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SUMMARY

This is a final report on the research project supported by the Naval Rescarch Laboratory
under Grant N00014-87-K-2018, entitled Development of Improved Modeling and Analysis
Techniques for Dynamics of Shell Structures, which covered the period of 09 June 1987
to 08 June 1990. The objectives of the research have been: 1) to develop modeling and
computational techniques suitable for the dynamic analysis of naval shell structures, and
2) to investigate, implement and evaluate tools for concurrent processing of very large
structural engineering problems on the Connection Machine.

I. Research Accomplishments
Task 1: Shell Structural Modeling Techniques

This task consists of two related efforts: 1) improvement of the ANS shell elements (Refer-
ences 1 through 4) to beiter capture the coupling effects of mambrane-bending, membrane-
transverse shear, and bending-transverse shear phenomena; 2) modeling techniques for
improving the modes and mode shapes of ‘dry’ shell structures, particularly for the inter-
mediate frequency ranges.

As a results of the first effort, Aashell clement software module was implemented and
delivered to NRL and its theoretical aspects was documented in References 13 and 14.
Specifically, the new version of the ANS shell elements pass the patch test and considerably
streamlined, resulting in substantial computational efficieacy.

Regarding the modeling of shell structures by the finite elements for accurate intermediate-
frequency computations, our initial effort began with tailoring of the mass matrices as
documented in Reference 7. Even though such mass-matrix tailoring gave rise to a signifi-
cant improvement of low-frequency computations, it fell short of yiclding any appreciable
improvement on intermediate to high-frequency computations. This has led us to tailor
not only the mass matrices but also a component-by-component tailoting of stiffucss matii-
ces. For example, the tailored stiffness matrix consists of the tailored membrane, tailored
bending and tailored transverse shear stiffness matrices. The synthesis to realize such a
tailoring was facilitated by the use of the symbolic analysis technique devcloped previously
in References 8 through 11.




The so-called frequency-window tailoring of finite element models 2s anplied to burs and
beams (Reference 12) demonstrates that it can accurately obtain very high-frequency com-
ponents with relatively coarse finite element grids, about a factor of five to ten times larger
element size that has been possible in conventional finite eleinent modeling. This improve-
ment, if proved to be the case for general shells, can have a significant impact on the finite
element modeling capability of structural acoustics problems in the future.

Task 2: Parallel Computations on the Connection Machine

This task has focused on the use of the Connection Machine as applied to the explicit tran-
sient analysis of ‘dry’ shell structures. Our experience has been documented in References
5 and 6. In addition, a framebuffer generated visualization of the transient analysis of a
generic submarine structure was produced as a video tape and delivered to the NRL tech-
nical monitor. Specifically, our effort concentrated on the development of several modules
using the C* language provided by the Thinking Machine Corporation. The modules de-
veloped so far include: decomposer which takes as input an arbitrary mesh description, and
produces a set of finite element data structures that can be loaded within one generic CM2
chip; mapper that assigns each of the data structures produced by the decomposer to a well
defined chip; residual evaluator that controls the direct calculation of element residuals.
where “direct” means that no element stiffness matrices are evaluated; and element library
that includes a 3D 2-node truss, a 3D 2-node Bernouilli beam, a 3D 2-node Timoshenko
beam, a 3D 8-node brick, a 2D 4-node quadrilateral and a 4-node ANS shell element. These
modules, when interfaced with visualization kernel that was developed under AFOSR and
NSF grants greatly facilitates the understanding of the computed results.

Our experience so far indicates that this highly parallel processor can outperform vector
supercomputers such as the CRAY family on explicit computations but not on implicit
ones. Based on the observations obtained during the present study, the following is a
summary of the key conclusions:

(1) The current CM2 processor memory size of 64 Kbits penalizes high order elements
in the sense that only small VP (virtual processor) ratios can be achieved. Thus the
current configuration favors simpler elements. (This restriction should disappear in
future CM2 models which will have 1Mbit of memory per processor.)

(2) Mesh irregularities slow down the computation speed in various ways.
(3) The Data Vault is very effective at reducing I/O time.

(4) The Virtual Processor concept outperforms substructuring.

o
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ABSTRACT

A frequency-window tailoring technique is proposed for improved finite clement modeling
of structures for frequencies and their mode shapes in the acoustic range. The technique
is based on the tailoring of three element attributes: frequency-tailored mass matrix, en-
hancement of stiffness matrix by a weighted spectral decomposition of membrane, bending
and transverse shear energy for a desired frequency range (window), and a discrete Fourier
synthesis of the resulting elemental eigenproblem models. The proposed technique has been
applied to the vibration problems of bars and beams, which illustrate the cffectiveness of
the technique over conventional finite element modeling techniques.




1.0 Introduction

The response accuracy of finite element methods applied to linear structural dynamics
problems is a function of both the finite element spatial discretization and the time domain
integration technique applied to the coupled ordinary differential equations of the discrete
model. Traditional techniques in improving the spatial discretization obtained via the
finite element method are dominated by the so-called h-refinements and p-refinements.

In the first approach, the clement mathematical formulation is held fixes while the number
of elements (and number of global variables) is increased to obtain the desired spatial
accuracy. The p-refinement, in contrast, holds the number of clements constant while
increasing the order of the displacement field interpolations within the element. This
also leads to an increase in the number of variables, but alters the fundamental element
behavior. For example, one might refine a simple one-element truss model (i.e. spring
element) by introducing a mid-point node. With a h-refinement, we would change the
model from one linear-displacement element to two linear elements which share the mid-
point node. A p-refinement, on the other hand, would exploit the additional node to replace
the linear element with a single three-node bar element employing quadratic interpolations
of the internal displacement field.

A common limiting factor for both of these refinements is that, once the grid sizes and ap-
proximate interpolation functions are decided upon, the accuracy that can accrue from the
resulting discrete model is fixed. Specifically, while the convergence of the low frequencies
and their mode shapes is in general assured as the grids and/or interpolation order are
increasad, there has been lack of a systematic convergence measurement for frequencies
and their mode shapes ranging from intermediate to acoustics components. Consequently,
this lack of high-frequency convergence assessment has led to the belief that it is hopeless
to capture with high accuracy an acoustic range of frequencies and their mode shapes by
the finite element approach within feasible computational means.

The development of consistent mass discretization [1], however, has motivated 2 number
of investigators to study the wave dispersion characteristics of various mass modeling
procedures for finite element analysis [2-11]. These efforts hhave included assessments of
mass lumping for both constant-strain and higher-order clements, and point out clearly how
mass modeling, independent of mesh size and displacement interpolation, can significantly
affect model accuracy. Park and Jensen [12] use wave dispersion analysis to provide a
systematic relatiionship between lumped and consistent mass discretizations, and show
how averaging or tailoring the mass lumping can significantly improve res*-onse accuracy
at specific higher frequencies. This approach is not adequate, howcver, for obtaining
highly accurate acoustic frequency ranges, and furthermore leads to non diagonal mass
matrices, which are undesirable for simulation via cxplicit time integration methods on
massively-parallel computers. Thus, there remains a need for finite clement approximations
which accurately capture acoustic components while ideally maintaining a diagonal mass
cocfficient for computational considerations.
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The present paper can be viewed as an initial attempt to fill this void so that a method that
can eventually lead to adequate finite element modeling of the acoustic range frequencies
and their mode shapes. To this end, we retain the two conventional model! improvement
techniques, viz., the h and p-refinements, but not to their extreme. We introduce a third
component, which first breaks down the elemental attributes, parameterizes those decom-
posed attributes, and then recombines them based on a discrete Fourier synthesis so that
the discrete characteristic dispersion curves match, for a specified range of frequencies, as
closely as possible to those of the continuum case, hence the name frequency-window tai-
loring technique. The elemental attributes usually consist of mass matrices of linear and
quadratic interpolations, stiffness matrices of membrane, bending and transverse shear
components of constant and linear strain interpolations. It will be subsequently shown
that the present frequency-window tailoring technique yields dramatically improved vibra-
tion analysis performance beyond either of the traditional methods for the same mesh size,
thus providing an adequate accuracy with an affordable mesh refinement. The rest of the
paper is ogranized as follows.

Section 2 briefly reviews the discrete Fourier analysis technique [13,14] as applied to two-
noded and three-noded bar elements. The discrete dispersion curves are then compared
with that of the continuum casc. The establishment of this comparison forms the basis
for the present element synthesis or frequency-window tailoring technique. In addition,
a similar discrete Fourier analysis of a Timoshenko beam and its correlation with the
continuum case is presented. Thus, discretization accuracy of not only the membrane but
also the bending and transverse shear phenomena can be assessed in a quantitive manner.
Of particular interest from these analyses is the appearance of a pronounced jump in the
frequency for the case of the quadratic bar element, and also for the case of the quadratic
Timoshenko beam, although not as much pronounced. These jumps occur at tie mode
shape that corresponds to k¢ = 7/2 where k is the wave number and £ is the elemental
length, which is clearly at the admissible wave number range.

A parameterized tailoring of the bar element discretization is described in Section 3. For
the case of the bar, a diagonal mass is first constructed as a linear combination of the linear
and quadratic elements. A parameterized stiffness matrix is then constructed in a similar
manner. These two parameters are then determined by requiring, for a specified range of
frequencies, the discrete frequencies as close as possible to those of the continuum case.
Encouraged by the success of the bar synthesis, a similar synthesis technique is applied to
beam elements. This is carried out by introducing a three-parameter optimization process,
viz., the mass parameter, the bending parameter and the transverse shear parameter.
These results are reported in Section 4. Finally, discussions and some concluding remarks
are offered in Section 5.




2.0 Discrete Fourier Analysis in Vibration of Finite Elements

The basic analysis tool that we are about to employ throughout the paper is the discrete
Fourier method [12-14]. There are two important properties of the discrete Fourier method
that are attractive for the present purposes: symbolic representation of the element at-
tributes and the direct comparison of the discrete dispersion curves witl: the corresponding
continuum ones. We now illustrate the method, for the sake of clarity and simplicity, by
way of one-dimensional bar problems.

2.1 Fourier Analysis of Bar Elements

Consider the governing partial differential equation for a uniform elastic bar given by

0%u O%u
rom =Bz (1)

where p is the mass density, E is Young's modulus, u is the axial displacement variable,
and ¢ and z are time and the axial position along the bar, respectively. The Fourier
transformation of (1) can be performed by introducing the following form of u:

o = aei(wt—kz) . (2)

which, when substituted into (1), yields its characteristic equation as

(£ =qr ©

c

where [ is a characteristic length, k is the wave number, c is the continuum wave speed
equal to /E/p, and (%) and (k!) are the normalized (nondimensional) frequency and wave
number, respectively. The characteristic equation (3) implies that, for the continuum case,
the normalized frequency wl/c is linearly proportional to the nondimensional wave number

(kD).

Let us now consider a two-noded linear bar element. Assembling a uniform mesh of two
bar elements of length ! (see Figure 1), we obtain the discrete equation at the interior node
m, as

. EA
pAlum = "T" (um—l - 2upy + um+l) (4)

The discrete solution analogous to (2) is of the form
ui (t) = ,&mei(wt—k(z;—xm)) (5)
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which, when applied to (4), yields the following discrete characteristic equation:
wl\? =\ 2
—) =) (6)

where the discrete wave number % is defined by

S 3
Z:: Sln?

, 0Lki<n (7

[ E0

Hence, comparing (6) with (3) it is observed that the effect of discretization is embodied
in the approximation of the continuum wave number k by the discrete wave number k.

In order to extend the above analysis applicable to higher-order element interpolations, we
generalize the discrete Fourier analysis as follows. Instead of representing the displacements
of adjacent nodes by (5), the Fourier expansion is assumed to hold only for alternate nodes

(see Figure 1), and so consider the two coupled difference equations at nodes m — 1 and
m:

pAl’U,m._l = "E—IA.- (um_g - Qum_1 + um)
EA (8)
pAliiy, = N (Um—1 — 2Upm + Umg1)
Substituting (5) into (8) together with the expressions
’l.im_l = -wzum_l ’iim = —wzum (9)
Uz = eZ!klum Uy = e—Zxklum_l
‘we obtain the following Fourier-transformed equation:
L(k,w)i =0 (10)
where
_ (wl)? _ 2ikl
Loy =| 270 1+ (11)
(et ) 2 ()
G={fmey Gm}" (12)

The characteristic equation is found by requiring a non-trivial sclution to (10), viz.,
det L = 0, from which two characteristic roots are found as
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(13)

The first root clearly agrees with that of the case of single interior-node equation (6),
whereas the second does not appear to be consistent with the physics of the problem. On
a closer examination, however, it can be shown that the second root corresponds nothing
but to the w-phase-shifted case of (6). This can be explained as follows.

Note that, in terms of their eigenvectors, the first root is associated with up,—; = e*luy,,

while the second with um—; = (™ )y, Therefore, the proper wave number for the
second root is

(kl),=m—kl , O0<kI< (14)

o)

so that

2 . (w—kl) 2
<“’_l) —4- (551_1_2__1> = (kl)° (15)
c/, 7

The preceding analysis in terms of two coupled difference equations enables us to properly
interprete the multiple characteristic roots associated with high-order elements. We are
now in a position to take on the discrete Fourier analysis of quadratic bar elements.

The discretization of the bar equation (1) by the quadratic elements (see Figure 2) yields
the following two coupled difference equations:

Al, _EA (16)
p—z—ﬁm =3 (—uUm—2 + 8um—1 ~ 1um + 8umys — Umy2)

where the first is for the mid-node and the second for the end node and a diagonal mass
matrix is used. The discrete Fourier-transformed operator L for the above 3-noded bar
equations and the resulting characteristic equation can be derived as:

LO(k,w) = [—2 - (&) — (1+H) )2} (17)

(1 T*__e——2ikl) ;11_ + cos42kl _1 (w_l

2
wi\* 114 cos2kl [wi 2
<) = \7 +3(1—cos2kl)=0 (18)

c




Figure 3 compares the dispersion curves obtained for the linear and quadratic elements,
as compared with that of the corresponding continuum equation (1). By invoking the
same interpretation discussed in conjunction with the double roots given by (13) for the
linear element, the upper root of the quadratic element is plotted versus the redefined wave
number w — kl. It is clear from the results that the quadratic element performs better than
its linear counterpart for an equivalent mesh size.

