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Second, several parallel modules using the C* language have been devel-

oped to run large-scale shell dynamics problems on the Connection Machines.

These include: decomposer which takes as input an arbitrary mesh description,

and produces a set of finite element data structures that can be loaded within

one generic CM2 chip; mapper that assigns each of the data structures produced

by the decomposer to a well defined chip; residual evaluator that controls the

direct calculation of element residuals; element library that includes var-

ious finite elements; and visualization kernel that greatly facilitates the

understanding of the computed results.
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SUMMARY

This is a final report on the research project supported by the Naval Research Laboratory
under Grant N00014-87-K-2018, entitled Development of Improved Modeling and Analysis
Techniques for Dynamics of Shell Structures, which covered the period of 09 June 1987
to 08 June 1990. The objectives of the research have been: 1) to develop modeling and
computational techniques suitable for the dynamic analysis of naval shell structures, and
2) to investigate, implement and evaluate tools for concurrent processing of very large
structural engineering problems on the Connection Machine.

I. Research Accomplishments

Task 1: Shell Structural Modeling Techniques

This task consists of two related efforts: 1) improvement of the ANS shell elements (Refer-
eies 1 through 4) to be; ter capture the coupling effects of mambrane-bending, membrane-
transverse shear, and beliding-transverse shear phenomena; 2) modeling techniques for
improving the modes and mode shapes of 'dry' shell structures, particularly for the inter-
mediate frequency ranges.

As a results of the first effort, Aashell element software module was implemented and
delivered to NRL and its theoretical aspects was documented in References 13 and 14.
Specifically, the new version of the ANS shell elements pass the patch test and considci ably
streamlined, resulting in substantial computational efficiency.

Regarding the modeling of shell structures by the finite elements for accurate intermediate-
frequency computations, our initial effort began with tailoring of the mass inatriccs as
documented in Reference 7. Even though such mass-matrix tailoring gave ribe to a signifi-
cant improvement of low-frequency computations, it fell short of yielding alny appreciable
improvement on intermediate to high-frequency computations. This has led us to tailor
not only the mass matrices but also a component-by-componcnt tailoling of btiffncs matli-
ces. For example, the tailored stiffness matrix consists of the tailored membrane, tailored
bending and tailored transverse shear stiffness matrices. The synthcsis to realize such a
tailoring was facilitated by the use of the symbolic analysis technique de- eloped Ilevioubly
in References 8 through 11.



The so-called frequency-window tailoring of finite element model, as applied to bars and
beams (Reference 12) demonstrates that it can accurately obtain very high-frequency com-
ponents with relatively coarse finite element grids, about a facto:- of five to tell times larger
element size that has been possible in conventional finite element modeling. This improve-
ment, if proved to be the case for general shells, can have a significant impact on the finite
element modeling capability of structural acoustics problems in the future.

Task 2: Parallel Computations on the Connection Machine

This task has focused on the use of the Connection Machine as applied to the explicit tran-
sient analysis of 'dry' shell structures. Our experience has been documented in References
5 and 6. In addition, a framebuffer generated visualization of the transient analysis of a
generic submarine structure was produced as a video tape and delivered to the NRL tech-
nical monitor. Specifically, our effort concentrated on the development of several modules
using the C* language provided by the Thinking Machine Corporation. The modules de-
veloped so far include: decomposer which takes as input an arbitrary mesh description, and
produces a set of finite element data structures that can be loaded within one generic CM2
chip; mapper that assigns each of the data structures produced by the decomposer to a well
defined chip; residual evaluator that controls the direct calculation of element residuals.
where "direct" means that no element stiffness matrices are evaluated; and clement library

that includes a 3D 2-node truss, a 3D 2-node Bernouilli beam, a 3D 2-node Timoshenko
beam, a 3D 8-node brick, a 2D 4-node quadrilateral and a 4-node ANS shell element. These
modules, when interfaced with visualization kernel that was developed under AFOSR and
NSF grants greatly facilitates the understanding of the computed results.

Our experience so far indicates that this highly parallel processor can outperform vector
supercomputers such as the CRAY family on explicit computations but not on implicit
ones. Based on the observations obtained during the present study, the following is a
summary of the key conclusions:

(1) The current CM2 processor memory size of 64 Kbits penalizes high order elements
in the sense that only small VP (virtual processor) ratios can be achieved. Thus tile
current configuration favors simpler elements. (This restriction should disappear in
future CM2 models which will have 1Mbit of memory per processor.)

(2) Mesh irregularities slow down the computation speed in various ways.

(3) The Data Vault is very effective at reducing I/O time.

(4) The Virtual Processor concept outperforms substructuring.
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ABSTRACT

A frequ-ncy.window tailoring tcchnique is proposed for improved finite clement modeling
of structures for frequencies and their mode shapes in tLe acoustic range. The technique
is based on the tailoring of three element attributes: frequenc) -tailored mass matrix, en-
hancement of stiffness matrix by a weighted spectral decomposition of membrane, bending
and transverse shear energy for a desired frequency range (window), and a discrete Fourier
synthesis of the resulting elemental eigenproblcm models. The proposed technique has been
applied to the vibration problems of bars and beams, which illustrate the effectiveness of
the technique over conventional finite element modeling techniques.



I . (

1.0 Introduction

The response accuracy of finite element methods applied to linear structural dynamics
problems is a furuction of both the finite element spatial discretization and the time domain
integration techniqLe applied to the coupled ordinary differential equations of the discrete
model. Traditional techniques in improving the spatial discretization obtained via the
finite element method are dominated by the so-called h-refinements and p-refinements.

In the first approach, the element mathematical formulation is held fixed while the number
of elements (and number of global variables) is increased to obtain the desired spatial
accuracy. The p-refinement, in contrast, holds the number of elements constant while
increasing the order of the displacement field interpolations within the element. This
also leads to an increase in the number of variables, but alters the fundamental element
behavior. For example, one might refine a simple one-element truss model (i.e. spring
element) by introducing a mid-point node. With a h-refinement: we would change the
model from one linear-displacement element to two linear elements which share the mid-
point node. A p-refinement, on the other hand, would exploit the additional node to replace
the linear element with a single three-node bar element employing quadratic interpolations
of the internal displacement field.

A common limiting factor for both of these refinements is that, once the grid sizes and ap-
proximate interpolation functions are decided upon, the accuracy that can accrue from the
resulting discrete model is fixed. Specifically, while the convergence of the low frequencies
and their mode shapes is in general assured as the grids and/or interpolation order are
increased, there has been lack of a systematic convergence measurement for frequencies
and their mode shapes ranging from intermediate to acoustics components. Consequently,
this lack of high-frequency convergence assessment has led t) the belief that it is hopeless
to capture with high accuracy an acoustic range of frequencies and their mode shapes by
the finite element approach within feasible computational means.

The development of consistent mass discretization [11, however, has moti,ated _ number
of investigators to study the wave dispersion characteristics of various mass modeling
procedures for finite element analysis [2-11). These efforts hhave included assessments of
mass lumping for both constant-strain and higher-order elements, and point out clearly how
mass modeling, independent of mesh size and displacement interpolation, can significantly
affect model accuracy. Park and Jensen [121 use wave dispersion analysis to provide a
systematic relatiionship between lumped and consistent mass discretizations, and show
how averaging or tailoring the mass lumping can significantly improve rc- ,onse accuracy
at specific higher frequencies. This approach is not adequate, how c cr, for obtaining
highly accurate acoustic frequency ranges, and furthermore leadb to tion diagonal mass
matrices, which are undesirable for simulation via explicit time integration methods on
massively-parallel computers. Thus, there remains a need for finite element approximations
which accurately capture acoustic components while ideally maintaining a diagonal mass
coefficient for computational considerations.
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The present paper can be viewed as an initial attempt to fill this void so that a method that
can eventually lead to adequate finite element modeling of the acoustic range frequencies
and their mode shapes. To this end, we retain the two conventional model improvement
techniques, viz., the h and p-refinements, but not to their extreme. We introduce a third
component, which first breaks down the elemental attributes, parameterizes those decom-
posed attributes, and then recombines them based on a discrete Fourier synthesis so that
the discrete characteristic dispersion curves match, for a specified range of frequencies, as
closely as possible to those of the continuum case, hence the name frequency-window tai-
loring technique. The elemental attributes usually consist of mass matrices of linear and
quadratic intcrpolations, stiffness matrices of membrane, bending and transverse shear
components of constant and linear strain interpolations. It will be subsequently shown
that the piesent frequency-window tailoring technique yields dramatically improved vibra-
tion analysis performance beyond either of the traditional methods for the same mesh size,
thus providing an adequate accuracy with an affordable mesh refinement. The rest of the
paper is ogranized as follows.

Section 2 briefly reviews the discrete Fourier analysis technique [13,14] as applied to two-
noded and three-noded bar elements. The discrete dispersion curves are then compared
with that of the continuum case. The establishment of this comparison forms the basis
for the present element synthesis or frequency-window tailoring technique. In addition,
a similar discrete Fourier analysis of a Timoshenko beam and its correlation with the
continuum case is presented. Thus, discretization accuracy of not only the membrane but
also the bending and transverse shear phenomena can be assessed in a quantitive manner.
Of particular interest from these analyses is the appearance of a pronounced jump in the
frequency for the case of the quadratic bar element, and also for the case of the quadratic
Timoshenko beam, although not as much pronounced. These jumps occur at t'ie mode
shape that corresponds to ke = 7r/2 where k is the wave number and e is the elemental
length, which is clearly at the admissible wave number range.

A parameterized tailoring of the bar element discretization is described in Section 3. For
the case of the bar, a diagonal mass is first constructed as a linear combination of the linear
and quadratic elements. A parameterized stiffness matrix is then constructed in a similar
manner. These two parameters are then determined by requiring, for a specified range of
frequencies, the discrete frequencies as close as possible to those of the continuum case.
Encouraged by the success of the bar synthesis, a similar synthesis technique is applied to
beam elements. This is carried out by introducing a three-parameter optimization process,
viz., the mass parameter, the bending parameter and the transverse shear parameter.
These results are reported in Section 4. Finally, discussions and some concluding remarks
are offered in Section 5.
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2.0 Discrete Fourier Analysis in Vibration of Finite Elements

The basic analysis tool that we are about to employ throughout the paper is the discrete
Fourier method [12-14]. There are two important properties of the discrete Fourier method
that are attractive for the present purposes: symbolic representation of the element at-
tributes and the direct comparison of the discrete dispersion curves with the corresponding
continuum ones. We now illustrate the method, for the sake of clarity and simplicity, by
way of one-dimensional bar problems.

2.1 Fourier Analysis of Bar Elements

Consider the governing partial differential equation for a uniform elastic bar given by

02u _02u
p-- t 2 E(1)

where p is the mass density, E is Young's modulus, u is the axial displacement variable,
and t and x are time and the axial position along the bar, respectively. The Fourier
transformation of (1) can be performed by introducing the following form of u:

u -- iji(wt - kz) (2)

which, when substituted into (1), yields its characteristic equation as

(1 = (kl) 2  (3)

where I is a characteristic length, k is the wave number, c is the continuum wave speed
equal to V-l, and (El) and (kl) are the normalized (nondimensional) frequency and wave
number, respectively. The characteristic equation (3) implies that, for the continuum case,
the normalized frequency wi/c is linearly proportional to the nondimensional wave number
(kl).

Let us now consider a two-noded linear bar element. Assembling a uniform mesh of two
bar elements of length I (see Figure 1), we obtain the discrete equation at the interior node
mn, as

EA
pAln= (u.. - 2Un + u,.+i) (4)

The discrete solution analogous to (2) is of the form

Ui (t) = lt~ne i (w i - k ( zi -  .))  (5)
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which, when applied to (4), yields the following discrete characteristic equation:

(1) = (kl) 2  (6)

where the discrete wave number k is defined by

Ssin 1 0 < kl <7r (7)
2

Hence, comparing (6) with (3) it is observed that the effect of discretization is embodied
in the approximation of the continuum wave number k by the discrete wave number k.

In order to extend the above analysis applicable to higher-order element interpolations, we
gene:alize the discrete Fourier analysis as follows. Instead of representing the displacements
of adjacent nodes by (5), the Fourier expansion is assumed to hold only for alternate nodes
(see Figure 1), and so consider the two coupled difference equations at nodes m - 1 and
M:

pAMim'.,_ = A(u - 2Un-I + Urn)
1 (8)

EA
pAlfm = T (urn-i - 2umn + urn+l)

Substituting (5) into (8) together with the expressions

ii - - W2 UM 1iM = _ 2Umr--1i -W2miUrn-1m"- -O2Urn

2ik U-2ikl (9)Urn--2 =-- Ur Un+l "- e-2 i-

"we obtain the following Fourier-transformed equation:

L(k,w)fi 0 (10)

where
C 2-2) - k+ )]

L(k,o, (= +e2 2-(!, (11)

U{um-i umT (12)

The characteristic equation is found by requiring a non-trivial solution to (10), viz.,
det L = 0, from which two characteristic roots are found as

5



W12 =1)

(13)

The first root clearly agrees with that of the case of single interior-node equation (6),
whereas the second does not appear to be consistent with the physics of the problem. On
a closer examination, however, it can be shown that the second root corresponds nothing
but to the r-phase-shifted case of (6). This can be explained as follows.

Note that, in terms of their eigenvectors, the first root is associated with um,-1 = eiklum,
while the second with um-1 = ei(-kI)um. Therefore, the proper wave number for the
second root is

(kl) 2 = r- kl , O< k <_ (14)

so that

(W1~ -(i (;1 )24-1 (11) 2c :2 2 l =(- 2 (5

The preceding analysis in terms of two coupled difference equations enables us to properly
interprete the multiple characteristic roots associated with high-order elements. We are
now in a position to take on the discrete Fourier analysis of quadratic bar elements.

