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PROBABILISTIC INTERFERENCE IN
RESTRICTIVE SYSTEMS

1. INTRODUCTION

The notion of noninterference was first introduced by Goguen 2ad Mescegrer [1.2) to formally specify
and verify security propertics. Their formalism 2lloas a specifier to state properties of the form: “cominands
from the set A, issued by users in the set G. do not interfere with users in the sez G’ Goguen and
Meseguer showed that a variety cf security policies (including lebel-besed mandatosy 2ccess controls and
identity-based discresionary access controls) could be specified by using this formalism. In additfon to their
wide applicability, noninterference assertions capiure our infaition of security properties very well. For these
rezsons, the noainterference formalization is very appealing as the basis for a geaeral theory of security.

One problem with Goguen 2nd Meseguer's osiginal formulation of noninterference is that they modeled
computier sysiems as defermimnistic state machines. As discussed in Ref. 3, manyv computer systems are
nondeterministic and thereiore cannot be accurately modeled 2s deterministic machinss. Recognizing this,
Sutherland {4] and later McCuilough [3.5] modeled computer systems as nondeterministic state machines
and defined security policies in terms of those models.

In accordance with the view that large, distributed, secare computer systems should be built by
hooking up independently built and verified component systems, McCullough proved that his definition of
security, called resincfrreness, is composable (i.e., by hooking up two or more restrictive systems, a composite
system which is restrictive is produced).

Despite the advances made to date, culminating with McCullough’s definition of restrictiveness, some
problems remain. First, verifying that a system Is restrictive does not show anything zbout covert timing
channels. Specifically, high events can interfere with the timing of low events (e.g., response time). This
timiny interference can be exploited by trojan horses to leak sensitive information to unauthorized users. In
current practice, covert timing channel analyses are performed to find and determine the threat associated
with these channels.

Second, verifying that a system is restrictive does not show anything about probabilistic channels; high
events can interfere with the probability that a low event will occur. As with timing interfercnce, probabilistic
interference can be expluited by a trujan horse to reliably leak high information to unauthorized users. This
problem has been noted by other researchers [5,6] but has not previously been addressed.

Third, for the types of interference that are prevented by restrictiveness, the policy cannot be relaxed
to allow a small amount of interference. It has been said that computer systems “are often not intended
to be completely secure™ {7) and that any “real system will have channels that violate the noninterference
policy” {6). Fur example, low-bandwidth covert channels may be permitted for the sake of performance. For
this reason, restrictiveness may be too strong a property for a real system to satisfy. In both Refs. 6 and 7

recommendations are made to partially address this problem.

On the one hand, restrictiveness does not prevent all types of interference (viz., timing and proba-
bibistic interference) and therefore should be strengthened, on the other hand, restrictiveness is too inflexible
to allow a small (i.e., sumchow quantified and deemed to be sufficiently small) amount of insecurity and
therefore should be weakened.

The ultimate objective of our research is to define a security property that completely captures the
notion of noninterference (i.e., there are no lvupholes like covert timing channels that must be addressed
separately), and at the same time can be relaxed to allow some quantifiable amount of interference. Fur
thermore, this security property must be defined in terms of a sufficiently general system model (i.c.. aspects

Manuseript approved April 27, 1990.
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of ezl sysiems such as nondeierminscy must be represeniable in the model). We hope that such 2 prop-
ety could be realistically 2pplied in the development of a seeure system to gain asurance bt the system
provides 2 specifEed fevel of protection.

Our lons-tere approach for achicving this objective i as follows. Our first objective is to define
pesfect. poniniesference. By pesfect nonintesference we mean that a systemn that is shown to be pesfectly
poniniczfering cannot exhibit undesirable interference of any kind. We beficve that oaly afier we fully
understand what it means for 2 sysiem to be perfectly secure, we can properiy define our tolerance for
insecurity. Thus, our second objective will be to generalize perfect nonintesference to allow a quantifiable
amourt {e.g.. 22 bits/min) of intesference.

It is toward the first objeciive defining perfect nonimierference  that the present. work is aimed. In
tkis report, we develop an extension to McCullough's restrictiveness that precludes probabilisiic interfercace.
In this repost we also restate McCullough's state-mnachine formelism and definition of restrictiveness; we
present an exampie system that illustrates the problem of probabilistic interfurence. Then we develop an
extension to McCullough’s work that solves the problem of probabilistic intesference. We present 2 series
of examples designed 10 show the apphiation of our extension. and an example «f a new solution to the
so-called secure readers-writers problem [8]. At the end we discuss the composallity of our extension, and
we present our conclusions and plans for future work. ’

2. RESTRICTIVENESS

In Ref. 5 state machine restrictiveness is formalized in the following way:

Definition: A stafe machine T is given by a six tuple (S.0p. E.I.0.T), where S is the sct of all possible
states, 6o € S is the initial state, E is the sct of possible events, I C E is the set of all input events, OC E
is the set of all output events, and T'C S x E x S is the set of all possible state transitions.

Definition: Extended transitions are given by ET C S x E* x S where (01.(€1---,6n-1).0n) € ET ifand
only if some sequence of states g, ..., On-1 exists, such that {0,.€,,6,:1) €T foralli, 0 < i < n.

Definition: Let & be an equivalence relation on states of a system T (specifying which states appear to be
the same state from the point of view of a particular user) and ¢ be a subset of E (specifying which events
of T are visible to that user). We call (v.=) a projection of the system X.

The following condition for restrictiveness is exactly the same as McCullough’s, restated in a more
compact form. The condition that must be satisfied for a given projection to be restrictive is stated in Luo
parts. Intuitively, part (1) says that invisible inputs do not affect the visible part of the state; part (2) says
that the invisible part of the state does not affect whether or not visible events occur.

Definition: The projection (v, =) is restriclive for T if the following condition holds.

Let (01,2,0%) be an arbitrary transition of X.
(1) zel-v=01=0] and
(2) Vo, € 5,01 =gy = (30’5 € S)(3ye E*)

[(22) (02,7,0%) € ET,

(2b) o5 = 01,

(2c) z€l=v= ().

(2d) ze((E-I)-v)=ve ((E~1)-v)*, and

(2c) z€ (E-T)Nv) = By, 12 € (B - 1) = o))y = 1" () 7}

Although McCullough does not give an “unwinding theorem™, this condition is analagous to the
unwound versions of noninterference given in Refs. 2 and 6.
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3. PROBABILISTIC INTERFERENCE

In ihe previous definition, (2) infuitively savs that the imvisible part of tke state does not interfere
with whether or not a particular visible evenit can occur. However, it does not say that the invisit:le pari
of the staie doss not intezfere with the probability with which 2 particular visible event will occur. For
example, consider the following system that keeps track (via its internal state) of the most recent input, and
from any state rondeterministically outpats either Out0 or Outl.

Let 1 be the state machine given by (S, 06, E. I, 0,T), where
S= {0.1}
go= 0
E = {In0,In1,0ui0,0Outl}
I= {In0.In1}
O = {Out0,0Outl}
T = {(0,1n0,0), (0, In1.1), (0,0ut0,0), (0. Outl,0).(1, In0,0), (1, I1.1,1),(1,0ut0,1),(1,Outl,1)}.

According to the definition of T, in either state 0 or 1 the system can nondeterministically output
Out0 or Outl. However, suppose that when an output occurs in state 0, 95% of the time it is Oui0, and
only 5% of the time it is Outl. Aud when an output occurs in state 1, 95% of the time it is Qutl, and only
5% of the time it is Out0. These probabilities cannot be represented in McCullough's formalism; therefore,
they do not affect whether or not the system is restrictive.

Theorem 1: Define the equivalence relation = by g; = 0> for all states, ) and = (i.c., the user cannot
distinguish state 0 from state 1). Let v = {Out0, Out1} (i.e., the user can see outputs but not inputs). The
projection (v, =) is restrictive for T1.
Proof: Let (01,x,07) be an arbitrary transition of 1.
Since 01 = o2 for all 61 and o»,

(1) zel-v=01=0]
is trivially true.

Let o2 be an arbitrary state such that ¢; = oo. We must show that
(2) Bo3€5)(3ve S

[(23‘) (021 Vs 0;) € ET:

(2b) o5 =01,

(2c) zeI=>vy=(z),

(2d) ze ((E-I)-v)=>ye((E-1)—-v)*,

(2) z€ (E~1)Nv) = B,y € (B = 1) - o))y = m™ =) vl].-

There are four cases.

Case 1: x = In0. Choose 05 = 0 and y = (In0). Then (2a) [(02,7,0%) € ET] holds, since in either state In0
may be received, after which the state will be 0; (2b) (03 = o}) holds since o, = o3 for all o, and 73,
(2¢) z € I = v = {(z) holds since v = {In0) = (z); and (2d) and (2¢) hold trivially since = ¢ (E - I).

Case 2: z = Inl. Choose o5 = 1 and y = (Inl). Then (2a) (2e) all hold by similar arguments.
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Case 3: £ = Out0. Choose 0 = 02 and ¥ = {Out0). We have two subcases.

Case 3.1: 02 = 0. In this case, 95% of the time, OutQ will be cutput. so (02,%,05) € ET is true.

Case 3.2: 02 = 1. In this case, 5% of the time, Outd will be output, so (02,7, 05)-€ ET is true. Therefore,
(2a} holds; (2b) again holds since 0y = 0> for all 41 and o2; (2¢) aud (2¢) hold trivially since
£ ¢ I and = ¢ v; (2d) holds since 7 = {Out0) = (z) and x € ((E-I)~v) = (z) € (E-I)—v)".

Case 4: = = Outl. Choose 0% = o2 and v = {Outl). Then (2a)-(2¢) hold by similar arguments.
Thus, {v,~) is restrictive for 1. ]

We would like this theorem and proof to show that the inputs Jn0 and Inl do not interfere with the
outputs Out0 and Outl. However, 95% of the time the outputs accurately convey which input was the most
recent one.

What the theorem actually says is that the inputs In0 and Inl interfere only with the invisible part
of the system state, and that the invisible part of the state does not interfere with whether or not visible
events can occur. The security problem arises because the invisible part of the state does interfere with the
probability with which visible events occur. Thus, a noisy but potentially dangerous (and potentially high
bandwidthj channel can exist in a system that is shown to be restrictive. We call this problem probabilis-
tic interference. McCullough [3,9] gives examples of probabilistic interference to illustrate that deducibility
security {Sutherland 86] does not rule out all insecure systems. McCullough also states that restrictiveness
“disallows all kinds of definite channels (ones that don't involve probabilistic inferences),”[5] where “prob-
abilistic inferences™ appears to mean what we term probabilistic interference. The problem has also been
noted in Ref. 6, where they ignored nondeterminism and thus did not address the problem.

