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1; I
new time dependent neutron and photon ransport -code was developed. The

code, FMP2DT (F'ite element, Multigroup, P , 2-Dimensional, Time dependent),
was discretized in space using finite elements, discretized in energy using a multi-
group approximation, and- discretized in time using Euler' backward differencing
scheme. Its angular flux dependency was" discretized using spherical harmonics. A
P angular flux approximation allows some modeling of both anisotropic flux be-
havior and wave behavior. FMP2DT can model radiation transport in XZ slab or
RZ cylindrical geometry. An inherently stable iteration solution scheme, an incom-
plete Cholesky conjugate gradient algorithm, calculates the total flux coefficients.
FMP2DT was benchmarked against exact flux calculations in infinite XZ and RZ
geometries. Two problems were solved by FMP2DT which involved the observation
of the flux decay after injection of an inhomogeneous pulsed source to the config-
urations. A nuclear reactor, initially critical, had a pulsed source introduced at
its center. This is typically done in so called Rossi-alpha experiments. FMP2DT
showed that time must be allowed so that only the fundamental mode is dominant
or the flux data will not yield credible information to calculate alpha. A uranium
borehole problem was solved where FMP2DT showed that a counting instrument
must be calibrated for different distances from a pulsed source bocause the flux de-
cays with a different decay constant for each spatial point. Previous models did not
account for this diffusion effect. , .-',1 -

- . .- .. J ,



A Time Dependent Transport Equation Solver

Lennard Woodrow Lee, Junior

B.S. Nuclear Engineering, Mississippi State Univ., 1983

M.S. Nuclear Engineering, Univ. of New Mexico, 1987

Ph.D. Nuclear Engineering, Univ. of New Mexico, 1991

The need for a new time dependent neutron and gamma radiation transport code

that can model some anisotropic flux characteristics, have a flexible spatial dis-

cretization for different geometries, have the-ability to model strong energy depen-

dency, possess an inherently stable scheme for time discretization, and use a stable

iteration algorithm led to the development of FMP2DT (Finite element, Multigroup,

P,, 2-Dimensional, Time dependent). Using spherical harmonics to discretize the

flux's angular dependency, a P angular flux approximation was made to model

anisotropic flux behavior. Finite elements were used to discretize its spatial depen-

dency. The Galerkin procedure was used to develop the finite element equations for

both XZ slab and RZ cylindrical geometries. An implicit method, Euler's backward

differencing scheme, was used to discretize in time to insure time step stability. A

multigroup approximation allows modeling systems that have a strong energy de-

pendency. The source options include fission, inhomogeneous sources, and delayed

neutrons. Gamma sources may be independent inhomogeneous sources or the result

of particle interactions. The solution algorithm used invokes an incomplete Cholesky

conjugate gradient method, which has inherent numerical stability. FMP2DT was

benchmarked for both slab and cylindrical geometries. Two problems were selected

to demonstrate FMP2DT's applicability. Both involved the observation of the neu-



tron flux decay after pulsing a source. First, the UNM AGN-201 reactor, initially at

a critical state, was subjected to a pulsed neutron source at its center. The spatial

decay of the neutron flux was observed to determine the time- in which the funda-

mental mode begins to dominate. This information is important for what is called

Rossi-alpha experiments because it indicates -the proper time to gate counters so

that data is not influenced by higher modes. Second, a uranium logging problem

was addressed. A 14 MeV neutron source was turned on for 10 microseconds and the

flux decay at differing spatial points was observed. This information sh.wed that

the counters need to be calibrated for different distances from the source because

a distinct flux decay behavior was observed at each spatial calculation. For both

problems, FMP2DT showed that knowledge of the flux decay physics is important

to obtain accurate counting data.



Abstract

The need for a new time dependent neutron and gamma radiation transport code

that can- model- some anisotropic flux characteristics, have a flexible spatial dis-

cretization for different geometries, have the ability to model strong energy depen-

dency, possess an- inherently stable scheme for time discretization, and use a stable

iteration- algorithm-led to the development of FMP2DT (Finite element, Multigroup,

P, 2-Dimensional, Time dependent). Using spherical harmonics to-discretize -the

flux's angular dependency, a P angular flux approximation was made to model

-anisotropic flux behavior. Finite elements were used to discretize its spatial depen-

dency. The Galerkin procedure was used to develop the finite element equations for

both XZ slab and RZ cylindrical geometries. An implicit method, Euler's backward

differencing scheme, was used to discretize in time to insure time step stability. A

multigroup approximation allows modeling systems that have a strong energy de-

pendency. The source options include fission, inhomogeneous sources, and delayed

neutrons. Gamma sources may be independent inhomogeneous sources or the result

of particle interactions. The solution algorithm used invokes an incomplete Cholesky

conjugate gradient method, which has inherent numerical stability. FMP2DT was

benchmarked for both slab and cylindrical geometries. Two problems were selected

to demonstrate FMP2DT's applicability. Both involved the observation of the neu-

tron flux decay after pulsing a source. First, the UNM AGN-201 reactor, initially at

a critical state, was subjected to a pulsed neutron source at its center. The spatial

decay of the neutron flux was observed to determine the time in which the funda-

mental mode begins to dominate. This information is important for what is called

Rossi-alpha experiments because it indicates the proper time to gate counters so

that data is not influenced by higher modes. Second, a uranium logging problem



was addressed. A 14 MeV neutron source was turned on for 10 microseconds and the

flux decay at differing spatial points was observed. This information showed that

the counters need to be calibrated for different distances from the source because

a distinct flux decay behavior was observed at each spatial calculation. For both

problems, FMP2DT showed that knowledge of the flux decay physics is important

to obtain accurate counting data.
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Nomenclature
T (r, E, R, t) the angular flux at r in direction SI with energy

E at time t.

Si,(r, E, S2, t) the inhomogereous neutron source at position r,
emitting neutr:0- ,;th energy Ein a direction 92,
at a time 1.

Et(r, E) the total c!-' - corresponding to neutron
interactions inwv "ring neutrons with energy E.

E, (r, E' E B, ST' -a) the inscatterin obabi!ity (cross section) that
neutrons with - y E' moving in direction 9Y
will scattir into energy E and direction Q.

XP(E) the proh" hility that a prompt neutron (born from
fission) will have an energy E.

the fraction of neutrons from a, delayed source
(precursor decay).

Xk(E) the probability that a delayed neutron horn from
precursor decay ii the kth family group (also re-
ferred to as precursor species) will have energy E.

Ak #'v. decay constant for the kth precursor group.

Ck(r, t) the concentration of the kI'I precursor species at
position r and at time t.

v the neutron velocity.

SI the neutron direction.

v the average neutrons emitted per fission from a
fissile isotope.

Ef(r, E') the fission cross section at position r and en-
ergy E'.

xlil o



Pr(cos 0) associated Legendre function of degree I and order
m.

0 the polar angle measured from a direction coordi-
nate axis in an orthogonal coordinate system.

the azimuthal angle stipulating the rotation
around the chosen directed coordinate axis that
0 is measured from.

1, m the subscripts or superscripts for the spherical
harmonic expansion.

(N + 1) the time discretization superscript rtpresenting
the present time step.

(N) the time discretization superscript representing
the last time step.

g = 1, 2,.., G the energy groups. g = 1 represents the highest
energy group, and g = G is the lowest (thermal)
energy group.

?oo(r, E, t) the coefficient in the P approximation that phys-
ically r'iDresents the total flux in T (r, E, Q) 0.

?P o(r, E, t) the coefficient in the P approximation of
'(r, E, Q, t) physically representing the compo-
nent of current in the z direction.

7k(r, E, t) the coefficient in the P approximation of
TI(r, B, 2, t) physically representing the compo-
nent of current in the x direction in XZ geometry
or the current in the r direction in RZ geometry.

So0  the inhornogeneous isotropic source.

Si0 , S1 inhomogeneous anisotropic sources.

Bp(x), Bq(z). Bq(r) linear interpolating hat functions.
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00,v+1) 00oo) -G x 1 vectors containingPob0 expansion coefficients
at a given mesh point.

T(N+) I(N) G x 1 vectors containing i)o expansion coefficients
at a given mesh point.

(N+) ) G x 1 vectors containing ?P9 expansion coefficients11

at a given- mesh point.

s(0+0 a G x 1 vector containing So coefficients at a given
mesh point.
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1 Introduction

Interest in nuclear power for-both space exploration and terrestrial use has increased

in the technical community in the recent years. Potential space missions that will

demand dependable power levels beyond conventional sources are now being con-

sidered with new enthusiasm. President Bush has recently expressed his desires for

the nation to become committed to putting a space station in orbit and developing

a lunar ba& that will act as stage for the exploration of Mars. There are sugges-

tions within the civilian community that the development of manufacturing plants

in space is receiving strong consideration. Nuclear power is seen as a feasible source

of the energy needed to accomplish these goals.

Likewise, developing strong concerns of possible greenhouse effects from using

fozsil fuels is renewing interest in developing small terrestrial nuclear reactors with

passive safety designs. Even some established critics of nuclear power suggest that

nuclear power would be acceptable if reactor designs with new passive safety features

are developed. It is evident that nuclear reactors will be included in future energy

considerations.

Therefore, development of new analytic tools is desirable to enhance reactor de-

signs. This research resulted in developing a new finite element code which will be

used in reactor design, development, and analysis, or for any time dependent radia-

tion transport problem defined in XZ or RZ geometries.

1.1 Research Objectives

The object of this research was the development of a new neutron and gamma ra-

diation transport code with the followinb characteristics. It must be able solve two



dimensional time dependent problems in either XZ slab or RZ cylindrical geometry.

The angular flux must be defined so that some anisotropic flux behavior can be

modeled. The spatial discretization must be adaptable to both XZ and RZ geome-

tries, as well as future options that may be incorporated later. The code must have

the ability to model systems that have strong energy dependency. And finally, if a

system is- modeled involving one or more fissile isotopes, the source must include a

delayed neutron contribution.

The code will-be used to investigate the following:

a. Neutron wave effects.
b. Spatially dependent subcritical and critical source driven

transients.
c. The effect on accuracy of tradition approximations in

solving time dependent transport problems. This will
include comparisons with:

i. The diffusion approximation.
ii. Treatment of the fission source.
iii. Treatment of upscatter.

The code will then be benchmarked and some few-group problems identified and

solved that demonstrate the code's validity and applicability.

FMP2DT (Finite element, Multigroup, P,,, 2-Dimensional, Time dependent) was

developed to met these objectives. It solves time dependent neutron and/or gamma

radiation transport problems in XZ and RZ geometries. Finite elements were se-

lected to implement spatial discretization, and the time discretization was done using

Euler's backward differencing scheme.

The finite element scheme is employed by expanding the solution of a set of local

partial differential equations with a set of basis, or interpolating functions. Using the

Galerkin procedure, interpolating and weighting functions were chosen that adapt

to both of the stated geometries, or any geometry option added later, no matter how

irregular it may be. The finite element method has a firm theoretical foundation

2



which guarantees convergence of the approximate solution [Ref. 41.

Euler's backward differencing method was used for the time discretization. This

is an implicit scheme that is numerically stable for any time step [Ref.3] [Ref. 26].

The angular dependency of the angular neutron flux was modeled using spherical

harmonics. Spherical harmonics form a complete set of functions that describe the

angular dependency of the neutron direction [Ref. 1]. Spherical harmonics yield

solution results of arbitrarily high degrees of accuracy depending on the expenditure

of labor to do the resulting calculations [Ref. 2]. At least a P approximation is a

necessary-requirement to observe neutron wave behavior and model some anisotropic

behavior of the flux. All of this applies to the gamma flux also. Therefore it was

modeled likewise.

1.2 Literature Search

A literature search conducted in July 1989 revealed no previous finite element neu-

tron code developments with delayed neutron sources and inhomogeneous sources.

There are numerous codes that model time dependency with other discretization

characteristics.

Kinetics codes are available with numerous finite differencing schemes. Monte

Carlo codes are available in which a detailed spatial model of the reactor can be

accomplished. All of these codes have legitimate applications where they have ad-

vantages over other methods. They also have their constraints. Monte Carlo codes

require a statistical approach, and experience is needed to ensure validity for differ-

ent reactor configurations. The finite differencing scheme is the most used solver.

For stiff problems, mesh spacing can be complicated, and implementing various

boundary conditions can be tedious.

The finite element code developed by this research is more flexible. The ap-

3



proximating, or interpolating, functions used in the code allows the incorporation of

complicated geometries. Boundary conditions are carried with each finite element,

and therefore somewhat easier to implement than for other schemes. In fact, imple-

mentation of the boundary conditions appears to be the most attractive feature-of

finite element solution schemes.

Finite element codes have Lbeen used in neutron transport codes for sometime.

Several codes exist for steady state analysis. FEMP1D (Finite Element Multi-group

P,, 1-Dimensional) is a radiation transport code for infinite slab geometry. Buckling

height corrections are needed to adjust for leakage. This code *s very cost effective.

FEMP2D is a two dimensional version which analyzes a steady state configuration.

It is a P code designed to handle XZ, RZ and RD geometries. Likewise, FEMP3D

is three dimensional. These codes are all written for vector machines and are coded

in FORTRAN 77.

PERT2D is a finite element perturbation code that models small changes in re-

activity [Ref. 19]. A one dimensional, time dependent, finite element code, TDFID,

is also available, but it does not have a delayed neutron precursor source contri-

bution [Ref. 25]. SIILDTEMP is a coupled radiation transport and temperature

distribution code written at The University of New Mexico [Ref. 241.

J. K. Fletcher has suggested finite element options in some of his transport codes

for steady state [Ref. 11]. Finite elements have been used to discretize the angular

dependency of the neutron direction in other neutron codes. So the foundation for

using finite elements in neutron transport is strong. However, the literature search

did not reveal any previous finite element, spatially discretized, multidimensional

transient codes. Therefore, the development of this new code had a strong theoret-

ical foundation, and it contributes to the work previously done.

it



1.3 Importance

The importan ..e of this effort is -that :: finite element code -now exist for time depen-

dent radiation transport and nuclear reactor analysis. The code is both relatively

easy to set up and economical to-use. Benchmarking shows that it achieves an ac-

ceptable -degree of- accuracy for XZ and RZ geometries. Delayed neutrons can now

be modeled in the-source -terms. Although delayed neutrons have an extremely small

population in reactors compared to prompt fission neutrons, their-presence ensures

that the reactor is controllable. Thus, developing a finite element code -that con-

siders their source contribution is a credible enhancement and contribution to the

inventory of codes now available. This code will make a contribution to fundamental

engineering knowledge. It is also a valuable stepping stone for the development of

higher order approximations in future research.
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2 The Time Dependent Transport Equation

Neutron transport theory 2- .s a mathematical expression which describes neutron

interactions in a given medium. For any arbitrary volume., the time dependent

neutron transport equation may be Written in the following form:

ia10 T(r, E, Q,t) + S2. V IP(r, E, n,t) + Z,(r, B) T(r, B, f2,t)

= JE' -- E, W - )T
E' f0'

+ XP (1-fI ) J vEf(r,E') (r,E', n',t)dfl'dE'
E' 12

In
+ - Xk(E) AkCk(r,t) + Si,(r,E,2,) (1)4+r k=1

Where Equation (1) states the relationships between source and loss terms such

that:

{The time rate of change of I neutron I + total
the neutron angular flux streaming interactions

neutron I + I prompt fission I + delayed
inscattering J neutrons neutrons

+ { inhomogeneous}

The-streaming and total interaction variables represent loss terms, where the terms

on the right hand side represent sources. The angular neutron flux, T(r, E 2,t),

is a function of spatial variables incorporated in r, neutron-energy E, angular vari-

ables incorporated in 9, all of which are evaluated at time t. fZ is represented by

an azimuthal angle q and a polar angle 0 in an orthogonal coordinate system. The

polar angle is usually described in terms of its cosine. A complete set of functions

that describe the angular dependency of the neutron flux are spherical harmon-

ics [Ref. 1]. For XZ and RZ geometry, with azimuthal symmetry, the angular flux



may be-completely described with the spherical harmonic expansion as,

-'21+1IQ ( E, Q PI(cosO)4j(r,E,t) cos(mo) (2)
1=0 m=0

Likewise, the inhomogeneous -source may be expanded as,

00 21+1
S, (r, E, 0, t) = E P1 M (cos 0) Sim(r, E, t) cos(m) (3)

1=0 m=0

Pjm(cos 0) are associated Legendre functions of degree 1 and order m [Ref. 5]. They

are orthogor;.l on the-interval 0 = 0, to 0 = 7r radians. They obey the recurrence

-relationships [Ref. 11]:

(21 + 1) cos0 P m(cos0) = (1- m + -1) P, (cos 0) + (l + m)P,(cos0) (4)

(21 + 1) sin 0 P m(cos0) = PT+ '(cos 0) - P!+(cos0) (5)

(21+ 1) sin0Pjm (cos0) = (l+m)(l+m- 1)P' (cos0)

-(l-m+ 1) (l- m + 2) P''(cos 0) (6)

The streaming term in Equation (1) is SI. VIP(r,.E, 11, t). This term is a rep-

resentation of the rate of change of the neutron's angular flux along a streaming

path [Ref. 12]. The f2 • V term is sensitive to the geometry in question. For XZ

geometry, it is defined as,

0 _

f. V=cos0!-+sin0cosS 8  (7)

For RZ geometry, with symmetry in its azimuthal coordinate, it is defined as,

0 8 sin 0sinq 8 c
n " V = cos 0- + sin 0 cos 0 si 0 sin 0 (8)

TZOr r (8)

The inscattering probability (or cross section) in Equation (1) may be represented

as

E, r, E, '-0)= 0021+1 V, E)P, n) (9)

1=0 47,

7



By the addition theorem [Ref. 6], we may write

i-rn)! p m(co6SO)pt (cos 0') cos[m(0- q')] (10)
rn1l

Therefore the inscatter cross section may be expressed as,

E.,(r, E - E, 0'-* l) =

21±1E. , (cos 0)P1(cos 0')j +~ 2 P1),~ (Cos 0) P1, (Cos 0') COS [i (-A O.'NI)1 (11)
1=0 In--1 I

Exact solutions to Equation (1) are possible in only a few special cases. In prac-

tice, approximations are made to the transport equation to generate solutions that

are accurate enough for specific physical interaction processes. We now consider

the development of an approximate solution to the transport equation for XZ slab

geometry.