The discretization of the bar equation (1) by the quadratic elements (see Figure 2) yields
the following two coupled difference equations:

EA
pAliim-1 = I (uB-2 - 2urn-1 + urn)

pAl.. EA2---u, =T (-Um-2 + 8 Urn-1 - 14u, + 8 um+l - Utn+2)

where the first is for the mid-node and the second for the end node and a diagonal mass
matrix is used. The discrete Fourier-transformed operator L for the above 3-noded bar
equations and the resulting characteristic equation can be derived as:

q(k,w)= [2-( )- (1 + e2ikl)

7re 2ikl) 7 cos2k I (1 _ 2 ]
) 2 4

1 ck- +3(1-cos2kl) = 0 (18)
C ~ 2
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Figure 3 compares the dispersion curves obtained for the linear and quadratic elements,
as compared with that of the corresponding continuum equation (1). By invoking the
same interpretation discussed in conjunction with the double roots given by (13) for the
linear element, the upper root of the quadratic element is plotted versus the redefined wave
number 7r - ki. It is clear from the results that the quadratic element performs better than
its linear counterpart for an equivalent mesh size.

It is also noted, however, that the quadratic element gives rise to a discontinuity in the wave
number/frequency relation at ki = 7r/2. That is, there is a range of frequencies the discrete
model will simply "skip" over. As this discrete "forbidden" zone occurs in the middle of
te spectrum of discrete behavior for the element mesh, it can be of particular concern
and importance to acoustics and wave propagation analyses. Hughes [15], in studying
mass matrix formulations and their effect on low frequency convergence for course meshes,
produced numerical results consistent with the discrete Fourier analysis for quadratic bar
and beam elements.

Figure 4 illustrates how dramatic this behavior can become for the solution of transient
dynamics problems using quadratic bar elements. It shows the power spectral density of
a nodal displacement response for a random initial displacement input, using a uniform
mesh of 25 quadratic (3-node) bar elements and an implicit mid-point time integration
algorithm. The "forbidden" discrete frequency zone in the range of frequences between
1.45 and 1.75 verifies numerically the Fourier analysis results for the quadratic bar element
shown in Figure 3. Such forbidden discrete frequency zones, if they persist for quadratic
elements such as 6 and 9-node shell elements, 10-node tetrahcdral solids, and so forth, will
have a profound effect on their ability to capture accurately high-frequency responses.
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2.2 Discrete Fourier Analysis of Timoshenko Beam Elements

The strong form for the transverse beam vibration problem is the following sct of coupled
differential equations

82w /8 2 w89\

pd-Ot = GA X2 -_ (19)

pI- = EI--2 - GA aw - ja t2  8x _X2 - U

where A and I are the cross-sectional area and moment of inertia, G is the shear modulus,
and w and 0 are the transverse displacement and generalized rotation, respectively. The
Fourier solution of (19) is assumed to be of the form

1 - fio0e
i (w t - k x )  (20)

where

fU=LW 9jT

fi0 = Lw0  J T

wo = W(x t = 0) (91)

Oo = O(X = 0, t = 0)

leads to the transformed system

L(w,k)fiO = 0 (22)

with the continuum Fourier matrix operator, L(w, k), given by

- ~2+ \(kl) 2  
!L -iAl(kl) 123L~, ) _A](23)

i_(kl) )2 + 1(kI)2 +

where
w = A = Vr-i1E, -y = I/Al2  (24)

and the continuum frequency equation derived from (23) is

(~4- [(A + 1)(kl) + -] + (U)" = o (25)

By inspection, there are two roots of (25) for each wave number value, and thus two unique
vibration modes, the bending and the shear wave modes, which are plotted in Figure 5.
The shear wave is associated with extremely high frequencies and not of primary concern
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to the dynamist; hence we will focus on element tailoring only with respect to the bending
mode.

For the case of the two-noded linear beam approximation, a similar procedure as employed
for a linear bar element leads to the following discrete Fourier matrix operator, L(w, k),
given by

[-) (-)2 + A(k1I) 2  -iAl(!l)Var ]
L(w),k) = ,Cz)/ ( )2 + }(1l)2 +(26)

where k is defined by (7) and oer is given by

ar= 1 (l) 2  (27)
4

Therefore, the discrete frequency relationship for the linear Timoshenko beam element is
given by

(~4 _ [(A + 1 )(1-1)2 + eAr] + 1)4 = 0 (8

Figure 5 shows the resultant linear element frequency/wave number relati..nshipi obtained
from (28), along with the corresponding continuum results from (25). Jus o as with the bar
element, the linear beam element converges quite well at low frequencics, then gradually
diverges from the continuum curve.

Similarly, for the case of a three-noded quadratic beam element, utilizing the transverse

shear and bending stiffness and the lumped mass matrices, we obtain the discrete Fourier-

transformed matrix operator L as follows

L Q = s~hear + K beding - ) MIUMped (29)

where

[ ~~2 2A0- 1 2ikl) L (i + e2ikl)1

Koshear 0A ,k ((- k) 2i+ -" (30)-1+ e-2'' A( (" ( .-- -- -t (I. - i t ) " .- 2k,) iAl ('h, 2kI)

2k)+ -2ikl) _iA (sin 2k1)
(- C- _f 1 L(2 - cos 2kl).

[0 0 0 0
K- 0 --n (o A ( 3 1 )'0 00b(1id +0 e-2ik)- ( +c2k) (

[0- (1 + o~1 i-x(7 co,2kl)]



10 0 0

Ml1umpd = 0 0 (32)0 0 1/2 0 ()
1-/2

from which the following characieristic equation results:

(1) (W,) 6 ±C(+W1 S~?± (33)+C c - + C2 + C3 + C4l""(3

where

c = A(cos2kl-4)-(A + ) 11+ cos2k1

C2 = 3(1 - cos2kl)(A' + 1)+ A (1 - cos2k +l) + 1+ cos2k1)

A " (34)
+ (61 + 10 cos 2k1 + cos2 2k1) + -(11 + cos2k1

+127y 4 '

c3= 3(cos 2k1 - 1)(11 + cos 2kl)(A + I) + (cos92k1 - 26 cos 2k1 - 47)
2 -y

C4 "- (I - cos 2kl)2

Figure 6 illustrates the characteristic frequency vs. wa, number relation represented by
(33), along with the corresponding continuum curves f-,m (25). As with the quadratic
bar vibration, the quadratic beam displays the frequency jumping phenomenon in both its
bending and shear wave curves, although it is not as pronounced as in the case of membrane
waves approximated by standard quadratic bar elements. At this point the analyst might
conclude that, as the quadratic beam elements do not exhibit as pronounced forbidden
discrete frequency zones as that found in the bar element, it may not be of conc(.rn for waves
other than membrane cases. In the next section, however, we show that, while tailoring the
element through parameterization can lead to overall improvements in performance, the
analyst must be careful to avoid "over-optimizing" the higher frequency ranges as it may
tend to accentuate the frequency-jumping phenomenon inherent in highcr-ordcr elements.
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3.0 Frequency-Window Tailoring of Bar Elements

We have shown in the preceding section that the discrete Fourier analysis can, for a uniform
mesh size, give an analytic/symbolic characterization of the finite element diseretizations.
For vibration analysis purposes, these characterizations can then be used to assess quantita-
tively the discretization accuracy as they can be directly compared with the corresponding
continuum characteristics, viz., wave dispersion characteristics. Thus, the disc:n-te Fourier
analysis technique can be applied not only for the prediction of the rcsultinj,, discrctiza-
tion for vibration analysis, but more importantly for the tailoring of clemexl. attributes
in order to improve the finite element model accuracy. For example, it was sllown in [12]
that, for a given clement stiffness matrix, a tailored mass matrix as a linear c.)mbination
of the lumped and consistent mass matricies can significantly improve the .ccuracy of
the low frequencies and their mode shapes. However, little improvement can '.e made for
high-frequency components only by mass-matrix tailoring.

In order to improve the accuracy of the finite element models for the high-frequency com-
ponents, we are motivated to tailor the element stiffness matrices for a given nodal pattern
in addition to mass tailoring. A simple case to test such a stiffness tailoring concept is
to employ a three-noded discrete nodal pattern for a bar so that one can work with two
di-rete element stiffness matrices: a 3 x 3 quadratic element stiffness matrix and the as-
s:"'bled stiffness matrix of two linear elements. Hence, we obtain the following threc-noded
t, .. ored element mass and stiffness matrices:

M = otmM qu adratic + (1 - am)Mmnear

K =kK quadratic + (1 - ak)Klinear

whe-e M tlnear and K linear are the assembled matrices of two linear elements, and &,n and
ak are coefficients to be determined.
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3.1 Discrete Fourier Analysis of Tailored Three-Noded Bar Element

The governing nodal difference equations at the mid-span node m - 1 and the adjacent
end node m are given by (see Figure 2)

(3 + a)iimi =(3+ ak) (m -2UmI +Un) (36)

P 3-am)iim = (3 + ak) (Umi - Ju + &ml k U,, 2 2 + )m

The Fourier-transformed discrete operator L for the tailored bar with the embedded per-
formance parameters am and ak can be derived as

L(k,)= [6+2ak -(3+ am) (_)2 -(3 + ak) (1+ e2ikl)1 ] (37
)-(3 ( +ae2 ) 6 + ak(l + cos2k/) -(3 - am) '

The characteristic equation and its roots are then found to be

c1 - C2 + C3 = 0 (38)

where
2

= am

C2 z (3 - am)(6 + 2 ak) + (3 + am) (6 + ak (I + cos 2k1)) (39)

C3 -- (6 + 2 ak) (6 + ak(1 + cos 2k1)) - 2(3 + ak)2 (1 + cos 2k1)

S) I 2c, (40)

W2= c. + /cT - 4cc 3

c ) 2  2c,
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3.2 Frequency-Window Tailoring of the Bar Element

Our objective in tailoring the bar element is to minimize the error between the exact and
discrete eigenvalues in an average sense over a finite range of the frequency spectrum.
To this end, for each frequency-window range a < kI < b, we perform the following
minimization:

min 1, [1 2 2 d(kl) (41)

subject to (3), (39), and (40).

The optimization problem posed by (41) is not easily solvable in a closed-form sense,
however, and since this element presents the simpliest form of Fourier equations that
are of practical interest, we wish to consider a numerical complement to (41) which can
be addressed by a standza quadratic optimzation technique. Therefore, the frequency-
window tailoring method is recast as

min J (42)

where

(w= n 
12

J= [1 - c discrdete (43)
i=o C exact, k,=a+-'(b-a)

subject to (3), (39), and (40).

Numerical optimization of (42) was accomplished using quabi-Newton methods with cen-

tral difference derivative approximations [16]. Both DFP and BFGS formulae were utilized

in approximating the inverse Hessian matrix, though their performance was generally com-
parable.
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3.3 Tailoring Results for the Bar Element

Twelve frequency windows were considered for tailoring of the bar element. The first six
cover the wave number range of 0 < k1 < ,r in even intervals; the results can be found in
Table 1. The last six frequency windows cover progressively wider ranges of k1 culminating
in the final result which tailors cem and ak for the entire element spectral range; these
results are shown in Table 2. In all cases, the numerical optimization used the quadratic
element parameters as a starting point, and the initial and final values of J are noted.
Figures 7 through 14 illustrate a selection of these resilts, along with the corresponding
curves for the continuum equation and the discrete linear and quadratic elements. In
all cases, the tailcring method produces marked improvements for each specified window,
most dramatically for high-frequency and/or high-wave number ranges.

4.0 Frequency-Window Tailoring of Beam Elements

Encouraged by the improved accuracy of the tailored three-noded bar elements for window-
by-window frequency ranges, this section extends the basic tailoring procedure to the Tim-
oshenko beam element. In doing so, we adopt the same three-noded beam cl-ient nodal
pattern as in the case of the tailored bar element with one important additional feature.
The tailored element stiffness matrix consists of the tailored bending and the tailored
transverse shear contributions, each of which in turn consists of a linear combination of a
quadratic and a corresponding assembled two-element linear component, viz.,

K " Kshear + Kbending

•Khear =. Iquadratic (1 linearKsea --- s3-hear + (1- ce')Kt shea r  (4
Kbndn Cb quadrati:c l . _ Finear"(4

K bending =- O .bending + (1 -a Cb)Kbending
,, Mquadratie lna

Mlumped mped -(1 -a Cm) lined
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4.1 Tailoring Results for Beam Elements

The tailoring method proceeds as with the bar element by a discrete Fourier synthesis of
the elemental eigenproblem, incorporating the resulting equations into the performance
index (43), and a numerical optimization of the performance index to obtain the tailoring
parameters a., ab, and a,. As noted in Section 2.2, the frequency-window tailoring has
focused only on the bending curve waves. If necessary, a shear wave tailoring can be
performed as well.

Results of several frequency-window tailoring can be found in Table 3 and Figures 11
through 14. Case I summarizes the tailored mass and stiffness parameters for the range
of M: < kI < M. As can be observed in Fig. 12, the accuracy improvement by the tailored
element is rather dramatic. Errors of up to 6% in predicted frequencies from the nominal
linear and quadratic elements are reduced to less than 0.5% over this entire low frequency
window. In addition, Figure 11 illustrates how the tailored element also exhibits a marked
improvement in frequency prediction over the full discrete frequency range, far beyond the
designated "design" window.

Case II lists the tailoring of mass and stiffness matrices performed in the high-wave number
range of 1 < kl < E. As Figure 13 illustrates, however, convergence within the desired
spectrum does not imply superior overall behavior (the limits of the tailored spectrum are
shown as vertical lines in the figure). Here, the optimized parameters tend to accentuate
the forbidden discrete frequency zone, and allows significant errors in the low to middle

spectrum that was optimized in Case I. These errors are as much as 60% with respect
to the exact continuum solution in this area of the spectrum. Clearly, the influence of
this "forbidden zone" is significant enough to warrant careful attention to the selection of
frequency optimization windows and performance indicies.

In addition to the aforementioned problems in low frequency ranges, 1he unconstrained
optimization of Case II resulted in parameters which lead to a negative-definite element
stiffness matrix. Thus, the performance exhibited by the dispersion curves in Figure 13
is not practically realizable. Case Ila used the unconstrained optimization results as a
starting point, then relaxed the stiffness tailoring parameters to regain the correct positive
definite character of the element stiffness while retaining much of the improved element
behavior in the desired frequency window. The issues of element feasibility and tailoring
parameter constraints are covered in more detail in Section 4.2.