It is also noted, however, that the quadratic element gives rise to a discontinuity in the wave
number/frequency relation at kI = /2. That is, there is a range of frequencies the discrete
model will simply “skip” over. As this discrete “forbidden” zone occurs in the middle of
tae spectrum of discrete behavior for the element mesh, it can be of particular concern
and importance to acoustics and wave propagation analyses. Hughes [15], in studying
mass matrix formulations and their effect on low frequency convergence for course meshes,
produced numerical results consistent with the discrete Fourier analysis for quadratic bar
and beam elements.

Figure 4 illustrates how dramatic this behavior can become for the solution of transient
dynamics problems using quadratic bar elements. It shows the power spectral density of
a nodal displacement response for a random initial displacement input, using a uniform
mesh of 25 quadratic (3-node) bar elements and an implicit mid-point time integration
algorithm. The “forbidden” discrete frequency zone in the range of frequences between
1.45 and 1.75 verifies numerically the Fourier analysis results for the quadratic bar element
shown in Figure 3. Such forbidden discrete frequency zones, if they persist for quadratic
elements such as 6 and 9-node shell elements, 10-node tetrakcdral solids, and so forth, will
have a profound effect on their ability to capture accurately high-frequency responses.




2.2 Discrete Fourier Analysis of Timoshenko Beam Elements

The strong form for the transverse beam vibration problem is the following set of coupled
differential equations

w Pw 09
PAGE =04 (5— - 'a—) 19
0%a %9 ow .

where A and I are the cross-sectional area and moment of inertia, G is the shear modulus,
and w and 6 are the transverse displacement and generalized rotation, respectively. The
Fourier solution of (19) is assumed to be of the form

i = ﬁoei(wt—kz) (20)

where
a=w 6|7
- T
Ug = I_‘wo 90_1
wo = w(z =0,t =0)
6y =6(z = 0,t =0)

leads to the transformed system
L(w, k)tg =0 (22)
with the continuum Fourier matrix operator, L(w, k), given by

wh)? 4 (k12 —iM(k)

g |~
L(w,l»)—[ i (k] () 4 2Rl 4 2 (23)

where
c=vVEG/p?, A=+/GJ/E, ~= I/'Al2 (24)

and the continuum frequency equation derived from (23) is
wl\* 1, 5 Al fwl)? ] ox
(2) - o+ +2] (%) +an =0 (25)

By inspection, there are two roots of (25) for each wave number value, and thus two unique
vibration modes, the bending and the shear wave modes, which are plotted in Figure 5.
The shear wave is associated with extremely high frequencies and not of primary concern
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to the dynamist; hence we will focus on element tailoring only with respect to the bending
mode.

For the case of the two-noded linear beam approximation, a similar procedure as employed
for a linear bar element leads to the following discrete Fourier matrix operator, L(w, k),
given by

wi\2 T —
Lw k)= |~ ()" + AR)? -22,\1(1;1)\/&? (26)
i2(R)Ver  — () + (R + 3o
where k is defined by (7) and o is given by
1.1)2
oo @ -

4

Therefore, the discrete frequency relationship for the linear Timoshenko beam element is
given by

(‘%’)4 - [(A + %)(12-1)2 + %ar + (k) =0 (28)

Figure 5 shows the resultant linear element frequency/wave number relati.nships obtained
from (28), along with the corresponding continuum results from (25). Jus® as with the bar
element, the linear beam element converges quite well at low frequencies, then gradually
diverges from the continuum curve.

Similarly, for the case of a three-noded quadratic beam element, utilizing the transverse
shear and bending stiffness and the lumped mass matrices, we obtain the discrete Fourier-
transformed matrix operator L as follows

. . N2 .
LQ = Kshear + I<bcndx'ng - (L‘%’) Mlumped (29)
where
2\ 0 -\ (1 + ezikl) _,}’_1 (1 _ e'.!x'kl)
& _ 0 % _%z (1_621'“) %{ & e‘.’ikl) (30)
B Y R I v e e R !
W(l—e"z‘ ) —,1(1+c" ' ) —fy—, %—) E(‘Z—costl)
0 0 0 0
= _ |0 z 0 —%(1+e**)
I<bcndmg = 0 0 0 0 (31)
0 —+(1+4e™2H 0 I(7+ cos2ki)




I\‘;Ilumpcd = (32)

0 1/2

10 0
01 0
00 1/2 0
00 /

from which the following characteristic equation results:

I 8 l 6 4 2
ORICRNO R PRI
C [+ C [+

where
A . 1, /114 cos2kl
1 = éjy-(COS 2]»1 - 4) - (/\ + X) <—§——_>
c2 = 3(1 — cos 2kD(N? + i) + 4\2—(1 —cos2kl) + }-(5 + cos 2kl)
TR g 7

}‘2

+ E;(ﬂ + 10 cos 2k + cos® 2kl) + :;-(11 + cos 2k1)? (34)

3
c3 = é-(cos 2k1 = 1)(11 + cos 2kI)(A + %) + ‘)i\q—l(cos2 2kl — 26 cos 2kl — 47)
cs = 1 — cos 2kl)?

Figure 6 illustrates the characteristic frequency vs. wav number relation represented by
(33), along with the corresponding continuum cuarves frum (25). As with the quadratic
bar vibration, the quadratic beam displays the frequency jumping phenomenon in both its
bending and shear wave curves, although it is not as pronounced as in the case of membrane
waves approximated by standard quadratic bar elements. At this point the analyst might
conclude that, as the quadratic beam elements do not exhibit as pronounced forbidden
discrete frequency zones as that found in the bar element, it may not be of concern for waves
other than membrane cases. In the next section, however, we show that, while tailoring the
element through parameterization can lead to overall improvements in performance, the
analyst must be careful to avoid “over-optimizing” the higher frequency ranges as it may
tend to accentuate the frequency-jumping phenomenon inherent in higher-order elements.
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3.0 Frequency-Window Tailoring of Bar Elements

We have shown in the preceding section that the discrete Fourier analysis can, for a uniform
mesh size, give an analytic/symbolic characterization of the finite clement discretizations.
For vibration analysis purposes, these characterizations can then be used to assess quantita-
tively the discretization accuracy as they can be directly compared with the corresponding
continuum characteristics, viz., wave dispersion characteristics. Thus, the discr:te Fourier
analysis technique can be applied not only for the prediction of the resulting discretiza-
“ticn for vibration analysis, but more importantly for the tailoring of cleme:. attributes
in order to improve the finite element model accuracy. For example, it was si:own in (12]
that, for a given clement stiffness matrix, a tailored mass matrix as a linear combination
of the lumped and consistent mass matricies can significantly improve the .ccuracy of
the low frequencies and their mode shapes. However, little improvement can "¢ made for
high-frequency components only by mass-matrix tailoring.

In order to improve the accuracy of the finite element models for the high-frequency com-
ponents, we are motivated to tailor the element stiffness matrices for a given nodal pattern
in addition to mass tailoring. A simple case to test such a stiffness tailoring concept is
to employ a three-noded discrete nodal pattern for a bar so that one can work with two
dizzrete clement stiffness matrices: a 3 x 3 quadratic clement stiffness matrix and the as-
sc:nbled stiffness matrix of two linear elements. Hence, we obtain the following three-noded
t..ilored element mass and stiffness matrices:

M= aquuadratic + (1 - am)Mlinear

K = akKQuadratic + (1 — ak)Kh'ncar (35)

where Minear and Klinear are the assembled matrices of two linear clements, and a,, and
oy are cocflicients to be determined.
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3.1 Discrete Fourier Analysis of Tailored Three-Noded Bar Element

The governing nodal difference equations at the mid-span node m — 1 and the adjacent
end node m are given by (see Figure 2)

%(3 + apm)im—1 = (3 + a;) (um—z — Uy + um)

12

Up—1 — 2um + um+l) ar (um—Z - 2um + um+2>

(36)
%(3 — )il = (3 + ak) < - -

The Fourier-transformed discrete operator L for the tailored bar with the embedded per-
formance parameters @,, and a; can be derived as

6+ 20 — (34 am) (E’EL)2 —(3 + ) (1+e2ikl)

Lk,w) = .
(k) ~(B+ax) (1+e %) 64 ar(l + cos2kl) — (3 — am) (“’?')

2] (37)

The characteristic equation and its roots are then found to be

wi\?* wl\?
ci{l—) —c| — +ec3=0 (38)
c c

where

2
:;=9—am

¢z = (3 — 0 )(6 + 2ax) + (3 + ) (6 + k(1 + cos 2k1)) (39)
c3 = (6 + 2ax) (6 + ar(1 + cos 2k1)) — 2(3 + . )?(1 + cos 2k1)

(w1)2 _ Cy — \/C% —'461C3

C 1 261 (40)
wl 2 _ (o) + C% bt 46163
¢/, - 2¢4
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3.2 Frequency-Window Tailoring of the Bar Element

Our objective in tailoring the bar element is to minimize the error betwcen the exact and
discrete eigenvalues in an average sense over a finite range of the frequency spectrum.
To this end, for each frequency-window range a < kI < b, we perform the following
minimization:

o D]
min / [1—(—1‘)’2—'—] d(k1) (41)
amrak a 1
¢ /ezxact

subject to (3), (39), and (40).

The optimization problem posed by (41) is not easily solvable in a closed-form sense,
however, and since this element presents the simpliest form of Fourier equations that
are of practical interest, we wish to consider a numerical complement to (41) which can
be addressed by a standard quadratic optimzation technique. Therefore, the frequency-
window tailoring method is recast as

min J (42)
O'm lak
where
2

(43)

J= i [1 — (-ht’:—l)rzliscrctc

]
¢ Jexact - kl=a+L(b—a)

subject to (3), (39), and (40).

Numerical optimization of (42) was accomplished using quasi-Newton methods with cen-
tral difference derivative approximations [16]. Both DFP and BFGS formulae were utilized
in approximating the inverse Hessian matrix, though their performance was generally com-
parable.




3.3 Tailoring Results for the Bar Element

Twelve frequency windows were considered for tailoring of the bar element. The first six
cover the wave number range of 0 < kI < 7 in even intervals; the results can be found in
Table 1. The last six frequency windows cover progressively wider ranges of kI culminating
in the final result which tailors a,, and a; for the entire element spectral range; these
results are shown in Table 2. In all cases, the numerical optimization used the quadratic
element parameters as a starting point, and the initial and final values of J are noted.
Figures 7 through 14 illustrate a selection of these results, along with the corresponding
curves for the continuum equation and the discrete linear and quadratic elements. In
all cases, the tailcring method produces marked improvements for each specified window,
most dramatically for high-frequency and/or high-wave number ranges.

4.0 Frequency-Window Tailoring of Beam Elements

Encouraged by the improved accuracy of the tailored three-noded bar elements for window-
by-window frequency ranges, this section extends the basic tailoring procedure to the Tim-
oshenko beam element. In doing so, we adopt the same three-noded beam ¢l .aent nodal
pattern as in the case of the tailored bar element with one important additional feature.
The tailored element stiffness matrix consists of the tailored bending and the tailored
transverse shear contributions, each of which in turn consists of a linear combination of a
quadratic and a corresponding assembled two-element linear component, viz.,

K= I<3hcar + Kbcnd:'ng

_ uadratic 14
Kahcar = aSIC:hear + (1 - a,)I(;;?:::

. . 44)
L quadratic linear (
Kbendmg = abeending + (1 - ab)Kbending

uadratic I
}-\'Ilumped = amM‘lIumpcd + (1 - am)Ml:I:;;:d
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4.1 Tailoring Results for Beam Elements

The tailoring method proceeds as with the bar element by a discrete Fourier synthesis of
the elemental eigenproblem, incorporating the resulting equations into the performance
index (43), and a numerical optimization of the performance index to obtain the tzailoring
parameters a,, ap, and a,. As noted in Section 2.2, the frequency-window tailoring has
focused only on the bending curve waves. If necessary, a shear wave tailoring can be
performed as well.

Results of several frequency-window tailoring can be found in Table 3 and Figures 11
through 14. Case I summarizes the tailored mass and stiffness parameters for the range
of £ < kl < §. As can be observed in Fig. 12, the accuracy improvement by the tailored
element is rather dramatic. Errors of up to 6% in predicted frequencies from the nominal
linear and quadratic elements are reduced to less than 0.5% over this entire low frequency
window. In addition, Figure 11 illustrates how the tailored element also exhibits a marked
improvement in frequency prediction over the full discrete frequency range, far beyond the
designated “design” window.

Case 11 lists the tailoring of mass and stiffness matrices pzrformed in the high-wave number
range of 2= < kI < 3%. As Figure 13 illustrates, however, convergence within the desired
spectrum does not imply superior overall behavior (the limits of the tailored spectrum are
shown as vertical lines in the figure). Here, the optimized parameters tend to accentuate
the forbidden discrete frequency zone, and allows significant errors in the low to middle
spectrum that was optimized in Case 1. These errors are as much as 60% with respect
to the exact continuum solution in this area of the spectrum. Clearly, the influence of
this “forbidden zone” is significant enough to warrant careful attention to the selection of
frequency optimization windows and performance indicies.

In addition to the aforementioned problems in low frequency ranges, .he unconstrained
optimization of Case II resulted in parameters which lead to a negative-definite element
stiffness matrix. Thus, the performance exhibited by the dispersion curves in Figure 13
is not practically realizable. Case Ila used the unconstrained optimization results as a
starting point, then relaxed the stiffness tailoring parameters to regain the correct positive
definite character of the element stiffness while retaining much of the improved element
behavior in the desired frequency window. The issues of element feasibility and tailoring
parameter constraints are covered in more detail in Section 4.2.

The final case studied, Case III, is an attempt to optimize the overall clement behavior,
producing reasonably small errors in the middle to high spectrum while maintaining ac-
curacy n the low spectrum. The result (see Figure 14) shows that the magnitude of the
forbidden zone has been reduced and the accuracy improved to within £10% for the range
of 0 <kl < -2-5’5, while the errors of both the standard linear and quadratic clements are
rapidly increasing as k! increases.




4.2 Tailoring Parameter Constraints

So far, we have used unconstrained optimization techniques to determine appropriate ele-
ment tailoring parameters, by ignoring contraints that iaust be imposed on these variables
to ensure element feasibility. Two important considerations are the preservation of ele-
ment rigid-body modes and total mass. By using convex combinations of the linear and
quadratic element formulations, it is easy to show that these are maintained for arbitrary
values of the element performance parameters. In other words, these properties are pre-
served automatically. However, we must also preserve the positive definiteness of the mass
matrix, and positive semi-definiteness of the stiffness matrix, and ensure the optimization
does not introduce spurious element mechanisms.

