

The code will be used to investigate the following:

a. Neutron wave effects.

b. Spatially dependent subcritical and critical source driven
transients.

c. The effect on accuracy of tradition approximations in
solving time dependent transport problems. This will
include comparisons with:

i.  The diffusion approximation.
ii. Treatment of the fission source.
iii. Treatment of upscatter.

The code will then be benchmarked and some few-group problems identified and
solved that demonstrate the code’s validity and applicability.

FMP2DT (Finite element, Multigroup, P,, 2-Dimensional, Time dependent) was
developed to met these objectives. It solves time dependent neutron and/or gamma
radiation transport problems in XZ and RZ geometries. Finite elements were se-
lected to implement spatial discretization, and the time discretization was done using
Buler’s backward differencing scheme.

The finite element scheme is employed by expanding the solution of a set of local
partial differential equations with a set of basis, or interpolating functions. Using the
Galerkin procedure, interpolating and weighting functions were chosen that adapt
to both of the stated geometries, or any geometry option added later, no matter how

irregular it may be. The finite element method has a firm theoretical foundation

o




which guarantees convergence of the approximate solution [Ref. 4].
Euler’s backward differencing method was used for the time discretization. This
is an implicit scheme that is numerically stable for any time step [Ref.3] [Ref. 26].
The angular dependency of the angular neutron flux was modeled using spherical

harmonics. Spherical harmonics form a complete set of functions that describe the

angular dependency of the neutron direction {Ref. 1]. Spherical harmonics yield

solution results of arbitrarily high degrees of accuracy depending on the expenditure
of labor to do the resulting calculations [Ref. 2]. At least a P; approximation is a
necessary-requirement to observe neutron wave behavior and model some-anisotropic
behavior-of the flux. All of this applies-to the gamma flux also. Therefore it was

modeled likewise.
1.2 Literature Search

A literature search conducted in July 1989 revealed no previous finite element neu-
tron code developments with delayed neutron sources and inhomogeneous sources.
There are numerous codes that model time dependency with other discretization
characteristics.

Kinetics codes are available with numerous finite differencing schemes. Monte
Carlo codes are available in which a detailed spatial model of the reactor can be
accomplished. All of these codes have legitimate applications where they have ad-
vantages over other methods. They also have their constraints. Monte Carlo codes
require a statistical approach, and experience is needed to cnsure validity for differ-
ent reactor configurations. The finite differencing scheme is the most used solver.
For stiff problems, mesh spacing can be complicated, and implementing various

boundary conditions can be tedious.

The finite element code devcloped by this research is more flexible. The ap-




proximating, or interpolating, functions used in the code allows the incorporation-of
complicated geometries. Boundary conditions are-carried with each finite element,
and therefore somewhat easier to implement than-for other schemes. In fact, imple-
mentation of the boundar> conditions appears to be the most attractive feature-of
finite element solution schemes.

Finite element codes have been used in neutron transport codes for sometime.
Several codes exist for steady state analysis. FEMP1D (Finite Element Multi-group
P, 1-Dimensional) is a radiztion transport code for infinite slab geometry. Buckling
height corrections are nezded to adjust for leakage. This cocde is very cost effective .
FEMP2D is a two-dimensional version which analyzes a steady state configuration.
It is a P; code designed to handle XZ, RZ and RO geometries. Likewise, FEMP3D
is three dimensional. These codes are all written for vector machines and are coded
in FORTRAN 77.

PERT2D is a finite clement perturbation code that models small changes in re-
activity [Ref. 19]. A one dimensional, time dependent, finite clement code, TDF1D,
is alse available, but it does not have a delayed neutron precursor source contri-
bution [Ref. 25]. SHLDTEMP is a coupled radiation transport and temperature
distribution code written at The University of New Mexico [Ref. 24].

J. K. Fletcher has suggested finite clement options in some of his transport codes
for steady state [Ref. 11]. Finitc clements have been used to discretize the angular
dependency of the neutron direction in other neutron codes. So the foundation for
using finite clements in neutron transport is strong. However, the literature scarch
did not reveal any previous finite clement, spatially discretized, multidimensionai

transicnt codes. Therefore, the development of this new code had a strong theoret-

ical foundation, and it contributes to the work previously done.




1.3 Importance

The importan .e of this effort is that a finite element code now exist for time depen-
dent radiation transport and nuclear reactor analysis. The code is both relatively
easy to set up and economical to-use. Benchmarking shows that it achieves an ac-
ceptable degree of accuracy for XZ and RZ geometries. Delayed neutrons can now
be'modeled in the.source terms. Although delayed-neutrons have an extremely small
population in reactors compared to prompt fission neutrons, their presence ensures
that the reactor is controllable. Thus, developing a finite element code that con-
siders their source contribution is a credible enhancement and contribution to the
inventory-of codes now available. This code will make a contribution to fundamental
engineering knowledge. It is also a valuable stepping stone for the development of

higher order approximations in future research.




2 The Time Dependent Transport Equation

Neutron transport theory »- .s a mathematical expression which describes neutron
interactions in a given medium. For any arbitrary volume, the time dependent

neutron transport equation may be written in the following form:

%%\Il(r, E,Q,1) + Q- VU(r, E,Q,1) + 5((r, E) Ur, B, 2, 1)

= / / Su(r, B — E, Q' — Q) U(r, E', Q' t) dS¥' dE’
E Q

+ Xp(£) (1-B) / / vEi(r, B ¥(r, E', Q1) dY dE'

47
E' v
1 n
+ = 2 Xk(E) M Cu(r, ) + Sin(r, E, Q1) )
k=1

Where Equation (1) states the relationships between source and loss terms such

that:

{ The time rate of change of } n { neutron } +{ total }

the neutron angular flux streaming interactions

={ neutron } +{ prompt fission } + { delayed }

inscattering neutrons neutrons

n inhomogeneous
sources )

The-streaming and total interaction variables represent loss terms, where the terms
on the right hand side represent sources. The angular neutron flux, ¥(r, E,Q,1),
is a function of spatial variables incorporated in r, neutron energy E, angular vari-
ables incorporated in €2, all of which are evaluated at time t. € is represented by
an azimuthal angle ¢ and a polar angle 0 in an orthogonal coordinate system. The
polar angle is usually described in terms of its cosine. A complete set of functions

that describe the angular dependency of the neutron flux are spherical harmon-

ics [Ref. 1]. For XZ and RZ geometry, with azimuthal symmetry, the angular flux




may be-completely described with the spherical harmonic expansion as,

U(r, E,Q,t) = i Zl: g%—lP,"‘(cos 0) Yrm(r, B, t) cos(me) (2)

=0-m=0

Likewise, the inhomogeneous source may be-expanded as,

1=0 m=0 dr

Sin(r, E,Q,1) =

" (cos 0) Sim(r, E,t) cos(mg) 3)

P™(cos 0) are associated Legendre functions of degree [ and order m [Ref.-5]. They
are orthogor:»l on the interval § = 0, to § = 7 radians. They obey the recurrence

relationships [Ref. 11]:

(21 +1) cos0 P*(cos0) = (I—m+1)Pj(cosd)+ (I +m)PC(cos0) (4)
(21 +1) sin0 P*(cos¥) = Pl (cos8) — P (cos0) (5)
(21 +1) sin0 P™(cos0) = (I+m)(l+m—1) P *(cosb)

—(I=m+1)({ —m+2) P (cos ) (6)

The streaming term in Equation (1) is @ - V¥(r, E,,¢). This term is a rep-
resentation of the rate of change of the neutron’s angular flux along a streaming
path [Ref. 12]. The Q- V term is sensitive to the geometry in question. For XZ

geometry, it is defined as,

a , . 0
Q-V—coso-a—z+sm0cos¢5; )

For RZ geometry, with symmetry in its azimuthal coordinate, it is defined as,

_ a . 0 sinfsing 0
Q-V-cos06z+31n0cos¢5-1:— . 5 (8)

The inscattering probability (or cross section) in Equation (1) may be represented

as

2041

(0, B = B,QY - Q)= I

=0

5, (r, B' — E) P(Q - Q) (9)




By the addition theorem [Ref. 6], we may write

1 = m)!

(T m)! P™(cos 8) P (cos §') cos[m(¢ — ¢")] (10)

mﬂfnn@mmmmnzy
Therefore the inscatter cross section may be expressed as,

Sy, E' = E, Q' Q) =

)
21+

47r1 Iy {Pl(cos())l’g(cosﬁ')+2 Z ({=m)

[+ m)

P™(cos) P @wW)m¢M¢—¢m} (11)

1=0
Exact solutions to Equation (1) are possible in only a few special cases. In prac-
tice, approximations are made to-the transport equation to generate solutions that
are accurate enough for specific physical interaction processes. We now consider

the development of an approximate solution to the transport equation for XZ slab

geometry.




3 Solution in X7 Geometry

To get an approximate solution to the transport equation in XZ geometry, the
correct substitutions shown above are implemented into Equation (1). The transport

equation.-is then transformed-into the following form:

2 Koo+l
+-cos§ % > T P*(cos 0) 1y, cos(md)

o) ]
+sin @ cos ¢ £ Z Z 21; 1 P™(cos 0) 1y cos(mg)

P*(cos 0) Py cos(me)

0 ]
2 Z 21_:;1 P*(cos 0') 1y cos(md') dS¥' dE’

4
0 l
+/ / y — A+1 —Z,(2) > (1= m) P,"‘(cosO) P™(cos®’) cos[m(¢p — ¢')]

Q) =0 4'/T m=1 ( )
— d 21 ! / ! 7
SN P, cos ') Py cos(m¢’) dY dE
1= m=0 dr
oo
X 204+1 ' ’ rom
£ (1~ ) vy ———— P (cos &) 9., cos(mé’) dV dE
Huen ][5 5 B
e L2yt
+>3>° -—ll%—P, (cos0) Sy cosy - @)
1=0 m=0 '
1 n
i 1.}: Xk Ak Cy (12)
=1

Equation (12) can be imn:ediately simplified by defining fission as an isotropic
event. This has been shown to be experimentally correct [Ref. 7], and it sets [ =

m = 0 in the fission term. Some of the 2’ lerms can also be simplified by integrating




over all directions. This integration is defined as,

0 2«

/ a9 = / / d¢' d(cos0') = dx (13)
] 0

and, it can be immediately used in both the fission and inscattering terms. Asso-

ciated Legendre functions are orthogonal. Integration of these functions is defined

as’
2 (I4+m)!
2041 (1 —m)!

where §x and &, 5 are Kronecker delta functions. Since P{(cos 8) = 1.0, multiply-

0
/ P (cos 0) P¥ (cos 0)d(cos §) = Sikbmn (14)

ing.any term in Equation (12) by P$(cos 8) will not change the equation’s valie. To
implement_orthogonality (at a later time), the precursor term-and the fission source
term can be multiplied by P§(cos§). Using the above information yields,

i Z (21 + 1) P*(cos 0) 1 m cos(m)

I=0 m=

S

eS|
o

M-~

+ (21 +1) cos 0 P*(cos 0)

cos(mqb)

0

8 T8
M- i

+

(20 +1) sin0 P"(cos 0) ag;m cos(m@) cos ¢

ir
o

s 3

0

zI: (21 4 1) P*(cos 0) P cos(md)

m=0
(20 +1) B,, Pi(cos 0) Z YrodE’
E’ I= 1-0

) 0 !

+/ (21 +1) B, P(cos0) S 5" i cos(mg) dE'

E 1=1 I=1 m=1

+ X
=

M8°

o

+ Xp (1—,3)/1/2f1/)00dE'P3(c0s0)
E
co |

+3° ) (21 + 1) P™(cos 0) Sy cos(m)
=0 m=0

-+ Z Xk Ak Ch Pg(cos 0) (15)
k=1

Note: P™(cos0) = Pi(cos0) if m = 0. The following trigonometric identity may
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now be implemented:
1 1 :
cos(me) cos¢ = 3 cos(m + 1)+ 3 cos(m —1)¢ (16)

We can substitute Equation (16) and implement recurrence relations defined by

Equations (4), (5), and (6) and manipulate so Equation (15) becomes,

5 o 1
Zaﬁ. > 3 (20 + 1) P(cos ) P cos(mp)
v tl=07m=0
o 1
+@ Y ¥ (I -m+1) P2 (cos a) — cos(mé)
[=0 m=0
oo I 31/)
+(2) Y. > (1 +m) PP (cos6) cos(mg)
1=0.m=0 az
oo |
£33 Bt Heost) 2 cos(m +1)¢
=0 m=0
o | ad’lm
—E Z P (cos 0) . cos(m + 1)¢
{=0 m=0 T

S (1+m)(I+m—1) P (cos ) ¢lm cos(m —1)é

l

-+

MS EMS

o

Y. (I=m+1)(1—m+2) PRy (cos ) ¢mcos(m—1)¢

=0

ir
°
3

ZI: 20+ 1) P*(cos 0) 3y, cos(md)

m=

21+ 1) Z,, P(cos0) Y o dE’

+
=
e
M8 °

-~
1]

o
O

1l
IS
s

)& =
+(2) E] g;(zz +1) 2, P™(cos0) é n‘é Dim cos(me) dE’

+@)x (1-8) B/ v 21 oo dE' PY(cos0)

F O3 3 @1+1) B (e0s0)Simcosme)

+(2) Lz_jl 3 M Cs PO(cos 0) (17)

Next, the subscripts and superscripts may be set to put the transport equation back

in terms of spherical harmonics. This can be done because starting an infinite series
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expression at a different point will not change series ¢ -uvergence as long as all the

series indices are likewise changed. Accomplishing this produced this form:

o 1
302 > 32 (21 1) B(c0s0)um cos(md)
oo I
+(2) IZ Zo (1= m) P*(cos 0) ¢l"1m cos(mg)
=l.m

l

+2) D> (1+m+1) PP (cos ) ——= ¢l+1m cos(m¢)

=0 m=0

8

+> l Pl {cost)———— ¢l lm L cos(mg)

=1 m=1

—1—21 Z P,’"(cos0)—¢lg;f—l-cos(m¢)

S (4 m42)(+m+1) PP (cosO)—il)%l—"iﬂ s(m)

ms

=3 B (= m = 1)(t - m) P(cos ) 221 cosmg)

m=-1 3

8

8

+

[=

g T8

1
i

s

oo
+(2) 2 Y Y (214 1) P (cos0) Py, cos(me)
=0 m=0

= (2) / > (214 1) E,, Pi(cosd) i Yo dE’

E! =0 =0

Lo o]

+(2) / > (21 +1).8, P*(cos §) i fl_: Yim cos(me) dE’

B =1 =1 m=1

+©2)x, A= f) / v 5 oo dE' PO(cos 0)
E'
o |
+(2) Y Y (214 1) P™(cos 0) Sy cos(me)
{=0 m=0

+ (2) Z Xk Ak Ch Pg(COS 0) (18)

k=1

Equation (18) is still in exact form. However, the summations to infinity prohibit
practical implementation. The expansion coeflicients ¥, are what we are ultimately
solving for. They can be found by integrating over all directions and using orthog-
onality. If every term in Equation (18) is multiplied by P¥ (cos 0) cos(N¢), and the

integration over all directions is done, there are two orthogonal relationships to ad-
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dress. One has been defined by Equation (14). The other is related to the azimuthal

angle, ¢. It is-defined as:
9x 0 if m#N

/ cos(m) cos(Ng)dp={ ©# if m=NH#0 (19)
0 2r iff m=N=0

Now we multiply Equation (18) by P¥(cos 8) cos(N4), and set it up to integrate

over all directions. This yields:
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-Pf¥{(cos 0) cos(N $) d¢ d(cos 0)

0 27w

/ f Xp (1= B) / v S ondB' PY(cos 0)PY (cos0) cos(N ) d d(cos 0)
.
/
27

!