The final case studied, Case III, is an attempt to optimize the overall element behavior,
producing reasonably small errors in the middle to high spectrum while maintaining ac-
curacy in the low spectrum. The result (see Figure 14) shows that the magnitude of the
forbidden zone has been reduced and the accuracy improved to within ±10% for the range
of 0 < k1 < M2, while the errors of both the standard linear and quadratic elements are
rapidly increasing as kI increases.
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4.2 Tailoring Parameter Constraints

So far, we have used unconstrained optimization techniques to determine appropriate ele-
ment tailoring parameters, by ignoring contraints that must be imposed on these variables
to ensure element feasibility. Two important considerations are the preservation of ele-
ment rigid-body modes and total mass. By using convex combinations of the linear and
quadratic element formulations, it is easy to show that these are maintained for arbitrary
values of the element performance parameters. In other words, these properties are pre-
served automatically. However, we must also preserve the positive definiteness of the mass
matrix, and positive semi-definiteness of the stiffness matrix, and ensure the optimization
does not introduce spurious element mechanisms.

For the bar element, these constraints result in the following parameter restrictions:

icmI <3 (4)

ak > - 3

Practically speaking, the restriction on the stiffness tailoring parameter is superfulous if
the element is optimized over a reasonably broad range of its spectrum, and the Fourier
analysis can be used a posteriori to examine the tailored element behavior, as it is a robust
method for identifying deficiencies in the element formulation [17]. In other words, if we
enforce the tailored mass matrix to be positive definite through an inequality constraint on
a., and the Fourier analysis identifies the vibration behavior of the element as acceptable
over its full spectral range, there is no need to constrain the stiffness tailoring parameters.

It should be noted, however, that while the Fourier analysis will identify problematic
behavior in the element formulation, the evidence can be subtle and easily missed when
examining the dispersion curve at a finite set of discrete wave number values. For example,
in Section 4.1 it was noted that the optimization performed in Case II lead to a negative-
definite element stiffness matrix. However, the negative eigenvalues found by examining
the Fourier dispersion curve for the tailored element were in the range of 0 < k1 < 10000,
in other words in the lowest .01% of the element spectrum. A more reliable method
(given the difficulty in deriving a general parameter constraint for elements more complex
than bars) would to check the positive semi-definiteness of the element stiffness matrix at
each step in the optimization process, and then limit the step size of the iteration if the
semi-definiteness stiffness constraint is violated.

With this in mind, the beam element parameter constraint is given by

lImi < 3 (46)

By using a lumped mass formulation, it should be simple to determine the mass param-
eter constraint even in the case of complex two and three-dimensional elements. The
computational overhead associated with checking the clement stiffuic.s matrix fur negative
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eigenvalues is very small compared to the basic optimization, and certainly much eas-
ier than deriving the dispersion curve at a sufficient nurrber of values to ensure element
feasibility

4.3 Numerical Results for Tailored Finite Element Models

A final issue which must be addressed is the resultant accuracy of assembled finite ele-
ment models '- -ng the tailoring methods described herein, both in terms of frequencies
and i±iode shapes. The primary utility of the Fourier analysis within the context of the
frequency-window tailoring technique is to closely correlate the temporal/spacial frequency
characteristics of the parameterized element to the corresponding partial differential equa-
tions of motion. However, if the eigenvectors of an assembled model do not correlate well
to the associated continuum wave shapes over the discrete spectrum, the model cannot
be assumed to accurately capture the continuum wave dynamics. Fortunately, through
numerical tests, it can be verified that the tailored elements maintain the mode shape
characteristics of the linear and quadratic elements on which they are based.

For the bar vibration problem, with constrained ends, the wave shapes follow the Fourier
spacial expansion used in the tailoring method. That is

-Z-(x) = sin ln = 1,2,... (47)

Figure 15 demonstrates how the Fourier uispersion curve accurately predicts the resultant
element's numerical behavior. The discrete points shown are the calculated frequencies
of a 10-elenment mesh of tailored bars, with the given param eters, plotted against the
corresponding wave number as determined by best-fitting the eigenvector of the mode to
the Fourier spacial expansion. Not only is the appicability of the Fourier analysis verified,
but the results also show how the discrete model eigenmodes uniformally cover the discrete
spectrum, as is the case with linear bar elements. Figurcs 16 and 17 show that, for both
moderate and high frequency modes, the eigenvectors of the tailored model retain the same
basic character as their linear element counterparts, which themselves exactly match the
continuum wave shapes at the node point locations. Figures 18 through 20 show similar
results for a high-frequency-window tailoring case.
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5.0 Discussions

A frequency-window t;loring technique is prese. .I for improving finite element models
that can be used to capture accurately frequencie, nd their mode shapes up to acoustic
ranges. The tailoring of the element mass and stiffness matrices is achieved by a combi-
nation of linear and quadratic elements for both bar and beam elements. The tailoring
parameters are optimized for each frequency window by minimizing the errors between the
continuum and discrete characteristic dispersion curves. For the case of beam elements,

th3 stiffness tailoring is further partitioned into a component-by-component contribution of
the transverse shear and the bending stiffness matrices. Such a component-by-component

tailoring has proved to be a key feature of the present tailoring technique.

The accuracy improvements realized by the present tailoring technique have been first

predicted by the discrete Fourier analysis. The results demonstrate that the tailored
elements dramatically improves the accuracy of both the frequencies and their mode shapes
far beyond that of the linear or quadratic elements. This is also coroborated via numerical

eigenvalue analyses. Although the results contained herein are primarily the analytical
and numerical eigenvalues of the various element formulations, it should be remember that
the f-indamental product of the tailoring methods .are the stiffness and mass interpolation
parameters themselves, which are a function of the frequency window chosen by the analyst
to optimize.

There are two overhead uspects associated with the present tailoring technique. The first is
to employ a quadratic nodal topology for constructing the tailored element matrices. The

second is to carry out several frequency window-by-window eigenvalue analyses in order
to cove the entire range of frequencies of interest. These must be more than made up by
a substantially reduced number of the nodal degrees of freedom by the present tailored
elements. For example, for the wave-number range of - < ki < 7r, the tailored bar and

beam elements yield the frequency accuracy within a few percent for k1 = 2.5 from Fig. 13,
whereas the conventional linear and quadratic beam elements must reduce their clement

sizes by a factor of about ten and five, respectively, if the same accuracy is to be maintained

by these elements.

A straightforward extrapolation of the preceding accuracy compariscn to two and three
dimensional problems would result in 100 and 25 smaller nodal unknowns when the present
technique is employed. As the extension of the present tailoring technique to plate, shell

and solid elements appear to be straightforward, a bigger pay-off of the present technique

may accrue as applied to two and three dimensional elements. For example, for shell
elements, the tailoring of element stiffness can be achieved by synthcsizing the membrane,
the transverse shear, and the bending components. This is being carried out at present

and we plan to report the results in a.future occasion.
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9

Case Window rm a JQ JilP

I 0 < k1 < 1 0.9990 1.0263 1.23 x 10-6 0.10 X 10-6

II k1 < 0.4948 1.1840 8.44 x 10- 4  0.19 x 10- 4

III k1 < _ 0.5409 1.3188 0.1018 4.60 x 10- 4

IV f < k1 < 2 0.6200 1.5631 0.1289 0.00412 - - 3
V -.r, < k1 < 5_._r 0.7439 1.9880 0.2729 0.0216

3 - - 6
-6VI 5 < kl < 7r 0.9435 2.7517 1.4866 0.0851

Table 1: Tailoring Results for Bar Element (Narrow Frequency Windows)

Case Window am ak JQ JHP

VII 0 < k- < 0.4948 1.1837 9.32 x 10- 4 0.25 x 10- 4

VIII -< h < 2.r 0.6539 1.4629 0.2136 0.0124
3 - 4-. 3

IX 7' < k1 < 7r 0.8505 2.3723 1.7977 0.3571
X 0 < k! < 0.5577 1.2887 0.1385 9.85 x 10- 4

XI -< kI < 7r 0,8005 2.1897 1.9782 0.6210
XII 0 < k1 < 7r 0.7804 2.1101 2.0701 0.7615

Table 2: Tailoring Results for Bar Element (Broad Frequ, ;y Windows)
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Case aem ak ebJQ JHP

I
Tr k1 < 1 0.6692 1.0018 0.6244 0.0048 5.1801 x 10-5

II
27r k1 < '- 1.5321 1.0854 -0.2374 32.7325 1.1998 X 10-4

Ha
27r k1 < 5J' 1.5321 1.0800 0.5000 32.7325 0.1745

III
0 < k1 < 17 0.8508 1.0331 0.6685 0.7713 0.0653

Table 3: Tailoring Results for IBeam Element
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m-1 rn m m+l

Figure 1: Nodal Geometry for Linear 2-node Line Elements

m-2 m-i m m rm+1 m+2

Figure 2: Nodal Geometry for Quadratic 3-node Line Elements
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Figure 3: Fourier Analysis Results for Bar Elements
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Figure 5: Fourier Analysis Results for Linear Beam Element
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Figure 6: Fourier Analysis Results for Quadratic Beam Element
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Figure 7: Fourier Analysis, Tailored Bar Element, Case III
Tailored Wave Range: f < k1 < M

Parameters: a,, = 0.5409, a, = 1.3188
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Figure 9: Frequency Error, Tailored Bar Element, Case VI
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Figure 11: Fourier Analysis, Tailored Beam Element, Case I
Tailored Wave Range: f ki < f

Parameters: a, = 0.6692, a. = 1.0018, ab = 0.6244
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Figure 12: Frequency Error, Tailored Beam Element, Case I

Tailored Wave Range: < ki < f

Parameters: am = 0.6692, a, = 1.0018, ab = 0.6244
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Figure 13: Frequency Error, Tailored Beam Element, Case II
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Figure 14: Frequency Error, Tailored Beam Element, Case III
Tailored Wave Range: 0 < k1 < 2,
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Figure 15: Comparison of Fourier Analysis to Discrete Bar Model, Case III
Tailored Wave Range: < k1 < f

Parameters: cem 0.5409, 'ak =1.3188
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Figure 16: Low Frequecy Mode Shape for Discrete Bar Models, Case III
Tailored Wave Range: 1< k1 < ,

Parameters: am = 0.5409, aok = 1.3188

37



0.8

0.8 Discrete Mode #17 for 19-dof Bar

0.6- Wave number ki 17*pi120

.4

g 0.21

S 0

-0.2-

S-0.4- .Exact

--Linear element
2 -0.6- --Tailored element

-0.8-

-1,
0 2 4 6 8 10 12 14 16 18 20

Position along bar length

Figuare 17: High Frequecy Mode Shape for Discrete Bar Models, Case III
Tailored Wave Range: I' < 1H

Parameters: cem, = 0.5409, ak = 1.3188
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Figure 18: Comparison of Fourier Analysis to Discrete Bar Model, Case VI

Tailored Wave Range: -< ki < 7r

Parameters: am = 0.9435, oYk = 2.7517
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Figure 19: Low Frequecy Mode Shape for Discrete Bar Models, Case VI
Tailored Wave Range: I < kI <,7r

Parameters: a,, = 0.9435, Ckk = 2.7517
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Abstract 1971; Krieg and Key, 1973), the use of a scaled diagonal
A systematic procedure for determining the lumped mass entries from the stiffness matrix (Hinton et al, 1976), a
matrix and improved consistent mass matrices has been pro- selective sum of a low order-based consistent mass matrix
posed for vibration analyses by the finite element method. (Fried and Malkus, 1975), and combinations of these.
The procedure is based on the discrete Fourier analysis which
enables one to compare the numerical approximations with Although existing mass lumping procedures are intuitively
the corresponding continuum characteristics. The procedure appealing for low-order elements such as constant strain
is applied to vibrations of bar. Euler-Bernoulli beam and plate bar, and beam bending elements, such intuitive (or ad-
bending elements. The results obtained by the present pro- hoc) procedures become quickly ambiguous for high-order
cedure clearly indicate that a judicious use of the improved elements. As a result, at present no agreed-upon lumped
mass matrices offered in the paper can lead to a significant mass matrices exist for cubic Euler-Bernoulli beams and
accuracy improvement for intermediate frequencies that can for eight-noded serendipity plate/shell elements. Hence,
play important roles in modeling of control-structure interac- there exists a lack of a systematic procedure for mass lump-
tion systems, dynamic localizations and acoustic responses ing.
for space structures and underwater vehicles.

The objective of the present paper is first to develop a sys-
1. Introduction tematic lumping procedure based on the discrete Fourier

analysis of the finite element method (Park and Flaggs,The question of mass lumping or rather the systematic 1984; Flaggs, 1988) and second to symbolically synthesize
construction of mass matrix for the vibration and zran- a series of more accurate mass matrices for vibration anal-
sient analysis of structures by the finite element method ysis when intermediate frequencies become important. To
remains to date an unresolved issue. Apparently, it was this end, the paper is organized as follows.
Archer.(1963) who first introduced a procedure for gener-
ating mass matrices based on the same displacement ape Section 2 revisits a discrete Fourier analysis of a bar mod-
functions that are used in the construction of element stiff- eled by the linear displacement approximation. A defini-
ness matrices. The mass matrices generated according to ion of the lumped mass matrix is proposed by compar-
Archer's procedure have become known as "consistent" ing the characteristic equation for the continuum bar with
mass matrices. In contrast to the consistent mass matrix, that for the constant-strain bar. A simple synthesis of an
a diagonal or diagonalized mass matrix is refered to as a improved mass matrix for the bar is proposed and its ac-
lumped mass matrix. curacy is assessed in terms of its wave dispersion curve.