For the bar element, these constraints result in the following parameter restrictions:

lam| < 3
o > -3

(45)
Practically speaking, the restriction on the stiffness tailoring parameter is superfulous if
the element is optimized over a reasonably broad range of its spectrum, and the Fourier
analysis can be used a posteriori to examine the tailored element behavior, as it is a robust
method for identifying deficiencies in the element formulation [17]. In other words, if we
enforce the tailored mass matrix to be positive definite through an inequality constraint on
@, and the Fourier analysis identifies the vibration behavior of the element as acceptable
over its full spectral range, there is no need to constrain the stiffness tailoring parameters.

It should be noted, however, that while the Fourier analysis will identify problematic
behavior in the element formulation, the evidence can be subtle and easily missed when
examining the dispersion curve at a finite set of discrete wave number values. For example,
in Section 4.1 it was noted that the optimization performed in Case II lead to a negative-
definite element stiffness matrix. However, the negative eigenvalues found by examining
the Fourier dispersion curve for the tailored element were in the range of 0 < k!l < 555,
in other words in the lowest .01% of the element spectrum. A more reliable method
(given the difficulty in deriving a general parameter constraint for elements more complex
than bars) would to check the positive semi-definiteness of the element stiffness matrix at
each step in the optimization process, and then limit the step size of the iteration if the

semi-definiteness stiffness constraint is violated.
With this in mind, the beam element parameter constraint is given by

lom| <3 (46)

By using a lumped mass formulation, it should be simple to determine the mass param-
cter constraint even in the case of complex two and three-dimensional clements. The
computational overhcad associated with checking the element stiffiness matrix for negative
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eigenvalues is very small compared to the basic optimization, and certainly much eas-

ier than deriving the dispersion curve at a sufficient nurrber of values to ensure element
feasibility.

4.3 Numerical Results for Tailored Finite Element Models

A final issue which must be addressed is the resultant accuracy of assembled finite ele-
ment models *~ing the tailoring methods described herein, both in terms of frequencies
and 1mode shapes. The primary utility of the Fourier analysis within the context of the
frequency-window tailoring technique is to closely correlate the temporal/spacial frequency
characteristics of the parameterized element to the corresponding partial differential equa-
tions of motion. However, if the eigenvectors of an assembled model do not correlate well
to the associated continuum wave shapes over the discrete spectrum, the model cannot
be assumed to accurately capture the continuum wave dynamics. Fortunately, through
numerical tests, it can be verified that the tailored elements maintain the mode shape
characteristics of the linear and quadratic elements on which they are based.

For the bar vibration problem, with constrained ends, the wave shapes follow the Fourier
spacial expansion used in the tailoring method. That is

nme

L

Pn(z) = sin n=1,2,.. (47)

Figure 15 demonstrates how the Fourier wispersion curve accurately predicts the resultant
element’s numerical behavior. The discrete points shown are the calculated frequencies
of a 10-element mesh of tailored bars, with the given parameters, plotted against the
corresponding wave number as determined by best-fitting the eigenvector of the mode to
the Fourier spacial expansion. Not only is the appicability of the Fourier analysis verified,
but the results also show how the discrete model eigenmodes uniformally cover the discrete
spectrum, as is the case with linear bar elements. Figures 16 and 17 show that, for both
moderate and high frequency modes, the eigenvectors of the tailored model retain the same
basic character as their lirear element counterparts, which themselves exactly match the
continuum wave shapes at the node point locations. Figures 18 through 20 show similar
results for a high-frequency-window tailoring case.
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5.0 Discussions

A frequency-window ta‘loring technique is preser . for improving finite element models
that can be used to capture accurately frequencier .nd their mode shapes up to acoustic
ranges. The tailoring of the element mass and stiffness matrices is achieved by a combi-
nation of linear and quadratic elements for both bar and beam elements. The tailoring
parameters are optimized for each frequency window by minimizing the errors between the
continuum and discrete characteristic dispersion curves. For the case of beam elements,
tha stiffness tailoring is further partitioned into a component-by-component contribution of
the transverse shear and the bending stiffness matrices. Such a component-by-component
tailoring has proved to be a key feature of the present tailoring technique.

The accuracy improvements realized by the present tailoring technique have been first
predicted by the discrete Fourier analysis. The results demonstrate that the tailored
elements dramatically improves the accuracy of both the frequencies and their mode shapes
far beyond that of the linear or quadratic elements. This is also coroborated via numerical
eigenvalue analyses. Although the results contained herein are primarily the analytical
and numerical eigenvalues of the various element formulations, it should be remember that
the fandamental product of the tailoring methods are the stiffness and mass interpolation
parameters themselves, which are a function of the frequency window chosen by the analyst
to optimize.

There are two overhead uspects associated with the present tailoring technique. The first is
to employ a quadratic nodal topology for constructing the tailored element matrices. The
second is to carry out several frequency window-by-window eigenvalue analyses in order
to cove the entire range of frequencies of interest. These must be more than made up by
a substantially reduced number of the nodal degrees of freedom by the present tailored
elements. For example, for the wave-number range of § < kI < 7, the tailored bar and
beam elements yield the frequency accuracy within a few percent for k! = 2.5 from Fig. 13,
whereas the conventional linear and quadratic beam elements must reduce their ¢lement
sizes by a factor of about ten and five, respectively, if the same accuracy is to be maintained
by these elements.

A straightforward extrapolation of the preceding accuracy compariscn to two and three
dimensional problems would result in 100 and 25 smaller nodal unknowns when the present
technique is employed. As the extension of the present tailoring technique to plate, shell
and solid elements appear to be straightforward, a bigger pay-off of the present technique
may accrue as applied to two and three dimensional elements. For example, for shell
elements, the tailoring of element stiffness can be achieved by synthesizing the membrane,
the transverse shear, and the bending components. This is being carried out at present
and we plan to report the results in a.future occasion.
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Case Window Om o Jo Jup
I 0<KI<E 09990  1.0268 1.23x107°  0.10x107°

II Z<KISET 04948 11840 8.44x107*  0.19x107*
I1I Z<KI<Z 05409  1.3188 0.1018  4.60 x 10~*
IV Z<K<EZ 06200 @ 1.5631 0.1289 0.0041
Vo ZSEISEE 07439 1.9880 0.2729 0.0216
VI S <kI<w 09435  2.7517 1.4866 0.0851

Table 1: Tailoring Results for Bar Element (Narrow Frequency Windows)

Case Window O ay Jo Jup
VII 0<k<EI 04948 11837  9.32x107* 0.25 x 10™*
VIII ISH<SZE 06539 14629 0.2136 0.0124
IX RS 08505 23723 1.7977 0.3571
X 0<KI<E 03577  1.2887 0.1385  9.85x10™*
XI s<ki<m 08005  2.1897 1.9782 0.6210
XII 0<kli<7 07804 21101 2.0701 0.7615
Table 2: Tailoring Results for Bar Eleinent (Broad Frequ. :y Windows)




Case Om Qg ap Jo Jup
I
T<K<LE 06692  1.0018  0.6244  0.0048  5.1801 x 107°
II
Zm<RI<EE 15321 1.0854 -0.2374 327325 1.1998 x 10~*
Ila
<RI3R 15321 1.0800 05000  32.7325 0.1745
111
0<k<2 08508 1.0331 06685  0.7713 0.0653

|
“|

Table 3: Tailoring Results for Beam Element




m-1 m m m+1

Figure 1: Nodal Geometry for Linear 2-node Line Elements
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Figure 2: Nodal Geometry for Quadratic 3-node Line Elements

23




o 5

3.5 LI T g T T Y

2.5

1

-
-
-
-
-
-
-

Forbidden Discrete PP

Nomalized Frequency, (wl/c)

1.5k Frequency Zone e

1k i _ Exact Continuum

--Linear Bar Element
..Quadratic Bar Elecment

0.5F

0 1 1 2 [l S 2

0 0.5 1 1.5 2 25 3
Nommalized Wave Number, ki

Figure 3: Fourier Analysis Results for Bar Elements
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Figure 3: Fourier Analysis Results for Linear Beam Element
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Figure 6: Fourier Analysis Results for Quadratic Beam Element
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Figure 7: Fourier Analysis, Tailored Bar Element, Case III
Tailored Wave Range: £ <kl < %
Parameters: a,, = 0.5409, a, = 1.3188
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Figure 9: Frequency Error, Tailored Bar Element, Case VI
Tailored Wave Range: %“' <kl<=%
Parameters: a,, = 0.9435, az = 2.7517
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Figure 10: Frequency Error, Tailored Bar Element, Case VIII
Tailored Wave Range: T < kI < &&
Parameters: a,, = 0.6539, ap = 1.4629
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Figure 11: Fourier Analysis, Tailored Beam Element, Case I
Tailored Wave Range: § <kI< %
Parameters: a,, = 0.6692, a, = 1.0018, ap = 0.6244
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Figure 12: Frequency Error, Tailored Beam Element, Case I

Tailored Wave Range: £ <kI< T

Parameters: oy, = 0.6692, oy = 1.0018, ap = 0.6244
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Figure 13: Frequency Error, Tailored Beam Element, Case II
Tailored Wave Range: & < kI < 32
Parameters: a,, = 1.5321, o, = 1.0854, op = —0.2374
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Figure 14: Frequency Error, Tailored Beam Element, Case III
Tailored Wave Range: 0 <kl < 33’—'
Parameters: a,, = 0.8508, a; = 1.0331, oy = 0.6685
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Figure 15: Comparison of Fourier Analysis to Discrete Bar Model, Case III
Tailored Wave Range: 7 <kl < 3
Parameters: a, = 0.5409, ar = 1.3188
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Figure 16: Low Frequecy Mode Shape for Discrete Bar Models, Case III

Tailored Wave Range: £ <kl< $
Parameters: am = 0.5409, ax = 1.3188
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Parameters: ay, = 0.5409, o = 1.3188
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Figure 18: Comparison of Fourier Analysis to Discrete Bar Model, Case VI
Tailored Wave Range: %’1 <kl<w
Parameters: oy, = 0.9435, ap = 2.7517
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Figure 19: Low Frequecy Mode Shape for Discrete Bar Models, Case VI
Tailored Wave Range: 32 <kl <
Parameters: a,, = 0.9435, ap = 2.7517
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Abstract

A systematic procedure for determining the lumped mass
matrix and improved consistent mass matrices has been pro-
posed for vibration analyses by the finite element method.
The procedure is based on the discrete Fourier analysis which
enables one to compare the numerical approximations with
the corresponding continuum characteristics. The procedure
is applied to vibrations of bar, Euler-Bernoulli beam and plate
bending elements. The results obtained by the present pro-
cedure clearly indicate that a judicious use of the improved
mass matrices offered in the paper can lead to a significant
accuracy improvement for intermediate frequencies that can
play important roles in modeling of control-structure interac-
tion systems. dynamic localizations and acoustic responses
for space structures and underwater vehicles.

1. Introduction

The question of mass lumping or rather the systematic
construction of mass matrix for the vibration and :iran-
sient analysis of structures by the finite element method
remains to date an unresolved issue. Apparently, it was
Archer-(1963) who first introduced a procedure for gener-
ating mass matrices based on the same displacement nape
functions that are used in the construction of element stiff-
ness matrices. The mass matrices generated according to
Archer’s procedure have become known as “consistent”
mass matrices, In contrast to the consistent mass matrix,
a diagonal or diagonalized mass matrix is refered to as a
lumped mass matrix.

Even though the use of consistent mass matrices yields for
most applications better accuracy in the frequency analy-
sis, the lumped mass matrix continues to be prefered by
the practicing engineers due to its computational simplic-~
ity and a data storage saving in the computer. Such attrac-
tive features of the lumped mass matrix motivated several
investigators in the past to propose various mass lumping
procedures such as a row sum of the consistent mass ma-
trix (Leckie and Lindberg, 1963; Tong, Pian and Buciarelli,
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1971; Krieg and Key, 1973), the use of a scaled diagonal
entries from the stiffness matrix (Hinton et al, 1976), a
selective sum of a low order-based consistent mass matrix
(Fried and Malkus, 1975), and combinations of these.

Although existing mass lumping procedures are intuitively
appealing for low-order elements such as constant strain
bar, and beam bending elements, such intuitive (or ad-
hoc) procedures become quickly ambiguous for high~order
elements. As a result, at present no agreed-upon lumped
mass matrices exist for cubic Euler-Bernoulli beams and
for eight-noded serendipity plate/shell elements. Hence,
there exists a lack of a systematic procedure for mass lump-
ing.

The objective of the present paper is first to develop a sys-
tematic lumping procedure based on the discrete Fourier
analysis of the finite element method (Park and Flaggs,
1984; Flaggs, 1988) and second to symbolically synthesize
a series of more accurate mass matrices for vibration aral-
ysis when intermediate frequencies become important. To
this end, the paper is organized as follows.

Section 2 revisits a discrete Fourier analysis of a bar mod-
eled by the linear displacement approximation. A defini-
tion of the lumped mass matrix is proposed by compar-
ing the characteristic equation for the continuum bar with
that for the constant-strain bar. A simple synthesis of an
improved mass matrix for the bar is proposed and its ac-
curacy is assessed in terms of its wave dispersion curve.
An example vibration problem with simply-fixed bar ends
is analyzed, which demonstrates the systematic nature of
the proposed definition of 2 lumped mass matrix and the
general nature of discrete-Fourier synthesized mass matri-
ces.

Section 3 applies the present definition of lumped mass
matrices to a cubic Euler-Bernoulli beam element. A prin-
cipal theory from the analysis of the cubic Euler-Bernoulli
beam confirms the numerically well-known result that the
lumping of the translational degtee of freedom (w) and the
neglect of the rotational freedom (22) yields a most accu-
rate frequency prediction. The present theory succinctly
illustrates that such a mass matrix is the only theoretically
consistent approximation. A problem analyzed by Archer
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is revisited in order to asses our improved mass matrix. It
is shown that the proposed synthesized mass matrix con-
siderably improves the third and fourth frequencies for a
two-element beam, thus establishing the soundness of the
proposed synthesized mass matrix.

The present improved mass modeling for plate vibrations
is presened in Section 4. To this end, a Fourier analysis of
the frequency vs. wave number characteristics is carried
out for an infinite plate of both the continuum and Snite
element approximation by a four-noded element. Such a
Fourier analysis is believed to provide insight into the ac-
curacy of vibration analysis for an infinite plate. In oder to
utilize the mass matrix modeling based the discrete Fourier
analysis, finite element plate vibrations with free edges
have been performed with increasing meshes. The results
obtained from the discrete Fourier analysis and numerical
tests for free-edge plate vibrations indicate that a best ac-
curacy for an infinite plate, when analyzed by a four-node
element, is achieved by an average of the lumped and the
consistent matrices. For plate with finite dimensions, a
best accuracy is achievable with quarter of the lumped
mass and three quarter of the consistent mass matrix.