4. FORMALIZING THE PROBABILITY OF EVENTS

In this section we incorpcrate probabilistic concerns into the treatment of state machines and restric-
tiveness, and then reconsider L1, the example system from the previous section.

4.1. State Machines

We modify McCullough’s formalization of state machines as follows.

A state machine X is given by a six tuple (5,00, E, I, 0,T), where S is the set of all possible states,
gp is the initial state, E is the set of possible events, I C E is the set of all input events, O C E is the set
of all output events, and T C § x E x S x [0, 1] is the set of all possible state transitions.

The meaning of (01,¢,02,p) € T is as follows:

e If e € E~I, then whenever the system is in state o}, the system will engage in ¢ and transition
to o5 with probability p.

e If ¢ € I then whenever the system is in state o1, the system will, with probability p, attempt
to accept e and transition to . If the environment is not offering ¢ (e.g., a user has not
entered e), then on this attempt the system will perform the null transition (i.e., the system
will transistion froi: oy to oy without engaging in any visible event).

This action of a system attempting to accept an input can be thought of as polling: The system
checks whether the environment is ready to provide the input. if the environment is ready, then the system
accepts the input and makes its transition; if not, then the system does nothing.

This, method of obtaining input can hinder good system performance (e.g., due to busy waiting),
therefore, for performance purposes the preferred method of obtaining input is with interrupts However
for our purpose of preventiag interference, interrupts can cause problems. For example, if a high subject
can interrupt a system that interacts with a low subject, the high subject can interfere (probabilistically
and/or temporally) with the low subject by varying the frequency of its interrupts. By using the polling
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method of obtaining inputs, a system controls when it will accept an input and thus has complete control
over whether high inputs interfere with low outputs. Fotthsrwon,wedmetomcludeonlythcpollmg
Mhod&oblmmgmputmoursystanmodd

Another effect of the polling method is that it is no longer necessary for systems to be input total
(ie., a system can decide not to accept an input and the input may be lost). Therefore, in this report we
do not require that systems be input total. Thus, there are systems (which are not input total) that are not

Even though the polling method of obtaining inputs is more suitable for security purposes, cases exist
where interrupts are useful and do not cause security problems (e.g., a user interface that interacts with
a single user at a single security level could be driven by interrupts from the keyboard), therefore a fully
general system model should include facilities for specifying and reasoning about interrupts.

Note: For the probabilities of events to make sense, the sum of the probabilities of all next possible events
should equal 1. However, for security purposes, we do not need to make this requirement on systems. \We
consider feasibility for implementation to be a separate issue from security. Thus, a specification of a system
may be shown to be secure and zt the same time be impossible to implement as specified.

4.2. P-Restrictiveness
In this section we incorporate constraints on probabilistic interference into McCullough’s state machine
restrictiveness. First we formalize the probability that the system, starting in state oy, will (with respect to
| the projection (v,%)) appear to engage in thé event z and transition to state 7.

Definition: Let
p such that (0y,z,02,p) € T, if such a p exists;
p (01,3.02)

0, otherwise.

Now, for a given projection (v, %), define Py~ : S X E x £ — [0,1] as

E P(o1,z,0%) ifx €
LA
Py (01,2,02) = Y Poraoy iz v

z'€E~vand
agza,

This definition is an integral part of the definition of P-restrictiveness, and so we would like to point out a
few subtleties.

]

t

E

[

{ First, note that the probabilities of all transitions from o, (i.e., only o) to any state equivalent to o2

= are summed. This means that Py, ~)(01,,02) is the probability that the system will, from &), transition

} on z (or any invisible event if x is invisible) to a state equivalent to o2. The reason for defining Py, ~y this
way (rather than as the probability that the system will, from any state equivalent to oy, transition on ...)

; should be clear after the definition of P-restrictiveness has been presented.

Second, note that for an invisible event z, the summation includes transitions on any invisible event.
This is because from the point of view of the projection (v,=), any two transitions from oy to equivalent
(with respect to =) states, that engage in invisible (with respect to v) events will appear to be the same.

Third, note that the sccond case applies for all z ¢ v. This means that for an x that is not in E (i.c..
not even a possible event of the system), Py ~y(01,2,02) may be positive. Again this is due to the point of
view of the projection (1 ~). To a user with projection (v, =), a possible system event that is not in ¢ and
another event that is not even a possible system event will appear the same—they are both invisible.
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Now we present our. extension to McCullough’s definition of restrictiveness.

Definition: Let = be an equivalence relation on states of a system T, and v be a subset of E. The projection
(v, =) is probability-ertended-restrictive (P-restrictive) if the following condition holds.

Let 03,0} eSbearbltraxystates z € E be an arbitrary event, and p € (0, l]beanonzeroprobabnhty
(01,2,01,p) € T implies

(1) z€eI-v= 0y =0}, and
‘ Plo,)(01,2,01) = p implies
(2) Voz € S,01 = 02 = (305 € S)(3y € E),

[(23') P, (v,z)(azryroé) =p,

(2b) 03 = a1,

(2) z€e I > y=1,

(2d) ze((E-I)-v)=>ye ((E-1I)—-v),and
(2¢) J:G((E—I)ﬂv)éy:z].

We made this initial statement of P-restrictiveness to emphasize its similarities and differences with
McCullough’s definition of restrictiveness. The differences are:

o The antecedent of (1) is changed from (01,z,01) € T to (¢1,%,07,p) € T. This extension
corresponds to the extension of the state machine formalization.

e In the antecedent of (2) and within (2a), (0,z,0’) € T is changed to Py ~y(0,2,0') = p.
This modification represents the addition of constraints on the probabilities with which events
occur.

e Within (2), the event sequence < is changed to the event y (e.g., there is a loss of transitive
closure in (2d)). The motivation for this change is to simplify the statement and application
of P-restrictiveness (viz., we avoid computing the probability of the occurrence of arbitrarily
long sequences of events and avoid computing the sum of infinite sets of probabilities of event
sequences). This modification has the unfortunate consequence that some systems that are
restrictive and that do not contain any probabilistic interference are not P-restrictive (i.e.,
P-restrictiveness excludes more systems from the .« of all restrictive systems than just the
ones that exhibit probabilistic interference). In section 5, we further extend our state machine
model and definition of P-restrictiveness, which somewhat alleviates this problem.

Largely because of the subtleties of the definition of Py, ), this condition for P-restrictiveness can be
restated in the following logically equivalent but simpler form.

Theorem 2: Let ~ be an equivalence relation on states of o. system ¥ and v be a subset of E. The
projection (v, =} is P-restrictive if the following condition holds.

Let 03,0} € S be arbitrary states, z € E be an arbitrary event, and p € (0,1] be a nonzero probability.
(1) (o1,z,01,p)€Tandz €] —v= 0y %0} and

(2) Yoz € S,01 =02 = P(v,z)(alyw) 0‘;) = P(u,z)(dz,-’l?,ai)-
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Proof::AsSume that for any states 03 and 0] € S, any event z € E, and any nonzero probability p € (0,1},
(1) (01,2,0%,p) €T and z°€ I —v=> 01 ~ 0} and
(2) Yoz€ 5,01 = 02> Py ~)(01,%,01) = Py »)(02,7,07).

We must show that the following holds:

Let 01,01 € S be arbitrary states, z € E be an arbitrary event, and p € (0, 1] be a nonzero probability.

(01,%,01,p) € T implies

(1) zeI-v= 0y ~0f and
Pyy,~y(01,7,01) = p implies

(2') Yoz € S,01 =02 = (Jo;, € S)(3y € E)

[(28") P(v,z) (0'2".1/7 0’5) =p,

(o) o5 ~ o,

2y zel=ny=n=,

(2d)ze (B-I)-v)=>ye((E~I)-v),and
(2¢) z€ (E-T)Nv)=>y=ax].

1/ follows directly from 1. By choosing 04 = ¢} and y = z, 2a’ through 2¢’ follow directly from 2. [}

Demonstrating that the original condition for P-restrictiveness (as stated in the definition) implies the
condition in theorem 2 (i.e., demonstrating that the two conditions are in fact logically equivalent) requires
the use of the definition of P,y ), but it is also straightforward. The simplified condition for P-restrictiveness
.given in theorem 2 (in addition to being easier to understand) makes the proof of P-restrictiveness easier.

4.3. T1 Reconsidered

In the probability extended state machine formalization of the previous section, £1 can be defined by
(8,00, E,I,0,T), where

S= {0,1},
agg = 0,
E = {In0,In1,0ut0,Outl},
I = {In0,Inl},
0 = {Out0,0Outl}, and
T = {(0,In0,0,.25), (0, In1,1,.25), (0, Out0,0, .475), (0, Out1,0,.025), (1, In0, 0, .25), (1, In1, 1,.25),
(1,0ut0, 1,.025), (1, Outl, 1, 475)}.

Theorem 3: Let v = {Out0, Outl}. There does not exist an equivalence relation, ~ on states of X1, such
that the projection (v,~) is P-restrictive for 1.

Proof: Since the occurrence of In0 and Inl can change the state of the system from 1 to 0 and from 0 to
1, respectively, and In0 and Inl are not members of v, for (1) to hold, the equivalence relation ~ must be
defined by o1 = 02 for all oy and o2 € S.

Therefore we only need to show that given ~ is defined by oy & 0, for all o} and 02 € §, (v,%) is
not P-restrictive.
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By the definition of B,

P, (v,%) (0’ Oi“tor 0) = Z P(0,0ut0,0%)
o350

Since 0-is.the only state o}-such that p(o,0uto,e) is nonzero, and.p(o,0ut0,03) = 475,

Py 2(0,00t0; 0) = 475
‘Also-by- the definition of P,

Py, (1,0ut0,0) = E P(1,0ut0,0})

o1
Since 1 is the only.state ¢4 such that p(1,6ut0,04) is:nonzero, and p(o,0uto,0;) = 025,
Py~ (1,0ut0,0) = .025

Since 0 & 1, and Py, (0, 0ut0,0) = .475 # .025 = Py, ~;(1,0ut0,0), (v,~) cannot be P-restrictir
for 1. ]

‘5. DENIAL OF SERVICE

This section-presents.an example of how nondeterminism-can be-used to.prevent denial;of servic
First, a-denial of service problem is given, A restrictive solution is presented -that contains a probabilist
covert channel and is not P-restrictive. Then, an alternative solution.is presented- that prevents denial
service and is-also P-restrictive.