Even though the use of consistent mass matrices yields for An example vibration problem with simply-fixed bar ends
most applications better accuracy in the frequency analy- is analyzed, which demonstrates the systematic nature of
sis, the lumped mass matrix continues to be prefered by the proposed definition of a lumped mass matrix and the
the practicing engineers due to its computational simplic- general nature of discrete-Fourier synthesized mass matri-
ity and a data storage saving in the computer. Such attrac- ces.
tive features of the lumped mass matrix motivated several Section 3 applies the present definition of lumped mass
investigators in the past to propose various mass lumping matrices to a cubic Euler-Bernoulli beam element. A prin-
procedures such as a row sum of the consistent mass ma-
trix (Leckie Lnd Lindberg, 1963; Tong, Pian and Buciarelli, cipal theory from the analysis of the cubic Euler-Bernoulli

beam confirms the numerically well-known result that the
lumping of the translational degree of freedom (w) and the

- Professor of Aerospace Engineering, University of Col. neglect of the rotational freedom (-) yields a most accu-
orado. Member AIAA. rate frequency prediction. The present theory succinctly
2 - Graduate Research Assistant, Department of Aerospace illustrates that such a mass matrix is the only theoretically
Engineering Science. consistent approximation. A problem analyzed by Archer
Copyright Amencan Instituce of Acronzutics and

Asronauics. Inc.. 1989. All rights reserved. 1532



is revisited in order to asses our improved mass matrix. It
is shown that the proposed synthesized mass matrix con- L(co, k) = - p  Ek2  (2-5)

siderably improves the third and fourth frequencies for a
two-element beam, thus establishing the soundness of the For our subsequent discussions, we reexpress the above
proposed synthesized mass matrix, equation as:

The present improved mass modeling for plate vibrations L(w,k) = -- 2jd'6.€ + fC,

is presened in Section 4. To this end, a Fourier analysis of with Nk-. - , f = E+ (2-6)

the frequency vs. wave number characteristics is carried
out for an infinite plate of both the continuum and finite A corresponding discrete Fourier analysis can be per-
element approximation by a four-noded element. Such a formed when the bar equation (2.2) is approximated by the
Fourier analysis is believed to provide insight into the ac- finite element method, which has been studied by many in-
curacy of vibration analysis for an infinite plate. In oder to vestigators (Bazant, 1978; Belytschko and Mullen, 1978;
utilize the mass matrix modeling based the discrete Fourier Vichnevetsky, 1982; Park and Flaggs, 1984; Celep and
analysis, finite element plate vibrations with free edges Turhan, 1987; Flaggs, 1988). A preoccupation of these
have been performed with increasing meshes. The results studies, however, was to address the effect of internal en-
obtained from the discrete Fourier analysis and numerical ergy discretizations on the wave propagation characteris-
tests for free-edge plate vibrations indicate that a best ac- tics.
curacy for an infinite plate, when analyzed by a four-node-
element, is achieved by an average of the lumped and the In the present study, we will examine the effect of kinetic

consistent matrices. For plate with finite dimensions, a energy discretizations on the frequency characteristics and

best accuracy is achievable with quarter of the lumped deduce from such a study the proposed mass-lumping pro-

mass and three quarter of the consistent mass matrix. cedure as well as a synthesis procedure to obtain improved
consistent mass matrices. To this end, let us revisit a con-

2. A Proposition for Lumped Mass Matrix stant bar element. An elementary finite clement implemen-

tation gives for a bar element of a uniform length, , the
A mass-matrix lumping procedure that we are about to following discrete equation for an interior node, m (e.g.,
propose is based on the discrete Fourier analysis. Since Park and Flaggs, 1984):
an easy example of Fourier analysis that one can perform
is the ccntinuum equation for a ba- and its discrete coun- p E
terpart, we will first introduce their Fourier analyses. We (uim-i + 4uin Um+i) -?- (tm_, - 2u, -
will then identify the Fourier operators for mass matrices. (2-7)

In a simplest term, our proposed lumped mass matrix is Substitution of Eq. (2.3) into Eq. (2.7) yields the discrete
defined as follows: Fourier operator

Let k be the ware number and Me,.. the Fourier-
transformed consistent mass matrix, then the lumped L.(o, k) = K (2-8)
mass matriz; M g ump, in the Fourier domain is defined
by where

Mggmp =lim M..c (2-1) L2O -;C-o p = ( ), ]RD " (_.o
M. -0 - K = EV (2.9)

We will now illustrate our proposition for mass-lumping
procedure via a bar element, in which the discrete wve number, i4 is defined as

The equation of motion for a uniform elastic bar can be ..= - . (2. 0)
written as

E -(2-2)

where p, E,u, . are the density, Young's modulus, the dis- For a lumped mass matrix, we have the follo-ping discrete
placement and the coordinate, respectively. Fourier operator:

The traditional Fourier analysis begins by seeking a generalLPtw, k) = - rnp D (2-l)

harmonic wave solut' on of Eq. (2.2) of the form

where
u (2.3) Mi, rn - (2.12)

with cw being the circular frequency, k, the corresponding Test of Proposed Mass-Lumping Procedure (2.1):
wave number and i = vfT. Substitution of Eq. (2.3) into
Eq. (2.2) yields Note that .,, can be expanded to read

L((4k))- = 0 (2.4) ... (2. ,3)
where the Fourier operator, L(w, k), is given explicity by n
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Hence, we. have 3. Mass-Lumr' of a Euler-Bernoulli Beam El-
ement

k-0 In the preceding section we have succintly demon.

which proves our proposition (2.1) to be valid (at least for strated that a discrete Fourier analysis can provide numer-

the bar!), ical and physical insight into mass lumping as well as can
lead to improved mass matrix approximation. In this sec-

We now address our second related task: a systematic way tion, we will demonstrate that the proposed mass lumping

of constructing consistent mass matrices that can lead to procedure is also applicable for cases that require discrate
improved vibration analysis. To this end, we note that the Fourier matrix operators.

characteristic equation that relates the wave number (k) The homogeneous differential equatioha of motion for
to the frequency (w) is obtained by setting Lw, k) = 0 for the Euler-Bernoulli beam can be expressed as
the continuum case:

A2W 04w( _ )2 = k2 (2 1 )PA -j - +  E l - T, (3 1)

where the wave speed, c, defined as c = V'E71 is constant. where A is the cross-section area of the beam, I is the
moment of inertia. With a general harmonic wave solution

The characteristic equation, Eq. (2.15), indicates that for of (3.1) of the form
the continuum solution, the wave number, k, is directly w (

w
t - k

z
)

proportional to the frequency, w, i.e., k = w/c. With c W = I (3-2)

constant, each Fourier component of a wave group will
propagate without dispersion with the same phase velocity, we obtain the Fourier operator for the beam as

To examine the effect of kinetic energy discretizations on L(w, k) = -w 2 Mezoct + .bem (3.3)

the accuracy of vibration analysis, we propose the following
simple modification for our proposed mass matrix: where Mezact = pA, 14,ear, = Elk4  (3.4)

M Ine = (1 - a) * 1 ump + a I eon (2.16) A cubic interpolation of w gives for each beam element of

where a is a constant to be determined. Note that a = 0 length t the following consistent mass and stiffness matri-

corresponds to the case of lumped mass matrix ,.-ad a = 1 ces
to consistent mass matrix, respectively. Figure 1 illustrates 156 22t 54 -1311

frequency vs wave number for the continuum bar, the dis- pAt 22t 4t2 131 -V 2

crete jar with the consistent mass matrix (a = 1) and M -, = pal. 54 13t 156 -22t
with the lumped mass (a = 0), and for an averaged mass -13t -3 2  -22t 412 J
matrix(a = 0.5). Although not shown in the figure, other
values of a can be selected in order to tailor the accuracy [12 61 -12 61
requirement for different frequency ranges. For example, _ EI 61 42 -6t 22 (3.6)

a = (0.5,0.5682, 59,0.89207289) gives a most accurate Kbed- = 3 -12 -6t 12 -6(
result for small k, ii around ir/2 and k around x, respec- 6 22 -6t 42
tively. Hence, depending upon the critical accuracy range
of interest, one can adjust the mass matrix accordingly. where the elemental nodal degrees of freedom are arranged

as

, .  conventional consistet maa(a = 1) u = Lw,01,w 2 ,o 2JT (3.7)

. L .... impro, consistent =.S) "I" XACT
2 -- continuum By assembling two interior beam elements and designating

. -- lumped man(a=O 0) a 0 . their nodes, m - 1,m and m + 1, respectively, we obtain
.the following difference equations for the mth node:

./S - ( -((54v),_ 1 + 312,). + 4u),,+ ) + 3( ,,-, -
~1.5-- -420

1.0 El

+/ +-- J-(-w,-, + 2w,- 1 - -+1) + t(-+ - - + 8.+)} °

Zo 0.5

2.0p~ 2. . {13t(-ki) + _ +' + t2 (-39__ + 3i.+&
0.0 0.3 1.0 1.5 2.0 2.5 3.0 4.5 (3,9

NORMALIZED WAVE NUMBER (ki) +-(6t(w._ - w.+) + 2t 3 (5.._1 + 4#., + ..+,} 0 (5.9)

Figure 1. Dispersion Curve for Linear Bar
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Since wi and 8i are treated independently, we seek a solu. PA 0 0 0 0 [0 t o ]tio _OM =' 420 0 0 0 I 4200i e e~wt-k) (3.10) mP4 0 La-30 a UL2 J 28i *J (3.19)

to Fourier-transform the coupled difference equation (3.8)
and (3.9) to obtain Hence, for simple elements the ad-hoc d.o.f.-by-d.o.f, row-

summation procedure is justified in view of the present
- ml proposed mass-lumping procedure (2.1). It should be men-

(-wAf 0:' + K~eom) , ) = 0 (3.11) tioned that care must be exercised in lumping matrices for
higher-order elements.

where Now, to address the accuracy associated with the choice

&11 ir12 of a mass matrix (either M1 u,, or MVo, or even their
combinations), Let us examine the characteristic equationM =pAt (3.12) from (3.11), viz,

- t2 ffi22

-t" sn + a2
1 2

2 -iw2 ,612 + ia2Lin kt 1- 12EI k2L2  iesinke I [ ' , - io2Agmn  
-W.Or22 + 02L(1 42) jl alo

Rb ,em = 1 (3.13)

-ilsin kt t2 (i - 2 a = 12B1 (3.20)

in which
3 which yields the following frequency vs. wave numberrn1 L ( 1 - ( ) + 1.5k 12 - 2

10 (3.14) equation:
i 2 2 = k( +1.O 2 2

The lumped-mass matrix, according to our proposition f (,hl - ,22 - - a' ( ,i + UiP kL -&12 + M )2 2
2

)
(2.1), for the mth assembled node thus becomes. +',' 7 0

(3.21)

1 0 where ie = 1-

, ira -o = pAt (3.15) Comparing (3.21) with its differential equation counterpart

0 _e210 (3.3), one concludes that, since r l is the translational
part, we must have

which, when translated into the element mass matrix, is
equivalent to rn 12 = 0 " f"i2 = 0 (3.22)

2 if (3.21) is to have the following form:
Ma.m = pAt - (3.16)&... (31 -W 2Munp + Kbeam = 0 (3.23)

420

Hence, we conclude that for the cubic Euler-BemoulliRemark: One of ad-hoc mass-lumping procedures is to beam element to be consistent with the original differential

sum up d.o.f.-by-d.o.f. contribution. When this ad-hoc ba lmn ob ossetwt h rgnldfeetasum p do~f-byd~o£ cntriutin, henthi adhoc equation, one must employ the following mass matrix (i.e.,
technique is applied to the element mass matrix (3.5), one = o, one m 0):

obtains: r'1 0, ri = 0):

MICmp = +WM MlumP (3.17) f210 - 54az 0 54a 01
pAt 0 0 0 0

where for the w-d.o.f.s we have M A0 0 < a < I=420 54a 0 210 -54a 0

0 0 0 0].
1 056 0 54 0

M =A [4 o 156 (. pA18) Application of (3.24) yields the following characteristic
a a a 0 a] equation:

For the -d.o.f.s -_2(1 _ +p + 4 = (25

so that we have from (3.3) and (3.25) the following fre-
quency equations
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improved consistent mass/ 1.05) improved consistent M&33O0 = .00)

-continuum 4.0 -... improved consistent Mass(a = .25) ,/

o -- umped ma(, 0) Z...- "o"nu
....- -- umped mau.Ps=0)

-ii a3.0
5.0 ,

W 2.0

S 2.5 L
1.

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5

NORMALIZED WAVE NUMBER (U) NORMALIZED WAVE NUMBER (ki)

Figure 2. Dispersion Curve for Beam with Rotatory In-
ertia Figure 3. Dispersion Curve for Beam without Rotatory

Inertia

For continuum case: In order to assess the preceding a pri'ori determination of

-J (3.26) improved mass matrix based soley on the symbolic analy-

re, sis, we have performed the vibration analysis of a free-free
beam modeled by two elements and compared the present

For the consistent matrix (3.23): results with the one performed by Archer(1963). The re-
suits are summarized in Table 1. It is observed that the

kconventional consistent mass matrix (a = 1) gives an error
._ . Zt -2)-,1 (3.21) of about 1% for the first mode, 13% for the second mode,

p (1 6 2 2) 45% for the third mode and 40% for the fourth mode.