8



3 Solution in XZ Geometry

To get an approximate solution to the transport equation in XZ geometry, -the

correct substitutions shown above are implemented into Equation (1). The transport

equation is then transformed into the following form:

1 0 21+1Z P,Im (cos0)ikimcos(me)V at 1=0 m=O- 7

+ 1 cos . 2 i+lp (O1 ~
9z 1=0 mn=0 7

(00 1 2+ 1
+ sin 0 cos qS TE E __ -N~0-0M~(0

+coO 0 _~ pm(cos 0) ik cos(m)

1=0= M=07

00~ 21+

+ I J 2+> Picos 0) P (cos 0) o

E0' m=o 4 =0

021+1

.5 t 2l 1 
m (cos 0) akim cos(mn#) d l=0mO

=, f = 21+ I_ P (coi) ! Pt~cs os')) m cs0' o~nq0o ' 21+1
"E E 4S P m(cosO')tkn cos(m¢')df' dE'

1=0 m=0
f 21+1 t(l " m)!

0j 00+ 1 1+
+ -PE' ,, ( 2) 0 P (cos0')Pd"(cosrn')cm ')]

47=0r= 47r"z 21+1 c PI (COS 01P)(cosO')Cos, cos'm ')dfddE

47r 1=m=O 7

00 2 1- P m ( CO +) SI mr co C'OS, o ( )

1=0 n=0

1in
+ E XkAk Ck (12)

k=1

Equation (12) can be imn'ediately simplified by defining fission as an isotropic

event. This has been shown to be experimentally correct [Ref. 7], and it sets I =

m = 0 in the fission term. Some of the R' t'erms can also be simplified by intcgrating



over all directions. This integration is defined as,

0 21r
d =J Idold(coso0')= 47r (3

d2 ' = r 0

and, it can be immediately used- in both the fission and inscattering terms. Asso-

ciated Legendre functions are orthogonal. Integration of these functions is defined

as,

I Pr (Cos 0) PKN(cos O)td(cos 0) = 2 (1l-m)! 1 mN(4
7 21+1 (l -m)!KSmN (14)

where 81K and 5mN are Kronecker delta functions. Since P°(cos 0) = 1.0, multiply-

ing any term in Equation (12) by P°(cos 0) will not change the equation's value. To

implement orthogonality (at a later time), the precursor term-and the fission source

term can be multiplied by PO(cos 0). Using the above information yields,

1 00
"v Z- E (2l±+1)Pm (cosO)¢timcos(mp)

o>1 (21 + 1) cos0Pi'(cos 0) Om cos(me)

1=0 m=O
+ E (21 + 1) sin0Ppm(cos0) -j-- cos(m
1=0 m=O os s

00 1 01

+E E, (2l+1)P (cos0) ,m cos(me)
1=0 =000 0-J E (2 1 + 1) Pi(cos0) 1 erosdE'

E' 1=0 1=0+ S(2/+ 1) E,, P(cos 0) 5 ¢tm cos(m) dE'

Er /=1 1=1 m=

+ Xp (1-13)1 L' f;oodEP°(cos0)0000

+ 5 (21 + 1) PI-(cos 0) SE E 1cos(m )

1=0 m=0

+" xk v Bf (cosO) (15)

k=1

Note: Pm(cos O) = P(cos O) if m = 0. The following trigonometric identity may

10



now be implemented:

cos(M1) Cos 0 cos(m + 1)qS+ I cos(m - 1)0 (16)

We can substitute Equation (16) and implement recurrence relations defined by

Equations (4), (5), and (6) and manipulate so Equation (15) becomes,

V2- 1 - (2 + 1)PIm (cos 0) ,cos(mO)v t E= E=

+ (2) (l -m +) P(cos) 40l cos(meS)
1=0 m=0

+ (2) E (I + m) P"(cos 0) Oz-- cos(me)

1=0 m=0

+ ()E E Pi(cos) P-!,cos 0m±01) bSMO
1=-m=0 O0o 1 10 lm+ E E PM++ (cos) cos(m + 1)0

1=0 m=0 ax

oo1 04' r

00 1 '(Cos) 1cos(m + 1)€
E O x I + -ax

1=0 m=0

00 1
+E E (I + n)(1 + 1) P I(cos 0) i-(cos) ( -

1=0 m=0

Co 1+ (2)1 Z(2+ 1)m +P(cosa)¢,s0) 9 cos(m4osme1 /=0 m=O

+ (2) E (21 + 1) P(cos 0) 1ncos(m )

1=0 m=0

+(2) 1 EX(1 1 r,P,(cos 0) (17)E,

+(2) f (21 + 1) r-., Plm(cosO0) E E Ot m, cos(mO)dM'

El 1=1 /=1

+ (2) Xp (1-1)fv E,, Ooo d,' Po(cos 0)

Ef

+ (2) E E (21/+ 1) P~m(cos 0) Stmcos(mo)
/=0 m=0

n

+ (2) E Xk Ak Ck Po°(COS 0) (17)
k=1

Next, the subscripts and superscripts may be set to put the transport equation back

in terms of spherical harmonics. This can be done because starting an infinite series

11



expression at a different point will not change series c nvergence as long as all the

series indices are likewise changed. Accomplishing this -produced this form:

'v 0-t E o(21 + 1)--Pj(cosO)2/imcos(mni

Ao A 0-'-.i+ (2) 2 E (i-m) P (cos0) 1, cos( )

1=1 m=O
00

+(2) E E (1+m+ )Pim(osO0) 0¢,+,. cos(mqe)
1=0 m=0 Oz

00 1 Ok..m..

+ ( E P B(cos ) -i cos(m )1= m= ~

Sp co 0) r cos(me)
1=-1 m= x

+ E E (I + m+ 2)(/+ m + 1) Ptm(cos 0)/'Il m+ cos(m )
1=0 m=0 OX

c I

+ (2) , E E (21 + 1) Pj (cos-0) 01m cos(m )
1=0 m=O

ro c

=(2) f Z(2/+ 1) EP(cos0) E erodE'
01=0 1=0
cc c

+(2) (21 + 1) E,, Pjm(cos 0) Z i Ptm cos(m ) dE'
/=1 I1 ml

+( 2) Xp (1- P)1 vY ko o dE'Po(cos0)
El

00 1

+ (2) E E (21 + 1) Plm (cos0) Sim cos(me)
1=0 m=0
n

+(2) E XkAkCkPo(coso) (18)
k=1

Equation (18) is still in exact form. However, the summations to infinity prohibit

practical implementation. The expansion coefficients 01m are what we are ultimately

solving for. They can be found by integrating over all directions and using orthog-

onality. If every term in Equation (18) is multiplied by Pff(cos 0) cos(N), and the

integration over all directions is done, there are two orthogonal relationships to ad-

12



dress. One has been defined by Equation (14). The other is related to the azimuthal-

angle, 0. It is defined as:

2 0 if m 54N

I cos(mo) cos(N)d = {r if mn=NOO (19)
0 27r if m=N=0

Now we multiply Equation (18) by PKN(cos 0) cos(N), and set it up to integrate

over all directions. This yields:

0/ (22r 1)Pj"(coso),cos(mp).P (cosO)cos(N)dd(cosO)

0r 0 vn=0

0 2-r 

o
+ (2 1=1 E (I- _M) pym (Cos 0) 00-1-tin (O

+(2)JJZ f - (-m)Pm(cosO)2kL,-.! cos(m)r _0 =1 =Om=O

•PKN(cos 0) cos(No) do d(cos 0)
0- 21r+(2)1 E E :: (, + M+-,).,,,,(cos 0)o ,+,9, coS(MO)

Xa 0 /=0 m=O

• PIN(cos 0) cos(No) do d4cos 0)

+ JJE E Pr (cos 0) 9m cos(mq)PK(cos 0) cos(NO) dq d(cos 0)
7r 0 1=1 ml1

0 2 v 0 0

]- E P2Mo(cosO) 091+lm-1 cos(mo)PKN(cos0)cos(NOb)do d(cos0)
jr 0 1=-1 m=1

+11 E E (l+ m+2)(/+m+1)Pjm (cos0) 0k1+ir+i cos(mo)
r 0 1=0 m=O x

PN*P(cos 0) cos(N) do d(cos 0)

-liz , (t-m-1)(l-m)P1 (cos0) ' cos(mO)
o 1=1 m=-I ax

*P,), (cos 0) cos(NS) do d(cos 0)
0 2,r 00

+(2) J J t E (21 + 1) Pjm(cos 0) it m cos(mq)PN'(cos 0) cos(NO) do d(cos 0)
'. 0 1=O m=0
0 2v 00 co

(2)111 E (21+ 1) r,,P(cos0) E -01odE'PlNc(cos0) cos(N)dqd(cosO)
'r 0E' 1=0 1=0

0 2, co

+(2) ] :(2 + 1) E,, ,l<(cos 0) -01m cos(mo) dE'
0 E =1 1=1 m=1

13



•Pf-{(cos 0) cos(N€) do d(cos 0)
-0 2 ir

+ (2) If JX, (1-P3)1 I Fk dEP'cs)K~oO cos(Nq$)dq~d(cos0)
ir 0 El

0 2"r 00o(2) 0 f E (21 + 1) P,-(cos 0) Sm cos(mO)PK(cos 0) cos(NO) do d(cos 0)

,r 0 1=-0 mn=O

0 21r

+ (2) / / r FXk Ak Gk-Po(COS 0)PK?(cos 0) cos(NS) dob d(cos 0) (20)-
Ir 0 k=1l

So far no approximations to the transport equation have been made. Simplifications,

such as the -isotropic nature of fission, were theoretically correct. However, we- are

now ready to incorporate some approximations to the-transport equation to get it

into a solvable form.

3.1 The P1 Approximation

Equation (20) is exact. Now the first. approximation to the transport equation-is to

be made. The summation over 1 is truncated to some finite value for the angular

flux and inhomogeneous source expansions. Truncating the upper limit of I also

sets the upper limit of m. If 1 = 0, then m = 0 in all cases. If 1 = 1, then m can

take on values of 0 -and 1. For certain values of I and m some summation terms

in Equation- (20) will not ex.s.. Making the P, approximation states that either

all expansion coefficients 0 2 ,, t 0 or that the partials of k2,, in either the x or z

directions are approximately zero. Therefore this approximation ;s not uniquely

defined.

The P1 approximation states that the angular flux can be adequately defined by

I(r,E, , t) - : Po(cos 0) Oboo(r, E, t) +3 PO(cos 0) 4'io(r, E,t)

+ 3 P(cos0)0i1(r,E,t) cos
4i1

14



Some values for the associated Legendre polynomials are [Ref. 27]:

PoO(cos 0) = 1 P°(cos 0) = cos0

P1
1(cos0) = sin0 (21)

For the angular flux expansion we then -have,

13 3
T(r,E, fl, t) = 1bo0 + 3 cos 0 1 o -- sin 0 0bi cosq (22)

47r 4 7r 4 7r

where the function arguments of the expansion coefficients have been dropped. The

P1 approximation is the first correction to the diffusion equation.

Diffusion theory is'valid in large homogeneous or nearly homogeneous reactors

in which the curvature of the reactor is close to the mean free paths of the neu-

trons [Ref. 9]. Diffusion theory breaks down near reactor boundaries or strong

absorbing materials [Ref. 10]. Therefore, since the P approximation resembles dif-

fusion theory, it is expected that similar properties would hold for it. However, the

diffusion coefficient should be better defined for the P transport equation approxi-

mation.

Now if we let K = N = 0 in Equation (20) and integrate over all directions, we

get,

1 0 0¢ Po O41'VT O z +  ax +roo J .8oIoodE'+Xp(1 -P)f Ef VkoodE'
I El

+Soo+ XkAkCk (23)
k=1

Doing the same procedure but setting K = 1 and N = 0 results in,

30 0¢oo 08o 01
T --- Po + ----- + 2 * + 3"2 + 3 ZIk1ov t Oz O9 x

=3 1 E, 1 o dE'+ 3 S1 o (24)

15



Applying the P approximationto Equation (24) yields:

-0- 1 lo + 3 Et1o =3 Z,,o dE' +a3S o (25)
V Ot O9z

Again, setting K = N = 1 in Equation (20), integrating, and implementing the P

approximation results in,

3 a- I, + a o + 3 Et 11 =  3 E,7PI dE' + 3 $ t(26)

Vt OxEl

(In Equation (26), form = 1, the ?oo coefficient is multiplied by 2. This is caused by

-not using the recurrence relationship defined by Equation (5) since for the case when

m = 0, Pt 1 (cosO) would result [Ref. 11].) Three equations have been developed

-with three -unknowns, Ooo, ib10 and 4 1 1-

3.2 The Multigroup Approximation

This approximation entails dividing the infinite energy spectrum into discrete energy

groups that are defined so that the spatial shape of the flux does not change in

the discrete groups [Ref. 10]. If the energy groups are defined small enough, then

this isn't much of an approximation at all. The multigroup approximations to

Equations (23), (25), and (26) yield:

9 -G1 0 9 0¢o0¢0 E080 ¢o + + a=O + rFg Oogo so V60",

v9 at Oz Ox 9'1I
G n

g'-1 k1 kT,~ ~ ~V F-9 009o + So .. , o + yl .k'- A 3f (27)
=1

30 , og
+3, ¢1, 3 Z '-,-,.S" (29)

vI go+ ?Po + 3 Fg 091 3 F9' g0' io(8

Each of the above equations is valid for a particular energy group g, with g =

1, 2, .-- ,G as possible values.
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3.3 Time Discretization: Euler's Backward Differencing

Equations (27), (28), and (29) will now be discretize in time- using Euler's back-

ward differencing scheme. This is an implicit scheme-since it involves variables of

the present time step on both sides of the equation. This scheme is numerically

stable [Ref.3], which is its most desirable characteristic. The present time step is

designated-with a (N+ 1) superscript, and the previous time step is designated i:'h

a (N) superscript. Implementing,

(N+1) (N) (N+I) (N+) ) -G (N+I)

101 -- ?Pg
0  0¢119 + N+b G JN+

v9  At + -z + x t b 0 o9 =1 0  09'=1

G (N+i) (N+I) n

+1x'(9-) S . ' '?Poo + Soo9 +Z X Ak ( ('+C )  (30)
9'=I k=l

(N+1) (N) (N+I)
3 0b~ 0''~ O~ 0,)(+,o -az ++ 3 Eg tOg

v9  At Oz
G (N+) (N+i)

=3 F, S SIog (31)
9 9=1

(N+I) (N) (N+i)

3 "7P1  - C1  + 00 0,
v9  At ax

G (N+1) (N+I)
=3 5 V'''9.. ' j * +3S~ (32)

9'=1

Now all values with a superscript (N) are known because they are values from a

previous time step. The V1 values that have the superscript (N+1) are our unknowns.

The inhomogeneous sources are always known no matter their superscript because we

assume that the extraneous neutron source ccntribtions can be directly iculated.

The precursor values CVN +I) in Equation (30) now are addressed. The precursor

concentration for the present time step may be calculated in terms of the previous

time step precursor concentration. The rate of change of the precursor concentration

17



with respect to time is [Ref. 71,

0OCk (r,O t) G
= k lt = Ek ' iYA qoo- AkGk(r,t) k =1,3,---,n (33)

Discretization of Equation (33) in time using Euler's backward differencing yields,

= . V r" Poo - Ak C N +1) (34)

At 4 VAo

Solving Equation (34) for Ck(N+l yields,

Ck +0) = v9'1+ "1-(1 ,.A i, ,Ak Aj ) '.8k ! "p '
0  (35)

'=1

Now the present time step value of the precursor concentration can always be calcu-

lated in- a straightforward manner using its previous time step value. Substituting

Equation (35) into Equation (30) and rearranging yields,

(N+) (r.,)
I (.V+I) (9IO F, 9I (-V+1)+ + + ,2¢og

1 (NJ) G (.' +) (J+I)

- ,t + Y o5'0 +S!

+ 1--ep -- t 9==+ ((1- 7)+ x .P, ( 5 '-, ,,

+ XkCk (36)
k=1 i + Ak At

A Tkylor series expansion can show that the error foi this backwrard difference ap-

proximation is O(At) [Ref. 371. Thus a large At with a quickly changing process

could yield a large error. However, computational cost stipulate the selection of the

largest At possible that yields a convergent solution.

If there are G energy groups, then G equations may, be written using Equa-

tion (36). Likewise, the same may be done using Equations (31) and (32) respec-

tively. Thus, Equations (36), (31), and (32) may be written in vector form repre-
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senting G energy groups. The vector form for Equation (36) is,

9 lf(N+l) + 8 (N+) ,(N+l)_I + po1 q,(N=oo
aoo + 00 (37)

eii~ +(~l q(~l +lN+) S((N) (3'

here 'i'), l'(), 1 001tN+), -N 0 (N00o, and C(N) are vectors containing G

entries. Zoo, V, and Ef are G x G matrices. All these terms, and other vectors and

matrices developed later, are-defined in Appendix A. Equation (31) in vector form

is,

00 (N+) + ,(N+) V 9 v 3 (N+3 (38)
Z 1O0 = 1

Equation (32) in vector form is,

T,(N+I) + 3 El (N+l) 3 N V p() +3 I1
ax 11 + 31 (39)

,T(N+1).

Now solve Equation (38) for 10

3 l o,(N+,) 3 S(N+1 ) ' Q (N+l)10o -3 lv o + 3, 10 0 0o

r{ l-I
Define D' 0  I, then,

T(N+l) _ V - p(o [3 (N+i) O pT(N+1)](0
,o -- o[v~'o+3S , o  - o

1 3 a0 +301 (40)
qT,(N+1).

For Equation (39), solve for J41.