So far no approximations to the transport equation have been made. Simplifications,

+(2)

I8

m=0

+(2)

Ao Ao ¥

NgE

Xk M Cr P3(cos 0) PY (cos 8) cos(N@) de d(cos 0)

k=1

such as the isotropic nature of fission, were theoretically correct. However, we are
now ready to incorporate some approximations to the transport equation to get it

into a solvable form.
3.1 The P, Approximation

Equation (20) is exact. Now the first. approximation to the transport equation-is to
be made. The summation over [ is truncated to somne finite value for the angular
flux and inhomogeneous source expansions. Truncating the upper limit of { also
sets the upper limit of m. If [ = ¢, then m = 0 in all cases. If [ = 1, then m can
take on values of 0 and 1. For certain values of [ and m some summation terms
in Equation- (20) will not ex's.. Making the P; approximation states that either
all expansion coefficients 33, = 0 or that the partials of 1,,, in either the z or z
directions are approximately zero. Therefore this approximation s not uniquely

defined.

The P, approximation states that the angular flux can be adequately defined by

1 3
\I’(I‘,E, Q, t) = EPg(cos 0) ‘ll)oo(l‘, E, t) 4 -‘G Plo(COS 0) 1[)10(1‘, E,t)

+ %P}(cos 0) s (x, E, t) cos ¢

14

XI: (21 + 1) P"(cos 0) S cos(me) PE (cos 0) cos(N¢) dé d(cos 0)

(20)




Some values for the associated Legendre polynomials are [Ref. 27]:

P(cos8) =1 PY(cos0) = cos

Pl{cos0) = sin 6 (21)
For the angular flux expansion we then have,

1 3 3 .
Y(r, E,Q,t) = E@boo + ir cos 0o + P sinf ;1 cos ¢ (22)

where the function arguments of the expansion coefficients have been dropped. The
P, approximation is the first correction to the diffusion equation.

Diffusion theory is-valid in large homogeneous or nearly homogeneous reactors
in which the curvature of the reactor is close to the mean free paths of the neu-
trons [Ref. 9]. Diffusion theory breaks down near reactor boundaries or strong
absorbing materials [Ref. 10]. Therefore, since the P, approximation resembles dif-

fusion theory, it is expected that similar properties would hold for it. However, the

diffusion coefficient should be better defined for the P; transport equation approxi-

mation.

Now if we let X = N = 0 in Equation (20) and integrate over all directions, we

get,
19 ) %) ,
2 o+ 2000 D15y _/zwoocw 3 (1 —ﬁ)/v21¢oodﬂ
9z ' 0z
+ Soo + Z Xk Ak Cr (23)
k=1

Doing the same procedure but setting X = 1 and N = 0 results in,

3 3 9 oo

¢10+ +2a¢20 +3a¢21

9z 9z 9z
=3 / 2, $r0dE" +3 510 (24)
El

+3%,%10
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Applying the P, approximation to Equation (24) yields:

33 9100

b0+ 2 +32,¢w-3/23,¢md13 +3510 (25)

Again, setting K = N = 1 in Equation (20), integrating, and implementing the P,
approximation results in,

390 9100

b+ 2435y =3 [ B thrdE +350 (26)

El
(In Equation (26), form = 1, the 14 coefficient is multiplied by 2. This is caused by

not using the recurrence relationship defined by Equation (5) since for the case when
m = 0, P} (cos 0) would result [Ref. 11].) Three equations have been developed

with three unknowns, 990, %10 and ¥;1.
3.2 The Multigroup Approximation

This approximation entails dividing the infinite energy spectrum into discrete energy
groups that are defined so that the spatial shape of the flux does not change in
the discrete groups [Ref. 10]. If the energy groups are defined small enough, then
this isn’t much of an approximation at all. The multigroup approximations to

Equations (23), (25), and (26) yield:

1 0¢00+ v +3¢n+2g¢oo_zlgg—’g
=
+x3(1-8) Zl v 90 +530+k2; Xk Ak Gy (27)
= =
f_ggz¢go+a(’?/’°°+3zg 90=3 ;lz:a'-'ﬂ To+35% (28)
3; ,1+a;[’°°+32~" {,=3 Z 2098y +3 5%, (29)

Each of the above equations is valid for a particular encrgy group g, with g =

1,2,---,G as possible values.
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3.3 Time Discretization: Euler’s Backward Differencing

Equations (27), (28), and (29) will now be discretize in time using Euler’s back-
ward differencing scheme. This is an implicit scheme-since it involves variables of
the present time step on both sides of the equation. This scheme is numerically
stable [Ref.3], which is its most desirable characteristic. The present timne step is
designated with a (V-4 1) superscript, and the previous time step is designated w th

a (V) superscript. Implementing,

1ol — el Opd . s G
2 Yoo —%oo 10 11 ¥ = By—w 9
Uy At + 0z + Oz * %0 ;
G , (N+1) (N-H) n (N+1)
+X51=B) X S dod 58 + 3 XEMCE (30)
gl=1 k=1
3 .‘,b(N;l) ‘l[)(g) 31‘[)(";1) (N+1)
10— ¥i0 00 g
= PR R
o X} + oz +3%{ %o
G , (N+1) (¥N+41)
=33 2708 +38,7 (31)
3 s — D s )
11— %11 00 :
k2 v 9
% A7 + 2z + 387 ¥y
G , (N-l;l) (N31)
=3 S +35,0 2)
g'=1

Now ali values with a superscript (V) are known because they are values from a
previous time step. The 1 values that have the superscript (.Y +1) are our unknowns.
The inhomogeneous sources are always known no matter their superscript because we
assume that the extrancous neutron source centributions can be directly c.iculated.

The precursor values C(' ) in Equation (30) now are addressed. The precursor

concentration for the present time step may be calculated in terms of the previous

time step precursor concentration. The rate of change of the precursor concentration




with respect to time is [Ref. 7],

0 Ck(r, i)

L3 E=1,3,--- (33)

G
=B 3 V7 55 930~ M Ci(ryt)

g'=1

,

Discretization of Equation (33) in time using Euler’s backward differencing yields,

C(N+l) _ C(N) G , , (h’-{;l) N
=B Y T o~ MG (34)
g'=1
Solving Equation (34) for C&V*) yields,
(V41) _ ™ e
+ 4 PR AR
G (I-L/\kAt) Ce (1 AkAt) Be Z 1 oo (%)

Now the present time step value of the precursor concentration can always be calcu-
lated in-a straightforward manner using its previous time step value. Substituting

Equation (35) into Equation (30) and rearranging yields,

'l)
aw

s

1

s

{¥+1)
(~¥41)

+ 27 o0

+ +

0z

G

t

— 1 (g)
y, At”° Yoo

9=y

3

n

S(1—-P)+ Zl’f}ﬂk

15' 0

Jz

("'-H) (x31)

+ 5,5

G (”-H)
I l

z 1 S‘; ‘§~oo

()

A Taylor series expansion can show that the error foi this backward difference ap-

‘s

py Xt

k=1

g'=1
X2 A C(t’\')

36)
14+ 1\1. At (36

proximation is O(Af) [Ref. 37]. Thus a large At with a quickly changing process
could yicld a large error. However, computational cost stipulate the sclection of the
Jargest At possible that yiclds a convergent solution.

If there are G energy groups, then G equations may be written using Equa-

tion (36). Likewise, the same may be done using Equations (31) and (32) respec-

tively. Thus, Equations (36), (31), and (32) may be writien in vector form repre-
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senting G energy groups. The vector form for Equation (36) is,
0 o (v+1) | O L(N+1) | 00 g (N+1)
‘6‘5‘1’1’0 + 5;‘1'11 + 27 Wy
=S 4+ v el + o w{it 4 o™ (37)

here G g+ - giv+) - g+ - gV} - anq CV) are vectors containing G
entries. £°0, V, and B/ are Gx G matrices. All these terms, and other vectors and

matrices developed later, are defined in Appendix A. Equation (31) in vector form

is,
0

5= — g+ | gp1o V) _ gy @) 4 g g(V+) (38)

Equation (32) in vector form is,

0

2o oot + 3T WY =3V el 4 38 (39)

Now solve Equation (38) for w{¥*;

3510 W) = 3v w4353 - L gy

Define D'° = {£1°}™", then,

g+ = ; Do [3 Vel 435+ _ % T+ (40)
For Equation (39), solve for ‘I’&A{H):

3511 V) _ gy g 4 g g _ ai G+

Define D'! = {E“}_l ,

w{f+ = 2 pi [3 vl + 38 — ai oo+ (41)

Define D'° = 1 1 D0 and D' = 3 D'1. Then substituting Equations (40) and (41)
into (37) will yield,
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_E—D-m i) g+ _ 4 9519 0 TN+ 4 500 g (N+1)

0z 0z 9z~ O
=2/ w{Tt + s + v ufy + c®
;z prvel) - ;zz)"’ sy
9 9
=5 DV o) ~ - D' s (42)

This is the equation in which the spatial discretization using the finite element

method will be made. The only unknowns are in the \Il( 1) yectors.

3.4 Finite Element Implementation

If Equation -(42) is put into a matrix equation form of say Ax = b, then numeri-
cal algorithms can be used to obtain a solution [Ref. 18]. Thus far, the transport
equation has been discretized in its angular dependency using spherical harmonics,
discretized in its energy dependency using the multigroup approximation, and dis-
cretized in time using Euler’s backward differencing. Now we turn to the spatial
discretization.

The finite element procedure-consists of approximating a solution with a trial
function. The set of functions that approximate the solution vector is referred to
as a trial space. Once the proper trial function is selected, then we invoke the
method of weighted residuals incorporated with the Galerkin method. This will
tend to spread the error that resulted from the trial function approximation so that
it is, in some-sense, small over the whole problem domain. For transport equation
problems such as this, error analysis comparisons between the finite element process
and finite differencing schemes favor using finite elements [Ref. 19] [Ref. 24]. We

now summarize the method.
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-Consider the following equation,
Vig—f=0 (43)

where f is a known function of the independent variables. We approximate the
solution ¢ with some trial function, ¢. Most likely then Equation (43) will not be

true. There should be some error called the residual, R, such that,

V2$—f=R (44)
where
M
b= 4l (45)
=1

The ¢;s in Equation (45) are the expansion coefficients, and the N;s are interpo-
lating functions [Ref. 13]. If the residual is weighted over the entire domain to de-
termine the ¢;s such that the error is small, then this is implementing the method
of weighted residuals [Ref. 13] [Ref. 14]. We now choose M linearly independent
weighting functions, W;, so-that
/[v?&s—f]mdD:/RW,-dDﬂ, (46)
D D
where D in Equation (46) denotes the problem domain. So, in some sense, the
residual R & 0 over the entire problem domain. The Galerkin method simply states
that the weighting functions, W,, may been the same as the approximating or trial
functions [Ref. 13].

Several methods exist for developing the finite element equations. Using the
Galerkin method allows the development of these equations without any knowledge
of the physical processes or variational calculus. Imposing it allows the development
of a numerical algorithm to solve

/[vzq”s—f] W: dD = 0. (47)

D
The Galerkin method is now used to solve Equation (42) for XZ slab geometry.
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3.5 Finite Element Discretization for XZ Geometry

Linear B splines will be used for the interpolating functions. These functions are
continuous-in their first derivatives. The angular flux vectors -may be expanded in

the form,

PV o G E Z o B (2) B,(2) (48)

p=1 g=1

Ay the inhomogeneous and precursor sources may likewise be expanded,

. A B
S & SN = 3 Y s B,(2) By(2) (49)
p=1 g=1
. A B
C ) = 37 3 CfF) By(c) By(2) (50)

3
I
foy

[~
[}
—

A and B in the above summations represent the upper limits of the mesh spacing
in the z and z directions respectively. Likewise, the p and ¢ subscripts represent
the p* mesh point in the 2 direction and the ¢** mesh point in the z direction.
B,(z) and By(z) are linear basic splines or linear B splines, sometimes referred to

as linear hat functions [Ref. 21]. They are defined as

( 0 for z < xp4
T—Tpy
—— 1 Tp-1 <z < 7
Tp =~ Tp-1
By(z) = ¢ i — (51)
a2 if Tp S T S Tpi1
Tpt1 — Tp
{ 0 for z > zp4
And:
( 0 for z < 2,4
2= Zgy .
ol it S 2.1 <2< 7,
Zq — Zg-1
B()={ . _. (52)
a2 B if 2q _<_ Z S Zg41
2941 — 2q
L 0 for z > Zp41




It is easier to see-how these hat functions relate to each othe: when considering only
one dimension. Figure 1 shows that each interior linear -B spline only overlaps itself

and its two nearest neighbors. This overlapping is an important characteristic which

1.0 1

Iy T T3 T4 Ty Tg
Figure 1: Linear B Splines-

will be shown later. Two steps now need to be done. First, define the weighting
functions shown in Equations (46) and (47) as B;(z) for the z direction, and B;(z)
for the z direction. Second, substitute the approximating (trial) functions in the
form shown in Equations (48), (49), and (50) into Equation (42), and invoke the

Galerkin procedure. This yields,
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+//V‘I’ Bi(z) Bj(2)dzdx

+;fC(N)B(a:)B(z)dzda:

2
o
<
b
o2
to

Ot O O O °
Oy O iy Oy O~ x ©

i(z) B;(2) dz dx

Pl

)

105N+ B.(3) B;(z) dz dw

¥l

D'V &) Bi(z) Bj(2) dz dz

Bl

D180 Bi(3) B;(z) dz dx (53)

&l

The streaming terms (partial derivative terms) in Equation (53) will be integrated
by parts. This will accomplish f:wo important results. First, since the B splines are
only continuous in their first derivative, terms having two partials operating on them
would produce a value of zero. However, integrating by parts lowers the derivative
order applied to the B splines by one. Thus, this legitimizes their use. Second, but
probably the most important result, is that the integration procedure introduces,
with relative ease, the natural boundary conditions into the finite elements [Ref. 13].
Integration by parts in one dimension is defined in the usual manner,

b

—/vdu.

a a

b

/udv:uv

a

However, in two dimensions, integration by parts is done using Green’s theorem:

//u(V-f)') dD=/u(z')'-7’i) as - [[ #-vudp. (54)
D S D

In three dimensions, integration by parts is defined as Gauss’s theorem [Ref. 13).