2. A Proposition for Lumped Mass Matrix

A mass-matrix lumping procedure that we are about to
propose is based on the discrete Fourier analysis. Since
an easy example of Fourier analysis that one can perform
is the ccatinuum equation for a bar and its discrete coun-
terpart, we will first introduce their Fourier analyses. We
will then identify the Fourier operators for mass matrices.
In a simplest term, our proposed lumped mass matrix is
defined as follows:

Let k be the wave number and Mo the Fourier-
transformed consistent mass matriz, then the lumped
mass matnz, l\-{x,,m,, in the Fourier domain is defined
by _ _

Mlump = l:linoMcm (2 ° 1)

We will now illustrate our proposition for mass-lumping
procedure via a bar element.

The equation of motion for a uniform elastic bar can be
written as

d%u *u
=g 2.2
TR T (2-2)

where p, E,u, z are the density, Young's modulus, the dis-
placement and the coordinate, respectively.

The traditional Fourier analysis begins by seeking a general
harmonic wave solution of Eq. (2.2) of the form

u= ﬁcl'(ut-kz) (9 . 3)

with w being the circular frequency, k, the corresponding
wave number and ¢ = /~1. Substitution of Eq. (2.3} into
Eq. (2.2) yields

L{w,k)-u =0 (2-4)

where the Fourier operator, L{w, k), is given explicity by

L(w, k) = —pw? + EK? (2-3)

For our subsequent discussions, we reexpress the above
equation as:
{ L(U, k) _—'5 -UzN-Iaug + I:{, (2 . 6)
with Mezeee =p-1, K=EF

A corresponding discrete Fourier analysis can be per-
formed when the bar equation (2.2) is approximated by the
finite element method, which has been studied by many in-
vestigators (Bazant, 1978; Belytschko and Mullen, 1978;
Vichnevetsky, 1982; Park and Flaggs, 1984; Celep and
Turhan, 1587; Flaggs, 1988). A preoccupation of these
studies, however, was to address the effect of internal en-
ergy discretizations on the wave propagation characteris-
tics.

In the present study, we will examine the effect of kinetic
energy discretizations on the frequency characteristics and
deduce from such a study the proposed mass-lumping pro-
cedure as well as a synthesis procedure to obtain improved
consistent mass matrices. To this end, let us revisit 2 con-
stant bar element. An elementary finite element implemen-
tation gives for a bar element of 2 uniform length, £, the
following discrete equation for an interior node, m (eg.,
Park and Flaggs, 1984):

. .- E .
%(ﬁm—l + 4y, "m-{-l) + F‘:(um-l —2u,, = um+l) =0
-9
Substitution of Eq. (2.3) into Eq. (2.7) yields the discrete
Fourier operator

L2 (w,k) = —*M.. + K (2-8)
where
Meon =p-(1- %E"’), K° = Ei* (2-9)

in which the discrete wave number, k, is defined 2s

k=

(2-10)

For a lumped mass matrix, we have the following discrete
Fourier operatos:

-~ '-D
Lgm,{w, k) = —w"Miump + K (2-11)
where R
Migmp =901 (2-12)
Test of Proposed Mass-Lumping Procedure (2.1):
Note that M, can be expanded to read
- 4 - " kl
Me,,,.:p-(l—gsm‘?) (2-13)
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Hence, we have
Jim Meop = p+ 1 = Migmp (2+14)

which proves our proposition (2.1) to be valid (at least for
the bar!).

We now address our second related task: a systematic way
of constructing consistent mass matrices that can lead to
improved vibration analysis. To this end, we note that the
characteristic equation that relates the wave number (k)
to the frequency (w) is obtained by setting L{w, k) = 0 for
the continuum case:

(2)? =42 (2-15)

where the wave speed, ¢, defined as ¢ = \/E/p is constant.

The characteristic equation, Eq. (2.15), indicates that for
the continuum solution, the wave number, k, is directly
proportional to the frequency, w, ie, k = wfe. With ¢
constant, each Fourier component of a wave group will
propagate without dispersion with the same phase velocity.

To examine the effect of kinetic energy discretizations on
the accuracy of vibration analysis, we propose the following
simple modification for our proposed mass matrix:

N-I"W = (1 - a) 'Mlump +a 'Mcm (2 . 16)

where a is a constant to be determined. Note that a =0
corresponds to the case of lumped mass matrix z.ad ¢ = 1
to consistent mass matrix, respectively. Figure 1 illustrates
frequency vs wave number for the continuum bar, the dis-
crete var with the consistent mass matrix (@ = 1) and
vith the lumped mass (a = 0), and for an averaged mass
matrix(a = 0.5). Although not shown in the figure, other
values of a can be selected in order to tailor the accuracy
requirement for different frequency ranges. For example,
a = (0.5,0.56820759,0.89207289) gives a most accurate
result for small k, k around #/2 and k around =, respec-
tively. Hence, depending upon the critical accuracy range
of interest, one can adjust the mass matrix accordingly.

_;:'l“ 38 [Tl conventional consistent masm(a = 1) .~ =1
< ‘4'
~— ap koo improv  consistent mass(a=.5) 7 XACT
- ”
s ~— continuum S
Z 25 - —lumped mass{a =0) - 0.5
=]
g 20} e em—a=0
=]
I
[=] L
g 1.5
b
<10 L
Z
9]
2 05 L
0-0 - I3 [ ] v v [}

0.0 0.5 1.0 1.5 2.0 2.5 3.0 .8
NORMALIZED WAVE NUMBER (k!)

Figure 1. Dispersion Curve for Linear Bar

3. Mass-Lumr’ ¢ of a Euler-Bernoulli Beam El-
ement

In the preceding section we have succintly demon-
strated that a discrete Fourier analysis can provide numer-
ical and physical insight into mass lumping as well as can
lead to improved mass matrix approximation. In this sec-
tion, we will demonstrate that the proposed mass lumping
procedure is also applicable for cases that require discrete
Fourier matrix operators.

The homogeneous differential equations of motion for
the Euler-Bernoulli beam can be expressed as

9w dw
pA*a?"t‘EI?’F:O (3-1)

where A is the cross-section area of the beam, I is the
moment of inertia. With a general harmonic wave solution
of (3.1) of the form

w= wci(wl—kz) (3 . 2)

we obtain the Fourier operator for the beam as

L(w’ k) = -w?. Mezact + i{bcam (3 . 3)
where N
M zact = P4, Kpeam = EIK! (3 . 4)

A cubic interpolation of w gives for each beam element of
length £ the following consistent mass and stiffness matri-
ces

156 22¢ 54 —13¢
. pAL | 22¢ 422 13t 382

ot =25 | 54 13t 156 —22¢f 9
-13¢ -3¢ -22t 482
12 6L -12 se'l
2 _ 2

. EI| 6t a2 -6t 2L (5.6

beam = Y3 | _12 6 12 —6(
6L 202 -—6¢ 42

where the elemental nodal degrees of freedom are arranged
as

ue = lw1)011w2)02JT (3'7)

By assembling two interior beam elements and designating
their nodes, m — 1,m and m + 1, respectively, we obtain
the following difference equations for the mth node:

At . . .z
%6{(54“%;—1 + 3120m + 54w..+1) + 13 6m~1 = U.-+1)}
EI }=0

+7{12(-w,‘_1+2w,‘_1 —w,+1)+6£(-9.‘_1+0~+l) =
: (s-9)

oAl

55 (13U vmms + Gmi1) + (=30t + 86m = Hmt1)}

EI
5 (6l t = Wopt) 28 (Smct 4 A+ Img)} =0 (-9

1534

R—




Since wy and 8; are treated independently, we seek a solu-

tion

w5

to}={3

} ci(wt-kz)

(3-10)

to Fourier-transform the coupled difference equation (3.8)

and (3.9) to obtain

(—wzﬂctm + I-{beam) { %’m } =0 (3 : 11)
where
my imyg
Mcon = pAl (3 : 12)
. ~imyg Brigg
k22 tlsin k¢
~ 12ET
Kieam = 5 (3-13)
—ilsinkl £(1-£12)
in which
ﬁtll = (1 - %I—Cztz), ﬁllg = --211—35tsink£, .
{rh,, = 2bo(1 + 1.5R222) (3-14)

The lumped-mass matrix, according to our proposition
(2.1), for the mth assembled node thus becomes

1 0
Mlump = E_X‘% Mco,. = pAl (3 - 15)
3
0 3%

which, when translated into the element mass matrix, is
equivalent to

(M

M, =pAL| 3B (3-16)

W

23
20

Remark: One of ad-hoc mass-lumping procedures is to
sum up d.o.f.-by-d.o.f. contribution. When this ad-hoc
technique is applied to the element mass matrix (3.5), one
obtains;

0
Mleump = M;‘l’uup + Mlump (3 : 17)
where for the w-d.o.f.s we have
15 0 sS4 0 i
« _PALT O 0 0 O ~ pAL 0
lemp =™ 20 | 54 0 156 of =° 1
00 0 0 ? 0
(3-18)
For the ¢-d.o.f.3

d__

0 0 o0 o 0
M =PALIO 422 0 -38| | AL a
lemr =200 0 0 o 420 Y
0 382 0 423 2

(3-19)

Hence, for simple elements the ad-hoc d.o.f.-by-d.o.f. row-
summation procedure is justified in view of the present
proposed mass-lumping procedure (2.1). It should be men-
tioned that care must be exercised in lumping matrices for
higher-order elements.

Now, to address the accuracy associated with the choice
of a mass matrix (either Miymp O Mcon, O even their
combinations), Let us examine the characteristic equation
from (3.11), viz,

~wiinyy + a3k323 ~iw3y 3 +ia3Lsinke
| 2. =
iwliig —ia3tsinkt  —wiBrmag + 701 - £1?)
12ET
2= 3:20
o= {3-20)

which yields the following frequency vs. wave number
equation:

M1haa ~ 3w = a3(y1le + 20in3 kL- thyg + Mgak?L3)w?
. 12
ta mﬁ&u =0

(3-21)
where 1p =1~ -%’-752.

Comparing (3.21) with its differential equation counterpart
(3.3), one concludes that, since i, is the translational
part, we must have

mip =0 »rd M =0 (3~22)
if (3.21) is to have the following form:
w0 Miump + Kbegm = 0 (3-23)

Hence, we conclude that for the cubic Euler-Bernoulli
beam element to be consistent with the original differential
equation, one must employ the following mass matrix (i.e.,
f;‘llg =0, 7;122 = 0)2

210 - 54a O 54a 0
ecpdly 00 0 0F Goagy
90| s4c 0 200-54a o' =3
0 0 0 0
(3-24)
Application of (3.24) yields the following characteristic
equation:
(1= EeEry 4 B pe g 3.25
w?(1 GCE)-*-pAl‘ ( )
so that we have from (3.3) and (3.25) the following fre-
quency equations
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Figure 2. Dispersion Curve for Beam with Rotatory In-
ertia

For continuum case:

w . = 2 .
\/E = () (3-26)
pALS
For the consistent matrix (3.23):
2
“’BI = (El)z e (3-27)
T (1-58k )3

Figure 2 shows the frequency vs. the normalized wave
number for the mass matrix (3.24), that is, neglecting the
rotational contribution to the element mass matrix (see
Eq. (3.25)). For this case, the larger the value of a, the
more accurate the frequency curve becomes.

Of course, as shown by Archer (1963), the use of the con-
sistent mass matrix (3.5) may improve the frequency ac-
curacy over the lumped mass matrix (3.16). In order to
gain insight into the role of various mass modeling on the
accuracy of vibration frequencies and mode shapes, we ap-
ply our proposed mass matrix formula (2.16) by combining
(3.5) and (3.16) to obtain:

210~ 54 22a Sda ~13ta
Mo = PAL 222 L1+ 3a) 13 -1la
420 S4a 13 210 ~54a -22a
~13La -30%a ~22a  £3(1+3a)
{3-28)

Figure 3 illustrate the effect of the mass-matrix averag-
ing based on the above averaged mass matrix (3.28). Ap-
plication of the above mass matrix yields a characterstic
equation that is similar to (3.21) except rh;; are modified
accordingly. As was the case for the bar, « = (0,1) cor-
responds to the lumped matrix(3.16) and the consistent
matrix(3.5), respectively. It is observed that for a = 0.25
the discrete frequency vs the wave number curve follows
almost on top of the continuum case.

5.0 n

;""m - ~=-conventional consistent mass(a = 1)

3 ---~improved consistent mass{a = .50)

: 40 R .—.-improved consistent mass(a == .25)
% —— continuum
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&
o
o
g A
g 20
-
-
z
o 10
=

0 . = » \
° 0.0 0.5 1.0 1.5 2.0 2.5
NORMALIZED WAVE NUMBER (k)
Figure 3. Dispersion Curve for Beam without Rotatory

Inertia

In order to assess the preceding a priors determination of
improved mass matrix based soley on the symbolic analy-
sis, we have performed the vibration analysis of a free-free
beam modeled by two elements and compared the present
results with the one performed by Archer(1963). The re-
sults are summarized in Table 1. It is observed that the
conventional consistent mass matrix (a = 1) gives an error
of about 1% for the first mode, 13% for the second mode,
45% for the third mode and 40% for the fourth mode.
In contrast, for an averaged mass matrix (& = 0.5), the
corresponding errors are 27% for the first mode, 2.8% for
the second mode, 1.8% for the third mode and 1.7% for
the fourth mode, respectively. It is noted that the sym-
bolic analysis results predict a = 0.5 to be most accurate
while the finite element solutions indicate that « = 0.25
to be most accurate. We conjecture that this discrepancy
is due to the fact that the finite element solutions are for
finite beams whereas the Fourier analysis assumes an infi-
nite beam. Neverthless, the accuracy prediction based on
the discrete Fourier analysis as given in Figure 3 provides
a qualitative measure of different mass modeling choices.

