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PROBABILISTIC INERFE CE LN
RESTRICTIVE SYSMEMS

1. INTRODUCTION

The notion of noninterference was first introduced I; Goguen and Mesegier JL2] to fomally spec
and v-sify securty proper.ieF Their formnalism allowAs a specifier to state propertes of the formr 'commands
from th;e set A. issued k- usrs in the set G. do not interfeve with users in the set C.7 Goguen and

fMeseguer shon-ed that a %- of security poliis (including labelbased mandatory acces controls and
identity-based discre.ionnry access controls) could be specified by using this formalism- In addition to thtir
wide applicability, nomunterference assertions capture our inuition of security properties very I-l For these
reasons, the noninterfie-rence formalization is very appealing as the basis for a general theory of senurity

One problem ith Goguen and Meseguer's original formulation of noninterference is that they modeled
computer systems as dderninislic state machines. As discussed in Ref. 3, many computer systems are
nondeterministic and therefore cannot be accurately modeled as deterministic machines. Recognizing this.
Sutherland 41 and later McCullough [3,] modeled computer systems as nondeterministic state machines
and defined security policies in terms of those models.

In accordance with the diew that large:, distributed. sciare computer systems should be built by
hooking up independently built and verified component systems, McCullough proved that his definition of
security, called rstrmims is composable (i.e., by hooking up two or more restrictive systems, a composite
system which is restrictive is produced).

Despite the advances made to date, culminating .ith McCullough's definition of restrictiveness, some
problems remain. First, verifying that a system is restrictihe does not shou anything about covert timing
channels. SpecificalLy, high events can interfere with the timing of low events (e.g., response time). This
timing interference can be exploited by trojan horses to leak sensitive information to unauthorized users- In
current practice, covert timing channel analyses are performed to find and determine the threat associated
with these channels.

Second, verifying that a system is restrictive does not show anything about probabilistic channels; high
events can interfere with the probability that a low event will occur. As with timing interfercnce, probabilistic
interference can be exploited b3 a trojan horse to reliably leak high information to unauthorized users. This
problem has been noted by other researchers [5,6] but has not previously been addressed.

Third, for the types of interference that arc prevented by restrictiveness, the policy cannot be relaxed
to allow a small amount of interference. It ha been said that computer systems "are often not intended
to be completely securc7 [J and that any "real system will have channels that violate the noninterference
policy- j6j. For example, low-bandwidth covert channels may be permitted for the sake of performance- For
this reason, restrictiveness may be too strong a property for a real system to satisfy. In both Refs. 6 and 7
recommendations are made to partially address this problem.

On the one hand, restrictiveness does not prevent all types of interference (viz., timing and proba-
bilistic interference) and therefore should be strengthened, o, the other hand, restrictiveness is too inflexible
to allow a small (i.e., sumehow quantified and deemed to be sufficiently small) amount of insecurity and
therefore should be weakened.

The ultimate objective of our research is to define a becuritq property that completely captures the
notion of noninterference (i.e., there are no loopholes like covert timing channels that must bc addressed
separately), and at the same time can be relaxed to allow some quantifiable amount of interference. Fur
thermore, this security property must be defined in terms of a sufficiently general system model (i.e.. aspects
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of real sstems such as on -." li, b qe yemutabbe in te mode.). We hope that such a prop-
erTy could be rea cal" ap-ped in the odmv ent of a seur system to Zin asur'.mm th-at, the *cim
prnides a specified te-e of pnoectio.

Our loanerm approach fo.- achieving ths objective is as fofsm. Our firA ob -etic is to dfine
perfect. noniintefrenceo B perfect noninterference we mean that a system that is sh n to be perfectt y

nonterfering cannot exhibit undesirable interfer nce of any kind. We beNiee that only a.fer we fury
understand what it means for a system to be perfecly secture. we can properly define our toerance for
msecurity. Thus. our second objectie will be to generalize perfect noninterference to alkm a quantifiable

amount (e.& 2 bits/min) of interference.

It is toward the first. objective defining perfect noninterfereuce that the present work is aimed- In
this report, we develop an extension to McCulloughs, restrictiveness that precludes probabilistic interference..
In this repo-t we also restate McCuI!ouglis state-machine formalism and definition of restrictiveness. we
present an example s-stem that illustrates the problem of probabilistic interfkrence. Then we develop an
extension to McCullough's work that solves the problem of probabilistic interference. We present a series
of examples designed to sh- the appilation of our extension. and an example ,Z a new solution to the
so-called secure readers-wriers problem ]- At the end we discuss the comp L1it, of our extension. and
.e present our conclusions and plans for future work.

2. RESTRICTIVENESS

In Ref. 5 state machine restrictiveness is formalized in the following way:

Definition: A stale machine - is gien by a six tuple (S. no, E. 1. 0: T), where S is the set of all possible
states, ao E S is the initial state, E is the set of possible events, I C E is the set of all input events. 0 C E
is the set of all output events, and T C S x E x S is the set of all possible state transitions.

Definition: Extended transitions are given k, ET C S x E' x S where (a, (,. ,et_]).a.) E ET if and
only if some sequence of states a2,...-...r exists, such that (u,, e ,+l) ETfor all i, 0 < ni <n.

Definition: Let ; be an equi-mlenct relation on states of a kystem E (speci!ving which states appear to be
the same state from the point of view of a particular user) and u be a subset of E (specifying which events
of E are visible to that user). We call (v: :) a projection of the system E.

