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In the last seven years there has been a large group effort devoted to studying chaos and
coherence in “near” integrable pdes. The group of Alan Bishop of the Los Alamos National
Laboratory, Nick Ercolani of the University of Arizona, David McLaughlin of Princeton
University, and Greg Forest, Amar Sinha, and the author of the Ohio State University
have been studying perturbed sine-Gordon and nonlinear Schrédinger equations. Qur
efforts have been concentrated in the following areas:

(1) numerically identifying low dimensional chaotic attractors with spatially coherent
structures;
(2) measuring the properties of the chaos;
(3) identifving the sources and types of chaos;
(4) determining natural coordinates for the attractor which are associated with the simple
spatial patterns in chaos;
(5) and using these coordinates to calculate reduced systems of equations which have
the same routes to chaos and qualitatively — and quantitatively — similar strange
-attractors.

This study, as with most other such studies [1,2,3,4,5], has relied heavily on numerc.
computations — even with the rich structure of completely integrable systems. However,
because of this rich structure we have been able to use numerical experimentation to gain
insight into the analytical behavior of the system; this has not generally been true in the
pde literature (see, for example 6,7,8,9]).

For certain parameter regimes of the sine-Gordon and the nonlinear Schrédinger equa-
tions we have made large gains in the first four areas and are now concentrating on the fifth.
From numerical experiments [10] it is clear that soliton waveforms are natural candidates.
for the coordinates of the attractor and that only a very small number of these modes are’
sufficient. The soliton perturbation theory of the 1970’s [11,12,13] is inadequate to
dress this calculation of reduced systems since this perturbation theory has great difficu..
in handling the transitions between the various spectral coordinates (kink, breather, and
radiation).

Instead we are exploiting the rich geometric structure in phase space of these integrable
Hamiltonian systems. The geometry of this infinite dimensional phase space — with its
separatices and homoclinic orbits — enables us to identify precisely the sources of chaos, to
determine the number of nonlinear modes required, and to identify the transitions between
the various nonlinear modes [14,13]. Thus, nearby integrability provides sufficient control
to vield very precise and detailed information about the structure of the chaotic attractors
— much more detailed information than can be anticipated for general pdes.

Of course, the final goal of this lengthy study is to able to study chaos in more general
systems in one and more space dimensions. For example, our analytical and numerical
results on homoclinic orbits should be applicable to a large class of systems where this
seems to be the oric'n of the chaos. And our work on natural coordinates for the attractor
(i.e., global and locul bases in chaos) should be applicable in systems where the localized
solutions are not known analytically. At present we are using what is known about chaos
in more general systems simply as a guide to the areas we should be concentrating on. In
the near future we expect to actually apply dur results to some of these systems where we
will have to rely almost totally on numerical computations, techniques, and results.
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Let me be specific on our results to date in the following areas:
(a) sample numerical results,
(b) data analysis,
(¢) homoclinic orbits as sources of chaos,
(d) geometry of the integrable sine-gordon equation,
(e) reduced system of odes,
(f) similarity between the chaos in the full and reduced systems, and
(g) an analytic study of these homoclinic orbits.
We have been studying the driven, damped sine-Gordon equation with periodic bound-
ary conditions:

Uzz — Uge = Sinu + € (aue — [ coswt) (1)
u(z + L,t) = u(z,t), u(z,t =0)=uin(z), uez,t=0)=v5(z). (1a)

Here € is a small positive parameter, a > 0 measures the strength of dissipation.
the amplitude of the sinusoidal driver and w is its frequency, and L is the spatial pe:..
The initial data uis(z) is periodic with period L and has one maximum in this period.
The initial data via(z) is usually 0. (In almost all the experiments we have studied to
date the initial data is symmetric and so the waveform remains symmetric for all time.)
In Josephson junctions, which consists of two superconducting metal layers scparated
by a thin insulating oxide layer, which is small enough to permit quantum-mechanical
tunnelling of electrons, different perturbations are generally used [16,17,18]] and so we are
now studying

Urr — Uge = SINU + € (Que — Puzze — [ coswt + 7).

This adds a dc driver energy source and a dissipation which depends on the wavcnumuer.