So an area integral is put in terms of a surface integral using Green’s theorem. To
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use Equation (54), let,

a. 0
V = %l'i‘"a—zk
i = ngi+nk
g oo 0BG 0¥GY
Oz 0z

u = Bi(z)Bj(2)

7 is-a unit vector normal to the slab’s surface, always pointing in an outward direc-
tion. n, and n, are the direction cosines of the unit vector 7. Figure 2 shows the

geometry definitions.

n=k
z=K
= —] ] — =1
z=0
z=0 z=1
n=-k

Figure 2: Two Dimensional Slab Geometry

If the entire slab’s surface is defined as I, then performing the surface integra-
tion in Equation (54) over the entire surface is the same as integrating over each

individual surface part. Thus,

[az=[asi+ [asi+ [ s+ [ asa
z Sy S2 S3 Sy

The dot product of V and 7 then isolates the particular surface face in question.
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Integrating by parts appears to complicate the equation because it introduces
more terms. However, later substitutions will be made to reduce the number of
boundary terms. Now integrating by parts and rearranging puts the transport equa-

tion in the form:

L K (N+1)
//E“"N Bi(2) 253 gy 4
0 O

pit a\I’(N+1) aB,(.'z:)B

0z Oz Oz oz i(2) dzde

10&N+1) .oy 0 Bi(2) A1y g 9Bi=) o
+//D S Bifa) dzda:+0/0/D V() 222 Bi(z) de do
(N+1)
+//D“ (N+l)aB($)B()dzdx+/ﬁloB (2) [B(Z)O‘Il i
0
K I N+1) L K
il g AT 10 )
+ 0/ D" By(z) | Bi(z) =32 0 / DYV By(z) | B;(z) ¥ 0 do
L K K L
-~ / D' By(x) B(z) s+ gy / DYV By(2) lB(x)‘I'(N) dz
0 0 0 0
K - L
- / DM By(z) | Bi(z) S| dz (55)
0 L 0

Equation (55) has seventeen terms, including six boundary terms. The number of
boundary terms may be reduced to two if substitutions derived from Equations (40)

and (41) are made. Recalling that D'° = 1 D' and D' = % D'! and making the
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substitutions yields,

// 03‘1'(+1)B()0B(z) H/" 1 0BG 9B(a)

Oz 0z

:(2) dzdx

0

L K L )

+ [ / 200G+ Bie) Bi(z) dedo = [ [ /N Bi(a) B(2) dado
0

+
O\b‘ (=]
C>\.N

. L K
580 Bi(e) Bi(z) deda+ | [ V83 Bi(o) By(z) dzda
00

3B()

&™) By(z) B;(2) dzdx+//D1°V\Il(N)B,-( ) 2282 4y dy

+
O~
o

+

°\b«
Q\N

D SMH By(x) g%z(jl dzdz + / / D1y &) aB,(:c) B;(z)dz dz
0 0

Oz
L K 9 B(z) T ’
+ [ [ D18 = By dzdo ~ [ By(2) [B"(w) ¥ de
1] 0 0
K
- / Bi(x) [B () ¥4 o (%)
0

Reducing the number of boundary terms introduces present time step currents,
\ilggﬂ) and ‘i'ﬂ“) which are unknown. However, we can use Marshak boundary
conditions and get these currents in terms of ¥ [Ref. 9], [Ref. 11], [Ref. 15]
and [Ref. 16]. For XZ geometry, the Marshak condition for a vacuum is: [Ref. 11]

/ n- 2 P™(cos0) cos(mg) ¥(r, E, R, ) dS2 = 0 (57)

n-2<0

where the angular flux, U(r, £,Q,¢) is defined in Equation (22) and n is a unit
normal vector at the surface pointing outwards. (Equation (57) is for even l.)
Marshak boundary conditions set the integral of the incoming current to zero.
Although neutrons that leave a surface possess a finite probability of returning in
reality, the ones that return usually have a negligible effect on criticality. It has been

determined that for low order P, approximations, Marshak boundary conditions
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yield better results than say Mark boundary conditions. In fact, Henry states that

numerical studies show that Marshak conditions lead-to consistently more accurate
results up-to a Pyg approximation [Ref. 1].

At 2 = 0Oandz = L, By(z) = Ba(z) = 1.0. And at z = 0and z = K,
B;(2) = Bp(z) = 1.0. The subscripts A-and B on the linear B splines indicate
the upper-limits of the trial function expansions. If we consider a Marshak vacuum

condition with Equation (57), then the transport equation becomes,

L K (N41) L K (N+1)
//anwz B()(?B(z) +//E113 aB()B()dzdm
0 0 0

Oz Oz

+
O —

[ 88+ By(z) By(2) dz de + / / VW) Bi(z) By(z) dz da

é(N)B(a:)B(z)dzd:z:+//D1° ‘I’(N)B( )3B (z)

+
Ot

-}
O~
O O%—x O O x O%—x O\N

DlOs(N-H)B( )aB (z)d dz +//D11 ‘I’(N) ag(m)B( )dde
1]

K
0 Bi(x 1 1 &
+ [ [Drafn 2848 g g g 5 [ 3 9ei) By(2) Bj(2) d=
0

a q=1

O\'b‘

l\')l)—-‘
-

B 1 L 4
> WY By(2) Bi(z)dz = 5 [ 5 or) By(s) Bi(z) da
0

= p=1

5]

- %o, By(w) Bilw) du (59)

[N
M-

Recall that the expansion of the flux in the z direction went fromp = 1top =
A. In the z direction, the expansion went from ¢ = 1 to ¢ = B. Therefore, in

Equation (58), the boundary flux terms are defined as, (see Figure 2 on page 25)




‘Ifgg: D json the surface where z=0 z=0to K

\Il((,lg::) is on -the surface where z=L z=0to K
‘Iiggfl) is on the surface where 2z=0 z=0to L
\Il( +;) is on the surface where z=K z=0to L

Now the whole transport-equation will be expanded:

[ 75 5 w0 50 2880 5y 25

p=1 g=1

L K
+//—D-11 i i ‘I,(N+1)aBp($)B( )aB(:z:) By(z) dz ds
K A B
+ [ [ 200503 94D By(s) B,(2) Bilc) By(z) dz do
L K A B
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L K
0B;(z
// zzsgq';;*).e By(2) ()B()dgd:c
00 p=1¢=1
K
1 B
~5 [ 2 9 B2 Bi(a) s
0 9=
1 fE
N ]
-5/ )3 T+ By(2) By(2) d=
0 9=
1A
=5 [ X 96D By(a) Bila) da
o r=1
1 f&
N ]
5 [ 3 et By(e) Bi(s) do (59)
o p=1

As previously stated and shown in -Figure 1, each linear B spline overlaps itself and
its two nearest neighbors. This implies that p=i7—1,{,i+1landg=j~1,7,7+1.
Also, the integration may now be over each element, since the boundary fluxes are
set, and each element carries the boundary terms with them [Ref. 13]. e; will denote
integration of the elements in the z direction and e, will likewise denote integration

of the elements in the z direction. Therefore,

[]7°5 5 w5 220 5y 5

ez €x p=i-1 g=j-1
41 j¥1
+ / / R xp‘"“)aB"(‘”)B( )aB (x)B,(z)dzd:c
p=i~1 g=j~1
i1 1
+[ [0 5 3wk By(e) By(z) Bilz) By(z) dz do
¢r ez p=i-1 g=j-1

- / ./ g § TX: \I’(()%;:I) B,(x) B,(z) Bi(z) B;j(2) dz dz

p=i=1 g=j-1
i+1 j+l (V41
> > S$ By(x) B,(2) Bi(x) B;(2) dz dx

ez €z p=i—1 g=j—1
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ez ez p=i—-1 g=j-1

i+l G+

+// S Y. C®™) By(z) By(2) Bi(z) B;(2) dzdz
ex e P=i—1g=j-1
i+1 J+1 .
+ / f Doy E Z \I‘&'XLB,;(:;) Bq(z)B,.(z)a_%_?(ﬁ)_dz dz
€r Cz p=i—1 g=j-1 >

41§+l B
+/ / D Z Z Sglg:ql) By(z) Bq(-'-') Bi(x)a ajz( )dzd:r;

¢z €z P=i—1 q=j—-1
i+1 41 9B (:z:)
™ g 0Bi(=z) o

a2 S S ]
Hf [0 5 5 s B0 8, 22D B dsde

exr e: p=i-1 g=j—1 9z

1o 1o 3 v
~5 | X BB ds~5 [ S W B () By(z) dz

ez q=j-1 ez gq=j—1
1 it1 1 i+1
-3 / > W B(=) Bifa) dz — / Y ¥ B(z) Byz) de

¢z p=i-1 ex p=i-1
(60)

The integration summaries for the elements are given in Appendix B. Each mate-
rial matrix is assumed to be piece-wise continuous in each z z interval. Bringing the
boundary terms.over to the right side of the equation and integrating Equation (60)

with Kronecker delta notation yields,
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3.6 Coefficient Matrix Example

When Equation (61) is implemented a square symmetric positive definite block ma-
trix equation is produced. The matrix equation is in the form of A\II((,IXH) = S.
A is the coefficient matrix, \Il( *1) are the expansion coefficients that physically
represent the total flux at mesh points ¢ j, and S is the source vector. If we are
considering a system that has G energy groups, then each entry in A, A;;, isa GxG
matrix. Likewise, each of the entries in ‘Il( ) and S are G'x1 vectors. Thus
we have a block matrix equation. Block multiplication can be carried out in the
same way as traditional matrix multiplication since all entries will have the proper
dimensions [Ref. 20].

Suppose we have a slab with 16 mesh points, 4 in the z direction and 4 in the
z direction as shown in Figure 3. By applying Equation (61) for the sixteen mesh
points, we will get a 16 by 16 matrix, A, and 16 by 1 vectors, ‘Il( *1) and S. This
system is shown in Figure 4. The block matrix has a bandwidth of 11 with nine
nonzero diagonals. For this example, there are 100 nonzero A, , entries. Each entry

is a material defined matrix for an zz interval along with factors resulting from
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the finite element integrations. For a particular spatial interval, the material cross
sections are assumed to be piece-wise constant.

This development of the coefficient matrix was done in a “brute force” way.
Traditional finite element schemes assemble the coefficient matrix in a much simpler
way by using a local to global mesh point numbering scheme. This entails the
addition of local coefficient matrices to yield the global coefficient matrix. The
source-vector is likewise developed. Thus one advantage of finite element schemes
was not taken advantage of here. But, it is clearer to see how each entry in the
coefficient matrix was derived by developing the coefficient matrix in this manner.

Now we summarize this process for RZ geometry. Basically, everything is done
the same as for XZ geometry, but the RZ case is slightly more complicated because

of its streaming terms.
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Figure 3: Two Dimensional Slab Mesh Point Layout Example
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4 Solution in RZ Geometry

We now do much the same procedure to obtain an:-approximate solution to the
‘transport equation in-RZ geometry. The cylindrical coordinate system depends on
azimuthal angle, x, a distance, r, measured from the 2z axis, and the coordinate z
measured on the z axis-itself from the z y plane. Figure5 shows the geometry defini-
tions. If we have azimuthal symmetry, then the neutron density is not changing with
respect to the azimuthal angular coordinate x. Therefore the rate of change of the
neutrons along a streaming path is accurately described by Equation (8). The flux

and source may be expanded as before in Equations (2) and (3). Thus implementing

Figure 5: Cylindrical Geometry

Equations (2), (3), and (8) into Equation (1) puts the transport equation in a form
much like Equation (12):
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The angular dependency of the angular neutron flux is described the same as for XZ
geometry. Spherical harmonics have been used again for the angular discretization
of the direction vector £ because they completely describe the angular dependency
of 2. Note, because of the relationship, P ™(cosf) = (—1)™ {,—Jr;))—,P (cos 9), it

is unnecessary to include negative m [Ref. 22] [Ref. 23]. To proceed, we need two

more equations in addition to Equation (16). They are,

8% cos(mg) = —m sin(mg) (63)
sin(m¢) sing = % cos(m — 1)¢ — % cos(m + 1)¢ (64)

As before we assume fission to be an isotropic event, invoke the addition theorem,

and rearrange. The transport equation now takes the form:

40




(21 4 1) P%(cos8) 1 cos(mg)

e

ISJ SV
M8 &pgs
07~ i~

+
[S\]

(21 +1) cos 0 P*(cos 0) cos(mgb)

—
1l
=
3
Il
o

-+

(21 + 1) -sin @ P (cos 0) ¢ L% cos(m + 1)¢

-

=~

8 T(J8
3

(214 1) sin 6 P™(cos 0)

-

cos(m -1)¢

ir
o
3
i

- &

-+

(214 1) sin 0 P™(cos 0) im (m) cos(m —1)¢

=1
=)

Ms T8
3

Nl 3

(21 +1) sin8 P (cos 0) Yy (m) cos(m +1)é

i
(=]
3
il

+2%

s
M"" (=]

(21 4 1) P™(cos 0) 1y, cos(me)

—~—
1l

8°
3
I}
o

()/Z(2l+1)25,P[(c050 S 0 dE

g =0 =0

[o) oo I

+(2) / S (21 +1) Sy P(cos0) S S i cos(me) dE'

E’ l=1 =1 m=1

+2x, (1= ) / v 54 oo dE' P2(cos 0)
EI

(=) 1

+2 > 3" (21 + 1) P™(cos 0) Sim cos(me)

=0 m=0

+2 Z xk Ak Ci P (cos 0) (65)
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As with XZ geometry, Equation (65) will be manipulated by implementing the re-
currence relationships, adjusting the indices to put it back in terms of spherical
harmonics, and then multiplying by P¥ (cos0) cos(N¢) and integrating in all direc-
tions. With stipulated values for K and N and using Euler’s backward differencing

scheme for time discretizations, the following vector equations are produced:
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Now we substitute thevalue of ‘Il( 1) from Equation (67) and the value of \I’ﬂH)

from Equation (68) into Equation (66) to yield,
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Equation (69) is the RZ equivalent to Equation (42) for XZ geometry, but Equa-
tion (69) has more terms, and some terms have a % factor in them. As the finite
element spatial discretization is applied to Equation (69), some of the extra terms
cancel with terms produced when integrating by parts. We now proceed with the

finite element discretization.

4.1 RZ Finite Element Discretization

The neutron sources in Equation (69) may be expanded with the same basis hat

functions in the r and 2 directions as was done in the XZ geometry in Equations (48),

(49), and (50). The hat functions in the z direction are defined as in Equation (52).




The functions in the r direction are defined as:

{ 6 forr < rp_y

P =Ty .
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By(r) =< S (70)
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L 0 for r > rp4

Now substituting the trial functions into Equation (69) yields:
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The Galerkin procedure can now be implemented. However, integration over the
domain is-now defined for a cylinder with a radius from 0 to R and a height from 0

KR
to K. Therefore, the domain integration is, [ [ 27 r dr dz. Implementing this, the
00

transport equation is now:
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Green’s theorem is again used to integrate the streaming terms by parts. This re-
duces the continuity requirement of the trial functions and implements the natural
boundary conditions. And since each element carries the boundary conditions with
them, the integrations may be designated over each element. Let e, indicate inte-
gration over the elements in the r direction and let e, indicate integration over the
elements of the z direction. Implementing the Galerkin procedure, the transport

equation is now:

/ /‘ o a‘Il(N'H) 0B;

(2)
% Bi(r)rdrdz

C: Cr

(N+1)
+//D 13‘1’ aB(r)B(z)rdrdz

or




(N+1)
+/‘/—11 050 B;i(r) B;(z) dr dz

€z Cr

[ [ 11 §(N+1) 3B,-(r) .
+/ /D Wio 5 B;(z)drdz

+ / / 00 GO+ Bi(r) Bj(2) rdr dz

ez €r

er Cr

= / / £/ G By(r) By(z) r dr dz

ez Cr

+ / / éf,’(‘,’“) B;(r) Bj(z)r drdz

€z &y

G(N) B. :
+//C B;(r) Bj(2)rdrdz

+//V\i’((,l(\,’)B;(r)Bj(z)rdrdz

B;(2)

+//D1°V‘I’(N)B() rdrdz

€z Cr

+]/D‘°s“"+‘)3( ) 254e) @) gy d

=~ n)0B;(r
+//D“V\I’§’Y)——a£ )Bj(z)rdrdz

€z &

~ 0B;(r
+/ / D! Sﬂ”’l)—-——af )B_,-(z)rdr dz

€z er

+ / D' | By(r) BN Bj(z)dz

r=R
= [ D' B ¥ Bi(z)dz
ez ) - r=0
- / B;(z) ¥4 Bi(r)rdr
¢ L ==K
/ (N+1)
+ [ | Bj(2) ¥\ Bi(r)rdr
er - z=0
- f r Bi(r) EN*Y  Bj(z)dz (73)
¢z L r=R

Appendix B gives the integrating summaries. Again, Marshak vacuum boundary

conditions are implemented to substitute for the \11( “) and ‘Il(‘ “) cocflicients in
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This equation will also produce a block matrix equation with nine diagonals. Now

we will address the solutior *echniques to solve Equations (61) and (74).
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5 Solution Technique

Using Equation (61) or (74) produces a block matrix equation as show in the example
in Figure 4. The coefficient matrix, A, will always have nine full diagonals. For the
16 by 16 example shown, there were 100 nonzero entries in A. That means that
156 entries contain nothing but zeros. Recall that each entry in A is itself a G by G
matrix representing G energy groups. Storage of all those zero matrices would be
very inefficient. Therefore, FMP2DT uses some storage schemes to avoid using
-excessive computer memory. And because this system can be extremely sparse and
large, depending on the number of mesh points and energy groups selected, FMP2DT
used some special algorithms to ralculate-a solution. The following is information,
including some background, concerning FMP2DT’s solution algorithm.