In contrast, for an averaged mass matrix (a = 0.5), the

Figure 2 shows the frequency vs. the normalized wave corresponding errors are 27% for the first mode, 2.5% for

number for the mass matrix (3.24), that is, neglecting the the second mode, 1.8% for the third mode and 1.7% for

rotational contribution to the element mass matrix (see the fourth mode, respectively. It is noted that the sym-

Eq. (3.25)). For this case, the larger the value of a, the bolic analysis results predict a = 0.5 to be most accurate

more accurate the frequency curve becomes. while the finite element solutions indicate that a = 0.25

to be most accurate. We conjecture that this discrepancy

Of course, as shown by Archer (1963), the use of the con- is due to the fact that the finite element solutions are for

sistent mass matrix (3.5) may improve the frequency ac- finite beams whereas the Fourier analysis assumes an infi-

curacy over the lumped mass matrix (3.16). In order to nite beam. Neverthless, the accuracy prediction based on

gain insight into the role of various mass modeling on the the discrete Fourier analysis as given in Figure 3 provides

accuracy of vibration frequencies and mode shapes, we ap- a qualitative measure of different mass modeling choices.
ply our proposed mass matrix formula (2.16) by combining
(3.5) and (3.16) to obtain: SOLUTION TYPE W w, W2_W3 i

EXACT S.S944 15.481 30.26 49.945r 210- 54 22tot 54as -13&s 1
, i ( 22+ ,62(, - 3or) 13ta -3 4a c = 0.0 3.4273 28.983 41.428 50.438

420 | 54a 13ta 210 - 54a -22t .
L -13ta -3t 2c -22 2(1 + 3oc) J .25 3.7075 19.101 32.911 SO.4

(2= .50 4.0924 18.377 30.821 50.794

Figure 3 illustrate the effect of the mass-matrix averag- a =.75 4 6810 15.867 32.474 53.S99

ing based on the above averaged mass matrix (3.28). Ap-
plication of the above mass matrix yields a characterstic a = 1.0 5.6058 17.544 43.870 o10.08

equation that is similar to (3.21) except ini are modified
accordingly. As was the case for the bar, a = (0, 1) cor- Table 1. Frequencies Computed by Different Mass Mod-

responds to the lumped matrix(3.16) and the consistent els for Beam

matrix(3.5), respectively. It is observed that for a = 0.25
the discrete frequency vs the wave number curve follows Incidently, the large error of the averaged mass matrix for

almost on top of the continuum case. the first mode is not too much of concern because as the

number of elements are increased, the first mode quickly

1536
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converges. In fact, when five elements are assembled, the v 2 a2
error for the first mode reduced to less than 0.2% with V2 = + T-2 (4.5)

a = 0.5 while maintaining high-accuracy for the higher

modes. On the other hand, the conventional mass matrix and
( a = 1) continues to give large errors for the higher modes. 1) Ehi 1 -i'

4. Mass Matrices for Plate Vibration Analysis 12(1 - z2)' 2
1 + vD  D , Eh 4 )

So far we have shown that the proposed mass-lumping D12 + D D = + (4--6)

procedure (2.1) and the improved consistent mass matrix 2 2(1 + v)

(2.16) lead to substantial improvements in beam vibra-
tion analyses. In particular, depending upon one's desire in which 8, and w are the rotations and the transverse

for tailoring the analysis accuracy for certain frequency displacement; q is the transverse load per unit area; E, h, v

ranges, one can modify a priori the mass matrix as pro- and ic are Young's modulus, plate thickness, Poisson's ratio

posed by (2.16) and manifested ii Figs. I - 3. For La- and the shear correction factor; I and m are the rotatory

grange family of plate and shell elements, the proposed inertia and the plate mass with z, y and t denoting the

lumping procedure (2.1) is equally applicable. In this sec- Cartesian coordinates and time, respectively.

tion we will first examine plate vibrations based on the The Fourier-transformed matrix operator, L(k.,k 1 ,w)

Reissner-Mindlin plate theory. We will then employ a dis- can be obtained for the plate equations by seeking a har-
crete counterpart of the continuum theory when the plate monic solution of the form
is approximated by a four-noded plate bending element.

We will then compare the continuum and symbolically gen- u(z, y, t) u(oYo, to) exp[j(wt - kz - kyy)] (4.7)

erated discrete equations in the Fourier domain in order to

gain insight into the effect of mass matrices on the accuracy where a is the circular frequency and k ) are the (z, y)-

of vibration frequencies. We have found that our symbolic di nto wave yies

analysis of the discrete plate equations obtained from the (4.7) into (4.4) yields

finite element plate bending equations provides a qualita- -Dk -Di 2 kk v  -jDk"

tive measure of solution accuracy. Numerical experiments -DItk 2

corroborate symbolic analysis results; for the case of the -D,
four-noded plate bending element, the mass matrix that +Iw 2

yields a best accuracy is determined to be -D,,Dk2 k
L(k., ky,w) =V

Ikew = 0.25Mr,, + 0.75 oo (4. 1)-D

We now present a detailed analysis and some nuerical +IW2

results. sym. -D.t2

The Reissner-Mindlin plate equations can be expressed in (4.8)

differential matrix form as (Park and Flaggs, 1985): with the corresponding uncoupled continuum Fourier op-

erator given by

L(x,y,t) "u = f (4.2)

where n = [1r; 2+IW2)(E,2+ f02) _

U = LO,TwJ, f = L,0, qJ (4.3) Lk D, j

D 1 2 ~ e DA

+DIX where the Fourier-transformed V2 operator is defined v.

-(k2 + 0) ( .4. 10)

L(zyt). D The Fourier-transformed continuum matrix operator,

+ D I IL(k.,ky,w), given by (4.8) and the uncoupled continuum
--D, operator, 1 , by (4.9) will serve as our reference equations

with which the corresponding discrete operators and char-

____ acteristic equAtions will be compared in order to assess the
syrn. -D.V1 effect of mass lumping on plate vibrations.

(4.4) The general discrete Fourier operator that approximates

in which V2 is defined as the continuum case by the four-noded plate bending ele-
ment can be shown to be (Park and Flaggs, 1985):

1537
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S= Table 2 summarizes the vibration analysis results with dif-
ferent mass matrices for a plate with free edges. In com-
puting the errors in frequency computations by the four-

-DEi, -D121,V, -jDK,-Xi, noded element, we have assumed that the frequencies given
-DtDLkXz in (Leissa, 1969) to be the converged answers. The finite el-

-DXl ement analysis results indicate that the discrete frequency
+rW2[( - a) vs. wave number curve shown in Fig. 4 overestimates the

+1.1,) frequency error from the above. We conjecture that this

-Di -(4 11) overestimation manifested in the present discrete Fourier
-Dt1!.2X, analysis may have been due to the failure of the four-node
-+D#x(i- element to satisfy rigorously the free-edge conditions.+ZiW2(1 - 0)
+15i,j

Table 2. Frequency Errors Computed by Different Mass
D.(i, + , Models for Free-Free Plate

MASS TYPE MODE I 4x4 Mesh I 1Ox16 Meh I 36x36 Mesh
1 -,30.1 -8.5 -,3.9

where the discrete fourier numbers, k, and k,, and the Lmepd 2 -32.8 5 15.7 -8.4
so-called directional averaging operators, 1(-.,) and X(z.y), M tn -25.5 -1.2 -o.7

a = 0.0 4 - 19.4 -10.0
are given by s - - .20.6

1 -24.7 -.2 -2.7
2 .26.4 11.5 .60{ = sin(k=/2)/l 3 /2 .25 3 .17.7 -7.0 .3.4

1-!.~s1L .17.7 -3.6 r 1.3
1(2 1, - (., ) ( .2 .11.7 -. 8 .-3.4

a= .50 3 -8.0 .2.1 -0.9
and a is a coefficient defined in the mass matrix modeling 4 - .t .4.2

formula (2.16). 1 S.5 -0.7 -0.2
2 .5.1 -1.2 -0.7

The relation between the frequency vs. the wave number a= .75 3 6.1 3.7 1.8
4 - 2.2 -0.8for the continuum and the discrete cases can be obtained 5 - I - 8.2

by requiring the determinant of (4.8) and (4.11) to be zero. 1 4.8 2.4 1.1
Consit.l 2 16.1 5.6 2.4Figure 4 shows the normalized frequency (Wt 2 /D ) vs. M 3 29.8 10.6 4.8

the wave number (k) for the continuum and the discrete a = 1.0 I .S 2.s
cases with various mass matrix choices based on (2.16). It s - 2.

is noted that the two cases correspond to an infinite plate
or so-called interior solutions. Judging from Fig. 4, one The mode-by-L:.de convergence characteristics for the first
may conclude that the choice of a = 0.5 (the average of thee modes ae shown in Figs. 5-7. With the exception
the lumped and the consistent matrices) should perform of the first mode with a (2 x 2)-mesh, it is observed that
best for plate vibration analysis. For plates with finite the choice of a = 3/4 consistently yields the most accurate
dimensions as we shall see, the influence of boundary edges results.
must be taken into consideration in utilizing the dispersion
curve for selecting an appropriate choice of mass matrix.

5.0
5.0

consistent mas(a = 1) .// 0.0
.improved cosistent mam(a =.o) /.

>. [ -- improved consistent mss(a = .25) ./ -5.0 - ...

Z -continuum ,-"

3.0 -- lumpedm (a ) -10.0"
0

-15.0

• - 0.0 ."-consistent mw.(a fi1

1.0 -25.0 improved ma(a 50)
...... Imped man(a 0)

-30.0

0.00240.0 0.5 1.0 1.5 2.0 2.S 0 4 6
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Figure 5. Error in First Mode for Different Mass Model-

Figure 4. Dispersion Curve for Plate (V = 0.343) ing
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20.0 the mass and stiffness matrices to capture inermediate fre-
quency components more accurately. It should be noted
that the accuracy of intermediate frequency components

10.0 -- conistnt m.N(a =1) based on the finite element methods is increasingly impor-
- -improved mass(a =.5) tant in the areas of control of flexible structures, underwa-

.0 Proved mau(a =.0) ter acoustics and wave propagation through compositesa: ...... lumped mam(a =0) -...
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SUMMARY

This paper reports on our exp. ,ence in solving large-scale finite element transient problems on the
Connection Machine. We begin with an overview of this massively parallel processor and emphasize the
features which are most relevant to finite element computations. These include virtual processors, parallel
disk IiO and parallel scientific visualization capabilities. We introduce a distributed data structure and
discuss a strategy for mapping thousands of processors onto a discretized structure. The combination of the
parallel data structure with the virtual processor mapping algorithm is shown to play a pivotal role in
efficiently achieving massively parallel explicit computations on irregular and hybrid two- and
three-dimensional finite element meshes. The finite element kernels written in C*,'Paris have run with
success to bolve several examples of linear and non-linear dynamic simulations of large problem sizes. From
these example runs, we have been able to assess in detail their performance on the Connection Machine. We
show that mesh irregularities induce an MIMD (Multiple Instruction Multiple Data) style of programming
which impacts negatively the performance of this SIMD (Single Instruction Multiple Data) machine.
rinally, we address some important theoretical and implementational issues that will materially advance the
application ranges of finite element computations on this highly parallel processor.

1. INTRODUCTION

Parallel computers are having a profound impact on computational mechanics. This is reflected
by the continuously increasing number of publications on finite elements and parallel processing.
Not only have some computational strategies been re-designed for implementation on commer-
cially available multiprocessors, but also some innovative algorithms have been spurred by the
advent of these new machines. However, many of the reported parallel finite element simulations
have been on systems with a few processors. Examples of these systems are Intel's iPSC with 32
processors (reported by Farhat and Wilson'), JPLCaltech's hypercube with 32 processors,-
Alliant's FX8 model with 8 processors '-' and CRAY's systems with up to 4 processors.5 (For
more complete lists of references on this topic see White and Abel 6 and Noor." While great
speed-ups were measured on these coarse to medium grain machines, Farhat8 has shown that
traditional vector supercomputers could not be outperformed in finite element simulations
(except of course on systems which connect more than one vector superprocessor, such as the
CRAY X-MP and CRAY-2 systems. each of which has 4).

Recently, massively parallel machines have demonstrated their potential to be the fastest
supercomputers, a trend that may accelerate in the future. While solving the shallow water
equations, McBryan has reported that the Connection Machine (CM_2 in tht: s.:uel) (65 536
processors) was three times faster than the four-processor CRAY X-MP.' Gustafson et al. have
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developed highly parallel solutions for baffled surface wave equations, unstable fluid flow and
beam strain analysis. and have reported performances on NCUBE's 1024-processor hypercube
which are close to those of vector supercomputers.1 0

The objective of the present study has been: first, to evaluate the multiprocessing features of the
CM_2 that are relevant to finite element computations: second, to develop a suitable finite
element data structure which exploits the system architecture; third, to implement a decomposi-
tion/mapping procedure that matches as far as possible the layout of the processors to the finite
element meshes; and fourth, to assess those implications of finite element analysis on the CM_2
that should be considered in the design of future massively parallel processors. Hence. we focus
primariiy on implementational issues that are critical for the full exploration of the multiprocess-
ing capabilities of the CM_2. and only secondarily on solution algorithms, as far as they impact
the present study on implementational issues.

The finite element equations of motion for structural systems can be expressed as

M + F"(d, d) = (I)

where M denotes the positive definite lumped mass matrix. F'" and F" denote the internal and
external force vectors, and d, d and d denote respectively the acceleration, velocity and displace-
ment vectors. In the linear case, the internal force vector becomes

F" = Dd + Kd (2)

where D and K are the damping and stiffness matrices respectively, which are positive semi
definite. In this work, an eventual damping is assumed to be proportional to the mass and
stiffness.

The algorithmic nature of a candidate solution method for the structural dynamics equation (1)
can significantly influence the software requirements, data communications and arithmetic
efficiency. As our main focus is on implementational issues rather than algorithmic ones. we have
decided on a simple explicit time integration procedure. Hence, we choose to integrate equation
(1) with the fixed step explicit central difference algorithm because (a) it is inherently parallel, and
(b) it has the largest undamped stability limit among second-order accurate explicit linear
multistep algorithms, as has been demonstrated by Krieg.' 1 In our context, it expressed as

a12 = ain
-

42 + MM - I(F" (tn) - F (d, d')) (3)

d"+ 1 = dn - hl "+ 112

where h is the fixed time step and the superscript n indicates the value at the discrete time in.
The remainder of this paper deals with the massively parallel solution of (1) using (3). and is

organized as follows. In Section 2, we give an overview of the CM_2 hardware configuration and
emphasize those features which are pertinent to finite element computations. In particular. we
address issues that are related to the processor memory size. to the SIMD architecture and to the
fast interprocessor communication package. the NE WS grid. In Section 3, we discuss the floating
point arithmetic performance of the CM_2 and highlight its current dependence on the selected
language compiler Algebraic manipulations coded in *Lisp are shown to be three times as fast as
when written in C*. A general purpose finite element distributed data structure is presented in
Section 4. Designed originally to handle massively parallel finite element explicit computations
on irregular and hybrid meshes, this parallel data structure is also very efficient for parallel IO
manipulations and parallel graphic animation. Since the often-encountered mesh irregularities
inhibit the use of the NEWS grid communication package. we discuss in Section 5 an alternatve
decomposition, mapping strategy. The decomposition technique is designed to minimize both the
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amount of communication between different chips and the amount of wire contention within
a chip. The mapping algorithm attempts to reduce the distance that information must travel.
Section 6 summarizes the overall organization of the massively parallel transient simulation. In
Section 7, our parallel data structure and processor mapping are applied to (3) for the solution of
various large-scale transient problems. Measured performances are analysed in detail. Mesh
irregularities are shown to be the source of several factors which considerably slow down the
machine. Finally, in Section 8, we address some important theoretical and implementational
issues that will materially advance the application ranges of finite element computations on the
CM_2. In particular, we note that time integration numerical algorithms such as explicit finite
differences and equation solvers such as the preconditioned conjugate gradient are implemented
using the same parallel data structure and mapping algorithm which are presented in this paper.
We compare the substructuring technique and the virtual processor approach, and comment on
the implications of implicit algorithms for the effective use of the CM_2.