(a) Sample Numerical Results. We have been studying eq. (1) numerically as described
in (10,19]. By varying €, a, ', w, and L we have found several robust attractors with
distinct routes to chaos (sce also (5,20]). The parameter values we are concentrating on
are L =12, ea = 0.04, w = 0.87, and we use the amplitude of the sinusoidal driver as
the stress parameter ( 0.0 < e[’ < 0.15). Our route to chaos is (see Fig. 1 for plots of these
regions):
el £0.050 —
spatially flat — temporally locked to the driver (Fig. 1a);
0.050 < eI’ £0.058 —
spatially one excitation — temporally locked to the driver (Figs. 1b and 1c);
e[ =~ 0.058 —
spatially one excitation - quasiperiodic in time (Fig. 1d);
el ~ 0.0585 —
spatially one excitation - temporally chaotic (this is a very small region which may
simply be a result of our numerical code — see Fig. le), the correspondmg cnergy of
the solution as a function of time is shown in Fig. 1f;
0.059 < I £0.073 —
spatially flat - temporally locked to the driver (Fig. 1g), there seem to bé some very
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small windows of one spatial excitation and quasi-periodicity in time which are not
shown;

0073 e —
spatially one excitation — temporally chaotic (Fig. 1h).

Numerically the spatial state seems to consist of a chaotic visiting of thrce states—a
breather localized in the center, a breather localized in the wings, and a flat state. In addi-
tion, the waveform is low amplitude (~2) and seems to consist of two nonlinear modes—a
breather and m = 0 radiation, and m =1 and m =0 radiation (i.e., cos2rmz/L ). We
emphasize that this chaotic motion occurs for eI’ = 0.07, a value at which the system is
still near the integrable sine-Gordon equation.

This parameter region has been chosen because the chaos is very simple and the
reduced system of equations does a good job of explaining our results. The details will be
discussed below and unless otherwise noted all discussion and plots will correspond to this
parameter region.

There are two other parameter regions that are very important. The first is the same
as the above except that L = 24. The route to chaos is similar but the chaos itself is
more complicated [10]. That is, there is a chaotic bouncing between one spatial excitation
and two spatial excitations per period. In addition, if symmetry is not 1mposed on the pde
then there is a translational instability in the waveform.

In the other parameter regime there is a very unusual period-doubling route to chaos.
This is where L = 80, eax = 0.004, and w = 0.98. The route to chaos (as I' increases)
goes from spatially flat to spatially one excitation and from periodic to quasiperiodic in
time [21]. However in this quasiperiodicity there is a period doubling into chaos!. That
is, when we do a Poincare map to factor out the phase of the driver then we see a perind
doubling into chaos. (First there is just one point, corresponding to the periodic
Then there is a closed curve, corresponding to the quasi-periodic orbit. Then this clo.
curve goes unstable and becomes a closed curve which crosses itself, etc.) Then, as above,
as T' is increased further only the flat wave remains stable, and finally chaos reappears.

It is our belief that all three parameter regimes arise from the same cause — namely
homoclinic orbits. As will be described below we have verified this (to our satisfaction) in
the first region; we see no reason to doubt it in the second region, and it seems reasonable
in the third region but much work remains to be done.

(b) Data Analysis. In order to establish the structure of these attractors we have used
standard diagnostics to analyze our numerical data. In particular the temporal behavior
is analyzed with standard diagnostics from dynamical systems theory, such as time series,
phase planes, Poincare sections, temporal power spectra, leading Lyapunov exponents, and
correlation dimensions. All temporal diagnostics are consistent with the above description
of the attractors.

In addition we are studying the local behavior of the orthonormal basis which is used
to construct the Lyapunov exponents. To explain this let us begin with how Lyapunov
exponents are calculated both analytically and numerically [22

Let our system, 7 = f(z,t) be N dimensional and consider a trajectory {Z(¢)|t >
0} where #(0) = #;. Along with this trajectory consider the evolution of the volume
consisting of all the initial conditions that lie within an infinitesimal ball of radius e
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centered at Zp . The evolution of this ball is an ellipsoid (since its evolution is determined
by the linear part of the flow) with principal axes of length ¢;(t) where ¢(0) = ¢ for
1 <i < N. Then the Lyapunov exponents, \;, are defined by

Ai = lim lim &ilt)
t—coe—0 ¢
where \; 2 A2 2 ...