If A € R"™™" is a symmetric positive definite matrix, then a lower triangular
matrix G € R™*" exist with positive diagonal entries such that A = G GT. Splitting
A like this is known as the Cholesky decomposition of the matrix A. To solve the
system Ax = b using a Cholesky algorithm entails computing A = G GT and then
solving Gy = b and then GT x = y [Ref. 18]. This solution technique is stable and
eficient for solving large banded systems. This solution technique is called factoring
the coefficient matrix A, and is referred to as a direct method of solution.

However, for very large and sparse systems, which could be our case, direct
methods are often not efficient enough. ¥or a linear system, iterative methods are
more suitable. One iterative method is call the conjugate gradient method [Ref. 18].

It involves minimizing a functional ¢(z) such that,

#(z) = %XTAX ~xTb.

If A is symmetric and positive definite, then minimizing the above expression is

the same as solving for Ax = b [Ref. 18]. But convergence of a steepest descent




algorithm may be extremely slow. Therefore, preconditioning A is desirable to speed
convergence. One preconditioning strategy is developing an incomplete Cholesky
factorization of A. This-involves calculation of some lower triangular matrix that is
somewhat close to the actual Cholesky lower triangle matrix G [Ref. 18].

This solution technique FMP2DT uses to do this is the incomplete Cholesky
conjugate gradient algorithm [Ref. 33]. Two iteration schemes are used. The inner
iterations are over the spatial mesh points. The outer iterations are over the specified
energy groups.

Now we examine one of the important features of FMP2DT. FMP2DT has the
ability to calculate a delayed x spectrum if that spectrum is not known. If it is
known, then it may be entered in the input deck. However, in most cases, these val-
ues are not easily found. Therefore, the next section shows how FMP2DT calculates

these values for the user.




6 Calculation of x{

In the multigroup derivations, Equation (27) has x parameters for both prompt
and delayed neutrons. Most cross section sets contain information defining 3, but
they do not define x§. If values for x} are known, then they may be entered in
FMP2DT’s 15%x array in the input deck. If this array is filled with zeros, and
FMP2DT is running afission problem, then an irternal flag is triggered that causes
FMP2DT to assume that the user does not know these values. FMP2DT then
proceeds to-calculate them and continues the solution process.

The spectra for prompt neutrons are easily found in literature. There are many
formulae that have been derived to fit the data mathematically by Watt, Cranberg,
and others [Ref. 34] [Ref. 35]. Each analytical fit is due to examination of data
over certain energy ranges [Ref. 36]. FMP2DT assumes 2 Maxwellian distribution

function that is defined as [Ref. 30],

2 1 E 0.5 _
8= =17 7] (75)

where k is Boltzmann’s constant and T is the spectrum temperature (K). The av-
erage energy is given by

E=ZkT.

DN o

However, the delayed neutron spectrum is not as well established. Several dif-
ferent data exist with various uncertainty. FMP2DT assumes that delayed neu-
trons follow the same sort of Maxwellian distribution as prompt neutrons [Ref. 30].
Assuming that £ T=1.29 for prompt neutrons, or that £T=0.29 for delayed neu-
trons [Ref. 31], Equation (75) may be used to calculate either a prompt or delayed

spectrum. (The values for T" above are for 23°U, and kT is in MeV.)




For a x spectrum, we note that

/ X(E)dE = 10.
0

Tor a multigroup approximation, x9 is calculated as

Eg
x'= [ x(B)dE.
By

FMP2DT calculates xj likewise using an adaptive quadrature scheme based on
Gauss-Kronrod algorithms. And as stated, changing the value for kT can cause
-an evaluation for a prompt y calculation. Also, if a better distribution functioa
is desired, then a short function subprogram may be added to the code and the
quadrature scheme can evaluate it.

Using a 47 neutron group structure shown in Tables 1 and 2, the following
results were generated. First, a value of kT'=1.29 was used to generate a prompt x
distribution shown in Figure 6. Note that although the neutron groups go to 17.33
MeV, the graph stops at 10 MeV. This is because the xJs are approximately zero
beyond that point. Using FMP2DT’s quadrature scheme with a value of £7'=0.29,
Figure 7 was generated for the delayed ys. It was truncated at only 2.231 MeV
because of the same reason as the prompt data.

It is important to notice that the delayed x s peak at lower energy groups than
the prompt x s do. Also the prompt x s range over a much larger number of groups.
This is expected since prompt fission neutrons tend to be born with higher energies
than the delayed fission neutrons.

Now we want to establish FMP2DT’s computational integrity. First, a compar-
ison between flux shapes was made with a flux calculation by a two dimensional,
two-group, space-time diffusion code called TWIGL. Then FMP2DT was bench-

marked with some exact flux calculations in both slab and cylindrical geometries.
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-Group | Upper Bound (MeV) | Lower Bound (MeV)
1 1 1.7330E+-01 1.4190E+01
2 1.4190E+01 1.2210E+01
3 - 1.2210E+01 1.0000E+-01
4 1.0000E+01 8.6070E-+00
5 8.6070E+00 7.4080E+00
6 7.4080E+-00 6.0650E+00
7 6.0650E+00 4.9650E4-00
8 4.9650E+00 3.6780E+00
9 3.6780E+-00 3.0110E+4-00
10 3.0110E4-00 2.7250E+00
11 2.7250E4-00 2.4660E+00
12 2.4660E+00 2.3650E+400
13 2.3650E4-00 2.3450E+00
14 2.3450E4-00 2.2310E+400
15 2.2310E+00 1.9200E+4-00
16 1.9200E+00 1.6530E-00
17 1.6530E4-00 1.35304-00
18 1.3530E+00 1.0020E+400
19 1.0020E+00 8.2080E-01
20 8.2080E-01 7.4270E-01
21 7.4270E-01 6.0810E-01
22 6.0810E-01 4.9780E-01
23 4.9780E-01 3.6880I-01
24 3.6880E-01 2.9720E-01

Table 1: Part 1: 47 Neutron Group Structure




Groué

Upper Bound (MeY)

Lower Bound (MeV)

25 2.9720E-01 1.8310E-01
26 1.8310E-01 1.1100E-01
27 1.1100E-01 6.7370E-02°
28 6.7370E-02 4.0860E-02
29 4.0860E-02 3.1820E-02
30 3.1820E-02 2.6050E-02
31 2.6050E-02 2.4170E-02
32 2.4170E-02 2.1870E-02
33 2.1870E-02 1.5030E-02
34 1.5030E-02 7.1010E-03
35 7.1010E-03 3.3540E-03
36 3.3540E-03 1.5840E-03
37 1.5840E-03 4.5400E-04
38 4,5400E-04 2.1440E-04
39 2.1440E-04 1.0130E-04
40 1.0130E-04 3.7260E-05
41 3.7260E-05 1.0670E-05
42 1.0670E-05 5.0430E-06
43 5.0430E-06 1.8550-06
44 1.8550E-06 8.7640E-07
45 8.7640E-07 4.1390E-07
46 4.1390E-07 9.9990E-08
47 9.9990E-08 1.0000E-11

Table 2: Part 2: 47 Neutron Group Structure
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7 Code Benchmark

While there are many publications of time dependent neutron transport work avail-
able, it is extremely difficult to find a two-dimensional problem with a delayed
neutron source so that FMP2DT can be benchmarked. While problems of this na-
ture are often cited, the published results usually do not contain enough information
about parameters and cross sectional data to reproduce them. In 1968, a technical
report was published showing results for a time-dependent, two dimensional slab
problem solved with a code called TWIGL [Ref. 28]. TWIGL is a two dimensional,
two-group, space-time diffusion equation solver that incorporates temperature feed-
back.
TWIGL was used to compare FMP2DT"s fast flux shape. To benchmark FMP2DT’s

computation accuracy, data in a report by B. D. Ganapol [Ref. 29] was used. First
we show the results for the TWIGL comparison, and then two benchmarks using

Ganapol’s data for infinite RZ and XZ geometries.

7.1 TWIGL Comparison

TWIGL was used to compare FMP2DT’s fast flux shape. This offered at least
some sort of comparison between source vectors for the two codes, and both source
vectors have a delayed neutron contribution in them. TWIGL is a diffusion code.

It basically solved the following equations:

V- Dy(r,8) V gy (r,1) ~ Bi(r, 1) i (r, 1)
+ (1 - ﬂ) ["Eh (r, t) 9”1(1‘, t) + VE_{;(I', t) ¢2(r: t)]
I
+ 3 MG = - 5 i) (76)

=1




V - Dy(r, 1) V ¢a(r, 1) — Ba(r, 1) $o(r, 1) + Zy, (1, ) d1(r,t) = ;l; a%—ég(r, t) (77)
and

%C;(I‘, t) = ﬁi [uE,, (I‘,t) (}51(1', t) + llzfz (l‘,t) ¢2(r, t)] - /\;—C;(l‘, t), t=1,--- I

(78).
where r represents z,z for slab geometry. The slab geometry for this problem is
shown in Figure 8. The equations above are solved by TWIGL subject to zero fluz
boundary conditions on all external surfaces. At time ¢ = 0, the reactor is critical, i.e.

ke = 1.0. The initial flux is calculated using this steady state condition. TWIGL

49.496 Slab-Dimensions (cm)

Material 2 Material 1 Material 2 Material 3 Material 2

0 30 70 130 170 200
Figure 8: TWIGL Slab Geometry

discretizes the time dependent flux using a backward differencing scheme (for this
problem) and a central differencing scheme for the precursor terms.

For most problems, FMP2DT reads cross sectional data from an input tape.
However, data can be input directly. The input parameters used were derived from
the data in the TWIGL report. Since TWIGL is a diffusion code, the values cor-
responding to the S-g;“-" entries in FMP2DT’s input deck are set to zero. This is

known as the diffusion approximation for the P, calculations. This is also done for
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the calculation of the initial flux at time ¢ = 0, which was calculated by FEMP2D.
FMP2DT can calculate its-own initial flux by using a very large At. This will cause
all the T:E terms to be approximately zero. From Appendix A, it is seen that
all the time dependent terms will drop out. But using an initial flux calculated
by FEMP2D is more cost effective since a large At in FMP2DT still entails some
unnecessary calculations . like V ‘Ilgg) = 0.

Table 3 compares the TWIGL and FMP2DT initial fluxes. Because of symmetry,

X(cm) TWIGL FEMP2D
10 | 6.26847E+4-13-{ 5.9368E+13
20 ] 1.92851E-14 | 1.8581E+14
30 | 5.34671E+14 | 5.5854E+14
40 | 9.37259E4-14 | 9.4485E+14
50 | 1.08474E+15 | 1.0848E4-15
60 | 9-39969E+14 | 9.4610E+14
70 | 5.39333E+414 | 5.6072E+414
80 [ 2.00865E+-14 | 1.9003E+-14
90 | 8.28086E+13 | 7.1108E+13
100 | 5.387781+4-13 | 4.3079E+413
110 | 8.28086L+13 | 7.1108E+13
120 | 2.00865E4-14 | 1.9003E+14
130 | 5.39333E+14 | 5.6072E+14
140 | 9.39969E414 | 9.4610E+414
150 [ 1.08474E+15 | 1.0848E+15
160 | 9.37259E+14 | 9.4485BE+414
170 | 5.34671E414 | 5.5854E+14
180 | 1.92851E+14 | 1.8581E+14
190 | 6.26847E+13 | 5.9368E+13

Table 3: TWIGL and FMP2DT Initial Fast Fluxes

the flux data are for z = 14.142 cm. There are no flux values given in Table 3 for
z =0 or z = 200 cm since TWIGL sets these values to zero. FMP2DT, however,
does not sct these fluxes to zero because it models a vacuum boundary condition.

So the two codes should agree more for the interior mesh point flux calculations.
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Figure 9 shows the plot of the TWIGL flux at time ¢t = 0.

The material mean free paths- (MFP) are calculated in Appendix C and displayed
in Table 4. It is obvious that mesh spacing with Az = 14.142 cmn and Az = 10 c¢m,
which was used in the TWIGL report, is much larger than these MFPs. This suggest
that the thermal flux calculations could be suspect. Indeed, both the FEMP2D and
FMP2DT calculations showed that the thermal flux shape varied greatly as finer
mesh spacing was chosen. The fast energy group, with its longer MFPs, was the
least affected by mesh spacing. Figure 10 shows the initial FMP2DT flux calculated
by FEMP2D. It was done using the reported TWIGL mesh. To be sure that this
mesh spacing was sufficient to define the fast flux, another FEMP2D run was made
using twice the reported TWIGL mesh points. (The TWIGL Az and Az values
where cut in half.) Figure 11 shows this result. There is no substantial change

between the two FEMP2D fluxes.

Group | Materials 1 &3 | Material 2
1 4.1701 cm 3.5702 cm
2 1.5601 em 2.1000 cm

Table 4: Material Mean Free Paths

TWIGL set the initial condition of the slab to be critical. Using TWIGL mesh
spacing, FEMP2D calculated a kg = 1.01418, and using twice as many mesh points,
FEMP2D calculated a kg = 1.026358. So the initial calculations for the slab are
very close for both codes. Therefore, the TWIGL mesh seems to be good enough to

definc the fast flux.
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Figure 10: Initial FEMP2D Flux Using TWIGL Mesh Spacing
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Figure 11: Initia]l FEMP2D Flux Using 2X TWIGL Mesh Spacing
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7.1.1 Transient Calculations

The material cross sections changed with time due to two causes. The first has
to do- with a linearly changing cross section. Material 1 in Figure 8 differs from
material 3 because material 1 has a time dependent thermal absorption shown in

Figure 12. The second is due to temperature change. The TWIGL code assumes-a

Material 1 Behavior
22
}
A2 =0.01
{
0 0.005 0.01 0.015 time (sec)

Figure 12: Time Dependent Thermal Absorption

coolant flow along the z axis. Since it sets the flux to zero on the slab surface, the
coolant has no direct neutronic e Tect such as absorption, reflection, etc. However, it
couples with a fission power calculation to establish a core and coolant temperature.
The material cross sections are then adjusted for the change in temperature after
each time step convergence. The time interval which the TWIGL had the smallest
temperature change was chosen for this compariscn. For time ¢ = 0 to ¢ = 0.01 sec
there was no change in the core temperature. However, there was a small change in
the coolant temperature. This is shown in Table 5. FMP2DT could have modeled
this change if the TWIGL report had given the temperatures at the end of each

time step. However, it did not. But the error should be very small since the coolant
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Time (sec) [ Zonel Zone 2 Zone 3 Zone 4 Zone 5
0.00 -500.5680 °F | 513.3180 °F | 500.6400 °F |. 513.3180 °F | 500.5680 °F
0.01 -500.5681-°F | 513.3188 °F | 500.6399 °F | 513.3181 °F | 500.5680 °F

Table 5: Coolant Temperatures-by Zone

temperature change for each zone is not significant.

The time dependent thermal absorption for material 1 can be described mathe-

matically as,

$2(t) = J- 043 For ¢ < 0.005 sec
eV 0.44 —2¢ For 0.005 < ¢ < 0.01 sec

(79)
Except for a small change due to temperature, the D, TWIGL -parameter re-
mains constant in the interval. Therefore, £2 for the- FMP2DT calculations remains

Ez + 22—92

. 2 _
constant. Since X7 = 0

%2>2 must be time dependent. This can be

expressed mathematically as,

0.211 For ¢ < 0.005 sec

0.201 4+ 2¢ yor 0.005 < ¢ < 0.01 sec (30)

700 = |

Using Equations (79) and (80) -above the cross section value for each parameter can
be calculated for each time step. Then the value calculated for the present time
step must be subtracted from the value for that parameter used during the last time
step to obtain some AY. That AL goes into the input deck in the 20%*, 211, and
22%x arrays (shown in Appendix C). If a cross section has no time dependency, then
its entries will be zero. (Note, the initial input into these arrays must contain the
steady state values.)