The following condition for restrictiveness is exactly the same as McCulloughs, restated in a more
compact form. The condition that must be batisfied for a given projection to be restrictive is stated in .,to

parts. Intuitively, part (1) says that invisible inputs do not affect the vibiblc part of the state. part (2) sa~s
that the invisible part of the state does not affect whether or not visible events occur.

Definition: The projection (v, ;) is restrictive for E if the following condition holds.

Let (o,, x, a') be an arbitrary transition of E.

(1) x EI-v al a'and

(2) Va2 E .5,c al: => (32 E S)(3y E E)

[(2a) (o2, -ya2) E ET,
(2 ) o ,

(2c) x E I =* y (x),
(2d) x E ((E - I) - v) =E 'y ((E - 1) - v)*, and

(2e) x E ((E - I) l v) = (3-i-y2 E ((E - I) - v)'lj' =71'(X)^2]]-

Although McCullough does not give an "uninding theorim", this condition is analagous to the
unwound versions of noninterference given in Refs. 2 and 6.

2
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3. PROBABILITC INTERFERENCE

In the pre-ious definition, (2) intuitively savr that the invisible part of the state does not interfere
with whether or not a particular visible evt can occur. However, it does not, say that the inisiLtle part
of the state dots not interfere with the probability with which a particular visible event will occur For
example, conside the folowing system that keeps track (,ia its internal state) of the mst recent input, and
from any state nondeterministically outputs either Ou.O or Out!.

Let EI be the state machine given by (SorE, JO,T), where

ro-- 0

E = {InO . JIu OutO, OuL)
I= {InO.Inl}
0= {OutO, Outl
T= { (0InO. 0, InI. (0OntO,0) (01)ut1.0),(1InO.0). (1I/7,1:1),(1,OutO. 1), (1,Outl, 1)}.

According to the definition of T, in either state 0 or 1 the system can nondeterministically output
OutO or Outl. However. suppose that when an output occurs in state 0, 95% of the time it is OutO: and
only 5% of the time it is OuLl. And when an output occurs in state 1. 95% of the time it is Outl, and only
5% of the time it is Out0. These probabilities cannot be represented in McCullough's formalism; thereforc.
they do not affect whether or not the system is restrictive.

Theorem 1: Define the equivalence relation ; by a, ;. a2 for all states, a, and -! (i.e.. the user cannot
distinguish state 0 from state 1). Let v = {OutO, Outl (i.e., the user can see outputs but not inputs)- The
projection (v, t) is restrictive for El.

Proof: Let (o1.x, a) be an arbitrary transition of El.

Since 01 e a2 for all or and a2,

(1 ) x E I - v = l ;z: r'

is trivially true.

Let o2 be an arbitrary state zucli that a, : 02. We must show that

(2) (3o2 E S)(3y E S*)

[(2a) (a2, ya) E ET,
(2b) 2 )a,

(2) E I ..), = (x),
(2d) x E ((E - I) - v) =- (y E ((E - I) - v)*,(2e) x E ((E- 1) n v) = - (37yi,,2 E ((E - I) - V)*)[_, =.y,^(X)AT2]].

There are four cases.

Case 1: x = InO. Choose 4 = 0 and y' = (InO). Then (2a) [(U2, -y, o2) E ET] holds, since in either state InO
may be received, after which the state will be 0; (2b) (or ; ao') holds since a, ;.Z 02 for all a, and q 2 ,

(2c) x E I = . y = (x) holds since -y = (InO) = (x); and (2d) and (2e) hold trivially since x € (E - I).

Case 2: x -In. Choose or = 1 and -y = (Ini). Then (2a)- (2e) all hold by similar arguments.

3
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Case 3: x = OW. Choose - ad - = (OUt0). We have two subases.

Case 3.1:o2 = 0. In this case, 95% of the time, Out0 will be output. so ( 2 ,') E ET is true.

Case 3.2: o2 =1. In this case 5% of the time, Ouffwill be output, so (o2,-f,4)E ET is true. Therefore,
(2a) holds; (2b) again holds since o =- 02 for all 01 and o2; (2c) and (2e) hold trivi.lly since

z f Iandx j v; (2d) holds sincey = (Ot0) = (x) andx E ((E-J)-v) =* (x) E ((E-I)-v)'.

Case 4: z = OutI. Choose ' = or2 and y = (Outl). Then (2a)-(2e) hold by- similar arguments.

Thus, (w,=-) is restrictive for El. U

We would like this theorem and proof to show that the inputs InO and Jnl do not interfere with the

outputs OutO and OutI. However, 95% of the time the outputs accurately convey which input was the most

recent one.

WVhat the theorem actually says is that the inputs InO and Inl interfere only with the invisible part
of the system state, and that the invisible part of the state does not interfere with whether or not visible
events can occur. The security problem arises because the invisible part of the state does interfere with the
probability with which visible events occur. Thus, a noisy but potentially dangerous (and potentially high
bandwidth) channel can exist in a system that is shown to be restrictive. We call this problem probabilis-
tic interference. McCullough [3,9] gives examples of probabilistic interference to illustrate that deducibilitv
security [Sutherland 86] does not rule out all insecure systems. McCullough also states that restrictiveness
"disallows all kinds of definite channels (ones that don't involve probabilistic inferences)," [5] where "prob-
abilistic inferences" appears to mean what we term probabilistic interference. The problem has also been
noted in Ref. 6, where they ignored nondeterminism and thus did not address the problem.

4. FORMALIZING THE PROBABILITY OF EVENTS

In this section we incorporate probabilistic concerns into the treatment of state machines and restric-
tiveness, and then reconsider El, the example system from the previous section.

4.1. State Machines

We modify McCullough's formalization of state machines as follows.