Numerically, however, we pick a time At and integrate an orthonormal basis (which
represents this ball) forward in time by At using the linearized equations. We then re-
orthonormalize by using a Gram-Schmidt procedure to find the lengths of these principal
axes and repeat this procedure for K time intervals. If we let the length of the i*h
principal axis at the end of the k'® time interval be §z'(k) (where e =1) then

K
. 1 i \
Ai = Kli»mi:o AL kE-l].nts:r (k) (3a

Instead of studying the Lyapunov exponent we study

K ‘
) Inézi(k) (3b)

k=kq

directly as a function of (k—k¢)At. (We call these the local Lyapunov exponents — ILe’s.}
The reason for our choice can be seen in Figs. 2. In Fig. 2a we show the convergen:
(Inéz!(k))/At as a function of kAt. There is one positive Lyapunov exponent, two zero
Lyapunov exponents (if symmetry is used in the code then there is only one), and the
other five Lyapunov exponents (that were calculated) have the same negative value. In
Fig. 2b we plot Y ,Inéz!(k) as a function of (k — k)At where the quasiperiodic-like
character of the chaos can be easily seen. Note that this repeated signature — of length
~ 50 corresponds to the random fluctuations of the breather-like waveform (as in Fig.
1h) as the waveform dies out and then recovers either as before or shifted by L/2. Thus
the average length of these signatures gives the time for this recovery — although it does
not indicate whether the new breather-like waveform is shifted with respect to the old or
not. In addition, the occasional huge jumps in this local Lyapunov exponent are caused
by the flat waveform persisting for a much longer period of time. In the ode systems this
corresponds to the trajectory circling around an unstable fixed point for a few rotations
before zooming off again. In Fig. 2c we again plot }_, Inéz!(k) as a function of (k—ko)At
but for the 6 dimen<ional sine-Gordon ode. At least to the naked eye these curves are very
similar — even to having the same huge jumps.

There are many advantages to studying these local Lyapunov exponents:
1) These ILe’s are functions of time and so can exhibit much interesting behavior over

the whole trajectory as opposed to the Lyapunov exponents which are a time average

over the whole trajectory.




2) These lLe’s are ordered so that the leading one or ones show the exponential rate of
separation which is the characteristic of chaos. In fact for the sine-Gordon pde and for
our particular parameter regime A; >0, A =A3=0,and My =As=...=)3 <0
(which is all the Lyapunov exponents we have calculated since each one takes as long
to solve as the original pde). The first lLe (shown in Fig. 2b) and the second and
third ones have the same characteristic signature and look quite similar (although
their slopes are quite different). The remaining lLe’s all look similar to the lLe’s for
non-chaotic waveforms.

3) These ILe’s give an overall picture of the trajectory as opposed, for example, to plots
of the j*P component of the trajectory.

4) We can study statistical properties of these lLe’s and so compare chaotic trajecto-
ries between the sine-Gordon pde, the nonlinear Schrodinger pde, the sine-Gordon
odes, and the nonlinear Schrédinger odes. This includes studying correlations, power
spectra, etc. in order to determine quantitative measures of the differeaces between
different trajectories.

The spatial behavior is analyzed with the inverse scattering transform which measures
quantitatively both the soliton and radiation nonlinear modes that comprise the attractor
at a given time [19]. With L = 12 we find that the number of appreciably excited nonlin-
ear modes is 2 at the onset of chaos and increases slowly with increasing e[’ . The chaotic
attractor itself can be described by these modes undergoing collision, annihilation, nucle-
ation, and energy transfer between coherent (localized) states and radiation (extended)
states. These transitions involve what we call the “crossing of homoclinic states” and are
shown in Figs. 3. Notice how the spectrum (the wiggly line) oscillates between a cross (for
example at ¢t = 25,036 ) and a gap (for example at ¢t = 25,048). The homoclinic orbit
corresponds to the spectral configuration between these two times where the gap closes
and the two pieces of spectrum just touch. As time evolves these two pieces of spectr
merge into one and push the spectrum out (approximately) perpendicular to the ci.
indicated by the dots (this is discussed in detaii in [27]). The gap configuration always
corresponds to higher energy and to a more focused waveform (i.e., more localized).