The TWIGL flux at time ¢ = 0.01 sec is given in Table 6. The peaks occur at
z = 50 cm and z = 150 cm, or in material zones 2 and 4 which are-composed of
material 1 and material 3 respectively. Figure 13 shows the TWIGL flux and the
two distinct peaks.

The two peaks differ because of the change in the thermal absorption in ma-
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X(cm)- ¢
10 | 1.835550+14
20 | 5.668937+14
30 | L.578674+15
40 | 2.774679+15
50 | 3.211949+15
60 | 2.779915-+15
70 | L.587650+15
80 | 5.824532+14
90 | 2.229511+14
100 | 1.039940+14
110 | 1.038213+14
120 | 2.137265+14
130 | 5.582470+14
140 | 9.682363+14
150 | 1.115436+15
160 | 9.629778+14
170 | 5.491288+14
180 | 1.980289+14
190 | 6.435757+13

Table 6: TWIGL Flux at Time ¢ = 0.01 sec

terial 1. Thermal neutrons have a larger probability of inducing fission than fast
neutrons. Neutrons emitted as a result of a fission event are high energy, or fast
neutrons. Therefore, material absorption of thermal neutrons result in a decline of
fission events. “Conversely, less -absorption increases the thermal neutron popula-

tion, and increases fission events. More fission events then increase the fast neutron

population.

It follows then that since the thermal absorption cross section decreases in ma-
terial 1, more fission events occur there. This increases the fast neutron population,
anc causes a larger peak in material 1,

FMP2DT should also display the same shape. Figure 14 shows this to be the

case. Tigure 15 shows the results using twice the reported TWIGL mesh spacing.
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In both cases, FMP2DT’s flux shape was very similar to TWIGL’s.

FMP2DT made twelve runs to insure that its flux shape was correctly defined.
Table 7 shows the different configurations modeled. Runs 1 through 4 were done
-using the reported TWIGL mesh spacing. Note, that for runs 1 and 2 there are
differences in the number of time intervals and Ats. The parameters for run 1 are the
same as those that TWIGL used for its calculations. TWIGL used one time interval
with ten time steps to model from ¢ = 0 to ¢ = 0.01 sec, with each At = 0.001 sec.

From Figure 12 it is shown that between times ¢ = 0 and ¢ = 0.005 sec, there is no

change in the thermal absorption cross section. TWIGL still used five time steps

there even though no physical process was changing.

Run | Intervals | At; (sec) | Atp (sec) | Az(cm) | Az(cm) | Total Steps
1 1 0.001 N/A 10.0 14.142 10
2 2 0.005 0.001 10.0 14.142 6
3 2 0.005 0.0005 | 10.0 | 14.142 11
4 2 0.005 | 0.00025 10.0 14.142 21
5 1 0.001 N/A 20.0 14.142 10
6 2 0.005 0.001 20.0 14.142 6
7 2 0.005 0.0005 20.0 14.142 11
8 2 0.005 | 0.00025 20.0 14.142 21
9 1 0.001 N/A 5.0 7.071 10
10 2 0.005 0.001 5.0 7.071 6
11 2 0.005 0.0005 5.0 7.071 11
12 2 0.005 | 0.00025 5.0 7.071 21

Table 7: FMP2DT Run Summary for TWIGL Comparison

For run 2, FMP2DT divided this problem into two intervals. The first went from
t = 0tot =0.005 sec, and the second went from ¢ = 0.005 to 0.01 sec. However, for
the first interval only one time step, with a At = 0.005 sec, was used. The second
interval used five time steps with At = 0.001 sec. Tl.us, run 2 used a total of six

time steps. The answers for runs 1 and 2 were exactly the same.
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This demonstrates the ability for FMP2DT to yield a substantial savings in
computational cost due to the fact that it has an implicit, numerical stable, time
discretization. FMP2DT demonstrated this same characteristic for the other com-
binations of Az, Az-and At configurations shown in Table 7.

The differences in the peak magnitudes for the TWIGL and FMP2DT calcu-
lations, shown in Figure 14, yield no special concern since the large mesh spacing
used makes the accuracy of either calculation questionable. However, since the flux
shapes are similar, it can be said that the source vectors for the two codes were
similar. This is significant because both codes modeled a precursor source.

We-benchmark FMP2DT now using exact flux values. This will not only vali-

date the ability of FMP2DT to obtain the correct flux shape, but will enhance-its

credibility s computational accuracy.
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Figure 13: TWIGL Flux at Time ¢ = 0.01 sec
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Figure 14: FMP2DT Flux With TWIGL Mesh; ¢ = 0.01 sec
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Figure 15: FMP2DT Flux With 2X TWIGL Mesh; ¢ = 0.01 sec




7.2 Slab Geometry Benchmark

Since the TWIGL mesh spacing was much larger than a MFP, the most that can
be said about that comparison is that FMP2DT produced a similarly shaped flux.
The TWIGL. work then needs to be supplemented with some exact calculations to
establish FMP2DT’s ability to produce credible results.

B. D. Ganapol [Ref. 29] published a paper giving exact results for infinite one
dimensional slab and cylindrical geometries. FMP2DT modeled these configurations
by making the mediums so large that neutrons born because of a pulsed source at
time ¢ = 0 sec did not have time to leak out of the medium. Ganapol tabulated
these calculations to aid in debugging programming errors. This section compares
FMP2DT calculations with Ganapol’s exact calculations for XZ slab geometry.

Table 8 shows the exact flux in an infinite slab with an isotropic pulsed -plane
source at z = 0 in a nonabsorbing medium. For each time step, the flux is calculated
at the mean free paths shown. The solutions were generated using Neumann series
for the angular and scalar fluxes. The neutron velocity, v, was set to be 1 cm/sec,
and the total cross section, ,, was set at 1.0 cm™. (This was the case for both
XZ and RZ geometry.) The media for both of the infinite geometries were non-
multiplying. Table 9 shows the FMP2DT results, and Table 10 shows the percent
relative error.

The data in Tabie 9 were calculated with a two dimensiona! slab configuration
with a reflective boundary at £ = 0 cm, vacuum boundaries at = = 45 cm and
z = 0 and z = 46 cm. These values represent the physical dimensions of the slab
modeled. The fluxes were calculated at z = 1, 2, 3, 4, 5, and 6 cm respectively with
a corresponding value of z = 23.0 cm. These values of z were 1 MFP apart, with

the first being 1 MFP from the boundary. For all runs in both slab and cylindrical




geometries, the source had a thickness of 6.25E-02 cm. To insure convergence, ten
runs were done with different mush spacing and different time steps. As the mesh
spacing became finer, it became necessary £¢. model the infimée medium by using
reflective boundary conditions on the top and bottom of the slab, which left only
the right side allowing any leakage. It was found that only five mesh points in the
z direction were necessary. Most runs were modeled with a .eflector at z = 0 and
z = 4 cm and the flux data calculated at z = 2 ¢cm. In the cases where Az=2 cm,
the reflectors were put at z = 0 and z = 8 cm with the flux calculations made
at z = 4 cm. The reflective top and bottom: boundary configurations yielded the
same answers as did the configuration with vacuum boundary conditions on the
top and bottom. Since the reflective configurations had fewer axial mesh points,
there was a substantial savings in computational cost, and they had .nuch faster run
times. These same schemes were done with the cylindrical calculations. Table 11
summarizes the different configurations.

The results of the TMP2DT flux are extremely good. The error at 1 mean
free path (MFP) is most noticeable at early time. It is expected that the flux at
1 MFP would yield the most error since this is closest to the boundary and a P,
approximation is more likely to be suspect there. Also, while mathematically the
line source can be turned on and off at a time ¢ = 0, at z = 0 cm, using a delta
function, the code cannot. The source had to have some finite dimension, and it
had to be left on at some finite time. These dimensions were extremely small, but
produced some error.

Figure 16 shows that the error dies out as time increases. However, even for
earlier times, the flux shape is in good agreement. Figure 17 shows the comparison
between the FMP2DT and the exact flux two MFPs from the source. Again, the

carly time values have the worst error. Figures 18, 19, 20, and 21 show the FMP2DT
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and exact flux calculations at 3, 4, 5, and 6 MFPs respectively. The error for these
calculations is extremely smali, especially after the first few time points. This is

consistent with the expected flux behavior using a P; approximation.

TIME 1 MFP ~ 2 »IFPs 3 MFPs 4 MEPs 5 MFPs 6 MFPs
0 ~0.0000E+00-| 0.0000E+00 | 0.0000E4C0 | 0.0C00E+00 | 0.0000E400 | 0.0000E+00
1 1.8394E-01 .} 0.0000E-+00 | 0.00002400 | 0.0000EX+00 | 0.5000E+00 | 0.0000E-+00
3 2.3942E-01 | 93836E-02 | 8.2978E-03 |-0.0000E+00 :| 0.0000E+00 | 0.0000E+00
5
7
9

1.9957E-01 1.2105E-01 4.9595E-02 1.1823E-02 | 6.7379E-01 | 0.0000E+00

1.7347E-01 1.2293E-01 6.8028:-02 | 2.8447E-02 | 8.4158E-03 1.5036E-03
" 1.5528E-01 1.1935E-01 7.63%4E-02 | 4.0186E-02 1.7004E-02 | 5.5765E-03
11 1.4175E-01 1.1454E-01 7.9986E-02 | 4.7953E-02 | 2.4433E-02 1.0418E-02
13 1.3120E-01 1.0959E-01 8.1200E-02 | 53024E-02 | 3.0372E-02 1.5137E-02
15 1.2269E-01 1.0514E-01 8.1158E-02 | 5.6305E-02 | 3.4985E-02 1.9376E-02
17 1.1564E-01 1.0096E-01 8.0438E-02 | S5.83%0E-02 | 3.8531E-02 | 2.3041E-02
19 1.0968E-01 | 9.7166E-02 | 7.9349E-02 | 5.9663E-02 | 4.1241E-02 | 2.6150E-02
21 1.0455E-01 937ISE-02 | 7.8066E-02 | 6.0377E-02 | 43305E-02 | 2.8761E-02
23 1.0007E-01 9.6583E-02 | 7.6693E-02 | 6.0698E-02 | 4.486SE-02 | 3.0342E-02
25 9.6125E-02 | 8.7720E-G2 | 7.5287E-02 | 6.0744E-02 | 4.6042E-02 | 3.2757E
27 9.2615E-02 | 8.5093E-02 | 7.3885E-02 | 6.0592E-02 | 4.6912E-02 | 34265E-02
29 8.9460E-02 | 8.2688E-02 | 7.2508E-02 | 6.0301E-02 | 4.754?F-02 | 3.5515E-02
31 8.6606%-02 | B.0464E-02 | 7.1168E-02 | 5.9910E-02 | 4.7984E-02 | 3.6549E-02
3 8.4009E-02 | 78404E-02 | 6.9872E-02 | 59445E-02 | 4.8274E-02 | 3.7400E-02
35 8.1632E-02 | 7.6491E-02 | 6.8624E-02 | 55937E-02 | 4.8445E-02 | 3.5093E-02
37 TO446E-02 | 7A470SE-02 | 6.7424E-02 | 5.8393E-02 | 48519E-02 | 3.5669E-02
39
41
13

7.7427E-02 | T3041E-02 | 6.6272E-02 | 5.7826E-02 | 4.8515E-02 | 3.9129E-02
75553E-02 | T7.1479E-02 | 6.5167E-02 | 5.7247E-02 | 4S450E-02 | 3.9497E-02
7.3810E-02 | 7.0012E-02 | 6.4108E-02 | 5.6561E-02 | 4.8334E-02 | 3.9786E-02
45 7.2182E-02 | 65630E-02 | 63091E-02 | 5.6074E-G2 | 4.8177E-02 | 4.0007E-02

Table 8: Exact Flux Due to an Isotropic Pulsed Plane Source at z = 0 in:a Nonab-
sorbing Infinite Medium For Slab Geometry




TIME | 1.MEP TMEPs | 3 MFPs I MFPs S MFPs ] 6 MEPs
0 | 0.0000E+00 | 0.0000B100 | 0.0000E+00 | 0.00005+00 | 0.0000E+00 | 0.0000E+00

1| 1.0461E-01 | O.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E-+00 | 0.00006400

3 | 2.7485E.01 | 7.4742B-02 | 9.38605-03 | 0.000054.00 | 0.0000E+00 | 0.0000EF00

5

7

2.0536E-01 1.3069E-01 |- 4.3453E-02 9.2030E-03 1.4897E-03 | 0.0000E4-00
_ 1.6964E-01 1.3084E-01 | 7.0663E-02 2.5537E-02 6.6768E-03 1.3782E-03
9 1.5137E-01 1.2190E-01 | '8.0677E-02 4.0570E-02 | 1.5307E-02 4.4989E-03
11 1.3853E-01 1.1488E-01 8.2818E-02 4.9817E-02 2.4089E-02 9.3242E-03
13 1.2850E-01 1.0927E-01 8.2747E-02 5.4848L-02 3.0971E-02 1.4612E-02
15 -1.2038E-01 1.0442E-01 | -8.1953E-02 5.7699E-02 3.5895E-02 1.9389E-02
17 " | 1.1362E-01 1.0012E-01 8.0792E-02 5.9390E-02 3.9427E-02 2.33611-02
19 1.0789E-01 9.6275E-02 | 7.9427E-02 6.0360-02 4.2021E-02 2.6594E-02
21 1.0294E-01 9.2818E-02 7.7963E-02 6.0845E-02 | 4.3951E-02 2.9232E-02
23 9.8615E-02 | 8.9692E-02 |.7.6467E-02 6.0993E-02 4.5387E-02 3.1392E-02
25 9.4792E-02 8.6850E-02 7.4978E-02 6.0904L-02 4.6448E-02 3.3166E-02
27 9.1382E-02 | 8.4254E-02 7.3519E-02 6.0649E-02 4.7220E-02 3.4624E-02
29 8.8315E-02 | 8.1871E-02 | 7.2104E-02 6.0276E-02" | 4.7766E-02 3.5822E-02
31 8.5538E-02 7.9674E-02 7.0738E-02 5.9821E-02 4.8136E-02 3.6805L-02
33 8.3006E-02 7.7642E-02 6.9425E-02 5.9309E-02" | 4.8366E-02 3.7609E-02
35 “8.0687E-02 7.5755E-G2 | 6.8166E-02 5.8758E-02 4.8485E-02 3.8263E-02
37 7.8552E-02 7.3997E-02 | 6.6960E-02 5.8182E-02 4.8515E-02 3.8792E-02
39 7.6578E-02 7.2355E-02 6.5805E-02 5.7590E-02 4.8475E-02 3.9216E-02
41 7.4745E-02 7.0815E-02 | 6.4700L-02 5.69911-02 4.8377E-02 3.9552E-02
43 7.3038E-02 6.9369E-02 | 6.3642E-02 5.6389E-02 4.8234E-02 3.9811E-02
45 7.1442E-02 6.8007E-02 | 6.2629E-02 5.5789E-02 4.8054E-02 4.0007E-02

Table 9: FMP2DT Flux Due to an Isotropic Pulsed Plane Source at ¢ = 0 in a
Nonabsorbing Medium For Slab Geometry




TIME | 1 MFP | 2 MEDs | 3 MEPs | 4 MFPs | 5 MFPs | 6 MFPs
1 | 4313 | N/JA | NJA | NJA | N/JA | N/A
3 | 1480 | 2035 | 1914 | NJA | N/A | N/A
5 | 290 | 796 | 12.38 | 22.16 | 121.09 | N/A
7 | 221 | 643 | 3.87 | 1023 | 20.66 | 8.3
9 [ 252 | 214 | 562 | 096 | 9.98 | 19.32
1T | 227 | 030 | 3.54 | 389 | 141 | 1051
13 | 206 | 038 | 191 | 344 | 197 | 347
15 | 188 | 068 | 098 | 294 | 260 | 0.07
17 | 175 | 083 | 044 | 171 | 233 | 1.39
19 | 168 | 092 | 010 | 122 | 189 | 170
51 | 154 | 096 | 013 | 078 | 149 | 164
53 | 145 | 098 | 029 | 049 | 1.6 | 145
% | 1.39 | 099 | 04L | 026 | 088 | L2
97 | 133 | 099 | 050 | 009 | 066 | L05
29 | 1.28 | 099 | 056 | 004 | 047 | 0.6
31 | 123 | 098 | 060 | 015 | 032 | 0.70
33 | 119 | 097 | 064 | 023 | 010 | 0.6
35 | 116 | 096 | 067 | 030 | 008 | 043
37 | 113 | 095 | 069 | 036 | 001 0.32
39 | 110 | 094 | 070 | 041 | 008 | 0.22
41 | 107 | 093 | 072 | 045 | 015 | 0.14
43 | 105 | 092 | 0.3 | 048 | 021 0.06
45 | 103 | 0901 | 073 | 051 | 026 | 0.0

Table 10: The Percent Relative Error for the FMP2DT Slab Calculations

run | reflectors | Az or Ar, Az At

1 no 1.0 cm 1.0 sec
2 yes 0.5 cm 1.0 sec
3 yes 0.5 cm 0.5 sec
4 yes 0.5 cm 0.25 sec
5 yes 1.0 cm 2.0 sec
6 yes 1.0 cm 1.0 sec
7 yes 1.0 cm 0.5 sec
8 yes 2.0 cm 4.0 sec
9 yes 2.0 cm 2.0 sec
10 yes 2.0 cm 1.0 sec

Table 11: Run Summary for the Infinite Slab and Cylindrical Geometries

7
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Figure 16: FMP2DT and Exact Flux, XZ Géometry 1 MFP From Boundary
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Figure 17: FMP2DT and Exact Flux, XZ Geometry 2 MFPs From Boundary
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Figure 18: FMP2DT and Exact Flux, XZ Geometry 3 MFPs From Boundary
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Figure 19: FMP2DT and Exact Flux, XZ Geometry 4 MFPs From Boundary
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7.3 Infinite Cylindrical Geometry Benchmark

The Ganapol paper already cite-d also gave results for cylindrical geometry. ‘Ta-
ble 12 shows the exact flux due-to an isotropic pulsed line source a # = 0cmin a
-nonabsorbing infinite medium.