A state machine E is given by a six tuple (S, oo, E, 1, 0, T), where S is the set of all possible states,
ao is the initial state, E is the set of possible events, I C E is the set of all input events, 0 _ E is the set
of all output events, and T g S x E x S x [0,1) is the set of all possible state transitions.

The meaning of (oli, e, a2, p) E T is as follows:

" If e E E - I, then whenever the system is in state a,, the system will engage in e and transition

to a2 with probability p.
* If c e I then whenever the system is in state a,, the system will, with probability p, attempt

to accept e and transition to a2. If the environment is not offering e (e.g., a user has not

entered e), then on this attempt the system will perform the null transition (i.e., the system

will transistion frowi- al to or without engaging in any visible event).

This action of a system attempting to accept an input can be thought of as polling: The system

checks whether the environment is ready to provide the input, if the environment is ready, then the system

accepts the input and makes its transition; if not, then the system does nothing.

This, method of obtaining input can hinder good system performance (e.g., due to busy waiting),

therefore, for performance purposes the preferred method of obtaining input is with interrulpts llowever

for our purpose of preventi- g interference, interrupts can cause problems. For example, if a high subject

can interrupt a system that interacts with a low subject, the high subject can interfere (probabilistically
and/or temporally) with the low subject by varying the frequncy of its interrupts. 13y using the polling

A
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Sof obtaining inputs, a system controls whem it will accet an input md thus has complete contra
-mwetber igh inputs iuierfre with low outputs. For this rmean, we chase to indude on the polling

method of obtaining input in our system model.

Another e t of the polling method is that it is no longer necemry for systems to be input total
(Le., a system am decide not to accept an input and the input may be lost). Therefore, in this report we
do not require that system be input total. Thus, there are systems (which are-not input total) that are not
rmuictive but do ssa y our definition of security.

Even though the polling method of obtaining inputs is more suitable for security purposes, cases exist
where interrupts are useful and do not cause security problems (eg., a user interface that interacts with
a single user at a single security level could be driven by interrupts from the keyboard), therefore a fully
g neral system model should include facilities for specifying and reasoning about interrupts.

Note: For the probabilities of events to make sense, the sum of the probabilities of all next possible events
should equal 1. However, for security purposes, we do not need to make this requirement on systems. We
consider feasibility for implementation to be a separate issue from security. Thus, a specification of a system
may be shown to be secure and at the same time be impossible to implement as specified.

4L2. P-Restrictiveness
In this section we incorporate constraints on probabilistic interference into McCullough-s state machine

restrictiveness. First we formalize the probability that the system, starting in state or,, will (with respect to
the projection (v, :%)) appear to engage in the event x and transition to state aO2.

Definition: Let

p such that (al, x, u2,p) E T, if such a p exists;
P(uizl 2 =

0, otherwise.

Now, for a given projection (v, ), define P(V,) : S x E x 5 - [0, 1] as

X P(uIzx) if x E v;

P(,1)(al, x, 2) = if x v.
Z'EE-vand

This definition is an integral part of the definition of P-restrictiveness, and so we would like to point out a
few subtleties.

First, note that the probabilities of all transitions from or (i.e., only a) to any state equivalent to a2
are summed. This means that P(,,,,)(or,x,a2) is the probability that the system will, from a,, transition
on x (or any invisible event if x is invisible) to a state equivalent to oa2. The reason for defining P,,.,) this
way (rather than as the probability that the system will, from any state equivalent to oa, transition on ...
should be clear after the definition of P-restrictiveness has been presented.

Second, note that for an invisible event x, the summation includes transitions on any invisible event.
This is because from the point of view of the projection (v, ,), any two transitions from al to equivalent
(with respect to ;) states, that engage in invisible (with respect to v) events will appear to be the same.

Third, note that the second case applies for all x v. This means that for an x that is not in E (i.e..
not even a possible event of the system), P(v,. )(Oa,x, a'2) may be positive. Again this is due to the point of
view of the projection (t z). To a user with projection (v, ), a possible system event that is not in v and
another event that is not even a possible system event will appear the sane-they are both invisible.

5
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No w p m ant our-extaeuja to MdCullough's defnition of restrictivene.

Dezitim Let = be an equivalence relation on states of a system E, and v be a subset of E. The projection
(w, w) is pUbift-e wairestbridie (P-restrictive) if the following condition holds.

Let o, O'1 E S be arbitrary states, Z E E be an arbitrary event, and p E (0, 1] be a nonzero probability.
(o,,xs )(4j,p) E Timplies

(1) z EI - v~ 4- rl:t;a, and

P(..)(01,XaD= p implies

(2) V0 2 ES,l - a,2 (3a2 ES)(3y EE),

[(2a) P(,,.)(0 2, Y, o2) = p,
(2b) 92 0,
(2c) x E14-y=-z,
(2d) x E ((E - I) - v) y E ((E - I) - v), and
(2e) zx E((E- I) nv) y = x].

We made this initial statement of P-restrictiveness to emphasize its similarities and differences with
McCullough's definition of restrictiveness. The differences are:

" The antecedent of (1) is changed from (ol,x,a) E T to (ar,x,a',p) E T. This extension
corresponds to the extension of the state machine formalization.

* In the antecedent of (2) and within (2a), (o, x, a') E T is changed to P(v,,) (o, x, a') = p.
This modification represents the addition of constraints on the probabilities with which events
occur.