SOLUTION TYPE Wy Wy Wy W
EXACT 5.5044 15.481 30.268 49.945
a=0.0 3.4213 28.983 41.428 $0.438
a=.25 3,7075 19.101 32911 50.204
a=.50 4.0024 16.317 30.821 $0.794
a=.75 46610 15.667 32.474 53.599
a=1.0 5.6058 17.544 43.870 70.087

Table 1.  Frequencies Computed by Different Mass Mod-

els for Beam

Incidently, the {arge error of the averaged mass matrix for
the first mode is not too much of concern because as the
number of elements are increased, the first mode quickly
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converges. In fact, when five elements are assembled, the
error for the first mode reduced to less than 0.2% with
a = 0.5 while maintaining high-accuracy for the higher
modes. On the other hand, the conventional mass matrix
( @ = 1) continues to give large errors for the higher modes.

4. Mass Matrices for Plate Vibration Analysis

So far we have shown that the proposed mass-lumping
procedure (2.1) and the improved consistent mass matrix
(2.16) lead to substantial improvements in beam vibra-
tion analyses. In particular, depending upon one's desire
for tailoring the analysis accuracy for certain frequency
ranges, one can modify a priori the mass matrix as pro-
posed by (2.16) and manifested iri Figs. 1 ~ 3. For La-
grange family of plate and shell elements, the proposed
lumping procedure (2.1) is equally applicable. In this sec-
tion we will first examine plate vibrations based on the
Reissner-Mindlin plate theory. We will then employ a dis-
crete counterpart of the continuum theory when the plate
is approximated by a four-noded plate bending element.
We will then compare the continuum and symbolically gen-
erated discrete equations in the Fourier domain in order to
gain insight into the effect of mass matrices on the accuracy
of vibration frequencies. We have found that our symbolic
analysis of the discrete plate equations obtained from the
finite element plate bending equations provides a qualita-
tive measure of solution accuracy. Numerical experiments
corroborate symbolic analysis results; for the case of the
four-noded plate bending element, the mass matrix that
yields a best accuracy is determined to be

Mpew = 0.25Mump + 0.75 - Moon (4-1)

We now present a detailed analysis and some nu.nerical
results.

The Reissner-Mindlin plate equations can be expressed in
differential matrix form as (Park and Flaggs, 1985):

9% a2
2 _
=zt o (4-5)
and
ER® 1-v
D_12(1—u2)’ Du===-D,
1+v kEh
Dy =——D, = — .

2= Do=gizy  ®O

in which 8, ¢ and w are the rotations and the transverse
displacement; q is the transverse load per unit area; E,h,v
and « are Young’s modulus, plate thickness, Poisson’s ratio
and the shear correction factor; J and m are the rotatory
inertia and the plate mass with z,y and ¢ denoting the
Cartesian coordinates and time, respectively.

The Fourier-transformed matrix operator, i(k,,k,,,w) ,
can be obtained for the plate equations by seeking a har-
monic solution of the form

u(z,y,t) = u(zo, Yo, o) expli(wt = kzz — kyy)] (4:7)

where w is the circular frequency and k() are the (z,y)-
directional wave numbers with § = /—1. Substitution of
(4.7) into (4.4) yields

[ —Dk3 —Digkzky —jD.ke]
-D,
+Iw?
- —Dk3 —
ke by ) = i, TP
%
-D,
+Tw? .
L sym. -D,V?
—mw?
(4-8)

with the corresponding uncoupled continuum Fourier op-
erator given by

L(z,y,t):u=f 4-2)
where -C - = ns
— ;o2 N BRI (Y -
W =060, F=[00q (43 v= [\W HIA(VEF 5) "“"] (4-9)
~ 3 22
D%’ Dia dzady D, 58; ]
+ D“(_%f, where the Fourijer-transformed V2 operator is defined a2
-D, . .
__I:%” V3= —(k: + kg) (4 . 10)
a2 3 o . .
L{zyy,t) = Da—y,, D‘o—u 'E‘he Fourier-transformed continuum matrix operateor,
+ D“:%, L(kz, ky,w), given by (4.8) and the uncoupled continuum
_Da" operator, [, by (4.9) will serve as our reference equations
I35 with which the corresponding discrete operators and char-
. acteristic equations will be compared in order to assess the
sym. -D.'_’V’ effect of mass lumping on plate vibrations.
L +mier |
_ P (4:4)  The general discrete Fourier operator that approximates
in which V* is defined as the continuum case by the four-noded plate bending ele-
ment can be shown to be (Park and Flaggs, 1985):
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where the discrete fourier numbers, k; and k,, and the
so-called directional averaging operators, 1(,,,) and (.
are given by

W)

E; = sin(k,l./2)/1/2

oz
X(zw) =1— -:T:'lk?z,,,) (4-12)

- { 2 -
Lzy) =1 - 2K

and «a is a coefficient defined in the mass matrix modeling
formula (2.15).

The relation between the frequency vs. the wave number
for the continuum and the discrete cases can be obtained
by requiring the determinant of (4.8) and (4.11) to be zero.
Figure 4 shows the normalized frequency (wf?\/p/D ) vs.
the wave number (k£) for the continuum and the discrete
cases with various mass matrix choices based on (2.16). 1t
is noted that the two cases correspond to an infinite plate
or so-called interior solutions. Judging from Fig. 4, one
may conclude that the choice of @ = 0.5 (the average of
the lumped and the consistent matrices) should perform
best for plate vibration analysis. For plates with finite
dimensions as we shall see, the influence of boundary edges
must be taken into consideration in utilizing the dispersion
curve for selecting an appropriate choice of mass matrix.
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Figure 4. Dispersion Curve for Plate (v = 0.343)

Table 2 summarizes the vibration anzlysis results with dif-
ferent mass matrices for a plate with free edges. In com-
puting the errors in frequency computations by the four-
noded element, we have assumed that the frequencies given
in (Leissa, 1969) to be the converged answers. The finite el-
ement analysis results indicate that the discrete frequency
vs. wave number curve shown in Fig. 4 overestimates the
frequency error from the above, We conjecture that this
overestimation manifested in the present discrete Fourier
analysis may have been due to the failure of the four-node
element to satisfy rigorously the free-edge conditions.

Table 2.  Frequency Errors Computed by Different Mass
Models for Free-Free Plate
MASS TYPE | MODE | 4x4 Mesh | 16x16 Meah | 36x36 Mesh

1 30.1 35 39

Lumped 2 328 -15.7 84
M 3 -25.5 -112 .7
a=0.0 'l - 104 <100
s - - -20.6

1 a7 32 3T

2 -26.4 115 60

a =25 3 177 10 3.4
4 - 14.7 3.2

5 - - -17.0

1 177 36 .S

2 AT 4.8 34

a=.50 3 -8.0 2.1 09
4 - 91 A2

s - - -12.9

1 35 o7 0.2

2 Sk 12 0.7

a=.75 3 6.1 37 1.8
4 ~ 22 03

s ~ - 8.2

1 13 24 1.1

Consistent 2 1681 5.6 24
Mas 3 204 108 8
a=1.0 4 - 8.5 2.8
5 - - 2.3

The mode-by-i_.>de convergence characteristics for the first
three modes are shown in Figs. 5-7. With the exception
of the first mode with a (2 x 2)-mesh, it is observed that
the choice of a = 3/4 consistently yields the most accurate
results, .
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Figure 5. Error in First Mode for Different Mass Model-

ing
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§. Discussions

In the present paper a systematic technique of obtain-
ing the lumped mass matrices for vibration and transient
analyses has been proposed. The technique is based on
the symbolic discrete Fourier analysis and reduces to the
known mass lJumping techniques for simple elements.

In order to further increase the accuracy of frequency com-
putations, an improved form of mass matrix is proposed,
which is a combination of the lumped and consistent mass
matrices. Numerical results conducted for a plate with
free edges indicate that substantial improvements in in-
termediate frequency computations can be realized if one
judiciously employs a combined mass matrix.

So far the present work has focused on modifying the mass
matrices in order to improve the frequency accuracy. Our
future work will focus on the combined tailoring of both
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the mass and stiffness matrices to capture inermediate fre-
quency components more accurately. It should be noted
that the accuracy of intermediate frequency components
based on the finite element methods is increasingly impor-
tant in the areas of control of flexible structures, underwa-
ter acoustics and wave propagation through composites
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SUMMARY

This paper reports on our exp. .ence in solving large-scale finite clement transient problems cn the
Connection Machine. We begin with an overview of this massively parallel processor 2nd emphasize the
features which are most relevant to finite element computations. These include virtual processors, parallel
disk IO and parallel scientific visualization capabilities. We introduce a distributed data structure and
discuss a strategy for mapping thousands of processors onto a discretized structure. The combination of the
parallel data structure with the virtual processor mapping algorithm is shown to play a pivotal role in
efficiently achieving massively parallel explicit computations on irregular and hybrid two- and
three-dimensional finite clement meshes. The finite element kernels written in C*Paris have run with
success to solve several examples of linear and non-linear dynamic simulations of large problem sizes. From
these example runs, we have been able to assess in detail their performance on the Connection Machine. We
show that mesh irregulartties induce an MIMD (Muluple [nstruction Multiple Data) style of programming
which impacts negatively the performance of this SIMD (Single Instruction Multiple Data) machine.
Inally, we address some important theoretical and implementational issues that will materially advance the
application ranges of finite element computations on this higbly parallel processor.

1. INTRODUCTION

Parallel computers are having a profound impact on computational mechanics. This is reflected
by the continuously increasing number of publications on finite elements and parallel processing.
Not only have some computational strategies been re-designed for implementation on commer-
cially available multiprocessors, but also some innovative algorithms have been spurred by the
advent of these new machines. However, many of the reported parallel finite element simulations
have been on systems with a few processors. Examples of these systems are Intel's iPSC with 32
processors (reported by Farhat and Wilson'), JPL, Caltech’s hypercube with 32 processors,’
Alliant’s FX8 model with 8 processors®-* and CRAY's systems with up to 4 processors.® (For
more complete lists of references on this topic see White and Abel® and Noor.” While great
speed-ups were measured on these coarse to medium grain machines, Farhat® has shown that
traditional vector supercomputers could not be outperformed in finite element simulations
(except of course on systems which connect more than one vector superprocessor, such as the
CRAY X-MP and CRAY-2 systems, each of which has 4).

Recently, massively parallel machines have demonstrated their potential to be the fastest
supercomputers, a trend that may accelerate in the future. While solving the shallow water
equations, McBryan has reported that the Connection Machine (CM_2 in the s.quel) (65536
processors) was three times faster than the four-processor CRAY X-MP.? Gustafson et al. have
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developed highly parallel solutions for baffled surface wave equations, unstable fluid flow and
beam strain analysis. and have reported performances on NCUBE's 1024-processor hypercube
which are close to those of vector supercomputers.*®

The objective of the present study has been: first, to evaluate the multiprocessing features of the
CM_2 that are relevant to finite element computations; second, to develop a suitable finite
element data structure which exploits the system architecture; third, to implement a decompost-
tion/mapping procedure that matches as far as possible the layout of the processors to the fimite
element meshes; and fourth, to assess those implications of finite element analysis on the CM_2
that should be considered in the design of future massively parallel processors. Hence. we focus
primariiy on implementational issues that are critical for the full exploration of the multiprocess-
ing capabilities of the CM_2, and only secondarily on solution algorithms, as far as they impac:
the present study on implementational issues.

The finite element equations of motion for structural systems can be expressed as

Md + Fo(d, d) = F ()

where M denotes the positive definite lumped mass matrix, F™ and F** denote the internal and
external force vectors, and d, d and d denote respectively the acceleration, velocity and displace-
ment vectors. In the linear case, the internal force vector becomes

Fi* = Dd + Kd ()

where D and K are the damping and stiffness matrices respectively, which are positive semi
definite. In this work, an eventual damping is assumed to be proportional to the mass and
stiffness.

The algorithmic nature of a candidate solution method for the structural dynamics equation (1)
can significantly influence the software requirements, data communications and arithmetic
efficiency. As our main focus is on implementational issues rather than algorithmic ones, we have
decided on a simple explicit time integration procedure. Hence, we choose to integrate equation
(1) with the fixed step explicit central difference algorithm because (a) it 1s inherently parallel. and
(b) it has the largest undamped stability limit among second-order accurate explicit linear
multistep algorithms, as has been demonstrated by Krieg.!! In our context, it expressed as

a,.+ 2 an- V2 4 hM- I(ch(tn) - Fm(an, dn)) (3)

dnt! = d" + hanfllz

where h is the fixed time step and the superscript n indicates the value at the discrete time ("
The remainder of this paper deals with the massively parallel solution of (1) using (3). and is
organized as follows. In Section 2, we give an overview of the CM_2 hardware configuration and
emphasize those features which are pertinent to finite element computations. In particular. we
address issues that are related to the processor memory size, to the STMD architecture and to the
fast interprocessor communication package, the NEWS yrid. In Section 3, we discuss the floating
point arithmetic performance of the CM-2 and highlight its current dependence on the sclected
language compiler Algebraic manipulations coded in *Lisp are shown to be three times as fast as
when written in C*. A general purpose finite element distributed data structure is presented in
Section 4. Designed originally to handle massively parallel finite element explicit computations
on irregular and hybrid meshes. this parallel data structure is also very efficient for parallel [,O
manipulations and paralle! graphic animation. Since the often-encountered mesh irregularities
inhibit the use of the NE#'S yrid communication package, we discuss in Section 5 an alternative
decomposition, mappiag strategy. The decomposition techmque 1s designed to mimmize both the
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amount of communication between different chips and the amount of wire contention within
a chip. The mapping algorithm attempts to reduce the distance that information must travel.
Section 6 summarizes the overall organization of the massively parallel transient simulation. In
Section 7, our parallel data structure and processor mapping are applied to (3) for the solution of
various large-scale transient problems. Measured performances are analysed in detail. Mesh
irregularities are shown to be the source of several factors which considerably slow down the
machine. Finally, in Section 8, we address some important theoretical and implementational
issues that will materially advance the application ranges of finite element computations on the
CM_2, In particular, we note that time integration numerical algorithms such as explicit finite
differences and equation solvers such as the preconditioned conjugate gradient are implemented
using the same parallel data structure and mapping algorithm which are presented in this paper.
We compare the substructuring technique and the virtual processor approach, and comment on
the implications of implicit algorithms for the effective use of the CM_2.

2. THE CONNECTION MACHINE HARDWARE ARCHITECTURE

Here we present an overview of the CM_2 system organization and discuss issues that are
pertinent to massively parallel finite element computations, See Hillis*?* for an in-depth discussion
on the rationale behind the CM_1 (a previous model of the Connection Machine), the Technical
Summary of Thinking Machines Corporation'® for further architectural information and
McBryan® for initial studies of scientific computations on the CM_1. For the sake of clarity, we
summarize the architectural features before discussing their impact on finite element simulations.