As with XZ geometry, several different runs were made to. insure convergence.
The run summary is given in Table 11. For RZ geometry, there is a reflective
‘boundary-at the radial center, i.c. at r = 0-cm. The rest of the boundary conditions
for the different configurations are as described for the XZ calculations.

Again, just like the XZ case, FMP2DT calculated-the flux with good agreement
with the exact flux. Table 12 shows the exact flux, Table 13 shows the FAMP2DT
calculations, and Table 14 shosws the percent relative error with respect to the exact
flux. As with the X7 gecmetry, the line source had a small finite thickness, and
the source-was turned on and off with some small finite time. This introduces some
error automatically that cannot be omitted.

Figures 22, 23, 24, 25, 26, and 27 show the graphs comparing the exact and
FMP2DT fluxes at 1 MFP, 2 MFPs, 3 MFPs, 4 MFPs, 5 MFPs, and 6 MFPs
respectively. As in the XZ geometry calculations, the worst error occurred at the
carlier times. This js caused by the characteristic of the P; approximation and the
finite source configuration already stated. As the calculations moved awzy from

the cylinder’s center line, the Fs{P2DT flux was nearly identical to the exact flux

reported by Ganapol.




A MFPs

atr =0ina

TIME |__1 MFP ZMFPs | _3MFPs 5 MFPs G MFPs
1__| 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+G0 | 0.0000E+00
3| 7.0987E-02_| 3.1734E-02_| O.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00
5| 4.5077-02 | 25563E02 | 1.2285E.02 | 3.2456E-03_| O.0000E+00 | U.0000E+00
7__| 33254502 | 2:3830E-02 | 13458502 | SBIT2E-08 | 1.8173E-03 | 3.6050E-04
9 | 2.602/E-02_| 20I34E02 | 1.3033E02 | 6.9750E-03 | 3.0260E.03 | 1.0291E.03
11| 2.1316E.02_| 1.7346E:02 | 1.2201E02 | 73928603 | 5822703 | 1.6628E-:03
13| 1.8133E02 | 1.5205E02 | 1.1312E02 | 74409E03 | 4.3012E03 | 21729508
15| 1.5744E02 | 13521E.02 | 1.0476E-02 | 73062E-08 | 4.5121E-03 | 2.5552E-03
17__| 1.3911E02 | 12165602 | 9.1197E.03 | 7.0842E-03 | 4.G998E03 | 2.82056-03
19| 1.2160E-02_| 1.I053E-02_| O.04G5E-03 | GBZ39E-03 | 4.7367E-03 | 3.0190E.03
21| 1.1282E02_| 10125602 | 8.4492E.03 | 65515608 | 47150603 | 3.1447E-03
23| 1.0308E-02 | 93393E.03_| 7.9191E-03 | 6.2609E.03 | 4.6558E-03 | 3.2218E-03
25| 9.4593E-03 | BG6S9EG3 | 7.+470E03 | 60192E-00 | 4.5:31E-03 | 3.26305.03
77| B.190:E03 | S0825E03 | 7.02505.03 | 57700E-03 | 44761503 | 3.2:755-:03
29| G.18i6E03 | 7.5123E03 | 66162603 | 55316608 | 43711503 | 32122603
31| 7.6623E03 | 7.1224E03 | 63037E.03 | 53135503 | 4.2620E03 | 3.2523L-03
33__| 7.2002E-03 | 6.1228E03 | 5.9955E.03 | 5.1062E:03 | 4.1518E-03 | 32218503
35__ | 6.790iE03_| G3651E-03 | 5./144E.03 | 49122E-00 | 4.0423503 | 3.1535E-03
37__| 6A4257E03 | 60441E03 | 5459503 | 4.7305E-08 | 39317603 | 3.13995-03
39| 6.0971E-03 | 5.1535E-03 | 5.2229E-03 | 4.5606E-03 | 35298502 | 3.0924E-03
41__| 5.5008E-:03 | 5A895E.03_| S0071E03 | 44014E.03 | 3.7251503 | 3.04235-03
43__| 5.5320E-03 | 5.245/E-03_| 45050E03 | 4.2520E-03 | 36299E03 | 2.9907E-03
45__| 5.2570E-03_| SO250E(E | 46240503 | 4.1119E.03 | 3.53525-03 | 2.9352E.03
Table 12: Exact Flux Due to an Isotropic Pulsed Plane Source

Nonabsorbing Infinite Medium For RZ Geometry

Table 13: FMP2DT Flux Due to an Isotropic Pulsed Plane Source at 7 = 0 in a
Nonabsorbing Infinitec Medium For RZ Geometry

TIME 1 MFP 2 MFPs 3 MFPs 4 MFPs 5 MFPs 6 MFPs
1 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0C03E400 | 0.0000E+00 § 0.0000E500
3 9.7929E-02 | 2.7334E-02 | 0.0000E400 | 0.00GOE+00 | 0.0000E+00 | 0.0000E+00
S 4.1467E-02 | 33892E-02 1.1495E-02 | 23169E-03 | 0.0000E+00 | 0.0000E+400
7 2.8879E-02 | 2.5258E-02 | 1.4980E-02 | 5.5095E-03 1.4101E-03 | 2.5057E-04
9 2.3720E-02 1.9765E-02 1-4075E-02 | 7.4456E-03 | 2.8511E-03 | 8.3037E-04
11 1.9968E-02 | 1.6787E-02 | 1.2555E-02 | 7.9142E-03 | 3.9532E-03 1.5492E-03
13 1.7160E-02 1.4727E-02 1.1371E-02 | 7.7737E-03 | 4.5339E-03 | 2.138SE-03
15 1.5027E-02 | 1.3124E-02 1-0431E-02 | 7.4895E-03 | 4.768E-03 | 2.6427E-03
17 1.3360E-02 1.1832E-02 | 9.6363E-03 | 7.1807E-03 | 4.8536E-03 | 2.9345E-03
19 1.2023E-02 1.0770E-02 | 8.9485E-03 | 65702E-03 | 4.8472E-03 | 3.1170E-03
21 1.0028E-92 | 9.8828E-03 | 83475E-03 | 6.5671E-02 | 4.7933E-03 | 3.2283E-03
23 1.0015E-02 | 9.1301E-03 | 7.8188E-03 | 6.2770E-03 | 4.7102E-03 | 3.2910E-03
25 9.2119E-03 | 84836E-03 | 7.3509E-03 | 6.0029E-03 | 4.6097E-03 | 33192E-03
27 8.5704E-03 | 7.9223E-03 | 6.9342E-03 | 5.7457E-03 | 4.4994E-03 | 3.3224E-03
29 8.0052E-03 | 7.4305E-03 | 6.5610E-03 | 5.5055E-03 | 4.3813E-03 | 3.3077E-03
31 7.5029E-03 | 6.9961E-03 | 6.2251E-03 | 5.2815E-03 | 4.2677E-03 | 3.2793E-03
33 7.0598E-03 | 6.6095E-03 | 5.9213E-03 | 5.0727E-03 | 4.1519E-03 | 3.2129E-03
35 6.6661E-03 | 6.2634E-03 | 5.6452E-03 | 4.8780E-03 | 4.0381E-03 | 3.1993E-C3
37 63138E-03 | 5.9516E-03 | 5.3934E-03 | 4.6965E-03 | 3.9272E-03 | 3.1511E-03
39 5.9969E-03 | 5.6694E-03 | 5.1628E-03 | 4.5269E-03 | 3.8199E-03 | 3.0999E-03
41 5.7162E-03 | 541126E-03 | 4.9508E-03 | 4.3684E-03 | 3.7164E-03 | 3.0168E-03
43 5.1196E-03 | 5.1750E-03 | 4.7554E-03 | 4.2199E-03 | 3.6169E-03 | 2.9927E-03
45 5.2118E-03 | 4.9629E-03 | 4.5747E-03 | 4.0807E-03 | 3.5213E-03 | 2.9382E-03




TIME | 1 MED | 2 MFPs | 3 MFDs | 4 MEPs | 5 MEPs | 6 MFPs
3 | 3236 | 1387 | NJA | NJA | NJA | N/A
5 | 981 | 1866 | 643 | 2861 | NJA | N/A
7 | 1316 | 599 | 1131 | 529 | 2241 | 2214
9 | 886 | 183 | 7.46 | 674 | 548 | 1931
11 | 659 | 322 | 293 | 705 | 341 | 6.83
13| 537 | 314 | 052 | 447 | 534 | 0.3
15 | 455 | 204 | 043 | 251 | 448 | 342
17 | 396 | 274 | 086 | 136 | 327 | 3.1
19 | 351 | 256 | 108 | 065 | 233 | 324
31 | 3.4 | 239 | 120 | 021 | 166 | 266
53 | 281 | 224 | 127 | 006 | Li7 | 215
% | 261 | 210 | 129 | 027 | 080 | L2
27 | 240 | 108 | 129 | 042 | 052 | 137
39 | 223 | 187 | 128 | 053 | 030 | 10S
31 | 208 | 177 | 126 | 060 | 013 | 0.5
33 | 195 | 160 | 121 | 066 | ~00 | 065
35 | 183 | 160 | 121 | 070 | 010 | 049
37 | 143 | 153 | 118 | 0472 | 019 | 0.36
39 | 164 | 146 | LI5 | 074 | 026 | 024
41 | 156 | 140 | 112 | 045 | 031 | 0I5
43 | 149 | 135 | 109 | 045 | 036 | 007
5 | 142 | 120 | 107 | 076 | 039 | 000

Table 14: The Percent Relative Error for the FMP2DT Cylindrical Calculations
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Figure 22: FMP2DT and Exact Flux, RZ Geometry 1 MFP From Boundary
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Figure 23: FMP2DT and Exact Flux, RZ Geometry 2 MFPs From Boundary
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Figure 24: FMP2DT and Exact Flux, RZ Geometry 3 MFPs From Boundary
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Figure 25: FMP2DT and Exact Flux, RZ Geometry 4 MFPs From Boundary
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Figure 26: FMP2DT and Exact Flux, RZ Geometry 5 MFPs From Boundary
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7.4 Benchniark Conclusions

FMP2DT could not be benchmarked with TWIGL. The TWIGL calculations were
-done with a much too coarse a mesh spacing. However, comparing FMP2DT with
TWIGL’s flux shape showed that the precursor contribution was-at least generating
a similar source vector as was TWIGL’s source vector. And by presenting the
TWIGL comparison, a demonstration of some of FMP2DT’s input characteristics
was accomplished. The benchmarks with the exact flux in infinite XZ and RZ
geometries did establish FMP2DT’s computation creditability.

Since a P; approximation is. most suspect near boundaries and strong sources, it
is most likely that FMP2DT would show the greatest error nearest to the boundary
or source. Figures 16 and 17 show this to be true. Angular flux approximations
usually do not predict the early time behavior of the flux because the wave behavior
of the flux is not fully accounted for [Ref. 29]. However, given time after the source
is turned off, the error disappears, even in close proximity to the boundary. This
implies that the flux has time to become more isotropic so that the P, approximation
is a better representation of the angular flux.

The fact that a P; approximation has difficulty predicting the early behavior
of the flux is compounded by the fact that the source was 0.0625 cm thick. This
means that at one second, the leading edge of the wave is at 1.0625 cm because the
neutron velocity is 1 cm/sec. Likewise, there is an offset in the leading edge at 3 and
5 sec. This implies that, at these times, the corresponding calculations at 1, 3, and
5 MFPs are not predicting the leading edge of the wave since it has already passed.
Looking at the percent relative error for slab geometry in Table 10, the largest error
for these MI'Ps is at times ¢t = 1,1 = 3, and ¢ = 5 sec. Looking at Tables 8 and 9,

at 3 and 5 MFI'Ps, it appears that the flux is over predicted. This supports the fact
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that the leading edge of the wave has already pass through.

For RZ-geometry, similar behavior is true. Theres an inherent radial dependency
for cylindrical geometry that is more pronounced than for slab geometry. The largest
errors are for the earlier time fluxes. Looking at Figures 23 and 24, the early time
FMP2DT flux shape at 2 MFPs appear te be taking the shape of the 3 MFP flux
shape. This again supports the suggestion that the leading edge o the wave has
already passed through. Experiments with the mesh spacing also seemed to-confirm:
this.

Overall, the benchmark results with the exact flux are remarkably good. Usually,
comparisons between transport codes and exact answers given in literature are for
several MFPs from the source and boundary. This is because most codes are diffusion
codes, and diffusion theory breaks down near the boundary. Diffusion codes do not
represent the anisotropic nature of the leading ec'ge of the wave at early time steps.
After a few MFPs, the flux becomes more isotrcyic because of resulting collisions,
and diffusion theory becomes more valid. Normally, a P; approximation gives a
better representation of the anisotropic nature of the flux and is better representation
of the leading edge of the wave at earlier time. If more accuracy is desired at early
time, then a larger P, approximation would be a better model for the angular flux.
But as the P, approximations are made and programmed, the computational costs
rise substantially. Thus, the P; approxima.isn in FMP2DT still is economically
attractive, and the early time errors may be accepiwo.c for most computations.

In the next section, we examine some applic wions for FMP2DT, and identify

some few group problems where FMP2DT can be used as an analytical tool.
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8 FMP2DT Applications

FMP2DT has applications to many nuclear -engineering problems of interest to a
number of communities. For examples, two problems were chosen, both in RZ ge-
ometry. The first one can only be resolved +'g decay of a critical reactor after
injection of a pulse of neutrons. This #- w .\n.. st . iten used to determine neutron
lifetime estimates in a new or research react« .. The second experimens is represen-
tative of most pulsed logging problems. Tw "..uensional effects can dominate the
‘measurements to the extent that simpler on. ...nensional models are useless. These
problems are only to demonstrate FMP2DT. Therefore, no detailed physics will be
developed. For example, for the first sample problem, FMP2DT will show how it
can aid in collecting flux data for a Rossi-alpha experiment. However, the actual

value of alpha will not be calculated.