(c) Homoclinic Orbits as Sources of Chaos. Often the origin of chaos, and of its
associated sensitivity, can be traced to homoclinic orbits of a nearby integrable system.
This source of chaos is well understood in odes. For example, in the damped, driven
pendulum the unperturbed, infinite period separatrix is a homoclinic orbit. The motion
of the pendulum near its inverted position is extremely sensitive to the sinusoidal driver.
Thus, small perturbations can cause the pendulum to either return to its original potential
well or to be kicked into the next potential well. Random and chaotic behavior results
as a consequence of this sensitivity [23]. In the pde case detailed geometric information
about infinite dimensional phase space is generally not available. However, for the special
integrable pdes of soliton theory such geometric information is becoming available. For
the Korteweg-de Vries equation under periodic boundary conditions a rather complete
geometric theory exists [24]. It is interesting to note that this periodic KdV system has no
homoclinic orbits, no instabilities, and no separatices—and requires very strong stresses to
become chaotic. On the other hand the periodic sine-Gordon equation possesses a much
richer geometric structure [25] than KdV. The sine-Gordon equation has many homoclinic
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states throughout its phase space whichprovide a source of chaos when the system is driven;
and, indeed, the chaotic structure is very rich.

Homoclinic orbits can occur whenever the spectrum has a critical point [15]. That is,
the spectrum is all the values of A where an analytical function called the discriminant,
A(A), isreal and =2 < A < +2. A critical point A, is wherever A()\.) = +2 and
A'(Ae) = 0. If a critical point satisfies R(A:) > 0 and ¥(\.) > 0 then it can have
exponential growth [15]. We have explicitly calculated the homoclinic orbit which seems
to be the source of the chaos. It is shown in Fig. 4a and a representative plot of the
chaotic trajectory from Fig. 1h is shown in Fig. 4b. As a more accurate comparison we
plot u(z =0,¢) for both the homoclinic orbit and the chaotic trajectory in Fig. 4c.

Thus, the nonlinear transform has established that unperturbed homoclinic states,
which are potential sources of sensitivity, are indeed present. We emphasize that this
explicit and precise identification of the homoclinic states and their crossings is only pos-
sible because we are in a near integrable situation and have a precise tool (the non"
transform) for their detection.

(d) Geometry of the Integrable Sine-Gordon Equation This theoretical work [14,15]
may be summarized geometrically as an extension of the 2-dimensional phase portrait for
the pendulum into the infinite dimensional phase space of the integrable periodic sine-
Gordon equation, and physically as an extension of the classical description of a long
wavelength, linear instability of trivial solutions to both a linear and a global description of
similar instabilities for arbitrary N-phase solutions. It is this basic theory that has enabled
us to detect—with the nonlinear spectral measuring device—the presence of homoclir’
crossings in the numerical data for the chaotic attractor.

The theoretical understanding we have obtained about the Benjamin-Feir unstable
modes has given an analytical underpinning to the numerical calculations of the presence
of homoclinic orbits in the chaotic waveforms. Additionally we have been able to explicitly
write down the homoclinic orbit which seems to be the cause of the chaos in the parameter
region with L = 12 as described above. (This solution is no easy feat since it involves the
Jacobi eta, theta, and zeta functions!)

(e) Reduced System of Odes. Since the geometry of the sine-Gordon phase space is
quite complicated [14,15], we have constructed reduced systems of odes to approximate
the infinite dimensional pde using both Fourier modes and Lumley modes [26]. (Lumley
modes are orthogonal, coherent modes in chaos which are “best” in some least-squares
sense). Preliminary work has begun by Forest, McLaughlin, and Sinha on expanding the
waveform in a nonlinear basis (using the geometry of the sine-Gordon phase space). Early
results are promising. However our work will continue to focus on linear bases.