2.1 System organization

2.1.1. CM_2: The parallel processing unit. The CM_2 is a cube 1-5 m on a side, made of up to
eight subcubes (Plate 1). Each subcube contains 512 chips and every chip includes 16 bit serial
processors which are connected by a switch. Each individual processor has 64 Kbits (§ Kbytes) of
bit-addressable local memory and an arithmetic-logic unit (ALU) that can operate on vari-
able-length operands. Every two chips may share an optional Weitek floating point accelerator
chip. A fully configured CM_2 thus has 4096 (2'2) chips, 2048 floating point accelerator chips,
65536 processors and 512 Mbytes of memory. The chips are arranged in a 12-dimensional
hypercube. A chip i is directly connected to 12 other chips j, with the binary representation of
i and j differing only by 1 bit. The CM_2 system provides two forms of communication between
the processors.

e A general mechanism known as the router which allows any processor to communicate with
any other processor. Each CM_2 chip contains one router node i which serves the 16
processors on the chip, numbered 16i to 16i + 15. The router nodes on all the chips are wired
together in a 12-dimensional Boolean cube and together form the complete router network
(Figure 1). For example, suppose that processor 117 (processor 5 on router node 7) has
a message to send to processor 361 (processor 9 on router node 22). Since 22 = 7 + 2% = 2°,
router 7 forwards the message to router 6 (6 = 7 — 2° which forwards it to router 22
(6 + 2*), which delivers the message to processor 361.

e A more structured and somewhat faster communication mechanism called the NEWS grid.
Each processor is wired to its four nearest neighbours in a two-dimensional rectangular gnd
(Figure 2). Communication on the NEWS grid is extremely fast and recommended whenever
it is possible.
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Figure 1. The router network

w

Figure 2. The NEWS grid

An important practical feature of the CM_2 is the support for virtual processors. When the
CM_2is initialized for a run, the number of virtual processors (vp in the sequel) may be specified.
If it exceeds the number of available physical processors, then the local memory of each processor
is split up into a number of regions equal to the ratio between the number of vps and the number
of physical processors. Automatically, for every Paris (PARallel Instruction Set) instruction, the
processors are time-sliced among the regions. If a physical processor is simulating .V vps, each
Paris instruction is decoded by the sequencer (as explained below) only once for .V executions.
This results in an enhanced user performance. Also, the use of a vp > 1 allows the pipelining of
floating point operations in the Weitek chips, which provides an additional enhancement to
machine performance. The system organization of a CM_2 is shown in Figure 3.

The CM_2 is an SIMD machine. All processors must execute identical instructions or some
processors may choose to ignore any instruction. Consequently, an instruction which involves
a nested binary branch can sce its execution time increased by a factor of two. The SIMD nature
of the CM_2 has some disadvantages in finite element computations, as will be shown.

2.2. Impact on finite element computations

It is well known that the solution algorithm (3) can be implemented using only element-level
computations. Hence, if each vp of the CM_2 is mapped onto one finite element. equation (1) can
be efficiently integrated in parallel. The rationale behind this processor-to-clement assignment
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Figure 3. System organization of 2 CM2

will be analysed in Sections + and 8. Here, we discuss the direct impact of the CM-2 hardware on
such a decision.

2.2.1. The local memory and element lecel computations. Consider the 9-node curved shell
clement shown in Figure 4. Three displacements and two rotations are attnbuted to cach node,
which amounts to a total of 35 degrees of freedom per element. Consequently, the symmetric part
of the elemental stiffness matrix. K', contains 45%(45 + 1);2 = 1035 words. If double precision is
used, the storage of K amounts to 1035%64 = 66 240 bits, which exceeds the 65 536 buts that are
available on a single CM_2 processor. On the other hand. if single precision 1s used. the storage of
K' requires 33 120 bits. so that 32416 bits arc left for the storage of the vectors d'. d'“’, the
elemental lumped mass vector M'' and the forces Fe'* and F'*’. However. even in the latter
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Figure 4. A 9-node shell element

>

Fig;xrc 5. A two-step NEWS mechanism on a regular mesh

case, only a vp ratio of 1 cun be used. This limiis the size of the finite element mesh to the
maximum number of processors available on the CM.2 at hand. Also, it inhibits further
performance enhancement, as outlined in Section 2.1.

Fortupately, in our case the cbove storage requirements can be considerably decreased. The
rature of explicit computations is such that F'*(d") can be directly computed from the displace-
ments at ¢ and the stress-stram constitutive equation. As a result, the solution process defined in
(3) involves only rector quantitics which do not require a large amount of storage, so that vp
ratios between 1 and 4 are possible. However, the readci chould keep in mind that the current
local memory size of a CM_2 processor may penalize sophisticated high order elements and
implicit finite element algorithms in general. This cestriction is not °ncountered on other
commercially availaole hypercubes such as iPSC, MCUBE ana AMETEK among others.

2.2.2. The NE'VS grid and finite elemenrt patches. Consider the regular finite ¢element mesh
shown in Figure 5. Except on the boundaries, each element 1s coi:nected in the same pattern to
exactly eight other elemer ts. Consequently, during the explicit time ntegration algorithm, each
processor communicates with 1its neighbours in the same nanner. Inierprocessor communicatton
can be performed with a two-step NEWS mechanism (Figure 5). However, the beauty of the finite
clement method resides in the fact that it solves modeis v.ath irregulir meshes. Typically, a finite




TRANSIENT FINITE ELEMENT COMPUTATIONS 33

Figure 6. Transition zones

element mesh consists of several patches which are connected together using irregular transition
regions (Figure 6). For these often encountered cases, the NEWS grid becomes impractical.
Rather, the router hes to be utilized. In Section 4, we describe how a distributed data structure can
guide the router during this process.

2.2.3. SIMD hardware vs. MIMD finite element computations. Typical finite element meshes
comprise more than one type of element. Consider the case where a discretized region is modelled
with shell elements that are stiffened with beam elements. Clearly, the instructions associated with
the shell elements differ from those associated with the beam elements. Consequently, the vps
which are assigned to shell elements and the vps which are assigned to beam elements cannot
execute their segments of code in parallel; for example, the be-m processors have to execute first,
then the shell processors. If T, and T, denote the execution times associated with the instructions
for » beam and a shell element respectively, the total elapsed parallel time for a single instruction
over the set (beams + shells) on an SIMD multiprocessor is T;, + T,. On an MIMD multiproces-
sor, this elapsed parallel time is max(T, + T,). Similar situations arise when during the loading
some elements turn to be mat.rially non-linear and some remain linear. In this case, one should
always compute the hinear component of the response (the elastic suffness for example) before
attempting to test the yielding criterion. However, in spite of these disadvantages SIMD
programs can still be attractive, because they tend to be easier to debug and rarely suffer from the
synchronization errors which are typical of MIMD codes.

2.2.4. Parallel 1;0 in finite element computations. At each time step, the computed displace-
ments, velocities, accelerations as well as strains and stresses need to be stored on disks. This
represents a significant amount of 1, O traffic. It has been our experience that the CM..2 Data
Vault system is efficient at reducing the corresponding elapsed time (see Section 7).

2.2.5. Real-ume graphics ammations. The massively parallel real-ume animation of the mesh
deformations 1s a direct consequence of the availability of the Frame Bujfer and decision of
assigning a vp to a finite element. At each time step, after the node displacements are found alt of
the vps concurrently draw the outline of their assigned elements on the graphic screen. The result
is a real-time finite element animation.
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3. BENCHMARKING THE CM_.2

At the time of writing this paper, the CM_2 supports three high level languages: C* (pronounced
see-star), *Lisp (pronounced star-lisp) and CM-Lisp (pronounced see-m-lisp). The first two are
extensions of C and Lisp respectively. Paris is somewhat the assembly language of this parallel
processor.

In this section we comment on the results of a set of timing experiments that were carried out
on the CM_2 of the Center for Applied Parallel Processing (CAPP), at the University of
Colorado. Boulder. Since only one eighth of a cube was available on this system, all results were
obtained using 8192 processors. McBryan® has shown that all results demonstrated on subcubes
of the CM_2 scale essentially linearly to the 65 536 processor system. Consequently, throughout
this paper, megaflop rates are reported after they are linearly scaled to the full configuration.
These experiments provided us with;

e a reference performance for the evaluation of our approach to massively parallel finite
element explicit computations

o the influence of the vp ratio and that of the high level language compiler on attainable
performances. At this point, we remind the reader that, if an application requires an amo
of local memory (per processor) m,, the highest vp ratio possible is equal to the closest
of two to the ratio between the maximum amount of local memory available on the m
{currently 8 Kbytes), and m,.

Table I reports the megaflop rates for some scientific computations on the CM_2 at different vp
ratios. All statements were written in C*. Each statement is performed by each processor on 1ts
variables. All variables were declared parallel (local) and float (simple precision), except variable
dp which was declared mono (serial) float, and variable i which was declared mono integer.
Timings were measured using the cmtimer routines. Each * + * operation or “** operation was
counted as one flop.

Based on these results, we have observed the following:

1. Floating point performance is enhanced at higher vp ratios. This is due to the fact that for vp
ratios greater than one, computations in the Weitek chip are pipelined.

2. Vector saxpys are not slower than scalar ones. This is because memory addresses are
computed on the front end. The additional speed noticed for vector saxpys is thought to be
due to the overlapping of addressing and floating point computations.

3. C* appears to handle poly (parallel) assignments poorly. This can be seen by comparing the
performances of the dot product and the vector multiply. Each of these two vector

Table I. Megaflop rates using C*

Parallel processor = CM_2—Language = C*—Variable = float

-

Statement vp ratio
1 2 4 8 16 32 64 128 256
ylJ + = 2*x(1] 740 808 848 850 880 - - — —
y=y+ax 569 654 699 728 743 761 778 91 800
z=x" 409 485 535 569 579 585 600 610 623
dp + =x*y 02 359 583 839 1075 1240 1348 1400 1500
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operations requires one floating point per processor. In addition, the dot product requires
a reduction (accumuiation phase) which necessitates communication. However, at high vp
ratios, the dot product is twice as fast as the vector multiply! (At low vp ratios, the amount of
floating point computations is not large enough to amortize the price of communication.)
Since the dot product does not store any value in the processor memory and the vector
multiply stores the result of x = y back into z, this leads us to believe that the C* compiler
generates a code which is very inefficient at handling assignments. This also explains why the
saxpy exhibits a higher megaflop rate than the vector multiply: it has twice as many floating
point computations for one assignment.

The same computations were repeated using *Lisp. The comparison of both sets of timings for
the maximum vp demonstrates a formidable superiority of the *Lisp compuler (see Figure 7). This
is partly due to the fact that it has been used longer on the CM_2 than C*. In spite of the proven
superior efficiency of *Lisp over C*, we have chosen to implement our finite element code using
C* because of our familiarity with C.

;1. FINITE ELEMENT PARALLEL DATA STRUCTURES
Consider again the explicit central difference algorithm:

&n+1/‘.’ = an—llz +hM- l(F“(l") — Fm(&n' dn)) @

A"t = d" o+ hdem

The global mass matrix M is assembled once. At each time step ¢*, the computations are
dominated by the evaluation of the internal forces:

emn,
Fr= 3 J‘ [LS1edQ
e=1 !
where ¢ is the stress vector, S are the shape functions, L is a partial derivative operator and Q' is
the area of the eth finite element. Clearly, the parallel computation of F is best done el-
ement-by-element. Thus, equation (1) can be efficiently integrated in parallel if the CM.2 virtual
processors are mapped onto the elements of the mesh. This is a departure from the grid point
massively parallel computations advocated by Thinking Machines Corporation for the C M_2.13
First, all processors compute concurrently the local forces F<***'(¢") and F™¢(d", d"). Next, these
contributions are accumuiated through communications among processors that are mapped
onto neighbouring elements.

In this section, we describe the finite element data structures which we have selected to drive the
massively parallel computations on the CM_2, These are element oriented, while similar data
structures proposed for other hypercubes are subdomain oriented (see Farhat et al.'* and Fox
et al.'®). In Section 8, we give further comments on this difference. We group these data structures
into two sets.

The first set of data structures deals with element-level parallel computations. To be able to
petform locally its assigned element-level computations—that is, to perform these computations
without interacting with the front-end machine —each processor must store in its own memory its
element type (truss, beam. shell, ..., number of Gauss points, ...), its ¢lement material
properties (density, parameters and coefficients for constitutive equations, damping charactenisti-
cs, thickness, . . .), 1ts nodal geometry {nodal co-ordinates, number of nodes per element) and its
boundary conditions (fixed, free degrees of freedom at each node, prescribed forces at each node).
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This information is compacted in one-dimensional arrays. In addition, each processor must also
store in its memory a set of scalars corresponding to computational parameters such as the fixed
time step A, and a scalar or one-dimensional buffer for the temporary storage of messages to be
passed to neighbouring processors.

The second set of data structures provides the router with the mechanism for parallel
interprocessor communication. The inability of the NEWS grid to handle irregular communica-
tion patterns has been addressed in Section 2.2. Let p denote a virtual processor and e, its
assigned finite element. In order to exchange F™®(d") and Fe*¥(t"), virtual processor p must be
able to identify at run time:

o the set of processors mapped onto elements adjacent to ¢,
o the nodes that ¢, shares with these elements

e at each shared node, the degrees of freedom which need to be assembled.

This particular information is vital for meshes with different types of elements. It guarantees that,
for example, a moment is not accumulated with a force, or that a force in the x direction is not
accumulated with a force in the y direction.

If the above information is gathered in a global form on the front-end machine, most of the
execution time which elapses during the accumulation phase would be due to message-passing
between the CM.2 processors and the front-end computer. On the other hand, if this information
is decentralized—that is, if the memory of processor p is loaded only with the subset of that
information which is relevant to the connectivity of e,—the accumulation phase can be performed
without any message-passing between the CM_2 and the front-end computer. Consequently,
prior to any compuiation, the memory of processor p is loaded with the following one-dimen-
sional arrays:

Proc_att..to_node For each node connected to e,, it contains the identification of the processors
that are mapped onto elements which are also connected to this node. These
are stored in a stacked fashion.