By this series of examples, we hope to show:

(1) Systems that,rhay appear to be reasonable and are restrictive, can contain probabilistic.cove
channels.

(2) A useful, nondeterministic system can:be shown to be P-restrictive.

(3) Nondeterminism can be used to prevent-denial of sefvice without introducing insecurities.

5.1 The Secure Readers-Writers Problem

Consider the following simplified version of the secure readers-writers problem [8]. A single proce:
controls access to a single object. There are two users called “hi” and “lo”. User hi wants to issue sequenct
of commands of the form “begin read”, “read”, “read”, ... “read”, “end read”. User lo wants to isst
sequences of commands of the form “begin write”, “write (Object)”, “write (Object)”, ..., “write (Object)
“end write.” (where (Object) is the value to be written to the controlled object). The integrity requiremer
is: If the controlled object is modified (with a successfully executed “write-(Object)” command) sometir
during a “begin read”, “read”, “read”, ... “read”, “end read” sequence then user-hi must be notified. In th
way, user hi will be alerted that the object may not have been in a consistent state during the sequence ¢
reads and may retry the sequence. The security requirement for this problem is that commands issued t
hi may not interfere with the outputs seen by lo.

Note: This problem has been simplified from the general readers-writers problem (as it appeared i
Ref. 8) in two ways:
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\(1) ‘in- the .general problem sthere i s ‘moré:thar. one.object,-and

(2) in the general problem thére ate miore than two users. In. particular-there may- be more than oné
wnter, and 0. there would be an- addltlonal integrity-requirement to prevent more-than one-current
writer: :

5.2 A: Sinall Modification to thé Model

Before présenting solutions to the sécure readers-writers problem, tnere is an extension to our.model

. ‘of staté. max:hmes that .we wish to miake.

- A state machine_ L'is-given by-a six tuple (S, 09, E, I, 0, T) where S°is the set of all possible states,
ap is-the. 1mt1al state, E«ls the set of possxble events, I C E.is:the set of all-input events, O 'C Eis the set
of all giitput:events, and T € S.x E* x § x|0,1] is the-set of- all possible state transitions.

' D’e,ﬁmtmn; Let

{'p such that (01,v,02,p) € T, if such a p exists;

p (0’1 );7)62) =
0, otherwise.

Now, for a given projection (v, ~), define Py ) : S'x E* x §= [0,1] as,

Z p(al,"/,dz) if v € v;
62~02
P(v,z) (01,7; 62) =\ E p("h’Y':";) if v ¢ V.
~v'€E~vand
ohro2

Definition: The infix function |: E* x p(E) — E* (called restriction), where p(E) is the powerset of E, is
deﬁned recursively as follows: For.any set of events E1 C E,

01 E1=)
and for any = € E and any v € E*,

A E1l ifz € El;
(=) | E1= {Zwl)A(q | E1) otﬁerwise.

Definition: Let = be an equivalence relation on states of a system T and v be a subset of E*. The projection

(v, =) is P-restrictive if the following condition holds.

Let 01,0} € S be arbitrary states, ¥ € E* be an arbitrary event sequence, and p € (0, 1) be a nonzero
probability.

(1) (01,7,05,p) €T and vy |I#() and vy ¢ v=> 01 =0}
(2) Yoa € S,01 =02 = P(v,z)(dl,% 0y) = P(v,z)(a2’7)0’1)'

We use this state machinz formalization and definition of P-restrictiveness throughout the remainder
of this report.

McCullough's state machine formalization and restrictiveness can be similarly generalized to allow
transitions on atomic sequences of events as follows.
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Definition: A sislc medckine X is givem by a six tuple (S, 0. E.1,0.T), wheve S i the set. off alll possthie
states; oy € S is the initial state, E is the set. of ponsible events, J C E is the set. of alll ingt cvenes, O C E
is the set of all output. evests, and T C S x E° x5 is the set. of 2l possible state (ransitions.

Definition: Extended transitions are given b ET C S % E” % S whwere (or {eg, - €, 0.0,) € ET & add
only if there exists some sequence: of staies @, ... .0,y Such that. (0. ¢, 0, ) €T Sorall 7,0 <i<m~ 1.
Definition: Let 2= be an equivalence refation om states of 2 sxsiem £ and nhe a cobwet of E°. The projction
(v.=} is restrictive for £ if the following condition kolds.

Let (01,7, 0}) be an arbitrary transition of .
(1) vl and v¢r=2ayxa] and
(2) Yoz € S0y =02 = (305 € S} € E”)

[(23) (02.7'.05) € ET,

(2b) o3 =0},

(2c) vl ad yev=2+ =7,

(2d) v¢r=>< €(E°—x)",and

(20) 71 and 3€v= En.ne((E-I) — o)) = =]}

5.3 Existing Solutions

Solutions for the secure readers-writers problem that use event counts bave appeared in the literature
since 1974 [10-12}, and [8]. These solutions allow the writer to start writing at any time, regardless of whether
a reader is currently reading. This prevents all interference with low outputs by kizh inpats. However, it
has the unfortunate consequence that writers can deny service to readers by frequent. writing.

The following solution is equivalent. in cffect 1o these cvent. count sofutions.
Let £2 be the state machine given by (S.00. E.1.0.T),. where
S = {0.1} x {0.1} x object x integer x integer

The state of this system is made up of two Booleans, one object (we assume that the type object is
previously defined) and two integers. To make the system casier to describe and to understand, we refer to
the components of a state o by the following mnemonics:

o.LoLock : boolean
o0.HiWuaiting : boolean
0.0 : object
o.EventCount : integer
o.HiStartRead : integer

The initial state of the system is given by:

gp.LoLock = false {Note: false means 0, true means 1}
ao.HiWaiting = false

0p.0 = null

oo-EventCouni = (

oo.HiStartRead = 0

E = {BeginRead,OKloRead, Read, EndRead, ReadSuceess ful, ReadFailed. BeginlVrite,
OKtoWrite,ObjectWritten, Object NotWritien, EndWrite, WriteSuccess ful, ¢} U object U
{writeo| o € object}

10




1A

J.W. GRAY W

1= {BeginReod, Read, EndRend, BegisWrite, EndWrite} U{ Writc s || o € object.}

O = {OKtoRead, RendSwocessful, RendFuiled OKtelW rite, ObjectWritlow, Ohjectnod W rittex:,
WrieSuonssfal} Uobject

T= {(o.(BeginRend),a". . 113) | 0" = o except. o” HiW ailing = true } 15

{{0.(OK1oRed),o", 113) | o Hil aiting = trwe and o_LoLock = false and o = & except
o HilVuiting = false and o HiStartRead = o EvealConal } U
{(0.{6}.0.143) | {0 HiW aiting = false or a.LoLock = true) }ur

{(+.(Rend, )0, 143) o= .0} U
{ {s.{EndRead. ReadSucoess ful). 0. .143) | 0. HiStart Read = 0. EventCownt } Ui
{ (0. (EndRcad_ReadFailed), s, 113} | o HiStari Read £ o EcentConnt } U

{ (0.{BeainWrite, OKtoM'rite). 0", .143) | 0" = 0 except. &".LoLock. = true and
o' .EventCount. = o.EventCount 5 1} U

{ (6. (Write 0,ObjectWTritlen). 0", . 143} | o.LoLock = true and 0 € object and
o' =0 exept a” O =0}U

{ (0. (Write 0,Object NotWrilten). o, .143) | 0. LoLock = false } U

{ (0. {End\Write, WrileSucvessful).o". .143) | 0" = o except o*.LoLock = false }.

Note: the set { (0, (¢).0;-143) | (o.HiW ailing = false or o.LoLock = true)} is included in T so that £2
will be P-restrictive.

Theorem 4: Let £2' =(5".04.E'.I".0'.T") where S’ = S. 0f = 0o, E'= E, I'=1, 0" = 0, and
T = {(0'],1',62) I Ep € (0, l] such tha_t' (‘“:7:62:1’) € T}'

Let = be defined by:

For all o and o’, 0 ~ o if and only if
o.LoLock = o’.LoLock,

and let
v= {{BeginlWrite, OKtoWritc), {EndWrite,WriteSuccessful)}U {(Write o,ObjectWritten)
| 0 € object} U {(I¥riteo.Object Not\Written) | o € object }.
The projection (v, =) is restrictive for £2".
Proof: Let (01.7.01) be an arbitrary transition of £2'.

We must show that:
(1) veI' and v¢ v=> 01 =] and

(2) Vor € §',01 =02 = (305 € §')(3Y € E)

[(2a) (02,7'.03) € ET",
(2b) o5 = a1,
(2¢) v I’ and yev=7 =7,

11
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(2d) yév= 2" €(E” ~) amd
(2} Y 1" and 7€ G € (E” =) M =01 )]

To show (1), we cxumine the definition of 77 to find all & such that {0y, 7.07) € T" and
2 €rJ and 5 & v. The examination reveals that there are four suchs 3 : {BeginRead). {Read.o},
{EndRcod, ReadSwceessful}, and (EndReod, ReadFailzd). We consider the four cases individually.

Case: 1z 7= {BeginRead).
; The ouly stafe transitions that accept. BeginRead as inpat. are given by:

{(0.(BeginRead).0") | o’ = & except o’ Hil aiting = true }

Thms, o, = 0y except o5 HilWailing = true. And by the definition of =, 03 X 0}.
sz: = (R@ﬂdﬁﬂ)_
The only state transitions that engage in (Read,0) are given by:

{(0.(Read.0).0) jo=0.0}

Thus there is no change in stafe, and so. 0y = 0]
Case 3: £ = {(EndRend. ReadSuccessful).
The only state transitions that engage in {EndRead, ReadSuccess fui) are given by:

{(0.(EndRead, RcadSuccess ful),o) | 0.HiStartRead = o.EventCount }

Thus there is no ckange in state and so, oy = 0}.
Case 4: x = (EndRead, ReadFailed).
The oniy state transitions that engage in (EndRead, ReadFailed) are given by:

{(0,{EndRead, ReadFailed),0) | 0.HiStartRead # o.EventCount }

. Thus there is no change in state and so, 01 = 0}.