Three reduced systems have been studied in great detail. The first is a reduced system
of ordinary differential equations directly taken irom the sine-Gordon pde. That is, we

assume
x

u(z,t) = Z (t)er(z) . (4)

k=0
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and truncate this linear combination to solve the 2N** order sine-Gordon ode system

N-1
dr = ar(e},ex) — <sin(z agek),ek> — caay + el'sinwt (1, ;) (5)

k=0

for k=0,1,2,...,N—1. There are two possibilities here: 1) leave the problem as it is and
calculate the inner product containing the sine term at each time step; or 2) expand the
sine term into the first two or three terms of its Taylor series so that this inner product can
be calculated once and for all. The second approach has the virtue of saving a significant
amount of computer time. The first approach has the advantage of being more accurate
and allowing any number of basis functions to see if some sort of convergence is obtained
as N — oo. We are using both approaches. We are also using two different choices for
the ei’s, namely, cosine modes and Lumley modes.
The second is to derive a perturbed nonlinear Schrédinger envelope equation from e

(1). Letting

w=1-e, ea=23a € =8Vewal, I =+v2&L,

, 6
X =V2e0z, T=eit, u(z,t)=2Ved [B(X,T)exp™ + c.c.] + O(e) (©)

and keeping the first two terms in the Taylor series expansion for sinu, then the slowly
varying envelope B(X,T) satisfies

-iBr+ Bxx +(|B* -1)B =iaB - L. (D

We have achieved two things by this reduction. First, we have preserved the perturc
integrable structure since the unperturbed pde of eq. (7) (i.e., @ =I' = 0) is the integrable
nonlinear Schrédinger equation. Second, we have factored out the frequency of the driver,
w. Thus, periodic solutions of the sine-Gordon equation correspond to fixed points of
the nonlinear Schrédinger equation, quasiperiodic solutions of the sine-Gordon equation
correspond to periodic solutions, which are incommensurate with w, of the nonlirear
Schrédinger equation, and chaotic solutions of the sine-Gordon equation correspond to
chaotic solutions of the nonlinear Schrédinger equation.

We now make a further approximation and truncation based on the numerically ob-
served low number of nonlinear modes, namely

N-1
B(X,T) = Z Ax(t)cos kX (8)
k=0
(where the A’s are complex). We then obtain an explicit system of ordinary differential

equations in A; using Mathematica. At present we have used N < 5.
In particular, tor N =2 we obtain the 4**—order system of odes

—icr + ([c[* + %(612 ~ e+ %(cé + &b)b = iGgc - T,
B , (9)
~ibr + (Jcf* + :::-lbl2 ~ (1 +E*])b + (cb + &b)c = iab
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which is, in fact, an integrable Hamiltonian system [27]. Its constants of the motion are

I'= loff + 3180%,
1 3 1. - 1 - (10)
H = Slef* + [b*)el® + /8" - 51+ k)b - [c|? + Z(bzéz +5%c?).

The fixed points of the ode correspond qualitatively to the periodic solutions of the pde
before the onset of chaos; and, in chaos, the three unstable fixed points of the ode whick
seem to be the basis for the attractor correspond in the pde to a breather localized in the
center, a breather localized in the wings, and a flat state (see Fig. 1h). In addition, the
homoclinic crossings of the pde correspond quite accurately to the zeroes of

h=H—%P—D. | (11)

Although this ode truncation cannot be expected to yield quantitative a.greemeni:
with the pde it does model most of the apparent features of the route into chaos and
the behavior in chaos of the pde. This is somewhat surprising since the approximations
necessary to obtain eq. (7) require replacing sinu by u—u3/6 (even though maz{u} > 2)
and neglecting the next term in the expansion in €, namely O(/¢).

(f) Similarity Between the Chaos in the Full and Reduced Systems. To verify that
the chaos in the full sine-Gordon pde and in various lower order truncations are similar we
need to show that the strange attractor is similar in some sense. As discussed abc
method to determine the similarity between two chaotic trajectories is to compare

local Lyapunov exponents. This comparison is shown in Figs. 2b and 2c. To make ...
comparison more qualitative we have taken the power spectra of these two figures and plot
them in Figs. 5. We are presently working with Mark Berliner of the Statistics Dcpartment
in trying to determine how precisely we can say that two chaotic trajectories are “similar”.
This includes studying correlations, power spectra, etc. in order to determine quantitative
measures of the differences between different trajectors. Our main emphasis is using the
ILe’s since these give a basis free view of the strange attractor. At present we can say
that certain trajectories are “closer” than others but we still need to develop a technique
for calculating error bounds so that we can show that two trajectories, corresponding to
the same parameters but different initial conditions, are “very similar”. In this way we
could check whether, for example, chaotic trajectories in the sine-Gordon odes converge to
chaotic trajectories in the sine-Gordon pde as we increase their dimension. (They certainly
seem to be “close”.) In this way we could show (at least numerically) that the geometry
underlying the sine-Gordon odes is the cause of the chaos in the sine-Gordon pde.