" Within (2), the event sequence y is changed to the event y (e.g., there is a loss of transitive
closure in (2d)). The motivation for this change is to simplify the statement and application
of P-restrictiveness (viz., we avoid computing the probability of the occurrence of arbitrarily
long sequences of events and avoid computing the sum of infinite sets of probabilities of event
sequences). This modification has the unfortunate consequence that some systems that are
restrictive and that do not contain any probabilistic interference are not P-restrictive (i.e.,
P-restrictiveness excludes more systems from the ,, of all restrictive systems than just the
ones that exhibit probabilistic interference). In section 5, we further extend our state machine
model and definition of P-restrictiveness, which somewhat alleviates this problem.

Largely because of the subtleties of the definition of P(v,), this condition for P-restrictiveness can be

restated in the following logically equivalent but simpler form.

Theorem 2: Let ; be an equivalence relation on states of F, system E and v be a subset of E. The

projection (v, z) is P-restrictive if the following condition holds.

Let al, or E S be arbitrary states, x E E be an arbitrary event, and p E (0,1] be a nonzero probability.

(1) (al, x, a',p) E T and x E I - v =, al zta and

(2) V02 E Soa P o, Pg,) (Ol, X,a) = pOD(0 2, x, O).

6
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Proof: Assume that for any states al and cr E S, any event x E E, and any nonzero probability p E (0,1],

(1) ( ,,ajp) E and X'E I -v=. lo and

(2) Vo,2-E s;t; o2-: P¢ ,.)(ol,x,o) =P) P(..(, , ).

We must show that the-following holds:

Let 01, a E S be arbitrary states, x E E be an arbitrary event, and p E (0,1] be a nonzero probability.

(o, x, a',p) E T implies

(1') x E I - v ;t-1 a ' and

P(,,.) (al, x, a') = p implies

(2') Vr 2 E S, al &2 =: (3a2 E S)(3y E E)

[(2 W') P (,= ,,)( ry, a) = p,
(2b') o &o,

(2c') x E I => y = x,
(2d') x E ((E - I) - v) =>y E ((E - 1) - ,v), and

(2e') x E ((E - I) nv) y = x].

1' follows directly from 1. By choosing a2 = a' and y = x, 2a' through 2e' follow directly from 2. [j

Demonstrating that the original condition for P-restrictiveness (as stated in the definition) implies the
condition in theorem 2 (i.e., demonstrating that the two conditions are in fact logically equivalent) requires
the use of the definition of P(v,), but it is also straightforward. The simplified condition for P-restrictiveness
,given in theorem 2 (in addition to being easier to understand) makes the -proof of P-restrictiveness easier.

4.3. El Reconsidered

In the probability extended state machine formalization of the previous section, El can bp defined by
(S, uo, E, I, O, T), where

s= {o,1},
ao = 0,
E = {InO, Inl, OutO, Outl},
I1= {InO,Ilnl},

0 = {OutO, Outl}, and
T = {(0, InO, 0, .25), (0, Inl, 1, .25), (0, OutO, 0, .475), (0, Outl, 0, .025), (1, InO, 0, .25), (1, Inl, 1, .25),

(1, OutO, 1, .025), (1, Outl, 1, .475)}.

Theorem 3: Let v = {OutO, Outl}. There does not exist an equivalence relation, ; on states of El, such
that the projection (v, ;-') is P-restrictive for El.

Proof: Since the occurrence of InO and 1nl can change the state of the system from 1 to 0 and from 0 to
1, respectively, and InO and Inl are not members of v, for (1) to hold, the equivalence relation ; must be
defined by al 1 a2 for all al and a2 E S.

Therefore we only need to show that given ; is defined by al Z a2 for all a, and a2 E S, (v, Z) is
not P-restrictive.

7
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By thedefihition _P;

P(,- (0, Oiat, 0) = P(oOuto,u;)

Since 0jsthe oilystate 4-such thatP(o,oOu) is nonzero, and P(o,outo,u) = .475,

P(,_) (0,0*~4 0) = .475

Also -by- the definitibn of P,

oP,(I utO, 0)-= louoar)

Since 1 is the onlystate a2 such that P(1,OutO,o2) isnonzero, and~p(o,outo,o, ) = .025,

v, ) (1, OutO, 0) = .025

Since 0O1 1, and P(v,,)(0, OutO, 0) = .475 # .025 = P(v,,)(1,-0ut0, 0), (v, ;) cannot ,be P-restricti,

forE. 
%

'5. DENIAL OF SER.iCE

This section-presents.,an example of how nondeterminism can beused -to prevent denia-of servic
First, a denial of service problem Js given. A restrictive solution is presented that contains a probabilist
covert channel and is not P-restrictive. Then, an alternative solution, is presented, that prevents denial
service and is also P-restrictive.

By this series of examples, we hopeto show:

(1) Systems that may appear to be reasonable and are restrictive, can contain pr6babilisticcove
channels.

(2) A useful, nondeterministic system can. be shown to be P-restrictive.

(3) Nohdeterminism can be used to prevent-denial of service without introducing insecurities.

5.1 The Secure Readers-Writers Problem

Consider the following simplified version of the secure readers-writers problem (8]. A single proce.

controls access to a single object. There are two users called "hi" and "lo". User hi wants to issue sequenco
of commands of the form "begin read", "read", "read", ... "read", "end read". User lo wants to isst

sequences of commands of the form "begin write", "write (Object)", "write (Object)", ... , "write (Object)'
"end write." (where (Object) is the value to be written to the controlled object). The integrity requiremei

is: If the controlled object is modified (with a successfully executed "write, (Object)" command) sometirr

during a "begin read", "read", "read", ... "read", "end read" sequence then user-hi must be notified. In th
way, user hi will be alerted that the object may not have been in a consistent state during the sequence
reads and may retry the sequence. The security requirement for this problem is that commands issued h
hi may not interfere with the outputs seen by lo.