Therefore, (1) holds.

Now, to show (2), let 02 be an arbitrary state such that o1 = 02. We must show that
(3o5€ S)3 €E™)

[(2a) (02,7,03) € ET,

(2b) 03 =01,

(2c) yeI'and yeEv=7 =7,

(2d) y¢ v=+" € (E”" - v)*, and

(2¢) v@&I' and y€v= (31,12 € (E” - 0))[y = v )]

| By.examination of T”, the transitions of £2' are described by ten sets of transitions unioned together.
By showing (2) for all 10 sets we will have shown (2) for all transitions. We consider the 10 sets in 10
separate cases.

12
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Case I: (01,7.4}) € { (0. (BeginRead). o’} | 0" = o except o”_ HilWciting = true}

Choose o, = a2 except 02 .HilWaiting = true. Choose o = 7. Now, (02.7".05) €
{(o.(BeginRead).0") | o’ = a except o’.HiW aiting = true}

50 (2a) holds; by the transitivity of =, (2b) bolds; since 7 = 7; (2c) holds; and (2d) and (2¢)
hold vacuously since » & J* and « € v. Therefore, Case 1 holds.

Case 2: (01,7,0%) € {(0.(OKtoRead),o") | o.HilWaiting = true and o.LoLock = false ad o' =
o except o’.HiWaiting = false and o’ HiStartRead = o.EventCount }

Suppose that o,.HiWaiting = true. Then, choose 05 = 02 except o5.Hilaiting = false
and o%.HiStartRead = 02.EventCount. Choose y = 7. Now, (027 a3) €
{(0.(OKtoRead).a") | o.HilWaiting = true and g.LoLock = false and ¢" = ¢ except
o’.HilWaiting = false and o’.HiStartRead = o.EventCount}

so (2a) holds; by the transitivity of =, (2b) holds; since 7" = 7, (2c) holds; and (2d) and (2¢)
hold vacuously since y @ I' and 7 € v.

On the other hand, suppose that o,.HilVaiting = false. Then. choose 05 = o2 and choosc
7 = {¢). Now, (02,7,03) € {(0,{€),0) | (0.HiW aiting = false or o.LoLock = true)}

so (2a) holds; by the transitivity of =, (2b) holds; (2c) and (2¢) hold vacuously since v € v:
and (2d) holds since v € (E’* — v)*. Therefore, Case 2 holds.

Case 3: (01,7.01) € {(0.{€),0) | (0.HiWaiting = false or o.LoLock = true)}
This case is analogous to Case 2.
Case 4: (01,7, 01) € { (0, (Read,0),0) |o=0.0}

Choose 6% = 3. Choose 7' = (Read, o'} where o' = 02.0. Now, (02,7,03) €

{ (o, {BeginRead),a') | o' = & except o’.HiWaiting = true}

so (2a) holds; by the reflexivity and the transitivity of =, (2b) holds; (2¢) and (2e) hold
vacuously since -y ¢ v; and (2d) holds since v’ € (E'* — v)*. Therefore, Case 4 holds.

Case 5: (01,7,01) € {(0, (EndRead, ReadSuccessful),o) | o.HiStart Read = 0. EventCount }

Suppose that o2.HiStartRead = 03.EventCount. Then, choose 65 = 02. Choose ¥ = 7.
Now, (02,7',03) € {(0, (EndRead, ReadSuccessful), o) | 0.HiStartRead = o.EventCount }

so {2a) holds; by the transitivity of ~, (2b) holds; (2c) and (2¢) hold vacuously since v ¢ v;
and (2d) holds since ' € (E'* - v)*.

On the other hand, suppose that o2. HiStartRead # 02.EventCount . Then, choose 05 = 09
and choose ' = (EndRead, ReadFailed). Now, (02,7',03) €

{ (¢, (EndRead, ReadF ailed), o) | 0.HiStartRead # o.EventCount }

so (2a) holds; by the transitivity of =, (2b) holds; (2c) and (2e) hold vacuously since v ¢ v;
and (2d) holds since ¥’ € (E’* ~ v)*. Therefore, Case 5 holds.

Case 6: (01,7,0%) € { (0, (EndRead, ReadFailed), o) | 0.HiStartRead # o.EventCount }

This case is analogous to Case 5.

13
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Case 7: (0y,7.01) € {(o, (BéginWrilc,OKtoWﬁtc),a’) | ' = o except o’.LoLock = true  and
o’'.EventCount = o.EventCount + 1}

Choose 0, = 02 except 02'.LoLock = true and a2'.EventCount = 2.EventCount + 1.
Choose ' = 7. Now, (02;7,03) € {(0,(BeginWrite, OKtoWritc},o") | o' = o except
o’.LoLock = true and o’.EventCount = o.EventCount 41}

50 (2a) holds; since o%:LoLock = true = o’ LoLock, {2b) holds; since 7/ = 7, (2c) holds; and
(2d) and (2¢) hold vacuously since -y & I’ and -y € v. Therefore, Case 7 holds.

Case 8: (01,7,01) € { (o, (Write 0,0bjectWritten),o’) | 0.LoLock = true and o € object and
o’ = excépt o’.0 = 0}
Choose 05 = 02 except 02.0 = 0. Choose v = v. Now; since 02 = 0y, 02.LoLock = true
and ‘(625 ?’: 0;) €
{ (o, (Write o,0bjectWritten),0’) | o.LoLock = true and o € object and o’ = o except
.0 =0}
so (2a) holds; by the transitivity of ~, (2b) holds; since o' = =, (2c) holds; and (2d)' and (2e)
hold vacuously since ¥ & I' and « € v. Therefore, Case 8 holds.

Qase 9: (01,7,0}) € { (0, (Write o,Object NotWritten), o) | 0.LoLock = false }

Choose 05 = a2. Choose ' = . Now, since 02 = 01, 02.LoLock = false and (02,7,0%) €

{ (o, (Write 0,Object NotWritten), o) | 0.LoLock = false }

s0.(2a) holds; by the transitivity of =, (2b) holds; since o/ = 1, (2c) holds; and (2d) and (2e)
hold vacuously since y & I’ and v € v. Therefore, Case 9 holds.

-Case 10: (01,7,0}) € { (0, (EndWrite, WriteSuccessful),o') | o' = o except o'.LoLock = false }

Choose 0 = o5 except 02'.LoLock = false. Choose v’ = . Now, (02,7',03) €

{ (o, (EndWrite, WriteSuccessful),0') | o' = o except o’.LoLock = false }

so (2a) holds; since o}.LoLock = false = 03, (2b) holds; since 4’ = %, (2c) holds; and (2d) and
(2e) hold vacuously since y & I’ and 7 € v. Therefore, Case 10 holds.

Thus (2) holds and (v, ~) is restrictive for 2'. ]

Theorem 5: Let = be defined by:
For all o and o', o = ¢’ if and only if o.LoLock = ¢'.LoLock

and let
v= {(BeginWrite, OKtoWrite), (EndWrite, WriteSuccessful)}u {(Writeo, ObjectWritten) | o €
object } U { (Write o, ObjectNotWritten) | o € object }

The projection (v, ) is P-restrictive for 2.

Proof: Let o) and o} € S be arbitrary states, y € E* be an arbitrary event sequence, and p € (0,1} be a
nonzero probability.

We must show that:

(1) (o1,701,p) €T and v|I#() and v ¢ v = 01 ~ 0] and
(2) Voq € 5,01 = 03 =

Py,2)(01,7,01) = Ploxy(02,7,0%).

14
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To show (1), we examine the definition of T to find all ¥ such that (0;,7.01,p) € T and
41I# () and v ¢ v. The examination reveals that. there are four such v : (BeginRead), (Read.o),
(EndRead; ReadSuccessful), and (EndRead, ReadFailed). We consider the four cases individually.

Case 1: v = (BeginRead). '
The only state transitions that accept BeginRead as input are given by:
{ (0;(BeginRead),d’,.143) | &’ = & excepto’.HiWaiting = true }
Thus, 0}, = 0y except ¢}:HiWaiting = true. And by the definition of =, 0, = 0}.

Case 2: == (Read, o).
The only state transitions that engage in: {Read, o) are given by:

{ (0, (Read, 0),0,.143) | o= 0.0}

Thus there is no change in state, and so, o) = 0.

Case 3: = = (EndRead, RéadSuccess ful).
The only state transitions that engage in (EndRead, ReadSuccess ful) are given by

{ (0, (EndRead, ReadSuccessful),a,.143) | o.HiStartRead = 0.EventCount }.

Thus.there is no change in state and so, 01 = .

“Case 4: = = (EndRead, ReadF ailed).
The only state transitions that engage in (EndRead, ReadFailed) are given by

{ (o, (EndRead, ReadFailed), 0,.143) | 0.HiStart Read # o.EventCount }.
Thus there is no change in state and s0, 01 = 0.

Therefore, (1) holds.

Now, to show (2), let o2 be an arbitrary state such that 01 = 2. We must show that Py ~)(01,7,01) =
Py, (02,7,01)-

We have two major cases: y € v and v ¢ v.

Case 1: y€v.
Accoring to the definition of v, there are four different event sequences v € v for which we
must show the above equality. We proceed with one subcase for each of these event sequences.

Case 1.1: y = (BeginWrite, OKtoWrite).
By examination of T, the transitions that can engage in vy are given by:

{(0,7,0",.143) | o’ = o except o’.LoLock = true and o¢'.EventCount = ¢.EventCount +1}

Suppose o}.LoLock = true. There exists exactly one ¢’ € § such that o' = oy ex-
cept o’.LoLock = true and o'.EventCount = ¢y.:5ventCount + 1. Since o7.LoLock =
true = o¢’.LoLock, o} ~ o' and therefore, Py~y(71,7,07) = .143. By similar reasoning,

Py, (02,7, 01) = .143. Hence, Py ~(01,7,01) = Py (02,7, 01)-

15
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Suppose, on the other hand, that o -LoLock = false. In this case, there does not exist a0’ x 0}
such that o’ = o) except o’:LoLock = true and o’.EventCount = oy. EveniCount+1. And so,
&t,%)(aquzq;) = 0. And by similar reasoning, I,(r;z)(UZ:‘Yta;) = 0. Hence again,
Pte 2)(01:7,01) = Pie 2y(02, 7. 0})- Therefore, Case 1.1 holds.

v = (Write o,0ObjectWritten) for some object o.
By examination of T, the transitions that can engage in -y are given by

{(6,7,0",.143) | 0.LoLock = true and ¢’ =0 except 0’0 =o0}.