As a second measure of the similarities between the various systems we are using
the bifurcation sequences of the various ode truncations which we are calculating using
a public domain bifurcation package AUTO [28] as well as a bifurcation code written by
Xiong to provide backup support for AUTO for verification, to use in place of AUTO when
AUTO seems not to be working correctly, and to study in more detail the structure of this
bifurcation sequence. In Figs. 6a and 6b we compare the bifurcation sequence for the
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6'" —order nonlinear Scorddinger ode and the 6'"—order sine-Gordon ode respectively.
We cannot follow the Hopf bifurcation in the sine-Gordon ode since it corresponds to a
quasi-periodic orbit, but otherwise the two sequences are very similar. (The norms (the
vertical axes) are not the same in both plots and so the curves look different — but the
critical points all occur at approximately the same values of €I’). In particular, as the
order of the sine-Gordon ode increases the critical points seem to approach the boundaries
of the sine-Gordon pde. Even for the 6'"—order ode the accuracy is to within ~ 10% for
all the critical points shown. In particular, whereas the 4'®—order ode has a subcritical
Hopf bifurcation (and so does the 4'®—order nls ode) all higher order systems have a
supercritical Hopf bifurcation which corresponds to the quasi-periodicity in the pde at
e[’ ~ 0.058. Also, the extent (in I') of these quasi-periodic solution agrees very well with
the range found numerically in the pde. Thus we are fully confident that the geometry
underlying the ode systems can explain the transition to chaos in the pde.

(g) An analytic study of these homoclinic orbits. Dave McLaughlin and Steve
Wiggins are working with Chuyu Xiong and me in attempting to use singular perturbation
theory to understand the nature of the homoclinic orbits which are the sources of the chaos.
This work is still preliminary but Xiong and I are developing better numerical techniques to
study periodic orbits which are very close to the homoclinic orbit. (We have not been able
to develop any techniques to solve for the homoclinic orbit directly since the fixed point
corresponding to this homoclinic orbit is 2-dimensionally unstable.) With our numerical
results they are able to determine how to do their perturbation expansions.

Publications

Two papers have arisen so far from this study. In the first [29] we did an analytical
and numerical perturbation analysis on the nonlinear Schrodinger equation for ea = 0.04,
L =12 and L = 24, and for various w and I'. This entailed calculating the waveform in a
perturbation expansion and using this in stability calculations. This allowed us to validate
the solutions we were seeing numerically in the pde and to obtain our first bifurcation
sequence (similar to Figs. 6) for comparison. It alse-allowed us to understand how the
bifurcation sequence changes as a and w vary. However this paper was concerned strictly
with the physical plane and never made use of the spectral transformation underlying the
sine-Gordon pde (i.e., the underlying geometry of the pde).

In the second paper [27] the first attempt was made to study the geometry of the
pde explicitly. In this study we attempted to understand the transition to chaos for
the parameter regime L = 12. ea = 0.04, and w = 0.87 (although the analysis is
certainly applicable for other rogimes). This was done by studying the 4*h —order nonlinear
- Schrédinger equation, eq. 9) ode both numerically and analytically. The unperturbed
system is completely intcgrable and so has a well-understood geometric structure. We
were able to show that the stable fixed points of the perturbed system corresponded to
the flat and periodic solutions of the sine-Gordon pde. We were also able to show that
the chaos in the ode arose from the fixed points corresponding to these periodic solutions
becoming unstable. Finally we could identify a homoclinic orbit in the sine-Gordon pde
with a function of the two constants of motion in the ode system and thus construct the
homoclinic orbit we believed to be the source of the chaos explicitly for the ode. We could
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then show that this ode homoclinic orbit was crossed repeatedly in chaos. Of course, this
study was carried out in a very low dimensional ode and so it was certainly not obvious
that the chaos in the pde could be understood by this simplified model (and we made that
point in the paper).