2. THE CONNECTION MACHINE HARDWARE ARCHITECTURE

Here we present an overview of the CM_2 system organization and discuss issues that are
pertinent to massively parallel finite element computations. See Hillis' 2 for an in-depth discussion
on the rationale behind the CM_ I (a previous model of the Connection Machine), the Technical
Summary of Thinking Machines Corporation 3 for further architectural information and
McBryan9 for initial studies of scientific computations on the CM_ 1. For the sake of clarity, we
summarize the architectural features before discussing their impact on finite element simulations.

2.1 System organization

2.1.1. CM_2: The parallel processing unit. The CM_2 is a cube 1-5 m on a side, made of up to
eight subcubes (Plate 1). Each subcube contains 512 chips and every chip includes 16 bit serial
processors which are connected by a switch. Each individual processor has 64 Kbits (8 Kbytces) of
bit-addressable local memory and an arithmetic-logic unit (ALU) that can operate on vari-
able-length operands. Every two chips may share an optional Weitek floating point accelerator
chip. A fully configured CM_2 thus has 4096 (2"2) chips, 2048 floating point accelerator chips,
65536 processors and 512 Mbytes of memory. The chips are arranged in a 12-dimensional
hypercube. A chip i is directly connected to 12 other chips j, with the binary representation of
i andj differing only by I bit. The CM_2 system provides two forms of communication between
the processors.

" A general mechanism known as the router which allows any processor to communicate with
any other processor. Each CM_2 chip contains one router node i which serves the 16
processors on the chip, numbered 16i to 16i + 15. The router nodes on all the chips are wired
together in a 12-dimensional Boolean cube and together form the complete router network
(Figure 1). For example. suppose that processor 117 (processor 5 on router node 7) has
a message to send to processor 361 (processor 9 on router node 22). Since 22 = 7 -- 2" - 20.

router 7 forwards the message to router 6 (6 = 7 - 20) which forwards it to router 22
(6 + 2-). which delivers the message to processor 361.

" A more structured and somewhat faster communication mechanism called the NEWS grid.
Each processor is wired to its four nearest neighbours in a two-dimensional rectangular grid
(Figure 2). Communication on the NEIS grid is extremely fast and recommended whenever
it is possible.



30 C. FARHAT. N. SOBH AND K. C. PARK

Figure 1. The router network

N

W7 E

S

Figure 2. The NEWS grid

An important practical feature of the CM_2 is the support for virtual processors. When the
CM-2 is initialized for a run, the number of virtual processors (vp in the sequel) may be specified.
If it exceeds the number of available physical processors, then the local memory of each processor
is split up into a number of regions equal to the ratio between the number of vps and the number
of physical processors. Automatically, for every Paris (PARallel Instruction Set) instruction, the
processors are time-sliced among the regions. If a physical processor is simulating N vps, each
Paris instruction is decoded by the sequencer (as explained below) only once for V executions.
This results in an enhanced user performance. Also, the use of a vp > I allows the pipelining of
floating point operations in the Weitek chips, which provides an additional enhancement to
macline performance. The system organization of a CM_2 is shown in Figure 3.

The CM_2 is an SIMD machine. All processors must execute identical instructions or some
processors may choose to ignore any instruction. Consequently, an instruction which involves
a nested binary branch can see its execution time increased by a factor of two. The SIMD nature
of the CM_2 has some disadvantages in finite element computations, as will be shown.

2.2. Impact on finite element computations

It is well known that the solution algorithm (3) can be implemented using only element-level
computations. Hence, if each vp of the CM_ 2 is mapped onto one finite element, equation (1) can
be efficiently integrated in parallel. The rationale behind this processor-to-element assignment
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Plate 2. Discretization and decomposition of a tapered beam

Plate 3. Irregular celi
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will be analysed in Sections 4 and 8. Here. wC discuss the direct impact of the CM2 hardware on

such a decision.

2.2.1. Thze local memory and element lerel compuations. Consider the 9-node curved shell

element shown in Figure 4. Three displacements and two rotations are attrbuted to each node.

which amounts to a total of 45 degrees of freedom per element. Consequently. the symmetrc part

of the elemental stiffness matrix. Ki'e. contains 45(45 1i),l2 = 1035 words. If double precision is

used. the storage of K"' amounts to 1035*64 = 66 240 bits, which exceeds the 65 536 bits that are

available on a single CM2 processor. On the other hand. if single precision is used. the storage of

K"' requires 33 120 bits. so that 32416 bits are left for the storage of the vectors dt". dr'. the
elemental lumped mass vector M"' and the forces F"' and P'". However. even in the latter

/
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Figure 4. A 9-node shell element

N

Figure 5. A two-step NEWS mechanism on a regular mesh

case, only a vp ratio of I can be used. This limits the size of the finite element mesh to the
maximum number of processors available on the CM_2 at hand. Also, it inhibits further
performance enhancement, as outlined in Section 2.1.

Forrurately, in our case the above storage requirements can be considerably decreased. The
nature of explicit computations is such that F'"(d") can be directly computed from the displace-
ments at t" and the stress-strain conctitutive equation. As a result, the solution process defined in
(3) involves only ,ector quantitics which do not require a large amount of storage, so that vp
ratios between I and 4 are possible. However, the readr s),-,uld keep in mind that the current
local memory size of a CM_2 processor may penalize sophisticated high order elements and
implicit finite element algorithms in general. This ,estriution is not encountered on other
cinmercially avallae hypercub,.s such as iPSC, NICUBE ana AMETEK among others.

2.2.2. The NE"'S grid and finite element patches. Consider the regular 'Unite element mesh
shown in Figure 5. Except on the bounda-ies, each, element is coinected in the same pattern to
exactly eight other elemer ts. Consequen'ly, during the explicit time integration algorithm, each
processor commitnicates wit.) its neighbour.- in the same manner. Interprocessor communication
can be performed with a two-.;tep NEWS mi-chanisin (Figure 5). However, the beauty of the finite
element method resides in the fact that it solves modes v;ith irregulir meshes. Typically, a finite
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Figure 6. Transition zones

element mesh consists of several patches which are connected together using irregular transition
regions (Figure 6). For these often encountered cases, the NEWS grid becomes impractical.
Rather, the router has to be utilized. In Section 4. we describe how a distrbuted data structure can
guide the router during this process.

2.2.3. SIMD hardware vs. MIMD finite element computations. Typical finite element meshes
comprise more than one type of element. Consider the case where a discretized region is modelled
with shell elements that are stiffened with beam elements. Clearly, the instructions associated with
the shell elements differ from those associated with the beam elements. Consequently, the vps
which are assigned to shell elements and the vps which are assigned to beam elements cannot
execute their segments of code in parallel; for example, the be-m processors have to execute first,
then the shell processors. If T and T, denote the execution time: associated with the instructions
for i beam and a shell element respectively, the total elapsed parallel time for a single instruction
oi er the set (beams + shells) on an SIMD multiprocessor is Tb + T. On an MIMD multiproces-
sor, this elapsed parallel time is max(Tb + T,). Similar situations arise when during the loading
some elements turn to be materially non-linear and some remain linear. In this case, one should
always compute the linear component of the response (the elastic stiffness for example) before
attempting to test the yielding criterion. However, in spite of these disadvantages SIMD
programs can still be attractive, because they tend to be easier to debug and rarely suffer from the
synchronization errors which are typical of MIMD codes.

2.2.4. Parallel I/0 in finite element computations. At each time step, the computed displace-
ments, velocities, accelerations as well as strains and stresses need to be stored on disks. This
represents a significant amount of 1, 0 traffic. It has been our experience that the CM_2 Data
Vault system is efficient at reducing the corresponding elapsed time (see Section 7).

2.2.5. Real-tne graphics antmations. The massively parallel real-time animation of the mesh
deformations is a direct consequence of the availability of the Frame Buyfer and decision of
assigning a vp to a finite element. At each time step, after the node displacements are found all of
the vps concurrently draw the outline of their assigned elements on the graphitL screen. The result
is a real-time finite element animation.
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3. BENCHMARKING THE CM-2

At the time of writing this paper, the CM_2 supports three high level languages: C* (pronounced
see-star), *Lisp (pronounced star-lisp) and CM-Lisp (pronounced see-m-lisp). The first two are
extensions of C and Lisp respectively. Paris is somewhat the assembly language of this parallel
processor.

In this section we comment on the results of a set of timing experiments that were carried out
on the CM_2 of the Center for Applied Parallel Processing (CAPP), at the University of
Colorado. Boulder. Since only one eighth of a cube was available on this system. all results were
obtained using 8192 processors. McBryan 9 has shown that all results demonstrated on subcubes
of the CM_2 scale essentially linearly to the 65 536 processor system. Consequently, throughout
this paper, megaflop rates are reported after they are linearly scaled to the full configuration.
These experiments provided us with:

" a reference performance for the evaluation of our approach to massively parallel finite
element explicit computations

" the influence of the vp ratio and that of the high level language compiler on attainable
performances. At this point, we remind the reader that, if an application requires an amol
of local memory (per processor) in, the highest vp ratio possible is equal to the closest
of two to the ratio between the maximum amount of local memory available on the m
(currently 8 Kbytes), and rn.

Table I reports the megaflop rates for some scientific computations on the CM_2 at different vp
ratios. All statements were written in C*. Each statement is performed by each processor on its
variables. All variables were declared parallel (local) and float (simple precision), except variable
dp which was declared mono (serial) float, and variable i which was declared mono integer.
Timings were measured using the cintimer routines. Each ' + ' operation or '*' operation was
counted as one flop.

Based on these results, we have observed the following:

1. Floating point performance is enhanced at higher vp ratios. This is due to the fact that for vp
ratios greater than one, computations in the Weitek chip are pipelined.

2. Vector saxpys are not slower than scalar ones. This is because memory addresses are
computed on the front end. The additional speed noticed for vector saxpys is thought to be
due to the overlapping of addressing and floating point computations.

3. C* appears to handle poly (parallel) assignments poorly. This can be seen by comparing the
performances of the dot product and the vector multiply. Each of these two vector

Table 1. Megaflop rates using C*

Parallel processor = CM_2-Language = C*-Variable = float

Statement vp ratio

1 2 4 8 16 32 64 128 256

y[,] + = '*x[,] 740 808 848 850 880 - - - -

y = y + Oc*x 569 654 699 728 743 761 778 791 800
z = x*y 409 485 535 569 579 585 600 610 623
dp+ =xy 202 359 583 839 1075 1240 1348 1400 1500

/
/

/
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operations requires one floating point per processor. In addition, the dot product requires
a reduction (accumulation phase) which necessitates communication. However, at high vp
ratios, the dot product is twice as fast as the vector multiply! (At low vp ratios, the amount of
floating point computations is not large enough to amortize the price of communication.)
Since the dot product does not store any value in the processor memory and the vector
multiply stores the result of x * y back into z, this leads us to believe that the C* compiler
generates a code which is very inefficient at handling assignments. This also explains why the
saxpy exhibits a higher megaflop rate than the vector multiply: it has twice as many floating
point computations for onte assignment.

The same computations were repeated using *Lisp. The comparison of both sets of timings for
the maximum vp demonstrates a formidable superiority of the *Lisp compiler (see Figure 7). This
is partly due to the fact that it has been used longer on the CM_2 than C*. In spite of the proven
superior efficiency of *Lisp over C*, we have chosen to implement our finite element code using
C* because of our familiarity with C.

4. FINITE ELEMENT PARALLEL DATA STRUCTURES

Consider again the explicit central difference algorithm:

a+ 12 = an- 1/2 + hM -I(FX(ti n) - F'n(d ", d))

d + I = dn + hla" 2

The global mass matrix M is assembled once. At each time step 0, the computations are
dominated by the evaluation of the internal forces:

F" f [LS]radfI

where a is the stress vector, S are the shape functions, L is a partial derivative operator and f2 leI is
the area of the eth finite element. Clearly, the parallel computation of Fin is best done el-
ement-by-element. Thus, equation (1) can be efficiently integrated in parallel if the CM_2 virtual
processors are mapped onto the elements of the mesh. This is a departure from the grid point
massively parallel computations advocated by Thinking Machines Corporation for the CM_2.t 3

First. all processors compute concurrently the local forces F"t'(0f) and Fi"n'l(d, dn). Next, these
contributions are accumulated through communications among processors that are mapped
onto neighbouring elements.

In this section, we describe the finite element data structures which we have selected to drive the
massively parallel computations on the CM-2. These are element oriented, while similar data
structures proposed for other hypercubes are subdomain oriented (see Farhat et al."4 and Fox
et al." S). In Section 8, we give further comments on this difference. We group these data structures
into two sets.

The first set of data structures deals with element-level parallel computations. To be able to
perform locally its assigned element-level computations-that is, to perform these computations
without interacting with the front-end machine -each processor must store in its own memory its
element type (truss, beam. shell ..... number of Gauss points, . . . ), its element material
properties (density, parameters and coefficients for constitutive equations, damping characteristi-
cs, thickness, . . .), its nodal geometry (nodal co-ordinates, number of nodes per element) and its
boundary conditions (fixed, free degrees of freedom at each node, prescribed forces at each node).
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This information is compacted in one-dimensional arrays. In addition, each processor must also
store in its memory a set of scalars corresponding to computational parameters such as the fixed
time step h, and a scalar or one-dimensional buffer for the temporary storage of messages to be
passed to neighbouring processors.

The second set of data structures provides the router with the mechanism for parallel
interprocessor communication. The inability of the NEWS grid to handle irregular communica-
tion patterns has been addressed in Section 2.2. Let p denote a virtual processor and ep its
assigned finite element. In order to exchange Fin e)(an) and F"I'((tn), virtual processor p must be
able to identify at run time:

" the set of processors mapped onto elements adjacent to ep
" the nodes that ep shares with these elements
" at each shared node, the degrees of freedom which need to be assembled.

This particular information is vital for meshes with different types of elements. It guarantees that,
for example, a moment is not accumulated with a force, or that a force in the x direction is not
accumulated with a force in the y direction.