Suppose that 0y:LoLock = 0}.LoLock = true. There is exactly one state ¢’ such that o’ = a1
except 0”.0 = o. Since (01, (Write o, ObjectWritten), 0", .143) is thus a member of the above
set and o’ % o}, P(,,z) (01,7:01) = .143. By the samé reasoning (since 01 = o, and hence,
o02:LoLock = o1.LoLock = true also), P, ~y(02,7,07) = :143. Hence, Py ~y(01,71:01) =
P(”f-‘:') (‘72, g ‘7; )'

On the other hand, suppose that oy.LoLock = false or o1-LoLock = false. In this case;
there does not.exist a 0’ ~ o] such that oy.LoLock = true and o’ = oy except 0’.0 =
o, and so, Py ~)(01,7,01) = 0. Similarly, since 07 = 02 and so o2.LoLock = oy.LoLock,
P(v‘z) (02,7,01) = 0. Hence, again Py, ~)(01,7,01) = Piy,x)(02,7,01). Therefore, Case 1.2
holds.

v = (Write o, Object NotWritten) for some object o.
‘By examination of T', the transitions that can engage in -y are given by:

{(0,7,0,.143) | ~g.LoLock}.

Suppose that o1.LoLock = ¢1.LoLock = false. Then, (01,7,01,.143) is a member of the
above set and 1 = oi, and so Py )(01,7,0,) = .143. By the same reasoning (since
o1 = 02 and hence, 62.LoLock = 0}.LoLock = false also), Py ~y{02,7,01) = .143. Hence,

P(v,z) (6117a Ui) = P(v.z)(a%')’) 0’;)

On the other hand, suppose that oy.LoLock = true or ¢}.LoLock = true. In this case, either
(01,7,01,.143) is not a member of the above set, or g3 % o1, and so, P, ~y(01,7,07) = 0.

Similarly, since 01 ~ 02 and $o o2.LoLock = ¢y.LoLock, Py, ~y(02,7,01) = 0. Hence again,
Py, )(01,7,01) = Py »y(02,7,01). Therefore, Case 1.3 holds.

v = {(EndWrite, WriteSuccess ful).
By examination of T, the transitions that can engage in «y are given by

{(0,v,0',.143) | ¢’ = o excepto’.LoLock = false }.

Suppose o}.LoLock = false. Then, there is exactly one state o' such that o' = oy ex-
cept o'.LoLock = false. Since o{.LoLock = false = ¢'.LoLock, 0] = o' and there-
fore, Ppy,xy(01,7,01) = .143. By similar reasoning, Py~ (02,7,01) = .143. Hence,

P(v,z) (01 Yy 0;) = P(v,z) (0’2, Y 0‘;)

Suppose, on the other hand, that ¢{.LoLock = true. In this case, there does not exist a
o' ~ o} such that o' = oy except o’.LoLock = false. And so, Pj,xy(01,7,01) = 0. And

by similar reasoning, Py ~)(02,7,1) = 0. Hence again, Py ~y(01,7,01) = Py (02,7,01)-
Therefore, Case 1.4 holds, and so Case 1 holds.
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Case2: v¢ v . )
We divide this case into two subcases: 03 = 0] and 0y # 0}.

Case 2.1: 0y = )

Case 2.2:

By the definitions of T’, v, and =, it can be shown that for zny possible transition (0:7.9".p)
where - is an invisible event sequence, it is the case that o = o’ {ie., for any 7' € E* — v,
(01:7:02.p) € T implies 0y = 03).

Now;, by the definition of P,

P(”xz) (dl 37 0;) = z P(oyiv':03)
¥ E€E’-vand
ai=x0}

Since o; = o} and, for any v € E* — v, (01,7,05,p) € T implies o1 = 75 (as noted above),
the above equation can.be simplified to

P(v:z)(al:% ‘7;) = Z Ploryoy) = P(u,z) (o1,7,01)
7E€E =y

Claim: Given that y ¢ v, for any o € S, P, ~)(0,7,0) = .572.

Justification: Given any state o, (1) the event (BeginRead) can occur with probability
.143; (2) The event {Read,0) can occur with probability .143; (3) Either (OK toRead) or
{€), but not both, can occur with probability .143 (depending on the values of 0.HiW aiting
and o.LoLock); and (4) Either (EndRead, ReadSuccessful) or (EndRead, ReadFailed), but
not both, can occur with probability .143 (depending on the values of o.HiStartRead and
o.EventCount).

Summing up these four, Py, ~y(0,7,0) = .572; regardless of the state o.

Therefore, we have,
Py~ (01,7, 01) = Ploxy(01,7,01) = Ply,)(02,7,02) = Py (02,7, 01)

and Case 2.1 holds.

01 %03
In this case, there is no o ~ o} and probability p, such that (01,7,03,p) € T. So,

Ppyy(01,7,01) = 0. Similarly, since 01 ~ o2 and so, 02 # o}, it can also be shown that
Py~ (02,7,01) = 0. Thus, Py x) (01,7,01) = Pv,xy(02,7,01) and Case 2.2 holds.

Thus (2) holds and (v, %) is P-restrictive for 2. (]
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5.4 A First Attempt at Preventing Denial of Service
The above solution has nno-probabilistic interference. However, as mentioned previously, low writers

can easily-deny service t0.high readers by writing frequently. In fact, Reed and Kanodia [8] point out that
. . “No algorithm can simultaneously guarantee that readers will be able to complete reading and that readers
- can never signal writers ..."
‘ A reasonable approach to partially solving this denial of service problem s to nondeterministically

decide whether to grant write access to the low writer. If the low writer were not always permitted to obtain
~ ‘write accéss, then the high reader would have a greater chance to complete reading.

A system deésigner might (inaliciously or with good intentions) decide that if a high reader is currently
reading, then the low-writer should most often be denied- write access: Whereas if the high reader is not
reading, then the low reader should most often be granted access:

With this strategy in mind, the following solution might be advanced.
Let £3 be the state machine given-by (S, 00, E,I,0,T), where

S= {0,1} x {0,1} x {0,1} x object X integer x integer.

We refer to the components of a state o by the following mnemonics:
o0.LoLock : boolean
o.HiWaiting :-boolean
o.HiReading : boolean
0.0 : object
o.EventCount : integer
-0.HiStartRead :integer.

The initial state of the system is given by
dy.LoLock = false
0o.HiWaiting = false
oo.HiReading = false
60.0‘= null
ao.EventCount =0
0o.HiStartRead =0

E= {BeginRead, OKtoRead, Read, EndRead, ReadSuccess ful, ReadFailed, BeginWrite, OKtoWrite,
NotOKtoWrite, ObjectWritten, Object NotWritten, EndWrite, WriteSuccess ful, €U
object U {writeo| o € object }.

I = {BeginRead, Read, EndRead, BeginWrite, EndWrite} U {Writeo| o € object }

O = {OKtoRead, ReadSuccess ful, ReadFailed, OKtoWrite, NotOK toWrite, ObjectWrritten,
ObjectnotWritten, WriteSuccessful} U object

T = {(o,(BeginRead),0’,.143) | o' = o except o' HiWaiting = true } U
{ (¢, (OKtoRead),o",.143) | 0.HiWaiting = true and 0.LoLock = false and o' = o except
o' .HiWaiting = false and o’.HiReading = true and o'.HiStartRead = 0.EventCount } U
{(0,{€);0,.143) | (0.HiWaiting = false or ¢.LoLock = true)}U
{ (0, (Read,0),0,.143) |o=0.0}U
{ (0, (EndRead, ReadSuccessful),0,.143) | 0.HiStart Read = 0. EventCount }u
{ (o, (FndRead, ReadF ailed), 0,.143) | 0.HiStart Read # 0. EventCount } U
{ (0, (BeginWrite, OKtoW'rite), d",.043) | 0.H iReading = true and o' = o except
o' .LoLock = true and ¢'.EventCount = 0.EventCount + 1} U

18
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¥ (a, (Bengnte, N tOK toWrzte), o, 1) |-o.HiReading = true } U
{ (0 (BeginWrite; OK: toWrzte), o',.1)| 0.HiReading = false and o' =.o except
¢".LoLock = true -and o’ -EventCétint = .EventCount + 1} U
 {{o(BeginWrite, NotOK toWrite), o, .043) | o-HiReading = false} U
{ (o;(Write 0, ObjectWritten), o', 143) | 0.LoLock = true and o' = ¢ except 6'.0 =0} U
{(o; (Writeo; ObjectN. ctWrztten), 0,.143).| 0.LoLock = false} u

{ (o, (E'ndW rite, WriteSiccessful),o’,.143) | o' = o éxcept o’.LoLock = false }.

‘Theorem: 6: Let T3’ =(5', ab, E,I',0', T') where §' = S, 0f) = 00, E' = E, I’ =1, 0' =0, and
7= {(alt71 d'2)t|":3p € (Oa l]'suCh that-(01,7,02;p) € T}’
Let ~ be defined by:
For all o and-¢', o = ¢’ if-and only if ¢.LoLock = ¢’.LoLock
and let - )
v= {(BeginWrite, OKtoWrite), (BeginWrite, NotOKtoWrite), (EndWrite, WriteSuccessful) } U
{{Write o;ObjectWritten) | o € object} U { (Write o, ObjectNotWritten) | o € object }.

The projection (v, =) is restrictive for £3'.

‘Proof: Let (01,7,01) be an-arbitrary transition of £3'.
We must:show that:

(1) yoI'andy ¢ v=> 0, = 0] and
(2) Vo € §',01 = 02 = (305 € §')(3Y € E”)

[(2a) (02,7',05) € ET',

(2b) oy~ 01,

(2c) yoI' - Ivev=q'=7,

(2d) y¢- - v < (E” -v)*,and

(2¢) v @ I' and v € v= (Fy, 72 € (B = 0))[Y =1 v™2l)-

(1) can be shown in exactly the same way as in the proof of theorem 4.