3 ii -, (N+i) = 3V1'"f + 3 S(N+I) - aT(N+I)
1 v '1 11 "-11 X 0

-Define D1 * = {F1}-1

T(N+1) 1 Q [ S(N+S)- - eN+ )]

11 0 D( 431) + 1 0--1(

Define V0 = 1 D' 0 and T" ' DI 1 Then substituting Equations (40) and (41)

into (37) will yield,
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_ 11o0 ,(N+) V D 1 0 (N+1) + .o ro(N+1)eOz z = °  - x ox o

- yf IF(N+I) +_S(N+I) + V lk2)-+ 0 (N)

_ - "Doi -T(N)(N+1)
0 _D ' 10

-a VxI'T(N) - '9 D1 S(N+1)(4
- -D1, V )  (42)

Ox X

This is the equation in which the spatial discretization using the finite element

method will be made. The only unknowns are in the q(N+1) vectors.

3.4 Finite Element Implementation

If Equation -(42) is put into a matrix equation form of say Ax = b, then numeri-

cal algorithms can be used to obtain a solution [Ref. 18]. Thus far, the transport

equation has been discretized in its angular dependency using spherical harmonics,

discretized in its energy dependency using the multigroup approximation, and dis-

cretized in time using Euler's backward differencing. Now we turn to the spatial

discretization.

The finite element procedure -consists of approximating a solution with a trial

function. The set of functions that approximate the solution vector is referred to

as a trial space. Once the proper trial function is selected, then we invoke the

method of weighted residuals incorporated with the Galerkin method. This will

tend to spread the error that resulted from the trial function approximation so that

it is, in some-sense, small over the whole problem domain. For transport equation

problems such as this, error analysis comparisons between the finite element process

and finite differencing schemes favor using finite elements [Ref. 19] [Ref. 24]. We

now summarize the method.
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Consider the following equation,

V2 q- f = 0 (43)

where f is a known function of the independent variables. We approximate the

solution 0 with some trial function, J. Most likely then Equation (43) will not be

true. There should be some error called the -residual, R, such that,

v 2  -. f=R. (44)

where
M

O =i E (45)
i=1

The qi s in- Equation (45) are the expansion coefficients, and the Ni s are interpo-

lating functions [Ref. 13]. If the residual is weighted over the entire domain to de-

termine the qi s such that the error is small, then this is implementing the method

of weighted residuals [Ref. 13] [Ref. 14]. We now choose M linearly independent

weighting functions, Wi, so that

f [v2 -fj WidD=JRWidD=01 (46)
D D

where D in Equation (46) denotes the problem domain. So, in some sense, the

residual R ; 0 over -the entire problem domain. The Galerkin method simply states

that the weighting functions, W4,, may been the same as the approximating or trial

functions [Ref. 13].

Several methods exist for developing the finite element equations. Using the

Galerkin method allows the development of these equations without any knowledge

of the physical processes or variational calculus. Imposing it allows the development

of a numerical algorithm to solve

J [V2 -f] WdD=0. (47)
D

The Galerkin method is now used to solve Equation (42) for XZ slab geometry.
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3.5 Finite Element Discretization for XZ Geometry

Linear B splines will be used for the interpolating functions. These functions are

continuous -in their first derivatives. The angular flux vectors -may be expanded in

the-form,
A B

(N + i) " 
q(N + I) = ANB1 )

,,M , M E E IQ, ('V) B (x) B .(z )  (48)
p---1 q=1 l~

Ard the inhomogeneous andl-predursor sources may likewise be expanded,

A B
S(N+1) §(N+l) A B(49

17n ,: 1.:, = N B (x) B,(z) -(49)
I ljimpq

p---1 q=1

A B
C(N) ;z_(N) = (N EP c ( X) Bq(z) (50)

p=l q=l

A and B in the above summations represent the upper limits of the mesh spacing

in the x and z directions respectively. Likewise, the p and q subscripts represent

the pth mesh point in the x direction and the qth mesh point in the z direction.

Bp(x) and Bq(z) are linear basic splines or linear B splines, sometimes referred to

as linear hat functions [Ref. 21]. They are defined as

0 for x < xP_

-Xp1 if Xp_ 1 : X < Xp

Xp - Xp_ 1

Bp(x) = (51)X~jXif xp < x< x+l

Xp+1 - Xp

o for x > xP+I

And:
0 for z < zq-

Z-Zq-... if zq-1 < z < zqzq - Zq_ 1

Bqz) = (52)
Zq+l-Z ifzq<Zq+(

Zq+1 - Zq

0 for z > zp+l
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It is easier to see-how these hat functions relate to each othe: when considering only

one dimension. Figure 1 shows that each interior linear B spline only overlaps itself

and its two nearest neighbors. This overlapping is an important characteristic which

1.0

Xl X2 X3 X4 X5 X6

Figure 1: Linear B Splines

will be shown later. Two steps now need to be done. First, define the weighting

functions shown in Equations (46) and (47) as B,(x) for the x direction, and Bi(z)

for the z direction. Second, substitute the approximating (trial) functions in the

form shown in Equations (48), (49), and (50) into Equation (42), and invoke the

Galerkin procedure. This yields,

L IK"FJ o 0 x N,) B Bj) (z dz dx
0 0

L K

+ f f 0 0 B() B1 (z) dz dx
00

L K
PO J J (N+) B (x) B (z) dz dx

0 0

+] (N+) B(x) B(z) dz dx
0 0
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L K

0 0
L K± f (N) Bi(x) Bj(z) dz-dx

0 0

L K
-I I ;.z-- 10 Vtj(+) Bi(x) Bj (z) dz dx

0 0

-J f / x'K D1SV+ )B(x)B(z)dzdx
L K

K _ -D'O V ' )Bi(x) Bj(z) dz dx0 0 z

-.7 -D1  1 B(x) 1(z) dz dx(3
0 0

The streaming terms (partial- derivative terms) in Equation (53) will -be integrated

by parts. This will accomplish two important -results. First, since the B splines are

only continuous in their first derivative, terms having two partials operating on them

would produce a value of zero. However, integrating by parts lowers the derivative

order applied to the B splines by one. Thus, this legitimizes their use. Second, but

probably the most important result, is that the integration procedure introduces,

with relative ease, the natural boundary conditions into the finite elements [Ref. 13].

Integration by parts in one dimension is defined in the usual manner,

Judv=uv v b u

a Ia a'

However, in two dimensions, integration by parts is done using Green's theorem:

J1 u(V. i) dD = I u(. n) dS-J;. VudD. (54)
D S D

In three dimensions, integration by parts is defined as Gauss's theorem [Ref. 13].

So an area integral is put in terms of a surface integral using Green's theorem. To
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use Equation (54), let,

V i+ kOx Oz

= ni+nk

a, ,(N+l) a j(N+1)
ox-- i+ 00 k

u = B,(x)Bj(z)

n is a unit vector normal to the slab's surface, always pointing in an outward direc-

tion. nx and n,, are the direction cosines of the unit vector n'. Figure 2 shows the

geometry definitions.

z = n k

z=O
x=0 x=L

n=-k

Figure 2: Two Dimensional Slab Geometry

If the entire slab's surface is defined as Z, then performing the surface integra-

tion in Equation (54) over the entire surface is the same as integrating over each

individual surface part. Thus,

J dE =J dS, + f dS1 + J ± + ds4.
S, S2  S3  S4

The dot product of V and n' then isolates the particular surface face in question.
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Integrating by parts appears to complicate the equation because it introduces

more terms. However, later substitutions will be made to reduce the -number of

boundary terms. Now integrating by parts and rearranging puts the transport equa-

tion in the form:
L K _ anf(N1 K ff(N+I)

10 e9B-(z) a/ 'POO-1 ____ __

1000 Bi(x) - )dzdx+ ]D z11 1 O B {(x) Bj(z) dzdx
if Oz Ox Ox
000o

0 0 0 0L K L K

+]] 00 1')Bi(x) B1 (z) dz dx = Jf 1 y 00+ Bi(x) 131(z)-dz dx
0 0 00

L K LK

J. 00 Bx)B1 (z)dzdx
0-0 0 0

6(N LK(X BjBx (Z)z dz dX+ N
D'VI~ Bjx- dzdx

00 0 0

+f D g+)Bo O(x) OBfz) Lzdx+00x

+If '1 X)' -- az) dzdx + D' B(x) [B() B 0z)°z dx

+ / - (" B z) [B1(x) 0 0j d D[(o

0 0

LDO K L dz

-- '° i~x B~z)-', ]dx- JD1 V Bs(z)

- f D " 1 B(zx) ( '+ 0 d(x (55)

0 0 01

Equation (55) has seventeen terms, including six boundary terms. The number of

boundary terms may be reduced to two if substitutions derived from Equations (40)

and (41) are made. Recalling that 1 0 D' o and a 1 i-)11 and making the

26



substitutions yields,

LK (N+ x) B(z) L K (N+)

O9z Oz Of f x 1X
00 0 0

L K L K

1 oo 1 IN+ (x) B,(z) dz-dx V LJ (.N-+') B,(x) Bj(z)dzdx
0 0 0 0

L K -L K±1 JS/ 'o1)B i(x)Bi(z1dzd +1 J /V 'o.o' B,()B(zdzdx
0 0 0 0

+fJ5(N) Bi(x)Bi(z)dzdx + JDOv (N)Bi(x) zd

0 0 0 0
L K LKK

[11 B ) B(z)dzdx- B z) Bi(x) ,, 19 dz

0 00
L K z)L(

D1 B(x) Bj(z) dx (56)

0 0

Reducing the number of boundary terms introduces present time step currents,
I) and 5 §(N+l) which are unknown. However, we can use Marshak boundary

10

conditions and get these currents in terms of o(N+1) [Ref. 9], [Ref. 11], [Ref. 15]

and [Ref. 16]. For XZ geometry, the Marshak condition for a vacuum is: [Ref. 11]

f n. -2 Plm (cos 0) cos(mO) T (r, E, fl, t) d92 = 0 (57)
n.92<o

where the angular flux, T(r,E, 2, t) is defined in Equation (22) and n is a unit

normal vector at the surface pointing outwards. (Equation (57) is for even 1.)

Marshak boundary conditions set the integral of the incoming current to zero.

Although neutrons that leave a surface possess a finite probability of returning in

reality, the ones that return usually have a negligible effect on criticality. It has been

determined that for low order P, approximations, Marshak boundary conditions
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yield better results than say Mark boundary conditions. In fact, Henry states that

numerical- studies show that Marshak conditions lead-to consistently more accurate

results up to a P19 approximation [Ref. 1].

At x = 0 and x = L, BI(x) = BA(x) = 1.0. And at z = 0 and z = K,

B1(z) = BB(z) = 1.0. The subscripts A-and B on the linear B splines indicate

the upper-limits of the trial function expansions. If we consider a Marshak vacuum

condition with Equation (57), then the transport equation becomes,

LK'0 Bi(x) aBj W)dz dx+J77 11 9QoIo BO B(z)dzdx

Oz Ox Ox

L K L K

+11 00 k ('+ A(x) 13;(z) dz dx = f JYY 4') Bi (x) B1 (z) dz-dx
0 0 0 0

L K L K

+ f J) Bi' B(X) 131(z) dz dx + JfV j' () Bi(x) B1(z) dz dx
0 0 0 0
L K L K

+ &)B(x) B z) z dx + D D Vo B(x) O Ez -dz dx
0 0 0 0

L K g ( + .z)L K V j N i

+fJD'10 )Bi(x) O-idz~ddf D" 1 O x B (z) dzd
0 0 0 0

+ / D"1 g(N+I) oBi(x) B1 (z) dzdx 1 Bj(
Ox j f' Zi (z)+1 Bqz B( -z) dz

0 0 x 0 q 'l

KB 1 LA

-1j J "ZB~z) B" (z) 1 E A J p(V+l) Bv(x) Bi(x) dx
0 q=l 0 p=5

0 p=l

Recall that the expansion of the flux in the x direction wcnt from p = I to p=

A. In the z direction, the expansion went from q = 1 to q = B. Therefore, in

Equation (58), the boundary flux terms are defined as, (see Figure 2 on page 25)
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isn hysracNhee x=l=Oo

01qis-on- the surface where x=L z=O to-K

1P00, is on -the surface where z=O x=O toLK

OOP is on the surface where z=K x=O toL

Now the whole transport -equation will be expanded:

L K A B N1B)aqz ~)a 1 z

+I~v11~z~i1 OxBq(Z)- 9 xBj (z)dx
+Jf Z Z 'V4~l 1 B(x) Bi B(x) B()dz dx

0 0 P-lq=1 O zO

+ fJ II EI E'PN+]qBp(x) Bq,-(z)a B(x) B (z) dz dx
0 0 p= q=1 pq7x49

+,0 E L TkZ 0 () p(x) Bq(z) Bi(x) Bj(z) dz dx
0 0 P=l q1

+L KD~ A B 0 1 z

Z~p >3~Bp( Bq(z)B(x) zdd
0 0 = pq=1

LKA B I()
>3>3 ') Bp(x) Bq(z) B(x) z)dz dx

0 0 P lij= 1

LK A B0B)

+If]D11V>3>3 4q Bp(x) Bq( i j(z) dz dx
0 0 P1q1

L K A29



L K A B
Di I os+l) Bo( ) p1(q1x B (z) dz dx

0 0 p= = l

E x J (N+) Bq(z) Bj(z) dz--2 ' 001 q

K q1

SJ Z '(+l) Bq(z) B(z) dz
o q1l

L A

- f J Z ,(N+l) Bp(x)Bi(x) d
0 p=1

L LA-
- I Z oo Bp(x) Bi(x) dx (59)

0 P=
1

As previously stated and shown in=Figure 1, each linear B spline overlaps itself and

its two nearest neighbors. This implies that p = i - 1, i, i + 1 and q = j - 1,j,j + 1.

Also, the integration may now be over each element, since the boundary fluxes are

set, and each element carries the boundary terms with them [Ref 13]. e will denote

integration of the elements in the x direction and e., will likewise denote integration

of the elements in the z direction. Therefore,

VO i1 i+ T(+I) P(______) aB1(z)
-o Z'  '4 o Bx).o,(oz) B(x) dz dx

Cx Cz p=i-1 q=j-1 Oz

i+1 j+1 BP(r) _____

J1(N+I) O Bq(z) Bi)Bj( z)dzdx
ex C_ p=i-I q=j-1

r +1 3+ ' . , , j ,d

C: Cz p=-1 q~-1
i+1 .+1

x Cz pmi- q=j-1

4+1 3+1

ex C" p=i-1 q=j-1
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+Jfv i+1 j+1

00, z) '4qpx)(ZBi(x) Bj(z) dzdx

Cz e p:-1 qj-1

4 i1 j+1+1 E E C(jv) Bp(x) B,(z) Bi(x)B13(z) dz dx
C. C P=i-l qj-i

+11DlO i~ j~ l(N) B().(x) )'jz),4d+JJD10V Z C9~qB~)B~)i O~Z X
C 2 Cx p=i-1 q=j-1-

+JfD10o~ j+1 S ( ) B ()BjB(X) Bi(z) dzd2,
Cz Cz pi-1 qj-1 O

rr +1 i+1

Cxj '1 Ex E~- qj-1()BZ-8B X i z z

Cx Cz pi- q Oxl

lr ~i+ 1 ++

+1] DZ II~~~x Bi(p dx axf Bi '~B()B dx

C-- p 91q2 C. s -1O~

(60)

The integration summaries for the elements are given in Appendix B. Each mate-

rial- matrix is assumed to be piece-wise continuous in each x z interval. Bringing the

boundary terms-over to the right side of the equation and integrating Equation (60)

with Kronecker delta notation yields,

{ (hjf-- I (N + (Iki16+ hj) T~(i+) + () 'L~~2 } T6i1
12 _... 0ji-I 6 ii) 00  12 0 0 Aj+1

+ LZ T ( + 1 1+ kti T, JUI

+ { i) T(+I + (hi-'6+ hi) T(Ni) + (') SPN+)}

+{(hi-) 'TOjv...1Du + (hitjl hi ) T'x4i) + ( i4'oti+} Sp
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~V-1i+ (T) ((t ) T'~d~+

k 6) ) +y- 3-) 6j) i,;j

+I~1 (h\ (j;79 N

+ -k10 - D;. O~l 1

+~ (!7!) K- I } D0iu

[Ei T- - Ei-I 1i +11l

+ (I j Do\ Uh..9\ (h: L6~

+ VL ) + I) \ui~j[l) +~,

(1!) h;- S~) ~, + C(3-
+{(k~)(!t)+ ti3( ) o [s'- vj

+I (ft ( +4 [SOIO,+?,... + v T c~~
+ { (S)( ,NLj ) + ~ (.V) +1 'VN ~j~+]

+ + ~[S%) Cp

+ ( L ) + L)[ %+1 T 004!



+ ('i [) xpN [+'i4N~~l
+ {6L~~ ~ 2 J + (I3 (O 1) D2I }

+ (Li -)Dj2 0 '~1 1  + 10
+ { ( .i) ) D2I. + S ( !.) ( ?U

+~~ ~~ { b)G %1 + ?O (- )
+{(hi-1) ([) D rq.+(N) j+ () l

+ () 1) Dv +

+V ( N~ ) D1+ S(NL)(j)D }

+ (h)i) _(hi) (I~
+~~~ 3) ('i ['W j-1

+ { ( -_) (_) Dli + (L*) (-I\ D'% }
[V j(N)+1 + (NI

+ (~ (~) ~ [V'i4'N) + 1~~

+ { (N)k~) D1~+ () hI)D}

+ (hi) (-1' D±J + (+) )

T)Dio VT NoI + +1 1034 +1



+ )(LN) D!j + ( Dil [v%(N)"S_ + S(NNl)

(* [v<-+, + >,
+ Dj.v [v(:2: i-I1 -l+l)-J

+ { -i) (N~) + ( + ()D~

* + ]ftl 1t [) ,(N)[- = 1+ 1 " -  1+ j

+j D1] li+ " + S'l +l)T(66

3.6 Coefficient Matrix Example

When Equation (61) is implemented a square symmetric positive definite block ma-

trix equation is produced. The matrix equation is in the form of A -I 
+1  S.