8.1 AGN-201 Rossi-Alpha Preblem

The first example problem <uosen entailed modeling the UNM AGN-201 reactor.
The AGN-201 is a low-power thermal reactor used mostly for training purposes. It
is a right cylinder core, 25 cm in diameter. The fuel is a mixture of 20% enriched
UO; and polyethylene. The critical mass of the reactor is about 665 grams of U2,

The experiment modeled involved a pulsed source located at the center of the
UNM AGN-201 reactor that was initially operating at a critical state. This type of
experiment is known as a Rossi-alpha experiment. A pulse of neutrons is injected
into the reactor with a spatial distribution that excites multiple spatial modes. After
a period of time, all modes other than the fundamental mode die out. The decay
of the fundamental mode then can be related to the neutron lifetime . geaeration

time in the critical reactor. The crucial piece of information that the calculation can




provide is the time 2t which-counters can be gated on to measure the fundamental
mode decay. If the counters are gated on too soon, the fundamental mode will be
contaminated by measurements of the higher modes. If the counters are gated on
too late, the data will suffer from poor resolution.

The two. dimensional time dependent calculation can be recorded at multiple
locations. When the time history of the flux at all spatial locations has thLe same
exponest” y decay on a semi-log plot, all higher modes have-decayed out. At this

time the counters can be gated on and the decay data recorded.

8.1.1 AGN Calculation Description

The geometry for this problem is shown in Figure 28. The source was turned on
for one microsecond and then turned off. The source energy was set at 0.01 MeV.
The magnitude of the source energy was chosen arbitrarily and poses no significance
here. The mesh was about 1 cm in the core for the radial direction, and 1 cm in
the axial direction. The At for th” jroblem was 20 microseconds for 59 steps. The
calculations were stopped at 1.001 millisecond. The initial flux was generated by a
FEMP2D calculation. The data were taken ot the axial center line which is at z=0
cm in Iigure 28. The radial values were at r=0.985, 2.954, 4.923, 6.982, and 8.861
cm. These radial pesitions are all in the core. The last position was chosen to stay
away fre.a the core and graphite interface since the reflection of the neutrons frem
the graphite changes the slope of il flux shape. A three group problem was modeled
using cross section data from an AMPX library. This was because of the availability
of the cross section sct, and three groups are enough to demonstrate FMP2DT’s
multigroup computational ability. Table 15 shows the energy group structure for

this problem.
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Group | E Max (eV) | E Min (eV)
1 7 1.7330E+407 | 1.0000E+07
2 ] 1.0000E+07 | 9.9990E-02
3 9.9990E-02 | 1.0000E-05

Table 15: Three Group-Energy Structure
8.1.2 AGN Results

Figure 29 shows the plot of the thermal flux at the stated core positions. From the
graph, it can be seen that after about 0.27 milliseconds, the slopes of the therma] flux
are the same for all the radial positions. This implies that all but the fundamental’
flux mode has died out. This is:the ime to gate the counters on and record the flux
data. Any time previous would resull in higher mode data contamination since the
slope is not straight for all spatial points.

Next, we turn our attention to a uranium logging problem. It also entails ob-

serving neutron flux decay much like the Rossi-alpha observations done here.




(Assume reflective boundaries at r=0 and z=0)
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Figure 28: AGN Geometry
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Figure 29: Flux Decay for the AGN-201 Reactor
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8.2 TUranium Logging Problem

The search for uranium-in soil is accomplished by what is called a uranium borehole
logging procedure. A large hole is bored into ore-bearing rock formations, and either
a pulsable source or some neutron source such as 252Cf is inserted.. The resulting
decay of prompt fission neutrons in epithermal energy region is observed. Rock
formations with uranium present will show an increase for short time as a result
of fission events, whereas formations without uranium will show a constant rate of
epithermal neutron population decay.

The model chosen was the prompt neutron logging problem developed by James
H. Renken Ref. 32]. Renken’s work was performed in one dimensional geometry
and assumed that a 14 MeV source and a neutron detector were co-.ocated. This is
physically impossible. In fact they are separated by 10°s of centimeters. Since this is
true, diffusion of the thermal neutrons must be considered in the analysis as well as
absorption. A two dimensional model provides a much better tool to analyze data
from this physical problem.

When the logging problem is modeled, the fundamental problem that is corre-
lated with the material properties of the interrogated rock is the long time (hundreds
of microseconds) decay constant of the thermal neutron population. This decay con-
stant will vary with distance from the source if thermal neutron diffusion is present.
The analysis presented here demonstrates this to be the case and indicates that an
individual probe must be calibrated for the source to detector spacing involved. This

type of analysis can be useful for all pulsed logging systems.
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8.2.1 Logging Calculation Description

The logging geometry is shown in Figure 30. A borehole is drilled into potential ore
‘bearing rock. The borehole has a diameter of about 4 cm and is filled with water.
A probe, about 3 cm-in diameter and 60 cm in length, is inserted into the borehole.
The detector is about 4 cm from the source. The source is about 1 ¢cm in diameter
and is located in the center of the probe as shown.

The same three group stru .ture as used for the previous example is used for this
problem. The group structure is showr in Table 15. The radial mesh was about 1 cm
in the axial and radial directions. (Except where material interfaces occurred.) The
source energy was 14 MeV, and it was turned on for 10 nacroscconds. The flux data
were then tabulated for 590 microseconds with a At =11.8 microseconds for 50 time
steps. The soil contains a mixture of 2°U, 23U, H,0, and Si0,. The production of
delayed necutrons is neglected because their numbers will be small during the short
counting period. A reflective boundary condition is used at » = 0 cm and vacuum

boundary conditions are used at 7 =35 cm, z=0 cm, and z =60 cm.

8.2.2 Logging Problem Results

Figure 31 shows the graph of the flux decay at r = 0 cm and axial positions of
z = 38, 44, 50, 56, and 59 cm. The source, also located at » = 0 cm, was belween
z = 31 and 32 cm. As shown, the flux has different slopes for cach axial position.
This different slope data clearly show that cach position does have a different decay
constant. This must be taken into account in detector calibration to insure credible

counting.
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Figure 31: Flux Decay for the Logging Problem
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9 Conclusions

The new code, FMP2DT, demonstrated most of the characteristics that were desired
before this research began. Indeed, its benchmarking turned out to be better than
expected. Its input deck, while somewhat tedious for source transients with many
time steps, is fairly straight forward with respect to its sister FEMP codes. The
following is to identify some of F'MP2DT’s characteristics.

The nature of having to calculate the radial .and axial currents, ¥, and ¥,
means having to invert two matrices. Depending on the mesh size of the problem,
and the number of energy groups considered, this can be-a major, and very costly,
operation. Also, the calculation of the precursor concentrations, C, can be even
more computationally expensive depending on the number of precursor families to
be modeled. All of these computations are magnified by the number of time steps
chosen. Therefore, selecting the spatial mesh wisely, and using a group structure
that is just fine enough to satisfy the problem physics is prudent. However, the user
may not know these optimum configurations. In that event, a guess for an equal
Az and Az may be selected and a At chosen to give a tolerable computational
time. Then some variations from these values can be used to insure convergence.
Determination of the proper group structure is subject to choosing the number of
groups, running the problem, collapsing the groups, and observing the flux change.

As stated in earlier sections, the Euler backward differencing scheme for time dis-
cretization is inherently stable. However, the user should be careful not to assume
convergence upon an initial run; stability does not imply convergence. This is espe-
cially true for time dependent problems. FMP2DT’s answer needs to be compared
with more than one run for any new problem.

The ability for a calculation of xj is unique. These values are very difficult to




find. However, if data are available to establish the delayed group spectrum, then
it can be entered in FMP2DT’s input-deck. In fact, if any cross section parameters
are available, those may be entered likewise.

The benchmarking of FMP2DT established FMP2DT’s computational accuracy.
The errors shown in the early times for both XZ and RZ geometries are consistent
with theory. With differing neutron energy groups, where the neutron velocities are
much faster, the early time error may not be as pronounced.

The few group problems demonstrated some practical applications for FMP2DT.
The AGN-201 problem demonstrated how an experiment, such as Rossi-alpha, would
be accomplished by gating the counter-in the proper time interval to insure credible
data recording,.

The uranium logging data showed that for different spatial points in the borehole,
the flux decays at different rates. Therefore, for the detector to yield valuable
information, it must be calibrated for the source to detector spacing. Thus, the two
dimensional diffusion effects need to be accounted. for.

FMP2DT can be enhanced in many ways. Here are a few suggestions for future

work and research.

9.1 Future Research

The first thing that could enhance FMP2DT is to program the ability to make the
cross seclions temperature dependent. This could be done by coupling the FMP2DT
equations with some thermal-hydraulic equations, and/or possibly with equations
describing heat generation due to particle interactions. Included with the particle
interactions are the effects of gamma heating. Of course, because of computational
cost and complexities, there are limits as to the detail for all of this. But a: least

some work of this nature could be feasible.
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When doing the benchmarks with -Ganapol’s-data for RZ and XZ geometries,
the greatest error was at the early times. A P, expansion of the angular flux with
n > 1 would be more accurate in describing the angular flux’s anisotropic nature
at those times. Also, it would permit a-more accurate representation at boundaries
and material interfaces. This-might be the best enhancement for practical purposes.

Since we have a two dimensional time dependent code; it would be natural to
develop a three dimensional version. The complexity of this effort is not trivial,
even with the two- dimensional schemes to use as a starting points. But a three
dimensional version would allow computations with systems that do not possess
azimuthal symmetry in the streaming physics.

Second, some small modifications to FMP2DT could be made. This could include
the development of an option for Rf geometry. Mcdifications to the input scheme
could be-done so that an inhomogeneous source that’s turned on and-off would not
need an input entry describing its state for every time step. At present, this input
is very lengthy. Also, it would be desirable to include an option in FMP2DT to
czlculate adjoint fluxes. These and several other minor options could serve as some

sort of academic problem.
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Appendix A:
Vector and Matrix Definitions

The vector Equations (61) and (74) are the result of applying the multigroup ap-
proximation to the:transport equation. They have been defined for G energy groups.
g = 1 is-defined as the highest energy group and ¢ = G is defined as the lowest,
sometimes referred as the thermal energy group. Therefore, g = 1,2,---,G. We now
will define the matrices and vectors used in the XZ and RZ geometry solutions. All
the matrices are piece-wise constant in an interval Az and Az or Ar. For simplicity,

their following definitions will not carry any spatial interval subscripts.

Define 3

( $1_ P11 1 21 _3G=1 )

Et ?360 + v; At ; 230 2:"ao

12 2 2—2 1 G—2
R AR B~ IR
00 vz
2 = b
_$1=G _52—=G V. G _ GG 1

. Z:80 250 Et 230 + vg At )

£ is a combination of 2, the total cross section for the gt* energy group, E-g:,"’-" )
the inscattering cross section for the g** energy group, and the ﬁm’ diagonal entries

come from combining (addition) to the V matrix. The same similar combinations

are made with the £'° and 3! matrices.

Define $19:
( 1 __ il 1 __2—1 v _3G—1 )
Zt 231 + v At Esx 23:
_$il=2 2 __ 22 1 ... _3G—2
10 281 Et 281 + v At 261
V=4 >
_$1=G _32—G Ve G _ v6—=G 1
L 231 Es: Ey 231 + vg Ot )
10 _ (y107—1 7510 _ 1 Mo
D= {219} and D= 1D




Define $11:

{ ’1 )
R R Yt v, ~-5 e ~55 :
1—2 2 22 1 G—2
~Zs =Xt wat -z
Ell = < y
_¥1-G _y2-G .. G _yvG=G 4 1 _ -
\ Z;~’1 281 Et 281 + vg At )

D' = {21} and D' = 1 DM

3
Define &/:
- . lelz} X1V22§ XIVGZ? \
X2 vl }3} Xz 1/2 E? .. X2 I/G E?
v = )

\XGVIE} XGV22§ XGVGZ?,

x? in &4 above is-defined- as:

X' =x3(1—-pB)+ §n: Xk B (;)

1
k=1 1+ XAt

The data for £°°, $19, 5311 and 5/ are given in a cross section set that is determined

experimentally.
Define V:
4 1 3
vy At 0 0
0 o 0
V= .
0 g

v, is the neutron velocity related to the neutron energy. At is the time discretization

or time step in consideration.
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For the vector definitions, their spatial superscript i j will refer to the ¢ j** mesh
point. The superscript (N +1) will relate to the present-time step (At) and (V) will
relate to the previous time step. The energy group w:ll be the number appearing
under-the time step designation.

Define the Wy, vectors:

(40 ) (@
¢00;J‘ : ¢00.‘j f
i ¢(Nél-l) /(g’)
N+1) _ j Yooi; N Yoo;; -
: (N+1) (N)
AS ¢00,'J' ) \ ¢00.’j 4
Define the ¥, vectors:
( (N+1) (o (N)-
1 ¢ 1
10;5 10;;
¢(N~H) (g’)
(N+1) _ 105 Ny _ d’lOij
‘I’lo;,‘ - ' ‘I’lo.'j_
(Ngl) (ICV;)
A ¢10.’,‘ / \ ¢10;5 J
Define the ¥, vectors:
( (N$1) ( (NY
1 ¢ 1
11;5 11;5
(N+1) (N)
(N+1) (2 Lij (N) ¢1";,-,-
11’11;5 = 4 ¢ ‘I,ll.'j=ﬁ
(V41 N
¢ & ) ¢(G)
\ 115 J \ 115 J

Define the precursor source:

P _ o M)
Y k=1 14 M At
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Then the precursor vector may be defined: as:

( -'—(l;,) )
Ct]
_
T2
ARSI

_
\ C:J J
Define the inhomogeneous sources:
¢ (N+1) r (N-+1)
1 S, 1
00;; 10;5
(Ng-l) : (N+41)
S S
N51 00;; a(N+1) _ ) ©10i5
'SOSO,-:)==< ¢ SlO,'J')= ﬁ
(N+1) (N+1)
\ SOO.',' J \ Y10;5

S

115

(N+1) _ {

,

\

(NiH) 3
11;5
(N+1)

2
11;;

(N+1)
11;;

Note: The £1° and the £ matrices were presented in the derivation of the equations

as if they were different. Examination of the entries show that they really are not.

Thus, the diffusion matrices, D*® and D!! are also the same.
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Appendix B:
Integration Summaries

The linear hat-functions havc different values depending on the-interval in- question.

For example, for an interval in the z direction from ¢ — 1 to 7 + 1, B;(z) has two

different values. This can be seen in Figure 1. Each interior B spline then overlaps

itself and its two nearest neighbors. Therefore, the B splines are defined:

In-the 2 direction for p =7 —1, ¢, and.z 4 1:

B;.,.]_ ((B) =
B,(:I:) =
B,(:B) =

By (z) =

T —

D —————————

Ti = Ti

T— i

Ti — Ti-1

Tip1 — T

Tig1 — &4

r—Z;

Tiy1 — T

forz;1 <z <75

for ;s <z < z;

forz; Lz <z

forz; <z <z

In the z direction for g =7 —1, 4, and 7 + 1:

Bja(z) =
Bj(z) =
Bj(z) =

Bjy(z) =

2;j—z

25— Zj-1

z - ZJ'_!‘

2=z =1

Zn =2

Zi41 = %j
zZ~2zj

Zj+1 — 25

lor z;-1 £ 2L z;
forzj-1 <25z
for z; < 2 < 2z

for z; <2< zj1a

dB,'_] ((IJ) _ -1
dz T
dB,(:II) _ 1
dx - :i:; —Ti1
dB,(’B) _ -1
dz ~ Tipy —
dBiya(z) 1
dz - Tip1 — T
dBi1(z) 1
dz  z— 2z
(lBj(Z) _ 1
dz 25— 251
dB_.;(Z) _ -1
dz - Zj41 7 25
d B;11(2) — 1
dz 241 — %

The B splines in the z direction are the same for both XZ and RZ geometries.