Néw, to show (2), let 02 be an arbitrary state such that g =~ go. We must show that
(Foh € §) (37 € E")

[(22) (02,7, 03) € BT,

(2b) o3 ~ 03,

(2) yeI'andy€v =7 =17,

(2d) y¢v=7 € (E" —v)*, and

(2) y@ I andy€v= (3,2 € (B~ ) ) = 1M Mpl)-

By examination of T”, the transitions of £2' are described by 13 sets of transitions unioned together.
By showing (2) for all 13 sets we will have shown (2) for all transitions. We consider the 13 sets in 13
separate cases.
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Casé 1= (6157,0%) € { (0, (BeginRead), ¢') | &' = o excépt o’ .HiWaiting= true}.

‘Choose 0} = 02 except 02'.HiW aiting = true. Choose 7' = . Now, (62,7,0%) €

{ (0, (BégiriRead), 0" | o’ = o-e¥cept o’.HiWaiting = true} .
so (2a) holds; by thé transitivity of =, (2b) holds; since ' = 1; (2¢) holds; and (2d) and (2e)
"hold vacuously since y & I’ and'y € v. Therefore, Case 1 holds.

Casé 2: (o, 1,04) € {(o, (OKtoRead),o") | 0.HiWaiting = true  and’  -0.LoLock = false
- and o' =0 except o' .HiWaiting = false and .0'.HiReading =-true and
o' H iStq’rtRead = g.EventCount }.

Suppose that go. HiWaiting = true. Then, choose g5 = 03 except g5 H zWaztzng = false
and o}.HiReading = ‘true and. o03.HiStartRead = o,. EventCount. Choose Y = 4. Now,
(02,7, 0%) € {(o, (OKtoRead),d')-| o.HiWaitirig = true and o.LoLock = false

and g =0 -except o'.HiWaiting = false. and o' -HiReading = true and
o".HiStartRead = g.EventCount} so (2a) holds; by the transitivity of =, (2b) holds; since

9" = 9,-(2¢) holds; and (2d) and (2¢)-hold vacuously since v-& I’ and 7 € v.

On-the other hand, suppose that o2:HiWaiting = false. Then,.choose 05 = 02.and choose
' = (€). Now, (02,7 ,0%) € {(0,(€),0) | (¢6.HiW aiting = false or o.LoLock = true)}
56 (2a) holds; by the transitivity of =, (2b)-holds; (2c) and (2e) hold vacuously since 7 ¢ v;

« d (2d) holds since 7' € (E'* — v)*. Therefore, Case 2 holds.

Case 3: (01,7,0}) € {{(0;(€),0) | (0.HiW aiting = false or o.LoLock = true) }

This case is analagous to-Case 2.

‘Case 4: (01,7,01) € {(0,(Réad,0),0) |0o=0.0}

Choose o} = 03. Choose 7' = (Read, 0') where o’ = 62.0. Now, (02,7',0%) €
{/(o,{BeginRead),d’) | o' = o except o’ HiWaiting = true}

so (2a) holds; by the reflexivity and the transitivity of ~, (2b) holds; (2¢) and (2e) hold
vacuously since y ¢ v; and (2d) holds since 7' € (E"* — v)*. Therefore, Case 4 holds.

Case 5: (01,7,01) € { (o, (EndRead, ReadSuccessful), o) | o.HiStart Read = o.EventCount }

Suppose that o9.HiStartRead = o2.EventCount. Then, choose oy = 03. Choose ¥ = 7.
Now, (02,7,0%) €

{ (0, {EndRead, ReadSuccessful), o) | o.HiStartRead = 0. EventCount }

so (2a) holds; by the transitivity of #, (2b) holds; (2c) and (2e) hold vacuously since 7 & v;
and (2d) holds since 4’ € (E"* — v)*.

On the other hand, suppose that . HiStartRead # o2.EventCount . Then, choose 04 = 02
and choose 7' = (EndRead, ReadFailed). Now, (d2,7,0%) €

{ (0, (EndRead, ReadFailed), o) | 0.HiStartRead # o.EventCount }

50 (28) holds; by the transitivity of &, (2b) holds; (2c) and (2e) hold vacuously since v ¢ v;
and (2d) holds since 4’ € (E’* — v)*. Therefore, Case 5 holds.
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- Case 6: (01,7,01) € i{:(d_, (EndRea{i, RéadFdiled), 0).| 0.HiStartRéad # o.EventCount ¥

This case is analagous:-to Case 5.

‘Case 7: (01,%,01) € { (6, (BeginWrite, OKtoWrite), ') | 0.HiReading = true and ¢’ = ¢ except
o':LoLock = true-and ¢'.EventCount = ¢.EventCount +1}

Choose o} =-0, eXcept. d2'.LoLock = true and 02'.EventCount = 02.EventCount -+ 1.
-Choosé 4’ = vy. Now; if 5. HiReading = -true, then (02,7',0%) €
{ (o, (BeginWrite, OK toW rité), 6’ )l a.Hi\Reading{:‘trueland ¢’ =0 except o'.LoLock =
‘trué and ¢'.EventCount = 0.EvéntCount + 1}. If 05.HiReading = false, thén
" (02,7, %) € {(3, (BeginWrite, OKtoWrite),o") | o.HiReading=false and o' = o except
' o'.LoLock'= trueando’. EventCount = 0. EventCount + 1} so (2a) holds; since o.LoLock =
trie = o}, LoLock, (2b)-holds; since 7' = v, (2c) holds; and (2d) aid (2€) hold vacuously since
4.6 T and v-€v. Therefore, Case 7 holds.

‘Case 8: (01,7,01) €4 (0,{BeginWrite, NotOKtoWrite), o) | o.HiReading = true}
" This-case is analagous-to Case-7.

Case 9: (01,7,01) € { (0, (BeginWrite, OKtoW'rite),o') | o:HiReading = false and o' = o except
o'.LoLock =true and o'.EventCount = ¢.EventCount + 1 }
This-¢ase i§ analagous to Case 7.

-Case 10: (01,7,01)€ { (0, (BeginWrite, NotOK toWrite), )| 0.HiReading = false }
This. case is:analagous to case 7.

Case 11: (01,7,01) € { (0, (Write o, Objec‘t‘Written),a’) | o.LoLock = true and o € object and
o' = o except 0'.0 =0}

Choose 03 = 0, except 62.0 = 0. Choosé 7' = . Now, since oy ~ o1, 02.LoLock = true
and (02,7',0%) € { (0, (Write o, ObjectWritten), o'} | 0.LoLock = true and o & object and
o' = o except ¢'.0 = 0} so (2a) holds; by the transitivity of =, (2b) holds; since v/ =1, (2¢)
‘holds; and (2d) and (2e) hold vacuously since vy & I’ and y € v. Therefore, Case 11 holds.

Case 12: (01,7,01) € { (0, (Write o, Object NotWritten), o) | o.LoLock = false }

Choose 05 = 03. Choose ' = «. Now, since o4 = 01, 02.LoLock = false and (02,7',0%) €

{ (o, (Write 0,Object NotWritten), o) | 0.LoLock = false }

50 (2a) holds; by the transitivity of =, (2b) holds; since 9’ = 4, (2c) holds; and (2d) and (2e)
hold vacuously since v & I’ and 7 € v. Therefore, Case 12 holds.

Case 13: (01,7,01) € { (0, (EndWrite, WriteSuccessful),o') | o' = o except o'.LoLock = false }

Choose 03 = 0y except 62'.LoLock = false. Choose 7' =v. Now, (d2,7,0%) €

{ (0, (EndWrite, WriteSuccessful),0’) | o' = o except o’.LoLock = false }

so (2a) holds; since 0. LoLock = false = o}, (2b) holds; since 7' = 7, (2c) holds; and (2d) and
(2e) hold vacuously since v @ I’ and v € v. Therefore, Case 13 holds.

Thus (2) holds and (v, %) is restrictive for £2'. |)

Given the three objectives that the solution 1) be restrictive, 2) limit denial of service, and 3) provide
good performance, X3 is very reasonable. However, £3 contains a probabilistic covert channel.
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' 'T@é&t@'?&»@@md—-b bé defined as in the previous theorém.

The-projection (v, =) is niot P-restrictive-for:X3.

?rqof: Let .01 bé-a state such that.oy. HiReading = trué. Let g, bé a state such that 02.HiReading =
false. Additionally.suppose-that 0 & 02.

Lét o} = a1-except-o}.LoLock = true and ¢}.EventCount = o1.EventCount + 1. By the definitions of P

© an dtT,:

Py~ (01, (BeginWrite, OKtoWrite), o) = .043

Let 04 = 02 except-4.LoLock = true and o}. EventCount = o5 EventCount + 1. By the definitions of P

Py, (02, (BeginWrite, OKtoWrite), o) = a1
B;xt sirice.o§ % o1,
Py (02, (BeginWrite, OK toWrité), 01) = Py~ (02, (BeginWrite, OKtoWrite), o) = .1
If (v, &) were P-restrictive, then it would be the case that
P(,,:z) (01, (BeginWrite, OKtoWrite), a}) = Py ~y(02, (BeginWrite, OKtoWrite), 01)

Since they are not equal, (v,~) is not P-restrictive for £3. [}

5.5 A P-Restrictive Solution

We now develop a solution to the secure readers-writers problem that limits denial of service and is
P-restrictive.