[V qj(N) + (N+)-

is the coefficient matrix, o are the expansion coefficients that physically

represent the total flux at mesh points ij, and S is the source vector. If we are

considering a system that has G energy groups, then each entry in A, Ai, is a G x G

matrix. Likewise, each of the entries in 00o ) and S are Gx1 vectors. Thus

we have a block matrix equation. Block multiplication can be carried out in the

same way as traditional matrix multiplication since all entries will have the proper

dimensions [Ref. 20].

Suppose we have a slab with 16 mesh points, 4 in the x direction and 4 in the

z direction as shown in Figure 3. By applying Equation (61) for the sixteen mesh

points, we will get a 16 by 16 matrix, A, and 16 by 1 vectors, 'i'oo1) and S. This

system is shown in Figure 4. The block matrix has a bandwidth of 11 with nine

nonzero diagonals. For this example, there are 100 nonzero A,3 entries. Each entry

is a material defined ratrix for an x z interval along with factors resulting from
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the finite element integrations. For a particular spatial interval, the material- cross

sections are assumed to be piece-wise constant.

This development of the coefficient matrix was done in a "brute force" way.

Traditional finite element schemes assemble the coefficient matrix in a much simpler

way by using a local to global mesh point numbering scheme. This entails the

addition of local coefficient matrices to yield the global coefficient matrix. The

source-vector is likewise developed. Thus one advantage of finite element schemes

was not taken advantage of here. But, it is clearer to see how each entry in the

coefficient matrix was derived by developing the coefficient matrix in this manner.

Now we summarize this process for RZ geometry. Basically, everything is done

the same as for XZ geometry, but the RZ case is slightly more complicated because

of its streaming terms.
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IF (N+I) P(N+I) (N+1) k(N+1)
0014 )0024 A 0034 0044

(Iv1) ,,(N+) T(N+I T(NV+1)
0013 0023 0033 0043

T(N+1) (N+ 1) (N+ 1)
0012 -0022 z0032 A 0042

(N+1) 9Tf (N+1) IT(N I) qT,(N-I-)

0012 0021 I0031 0041

Figure 3: Two Dimensional Slab Mesh Point Layout Example
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4 Solution in RZ Geometry

We now do much the same procedure to obtain an- approximate solution to the

transport equation in- RZ geometry. The cylindrical coordinate system depends on

azimuthal angle, X, a distance, r, measured from the z axis, and the coordinate z

measured on the z axis-itself from the x y plane. Figure5 shows the geometry defini-

tions. If we have azimuthal symmetry, then the neutron density is not changing with

respect to the azimuthal angular coordinate X. Therefore the rate of change of the

neutrons along a streaming path is accurately described by Equation (8). The flux

and source may be expanded as before in Equations (2) and (3). Thus implementing

z

f2

r

r

XX

Figure 5: Cylindrical Geometry

Equations (2), (3), and (8) into Equation (1) puts the transport equation in a form

much like Equation (12):



1 00 1 2/+14_ Pm(cosO) ?t m cos(mo)
V cOt 1=0 r=O47

+cosOy z P m(cosO)Pitmcos(mek)
I =0 0 47a " 2 lPtm() ?knco( )

+ sin 0cos 5 Z= Z 4=

sin0 sin 8 ' 1 21+1 P["(CosO)¢tmCos(MO)
r 00 1=0 rn=O P s o

00 2141
+ ,t- P M(cos0)¢im cos(mO)

1=0 m=O

EJ I ' =O =O 21+1
F 1 +'((cos0' mcos(m0')df 2dE'

' 01=0 m==
(1-/3)J ~ 00 21+1

VF' PIm (cos0')Ojrmcos(mq')dI' dE'

0 ,21+1
+ -Z4 P+

1 
m(cos 0) Sim cos(mO)

1=0 m=O I

+ E Xk Ak Ck (62)4-rk=1

The angular dependency of the angular neutron-flux is described the same as for XZ

geometry. Spherical harmonics have been used again for the angular discretization

of the direction vector Q because they completely describe the angular dependency

of f2. Note, because of the relationship, P['m (cos 0) = (-1)" -rn Pm(cos 0), it(t+M)!

is unnecessary to include negative m [Ref. 22] [Ref. 23]. To proceed, we need two

more equations in addition to Equation (16). They are,

a cos(mo) = -m sin(m) (63)

sin(mo) sin q = I cos(m - 1)0 - 1 cos(m + 1)o (64)

As before we assume fission to be an isotropic event, invoke the addition theorem,

and rearrange. The transport equation now takes the form:
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2 a 0t
- - E (21 + 1) Pm (cos 0) 0,, cos(meS)

Va 1=0 m=0

+ ] 2 (21 + 1) cosO0 Ppm(cosO 0 , '9zcos(me)
1=0- m=0 - s )

+ Eo (21+ 1)sinOP m (cosO) cos(m +1)€
1=0 m=0

+ 1 (21 + 1)sinOPI(cosO) 't1m cos(m -
1=0 m=0

100 1
+- 5 (21+ 1) sinO PIm (cos 0) Oim-(m) cos(m - 1)0

r 1=0 m=0

00 1

E1E(21 + 1) sin 0 Ptm(cos 0) ?P,. (m) cos(m + 1)0
r 1=0 M:0

+ 2>2 5 E (21 + 1)PIm (cos9)tPI mcos(mo)
-I=0 m=0

00 00

(2) Z(21 + 1) s, P,(cos0) E 01odE'
1=0 1=0

+(2) f E (21 + 1) Z,, PIm(cos 0) E E 01 m cos(m) dE'
El 1=1 1=1 m=I

+ 2 XpX (1- P) v Ef ?PoodE' Po(cos0)

00 1

+ 2 E E (2l + 1)PI(cos,0) Simcos(mo)
1=0 m=0

n
+2 5 XkAkk Po(Cos0) (65)

k=1

As with XZ geometry, Equation (65) will be manipulated by implementing the re-

currence relationships, adjusting the indices to put it back in terms of spherical

harmonics, and then multiplying by P1,'(cos 0) cos(NO) and integrating in all direc-

tions. With stipulated values for K and N and using Euler's backward differencing

scheme for time discretizations, the following vector equations are produced:
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T(N+I) + 2- ,(N+I) T(N1) + O0 j(N+I)

9z -1 +r 11 + 11 r0
-- ±Vio + V T(N) + orf(N+) C(N) (66)

0 x0(N+) + 3 °  ,(N+1) - 3 V+IN)
00 0 00 0 (67)

O (N+1) + 3 V1 P(N+') - 3 V T(N) + 3 S(j'I) (68)
Fr00 1 1 1

Now we substitute the value of T(+1) from Equation (67) and the value of TIN+1)

from Equation (68) into Equation (66) to yield,

L9 _O (1o T(N+l) _C? D1 a,T,(N+1) 1 1 a T(N+I)
000 0 0 (N 1

Oz oz 00 Or or Or_o T(N+I) = (N)

+ OO0(N)0 - (N +I) " + V ( C(N)_ 0 00 0o 0

a D V T(N) 0 DI0S(N+I)
&z 10 TZ 0

a D" V I (N) '9 D" (N+) (9
-- - 11 _T 11

r r

Equation (69) is the RZ equivalent to Equation (42) for XZ geometry, but Equa-
tion (69) has more terms, and some terms have a ! factor in them. As the finite

element spatial discretization is applied to Equation (69), some of the extra terms

cancel with terms produced when integrating by parts. We now proceed with the

finite element discretization.

4.1 RZ Finite Element Discretization

The neutron sources in Equation (69) may be expanded with the same basis hat

functions in the r and z directions as was done in the XZ geometry in Equations (48),

(49), and (50). The hat functions in the z direction are defined as in Equation (52).
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The functions in the -r direction are defined as:

O for r < rp_1

r - rp ifrp1 <r<rp
rp - rp_1

Bp,(r) =r(70)

rp+1 -r

0 for r > rp+l

Now substituting the trial functions into Equation (69) yields:

0- 10 0 (N-') 0 0 -i(N.1) i-1 0 (NT1 )

Oz Oz 00 Or Or 0 r r 0

+ Zoo 0 (N+I) - yEf if(N+1) __(N+I) + (N) + V k(iN):00 zOO -00 00-"{

_D1o j(N)Oz1 _ '9N -v D' o §(N+)
- ' 10 0 Do+10
a D'11V ;F N)  19 D 1 1 (N+l)

Or II- r 11

1 Dl I 1 D'N 1 (N+l) (71)
r r

The Galerkin procedure can now be implemented. However, integration over the

domain is -now defined for a cylinder with a radius from 0 to R and a height from 0
KR

to K. Therefore, the domain integration is, f f 27r r dr dz. Implementing this, the
0 0

transport equation is now:

00 Rz O9D100z(I I 1o _ _ 0N+1) B(r)Bj(z)21rrdrdz

0 0

Ki- J 9100O f(N+)Ber)B~z) 2 r dr dz
K R=11 (oo4o' V1 ' +)Bj(z)2 rddz

0 0
K 4

- f o'1 ( N) BiB(z) 27 dz d
0 0

K R3



K R±11 "BN+1)Bj~B)2rrdd
0 0

K R

+1 65(V) Bi(r) Bj(z)-2,xrrdrdz
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0 0

Green's theorem is again used to integrate the streaming terms by parts. This re-

duces the continuity requirement of the trial functions and implements the natural

boundary conditions. And since each element carries the boundary conditions with

them, the integrations may be designated over each element. Let Cr indicate inte-

gration over the elements in the r direction and let e, indicate integration over the

elements of the z direction. Implementing the Galerkin procedure, the transport

equation is now:

i 1 o o Bi(r) r dr dz
Oz Oz

Cz Cr

+ 00 - 44j(z)r d dzOr Or
Cz Cr
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+ O ff 10o (+1) Bi(r) .81(z) r dr dz
C-- Cr

=11~0 Xf{~')B.(r)B-(z)rdrdz
ex er

+10+1() B(r) B(z) r dr dz
ez Cr

+11 6(N) ~Bi(r)B(z)rdrdz
Cx Cr

[+ 1 V '4'N) B()0 1
0 0Bi r) z) -rdr dz

Cz Cr

+J ' jj D 1 (N) .B(r)'Ojz rdr dz10 Oz
Cz Cr

+1 CJf D10 "(+I ir) aB(z) rdr dz

CZ r0

+ Df [B N)z)1i4r)+D)z) r (r rd

§(NsJ r9B)r

+JI" rBi(z)r 45d



terms of TIAN+1) coefficients. Using the Kronecker delta where p =i - 1, i, and i + 1

and q i - 1,j, and j +1I produces:
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5 Solution Technique

Using Equation (61) or (74) produces a block matrix equation as show in the example

in Figure 4. The coefficient matrix, A, will always have nine full diagonals. For the

16 by 16 example shown, there were 100 nonzero entries in A. That means that

156 entries contain nothing but zeros. Recall that each entry in A is itself a G by G

inatrix representing G energy groups. Storage of all those zero matrices would be

very inefficient. Therefore, FMP2DT uses some storage schemes to avoid using

-excessive computer memory. And because-this system can be extremely sparse and

large, depending on the number of mesh points and energy groups selected, FMP2DT

used some special algorithms to ,alculate-a solution. The following is information,

including some background, concerning FMP2DT's solution algorithm.

If A E R" 'l ' is a symmetric positive definite matrix, then a lower triangular

matrix G E RX. exist with positive diagonal entries such that A = G GT. Splitting

A like this is known as the Cholesky decomposition of the matrix A. To solve the

system A x = b using a Cholesky algorithm entails computing A = G GT and then

solving G y = b and then GTx = y [Ref. 18]. This solution technique is stable and

efficient for solving large banded systems. This solution technique is called factoring

the coefficient matrix A, and is referred to as a direct method of solution.

However, for very large and sparse systems, which could be our case, direct

methods are often not efficient enough. For a linear system, iterative methods are

more suitable. One iterative method is call the conjugate gradient method [Ref. 18].

It involves minimizing a functional q(x) such that,
O(x) =xT Ax - xT b.

If A is symmetric and positive definite, then minimizing the above expression is

the same as solving for A x = b [Ref. 18]. But convergence of a steepest descent



algorithm may be extremely slow. Therefore, preconditioning A is desirable to speed

convergence. One preconditioning strategy is developing an -incomplete Cholesky

factorization of A. This-involves calculation of some lower triangular matrix -that is

somewhat close to the actual Cholesky lower triangle matrix G [Ref. 18].

This solution technique FMP2DT uses to do this is the -incomplete Cholesky

conjugate gradient algorithm [Ref. 33]. Two iteration schemes are used. The inner

iterations are over the spatial mesh points. The outer iterations-are over the specified

energy groups.

Now we examine one of the important features of FMP2DT. FMP2DT has the

ability to calculate a delayed X spectrum if that spectrum is not known. If it is

known, then it may be entered in the input deck. However, in most cases, these val-

ues are not easily found. Therefore, the next section shows how FMP2DT calculates

these values for the user.
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6 Calculation of xg

In the multigroup derivations, Equation (27) has X parameters for both prompt

and-delayed neutrons. Most cross section- sets contain information defining X4, but

they do not define X-- If values for X' are known, then they may be entered in

FMP2DT's 15** array in the input deck. If this array is filled with zeros, and

FMP2DT is running a fission problem, then an ir.ternal flag is triggered that causes

FMP2DT to assume that the user does not know these values. FMP2DT then

proceeds to calculate them and continues the solution process.

The spectra for prompt neutrons are easily found in literature. There are many

formulae that have been derived to fit the data mathematically by Watt, Cranberg,

and others [Ref. 34] [Ref. 35]. Each analytical fit is due to examination of data

over certain energy ranges [Ref. 36]. FMP2DT assumes % Maxwellian distribution

function that is defined as [Ref. 30],

f(E)= j ['1 0 5 eT' (75)

where k is Boltzmann's constant and T is the spectrum temperature (K). The av-

erage energy is given by

3B = -kT.
2

However, the delayed neutron spectrum is not as well established. Several dif-

ferent data exist with various uncertainty. FMP2DT assumes that delayed neu-

trons follow the same sort of Maxwellian distribution as prompt neutrons [Ref. 30].

Assuming that k T=l.29 for prompt neutrons, or that k T=0.29 for delayed neu-

trons [Ref. 31], Equation (75) may be used to calculate either a prompt or delayed

spectrum. (The values for T above are for 235U, and kT is in MeV.)



For a X spectrum, we note that

00

j x(E)dE = 1.0.
0

For a multigroup approximation, X9 is calculated as

Eg-i

Xg = J x(E)dE.
Eg

FMP2DT calculates X' likewise -using an adaptive quadrature scheme based on

Gauss-Kronrod algorithms. And as stated, changing the value for kT can cause

-an evaluation for a prompt X calculation. Also, if a better distribution functio:

is desired, then a short function subprogram may be added to the code and the

quadrature scheme can evaluate it.

Using a 47 neutron group structure shown in Tables 1 and 2, the following

results were generated. First, a value of kT=1.29 was used to generate a prompt X

distribution shown in Figure 6. Note that although the neutron groups go to 17.33

MeV, the graph stops at 10 MeV. This is because the X4 s are approximately zero

beyond that point. Using FMP2DT's quadrature scheme with a value of kT=0.29,

Figure 7 was generated for the delayed Xs. It was truncated at only 2.231 MeV

because of the same reason as the prompt data.

It is important to notice that the delayed X s peak at lower energy groups than

the prompt X s do. Also the prompt X s range over a much larger number of groups.

This is expected since prompt fission neutrons tend to be born with higher energies

than the delayed fission neutrons.

Now we want to establish FMP2DT's computational integrity. First, a compar-

ison between flux shapes was made with a flux calculation by a two dimensional,

two-group, space-time diffusion code called TWIGL. Then FMP2DT was bench-

marked with some exact flux calculations in both slab and cylindrical geometries.
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Group Upper Bound (MeV) Lower Bound (MeV)
1 1.7330E+01 1.4190E+01
2 1.419013+01 1.221013+01
3 1.2210E+01 1.OOOO13+01
4 1.OOOOE+01 8.607013+00
5 8.6070E±00 7.408013+00
6 7.408013+00 6.0650E3±00
7 6.0650E3+00 4.965013+00
8 4.965013+00 3.6780E3+00
9 3.6780E3+00 3.011013+00
10 3.0110E3+00 2.725013+00
11 2.7250E3+00 2.466013+00
12 2.4660E3+00 2.3650E3+00
13 2.3650E3+00 2.3450E3+00
14 2.3450E3+00 2.2310E3+00
15 2.2310E3+00 1.920013+00
16 1.920013+00 1.6530E3+00
17 1.6530E3+00 1.353013+00
18 1.3530E3+00 1.0020E3+00
19 1.0020E3+00 8.2080E3-01
20 8.208013-01 7.4270E3-01
21 7.4270E3-01 6.0810E3-01
22 6.08101-3-01 4.9780E3-01
23 4.978013-01 3.6880E3-01
24 3.6880E3-01 2.972013-01

Table 1: Part 1: 47 Neutron Group Structure



Group Upper Bound (MeV) Lower Bound (MeV)
25 2.9720E-01 1-.8310E-01
26 1.8310E-01 1.1100E-01
27 1.1100E-01 6-.7370E-02-
28 6.7370E-02 4.0860E-02
29___ 4.0860E-02 3-.1820E-02
30- 3.1820E-02 2.6050E-02
31 2.6050E-02 2.417013-02
32 2.4170E-02 2.1870E-02
33 2.1870E-02 1.5030E-02
34 1.5030E-02 7.1O1OE-03
35 7.1010E-05 3-3540E-03
36 3.3540E-03 1.5840E-03
37 1.5840E-03 4.5400E-04
38 4.5400E-04 2.1440E-04
39 2.1440E-04 1.0130E-04
40 1.0130E-04 3.7260E-05
41 3.7260E-05 1.0670E-05
42 1.0670E-05 5.043013-06
43 5.0430E-06 1.8550E3-06
44 1.8550E -06 8.7640D, -07
45 8.7640E3-07 4.139013-07
46 4.1390E3-07 9.9990E-08
47 9.9990E3-08 1.000013-11

Table 2: Part 2: 47 Neutron Group Structure
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7 Code Benchmark

While there are many publications of time dependent neutron transport work avail-

able, it is extremely difficult to find a two-dimensional problem with a delayed

neutron source so that FMP2DT can be benchmarked. While problems of this na-

ture are often cited, the published results usually do not contain enough information

about parameters and cross sectional data to reproduce them. In 1968, a technical

report was published showing results for a time-dependent, two dimensional slab

problem solved with a code called TWIGL [Ref. 28]. TWIGL is a two dimensional,

two-group, space-time diffusion equation solver that incorporates temperature feed-

back.