At present we are writing up our results in comparing the sine-Gordon pde with all
of the various truncations discussed above. This will leave no doubt that, in fact, the
geometry of the low dimensional ode truncations (as long as they are at least 6" —order)
is sufficient to explain the chaos in the pde by showing the convergence to the limit of
the sine-Gordon odes to the sine-Gordon pde [30]. Additionally it will demonstrate new
methods for showing the “closeness” between various strange attractors which will allow
us to quickly determine the similarity between the chaotic responses of various systems.

Finally we are writing up our work on the explicit calculation of the homoclinic orbit
which seems to be the cause of the chaos in the pde {31]. This will include a discussion of the
various solutions that arise from one and two Backlund transformations of the McCumber
solution (i.e., spatially flat) and their stability. Both breather-like (i.e., symmetric) and
kink-like (i.e., asymmetric) waveforms will be studied.

Invited Talks

Invited talks on these subjects were given at:

o Conference on Nonlinear Transport Properties in Condensed Matter Physics, July,
1989, at the Technical University of Denmark.

e IMACS International Conference on Computational Physics, June 1990, at the Uni-
versity of Colorado.
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Figure Captions

Numerically computed solutions of the perturbed sine-Gordon equation for L = 12,
ea = 0.04, w = 0.87 and for various values of ¢I'. (a) ' =0.48, (b) I' = 0.50, (c)
e[ =0.57, (d) eI’ =0.58, (e) eI’ = 0.586, (f) the energy as a function of time for the
waveform shown in (e) to make the evolution clearer (also shown are the !, averages
in z of u and u; as a function of time), (g) e[ =0.72, and (h) [ = 0.75.

Plots of the leading Lyapunov exponents for the run with parameters L =12, ea =
0.04, eI' = 0.075, and w = 0.87. (a) The Lyapunov exponents are the limiting
values of these curves (i.e., as t — o0 ). (b) The local Lyapunov exponent for the the
sine-Gordon pde. (c) The local Lyapunov exponent for the 6 dimensional sine-Gordon
ode.

Spectra for the run with parameters L =12, eax = 0.04, ¢I' =0.075, and w = 0.87.
" Some crosses and gapes are noted in the plots. (a) The sine-Gordon spectra at various
times. (b) The plot of u(z,t) as a function of ¢ corresponding to the times of the
spectra.

(a) The homoclinic orbit which appears to be the source of the chaos for the run
shown in Fig. 1h. (b) An enlarged view of the chaotic trajectory to the same scale as
(a). (c) A comparison of the homoclinic orbit with the chaotic trajectory by plotting
u(z = 0,t) for each (the solid line is the homoclinic orbit and the dashed line is the
chaotic trajectory).

Power spectra of the leading local Lyapunov exponent corresponding to the same runs
as in Fig. 2. (a) The pde; (b) the ode.

Bifurcation sequence for the 6'"—order nonlinear Schrédinger ode (a) and the
6'" —order sine-Gordon ode (b). (The norms, i.e., the vertical axes, are not the sar
in both plots and so the curves look different — but the critical points all occur a.
approximately the same values of ¢['. Also the horizontal axes are not to the same
scale)

The time evolution (a) and the corresponding spectrum (b) for L = 80, ¢a = 0.004,
e[' =0.0043, and w = 0.87.

(a) The time evolution of a solution to the exact nonlinear Schrodinger pde using 24
points. (b) The time evolution of the spectrum during the time that the solution begins
to move. At each time the top two plots show the waveform as its magnitude, phase,
real part, and imaginary part. The main plot shows the spectrum. The spectrum
is the solid lines along with the horizontal axis (G’ means the spectrum is in a gap
configuration, 'C’ means it is in a cross configuration, and 'S’ means the spectrum has
split asymmetrically). The small crosses are where the discriminant is real but less
than —2 and the small pluses are where the discriminant is real but greather than
+2. The bottom plot shows the values of the discriminant on the real axis.
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