‘Let T4 be the state machine given by (S,00, B, 1,0,T), where
S = {0,1} x {0,1} x object x integer x integer

We refer to the components of a state o by the following mnemonics:
o.LoLock : boolean
o.HiWaiting : boolean
0.0 : object
o.EventCount : integer
o.HiStartRead : integer

The initial state of the system is given by:
oo.LoLock = false
0o.HiWaiting = false
09.0 = null
og.BventCount =0
oo.HiStartRead = 0

E = {BeginRead, OKtoRead, Read, EndRead, ReadSuccess ful, ReadFailed, BeginWrite,
OKtoWrite, NotOKtoWrite, ObjectWritten, Object NotWritten, EndWrite, WriteSuccessful, e}U
object U {writeo] o € object }

22
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1 = {BeginRead; Read, EndRead, Begin\i'rite, EndWrite} U { Writé o | o € object}

0 = {OKt, toRead, ReadSuccess ful, ReadFailed, OKtoWrite, NotO KtoWrite, ObjectWritten,
Object NotWitten, WriteSuccess ful} U object

T= {9, (BeginRead), 0',:143) | 6" = o excépt o' HiWaiting = true } U
{(o, (OK toRead),a :143) | . HzWaztmg true and o.LoLock = false and &' = o except

o' .HiWaiting = false-and ¢'.HiStartRead = 0.EventCount } U
{(0,{€),0,.143) |.(0.HiW aiting = false or o.LoLock =-true) }U
{ (0, {Read, 0),0,:143) | 0 = 0.0} U
{ (0, (EndRead, ReadSuccess ful), 0, .143) | 0.HiStartRead = o.EventCount } U
{(6,(EndRead, RéadFailed), 7,.143) | o.HiStartRead # 0.EventCount } U

{:(o, (BeginWrite, OKtoWrite),o',.71) | o' = o except o'.LoLock = true and
o' .EventCount = o.EventCount +1}U
(a, (Bengrzte NotOKtoWrite),s,.71) |c € S} U

{

{ (a, (Write o, ObjectWritten), o', .14%) | 0.LoLock = true and o' = o except 6'.O =0} U
{ (o, (Write o, Object NotWritten), 0,.143) | 0. LoLock = false } U
{

(o, {EndWrite,WriteSuccessful),o’,.143) | o' = o-except o’.LoLock = false }.

¥4 limits denial of service assuming that the low writer releases its write lock (i.e., performs an
EndWrite) within some reasonable amount of time after obtaining 't. If we cannot make this assumption
(i.e., if the low writer is possibly erroneous or possibly malicious), the.. the probability of one of the existing
transitions can be reduced by .01, and the following set can be added to T*:

{ (o, LockBroken,o’,.01) | o.LoLock = true and ¢’ = ¢ except ¢’.LoLock = false }.

With this additional transition, the system may at any time break the low writer’s lock on the object,
thus preventing the low writer from obtaining a lock on the object and never releasing it.

T4 (with or without the additional set of transitions) contains no probabilistic interference.

Theorem 8: Let = be defined by:

For all & and ¢/, o = ¢’ if and only if
o.LoLock = o'.LoLock

and let
v= {{BeginWrite, OKtoWrite), (BeginWrite, NotOKtoWrite), (EndWrite,
WriteSuccess ful) } U { (Write o, ObjectWritten) | o € object } U { (Write o,
ObjectNotWritten) | o € object }

The projection (v, =) is P-restrictive for £4.

Proof: Let o; and o} € S be arbitrary states, ¥ € E* be an arbitrary event sequence, and p € (0,1] be a
nonzero probability.

We must show that:

(1) (o1,7,01,p) €T and Y& I and v ¢ v => 0y = g, and

23




= NRL REFORT 9315

(2) Vo2 € S,01 2= 02 = Po.23(91,7.01) = Pgay(®2.2.07)

hdw(l),nmthhﬁ:udrbﬁl"pﬁu(nna 1 PETmdylamd 3 Er.
The examination reveals that there ase four such 3 - (BeginRead). {Read, o)), (EndRend, ReadSuceessful),
and (EwdRead, ReadFailed). We consider the Sous: cases idividually.

Casel: 4 (w
Thdymmumﬁﬂqu&ds“mmlr
{(0.(BeginRead). o', 143) | o' = o except o’ HiW aiting = true}

'lh,a’!=¢1 except o, HiW aiting = true. And by the defimition of =, 03 2 o'

Case 2: 2= (Read,0).
The only state transitions that engage in {Read. o) are givem bx:

{(c.(Read.0}.5..143) | 0= 0.0}.

Thus there it no change W state, and so, 03 0}

* Casé 3: 1= (EndRead, ReadSuccessful). -
The cnly stite transitions that engage in (EndRond, RoadSuccessfal) are given by:

{(0; (EndRéad, ReadSuccessful),0,.143) | o.HiStart Resd = o.EventCount }.

Thas there is no change in state and so, 53 2= 0}.

Case 4: = (EndRead, ReadF ailed):
The only state trarsitions that engage in (EndRead, ReadFailed) are given by

{(o,(EndRead, ReadFéa;leﬂ),o:. -143) | o.HiStartRead # o.EventCount }.
“Thas there is no change in state and s0, 0y = 0]
"Therefore, (1) bolds.

Now, to show (2), let o2 be an arbitrary state such that 03 = 5. Wemust show that Py, »3(01,7,07) =
P, {v,z) (02, Y d‘i).

We have two major cases: y € v and v ¢ v.

Casel: yeuv.
According to the definition of v, there are five different event sequences -y € v for which we must show
the above equality. We proceed with one subcase for each of these event sequences.

Case 1.1: 7y = (BeginWrite, OKtoWrite).
By examination of T, the transitions that can engage in -y are given by:
{(0,v,0',.71) | 0’ = 0 except 0’.LoLock = true and o’.EventCount = g.EventCount +1}
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Sauppose. o} Lolack = trwe. Thive exists exactly cme o* € S such that. ¢ = o, ox-
gt o' Laleck = true and o' EventCound, = oy EventCount + 3. S-tea‘;.lolatk =
trwe = o Lalack, &) = o and therelore, Pcrzg(ag,%d‘) = 7). By similar reascaing.
Pens(o2.7.07) =71 Han, Poayior:2:03) = Preasleos.1.00)-

Seppase, on the other hand. that. o] LoLock = false. In this case, theve does ot exist, 2
a’za{ such that o” = #; except. o' LoLock = trwe and o” EventCount. = oy EventCount - 1.
And 90, Py 25(01.7,07) = 0. And iy similar reascming. Pi,;(02.7.01) = 0. Hence again,
Pio.xy(01:7:0}) = Piy.23(02,7:0}). Therebore, Case 1.1 hokds.

Case 1.2- v = {BeginWrite, NotOKtoW rite).
hde:MhﬂhtMmmh7m§mh:

{(o.7.0..71) jo € S}.

Suppose o] 2= 01. Then Py 23(01.7.07) = .71. By the transitivity of =, o} = ¢».and so
Pie25(02.7:01) = -T1. Hence, Py 23{(01,7.6}) = Peray(02:7:6})-

Suppose; on the other hand, that o % ;. Then,. P 3los.7,01)=0. By the transitivity
of =, 0} # 62 and 50 P, 23(02.7.6}) = 0. Hence again, P, ~3(01.7:0}) = Ppe~3{02.3.01)-

Therefore, Case. 1.2 holds.
Case 1.3: v = (WTrite 0,0bjectWritien) for some object o.
By e=amination of T, the transitions that can engage in - are given by:

{(o.v.0" ,-143)|a.LoLock true and o" = o except 0”.0 = 0}.

Suppose that oj.LoLock = 0}.LoLock = true. There is exactly one state o such that 0" = o}
except 0.0 = o. Since (03, (Write 0,ObjectWritten),o”,.143) is thus a member of the above
set and o’ = 0. P 2)(01.7,01) = .143. ‘By the same reasoning (since oy =~ a2 and hence,
o2.LoLock = d;’LOL“k = true 3150), I’(:.z)(”&?:a;) = .143. Hence, ~P(v.z}(al:7=ali) =
P(vf-"v) (0’2, gL "1 )-

On the other hand, suppose that ay.LoLock = false or o}-LoLock = false. In this case,
there does not exist a o’ = o} such that oy.LoLock = true and o' = o} except 6°.0 =
o, and s0, P, ~y(01,7,01) = 0. Similarly, since 61 # 02 and so0 02.LoLock = ay.LoLock,
Plo,x){02,7.01) = 0. Hence again, Py, ~y(e1,7.0]) = Py ~y(02.7.01). Therefore, Case 1.3
holds.

Case 1.4: 7= (Write 0,0bjectNotWritten) for some object o.
By examination of T. the transitions that can engage in v are given by:

{(0,v,0..143) | 0.LoLock = false }.

Suppose that oy.LoLock = a1.LoLock = false. Then, (0y,7,01,.143) is a member of the
above set, and o1 = 07, and so P, y(01,7,07) = .143. By the same reasoning (since



g% 63 and'hence, 52 LoLock = o}.LoLock = false also), P, ~)(02,7.0}) = .143. Hence,
IPM(UI=1:”) P(f,z)(ﬂzﬂ. 1)

Ontheotlu'hmd,mppaethtal.l;ol.ock true or 75.LoLock = true. Intlnsase,uther
(91,7:01:-143) is not-a member of the.above set, or 03 # 0}, and 50, P 2)(01,7,97) = 0.

Smihﬂy since 0y = 02 and 90 0. LoLock = 0y.LoLock, P »y(02:7,01) = 0. Hence again,
. P(,,'z)(d;,‘y,a’ )= P(,,#,(az,'y,a' ). Thaefore, Case 1.4 holds.

. _"Caemq (BudWrde,WntcSmxful)
- e Byenmauonothhetramhonsthatanengagemqamgwmby

{(o;7;0°,.143) | o’ = o except o’.LoLock = false }.

"‘“'aiLolock ﬁbe.'l‘heutherensexactlyonestateo’suchtbata’-—alex~
cept a’.LoL«* false. Since o}.LoLock = false = o’.LoLock, o}, =~ o' and there-
Jofe;, P(,g)(dx,'y,o’ ) = .143. By similar reasoning, Py ~)(02,7,01) = .143. Hence,

: ) ’P (',z)(al:'y; 0") I’(vx)(oé:'ﬁ al)

A Suppoae,ontheotherhand that o].LoLock = true. In-this case, there does not exist.a
b ‘ ‘0" %0} such that o’ =.0y except o’.LoLock = false. And so, P(y2)(01,7,07) = 0. And
: ' birsumlar reasoning, P(,'..)(O'z,‘)', l) ‘0. Hence again, P(v, )(61:'7#7;) =’P(v,%)(q2:71 oll)'

“Therefore, CaSe 1.5 hiolds, and so Case 1 holds.

Case 2: 7 ¢.v.
Wewllldmdethxscasemmtwosubmsm o1 = 0] and 01-% 01.
‘Case 2.1:.0 0]
By .ihe definitions of T, v, and =, it can be shown.that for any possible transition, (o,7,0',p)
where «:is-an invisible evént sequence, it is the case that o = ¢’ (i.c., for any ' € E* — v,
: (01,7:0%,p) €T implies 01 = 03).