TWIGL was used to compare FMP2DT's fast flux shape. To benchmark FMP2DT's

computation accuracy, data in a report by B. D. Ganapol [Ref. 29] was used. First

we show the results for the TWIGL comparison, and then two benchmarks using

Ganapol's data for infinite RZ and XZ geometries.

7.1 TWIGL Comparison

TWIGL was used to compare FMP2DT's fast flux shape. This offered at least

some sort of comparison between source vectors for the two codes, and both source

vectors have a delayed neutron contribution in them. TWIGL is a diffusion code.

It basically solved the following equations:

V -D(r, t) V qS,(r,t) - E1 (r, t) 0 1(r, t)

+ (I -/) [vr-f, (r, 1) 4,(r, t) + vXfj(r, t) 0 2(r, t)]
I 1

+ v"r " 0" (r, t) (76)



V - D 2 (rt) Vq 2 (rt) - E 2 (rt) 2 (r, t) + F, (r, t) 01 (r, t) 0- €2 (r, t) (77)

and

19 Ci(r,t) = fP' [vE.,(r,t) O,(r,t) + vEf2(r,t) ¢(r,t)] - AifCf(r,t), i = 1,...t

(78)_

where r represents x, z for slab geometry. The slab geometry for this problem is

shown in Figure 8. The equations above are solved by TWIGL subject to zero flux

boundary conditions on all external surfaces. At time t = 0, the reactor is critical, i.e.

kerr = 1.0. The initial flux is calculated using this steady state condition. TWIGL

42.426 Slab- Dimensions (cm)

Material 2 Material 1 Material 2 Material 3 Material 2

0 30 70 130 170 200

Figure 8: TWIGL Slab Geometry

discretizes the time dependent flux using a backward differencing scheme (for this

problem) and a central differencing scheme for the precursor terms.

For most problems, FMP2DT reads cross sectional data from an input tape.

However, data can be input directly. The input parameters used were derived from

thc data in the TWIGL report. Since TWIGL is a diffusion code, the values cor-

responding to the Xl>- entries in FMP2DT's input deck are set to zero. This is

known as the diffusion approximation for the P calculations. This is also done for
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the calculation of the initial flux at time t = 0, which was calculated by FEMP2D.

FMP2DT can calculate its-own initial flux by using a very large At. This will cause

all the ' terms to be approximately zero. From Appendix A, it is seen thatVg At

all the time dependent terms will drop out. But using an initial flux calculated

by FEMP2D is more cost effective since a large At in FMP2DT still entails some

unnecessary calculations like V (4N = 0.

Table 3 compares the TWIGL and FMP2DT initial fluxes. Because of symmetry,

X(cm) TWIGL FEMP2D
10 6.26847E+13-- 5.9368E+13
20 1.92851E+14 1.8581E+14
30 5.34671E+14 5.5854E+14
40 9.37259E+14 9.4485E+14
50 1.08474E+15 1.0848E+15
60 9.39969E+14 9.4610E+14
70 5.39333E+14 5.6072E+14
80 2.00865E+14 1.9003E+14
90 8.28086E+13 7.1108E+13

100 5.38778E+13 4.3079E+13
110 8.28086E+13 7.1108E+13
120 2.00865E+14 1.9003E+14
130 5.39333E+14 5.6072E+14
140 9.39969E+14 9.4610E+14
150 1.08474E+15 1.0848E+15
160 9.37259E+14 9.4485E+14
170 5.34671E+14 5.5854E+14
180 1.92851E+14 1.8581E+14
190 6.26847E+13 5.9368E+13

Table 3: TWIGL and FMP2DT Initial Fast Fluxes

the flux data are for z =- 14.142 cm. There are no flux values given in Table 3 for

x = 0 or x = 200 cm since TWIGL sets these values to zero. FMP2DT, however,

does not set these fluxes to zero becausc it models a vacuum boundary condition.

So the two codes should agree more for the interior mesh point flux calculations.
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Figure 9 shows the plot of the TWIGL flux at time t = 0.

The material mean free paths (MFP) arc calculated in Appendix C and displayed

in Table 4. It is obvious that mesh spacing with Az = 14.142 cm and Ax = 10 cm,

which was used in the TWIGL report, is much larger than these MrPs. This suggest

that the thermal flux calculations could be suspect. Indeed, both the FEMP2D and

FMP2DT calculations showed that the thermal flux shape varied greatly as finer

mesh spacing was chosen. The fast energy group, with its longer MFPs, was the

least affected by mesh spacing. Figure 10 shows the initial FMP2DT flux calculated

by FEMP2D. It was done using the reported TWiGL mesh. To be sure that this

mesh spacing was sufficient to define the-fast flux, another FEMP2D run was made

using twice the reported TWIOL mesh points. (The TWIGL Ax and Az values

where cut in half-) Figure 11 shows this result. There is no substantial dange

between the two FEMP2D fluxes.

Group Materials 1 &3 Material 2
1 4.1701 cm 3.5702 cm
2 1.5601 cm 2.1000 cm

Table 4: Material Mean Free Paths

TWIGL set the initial condition of the slab to be critical. Using TWIGL mesh

spacing, FEMP2D calculated a keg = 1.0141S, and using twice as many mesh points,

FEMP2D calculated a kerr = 1.02685S. So the initial calculations for the slab arc

very close for both codes. Therefore, the TWIOL mesh seems to be good enough to

define the fast flux.
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7.1.1 Transient Calculations

The- material cross sections changed with time due to two causes. The first has

to do- with a linearly changing cross section. Material 1 in Figure 8 differs from

material 3 because material 1 has a time dependent thermal absorption shown in

Figure 12. The second is due to temperature change. The TWIGL code assumes a

Material 1 Behavior

aa

AV1 = 0.01

0 0.005 0.01 0.015 time (sec)

Figure 12: Time Dependent Thermal Absorption

coolant flow along the z axis. Since it sets the flux to zero on the slab surface, the

coolant has no direct neutronic eTect such as absorption, reflection, etc. However, it

couples with a fission power calculation to establish a core and coolant temperature.

The material cross sections are then adjusted for the change in temperature after

each time step convergence. The time interval which the TWIGL had the smallest

temperature change was chosen for this compariscn. For time t = 0 to t = 0.01 sec

there was no change in the core temperature. However, there was a small change in

the coolant temperature. This is shown in Table 5. FMP2DT could have modeled

this change if the TWIGL report had given the temperatures at the end of each

time step. However, it did not. But the error should be very small since the coolant
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Time (sec) - Zone 1 Zone 2 1 Zone 3 1 Zone 4 Zone 5
0.00 500.5680 -F 513.3180 -F 500.6400 -F -513.3180 -F 500.5680 -F
0.01 500.5681- -F 513.3188 -F 500.6399 -F 513.3181 -F 500.5680 OF

Table 5: Coolant Temperatures by Zone

temperature change for each zone is-not significant.

The time dependent thermal absorption for material 1 can be described mathe-

matically as,

Z (t) 0.43 For t < 0.005 sec
a 0.44 - 2-t For 0.005 < t < 0.01 -sec

Except for a small change due to temperature, the D2 TWIGL parameter re-

mains constant in the interval. Therefore, E2 for the FMP2DT calculations remains

constant. Since = ) +- - 22 must be time dependent. This can be

expressed mathematically as,

2--2 { 0.211 For t < 0.005 see

J ()= 0.201 + 2t eor 0.005 < _< 0.01 sec (80)

Using Equations (79) and (80) above the cross section value for each parameter can

be calculated for each time step. Then the value calculated for the present time

step must be subtracted from the value for that parameter used during the last time

step to obtain some AE. That AE goes into the input deck in the 20**, 21**, and

22** arrays (shown in Appendix C). If a cross section has no time dependency, then

its entries will be zero. (Note, the initial input into these arrays must contain the

steady state values.)

The TWIGL flux at time t = 0.01 sec is given in Table 6. The peaks occur at

x = 50 cm and x = 150 cm, or in material zones 2 and 4 which are composed of

material 1 and material 3 respectively. Figure 13 shows the TWIGL flux and the

two distinct peaks.

The two peaks differ because of the change in the thermal absorption in ma-
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X(cm) €
10 1.835550+14
20 5.668937+14
30 1.578674+15
40 2.774679+15
50 3.211949+15
60 2.779915+15
70 1.587650+15
80 5.824532+14
90 2.229511+14
100 1.039940+14
110 1.038213+14

120 2.137265+14
130 5.582470+14

140 9.682363+14
150 1.115436+15
160 9.629778+14
170 5.491288+14
180 1.980289+14
190 6.435757+13

Table 6:- TWIGL Flux at Time t = 0.01 sec

terial 1. Thermal neutrons have a larger probability of inducing fission than fast

neutrons. Neutrons emitted as a result of a fission event are high energy, or fast

neutrons. Therefore, material absorption of thermal neutrons result in a decline of

fission events. Conversely, less -absorption increases the thermal neutron popula-

tion, and increases fission events. More fission events then increase the fast neutron

popu!ation.

It follows then that since the thermal absorption cross section decreases in ma-

terial 1, more fission events occur there. This increases the fast neutron population,

anc causes a larger peak in material 1,

FMP2DT should also display the same shape. Figure 14 shows this to be the

case. Figure 15 shows the results using twice the reported TWIGL mesh spacing.
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In both cases, FMP2DT's flux shape was very similar to TWIGL's.

FMP2DT made twelve runs- to insure that its flux shape was correctly defined.

Table 7 shows the different configurations modeled. Runs 1 through 4 were done

using the reported TWIGL mesh spacing. Note, that for runs 1 and 2 there are

differences-in the number of time intervals and At s. The parameters for run- 1 are the

same as those that TWIGL used for its calculations. TWIGL used one time interval

with ten- time steps to model from t = 0 to t = 0.01 sec, with each At = 0-.001 sec.

From Figure 12 it is shown that between times t = 0 and t = 0.005 sec, there is no

change in the thermal absorption cross section. TWIGL still used five time steps

there even though no physical process was changing.

Run Intervals At, (sec) At2 (sec) Ax(cm) Az(cm) Total Steps
1 1 0.001 N/A 10.0 14.142 10
2 2 0.005 0.001 10.0 14.142 6
3 2 0.005 0.0005 10.0 14.142 11
4 2 0.005 0.00025 10.0 14.142 21
5 1 0.001 N/A 20.0 14.142 10
6 2 0.005 0.001 20.0 14.142 6
7 2 0.005 0.0005 20.0 14.142 11
8 2 0.005 0.00025 20.0 14.142 21
9 1 0.001 N/A 5.0 7.071 10

10 2 0.005 0.001 5.0 7.071 6
11 2 0.005 0.0005 5.0 7.071 11
12 2 0.005 0.00025 5.0 7.071 21

Table 7: FMP2DT Run Summary for TWIGL Comparison

For run 2, FMP2DT divided this problem into two intervals. The first went from

t = 0 to t = 0.005 sec, and the second went from t = 0.005 to 0.01 sec. However, for

the first interval only one time step, with a At = 0.005 sec, was used. The second

interval used five time steps with At = 0.001 sec. Tus, run 2 used a total of six

time steps. The answers for runs 1 and 2 were exactly the same.
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This demonstrates the ability for FMP2DT to yield a substantial savings in

computational cost -lue to the fact that it has an implicit, numerical stable, time

discretization. FMP2DT demonstrated this same characteristic for the other com-

binations of Ax, Az and At configurations shown in Table 7.

The differences in the peak magnitudes for the TWIGL and FMP2DT calcu-

lations, shown in Figure 14, yield no special concern since the large mesh spacing

used makes the accuracy of either calculation questionable. However, since the flux

shapes are similar, it can be said- that the source vectors for the two codes were

similar. This is significant because both codes modeled a precursor source.

We benchmark FMP2DT now using exact flux values. This will not only vali-

date the ability of FMP2DT to obtain the correct flux shape, but will enhance its

credibiliLy f0i computational accuracy.
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7.2 Slab Geometry Benchmark

Since the TWIGL mesh spacing was much larger than a MFP, the most that can

be said about that comparison is that FMP2DT produced a similarly shaped flux.

The TWIGL work then needs to be supplemented with some exact calculations to

establish FMP2DT's ability to produce credible results.

B. D. Ganapol [Ref. 29] published a paper giving exact results for infinite one

dimensional slab and cylindrical geometries. FMP2DT modeled these configurations

by making the mediums so large that neutrons born because of a pulsed source at

time t = 0 sec did not have time to leak out of the medium. Ganapol tabulated

these calculations to aid in debugging programming errors. This section compares

FMP2DT calculations with Ganapol's exact calculations for XZ slab geometry.

Table 8 shows the exact flux in an infinite slab with an isotropic pulsed plane

source at x = 0 in a nonabsorbing medium. For each time step, the flux is calculated

at the mean free paths shown. The solutions were generated using Neumann series

for the angular and scalar fluxes. The neutron velocity, v, was set to be 1 cm/sec,

and the total cross section, Et, was set at 1.0 cm - 1. (This was the case for both

XZ and RZ geometry.) The media for both of the infinite geometries were non-

multiplying. Table 9 shows the FMP2DT results, and Table 10 shows the percent

relative error.

The data in Table 9 were calculated with a two dimensiona! slab configuration

with a reflective boundary at x = 0 cm, vacuum boundaries at x = 45 cm and

z = 0 and z = 46 cm. These values represent the physical dimensions of the slab

modeled. TLe fluxes were calculated at x = 1, 2, 3, 4, 5, and 6 cm respectively with

a corresponding value of z = 23.0 cm. These values of x were 1 MFP apart, with

the first being 1 MFP from the boundary. For all runs in both slab and cylindrical
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geometries, the source had a thickness of 6.25E-02 cm. To insure convergence, ten

runs were done with different mesh spacing and different time steps. As the mesh

spacing became finer, it became necessary to- model the infinite medium by using

reflective boundary conditions on the top and bottom of the slab, which left only

the right side allowing any leakage. It was found thlat only five mesh points in the

z direction were necessary. Most runs were modeled with a .eflector at z = 0 and

z = 4 cm and the flux data calculated at z = 2 cm. In the cases where Az=2 cm,

the reflectors were put at z = 0 and z = 8 cm with the flux calculations made

at z = 4 cm. The reflective top and bottom boundary configurations yielded the

same answers as did the configuration with vacuum boundary conditions on the

top and bottom. Since the reflective configurations had fewer axial mesh points,

there was a substantial savings in computational cost, and they had mnuch faster run

times. These same schemes were done with the cylindrical calculations. Table 11

summarizes the different configurations.

The results of the FMP2DT flux are extremely good. The error at 1 mean

free path (MFP) is most noticeable at early time. It is expected that the flux at

1 MFP would yield the most error since this is closest to the boundary and a P

approximation is more likely to be suspect there. Also, while mathematically the

line source can be turned on and off at a time t = 0, at x = 0 cm, using a delta

function, the code cannot. The source had to have some finite dimension, and it

had to be left on at some finite time. These dimensions were extremely small, but

produced some error.

Figure 16 shows that the error dies out as time increases. However, even for

earlier times, the flux shape is in good agreement. Figure 17 shows the comparison

between the FMP2DT and the exact flux two MFPs from the source. Again, the

early time values have the worst error. Figurtz 18, 19, 20, and 21 show the FMP2DT
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and-exact flux calculatians at 3, 4, 5, and 6 MFPs respectively. The error for these

calculations is extremely small, especially after the first few time points. This is

consistent with the expected flux behavior using a P1 approximation.