If the above information is gathered in a global form on the front-end machine, most of the
execution time which elapses during the accumulation phase would be due to message-passing
between the CM_2 processors and the front-end computer. On the other hand, if this information
is decentralized-that is, if the memory of processor p is loaded only with the subset of that
information which is relevant to the connectivity of e--the accumulation phase can be performed
without any message-passing between the CM_2 and the front-end computer. Consequently,
prior to any computation, the memory of processor p is loaded with the following one-dimen-
sional arrays:

Proc.attto-node For each node connected to ep, it contains the identification of the processors
that are mapped onto elements which are also connected to this node. These
are stored in a stacked fashion.

Pointer This is a pointer array. It stores in position i the location in Proc-att-to-node
of the list of vps that are attached to the node in the ith local position.

Location For each entry in Proc- att-to- node, this array specifies the local position of
the shared node in the processor that is mapped onto an element adjacent to ep

The above arrays are set up by the dedicated finite element mesh analyser which was prescnted
by Farhat et alt ' They require about 80 integer words per processor. Clearly, this is a very small
overhead. The mechanism of these arrays is depicted in Figure 8 for element I. The mesh patch is
composed of shell and beam elements.

There is, however, one penalty associated with assigning one element to each vp. The nodes
which are common to several elements are duplicated in their corresponding processors. As
a result, about II per cent of the total memory available on the CM.2 is wasted. This is a small
price for the highly parallel computations that are achieved. Given the low cost of memory
nowadays, this seems a worthwhile trade off. Moreover, this assignment allows IO manipula-
tions and graphic post-processing to be trivially parallelized. At each time step, after the nodal
displacements are found, all of the processors draw concurrently the outline of their assigned
elements on the Frame Buffer and send back the results to the front end in parallel.

5. THE DECOMPOSITION/MAP NG STRATEGY

Since the mesh irregularities inhibit the exploitation of the NEWS grid, we rely on the data
structures of Section 4 to guide the router during interprocessor communication. Hoever. there
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Element I
Proc-att-to-node [2. 3. 3. 2]
Pointer [I1. 2.1 3, 5]
Location [1 2, 1, 2]

Figure 8. A distributed data structurc for interprocessor commu,,ication

is still one additional problem to resolve. Efficiency in massively parallel computations requires
the minimization of both the distance that information must travel and, more importantly, the
'hammering' on the router. In the case of finite element computations, this implies that adjacent
elements must be assigned, as much as possible, to directly connected processors, and contention
for the wire connecting neighbouring chips must be reduced. This defines the mapping prob-
lem-that is, it defines which hardware processor is to be mapped onto which finite element of
a given mesh.

Farhat 6 developed a heuristic algorithm for mapping massively parallel processors onto finite
element graphs and presented some analytical results for corresponding efficiency improvemcnt.
Basically, the algorithm searches iteratively for a better mapping candidate through a two-step
procedure for the minimization of the communication costs associated with a specific parallel
processor topology. Because it seeks a very fast solution for a machine with thousands of
processors, this algorithm does not guarantee 'the' optimal mapping. However, it has pruluced
very encouraging results on a variety of non-uniform two and three-dimension. meshes.

In this work, we adapt the mapping algorithm of Reference 16 to our target parallel processor,
the CM_2. The 65 536 processors of this machine are packaged into 4096 16-processor chips, each
having its own router node. The 4096 router nodes are arranged in a hypercube of dimension 12.
To cope with this topology, we proceed in two steps. First, we decomposes the given mesh into
4096 submeshes, each containing 16 connected finite elements. Next, we apply the mapper given
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in Reference 16 to identify which hardware chip is to be mapped onto which submesh. Finally,
within each submesh, the elements are numbered randomly between the chip number and the
chip number + 15.

Given a finite element mesh, there are several ways to decompose it into 16-element submeshes
(see for example Farhat 7 and Malone"8 ). Here, each submesh is to be assigned to one chip of the
CM_2. In Figure 9, 10 and 11, we show two different decompositions for a discretized square
domain, D, and D,.

Both decompositions yield 16 submeshes. each with 16 adjacent elements. Decomposition D,
was designed to minimize the communication bandwidth-that is, the maximum number of

*-* Figure 9. Domain to be decomposed

Figure 10. Decomposition D1-bandwidth minimization
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Figure II. Decomposition D.-interface minimization

different chips with which any chip needs to communicate. It can be seen (Figure 12) that for D,
the bandwidth equals 2, while for D, it equals 8.

It should be remarked that, if the substructuring approach" '1S had been chosen-that is
assigning a subdomain to a physical processor, D, would have been more efficient than D_. For
this decomposition, each chip would buffer the contributions of its interface nodes and send only

1 2 2 4 S 1 I S 10 11 12 13 14 is 1S

2 x x

4 I I

S I

6 I I

I I I

11 Ir I

S1 x 

14

x x

1iu 1 . I

Figure 12(a). Incerchip communication pattern for D,
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Figure 12(b). Interchip communication pattern for D2

two messages. one to the chip at its left and another to the chip at its right. The decomposition D.
requires the same chip to send up to 8 buffered messages. These messages would eventually be
shorter, but would still render D 2 more expensive because of message start-up costs. However, we
have opted for a virtual processor approach-that is assigning one element to a virtual processor,
for reasons that are given in Section 8. For this case. processors exchange information one node at
a time, so that the number of interface nodes associated with a decomposition is more important
than its bandwidth. The reader can confirm that decomposition D, delivers 255 interface nodes.
while D, delivers only 93. Indeed, there is another equally, if not more important, reason why D,
is better for the CM_2 than D. In the case of D1, all of the 16 processors of any chip communicate
simultaneously with a set of processors which are on the same neighbouring chip (Figure 1L". This
generates a significant amount of contention for the single wire that connects these two chips. In
the case of D, however, one can observe (Figure 14) that:

" for each chip, only 12 out of the 16 processors communicate with processors onto another
chip

" only 3 processors out of these 12 communicate simultaneousli with the same neighbouring
chip, so that much less contention occurs for the wire connecting the two chips. We recall
that each chip is connected with up to 12 other ones using 12 different wires which can
operate in parallel.

The decomposition D, was obtained using a general purpose finite element decomposer
presented by the first author in Reference 17. We advocate its use in conjugation with the mapper
given in Reference 16 for massively parallel computations on the CM_2. The efficiency improve-
ment potential of this preprocessing phase is demonstrated with the following finite element wave
propagation problem. Plate 2 shows the discretization of a tapered cantilever beam. The beam is

/
/
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Figure 13. Wire contention induced by decomposition D,
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Figure 14. Wire traffic for decomposition D:

modelled with 4-node isoparametric elements and linearly elstic plane stress constituti've equa-
tions. It is fixed at one end and subjected at the tip of the other to an impact point loading. The
wave propagation nature of the problem dictates the meshing technique to create elements which
are, as far as possible, of equal size. Since the beam is tapered, transition zones with irregular
elements had to be introduced. Other mesh irregularities arc due to the presence of a region with
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a hole. The complete mesh contains 8192 elements. which corresponds to an SK CM_2. The use
of a naive mapping (element i into processor i - 1) would have resulted in a maximum routing
distance between adjacent elements equal to 9. Our decomposer, mapper reduces this distance to
5. If EFF denotes the efficiency (speed-up per processor) of the parallel computations using
a naive mapping, and f is the factor by which the decomposer/mapper reduces the maximum
routing distance between adjacent elements, the theoretical improved efficiency 6 is given by

EFF* (5)

I f+E

For this problem, we have measured an efficiency EFF 40 per cent on an 8K CM_..2. Since
f= 9/5, the predicted improved efficiency is EFF* = 54 per cent. A second run of the problem
using the decomposer/mapper has revealed a measured improved efficiency EFF* = 60 per cent.
The discrepancy between the predicted and measured improved efficiencies is due to the fact that
(5) does not account for the wire contention problem.

6. FLOWCHART OF THE MASSIVELY PARALLEL TRANSIENT SIMULATION

The overall organization of the solution on the CM_2 of a transient dynamic problem using the
explicit central difference algorithm is depicted in Figure 15. It consists of four phases, namely:
mesh preprocessing, data loading, number crunching and data unloading.

A conservative stable time step for the central difference algorithm is given by

2 (6)

where wl 1., is the maximum element frequency of the undamped dynamic problem. Belytschko
has pointed out that it is in fact usually not practical to compute the maximum eigenvalues of the
element directly, for this would increase the cost of computation considerably. 9 Instead,
formulas for upper bounds on wl., have been recommended. However, on massively parallel

Read Input File (Front End)
Decompose Mesh and Form Parallel Data Structure (Front End)

Load Parallel Data Structure (Front End - CM.2)

Compute Lumped Mass Matrix (CM.2)

Compute Crttical Time Step (CM..2)

Loop on Time Steps (Front End)

Compute Internal and _:ternal Local Forces (CM2)

Assemble Global Forces (Interprocessor Communication)

Compute Velocities. Duplacements. Strains and Stresses (CM.2)

Vtsuale Results (CM.2 - Frame Buffer)
Archive Results (CM. 2 - Data Vault)

Figure 15. Solution of a transient problem on the CM.2
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Figure 16. Interprocessor communication for a hybrid patch

processors such as the CM_2, the parallelism inherent in the computation of U4 is such that this
frequency is obtained at the cost of the frequency of one single element.

The interprocessor communication mechanism for a mesh with more than one type of element
is illustrated in Figure 16. For the example shown, the 4-node elements are activated first. They
communicate in four steps, one node at a time. Next. the 4-node eleme:ts are de-activated and the
truss elements are selected. These communicate in two steps. As explained in Section 2.2. the
serialization between different types of elements is due to the STMD nature of the CM 2.

7. EXAMPLES

In this section. we apply our approach to massively parallel finite element explicit computations
to the solution of various transient problems on an 8K CM_2 with Weitek accelerators. We
analyse performance results in detail. We assess the efficiency of our decomposition.mapping
strategy at reducing communication time. We highlight the impact on machine performance of
variations in mesh topology, finite element modelling and problem non-linearuies. We also report
on the performance of the Data Vault system for problems that arc IO bound.

For each example. two simulations were carried out. The first one assumed a linear elastic
material. In the second simulation, the material was assumed to hae an elastoplastic beha,,iour
governed by a von Mises yield condition.
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7.1. El: Transient response of a cracked aluminium plate

The quarter of a mesh in Figure 17 was generated to study the dynamic response of a cracked
aluminium plate under a uniform time varying loading. The full mesh contained a total of 4008
plane stress elements and 4073 nodes. Mesh irregularities were induced by transition zones. The
NEWS grid could not be used.

7.2. E2: Ware propagation in a three-dimensional bar

The second example considered was the impact of a metallic ball on an unsupported glassy bar.
The bar was discretized using 8160 brick elements (Figure 18). The finite element mesh contained
13 500 nodes and 40 500 degrees of freedom. Given the regularity of the discretization. the NEWS
grid was used for interprocessor communication. This example was also re-run using the router
for performance comparison.

7.3. L3: Shuttle docking induced vibrations in a space station

This dynamic analysis was carried out to investigate the vibrations of a space station model
assembled from 5-m erectable struts. These vibrations were assumed to be induced by a shuttle
docking. The finite element model (Figure 19) comprised 7584 three-dimensional truss elements
and 2304 nodes. It was generated by aligning identical cells along various axes. However. each cell
by itself was irregular and did not allow the use of the NEWS grid.

7.4. E4: Three-dimensional glassy bar on an elastic foundation

The wave propagation example problem E2 was repeated with different boundary conditions.
The glassy bar was assumed to be supported by a layer of foam. The mesh was comprised of
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Figure 18. Finite element discretization of a glassy bar

Figure 19. A space station model
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a total of 8164 elements (which is very close to the number of elements in the former mesh), of
which 1636 truss elements were used to model an elastic foundation.

7.5. Performance results and analysis

The large majority the code segments was written in C*. Occasionally we have used Paris
functions to speed up some manipulations. Floating-point arithmetic was performed in single
precision (32 bit words). Measured performance resultu are gathered in Tables I. III, IV, V and
VI. The reported Mflops rates account for every integer and floating point operation, whether
used for addressing or number crunching. Only example E2 could make use of the NEWS grid.
However, all timings, except those given in Table VI, correspond to runs where communication
was carried through the router. Execution times are given in seconds and correspond to a sample
of 2000 time integration steps and a vp ratio equal to 1.

Table II. Overall measured performance for various transient finite element computations

Mesh Data loading Equation of motion Sustained
Exaam, pre-processing in the CM.2 solying Mflops

El-ei4.;, 1.04 see 5.47 see 861 see 400
El-.-elastoplastic 1.04 sec 5.47 see 1033 see 480

E2--elastic 1.98 see 31-78 sec 4139 see 392
E2-elastoplastic 1.98 see 31-78 see 4718 see 440

E3-elastic 1.28 see 13.56 sec 887 see 254
E3-elastoplastic 1.28 see 13.56 see 896 see 256

E4-elastic 2.11 see 33.00 see 4770 see 340
E4-1--stoplabtic 2.11 see 33.00 sec 5440 see 386

Table ill. Data Vault system performance

Solving equation Unloading results Unloading results
ExLmsw. i of motion on front end on Data Vault

El 861 see 5340 see 3.81 see
E2 4139 see 16400 see 12.61 see
E3 887 sec 9500 see 7.04 see

Table IV. Computation vs. communication

Solving equation Computation Communication
Example of motion time time

El 861 sec 460 sec 401 sec
E2 4139 see 1959 see 2180 sec
E3 887 sec 260 scc 627 see
E4 4770 st 2340 see 2430 sec
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Table V. True communication time

Computation Effective Software
Example time communication time overhead

El 460 sec 81 sec 320 see
E2 1959 sec 1380 sec 1280 sec
E3 260 see 146 sec 481 see

Table VI. Router vs. NEWS grid

Computation Communication time Communication time
Example time using the NEWS grid using the router

E2 4139 sec 560 see 2660 sec

The mesh pre-processing phase corresponds to the decomposition of the fini:e element mesh, as
explained in Section 5. It also includes the setup of the finite element parallel data structure, which
is then distributed across the processors. Both of these phases are shown to require relatively very
little computer time. It can also be observed that, in the worst case, the non-linear computations
consume only about 15 per cent additional time. This is due to the explicit nature of the radial
return mapping algorithm that was used. Because of 'what you see is what you get', the reported
Mflop rates should be compared to those measured in Section 3 and not to the theoretical peak
performance of the machine. It should also be noted that our C* code still leaves room for further
o.'imizations.