In the r direction for p=¢—1,¢, and ¢ 4 1

Ty —T
Bia(r) = i - i
— T
Bi(r) = — 7:_11
Bifr) = 2
Tig1 —Ti
Biaalr) = ;2
Now define:

d B;_ -1
forr;y <r<w Bi-1(r) = —
dr TP —= Ti_1
forr; <r<m dB"(r'), = 1
dr T = Ti-1
d B,'('I‘) -1
<<y = :
for r; <7 <1y = S
d B; 1’(7‘) 1
for r; <7 <7 HI =
or ;. <7 <7y . mp——

hi—y = z; — z;y and h; = z;4y — ; for X7 geometry.

hi—y = r; — ;-1 and h; = iy — r; for RZ geometry.

hj-1 = 2

— zj—1 and h; = zj41 — 2z; for both geometries.

For integration in the r direction with an r factor in the integrand:

Define:
Ru(i)
Ry(i)
Rai)
Ra(?)
Rs(i)
Rgi)
Ra(i)
Rs(i)
Ry(2)
Riol3)

1
L (i)
Tli (37',2 —2ririy — r2 1)
1
5 (7‘,2_,_1 + 2ripyr; — 37} )
1 .
5 (B —72) = Ri(i—1)
=1 (ri+rig

2 \ri—rig
1(ri+7ri .
2 (1‘,’ -—7‘;_1) - Rs(z)
1+
2 \ 71—y

1 (r:

1
5 (ri + 2riq)
1
g (2ri+7i-1)
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Ru@) = (T (i +2m) = —Roi = 1)

Rul) = (T) @rin+7)=—Rioli—1)

Each- material matrix is piece-wise continuous in -a given zz or rz interval. They
possess subscripts identifying the specific-interval where they belong. Consider the
following example. Let %9 be the matrixin question. Figure 32 shows how it might

fit in a two dimensional slab mesh scheme. Let M*, M?, M® and M* represent £°°

VA
Zj+1

M?2| M3
Zj

M| M?
Z5-1

X
Ti1 T Tip1

Figure 32: Piece-Wise Material Matrix Example

in the intervals shown. Then,

M=%, M=%
M?=300, Mi=300,

Thus, 229 ;.; is continuous in the interval h;-; and hj_y, TP2; ; is continuous in

1~17

the interval h;_y and hj, L?? is continuous in the interval k; and hj, and R

is continuous in the interval h, and h,_;. All other material matrices are likewise
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determined. Now the integrations are addressed.

'In the z direction:

[ dBiy(z)dB(z) , _ -1
l e
{ dBi{z)dBiz) , 1
z[, & & T T g
Tig1
dB,-(:z:) dB;(:B), _ -1_
,,/- & & T T
7’" dBia) dBys) , _ -1
2 d.‘l! d:l: - h,'
/ B;_i(z) Bi(z)dz = %
Ti-1
7 hiq
/ Byc) B(s)dz = =
Ti-1
e h;
5! Bi(z) Bi(z)dz = ey
Tisl h'
j Biyi(z) Bi(z)dz = E—
7 d Bi(z 1
/ B.-_l(m)'—d%—)dﬂc =3
Tiy
/ Bz )dB(:z:) _ %_
Ti=] a
Tigl
dB z ~1
[ 0 2e = 3

\4B; (:z:)

_ -1
I-H( z) dz - —5_




In the z direction:

/ dB;-1(z) dBj(z) ;.
dz dz

Zy-1

jd&@d&@k
dz dz

51

[ dBi(z) dBy(z) |

J T T

i1

/ dBj(z) dBi(z) ,_
dz dz

3

j B;_i(2) Bj(z) d=

i1

[ Bia) B2 dz
/ B;(2) B;(z) d=
B;11(2) B;(z) d=

-

~J

dB (~)

dz

Tj-3

] Biy(=

7 B;z)-@j(—z)- z

(o ‘;a-.'
(]

W] - Oil._?,‘ wl&"

0 | et




In the r-direction:

r / Bia(r) B(r)rdr = Ri(3)
r / Bi(r) Bi(r)rdr = Ry(i)
:']IB,-(T)B;(r)rdr = Ry(i)

f B (r) Bi(r)rdr = Ry(i)

]; d B,-_l(r) d B;(T)
dr dr

rdr = R5(Z)

Tiwl

T dBi(r) d By(r) o
/ dr dr rdr = R(i)

o

dB,'(T) dB;(T) _ .
T/ - T rdr = Ry(7)
Tig1

-dB;(r) d B(r)
dr dr rdr

f B,-_l(r)d]fl‘f")rdr = Ry(s)

i dB; ,
/ Bi(r) dr(r) rdr = Ry(7)
Ti=1
Tig1
d B; .
/ -Bz'("') (lr(r) rdr = Ry (2)
Tig1

/ B;+1(r)d1fli:r)rdr = Ruli)

ri

Continued on the next page.
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Some of the integrands-in the radial direction did not have a r factor in them

because.it was canceled out by a  factor in the same integrand.

r. dB,' r 1
/Bi-l(‘l‘)* d’l“( )dT = 5

Ti=1
f; dBi(r) , 1
r /1 B = = 2
Ti1
7dB,-(r) _ -1
[ B 5 - 5
Tid1
Ny dB,('l‘) _ -1
/ B;.*.l(’f‘:); dr dT‘ = 7

ri
Finally there is a case that is opposite from the preceding one.

i

dB,'_l(f) _ -1
/—TB;(r)dr = 3

Ti-1

T

/ d By(r) Bi(r)dr = _;_

dr
rict
rig1

d B,'(T‘) _ -1
r[ o Bi(r)dr = 5
Ti41

d.B,'.H('I') _ 1
/ dr Bir)dr = 2

ri
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Appendix C:
TWIGL Cross Section Data

The following is a summary of the cross sections used to set up the FEMP calcula-
tions-for the TWIGL problem. Consider a two group problem with a P, approxi-
mation. The P, transfer matrix is defined as:
50 _ l: 21 21-»1 . = At - 23:1 ]
R R

And the P, transfer maftrix is defined as:

21 21-—»1 + 1 - 22—91
(3)5°=(3)5" = (3) l I = . ]
—$1-2 £2 - p2-? 4 Lo uzm
For steady state calculations, the &7 Values arc set to zero. The values to compute

these matrices are either read in by a cross section tape, tape 16, or read in the
input data from tape 5. Consider that there are two materials, and their cross
section data are read in the input deck (tape 5) in the 204, 21, and 22+ arrays.
Each material must have input for these arrays. For the TWIGL problem, the
following pages show the input for the steady state calculations. For the FMP2DT
calculations at time ¢ = 0, another set of these arrays must be included for material
3. In that case, material 3’s arrays would be exactly like material 1’s. This will
change for ¢ > 0.005 sec where other 20, 214, and 23*% arrays must be entered,

one for each time step, reflecting the AZ for each entry (as described in the text).




Material 1:

20xxARRAY:

b

0.2398

22 = 0.6410
v 5} 0.02555562
v 22} 0.73259410
! 0.00
2 = 043
x = 1.0
x> = 0.0
21x+ARRAY

T = 0.2148
T2 = 0.0060
£21 = 0.0000

£ = 02110

22:xARRAY

@)= = 0.0

@)= = 0.0
@)= = 0.0

(3)2? = 0.0
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Material 2:

205+ARRAY:
T = 0.2801
2 = 0.4762

vZ; = 0.00511112

v = 0.08518539

! = 0.00

2 = 013

X = 10

x> = 0.0
21+xARRAY

S = 0.2641
£I~2 = 0.0060
221 = 0.0000

2 = 0.3462

22+xARRAY

3)Z = 0.0
(3)o=? = 0.0

51

@)1 = 0.0

(3)822 = 0.0
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We want tc calculate for both materials:
_[mes -

EOO —_
1—2 2 22
—Eso Et - 230

(Here we are only considering steady state conditions.)

Material 1:

5 -5t = 0.2398 —0.2148
-3? = —0.006

~ 22 = 0.0

52 —32% = 0.6410 —0.2110
Thus:

$00 _ 0.0250 0.0000
{ —0.006 0.4300
Note, it is no accident that the last entry, £ — £2-2 = 0.4300'= 2. The diffusion
matrix for a P; approximation is defined as:

— — -1
N |

1—2 2 2—+2
_Es;» Et - Es;

3(s1-31) = 3(0.2398-0.0)

3(s2-522) = 3(0.6410—0.0)

Therefore;

-1
D= [ 0.7194 0.0000 ]

1.3900 0.0000
0.0000 1.9230

0.0000 0.5200
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Material 2:

SH—s-1 = 0.2801 —0.2641

—I=? = -0.006
-3 = 0.0
7 —E2? = 04762 —0.3462

Thus:

500 _ | 0.0160 0.0000 |
| —0.006 0.1300

Note, the last entry, B — £2°% = 0.1300 = X2. The diffusion matrix for a P,

approximation is defined as:

3(Zi—25) = 3(0.2801-0.0)

3(22-3527) = 3(04762-0.0)

Therefore;
1.1901 0.0000

—_—

p_ [ 08403 0.0000]7"
=1 0.0000 1.4286

= [ 0.0000 0.7000 ]




The FEMP codes also calculate the-diffusion lengths and mean free paths for

each material and each group. For 1 group theory, the diffusion length is-defined as:

D 1
L= —z: and D—3728(1_ﬁ0:

Note for-our thermal group, £ — £2°? = 52, Here, we define

Then,

3(2i-577%) 29—29*9

_ 29—‘9 3 (29 29—’9) (Eg Eg;-'g

The mean free paths are calculated by the FEMP codes as:

1.0

Ay = ==
g 2.;1

The MFP values yield the sensitivity for the spatial mesh spacing in the FEMP

codes.

123




1.0 o 1.0
3 (,2%, - 231—.1) ~3(0.2398 — 0.000)

Dy = = 1.3900

Note, this is the D(1,1) entry in the diffusion matrix.

13900  [1.3900
L= zl—ﬂ \/o 2398 — 0.2148 \/0.0250 = 7.4565

Note the removal cross section for group 1, £ = 0.0250.

1.0 1.0
/\1 'ﬁ' m 4.1701
1.0 1.0 :
1Ly = = = (.52
D 3(st-zz7)  3(0.6410-0.000) 05200
Note, this is the D(2,2) entry in the diffusion matrix.
05200 _ [0.5200
L= 22~2 \/0 6410 —0.2110 0.4300 1.0997

Note the removal cross section for group 2, X2 = 0.4300 = 2.
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Material 2

R 1.0
3 (,}3} - zgrl)" 3 (0.2801 — 0.000)

1= = 1.1901

Note, this is-the D(1,1) entry in the diffusion matrix.

[ 11901 1101
L= 21_.1 \/0 2801 — 0.2641 \/0.0160 = 86243

Note the removal cross section for group 1, X! = 0.0160.

1.0 1.0
3 (22~ 22-»2) ~ 3 (0.4762 — 0.000) _

Note, this is the D(2,2) entry in the diffusion matrix.

0.7000 0.7000
L= 22—»2 \/0 4762 — 0.3462 \/0.1300 = 2.3205

= 0.7000

D, =

Note the removal cross section for group 2, 2 = 0.1300 = X2.

Attached are FEMP2D and FMP2DT input decks showing the 20k, 21, and 22
array input for the TWIGL problem.
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FEMP2D Sample Input Deck (See FEMP2D Manual for details.)

X-Z Slab Problem: FEMP2D: TWIGL mesh spacing. TITLE
188

1 NGEOM
3 NOUTR
0 MADJ

1 LPN

2 NMAT

2 NNG

0 NPG:

1 MPN-

0 IHT

0 IHS

0 LTBL

2 MTL

2 MCRD

0: MANSN
0 MAMPX
1 NBYTE
21 NX

4 NY

5 NZONE
0 1B(1)-

0 1B(2)-

0 1B(3)

0 1B(4)

2 ISTRT

4 KSOLV
500 ITMX1
200- ITMX3

0 IACC

0. NPOW

0 NUPS

0 NS

1 1PX

38 NPOUT
1 IPFLX

0 NRF

230k

1.0E-6 EPS
1.0E-5 EPSK

1.0 XK
8.37702E+16 SNORM
T

1088 {Material Numbers)
12

1188 (Nuclide Numbers)
12

125k (Number Densitics)
1.01.0

138§ {Nuclide IDs)
12

145k {Prompt Chi Spectrum)
1.0 X}

0.0 xg

17Txx (Group Velocitics)
5.0E+06 Uy
2.0E+05 »”

205 Material 1
0.2398 sl

0.6410 >
2.555562E-02 vE}
7.325943E-01 VS%

0.0 3!

0.43 £t

1.0 Xp
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0.0 xf,

21xk

0.2148 £
0.006 pi=2
0.0 2=t
0.2110 b St
225k

0.0 (3Lt
0.0 (3)51~2
0.0 ()
0.0 EE?
T

20%% Material 2
0.2801 )3 g
0.4762 £
5.11112E-03 UEZ
8.518539E-02 27

0.0 =3

0.13 213,

1.0 X

0.0 Xg'

215k

0.2641 D> g
0.006 b bl
0.0 it
0.3462 -2
22k

0.0 (i
0.0 (3)zi2
0.0 (3)2;;‘;
%0 ()
305k X Points

0.0 10.0 20.0 30.0 40.0 50.0

60.0 70.0 80.0 90.0 100.0 110.0

120.0 130.0 140.0 150.0 160.0 170.0

180.0 190.0 200.0 B
3lxk Y Points
0.0 14.142 28.284 42.126

348$

1112222333334444555

1112222333334444555

1112222333334444555

35k

F0.0

365x X Print
10.0 20.0 30.0 40.0 50.0

60.0 70.0 80.0 90.0 100.0 110.0

120.0 130.0 140.0 150.0 160.0 170.0

180.0 190.0

10.0 20.0 30.0 40.0 50.0

60.0 70.0 80.0 90.0 100.0 110.0

120.0 130.0 140.0 150.0 160.0 170.0

180.0 190.0

3ok Y Print
14.142 14.142 14.142 14.142 14.142 14.142

14.142 14.142 14.142 14.142 14.142 14.142

14.142 14,142 14.142 14142 14.142 14.142

14.142

28.284 26.284 28.284 28.2841 28.284 28.284

28.284 28.284 28.284 28.284 28.284 28.284

28.284 28.284 28.284 28.2841 28.284 28.284

28.284

T




FMP2DT Sample Input Deck (See FMP2DT Manual for details.)

X-Z TWIGL Problem: (FMP2DT-run; TWIGL mesh)
188-

OQ"-‘&)—OOO§§&NQQOOU\ASHOOMNOOO"QNO)‘-‘QO)QHNP-‘

k%

0.0

1.0E-3
1.0E-1
1.026358
8.37702E+16
T

588

123

633

123

ik
1.01.01.0
-888

123

Dick

1.0

0.0

2%
5.0E406
2.0B+05
1345
2.4700E-04
1.384515-03
1.2220E-03

TITLE

NGEOM
NINT
ICOLD
LAM
NOUTR
MADJ
LPN
NMAT
NNG
NPG
MPN
IHT
IHS
LTBL
MTL
MCRD
MANSN
MAMPX
NBYTE
NX

NY
NZONE
1B(1)
1B(2)
1B(3)
1B(4)
ISTRT
KSOLV
ITMX1
ITMX3
IACC
NPOW
NUPS
1PX
NPOUT
IPFLX
NRF
IBAL

TSTRT
EPS
EPSK
XK
SNORM

(Material Numbers)
{Nuclide Numbers)
{Number Densities)
{Nuclide Ids)

(Prompt Chi Spectrum)
X!

X

(Group Velodtices)

vi

v2
(Delayed Neutron Fractions)

f¢/

Ji!
B
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