TfIME I I MFP 2 !AFPs T3 MFPs 4 NIFPs 5 NM 1 6 MFPs
0_1____0_ +0 -_____ ________ OA3000,+0O O.OOOOE,+0O O.OOOOF.+WO .OOOOE+0
I 0.3-E .OOOOELOO OOOOO+00 0.OOOECO O.OOE+0O O.OOQE+00 O.O0OE+00
3 2.3942E-01 - 3&36E-02 8.29r78E-03 -O.ODDOE+Oo 0OOE+00I O.ODOOO+00
5 1 .99571E-O1 1.210SE-01 4.9595B.02 1.18231-02 6.73-19E-04 JO.WOOE+00I
7 .7347E-O1 1.2293E-01 6M028-02 2Z&1476-02 8AI155E-03 j 1503E-03]

11 1.4175E-01 1.1454E-01 7.9966E-02 4.7953E02 2-4433E- 1.0419E-02 1
13 1.3120E-O1 IM069E-O1 8.12D0E-02 .5-3024F,02 3.0372E-02 1,513-7E-02
is 1.2269E-01 1.0514E-O1 8.1158E-02 I .5Et-O2 3.4=FE02 I IM976E-02
17 1.1564E-O1 j 100WE-01 8.0438F,02 J5.8390E.02 3SWI3E-02 I2-1041E-02J
19 1.096SE-O1 j917166E-02 7.9349E.02 J5-9663E-02 4.1241E-02 2.6150E-02J
21 L1.055E-O1 j9Z371915-02 7.506E.02 6M, F,037E02 j4.3305E-02 I2.8761E-02
23 1.0007E-01 9.0583E-02 7.6693F,02 I6DM9E-02 4AMS6B02 3.0942E-02
25 9.612SE-02 8.7720E-02 7.52WB71:-02 J60744E,02 4.6042E-02 3.2757E-02
27 9.2615E-02 j8509'EM0 7 M8 5 E--02 I6.0592-02 j4.6912E-02 I3.4265E-02
29 8.D460E-02 826S8E.0 7.2506-02 6.0301E-02 4 .754 ?IF.O2 3,551-5s-m
31____ 6V~ _________ _________2 SMI9OIE02 4.79384E-O2 3.6549E-02
33 SAME6L02 7.046E-02 6.1987E-02 5.9448&0_ ________I 74E-
35 8.1632E-02 7.6451E.02 6.8624F,02 5.5937E-02 4.844SE4O2 3.S92E-02
37 7.S146FW2 7.4708F,02 &.7424E-02 S.839E-02 4.8519E,-O2 3.866E-0-1
39 7.7427E-02 7.304E.02 G.6272E-0 S .782E-02 4.8515E-02 3M929E.02

141 7-5553E-02 7.1479E-02 G.5167E-02 J5.7247E-02 4.S450E-02- 3.9497E-02
I 43 7.3510E.02 [7.0012F,02 6.410SE-02 SZ%656E-02 4S3-tE4r- 3.-786EM0
145 7.2182E-2 6S8630E-0-2 62091E-02 5.741,_ 4.8177E-02_ 4.0007E.-02

Table 8: Exact Flux Due to an Isotropic Pulsed Plane Source at x = 0 in,-a INonab-
sorbing Infinite MNedium For Slab Geometry
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TIME - MFP 2 MFPs 3 MFPs 4 MFPs 1 5 MFPs 6 MFPs
0 0.OOOOE+O0 O.OOOOE+O0 -O.O000E+O0 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00
1 1.0461E-01 OOOOOE+00 -O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 0.0000E+00
3 2.7485E-01 7.4742E-02 - -9.8860E-03 O.OOOE+00 O.OOOOE+00 O.0000E+00
5 2.0536E-01 1.3069F-01 4.3453E-02 9.2030E-03 1.4897E-03 O.OOOOE+O0
7 1.6964E-01 1.3084E-01 7.0663E-02 2.5537E,02 6.6768&-03 1.3782E-03
9 1.5137E-01 1.2190E01 -8.0677E-02 4.0570E-02 1.5307E-02 4.4989E-03

11 1.3853E-01 1.1488E-01 8.2818E-02 4.9817E-02 2.4089E-02 9.3242-03
13 1.2850E-01 1.0927E-01 8.2747E-02 5.4848E-02 3.0971E-02 1.4612F-02
15 -1.2038E-01 1.0442E-01 -8.1953E-02 5.7699E-02 3.5895E-02 1.9389E-02
17 1.1362E-01 1.0012E-01 8.0792E-02 5.9390E-02 3.9427E-02 2.3361E-02
19 1.0789E-01 9.6275E-02 7.9427E-02 6.0360E-02 4.2021E-02 2.6594E-02
21 1.0294E-01 9.2818E-02 7.7963E-02 6.0845E-02 4.3951F-02 2.9232F-02
23 9.8615E-02 8.9692E-02 7.6467E-02 6.0993E-02 4.5387-02 3.1392E-02
25 9.4792E-02 8.6850E-02 7.4978E02 6.0904E-02 4.6448E-02 3.3166E-02
27 9.1382E-02 8.4254F,02 7.3519E-02 6.0649E-02 4.7220E-02 3.4624E-02
29 8.8315E-02 8.1871E-02 7.2104E-02 6.0276E-02 4.7766E-02 3.5822E-02
31 8.5538E-02 7.9674E-02 7.0738E-02 5.9821E-02 4.8136E-02 3.6805F-02
33 8.3006E-02 7.7642E-02 6.9425E02 5.9309E-02 4.8366E-02 3.7609E-02
35 8.0687E-02 7.5755E-02 6.8166E-02 5.8758E-02 4.8485E--02 3.8263E--02
37 7.8552E-02 7.3997-02 6.6960E-02 5.8182E-02 4.8515E-02 3.8792E-02
39 7.6578E-02 7.2355F-02 6.5805F-02 5.7590E-02 4.8475E-02 3.9216E-02
41 7.4745E-02 7.0815E-02 6.4700E-02 5.6991E-02 4.8377E-02 3.9552E-02
43 7.3038E-02 6.9369E5-02 6.3642-02 5.6389E-02 4.8234E-02 3.9811Fr02
45 7.1442E-02 6.8007E.02 6.2629&02 5.5789E-02 4.8054E-02 4.0007&02

Table 9: FMP2DT Flux Due to an Isotropic Pulsed Plane Source at x = 0 in a
Nonabsorbing Medium For Slab Geometry
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TIME 1 MFP 2 MFPs 3 MFPs 4 MFPs 5 MFPs 6 MFPs
1 43.13 NIA N/A N/A N/A N/A
3 14.80 20.35 19.14 N/A N/A N/A
5 2.90 7.96 12.38 22.16 121.09 N/A
7 2.21 6.43 3.87 10.23 20.66 8.34
9 2.52 2.14 5.62 0.96 9.98 19.32
11 2.27 0.30- 3.54 3.89 1.41 10.51
13 2.06 0.38 1.91 3.44 1.97 -3.47

15 1.88 0.68 0.98 2.94 2.60 0.07
17 1.75 0.83 0.44 1.71 2.33 1.39
19 1.63 0.92 0.10 1.22 1.89 1.70
21 1.54 0.96 0.13 0.78 1.49 1.64
23 1.45 0.98 0.29 0.49 1.16 1.45
25 1.39 0.99 0.41 0.26 0.88 1.25
27 1.33 0.99 0.50 0.09 0.66 1.05
29 1.28 0.99 0.56 0.04 0.47 0.86
31 1.23 0.98 0.60 0.15 0.32 0.70
33 1.19 0.97 0.64 0.23 0.19 0.56
35 1.16 0.96 0.67 0.30 0.08 0.43
37 1.13 0.95 0.69- 0.36 0.01 0.32
39 1.10 0.94 0.70 0.41 0.08 0.22
41 1.07 0.93 0.72 0.45 0.15 0.14
43 1.05 0.92 0.73 0.48 0.21 0.06
45 1.03 0.91 0.73 0.51 0.26 0.00

Table 10: The Percent Relative Error for the FMP2DT Slab Calculations

run reflectors Ax or Ar, Az At
1 no 1.0 cm 1.0 sec
2 yes 0.5 cm 1.0 sec
3 yes 0.5 cm 0.5 sec
4 yes 0.5 cm 0.25 sec
5 yes 1.0 cm 2.0 sec
6 yes 1.0 cm 1.0 sec
7 yes 1.0 cm 0.5 sec
8 yes 2.0 cm 4.0 sec
9 yes 2.0 cm 2.0 sec
10 yes 2.0 cm 1.0 sec

Table 11: Run Summary for the Infinite Slab and Cylindrical Geometries
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7.3 Infinite Cylindrical Geometry Benchmark

The Ganapol paper already cited also gave results for cylindrical geometry. Ta-

ble 12 shows the exact flux due to an isotropic pulsed line source a r = 0 cm in a

nonabsorbing infinite medium.

As with XZ geometry, several different runs were made to insure convergence.

The run summary is given in Table 11. For RZ geometry, there is a reflective

boundary at the radial center, i.e. at r = 0 cm. The rest of the boundary conditions

for the different configurations are as described for the XZ calculations.

Again, just like the XZ case, FMP2DT calculated the flux with good agreement

with the exact flux. Table 12 shows the exact flux, Table 13 shows the FMP2DT

calculations, and Table14 shows the percent relative error with respect to the exact

flux. As with the XZ geometry, the line source had a small finite thickness, and

the source-was turned on and off with some small finite time. This introduces some

error automatically that cannot be omitted.

Figures 22, 23, 24, 25, 26, and 27 show the graphs comparing the exact and

FMP2DT fluxes at 1 MFP, 2 MFPs, 3 MFPs, 4 MFPs, 5 MFPs, and 6 MFPs

respectively. As in the XZ geometry calculations, the worst error occurred at the

earlier times. This is caused by the characteristic of the P approximation and the

finite source configuration already stated. As the calculations moved aw.y from

the cylinder's center line, the FAP2DT flux was nearly identical to the exact flux

reported by Ganapol.

84



TIME 1 MFP 2 MFPs- 3 MFPs 4 -MFPs 5 MFPs 6 MFPs1
I 0-0000E+00 O.0-E-00 -O.OOOOE+00 .0000E+00O O.OOOOE+O0 OOOOOE+ C
I 7.3987P-'02 3.1734.02 O.OOOE+00 O.OOOOEr+ O.0000Ei-00 O.OOOOE+ 00
5 j 4.5977E-02 2S563E-02 1.2285E.02 3.2456F-03 O.OOOOE+00 O.OOF.+00
7 3.3254E-02 2.383E-02 1.3458E-02 5-8172E-03 1.8173E-03 3.6050F04
9 2.6027E-02 2.0134E-02 1.3033E-02 6-753E03 3.0260E-03 1.0291E-03

11 2.1376E-02 1.7346F-02 1.2201E,02 73928E-03 :'.8227E.03 1.6628-03
13 1.8133E-02 1.5205E-02 1.1312E-02 7.4409F03 4-142E-03 2.1729.03
15 1.5744E-02 1.3521F-02 1.0-176E-02 7.3063E-03 4.5721E.03 2-5552E-03
17 1.3911E-02 1.2165E-02 9.7197E.03 7.0842E-03 4.6998E-03 28295E-03
19 1 1.2460F,-02 1.1053F,02 9.0465E-03 6.8239-F03 4.7367E-03 3.0193&-03
21 1.1282&.02 -10125F.02 8.4492E-03 6.5515E03 4.7150E-03 3.1447F-03
23 -1.030SE-02 9393E-03 7.9191E-03 6.2809E-03 4.6558E-03 3.2218F-03
25 9.4893E,03 8.6659E03 7.^470E-03 6.0192&,03 4.5731E-03 3.2630E03
27 8.Tg07E-03 8=025E-03 7.0250E-03 5700E-03 4.4761E-03 3.2775F-03
29 3.1878E-03 7.5723E-03 6.6462E-03 5.53466-03 4.3711E.-03 3.2722E-03
31 7.6623E-03 7.1224&-03 6.3047E,03 5.3135E03 4.2620E.03 3.2523E-03
33 7.2002E-03 6.7228E-03 5.9955E-03 5.1062F-03 4.1518E-03 3.2218E-03
35 6.7907E-03 6.3654F-03 5.7144E-03 4.9122F-03 ,.0423E-03 3.183:E-03
37 6.4252E-03 60441E-03 5.4579E-03 4.7306E-03 3.9347E-03 3.1399E-03
39 j6.0971E-03 .5;753.5E.03 5.2229E.03 4.SGOG-03 3.829SE.03 3.W0924E-03

41 5.800E-03 5.4895F,03 5.0071E-03 4.4014E-03 3.7281E-03 3.0423E-03
43 5.5320E-03 5.24S7-F03 4a.OSE-03 4.252CE-0 3.6299E-03 2.9907-.03
45 5.2670I-03 5.2M ,-03 4.6240F,03 4.1119E-03 3.5352-03 2.52.E-03

Table 12: Exact Flux Due to an Isotropic Pulsed Plane Source at r = 0 in a
Nonabsorbing Infinite Medium For RZ Geometry

TLME 1 MFP 2 NM ~ 3 NM ~ 4 MFPs 1 5MFPs 16 MM~
I O.OOOOE+00 O.OOOOE+00 O.OOOOF+00 O.OO0E+00 O.OOOOF+O O.OOOE+00
S 9.7929E-02 2.7334E.02 O.000E+O0 O.O0E+0O0 O.OOE+O0 O.O0OOF-O+0

5 4.1467&"02 i 3"92E-02 1.1495E-02 2.3169E-03 O.OOOE+00 O.OO00"00
7 2.8879E-02 2.52586-02 1.49S0E-02 5-.5&03 1.4101E-03 2.06-.-04
9 2.720o.-02 1.97666-02 .AOE-02 7.4456E-03 2 .E-03 8.3W7&.04

I1I 1.9968b-02 1.6787-,02 1.2558&-02# j 4.14-03 3.9S32&-03 1.5492E-03
13 157160F,02 1.472?E-02 1.1371IE-02 7.7,3,E-03 4.5339E-03 2.18886-03
15 1-5027E-02 1.3124E-02 1.0431&-02 J7.4895&-03 4.7768E-03 2.6427E.03
17 1. 6-o2 1.1832&o2 9.6W3E.03 7.18O7:E .8o3-03 2.W450o3
19 1.2023E02 1.0770&02 S.9.,5E-03 6.8702E-03 4.,72E-03 3.11,E-03
21 1.0928F92 9.1320E-03 8-3478F8o3 6.56-#1&03 4.7933E-03 3.2283&03
21 l0OOISE-02 9.1301E-03 7818865-03 6.571E-03 4.7102E-03 3.2210F,03
25 9.-4,19E-03 S.A36-03 7.15 .03 6.0029E03 4.60 ,-03 3 .3192E-03
27 8.5798-03 7.9223E-03 6.9112E-03 5.457E-03 4.1992E-03 3.3224E.03
29 8.0052,03 7.4309.-03 6.512E.03 5.5055&-03 4.3&13E-03 3.307F,-03
31 7.5029E-03 69,1E-03 6.2251E-03 4.2815E-03 4.2677-03 3.2755E.03
33 7.059SE-03 GXM05&03 5.9213E7-3 5.0727E-,03 -1.1519E-03 3.2429E.03
35 j6.6661F,03 6.2371&03 5.6-152E.03 4.8760S-03 4.03.31 E03 3.1993E-03
37 6.3138E-03 S.9IGE-03 5.3934IE.03 *.6965E.03 3.9272F,03 3.1511&-03
39 5.9969DE.03 5.66%4E&03 5.16286-o3 U4.s269 'o3 3.8199E-0 3.om9E-03
411 5.7102E-03 5.4126E-03 4.950SE -03 436&1&-03 3.7164-103 3.0468E.03
13 5.4496E-03 5.1760F,03 4.75.-IE.03 4.2199E.03 3.6169E-03 2.9927F-03
45 5.211SE03 4.9629E,-03 4.5717E -03 4.0607F.03 3.52136)3 2.932-03

'fable 13: FMP2DT Flux Due to an Isotropic Pulsed Plane Source at r = 0 in a
Nonabsorbing Infinite Medium For RZ Gcometry
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TIME I MFP 2 MFPs 3 MFPs 4F Ps MFPs 6 MFPs
3 132.36 13.87 N/A N/A N/A --N/A
5 9.81 18.66 6.43 28.61 N/A N/A
7 13.16- 5.99 11.31 5.29 22.41 22.14
9 8.86 1.83 7.76 1 6.74 5.78 19.31
11 6.59 3.22 2.93 7.05 3.41 6.83
13 5.37 3-14 0.52 4.47 5.34 0.73
15 4.55 2.94 0.43 2.51 4.48 3.42
17 3.96 2.74 0.86 1.36 3.27 3.71
19 3.51 2.56 1.08 0.68 2.33 3.24
21 3.14 2.39 1.20 0.24 1.66 2.66
23 2.84 2.24 1.27 0.06 1.17 2.15
5 2.61 2.10 1.29 0.27 0.80 1.72

27 2.40 1.98 1.29 0.42 0.52 1.37
29 2.23 1.87 1.28 0.53 0.30 1.08
31 2.08 1.77 1.26 0.60 0.13 -0.85
33 1.95 1.69 1.24 0.66 - 0.0 0.65
35 1.83 1.60 1.21 0.70 0.10 0.49
37 1.73 1.53 1.18 0.72 0.19 0.36
39 1.64 1.46 1.15 0.74 0.26 0.24
41 1.56 1.40 1.12 0.75 0.31 0.15
13 1.49 1.3.5 1.09 0.75 0.36 0.07
45 1A2 1.29 1.07 0.76 0.39 0.00

Table 14: The Percent Relative Error for the FMP2DT Cylindrical Calculations
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7.4 Benchmark Conclusions

FMP2DT could not be benchmarked with TWIGL. The TWIGL calculations were

done with a much too coarse a -mesh spacing. However, comparing FMP2DT with

TWIGL's flux shape-showed that the precursor contribution was-at least generating

a similar source vector as was TWIGL's source vector. And by presenting the

TWIGL -comparison, a demonstration of some of FMP2DT's input characteristics

was accomplished. The benchmarks with the exact flux in infinite XZ and RZ

-geometries- did establish FMP2DT's computation creditability.

Since a P1 approximation is most suspect near boundaries and strong sources, it

is most likely that FMP2DT would show the greatest error nearest to the boundary

or source. Figures 16 and 17 show this to be true. Angular flux approximations

usually do not predict the early time behavior of the flux because the wave behavior

of the flux is not fully accounted for [Ref. 29]. However, given time after the source

is turned off, the error disappears, even in close proximity to the boundary. This

implies that the flux has time to become more isotropic so that the P1 approximation

is a better representation of the angular flux.

The fact that a P approximation has difficulty predicting the early behavior

of the flux is compounded by the fact that the source was 0.0625 cm thick. This

means that at one second, the leading edge of the wave is at 1.0625 cm because the

neutron velocity is 1 cm/sec. Likewise, there is an offset in the leading edge at 3 and

5 sec. This implies that, at these times, the corresponding calculations at 1, 3, and

5 MFPs are not predicting the leading edge of the wave since it has already passed.

Looking at the percent relative error for slab geometry in TCable 10, the largest error

for these MFPs is at times t = 1, t = 3, and t = 5 sec. Looking at Tables 8 and 9,

at 3 and 5 MFPs, it appears that the flux is over predicted. This supports the fact
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that the leading edge of the wave has already pass- through.

For RZ geometry, similar behavior is true. There-is an inherent radial dependency

for cylindrical geometry that is more pronounced than for slab geometry. The largest

errors are -for the-earlier time fluxes. Looking at Figures 23 and 24, the early time

FMP2DT flux shape at 2 MFPs appear to be taking the shape of the 3 MFP flux

shape. This again supports the suggestion that the leading edge of the wave has

already passed through. Experiments with the mesh spacing also seemed to-confirm

this.