Note: This problem has been simplified from the general readers-writers problem (as it appeared i

Ref. 8) in two ways:

8
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. lin-thegeheral problem there is moreh~ta. bne-object,.and
(2) in the& eneral poblemthere aie more-than - two users. In particular there may be more than one

writer, aid.:sothere would be an additional integrity- requirement to prevent more than one current
writer.

-5.2A, S a 'M6dificatio :to the Model

Before presenting sqlutions to the secure readers-writers problem, there-is an extension to our model
'of state mAchines that we wish to make.

_ - A state machine is given by-a six tuple (Sao,E,I,O,T) where Sis the set of all possible states,
SaO isthe initial state, E is the set of-possible events, I C R is-the set of all-input events, 0 C E is the set

of all output.events, and T S.x E* x S x [0, 1] is the-set of-all possible state transitions.

Definition: Let

p such that (al, -,oa2,p) E T, if such ap exists;
S.P(a ,I,a2) =

0, otherwise.

Now, for a given projection-(v, z), define P(v,), S'x E* x S -4 [0,1] as,

' ,if -f v;

P(v )(al'ia2 ) =I yE P(a,,-',a') if -Y v.
-t E-v,and

Definition: The infix function I: E* x p(E) - E* (called restriction), where P(E) is the powerset of E, is

defined-recursively as follows: For, any set of events El C E,

0IEl = 0

and for any x E E and any ^ E E*,

- I El if x EEl;
E l (X)A(y I El) otherwise.

Definition: Let ; be an equivalence relation on states of a system E and v be a subset of E*. The projection
(v, s) is P-restrictive if the following condition holds.

Let a,, a' E S be arbitrary states, y E E* be an arbitrary event sequence, and p E (0, 1] be a nonzero

probability.

(1) (al, y,"r,p) E T and y I 5() and - v o' 0"

(2) Va2 E S,a1 1 a2 # P(,)(a:,Y,a) = P(,,)(a2,7,al).

We use this state machin,- formalization and definition of P-restrictiveness throughout the remainder
of this report.

McCullough's state machine formalization and restrictiveness can be similarly generalized to allow
transitions on atomic sequences of events as follows.

9



-R MMr0915

DeduxiUoe A sie ,m*&inc E is O~wn by *A= to*( I'.T is I*-- *t aM pwa

is the set of l output. ews, and TC S x EO x is theI o A wAkl a ta m

Defintion Extewded r r ntio a arc b!fmm t. ET C S x E S Ekt.w 6 E if an
only if theien&ts ome secue rses ac use T 1V ap d in t it 1.

Din IU 1t= bean .esqeskolrutions estartswasit inmg beaan C E. hepojetae
(V =' is ufruidie for E if rhe Wowing dfwient ks -k

Let b e an ahitn tnsiio$ o E.-

(1 01 a0d - oeat = a',nd

(2a) (ft. Y, OD E E )2't

(2b) 02 4 u
(2c) -yG> I anid -r r/=v
(2d) Y E (E - v)' and
(2e) 7~) an Od -iE v* (~. E ((E-I - v =% -J

5.3 Existing-Solutions

Solutions for the seure readers-writers problm that se ent counts hae appeared in the litetise
since 19740l -12, and 8o. Theme solutions allow the writer tostat wrting at. any time. rerdlss of whether
a reader is currently reading. This prevns all interfrence with low outputs by% high inputs- llowesvr. it
has the unfortunate consequence that writers can desny se-ice to readers I- frquent writing.

The following solution is equivalent in effect to these erent count solutions.

Let E2 be the state machine gjven In, (S.ua..E~lO.T). where

S = (0,1) x{11)x object xinteger xinteger

The state of this system is made up of two Boolcans. one object (we- assume that the tyrpe object is
previously defined) and two integers. To maie the system easier to describe ani to understand. we refer to
the components of -A state o, by the following mnnemonics.

or.Lo/ ck : boolean
o.HilIVaitinfl: boolean
o.O: object
a.EventCount: integer
o.HiStartRead: integer

The initial state of the system is given by:

a0 .LoLock = false {Note: false means 0. true means 1}
ao.HilIaiting = false
ao.0 = null
ao.EvcntCount = 0
ao.HiStartRcad = 0

E = {BeginRead, OKIoRead, Read. EndRcad RcadSucccssful, RcadFaile. BcginlVrite,
OKtollrite, ObjectlVritten, ObjectNotllVritten, Endlilrite, 11'ritcSucce-ssf ul, C} U object U
{ write o I o E object )

10
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1 = 109yrwto% MiEl&d&4StmWrfr EaW~ra) U fra ak a f; object)

0=~
laras~al u objeet

(o (0~CKIo.R~e -1~,413) 1orJliUing t -ue, nodi ooILU k false and oe a emen
u'JHillixo a =fake and .IiSdttmi = u.-EraewCoww. t;

((e(Emd&.dr, -R3 1 a0 e.i3 = uJ,.fOi)e VnEez~ri

(o (uEndRtai, RadF~.i4 -143)1 WJr-iSfwaIIe f ff.wICmn I) Li

4 fr(& 1~rif0Ki.ri~e v"-141)1 1 = or except &UL ok = true anti
OO.EreaiCo. = o,.Ere1Cout + I1) u

4 u. (1 ce.0wjd1rifcef~I3)~ L~nk tueaWl .E object aWl

4(Cr, (ufrite0 jiedXolt'I n q, -143) 1 ta LoLoek = false) U

4(vf. (Endl Vrie W-riteSfm .#'.-143)j1 a' = o except a' boLock = false)-

Note: the sd {~().aA43) I (oHi Wailing = false oro.LoLock = true)) is included in Tso that !2
will be P-restrictive-

TheoenitLdT2' =S 1' T~w =S~4ao. E, F'=I, 0'= 0. and

=(a4,7,0)130 E (0, 1such thkt (aI-.-T.r 2 P) ET).