Pointer This is a pointer array. It stores in position i the location in Proc_att_to_node
of the list of vps that ate attached to the node in the ith local position.
Location For each entry in Proc_att_to_node, this array specifies the local position of

the shared node in the processor that is mapped onto an element adjacent to e,

The above arrays are set up by the dedicated finite element mesh analyser which was prescnted
by Farhat et al.'* They require about 80 integer words per processor. Clearly, this 1s a very smail
overhead. The mechanism of these arrays is depicted in Figure 8 for element 1. The mesh patch is
composed of shell and beam clements.

There is, however, one penalty associated with assigning one element to each vp. The nodes
which are common to several elements are duplicated in their corresponding processors. As
a result, about 11 per cent of the total memory available on the CM_2 is wasted. This is a small
price for the highly parallel computations that are achieved. Given the low cost of memory
nowadays, this seems a worthwhile trade off. Moreover, this assignment allows I,O manipula-
tions and graphic post-processing to be trivially parallelized. At each ume step, after the nodal
displacements are found. all of the processors draw concurrently the outline of their assigned
clements on the Frame Buffer and send back the results to the front end in parallel.

5. THE DECOMPOSITION/MAP ~NG STRATEGY

Since the mech irregularitics inhibit the exploitation of the NEWS yrid, we rely on the data
structures of Section 4 to guide the router during interprocessor communication. However, there
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Figure 8. A distributed data structurc for interprocessor communication

is still one additional problem to resolve. Efficiency in massively parallel computations requires
the minimization of both the distance that information must travel and, more importantly, the
‘hammering’ on the router. In the case of finite element computations, this implies that adjacent
elements must be assigned, as much as possible, to directly connected processors, and contention
for the wire connecting neighbouring chips must be reduced. This defines the mapping prob-
lem—that is, it defines which hardware processor is to be mapped onto which finite element of
a given mesh.

Farhat'® developed a heuristic algorithm for mapping massively parallel processors onto finite
element graphs and presented some analytical results for corresponding efficiency improvement.
Basically, the algorithm searches iteratively for a better mapping candidate through a two-step
procedure for the minimization of the communication costs associated with a specific parallel
processor topology. Because it seeks a very fast solution for a machine with thousands of
processors, this algorithm does not guarantee ‘the’ optimal mapping. However, it has prctuced
very encouraging results on a variety of non-uniform two and three-dimensior.. meshes.

In this work, we adapt the mapping algorithm of Reference 16 to our target parallel processcr,
the CM_2. The 65 536 processors of this machine are packaged 1nto 4096 16-processor chips, cach
having its own router node. The 4096 router nodes are arranged in a hypercube of dimension 12.
To cope with this topology, we proceed in two steps. First, we decomposes the given mesh into
4096 submeshes, cach containing 16 connected finite clements. Next, we apply the mapper given
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in Reference 16 to identify which hardware chip is to be mapped onto which submesh. Finally,
within each submesh, the clements are numbered randomly between the chip number and the
chip number + 15.

Given a finite element mesh, there are several ways to decompose it into 16-element submeshes
(see for example Farhat'” and Malone'8). Here, cach submesh is to be assigned to one chip of the
CM_.2. In Figure 9, 10 and 11, we show two different decompositions for a discretized square
domain, D, and D,.

Both decompositions yield 16 submeshes, each with 16 adjacent elements. Decomposition D,
was designed to minimize the communication bandwidth—that is, the maximum number of

. .- . Figure 9. Domain to be decomposed

Figure 10. Decomposition D, —bandwidth aumimization




C. FARHAT. N. SOBH AND K. C. PARK

Figure 11. Decomposition D,—interface minimization

different chips with which any chip needs to communicate. It can be seen (Figure 12) that for D,
the bandwidth equals 2, while for D, it equals 8.

It should be remarked that, if the substructuring approach'*-!3 had been chosen—that is
assigning a subdomain to a physical processor, D, would have been more efficient than D,. For
this decomposition, each chip would buffer the contributions of its interface nodes and send only

Figure 12(a). Interchip commumcation pattern for D,
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§ 2 3 4 H ¢ 1 8 ? 10 i1 12 13 14 15 16

1 X X X

2 X X X X X

3 X X X X X

4 X X X

s X X X X X

s X X X X X X X X

b X X X X X X X X

3 X X X X X

9 X X X X X

10 X X X X X X X X

i1 X X X X X X X X
12 X X X X X
12 X X X

14 X X X X X

15 X X X X X
is X X X

Figure 12(b). Interchip communication pattern for D,

two messages. one to the chip at its left and another to the chip at its right. The decomposition D,
requires the same chip to send up to 8 buffered messages. These messages would eventually be
shorter, but would still render D, more expensive because of message start-up costs. However, we
have opted for a virtual processor approach—that is assigning one element to a virtual processor,
for reasons that are given in Section 8. For this case. processors exchange information one node at
a time, so that the number of interface nodes associated with a decomposition is more important
than its bandwidth. The reader can confirm that decomposition D, delivers 255 interface nodes.
while D, delivers only 93. Indeed, there is another equally, if not more important, reason why D,
is better for the CM_2 than D,. In the case of D,, all of the 16 processors of any chip communicate
simultaneously with a set of processors which are on the same neighbouring chip (Figure 12\ This
generates a significant amount of contention for the single wire that connects these two chips. In
the case of D, however, one can observe (Figure 14) that:

e for cach chip, only 12 out of the 16 processors communicate with processors onto another
chip

e only 3 processors out of these 12 communicate simultancously with the same nerghbouring
chip, so that much less contention occurs for the wire connecting the two chips. We recall
that each chip is connected with up to 12 other ones using 12 different wires which can
operate in parallel.

The decomposition D, was obtained using a general purpose finite clement decomposer
presented by the first author in Reference 17. We advocate its use in conjugation with the mapper
given in Reference 16 for massively parallel computations on the CM_-2. The efficiency improve-
ment potential of this preprocessing phase is demonstrated with the following finite clement wave
propagation problem. Plate 2 shows the discretization of a tapered cantilever beam. The beam 1s
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Figure 13. Wire contention induced by decomposition D,
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Figure 14. Wire traffic for decomposition D,

modelled with 4-node 1soparametric clements and linearly elstic plane stress constitutive equa-
tions. It is fixed at one end and subjected at the tip of the other to an impact point loading. The
wave propagation nature of the problem dictates the meshing technique to create elements which
are, as far as possible, of equal size. Since the beam is tapered, transition zones with irregular
elements had to be introduced. Other mesh irregularities are due to the presence of a region with
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a hole. The complete mesh contains 8192 elements. which corresponds to an 8K CM_2, The use
of a naive mapping (element i into processor i — 1) would have resulted in a maximum routing
distance between adjacent clements equal to 9. Our decomposer, mapper reduces this distance to
5. If EFF denotes the efficiency (speed-up per processor) of the parallel computations using
a naive mapping, and f is the factor by which the decomposer,mapper reduces the maximum
routing distance between adjacent elements, the theoretical improved efficiency!® is given by

EFF* = ——l—— (5)

(37

For this problem, we have measured an efficiency EFF = 40 per cent on an 8K CM_2. Since
f=9/5, the predicted improved efficiency is EFF* = 54 per cent. A second run of the problem
using the decomposer;mapper has revealed a measured improved efficiency EFF* = 60 per cent.
The discrepancy between the predicted and measured improved efficiencies is due to the fact that
(5) does not account for the wire contention problem.

6. FLOWCHART OF THE MASSIVELY PARALLEL TRANSIENT SIMULATION

The overall organization of the solution on the CM_2 of a transient dynamic problem using the
explicit central difference algorithm is depicted in Figure 15. It consists of four phases, namely:
mesh preprocessing, data loading, number crunching and data unloading.

A conservative stable time step for the central difference algorithm is given by

2

h<

— (6)
Wi

where wi€}, is the maximum element frequency of the undamped dynamic problem. Belytschko
has pointed out that it is in fact usually not practical to compute the maximum eigenvalues of the
element directly, for this would increase the cost of computation considerably.!” Instead,
formulas for upper bounds on !¢, have been recommended. However, on massively parallel

Read Input File (Front End)
Decompose Mesh and Form Parallel Data Structure (Front End)

Load Parcllel Data Structure (Front End - CM_2

Compute Lumped Mess Matriz (CM.2)
Compute Critical Time Step (CM_2)
Loop on Time Steps (Front End)
{
Compute Internal and Ezternal Locel Forces (CM_2)
Assemble Global Forces (Interprocessor Communication)
Compute Velocities, Dusplacements, Strains and Stresses (CM.2

Visuahze Resufts (CM.2 - Frame Buffer)
Archive Results (CM 2 - Data Vault)

Figure 5. Solution of a transient problem on the CM.2
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processors such as the CM_2, the parallclism inherent in the computation of !}, is such that this
frequency is obtained at the cost of the frequency of one single element.

The interprocessor communication mechanism for a mesh with more than one type of element
is illustrated in Figure 16. For the example shown, the 4-node elements are activated first. They
communicate in four steps, one node at a time. Next, the 4-node eleme:nts are de-activated and the
truss elements are selected. These communicate in two steps. As explained in Section 2.2, the
serialization between different types of elements is due to the SIMD nature of the CM_2.

7. EXAMPLES

In this section. we apply our approach to massively paralicl finite element explicit computations
to the solution of various transient problems on an 8K CM_2 with Weitck accelerators. We
analyse performance results in detail. We assess the efficicncy of our decomposition.mapping
strategy at reducing communication time. We highlight the impact on machine performance of
variations in mesh topology, finite element modelling and problem non-lincanties. We also report
on the performance of the Data Vault system for problems that arc [;0O bound.

For cach example. two simulations were carried out. The first one assumed a lincar elastic
material. In the second simulation. the matenal was assumed to have an clastoplastic behaviour
governed by a von Mises yield condition.
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7.1. El: Transient response of a cracked aluminium plate

The quarter of a mesh in Figure 17 was generated to study the dynamic response of a cracked
aluminium plate under a uniform time varying loading. The full mesh contained a total of 4008
plane stress elements and 4073 nodes. Mesh irregularities were induced by transition zones. The
NEWS grid could not be used.

7.2. E2: Wave propagation in a three-dimensional bar

The second example considered was the impact of a metallic bail on an unsupported glassy bar.
The bar was discretized using 8160 brick elements (Figure 18). The finite element mesh contained
13 500 nodes and 40 500 degrees of freedom. Given the regulanty of the discretization. the NEWS
grid was used for interprocessor communication. This example was also re-run using the router
for performance comparison.

7.3. E3: Shuttle docking induced vibrations in a space station

This dynamic analysis was carried out to investigate the vibrations of a space station model
assembled from 3-m erectable struts. These vibrations were assumed to be induced by a shuttle
docking. The finite clement model (Figure 19) comprised 7584 three-dimensional truss elements
and 2304 nodes. It was generated by aligning identical cells along various axes. However. cach cell
by itself was irregular and did not allow the use of the NEWS grid.

7.4. E+: Three-dimensional glassy bar on an elastic foundation

The wave propagation example problem E2 was repeated with different boundary conditions.
The glassy bar was assumed to be supported by a layer of foam. The mesh was comprised of

AN/ AT AT AR
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100 Lidld b b 3 3 A1333 3
333 )u gt g 343 b 3 333 0000
ISSsSeay Lili1 -~ FUe 3

Figure 17. A quarter of 3 mesh for a cracked plate




tok

46

C. FARHAT. N. SOBH AND K. C. PARK

7

\\
\s\

\\
N
AN
\‘
NN

\‘
\\
AN

N\
N\
AN}

\ A
ANN

N

SN N
\‘1
N

AN
\
N\
N
N\
AN
N\
\\ ; \\
N\
\‘
NN
AN
N

\‘
\N
N

AN

NN Y

N
)
\‘
AN
\‘
\N
N
N

L

I ]

paty’ ”//

Figure 18. Finite clement discretization of a glassy bar

Vo N Y VY

AV AV VAV ATAAV NN

\J

Figure 19. A space station model
+



TRANSIENT FINITE ELEMENT COMPUTATIONS 47
a total of 8164 elements (which is very close to the number of elements in the former mesh), of
which 1636 truss elements were used to model an elastic foundation.

7.5. Performance results and analysis

The large majority the code segments was written in C*. Occasionally we have used Paris
functions to speed up some manipulations. Floating-point arithmetic was performed in single
precision (32 bit words). Measured performance results are gathered in Tables II. 111, [V, V and
VI. The reported Mflops rates account for every integer and floating point operation, whether
used for addressing or number crunching. Only example E2 could make use of the NEWS grid.
However, all timings, except those given in Table VI, correspond to runs where communication
was carried through the router. Execution times are given in seconds and correspond to a sample
of 2000 time integration steps and a vp ratio equal to 1.

Table II. Overall measured performance for various transient finite element computations

Mesh Data loading Equation of motion Sustained
Exam. pre-processing in the CM_2 solying Mflops
El—etus: 1:04 sec 547 sec 861 sec 400
El—elastoplastic 104 sec 547 sec 1033 sec 480
E2—elastic 1-98 sec 31-78 sec 4139 sec 392
E2—elastoplastic 198 sec 31-78 sec 4718 sec 440
E3~—elastic 1-28 sec 13:56 sec 887 sec 254
E3—elastoplastic 1-28 sec 13:56 sec 896 sec 256
E4—elastic 2:11 sec 33-00 sec 4770 sec 340
Ed4—-+lastoplastic 211 sec 33-00 sec 5440 sec 386
Tabte 1[1. Data Vault system performance
) Solving equation Unloading results Unloading results
Exom-is of motion on front end on Data Vault

El 861 sec 5340 sec 3-81 sec

E2 4139 sec 16400 sec 12:61 sec

E3 887 sec 9500 sec 704 sec

Table 1V. Computation vs. communication

Solving equation
of motion

Computation

Communication

Example time time
El 861 scc 460 sec 401 sec
E2 4139 sec 1959 sec 2180 sec
£3 887 sec 260 scc 627 sec
E4 4770 st 2340 sec 2430 sec
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Table V. True communication time

Computation Effective Software

Example time communication time overhead
Et 460 sec 81 sec 320 sec
E2 1959 sec 1380 sec 1280 sec
E3 260 sec 146 sec 481 sec

Table VI. Router vs. NEWS grid

Computation Communication time = Communication time
Example time using the NEWS grid using the router

E2 4139 sec 560 sec 2660 sec

The mesh pre-processing phase corresponds to the decomposition of the finizc element mesh, as
explained in Section S. It also includes the setup of the finite element parallel data structure, which
is then distributed across the processors. Both of these phases are shown to require relatively very
little computer time. It can also be observed that, in the worst case, the non-linear computations
consume only about 15 per cent additional time, This is due to the explicit nature of the radial
return mapping algorithm that was used. Because of ‘what you see is what you get', the reported
Mflop rates should be compared to those measured in Section 3 and not to the theoretical peak
performance of the machine. It should also be noted that our C* code still leaves room for further
oL.rimizations.