Overall, the benchmark results with the exact flux are remarkably good. Usually,

comparisons between transport codes and exact answers given in literature are for

several MFPs from the source and boundary. This is because most codes are diffusion

codes, and diffusion theory breaks down near the boundary. Diffusion codes do not

represent the anisotropic nature of the leading eege of the wave at early time steps.

After a few MFPs, the flux becomes more isotrc,)ic because of resulting collisions,

and diffusion theory becomes more valid. Normally, a P1 approximation gives a

better representation of the anisotrol..;c nature of the flux and is better representation

of the leading edge of the wave at earlier time. If more accuracy is desired at early

time, then a larger P,, approximation would be a better model for the angular flux.

But as the P7, approximations are made and programmed, the computational costb

rise substantially. Thus, the P approximaJl;n in FMP2DT still is economically

attractive, and the early time errors may be accepL.-,e for most computations.

In the next section, we examine some appli, ,.ions for FMP2DT, and identify

some few group problems where FMP2DT can be used as an analytical tool.
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8 FMP2DT Applications

FMP2DT has applications to many nuclear engineering problems of interest to a

-number of communities. For examples, two problems were chosen, both in- RZ ge-

ometry. The first one can only be resol'e- .K z decay of a critical reactor after

injection of a pulse of neutrons. This . .n.. ten used to determine neutron

lifetime estimates -in a -new or research react( .. The second experimen, is- represen-

-tative of most pulsed logging problems. T, '..,ensional effects can dominate the

measurements to the extent that simpler on., _.nensional models are- useless. These

problems are only to demonstrate FMP2DT. Therefore, no detailed physics will be

developed. For example, for the first sample problem, FMP2DT will show -how it

can aid in collecting flux data for a Rossi-alpha experiment. However, the actual

value of alpha will not be calculated.

8.1 AGN-201 Rossi-Alpha Problem

The first example problem 6ojosen entailed modeling the UNM AGN-201 reactor.

The AGN-201 is a low-power thermal reactor used mostly for training purposes. It

is a right cylinder core, 25 cm in diameter. The fuel is a mixture of 20% enriched

U0 2 and polyethylene. The critical mass of the reactor is about 665 grams of U23 1.

The experiment modeled involved a pulsed source located ai the center of the

UNM AGN-201 reactor that was initially operating at a critical state. This type of

experiment is known as a Rossi-alpha experiment. A pulse of neutrons is injected

into the reactor with a spatial distribution that excites multiple spatial modes. After

a period of time, all modes other than the fundamental mode die out. The decay

of the fundamental mode then can be related to the neutron lifetine "' gc1 &-ration

time in the critical reactoi. The crucial piece of information that the calculation can



provide is the time at which counters can be gated on to measure the fundamental

mode decay. If the counters are gated on too soon, the fundamental mode will be

contaminated by measurements of the higher modes. If the counters are gated on

too late, the data will suffer from poor resolution.

The two dimensional time dependent calculation can be recorded at multiple

locations. When the time history of the flux at all spatial locations has the same

exponent" * decay on a semi-log plot, all higher modes have decayed out. At this

time the counters can be gated on and the decay data recorded.

8.1.1 AGN Calculation Description

The geometry for this problem is shown in Figure 28. The source was turned on

for one microsecond and then turned off. The source energy was set at 0.01 MeV.

The magnitude of thc jource energy was chosen arbitrarily and poses no significance

here. The mesh was about 1 cm in the core for the radial direction, and 1 cm in

the axial direction. The At for th" problem was 20 microseconds for 50 steps. The

calculations were stopped at 1.001 millisecond. The initial flux was generated -by a

FEMP2D calculation. The data were taken ,d the axial center line which is at z=0

cm in Figure 28. The radial values were at r=0.985, 2.954, 4.923, 6.982, and 8.861

cm. The':se radial positions are all in the core. The last position was chosen to stay

away fr,;.n the core and graphite interface since the reflection of the neutrons from

the graphite changes the slope of tit, flu. shape. A three group problem was modeled

using cross section data from an AMPX library. This was because of the availability

of the cross section, sct, and three groups are enough to demonstrate FMP2DT's

multigroup computational ability. Table 15 shows the energy group structure for

this problem.
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Group E Max (eV) E Min (eV)
1 1.7330E+07 1.OOOOE+07
2 1.OOOOE+07 9.9990E-02
3 9.9990E-02 1.OOOOE-05

Table 15: Three Group Energy Structure

8.1.2 AGN Results

Figure 29 shows the plot of the thermal flux at the stated core positions. From the

graph, it can be-seen that after about 0.27 milliseconds, the slopes of the thermal flux

are the same for all the radial positions. This implies that all but the fundamental-

flux mode has died out. This is the time to gate the counters on and record the flux

data. Any time previous would result in higher mode data contamination since the

slope is not straight for all spatial points.

Next, we turn our attention to a uranium logging problem. It also entails ob-

serving neutron flux decay much like the Rossi-alpha observations done here.
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(Assume reflective boundaries-at r=0 and z=0)

55 cm H20

10- cm Lead

20 cm Graphite

12 cm Core

Source _________________ __________

1 12.8 cmI1 20 cm 110 cmI1 55 cm

Figure 28: AGN Geometry
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8.2 Uranium Logging Problem

The search for uranium-in soil is accomplished by what is called a uranium borehole

logging procedure. A large hole is bored into ore-bearing rock formations, and either

a pulsable source or some neutron source such as 252 Cf is inserted. The resulting

decay of prompt fission neutrons in epithermal energy region is observed. Rock

formations with uranium present will show an increase for short time as a result

of fission events, whereas formations without uranium will show a constant rate of

epithermal neutron population decay.

The model chosen was the prompt neutron logging problem developed by James

H. Renken -[Ref. 32]. Renken's work was performed in one dimensional geometry

and assumed that a 14 MeV source and a neutron detector were co-':cated. This is

physically impossible. In fact they are separated by 10's of centimeters. Since this is

true, diffusion of the thermal neutrons must be considered in the analysis as well as

absorption. A two dimensional model provides a much better tool to analyze data

from this physical problem.

When the logging problem is modeled, the fundamental problem that is corre-

lated with the material properties of the interrogated rock is the long time (hundreds

of microseconds) decay constant of the thermal neutron population. This decay con-

stant will vary with distance from the source if thermal neutron diffusion is present.

The analysis presented here demonstrates this to be time case and indicates that an

individual probe must be calibrated for the source to detector spacing involved. This

type of analysis call be useful for all pulsed logging systems.
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8.2.1 Logging Calculation Description

The logging geometry is shown in Figure 30. A borehole is drilled into potential ore

bearing rock. The borehole has a diameter of about 4 cm and is filled with water.

A probe, about 3 cm-in diameter and 60 cm in length, is inserted into the borehole.

The detector is about 4 cm from the source. The source is about 1 cm in diameter

and is located in the center of the probe as shown.

The same three group strt Aure as used -fr the previous example is used for this

-problem. The group structure is showp in Table 15. The radial mesh was about 1 cm

in the axial and radial- directions. (Except where material interfaces occurred.) The

source energy was 14 MeV, and it was turned on for 10 microseconds. The flux data

were then tabulated for 590 microseconds with a At =11.8 microseconds for 50 time

steps. The soil contains a mixture of 2zSU, 233U, H20, and SiO 2. The production of

delayed neutrons is neglected because their numbers will be small during the short

counting period. A reflective boundary condition is used at r = 0 cm and vacuum

boundary conditions are used at r = 35 cm. z = 0 cm, and z = 60 cm.

8.2.2 Logging Problem Results

Figure 31 shows the graph of the flux decay at r = 0 cm and axial positions of

Z = 3S, 44, .50, 56, and 59 cm. The source, also located at r = 0 cm, was between

= 31 and 32 cm. As shown, the flux has different slopes for each axial position.

This different slope data clearly show that each position does have a different decay

constant. This must be taken into account in detector calibration to insure credible

counting.
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Figure 30: Logging- Geometry
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9 Conclusions

The new code, FMP2DT, demonstrated -most of the characteristics that were desired

before this research began. Indeed, its benchmarking turned out to be better than

expected. Its input deck, while- somewhat tedious for source transients with many

time steps, is fairly straight forward with respect to its sister FEMP codes. The

following is to identify some of FMP2DT's characteristics.

The nature of having to calculate the radial -and axial currents, T 1 o and 'i 1,

means having to invert two matrices. Depending on the mesh size of the problem,

and the number of energy groups considered, this can be- a major, and very costly,

operation. Also, the calculation of the precursor concentrations, C, can -be even

more computationally expensive depending on the number of precursor families to

be modeled. All of these computations are magnified by the number of time steps

chosen. Therefore, selecting the spatial mesh wisely, and using a group structure

that is just fine enough to satisfy the problem physics is prudent. However, the user

may not know these optimum configurations. In that event, a guess for an equal

Ax and Az may be selected and a At chosen to give a tolerable computational

time. Then some variations from these values can be used to insure convergence.

Determination of the proper group structure is subject to choosing the number of

groups, running the problem, collapsing the groups, and observing the flux change.

As stated in earlier sections, the Euler backward differencing scheme for time dis-

cretization is inherently stable. However, the user should be careful not to assume

convergence upon an initial run; stability does not imply convergence. This is espe-

cially true for time dependent problems. FMP2DT's answer needs to be compared

with more than one run for any new problem.

The ability for a calculation of X is unique. These values are very difficult to



find. However, if data are available to-establish the delayed group spectrum, then

it can be entered in FMP2DT's input -deck. In fact, if any cross section parameters

are available, those may be entered likewise.

The benchmarking of FMP2DT established FMP2DT's computational accuracy.

The errors shown in the early times for both XZ and RZ geometries are consistent

with theory. With differing neutron energy groups, where the neutron velocities are

much faster, the early time error may not be as pronounced.

The few group problems demonstrated some practical applications for FMP2DT.

The AGN-201 problem demonstrated how an experiment, such-as Rossi-alpha, would

be accomplished by gating- the counter -in the proper time interval to insure credible

data recording.

The uranium logging data showed that for different spatial points in the borehole,

the flux decays at different rates. Therefore, for the detector to yield valuable

information, it mud-t be calibrated for the source to detector spacing. Thus, the two

dimensional diffusion effects need to be accounted- for.

FMP2DT can be enhanced in many ways. Here are a few suggestions for future

work and research.

9.1 Future Research

The first thing that could enhance FMP2DT is to program the ability to make the

cross sections temperature dependent. This could be done by coupling the FMP2DT

equations with some thermal-hydraulic equations, and/or possibly with equations

describing heat generation- due to particle interactions. Included with the particle

interactions are the effects of gamma heating. Of course, because of computational

cost and complexities, there are limits as to the detail for all of this. But a. least

some work of this nature could be feasible.
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When doing the benchmarks with Ganapol's data for RZ and XZ geometries,

the greatest error was at the early times. A P expansion of the angular flux with

n > 1 would be more accurate in describing the angular flux's anisotropic nature

at those times. Also, it would permit a more accurate representation at boundaries

and material interfaces. This might be the best enhancement for practical purposes.

Since we have a two dimensional time dependent code, it would be natural to

develop a three dimensional version. The complexity of this effort is not trivial,

even with the two dimensional schemes to use as a starting points. But a three

dimensional version would allow computations with systems that do not possess

azimuthal symmetry in the streaming physics.

Second, some small modifications to FMP2DT could be made. This could include

the development of an option for RO geometry. Modifications to the input scheme

could be done so that an inhomogeneous source that's turned on and- off would not

need an input entry describing its state for every time step. At present, this input

is very lengthy. Also, it would be desirable to include an option in FMP2DT to

clculate adjoint fluxes. These and several other minor options could serve as some

sort of academic problem.
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Appendix A:
Vector and Matrix Definitions

The vector Equations (61) and (74) are the result of applying the multigroup ap-

proximation to the transport equation. They have been defined for G energy groups.

g = 1 is defined as the highest energy group and g = G is defined as the lowest,

sometimes referred as the thermal energy group. Therefore, g = 1, 2,... , G. We now

will define the matrices and vectors used in the XZ and RZ geometry solutions. All

the matrices are piece-wise constant in an interval Ax and Az or Ar. For simplicity,

their following definitions will not carry any spatial interval subscripts.

Define E°0:

- 2141 + 1 .2-.1 .4

t o v1At so

S2 2--+2 + 1 G--+2

2 00 so -so V2 Ats

so0 0 . ,so VGAt

E°0 is a combination of 2Et, the total cross section for the gth energy group, y,-g

80

the inscattering cross section for the gt' energy group, and the diagonal entries

come from combining (addition) to the V matrix. The same similar combinations

are made with the E 0 and 211 matrices.

Define 210.
r * + 1 2-"+1 G-"'I

2t2~' VIAt 21

22 2-2 + 1 .G-,

F10 - 1 t 1 V2A

F,1- G_ 2 .-+G ... --G + I

D 1 0 {'10}- 1 and 1° D= O



Define 1I:

El EI _+ --- -- +l .. r--lt 3 V1 At 31 S

: : ... G

t GV2G+t

31 t 1 VGAt

D = {ii}- and D1 =-'D

Define V: 1

x2 1 Z 2 x 2  2 XVG JGrf -- f

X9 in Ef above is-defined as:

x9 = 9(1 - ) +ZxEI+
k=1 X

The data for PO° , V1O, 11 and Ef are given in a cross section set that is determined

experimentally.

Define V:
1_ 0 .. 0

vI At

0 0
V2 At

0..... ... :~

VG At

vg is the neutron velocity related to the neutron energy. At is the time discretization

or time step in consideration.
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For the vector definitions, their spatial superscrip! ij will refer to the ij th mesh

point. The superscript (N+ 1) will relate to-the preset-itime step (At) and (N) will

relate -to the pre-vious time step. The energy -group N-11 be the number appearing

under- the time-step designation.

Define the 'IPoo vectors:

(N+x) (N)

(N+1) (N)

ooNij -- j ooii

(N+) (N)1.oo, 3o,

Define -the 'F o vectors:

(N+1) (N)
4,10 ,

(N+1) (N)

((N +li )i T (N ) ( i
:lOij - lOij-"

(N+I) Mr
G G,

Define the I,, vectors:

(N+i) (N)
7P,11i O¢11/

(N+I) (N)

(NI) _i,,i

('v+I) (N)

Define the precursor source:

(N) n X AkC(V)
ij =-- l+AkAt

k=l
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Then the precursor vector may be defined- as:

_ C ii

(N)

C Si3

G

Define the inhomogeneous sources:

(N+x) (N+1) (NI)

(N+1) (N+1) (1+)

"O00ii "-" S10i 11,,1lj-

(N+I)

Note: The E1 0 and the E 1 matrices were-presented in the derivation of the equations

as if they were different. Examination of the entries show that they really are not.

Thus, the diffusion matrices, D1 o and D' 1 are also the same.
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Appendix B:
Integration Summaries

The linear hat functions hay= different values depending on the interval in question.

For example, for an interval in the x direction from i - 1 to i + 1, Bi(x) has two

different values. This can be seen in Figure 1. Each interior B spline then- overlaps

itself and its two nearest neighbors. Therefore, the B splines are defined:

In the x direction for p = i - 1, i, and-i + 1:

__ _dB (x) -1
Bi- 1(x) = X- for xi- 1:< X < Xi

Xi - Xi-i dx i i1d Bi (x)

Bi(x) =- x'- for xi.. 1<x<x <= 
Xi - xi-1  dx xi - xi_1

Bi(x)= x'+- for xi< xi+l dBi(x) -1
Xi+r - Xi dx xi+i - xi

Bi+, (x) = x - xi for xi < x < xi+l dB+(x) 1

xi+1 - xi dx Xi+1 - xi

In the z direction for q = j - 1, j, and j + 1:

-z dB.j(z) -1i-IZ)- z~ z orz 1. 1 zz d =
zj - zj-1 dz zj - zj_1

Bj(z) = z zj_ "or zj< z < zj dB(z)
zj - zj-i dz Zi Zj-1

-zdB(z) _ -I

Bj(z) = z'+1 - z for z< z < zj +l  dz=
zj+l - zj dz Zj+1 - zi

z-z; ~dB~ 1 (z)_ 1
Bi+, (z) = z - zj for zi z < zij Bj+l()= 1

zj+1 - zj dz zj+1 - zi

The B splines in the z direction are the same for both XZ and RZ geometries.



In the r direction for p= i - 1, i, and i + 1

r) = for r-_l r<r' d Bi-,(r) -1
( =ri - ri- dr ri - ri-

Bi(r) = r --ri-1  for ri1  r <-ri d Bi(r) _ I

__ _ - rdBi(r) -1
Bi(r) = ri - r for ri < r < ri+l ---r/+i --ri dr ril - r

Bi+i(r) = r - ri for ri_<r < ri+l d=Bi+(r)

ri+l - ri dr ri+1 - ri

Now define:

hi- 1 = xi - xi-1 and hi xi+l - xi for XZ geometry.

hi-I = ri - ri- 1 and hi ri+l - ri for RZ geometry.

h 1. = zj - zj-1 and hj = zi+l - zj for both geometries.

For integration in the r direction with- an r factor in the integrand:

Define:

Ri(i) = 1-2

R3(i) = j +-r 1 ~- 4

R4 (i) = 2 ( I - ?) = R( - 1)
1r + t~...

Rs(i) = -1 (r+ri-1)

2 ri -ri- = _R.i

R6(i ri = i -R5(i)

R7(i) = r__ +

1 (ri+r - r)

Rs(i) = 2 +-, -R 7)
o(i) = 2 (ri+l-ri)

Rio(i) = . (2r + 2-i_.)

112



R 11 (i) - (rj+l +3 2r,) = -/(i - 1)

R 12(i) = (-T) (2rj+, + ri) = -Rio(i - 1)

Each material matrix is piece-wise continuous in -a given xz or rz interval. They

possess subscripts identifying the specific-interval- where they belong. Consider the

following example. Let E° ° be the matrix-in question. Figure 32 shows how it might

fit in a two dimensional slab mesh scheme. Let M', M 2, M 3 and M4 represent F° °

z

Zj+l

M 2 M 3

Zi

M1  M4

- 'X

xi-1 Xi Xi+l

Figure 32: Piece-Wise Material Matrix Example

in the intervals shown. Then,
M I ---F -l- O i

l-o M 43 oo
M 2  -F _, _ M 4 F -- _

Thus, F-1j-j is continuous in the interval hi-1 and hi-1, E'-0 is continuous in

the interval hi-. and h1 , E9o is continuous in the interval hi and hi, and Z971°

is continuous in the interval h, and h_1 . All other material matrices are likewisc
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determined. Now the integrations are-addressed.