For examples El. E2, and E3, the computed displacements, strains and stresses were archived
on secondary storage after each time integration step. Two solutions were compared. In the first
case, these results were brought back to the front end and stored in appropriate disk files. For that
case, the measurements given in Table III demonstrate that the amount of involved I/O
dominated the simulation total time. In the second case, the results were transferred in parallel
directly to a Data Vault system. The speed-up provided by the Data Vault is shown to be of the
order of 1400! This parallel I/O capability is what was most lacking on earlier hypercubes.' 8

If Tp and Tm,, are respectively the computation parallel time and the communication parallel
time, and NP is the number of available processors on a given parallel machine, the achieved
efficiency (speed-up per processor) can be expressed as

EFF = I NPT, 1
N, T:,+ T. I +T-

TIP

The results given in Table IV indicate that efficiencies of 53, 47, 29 and 49 per cent are achieved
respectively for examples El. E2, E3 and E4. If one refers to the performance results of Section 3,
it can be seen that the sustained Mflop rates reported in Table II are consistent with these
efficiencies. At the first glance, these efficiency results appear to be very pessimistic. However. they
are well above the 10 per cent often obtained on current vector supercomputers.20 The reader can
observe that the timing results for example E4 are very close to the cumulative timings of
examples E2 and E3, which illustrates the impact of the SIMD nature of the CM_2 on the MIMD
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nature of finite element computations. It should also be noted that. while rE. :ommunication time
is fixed for a given mesh, the computation time increases with the complexity of the analysis.
Thus, highly non-linear formulations which include large deformations are expected to yield
higher efficiencies than those deduced from Table IV.

At this point, we give further details regarding interprocessor communication in the context of
finite element explicit computations. As outlined in Section 5, the finite elements of a mesh
exchange their local contributions one node at a time. For a given finite element, this information
exchange procedure is organized around two nested loops. The outer loop is carried over the
nodes that are connected to this element. The inner loop is carried over the neighbouring
elements that are attached to each local node. Using a C notation, this is written as:

for (node = I; node < my._nodes; node + +) (7)

start = pointer[node]; stop = pointer[node + 1] - 1;

for (position = start; position < stop; position + +) (8)

{
neighbor = proc.att-tonode [position];

exchange (variable, myself, neighbor);

}
}

where ny-nodes is the total number of nodes that are connected to a given finite element and
proc-att-to.node is the array containing the identification of the neighbouring eiements. Clearly,
these variables are element dependent. The total number of communications to be performed by
one processor is determined by the product P," = d * (pointer[mynodes + 1] - 1) which is both
element and mesh dependent. The CM_2 being an SIMD machine, the communication time is
determined by I. For a regular mesh composed of three-dimensional truss elements
(d = 3) or 4-node plane elements (d = 2), every node is attached to 4 elements, so that 24
communication instructions per time integration step are required for the truss element and 32 for
the 4-node plane element. However, Table TV indicates that the space station example exhibits
a longer communication time than does the aluminium plate problem. The reason is that in the
mesh of example E3, some truss elements are connected to 12 other elements. Because of the
SIMD nature of the CM_2. the element with the highest degree of connectivity determines the
communication time. For a regular mesh with 8-node solid elements (d = 3) each time integration
step is followed by 192 communication steps. since each node can be attached up to eight different
elements. This is reflected in Table IV where example E2 is shown to posse~s by far the longest
communication time (2180 sec). In summary, ;he amount of communication :nvolved in finite
element explicit computations on the CM_2 is determined by the element topology and order,
and the mesh irregularities. Because only d nodal information is exchanged at a time among thu
CM_2 processors, three-dimensional and high order elements substantially increase the com-
munication time. Mesh irregularities also adversely affect the amount of communication because
of the SIMD nature of the CM_2. It is interesting to note that elements which transmit physical
information across edges and faces such as those proposed by De Veubeke,Zi would require much
less communication than traditional elements. The;e elements should be revisited for computa-
tions on massively parallel processors such as the CM._2.
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An in-depth investigation of the communication phase was carred out. It was found that most
of the communication time was elapsed in the header of loop (8). This loop header involves the
quantities start and stop which differ from one processor to another in the presence of mesh
irregularities and different element types. Consequently, the front-end computer has to process
and manage several different loops rather than a unique one, which is not very efficient on an
SIMD machine. The time associated with the headers of loops (7) and (8) is referred to as software
overhead in Table V. The true time that is elapsed in effective communication among the
processors is shown to be only a fraction of the overall communication time (see Table V).

Because it was designed to handle arbitrary meshes, our C* code did not make use of the
NEWS grid package. However, a special module that incorporated calls to the NEWS grid was
written specifically for the regular mesh of example E2. Execution times for this example using
both the NEWS grid and the router are shown in Table VI. Clearly, a high price is paid for the
handling of eventual mesh irregularities.

However, the irregular pattern of communication is fixed in time. Thus, a considerable
improvement can be achieved if this pattern is evaluated at the first time step, then somehow
stored in the CM_2 for use during subsequent time steps. We believe that this is an issue that
massively parallel computer architects should investigate.
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Figure 20. The decomposer/mapper performance
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In order to assess the performance of the decomposer/mapper module, examples, El, E2 and
E3 were re-run with the naive shifted identity mapping (element i in processor i - 1). Figure 20
demonstrates that the true communication time can be reduced by as much as 60 per cent.
Unfortunately, the total execution time is reduced only between 10 and 17 per cent because of the
communication software overhead associated with mesh irregularities.

S. CONCLUDING REMARKS

We have reported herein on our experience in performing transient finite element computations
on the CM_2. We have presented the architectural features of this parallel processor and
discussed their impact on finite element computational strategies. In particular, those features
which distinguish the CM_2 from earlier hypercubes have been emphasized. These include the
virtual processor concept and the fast parallel I/O capabilities. The processor memory memory
size of 64 Kbits has been shown to penalize high order elements. We have also described and
discussed a domain decomposition strategy and a mapping algorithm which are suitable for
massively parallel processors such as the Connection Machine. The main idea behind the
decomposition technique is the minimization of both the amount of wire contention within
a chip, and the amount of communications between different chips. A given finite element mesh is
partitioned into 16-element subdomains which correspond to the 16-processor chips of the
Connection Machine. This partitioning is carried out in a way that minimizes the number of
nodes at the interface between the subdomains. As a result, only those processors which are
mapped onto finite elements at the periphery of a subdomain communicate with processors
packaged on different chips. Moreover, this partitioning is such that the connectivity bandwidth
of the resulting subdomains is large enough to allow an efficient use of the interchip wires. The
mapping algorithm attempts to reduce the distance information has to travel through communi-
cation network. In essence, the algorithm searches iteratively for an optimal mapping through
a two-step minimization of the communication costs associated with a candidate mapping.
Various issues related to the single instruction multiple data stream nature of the CM-2 and
pertinent to computational mechanics have been addressed. Measured performance results for
realistic two- and three-dimensional transient problems have been reported. Three-dimensional
and high order elements have been shown to induce longer communication times. Mesh
irregalarities have been shown to slow down the computation speed in many ways. The Data
Vault has been demonstrated to be very effective at reducing the [/0 time.

Now, we briefly highlight some additional implementational and theoretical issues that we
hope will materially advance the application ranges of finite element computations on this highly
parallel processor.

8.1. Virtual processor ratio vs. substructuring

In this work. we have assigned when possible more than one finite element to a single processor
using the virtual processor feature of the CM_2. However, another way to obtain the same result
is to assign a substructure to an individual processor."- ' - From a numerical point of view. both
approaches are equivalent. However. theoe two distinct approaches differ in their implementa-
tions and may perform differently. The substructure approach requires each processor to work
with both external and internal data structures. The set of external data structures stores
informatzon about substructure Interconnections. These are similar to the ones described in this
paper. The set of internal data structures stores the connectivity table of the elements within

/
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a substructure. The computations within each substructure are carried out by looping over the
elements of that substructure. The advantage of this approach is a saving in storage since the
substructure internal nodes are uniquely defined, and a faster computation of the results
associated with these nodes. Moreover, the global results at the internal nodes can be accumu-
lated without any explicit call to a message-passing function. The global quantities at the
boundary nodes are accumulated using the router and the external data structures. However, the
substructuring approach requires that the sequencer broadcast the same instruction several
times, once for each element of the substructure, which increases the overall wall clock execution
time. Moreover, this approach does not allow the Weitek chip to pipeline the computations over
the elements of the substructure.

On the other hand, the virtual processor approach requires that each element communicate
explicitly with its neighbours. even if these are assigned to the same processor. Of course, this
communication is virtual since it is within the processor itself and generates minimal additional
overhead. On the positive side, the virtual processor approach utilizes only one type of data
structure and exploits the pipelining capabilitieis of the Weitek chip. The latter feature signific-
antly enhances overal performance, as demonstrated in Section 3. Consequently, we advocate the
use of the virtual processor ratio rather than the substructuring technique, especially if the
processor memory size is to be increased in the future.

8.2. Implicit algorithms and the CM_2

In this report, no attempt has been made to design a novel parallel algorithm for the solution of
the differential equation of motion. We have selected the central difference algorithm because of
its inherent parallelism, which allowed us to focLus on implementational issues and to fully explore
the multiprocessing capabilities of the CM-2. Our experience suggests that a whole class of
explicit and semi-implicit dynamic and static algorithms can be implemented on the CM_2 in
a very similar way. Among others, we cite the EBE algorithms,2 2 the EBE preconditioners2 3 and
the Jacobi preconditioned conjugate gradient algorithm.24 However, the solution of some static
and transient problems may necessitate the use of an implicit algorithm, which usually implies the
solution of a set of simultaneous banded equations. If the global symmetric stiffness matrix K is
banded, with semi-bandwidth b, then it is well known (see for example Ortega and Voigt ' 5) that
Gaussian elimination methods for solving Kd = F allow at each step on the order of b2,2 pairs of
( +, x) to be processed concurrently, but require significant communication because the b entries
of the pivot column must be made available to all other processors. Several parallel algorithms
based on these elimination methods were designed for finite element applications and were
implementated on earlier hypercubes (see for example, Farhat and Wilson26 and Utku et al."7 ).
Typically, a processor was assigned to a set of matrix columns. Results from our previous
experience with the early version of lntel's iPSC suggests that direct solvers are feasible on
hypercubes only when the number of available processors, Np, is much smaller than the
bandwidth h of the given finite element problem, so that communications do not dominate
computations. On the iPSC-I, a message that was sent from one extreme corner of a 5-di-
mensional cube to the other would result in an elapsed time 475 times longer than the time to
perform a floating point multiplication (see Rudell.28 ). However. on a 10-dimensional subcube of
the CM_2 we have measured the ratio of a broadcast to a floating point computation to be only
about 2.87. This observation suggests that. for problems with b > 360. a processor could be
mapped onto a few matrix entries and a parallel direct solver could be feasible on the CM_2. For
problems with smaller bandwidth, direct solvers which operate on more than one pivot at
a time29-' o should also be investigated aor implementation on massively parallel Pocessors.

/
./

/
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There is .. additional issue which has to be examined before attempting to solve finite element
equations on the CM_2 with a parallel direct solver. This issue is related to the balance on
massively parallel processors between the number of available processors, NP, and the processor
memory size. Let M" denote a two-dimensional regular n by n finite element mesh, where n is the
number of elements along one side. If d is the number of degrees of freedom at a given node. the
semi-bandwidth of M" is b = d(n + 3) and the total number of mathematical unknowns is
N = d(n + 1)2. For this mesh. the storage cost of K amounts to Nb = d2 (n + 3)(n + 1)2 words.
The total amount of storage available on the CM_2 is S = N,. rap, where NP is the number of
available processors and tnp = 8 Kbytes is the current size of the processor memory. Let
NE = n23 be the maximum number of elements for which M' has a banded stiffness matrix that
can be factored in-core on the CM_2. Table VII gives the values of NE for different values of
d and for the case of a fully configured Connection Machine (NtP = 65 536). Values of NE are
shown for both single precision (32 bit words) and double precision (64 bit words) floating point
arithmetic.

Clearly, except for che case where d = 2 and floating point arithmetic is done in single precision.
NE is smaller than N,,. Similarly, the case where Mn is an n by n three-dimensional regular mesh is
assessed in Table VIII for various values of d.

For this case, NE is much smaller than NP, even for d = 2 and for single precision floating point
arithmetic. For d = 6 (some shell elements), only 8000 elements (4000 elements) can be included in
M" when computations are carried out using single precision (double precision) floating point
arithmetic.

It is noted that the eventual solutiona v,- ,aytem of equations is only one phase of several finite
element computational sequences. In linear three-dimensional analysis, this phase dominates the
computer exection time. However, in the non-linear analysis of flexible space structures most of
the computational time is usually spent in modules that perform element level computatons. 3 '
These include the evaluation of generalized nodal internal forces andor elemental stiffness
matrices. Consider now a mesh M' wher± the number of elements NE is chosen so that the upper
part of the banded stiffness matrix K fids the N, processor memories completely. The preceding
complexity analysis demonstrates tt at the balance on the CM_2 between the number of
processors and the memo-v ' e of 2-ach processor is such that NE is much smaller than NP.
Hence, if a direct algorithm i. ased to solve a finite element system of equations. the V;, processors
will be active during the solution phase. but V - E processors will remain idh: during the rest of

Table VII. Number of allowable elements vs. DOF/node for the two-dimensional case
:VP = 65536 d2 d=3 d=4 d5 d6

Single precision NE 102400 59536 40401 29929 23409
Double precision NE 64009 37249 25231 18769 14884

Table VIII. Number of allowable elements vs. DOF-node for the three-dimensional "ase

-V, = 65536 dd=3 d=4 d=5 d=6

Single precision NE 29791 19683 13824 10648 8000
Double precision NE 19683 12167 9261 6859 4913
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the phases which involve element level computations. Consequently, an in-core direct solution
strategy would not efficiently utilize the computational power of the CM_2 in a highly non-linear
finite element analysis.
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