Let =be defined bv:

For all a and a', or = te if and oubL if

arLLoLock = o.LoLock.

and let

v (BeginIVrile, OKtoIrilc), Ed.ic Wieucs fd)}u {(~ieo be~il

10C- object) U I (W1'rite oObjcct'Notilrrittcn) I o Eobject).

Tile projection (v.: ) is restrictive- for F,2'.

Proof: Let (a,, -r. oa',) be an arbitrary transition of F'2'.

We must showx that:

(1) -fe'IF and -t v a j and

(2) Va2 E S',u al ::o 2  (3e'2 E S') (3-/ E E')

[(2a) (ar2, -/.a2) E ET',
(2b) a2'=:a,
(2c) -y E F and -t E v*7'=7
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(~)7*1 aw E r.*, MW~G(E 0
-~)~

To Aawm (1). we exnina the dteinion c rf7 to find all -r such that. (owroe) e 'and
-W go'4 and T_ 71 Te Caujinatw" mWKaU that, thffe are rowr such -r: (&ginRCad). (Read~r
(EndRa4IkaSacwfjxIa), an (EnsdReadReadFilrgo WVeox~widr the four cams indiidualkv

Cm.~ 1:7 =(&min1ead)

The ouly state tramitions that accept BeginRead as input are even I-:

((oBeinRead), W) !a' = o except o'.HiVailing = true)

Tha ge oe except qI.Hil Veiling = true. And In the definition of z, ff] o .

Cas x = (Rpaj)
The ony state transitions that engage in (Read, o) are given Iy:

{(,. (Reatt.o),) Io=,.O)

Thus there is no change in state, and so, rt z o.

Case 3: x = (EndRead.ReadSuccrssful).
The only state transitions that engage in (EndRead. ReadSuccessfui) are given by:

( (o. (EndRead, ReadSuccessful), a) I f.HiStartRead = or.EvenlCount }

Thus there is no change in state and so, o1 a -

Case 4: x = (EndRead. RcadFailed).
The only state transitions that engage in (EndRead, ReadFailed) are given by:

I (o, (EndRead, ReadFailed), o,) I o.HiStartRead - a.EventCount }

Thus there is no change in state and so, or .a'.

Therefore, (1) holds.

Now, to show (2), let o2 be an arbitrary state such that or z O2- We must show that

(3,4 E S)(3-1 E E')
[(2a) (o,, , ) E EP,
(2b) or2:z.£,

(2c) -y > I' and -ye v ' =
(2d) -y V v : -y' E (E'" - v)*, and
(2c) -y >I' and y E v =:, (3 -|,Y2 E (E'* - v))[-y' = 7AIA 21].

Byexamination of T', the transitions of E2' are described by ten sets of transitions unioned together.
By showing (2) for all 10 sets we will have shown (2) for all transitions. We consider the 10 sets in 10
separate cases.

12
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Case I: (o,-r) 4E { (i (BcginRead)a,') I e = o except e.HlWaifthy- true)

Choose 2 - except o2.HzIlraifing =tru Choose = -. Now, (a .:.4) E

{(f (Be 9iRead) a') I a' = a xcept, '.HiIaitiny = true)
so ~ ~ 3 (2)h.sb t hvto~ 2)h ncz (2c) howd and (2d) and (2e)

hold iacuously since " 6' and -f E v. Therefore, Case 1 holds.

Case 2- (a1 .VD ) E I {(. (OKtoRead). e) I a.Hillaiting = true and a.LoLock = false and a' =

a except o.Hi raitin9 = false and ad.HiStartRead = o.EveniCount}

Suppose that o2.Hil railing = true. Then, choose a2 =q2 except a2.Himaiting = false

and o2.HiStartRead = o2.EventCount. Ch0se -' = - Now, (o2. a<) E

{ (o, (OKtoRead), e) j o.HilWaiting = true and o.LoLock = false and o' = a except

ad.Hilfaiting = false and a.HiStartRead = or.ErentCount}

so (2a) holds; by the transitiv'ity of :, (2b) holds; since -' = y (2c) holds: and (2d) and (2c)

hold ,acuously since 7 G> ' and - E v.
On the other hand, suppose that o2 .Hiljaiting = false. Then. choose o2 = a2 and choose

-= (- Now, (a2,Y 1o2() E { (a, (e), a) I (a.HilWaitifig = false or o.LoLock- = true)-}
so (2a) holds; by the transitivity of t, (2b) holds; (2c) and (2e) hold vacuously since 7 v;

and (2d) holds since -I E (E* - v)*. Therefore, Case 2 holds.

Case 3: (a1,-f a,) E { ( (c), a)[ (a.HilVaiting = false or o.LoLock = true))

This case is analogous to Case 2.

Case 4: (oq,7fa',) E {(a,(Read, o),a) I o=a.0}

Choose a2 = o2- Choose -/ = (Read, 6') where o' = o2.0. Now, (a2, 'Y, a4) E

{ (a, (BeginRead), a') I a' = 0. except a'.HiWaiting = true}
so (2a) holds; by the reflekivity and the transitivity of n, (2b) holds; (2c) and (2e) hold
vacuously since 7 v; and (2d) holds since 7 E (E'* - v)*. Therefore, Case 4 holds.