For examples E1, E2, and E3, the computed displacements, strains and stresses were archived
on secondary storage after each time integration step. Two solutions were compared. In the first
case, these results were brought back to the front end and stored in appropriate disk files. For that
case, the measurements given in Table III demonstrate that the amount of involved I/O
dominated the simulation total time. In the second case, the results were transferred in parallel
directly to a Data Vauit system. The speed-up provided by the Data Vault is shown to be of the
order of 1400! This parallel [/O capability is what was most lacking on carlier hypercubes.'®

If T, and T, are respectively the computation parallel time and the communication parallel
time, and N, is the number of available processors on a given parallel machine, the achieved
efficiency (speed-up per processor) can be expressed as
I NT, 1

F=— =
EFF =% Tep + Tem

4

T
T,

<p

I+

The results given in Table IV indicate that efficiencies of 53, 47, 29 and 49 per cent are achieved
respectively for examples E1, E2, E3 and Ed. If one refers to the performance results of Section 3.
it can be seen that the sustained Mflop rates reported in Table Il are consistent with these
efficiencies. At the first glance, these effictency results appear to be very pessimistic. However. they
are well above the 10 per cent often obtained on current vector supercomputers.*® The reader can
observe that the timing results for example E4 are very close to the cumulative timings of
examples E2 and E3, which illustrates the impact of the SIMD nature of the CM_2 on the MIMD
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nature of finite element computations. It should also be noted that. while th.. zommunication time
is fixed for a given mesh, the computation time increases with the complexity of the analysis.
Thus, highly non-linear formulations which include large deformations are expected to yield
higher efficiencies than those deduced from Table IV.

At this point, we give further details regarding interprocessor communication in the context of
finite element explicit computations. As outlined in Section 5, the finite elements of a mesh
exchange their local contributions one node at a time. For a given finite element, this information
exchange procedure is organized around two nested loops. The outer loop is carried over the
nodes that are connected to this element. The inner loop is carned over the neighbouring
elements that are attached to each local node. Using a C notation, this is written as:

for (node = 1; node < my_nodes; node+ + ) (7)

{
start = pointer{node]; stop = pointer{node + 1] — I;

Jor (position = start; position < stop; position+ +) (8)

{

neighbor = proc_att_to_node [position];

exchange (variable, myself, neighbor );

}
}

where my_nodes is the total number of nodes that are connected to a given finite element and
proc_att_to_node is the array containing the identification of the neighbouring eiements. Clearly,
these vanables are element dependent. The total number of communications to be performed by
one processor is determined by the product P!S) = d = (pointer[my_nodes + 1] — 1) which is both
element and mesh dependent. The CM_2 being an SIMD machine, the communication time is
determined by max,{Pi)}). For a regular mesh composed of three-dimensional iruss elements
(d = 3) or 4-node plane elements (d = 2), every node is attached to 4 elements, so that 24
communication instructions per time integration step are required for the truss element and 32 for
the 4-node plane element. However, Table IV indicates that the space station example exhibits
a longer communication tme than does the aluminium plate problem. The reason is that in the
mesh of example E3, some truss elements are connected to 12 other elements. Because of the
SIMD nature of the CM_2, the element with the highest degree of connectivity determines the
communication time. For a regular mesh with 8-node solid elements (d = 3) each time integration
step 1s followed by 192 communication steps. since each node can be attached up to eight different
elements. This is reflected in Table IV where example E2 is shown to possess by far the longest
communication time (2180 sec). In summary, :he amount of communication :nvolved in finite
element explicit computations on the CM_2 is determined by the element topology and order,
and the mesh irregularities. Because only d nodal information is exchanged at a time among the
CM_2 processors, three-dimensional and high order clements substantially increase the com-
munication ime. Mesh trregulanities also adversely affect the amount of communication because
of the 5IMD nature of the CM_2. It is interesting to note that elements which transmit physical
information across edges and faces such as those proposed by De Veubeke,*! would require much
less communication than traditional clements. The<e elements should be revisited for computa-
tions on massively parallel processors such as the CM..2.
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An in-depth investigation of the communication phase was carried out. It was found that most
of the communication time was elapsed in the header of loop (8). This lcop header involves the
quantities start and stop which differ from one processor to another in the presence of mesh
irregularities and different element types. Consequently, the front-end computer has to process
and manage several different loops rather than a unique one, which is not very efficient on an
SIMD machine. The time associated with the headers of loops (7) and (8] is referred to as software
overhead in Table V. The true time that is elapsed in effective communication among the
processors is shown to be only a fraction of the overall communication time (see Table V).

Because it was designed to handle arbitrary meshes, our C* code did not make use of the
NEWS grid package. However, a special module that incorporated calls to the NEWS grid was
written specifically for the regular mesh of example E2. Execution times for this example using
both the NEWS grid and the router are shown in Table VI. Clearly, a high price is paid for the
handling of eventual mesh irregularities.

However, the irregular pattern of communication is fixed in time. Thus, a considerable
improvement can be achieved if this pattern is evaluated at the first time step, then somehow
stored in the CM_2 for use during subsequent time steps. We believe that this is an issue that
massively parallel computer architects should investigate.

2000 Time Integration Steps
SECONDS

Tot. w. OM

S ot wo. DM

=] & cm.wo.

NI E1.Cm v

)

Figure 20. The decomposer/mapper performance
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In order to assess the performance of the decomposer/mapper module, examples, E1, E2 and
E3 were re-run with the naive shilted identity mapping (element i in processor i — 1). Figure 20
demonstrates that the true communication time can be reduced by as much as 60 per cent.
Unfortunately, the total execution time is reduced only between 10 and 17 per cent because of the
communication software overhead associated with mesh irregularitics.

8. CONCLUDING REMARKS

We have reported herein on our experience in performing transient finite element computations
on the CM_2. We have presented the architectural features of this parallel processor and
discussed their impact on finite element computational strategies. In particular, those features
which distinguish the CM_2 [rom earlier hypercubes have been emphasized. These include the
virtual processor concept and the fast parallel I[;O capabilities. The processor memory memory
size of 64 Kbits has been shown to penalize high order elements. We have also described and
discussed a domain decomposition strategy and a mapping algorithm which are suitable for
massively parallel processors such as the Connection Machine. The main idea behind the
decomposition technique is the minimization of both the amount of wire contention within
a chip, and the amount of communications between different chips. A given finite element mesh is
partitioned into 16-element subdomains which correspond to the 16-processor chips of the
Connection Machine. This partitioning is carried out in a way that minimizes the number of
nodes at the interface between the subdomains. As a result, only those processors which are
mapped onto finite elements at the periphery of a subdomain communicate with processors
packaged on different chips. Moreover, this partitioning is such that the connectivity bandwidth
of the resulting subdomains is large enough to allow an efficient use of the interchip wires. The
mapping algorithm attempts to reduce the distance information has to travel through communi-
cation network. In essence, the algorithm searches iteratively for an optimal mapping through
a two-step minimization of the communication costs associated with a candidate mapping.
Various issues related to the single instruction muitiple data stream nature of the CM_2 and
pertinent to computational mechanics have been addressed. Measured performance results for
realistic two- and three-dimensional transient problems have been reported. Three-dimensional
and high order elements have been shown to induce longer communication times. Mesh
irregularities have been shown to slow down the computation speed in many ways. The Data
Vault has been demonstrated to be very effective at reducing the [/O time.

Now, we briefly highlight some additional implementational and theoretical issues that we
hope will matenally advance the application ranges of finite element computations on this highly
parallel processor.

8.1. Virtual processor ratio vs. substructuring

In this work. we have assigned when possible more than one finite element to a single processor
using the virtual processor feature of the CM_2. However, another way to obtain the same result
i5 to assign a substructure to an individual processor.'* '3 From a numerical point of view. both
approaches are equivalent. However, these two distinct approaches differ in their implementa-
tions and may perform differently. The substructure approach requires each processor to work
with both external and internal data structures. The set of xternal data structures stores
wformation about substructure interconnections. These are similar to the ones described in this
paper. The set of internal data structures stores the connectivity table of the elements within
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a substructure. The computations within each substructure are carried out by looping over the
elements of that substructure. The advantage of this approach is a saving in storage since the
substructure internal nodes are uniquely defined, and a faster computation of the results
associated with these nodes. Moreover, the global results at the internal nodes can be accumu-
lated without any explicit call to a message-passing function. The global quantities at the
boundary nodes are accumulated using the router and the external data structures. However, the
substructuring approach requires that the sequencer broadcast the same instruction several
times, once for each element of the substructure, which increases the overall wall clock execution
time. Moreover, this approach does not allow the Weitek chip to pipeline the computations over
the elements of the substructure.

On the other hand, the virtual processor approach requires that each element communicate
explicitly with its neighbours, even if these are assigned to the same processor. Of course, this
communication is virtual since it is within the precessor itself and generates minimal additional
overhead. On the positive side, the virtual processor approach utilizes only one type of data
structure and exploits the pipelining capabilitieis of the Weitek chip. The latter feature signific-
antly enhances overal performance, as demonstrated in Section 3. Consequently, we advocate the
use of the virtual processor ratio rather than the substructuring technique, especially if the
processor memory size is to be increased in the future.

8.2. Implicit algorithms and the CM.2

In this report, no attempt has been made to design a novel parallei algorithm for the solution of
the differential equation of motion. We have selected the central difference algorithm because of
its inherent parallelism, which allowed us to focus on implementational issues and to fully explore
the multiprocessing capabilities of the CM_2. Qur experience suggests that a whole class of
explicit and semi-implicit dynamic and static algorithms can be implemented on the CM_2 in
a very similar way. Among others, we cite the EBE algorithms,>? the EBE preconditioners*? and
the Jacobi preconditioned conjugate gradient algorithm.?* However, the solution of some static
and transient problems may necessitate the use of an implicit algorithm, which usually implies the
solution of a set of simultaneous banded equations. If the global symmetric stifiness matrix K is
banded, with semi-bandwidth b, then it is well known (see for example Ortega and Voigt*%) that
Gaussian elimination methods for solving Kd = F allow at each step on the order of b2 pairs of
( +, x) to be processed concurrently, but require significant communication because the b entries
of the pivot column must be made available to all other processors. Several parallel algorithms
based on these elimination methods were designed for finite element applications and were
implementated on carlier hypercubes (sec for example, Farhat and Wilson*® and Utku ez al.*”).
Typically, a processor was assigned to a set of matrix columns. Results from our previous
experience with the carly version of Intel's iPSC suggests that direct solvers are feasible on
hypercubes only when the number of available processors, N,, is much smaller than the
bandwidth b of the given finitc element problem, so that communications do not dominate
computations. On the iPSC-1, a message that was sent from one extreme corner of a 3-di-
mensional cube to the other would result in an clapsed time 475 times longer than the time to
perform a floating point multiplication (see Rudell.*®). However, on a 10-dimensional subcube of
the CM_2 we have measured the ratio of a broadcast to a floating point computation to be only
about 2.87. This observation suggests that. for problems with b > 360. a processor could be
mapped onto a few matrix entries and a parailel direct solver could be feasible on the CM_2. For
problems with smaller bandwidth, direct solvers which operate on more than one pivot at
a time*?-2? should also be investigated sor implementation on massively parallel f-ocessors.
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There is w1 additional issue which has to be examined before attempting to solve finite element
equations on the CM_2 with a parallel direct solver. This issue is related to the balance on
massively parallel processors between the number of available processors, .V, and the processor
memory size. Let M" denote a two-dimensional regular n by n finite element mesh, where n is the
number of elements along one side. If d is the number of degrees of freedom at a given node, the
semi-bandwidth of M" is b= d(n + 3) and the total number of mathematical unknowns is
N = d(n + 1)% For this mesh, the storage cost of K amounts to Nb = d*(n + 3)(n + 1)* words.
The total amount of storage available on the CM_2 is § = N,*m,, where N, is the number of
available processors and m, =38 Kbytes is the current size of the processor memory. Let
NE = n?,, be the maximum number of elements for which M” has a banded stiffness matrix that
can be factored in-core on the CM_2. Table VII gives the values of NE for different values of
d and for the case of a fully configured Connection Machine (N, = 65536). Values of NE are
shown for both single precision (32 bit words) and double precision (64 bit words) floating point
arithmetic.

Clearly, except for the case where d = 2 and floating point arithmetic is done in single precision.
NE is smaller than N,. Similarly, the case where M" is an n by n three-dimensional regular mesh is
assessed in Table VIII for various values of d.

For this case, NE is much smaller than N, even for d = 2 and for single precision floating point
arithmetic. For d = 6 (some shell elements), only 8000 elements (4000 elements) can be included in
M" when computations are carried out vsing single precision (double precision) floating point
arithmetic.

It is noted thut the eventual solution u« « system of equations is only one phase of several finite
clement computational sequences. [n linear three-dimensional analysis, this phase dominates the
computer execL'ion time. However, in the non-linear analysis of flexible space structures most of
the computational time is usually spent in modules that perform element level computauons.?!
These include the evaluation of generalized nodal internal forces and,'or elemental stiffness
matrices. Consider now a mesh M” wher: the number of elements .VE is chosen so that the upper
part of the banded stiffness matrix K fuls the .V, processor memories completely. The preceding
complexity analysis demonstrates that the balance on the CM_2 between the number of
processors and the memorv " e of 2ach processor is such that VE is much smaller than V,.
Hence, if a direct algorithm 1. used to solve a finite element system of equations. the .V, processors
will be active during the solution phase. but N, — E processors will remain id{2 during the rest of

Table VII. Number of allowable elements vs. DOF/node for the two-dimensional case

N, = 65536 d=2  d=3 d=4 d=35  d=6

Single precision NE 102400 59536 40401 29929 23409
Double precision NE 64009 3729 25281 18769 14884

Table VIII. Number of allowable elements vs. DOF ‘node for the three-dimensionat “1se

N, = 65536 d=2 d=3 d=4 d=3 d=6

Single precision NE 29791 19683 13824 10648 3000
Double precision NE 190683 12167 9261 6859 4913
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the phases which involve element level computations. Consequently, an in-core direct solution
strategy would not efficiently utilize the computational power of the CM_2 in a highly non-linear
finite element analysis.
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