In the x direction:

'dBi-..(x)-dBi(x) dx = -1
dx d xh-

1I dx dx h-

XjjdBi(x) _____) dx=-1

1dix) dx dx =

xifj~ d Bi(x)d Bi(x) d = -
I dx dx T

xi

xi.

]B-(x)Bi(x)dx = h-

j i B(x) Bi(x) dx = 3
xTii

J B+i(x) Bi(x) dx = 6
xi

Xii

x ~xdx = -6

7B-(x) dB,(x) 1
dx -d 2

Ji B(x) dx = -)

dxdx 2

J ix ~dB,(x) dx -1

dx d2
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In the z direction:

/d13 1...(z) dB(z) -1
dz dz d =-

f dBj(z) dBi(z) d
J dz dz h

f j~ z dB(z) d-
dJ~z dz dz -

fdBi-()Bj (z)_dz =-6

hi-1fj B1 (z)Bj (z) dz =3

Zj..1

f Bi(z)f31(z)dz =3

J+1  
I

j B1 i(z)B1 (z)dz =

I dz2

7BI(z) dBj(z)dz=-
dz

zj-1
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In the r-direction.

r;+

I B-(r)Bi(r)r-dr = Rl(i)

J Bi+(r)B(r)rdr = J?4(i)

Iv BrBirrdr = R 6(i)

j+1

j dirBi(r) rdr d = R4(i)

ri

I ______ drvJi dBi () d B r r dr = R8 (i)

ri

Ji l B (r) d B .(r) rd 7i

TI4. dBr)

J Bi(r) dvir r dr = R8(i)
i

I,+ dr)

J B+i(r) dv vi()dr = R12(i)

CInud h ex ae
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Some of the integrands in the radial direction did not have a r factor in- -them

because it was canceled out by a I factor in the-same integrand.

ri 1

Bil(r)dB(r) dr = -I di'

J B,()dBi(r) 
dr =

r(-1
i+ (r) -dBi ()dr = -1
I dr 2
r;

J Bi+1(r) dBi(r) -
di di'ri

Finally there is a case that -is opposite from the preceding one.

ri dBi(.r) B(r) dr = -
2

dr 2

71 dBi(r) Bi(r)dr = -

r

j dBi+( Bi(r)dr =2

1dr 1
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Appendix C:
TWIGL Cross Section Data

The-following is a summary of the cross sections used to set up the FEMP calcula-

tions for the TWIGL problem. Consider a two group problem with a P approxi-

mation. The Po transfer matrix is defined as:

FO so ~viAt -j 2
so- o t so A

And the P1 transfer matrix is defined as:

(3) r10 = (3) F1 _ (3) - t V1 At
Z2- 2--2 +

3--1 t S1 a

For steady state calculations, the 1 values are set to zero. The values to compute
Vgti

these matrices are either read in by a cross section tape, tape 16, or read in the

input data from tape 5. Consider that there are two materials, and their cross

section data are read in the input deck (tape 5) in the 20**, 21**, and 22** arrays.

Each material must have input for these arrays. For the TWIGL problem, the

following pages show the input for the steady state calculations. For the FMP2DT

calculations at time t = 0, another set of these arrays must be included for material

3. In that case, material 3's arrays would be exactly like material l's. This will

change for t > 0.005 sec where other 20**, 21**, and 23** arrays must be entered,

one for each time step, reflecting the AZ for each entry (as described in the text).



Material 1:

20**ARRAY:

j, = 0.2398

= 0.6410

v Z} = 0.02555562

= 0.73259410

= 0.00

r2_ = 0.43

x = 1.0

x2 = 0.0

21**ARRAY

V-1 = 0.2148

'30 = 0.0060

E2-1 = 0.0000
Z-

so = 0.2110
80

22**ARRAY

(3) r'-' = 0.0

(3)_o1-,2 = 0.0
F21

(3) 2-1 = 0.0

F2-2=0.
(3) _ 31 = 0 .
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Material 2:

20**ARRAY:

= 0.2801

=0.4762

f 0.00511112

=0.08518539

r = 0.00

a 0.13

X = 1.0

2=x 0.0

21**ARRAY

r''= 0.2641

,o = 0.0060

30 = 0.0000
r2-

'0 = 0.3462

22**ARRAY

(3) r,'-' = 0.0

() '1 = 0.0

(3) F,2-1 = 0.0

(3r2-2 =0.
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We want to calculate for both materials:

["0 .__ -2 1.2 - 1-"

(Here we are oniy considering steady state conditions.)

Material 1:

B - 11= 0.2398 - 0.2148

F1 -- +

-- _F E2-.

-:-o = - 0.006

_ -1= 0.0

1;0soo

= 0.6410-0.2110

Lso t ,5

Thus:
>-:,000.0250 0.0000 1

Et=  - V 0.2398 - 0.0

oI-2, - 30.06 -. 0

- 2--1

3(t2-42) = 3(0.6410 - 0.0)

Therefore;
oo 0.0 0 0.0000 o]

0.0000 1.9230 0000 0.5200
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Material 2:

E- ' = 0.2801 - 0.2641

_ E-2 = -0.006
so

r 2- = 0.0

- = 0.4762 - 0.3462

Thus:

zoo 0.0160 0.0000]
- 0.006 0.1300

Note, the last entry, E - r.0 0.1300 = Er. The diffusion matrix for a P1

approximation is defined as:

3 - =11)  = 3 (0.2801 - 0.0)

3 (rt - S1.2) = 3 (0.4762 - 0.0)

Therefore;
D 0.8403 0.0000 1.1901 0.0000

0.0000 1.4286 = 0.0000 0.7000
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The FEMP codes also calculate the diffusion lengths and mean free paths for

each material and each group. For 1 group theory, the diffusion length is defined as:

FD and D

Note for-our thermal group, E . Here, we define

1.0
3 = (Eg -

Then,
1.0

3 ________ - 1.0L9 F9 ,- (g -9

- 3( - ,g'g) (Eg - -,

The mean free paths are calculated by the FEMP codes as:

1.0Ag =r-

The MFP values yield the sensitivity for the spatial mesh spacing in the FEMP

codes.
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Material 1:

1.0 1.0Di - 1.3900
=3 (x} - EI-1) 3 (0.2398 - 0.000)

Note, this is the D(1,1) entry in the diffusion matrix.

__________ 1.3900 130=x = - - 7.4565
- d 029 - 0.2 148 0.0250

Note the removal cross section for group 1, ZI = 0.0250.

1.0 i:10
A, = - -0 8 =4.1701tEI 0.2398

1.0 1.0.D2 -- - 2'- 0.5200
( 2  

- 2) 3-(0.6410 - 0.000)

Note, this is the D(2,2) entry in the diffusion matrix.

D2____ 0.5200 0.O5200 1.99t= V0.6410--0.2110 0.430 1.0997

Note the removal cross section for group 2, Z2 = 0.4300 -

1.0 _ 1.0
A2 = LO - .0 = 1.5601

=E2 0.6410
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Material 2:

1.0 1.0D1 -" 1.1901
3 ( -+1) 3 (0.2801 - 0.000)

Note, this is-the D(1,1) entry in the diffusion matrix.

D, 1.1901 1 -8.6243
-L1 = - 0. V0 2801 - 0.2641 0.0160

Note the removal cross section for group 1, Z' 0.0160.

1.0- 1.0

1 = - 0.2801 3.5702

1.0 1.0.D2 -- 0. .7000
3 (F2 -2_-2) 3 (0.4762 - 0.000)

Note, this is the D(2,2) entry in the diffusion matrix.

L2 - D2 F_ 0.7000 0. 7000 -230L22= -+ 2  0.4762 - 0.3462 = 0 - 2.3205

Note the removal cross section for group 2, r =0.1300 = E

1.0 1.0
A2 = T2. - 0.4762 = 2.1000

Attached are FEMP2D and FMP2DT input decks showing the 20**, 21**, and 22**

array input for the TWIGL problem.
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FEMP2D Sample Input Deck (See FEMP2D Manual for details.)

X-z Slab Problem: FEMP2D: TWIGI, mesh spacing. TITLE

1 NGEOM
3 NOUTR
0 MADJ
1 LPN
2- NMAT
2 NNG
0- NPG-
1- MPN-
0 IHT
0 IHS
0- LTBL
-2 MTL
2 MCRD
0= MANSN
0 MAMPX
1 NBYTE
21- NX
4 NY
5 NZONE
0 IB(1)-
0 IB(2)-
0 IB(3)
0 IB(4)
2 ISTRT
4 KSOLV
500 ITMXI
200- ITMX3
0 TACO
0- NPOW
0 NUPS
0 NS
1 IPX
38 NPOUT
1 IPFILX
0 NRF

1.OE-6 EPS
1.OE-5 EPSK
1.0 XK
8.37702E+16 SNORM
T
loss (Material Numbers)
12
18ss (Nudide Numbers)
12
12** (Numnber Densities)
1.0 1.0
13SS (Nuclidc IDs)
12
14** (Prompt Chi Spectrum)
1.0 x
0.0 XP
17** (Group Velocities)
5.09+06 V
2.OE+05 V
20k*r Material 1
0.2398 E
0.6410 E
2.555562E-02 ,
7.3259,13&01 E
0.0El
0.43 E
1.0 1
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0.0 X2
21**
0.2148 El--
0.006 l 2

,so

0.0 S-

0.2110 M
2

22**
0.0 (3)EI-
0.0 (3)E'-2

0.0 ()E. 2

0.o (3)E 2

20** Material 2
0.2801 E .-

0.4762
5.11112-03 ME,
8.518539E-02 ME
0.0El
0.13 2

1.0
0.0 Xp
21**
0.2641 F -I

0.006 oL
0.0 2-

0.3462
22**
0.0 3E-
0.0 (3)EI- 2

0.0 (3).2LI
0.0 (3)E7 2

T 
.

30k* X- Points
0.0 10.0 20.0 30.0 40.0 50.0
60.0 70.0 80.0 90.0 100.0 110.0
120.0 130.0 140.0 150.0 160.0 170.0
180.0 190.0 200.0
31*k Y Points
0.0 14.142 28.284 42.426
3s$s
1112222333334444555
1112222333334444555
1112222333334444555
35**
FO.0
36** X Print
10.0 20.0 30.0 40.0 50.0
60.0 70.0 80.0 90.0 100.0 110.0
120.0 130.0 140.0 150.0 160.0 170.0
180.0 190.0
10.0 20.0 30.0 40.0 50.0
60.0 70.0 80.0 90.0 100.0 110.0
120.0 130.0 110.0 150.0 160.0 170.0
180.0 190.0
37** Y Print
14.142 14.142 14.142 14.142 14.142 14.142
14.142 14.142 11.1,12 14.142 11.1,12 14.142
14.142 14.142 1,.1,12 14.1,12 14.142 14.142
14.142
28.284 28.28, 28.284 28.284 28.284 28.284
28.284 28.284 28.284 28.284 28.284 28.284
28.284 28.284 28.284 28.2&1 28.284 28.284
28.284
T
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F MP2DT Sample Input Deck (See F MP2DT Manual for details.)

X-Z TWIGL Problem: (FMP2DT-run; TWIGI. mesh) TITLE

1 NGEOM
2 NINT
1 ICOLD
6 LAM
3 NOUTR
0 MADJ
1 LPN
3 NMAT
2 NNG
0 NPG
1 MPN
0 IHT
0 ills
0 LTBL
3 MTL,
3 MCRD
0 MANSN
0 MAMPX
1 NBYTE
21 NX
4 NY
5 NZONE
0 IB(1)
0 18(2)
0 18(3)
0- 18(4)
2 ISTRT
4 ICSOLV
S00 ITNMXI
200 ITMX3
0 IACC

o NPOW
0 NUPS
1 Ipx
3a NPOUT
-1 IPFLX
0 NRF
0 IBAT,

0.0 TSTRT
1.013-3 EPS
1.0O.-4 EPSK
1.026M5 XK
8237702E+116 SNORAI
T
5ss (Material Numbers)
1-2 3
68$ (Nuclidc Numbers)
123-

7** (Number Densities)
1.0 1.0 1.0
SSM (Nuclide Ids)
123
01* (Prompt Chi Spectrum)
1.0 xi

12-, (Group Velocities)
5.08+06 V
2.08+05 U2
131* (Delayed Neutron Fractions)
2.4700E-04A
1.3&I5E.03 02
1.2220E,-03 03
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2.6455.03 04
8.3200E-04 Ps
1.6900E.O-t As
14** (Decay Constants)
0.0127 Al
0.0317 A2

0.1150 A3
0.3110 A4
1.4000 AS

15.* (Delayed Chi Spectrum)
1.0 A1

1.0 X2
1.0 )d

1.0 X4

1.0 x1,
1.0 4
0.0

0.0

0.0 4
0.0

0.0 4
0.0 4
20, MatMerial I
0.2398 V"
0.6410N
2.555562E-02 PSI
7--15943P,01
0.0
0.43 S.
1.0 x
0.0
21*
0.2148
o.00 6.0
0.0
0.2110 2
22**
0.0 (3)v-'"
0.0 (3)vSi!

-2

0.0
0.0 (3) 2

T

20i* Malea 2
0.2801 'p1

0.4762 ;
5.11112E,03 VVI

0.0
0.13 2
1.0 4
0.0
21**
0.2&11
0.006 p-
0.0 v2-
0.3462 -;-2
22tkk

0.0 (3)E!-'

0.0 (3) VU2

0.0 (3)r2!-2
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T
20** Material 3
0.2398 El
0.6410 El
2.555562E-02 VE.1

7.325943E-01 EI
0.0
0.43 a
1.0- X1

0.0 Xp
21**
0.2148
0.006
0.0E L

0.2110 
2

30
22**
03 (3)EI- 1
.0 (3)E.sI"2

0.0 (3)E 2 - 1

0.0 (3)SI
T

30** X Points
0.0 -10.0 20.0 30.0 40.0 50.0
60.0 70.0 80.0 90.0 100.0 -110.0
120.0-130.0 140.0-150.0 160.0 170.0
180.0-190.0 200.0
31** Y Points
0.0 14.142 28.284 42.426
34$$
1 1 1 22 2233333444455 5
11-1-2222333334444555
1112222333334444-555
35**
FO.0
36** X Print
10.0 20.0 30.0 40.0 50.0
60.0 70.0 80.0 90.0 100.0 110.0
120.0 130.0 140.0 150.0 160.0 170.0
180.0 190.0
10.020.0 30.0 40.0 50.0
60.0 70.0 80.0 90.0 100.0 110.0
120.0 130.0 140.0-150.0 160.0 170.0
180.0 190.0
37** Y Print
14.14214.142 14.142 14.142 14.142 14.142
14.142 14.142 14.142 14.142 14.142 14.142
14.142 14.142 14.142 14.142 14.142 14.142
14.142
28.284 28.284 28.284 28.284 28.284 28.284
28.284 28.284 28.284 28.284 28.284 28.284
28.284 28.284 28.284 28.284 28.284 28.284
28.284
T
40$$ INT=1
0 NS
1 NTIM
0 IXSEC
41**
0.005 TFIN
T
40$$ INT=2
0 NS
5 NTIM
1 IXSEC
41**
0.010 TFIN
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T
20** Material 1 (ITT=1)
0.0 El
0.0 E,
0.0 rE}=

0.0

0.0 E1
0.0 2

21., X
0.0 1

0.0
0.0 El-
0.0 E
0.002 

2 2. 2

22**

FO.0
T
20** Material 2 (ITT=I)
FO.0
21**
FO.0
22**
F0.0
T
20** Material 3 (ITT=I)
FO.0
21**
FO.0
22**
FO.0
T
20*-* Material 1 (ITT=2)
0.0
0.0
0.0 E
0.0 1EI

0.0 v.
0.0

-0.00 E' 2
0.0 xi~

0.00 80

21**
0.0

.0

0.0 r2-

0.002 F! 2

22**
FO.0
T
20** Material 2 (ITT=2)
FO.0
21**
FO.0
22**
FO.0
T
20** Material 3 (ITT=2)
F0.0
21*

F0.0
22**
F0.0
T
20** Material 1 (ITT=3)
0.0 F,1
0.0 El,
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-0.0
0.0 tiE1

-0.002 E.2
0.0 xp
0.0 XP21*

so
0.0 _.E-2
0.0 -t2-

0.002 r22

22**
FO.0
T
20** Material 2-(ITT=3)
F0.0

21**
F0.0
22**
Fo.0
T
20** Material 3 (ITT-3)
F0.0
21**
F0.0
22**
F0.0-
T

20** Material 1 (ITT=4)
0.0 El
0.0 E,
0.0 tE
0.0 tiE,
0.0 Elf

-0.002
0.0 x1
0.0 XP21k¢*
0.0 p l-i

0.0- r2-1
0.002
22** 

80

FO.0
T
20* Material 2 (ITT=4)
F0.0
21*k
FO.0
22**
F0.0
T
20** Material 3 (ITT=4)
F0.0
21**
F0.0
22**
F0.0
T
20** Material 1 (ITT-S)
0.0 El
0.0 E,
0.0 VE1

0.0
0.0El
-0.002 j2
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0.0 1

0.0- X
21**

-0.0- s-

0.0 E1-2

0.0- E

0.002 520

22**
FO.0
T
20k* Material 2 (ITT5S)
17O.0
21**
FO.0
22**
FO.0
T
20**.: Material 3 (ITT=-5)
FO.0
21**
FO.0
22**
FO.0
T

Note: ITT=TIME INTERVAL; ITT=1,** , NINT

INT=TIME STEP IN THAT INTERVAL; INT=1,.*., NTIM
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