Case 5: (o7, o) E { (o, (EndIRead, ReadSuccessful), a) o..HiStartRcad = .EventCount }

Suppose that a2 .HiStartRead = a2 .EventCount. Then, choose ao, = 2. Choose y' = y.
Now, (02,1, (4) E { (o, (EndRead, ReadSuccessfiul), a) I a.HiStartRead = a.EventCount }
so (2a) holds; by the transitivity of , (2b) holds; (2c) and (2e) hold vacuously since y v;
and (2d) holds since -Y' E (E'* - v)*.

On the other hand, suppose that o2.HiStartRead # a2 .EventCount. Then, choose a' = a2

and choose -Y' = (EndRead, ReadFailed). Now, (a2, 1', a') E

{ (a, (EndRead, ReadFailed), a) I a.HiStartRead 0 a.EventCount}
so (2a) holds; by the transitivity of ;, (2b) holds; (2c) and (2e) hold vacuously since I v;

and (2d) holds since -' E (E'* - v)*. Therefore, Case 5 holds.

Case 6: (oi, -, o) E { (a, (EndRead, ReadFailed), a) I a.HiStartRead # a.EventCount }

This case is analogous to Case 5.

13
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Cae: (u-i 4) E {( (Be mWWriOktolffriteba) I a' = a except o'.LoLock = true and

o'.EventComt = a.EwntCout + I

Choose 02 02 except o2..LoLock = true and o2.EelnCount = 42.EventCount + 1-

Choose Y = O. ow, (u2,-r's) E { (a, (BeginlWrite, OKtoWrite), o') I a' = or except
a'.LoLock = true and v.EventCbunt = or.EventCount + 1)

so (2a) hod, since a .LoLock = true = 4.LOLOCk, (2b) hols since -1 = -, (2c) holds, and

(2d) and (2e) hold vacuously since -y GI' and -y E v. Therefore, Case 7 holds.

Case 8 (ai, % ) E {(o, (Writeo, ObjectWritten),o') la.LoLock=true and oE object and

o' = o except o'.0 = o}

Choose 2 - a2 except a2!.6 = o. Choose Y = -. Now, since o2 - ol, o2.LoLock = true
and -(OZY2,-'4 i

{ (or, (Write o, ObjectWritten), o') I oLoLock = true and 0 E object and or' = or except

o0.0 -1
so (2a) holds; by the transitivity of t, (2b) holds; since Y = y, (2c) holds; and (2d) and (2e)

hold vacuously since -f E> F and -Y E v. Therefore, Case 8 holds.

Case 9: (o r,, a,) E-{ (or, (Write o, ObjedNotWritten), or) I a.LoLock = false }

Ch0osea24 = 2. Choose Y= -Now, since o2 ; a'i, o2 .LoLock = false and (o.2, Y, o.2) E

{ (dr, (Write o, ObjectNotWritten), o,) I o0.LoLock = false }
so-(2a) holds; by the transitivity of t, (2b) holds; since Y' = 7, (2c) holds; and (2d) and (2e)

hold vacuously since 7 e> ' and 7 E v. Therefore, Case 9 holds.

Case 10: (al, -y, a') E { (d, (EndWrite, WriteSuccessful), a') a 0" = a' except o.LoLock = false }

Choose a' = o,2 except a2'.LoLock = false. Choose Y' 7. Now, (.2, 7, a') E

{ (a, (EndWrite, WriteSuccessful), a") I or = a except 0.'.LoLock = false}

so (2a) holds; since a'.LoLock = false = a2, (2b) holds; since Y = 7, (2c) holds; and (2d) and

(2e) hold vacuously since y E> ' and 7 E v. Therefore, Case 10 holds.

Thus (2) holds and (v, e) is restrictive for E2'. 0

Theorem 5: Let ;: be defined by:

For all o, and a', a z a' if and only if 0.LoLock = a'.LoLock

and let
v = {(BeginWrite, OKtoWrite), (EndWrite, WriteSuccessful) } U { (Write o, ObjectWritten) I o E

object } U { (Write o, ObjectNotWritten) 10 E object }

The projection (v, zt) is P-restrictive for E2.

Proof. Let a, and a' E S be arbitrary states, y E E* be an arbitrary event sequence, and p E (0, 11 be a

nonzero probability.

We must show that:

(1) (ali,'-,a ',p) E T and 7 II # () and y v a1  z.o and
(2) V2 E S, aOl a2

P(v, ) ("1,7 i) --= P(v,, )(0'2 ,Y, o'i).

14
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To show (1), u examine the definition of T to find aU - such that (Eas4,p) E T and
0 I # 0and -Y f V- The examination ereals that, there are four such -y : (BeginRead), (Red, o),

(EndRed, ReadSucwessful), and (EndRead, ReadFailed)4. We consider the four cases individually.

Case 1:"- = (BeinRead).

The only state transitions that accept BeginRead as input are given by:

{ (a;(BeginRead, a, .143) 1 a' = a excepta.HiWaiting = true)

Thus, a = 1 except i;lHiWaiting = true. And by the definition of z, a : -a.

Case 2: =- (Rmdo).
The only state transitions that engage in: (Read, 6) are given by:

{(, (Red, o),o, 143) 1 o = o.01.

Thus there is no change in state, and so, a1 t o-

Case 3: x = (EndReadReaSuccessful).
The only state transitions that engage in (EndRead, ReadSuccessful) are given by

{ (o, (EndRead, ReadSuccessful),a, .143) I o.HiStartRead = a.EventCount }.

Thus~there is no change in state and so, al - ai.