; Now, by the definition of P,

)
P, (vix) (o1, 7,0 D= E P(o1v'105)
. 7' €E"~vand
LA

Since 01 = o} and, for any 4' € E* — v, (01,7,03,p) € T implies 0; ~ 05 (as noted above),
the above equation can be simplified to:

P(v.z) (Uh'Y, Ui) = z Ploriv'\0h) = P(v,z) (01)% 01)
YeE -y

Claim: Given that v ¢ v, for any o € S, P, ~)(0,7,0) = 572.
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S S Justlﬁcatlon ‘Given any state o, (1) the e\,ent (BéginRead) can occur- with probability-.143;

T (2)-the event {Read, 0) ¢an occur with- probabxhty .143; (3) either (OKtoRead) or+{(c), but not

: both; ¢an occur with probablhty 143 (dependmg on the values of 0. HiW aiting and o.LoLock).
(4) either- (EndRead ReadSuccess ful) or (EndRead ReadFazled), but riot both, can occur
with-probability .143-(depending on-the values of ¢.HiStartRead and 0. EventCount) Sum-
ming up-these four, P(,,,~) (6,7;0) = .572, regardless of the state o.

Theréfore; we have,

Piv,z) (alr % ai')'é'P(v,ﬁ) (‘71: '7),0'1) = P(v,_z) (6'21 Y b'2), :'P(v,z) (021'77 0';)

-and' Case.2.1. holds.
Case 2.2: oy % ay. :
In this case, there does not exist.a o5 x2.g1 and a probability-p, such:-that (oy,v,05,p) € T.

So, P(,, ~(01,7,07) =0. Slmllarly, since 61 % 02 and s0,. 0 # 01, it can also be shown that
P(v )(U21 B 0'1) 0. ThllS, P(v, )(al: Ys 01) = P(v,~) (U2a7v ‘71) and Case 2.2 holds.

Thus:(2);hoids_ and (v,~) is P-restrictive-for 4. [}

6. ~Compbsing 'Systéms

It is desirable for P-restrictiveness to be composable (as is restrictiveness). To show that .P-
restrictiveness is composable requires a formalization-of the.composition of probability-extended state ma-
chmes However, there is not-only one way to define this composition. The main difficulty we encountered
in.defining the composition of machines was how-to treat time..On. the orie hand timing considerations can
aﬁ'ect‘. the probabilities of events. For- example, consider two systems: system A simply outputs-a continuous
séquence of 1’s and system B simply outputs a continuous sequence of 0’s. When'these two systems.are com-
posed, the composite system outputs a continuous; nondeterministic sequence of 1's and 0's. The probability
that the composite system-will output-a 1 at any given state of the system is based on the.relative speeds at
which the component systems operate. On the other hand, time-is not represented in our model. Therefore,
we have no way fo model the composition of probablhty-extended state-machines in.a fully general way.

‘In-future work, we may incorporate the notion of time into the current model. In so doing, it may be
possible to-incorporate constraints on timing interference (wluch i$ not constrained at all in the present work)-

as well.as allow us to properly deﬁne the composition of systems and demonstrate the general composability
of P-restrictiveness.

In the meantime, we offer the following limited result. In the following sections, the simple composition
of probability-extended state machines is defined and P-restrictiveness is shown to be composable under
simple composition. In defining the simple composition of machines, we assume that the composed machines
operate at an -identical; constant rate. This is a reasonable assumption in some applications (e.g., two
machines executing the same software on the same hardware at the same clock speed).

6.1 The Simple. Composition of Systems

Let A = (S4,504,E4,14,04,Ta) and B = (Sp,s0p, Ep,Ip,0p,Tp) be two state machines. Pro-
vided that B4 N Eg = @, we define the simple composition of A and B, denoted A||B, as the machine
(S,$0,E,1,0,T), where

S=SA><SB
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50 =(504,305)
E£EasUEB
T r=hulg
0=04U0p _
T2 {((sa,98),7, £, t)49) | (34;85) € S ‘and {ta,ts) € S and p€(0,1] and

P

s (((s4,7,t4;Py € Ta and 3p=t5) or
@ (enmte ) €Ty ad aa=ta) )

If it.is not true:that-E4 N Ep = 0 then A||B-is undefined.
6.2 The Composition of Projections
‘Let A =:(S’A,.‘9(')A,EA',IA,AOA,TA) and B =.‘(SB,sOB,EB,ITi;,OB,TB);be two state machines. Also

let (va,~4) and*(vp,~p) be projections of A andB, respectively. Provided that v Nvp = §, we define the
composite projection,.denoted by (v 417 4) 0(vB, ~B), as the view (v,~), where

v=v4Uvpg.and

(V(84;88),(ta,tB) € S)(sa,8B) ~ (ta,tB) &> 34 ~4 t4 and sp=~p tg]

If-itis not true that v4 Nva-= § then the composite projection is undefined.

‘6.3 The Composability of P-Restrictiveness

Theorem 9: Let A = (SA,s(')A,EA,IA,OA;TA)-a,nd"B = (8B, 308, EB, Ip,0p,Tp) be two state machines,

and- (v, ~4) ‘p,nd’ (vB,~B).be projections of A and B, respectively. If A||B = (5,0, E,I,0,T) is defined,
-and (v4,=~4) is P-restrictive for A and (vp,~p) is P-restrictive for B, then (va,~a) o (vp,~p) = (v,~) is

P-restrictive for A||B.

Proof: Let (4;,B;) € S and (A}, B}) €S be arbitrary states, vy € E* be an arbitrary ‘event, and p € (0,1]

‘be & nonzero probability. We must show that

(1) ({A1,B1),7,{A},B)),p) €T and vy I and v ¢ v=> (A, B1) ~ (41, B}), and

(2) V(Az, Ba) € 5, (A1, Br) ™ (A2, Ba) = Prony((A1, B), 1, (44, BY)) = Py ny (A2, B2), 7, (44, BYY).

To show (1), let.((A1, B1),7, (A4}, B!),p) € T and v e>I and 7 ¢ v. By the definition of T', we have two
cases:

Case 1: (Al,'z,A’l,2p) €T4 and By = Bj.
By the definition of v, v ¢ v = v ¢ va. Also, since v e>I and E4 N Eg = 0§ and v € E}, it
must be the case that v @ I4. And so, by the P-restrictiveness of A, A; x4 A
By the reflexivity of ~p, By ~p Bj and therefore, (4;, B;) ~ (4}, B}).
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Case 2: Ay = A} and"(By, 7, B}; %) € Ts.
: This ¢asé is.analagous to Case 1.

* Now-to shiow-(2),’ let:(A3; Ba) bé a staté.such- that (A, Bi) ~(43, Bs).

‘We misst show that Plu,)((41, Bi), 7, (4}

Case 1 7. €va-

P, (v,®) ((Al’ B l) ’ 7: (All ) i) )=

2

{423, B})3(47,B))

D((A1,B1), 7, A%, BLY)

;’ % Z p(Al"YlA;Y)

1Al
A2~Al

= %P(vA.zA)(Ah e AII)

%P(UA ,z,Q (A?)

v, 4})

=% D PlAsmas)

AR Al

>

(43,B3)~(A},By)

P(({A2,B2)m{45,B5))

= P(u,:“«-)((A% B2)"7: (All» Bi))

And so, Case 1 holds.

Casé 2: v € vg.

This case is analogous to Case 1.

Case 3: v ¢ v.

P(v,z)((Ala Bl)’ Y (Ai, Bi)) =

2

;Y'GE‘—v and
(A2,B3)~(A},By)

p((Al )B!),ql)(Alziaé))

yB})) = Py,~)((A2, B2),7, (A}, B})). We will stiow this in three

[def. P

[def: T and p]

[def. Py, ~a)

[P'reSt' <’UA, zA)]

[def- P(UAnzA)]

[def. T and p}

(def. Pry.m]

[def. P(v,z)]
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1 b w " !
—2- E p(Alt'Yl)sz) + 2 . Z‘ p(B],‘T',Bz,)

 A€Ba~ and | -
. A:a::" h 1’628:’;;“
[def. T-and p)
= %P (vA,~A)(A11 e Al) + lp (vs,~p) (Bi, Bl) [def: P(”j,‘o?-’a)],

'=»I%’P('i,.,z1)(i'i’z,% AN+ %P(u,,z@)(Bg,m Bj)

[P-rest. (v4,~4) and (vp,~g)]

= %‘ E P(asv.az) +3 Z P(Ba,v'BY,)
y'€Ep~vs and ’ v'€Ep-~vg and.
ApmAL Bj=~Bj
(def. Py, 0y a0d-Piog x5))
=Y PABALE) [def: T and,7]
‘eE-vand.

(A B,)a:(A,,B’)

= P(”.a”)’((‘AZ’ B2)’ i) (A,l) i)) [def P(,,,z)]

And so, Case 3 holds and the theoreri-is-proved. ‘|

7. Conclusions-and Future Work

We have shown with-examples that-small systems that are restrictive (and that may appear to.be
reasonable),can contain probablhstlc mterference (ie. , probabilistic covert channels). Furthermore, it is clear
that with larger systems that are.shown to. be restrictive, probabilistic covert channels may exist that are

‘subtle and difficult to detect. Our extension to McCullough’s work provides a security policy that, when

applied to a system, guarantees that'the system will contain no probabilistic interference.

Additionally, the main example of this report showed how nondeterminism can be used to prevent
denial.of service, and that useful, nondeterministic systems can be shown to be P-restrictive. Of course, the
introduction of riondeterminism to prevent denial of service, as in our example, adversely impacts overall
system performance. A tradeoff must be made between prevention of denial of service and system perfor-
mance.

To apply P-restrictiveness in the development of secure systems, an implementation language that
supports thé specification of probabilities is needed. The compiler and target machine for this implementation
language must accurately implement the specified probabilities, so that the actual system will behave exactly
as in the specification, and thus be P-restrictive. Therefore, any effort to apply P-restrictiveness must be a
long-term éffort.

As discussed in the introduction, our plans for future work are to extend the present model and
definition of security to include timing considerations. +'his will result in a definition of perfect security.
Following that, it is our intention to weaken our definition of security to allow a quantifiable amount of
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oL mterference Hopefull), this wnll make the définition more usable (ie., more systems will satisfy the deﬁmtlon)
e - and.will: allow systeni developexs to. formally and precisely. determiiie the rate at which a system can-leak
Co mfonnatlon Furthermore, such -a definition would allow syst~m designers to trade off the security of the:
T ‘system with other design.goals such:as system performance and prevention of denial of service.
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