'Case 4: x = (EndRead, ReadFailed).
The only state transitions that engage in (EndRead, ReadFailed) are given by

{ (o, (EndRead, ReadFailed), o, .143) I or.HiStartRead # 0a.EventCount }.

Thus there is no change in state and so, al ; 0'.,

Therefore, (1) holds.

Now, to show (2), let a2 be an arbitrary state such that 01 ; 02. We must show that P(V,.) (al, "Y a) =

We have two major cases: -1 E v and -y v.

Case 1: -y E v.
Accorling to the definition of v, there are four different event sequences 'Y E v for which we
must show the above equality. We proceed with one subcase for each of these event sequences.

Case 1.1: y = (BeginWrite, OKtoWrite).
By examination of T, the transitions that can engage in y are given by:

{ (a, j, a', .143) 1 oa' = a except a'.LoLock = true and a'.EventCount = a.EventCount + 11

Suppose oa.LoLock = true. There exists exactly one a' E S such that oa' = or ex-

cept a'.LoLock = true and a'.EventCount = al.,OventCount + 1. Since a .LoLock =
true = a'.LoLock, a' ; a' and therefore, P(v,=(al,, ) = .143. By similar reasoning,
P(,,,)(02,7,O') = .143. Hence, P(v,)(al,y,a) =

15
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Suppoe, on the other hand, that o.LoLock = fale In this case, there does nat exist a f' a,
such that a, = 0i except a' LoLack = true and a'.EventCount = a1 .EvcntCount+1. And so,

=0- And by similar reasoninp(m (2-~4 0. Hence again,
, = P(,,)( 2 , ). Thereore Case 1.1 holds.

Case 1.2: -y = (Write o, ObjedWritten) for some object o.
By examination of T, the transitions that can engage in - are given by

{ (a,,'s 1.i43) I a.LoLock = true and W' = a except o'.O = o).

Suppose that a1;LoLock = O .LoLock = true. There is exactly one state a' such that a' =
except a. . = o. Since (al, (Write o, ObjectWritten), ar', .143) is thus a member of the above
set and a' a,', (or,,)( l-y,a,) = .143. By the same reasoning (since o1 z a2 and hence,
o2;LoLock = Oj.LoLock = true also), P({,.)(a2,-Y,a ) = .143. Hence, P(,)(al,a) =

On the other hand, suppose that u1 .LoLock = false or oa.LoLock = false. In this case,
there does not exist a a' n a' such that oa.LoLock = true and a' = or except ao.O =
o, and so, P( ,=)(di, a ) = 0. Similarly, since a, z o2 and so a2.LoLock = a1 .LoLock,
P(.,=)(02,7,a0j) = 0. Hence, again P(v,=)(a 1,7,a) = P{v,=)(02,7, ). Therefore, Case L2

holds.

Case-1.3: -y= (Write o, ObjectNotWritten) for some object o.
By examination of T, the transitions that can engage in 7 are given by:

{ (o,, y, o, .143) 1 -or.LoLock }.

Suppose that a1.LoLock = ao.LoLock = false. Then, (a1, 'j, 1,.143) is a member of the
above set and 011 I a, and so P(v,t)(a, 7,oa4) = .143. By the same reasoning (since
01 a2 and hence, a2.LoLock = a.LoLock = false also), P(0,) (02,7, a') = .143. Hence,

~=

On the other hand, suppose that 01 .LoLock = true or aj.LoLock = true. In this case, either
(a,7,a1, .143) is not a member of the above set, or or, #6 or', and so, P(v,,) (a , 7a1 ) = 0.

Similarly, since ai ; Or2 and io a2 .LoLock = o1 .LoLock, P(v,) (a2, 7, r') = 0. Hence again,
P(,,t) (a, , or') = P(.,,) (a2, 7, a). Therefore, Case 1.3 holds.

Case 1.4: 7 = (EndWrite, WriteSuccessful).

By examination of T, the transitions that can engage in 7 are given by

{ (a, 7, a', .143) 1 a' = a excepta'.LoLock = false }.

Suppose aj .LoLock = false. Then, there is exactly one state a' such that a' = al ex-
cept a'.LoLock = false. Since ao.LoLock = false = a'.LoLock, a a' and there-
fore, P(v,t)(al,7,a) = .143. By similar reasoning, P(v, )(a2,Y,a') = .143. Hence,

P(v,,z:) (a, 0") = P(v,.)(a2,7, a).

Suppose, on the other hand, that a'.LoLock = true. In this case, there does not exist a

a' ; a, such that a' = a1 except a'.LoLock = false. And so, P(,,)(al,7,aj) = 0. And
by similar reasoning, P(v,z)(a2,,a) = 0. Hence again, P(v,,)(al,7,a) = P(v,,)(U2, ,hU).
Therefore, Case 1.4 holds, and so Case 1 holds.
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Cose 2 -y fv.
We divide this case into tw subcases o1 z or and aU a,.

Case 2.1: or,:e4
By the definitions of T, v, and u, it can be shown that for any possible transition (ao, .a p)

wvhere 7 is an invisible event sequence, it is the case that a or' (Le., for any 7' E E - v.
(dri, Y, q,p) E T implies or ar2').

Now, by the definition of P,

P(.~ ,: r1)n= P "u, ,y~~

Since ai n a, and, for any Y E E" - v, (al1 "/, d2, p) E T implies al - -r (as noted above)
the above equation can-be simplified to

P~v (o,%oi)= ~o-,,o.. =P ,,(o-1%-, r)
"y'EE'-v

Claim: Given that 7 v, for any or E S, P(v,) (a, -y, a) = .572.

Justification: Given any state a, (1) the event (BeginRead) can occur with probability

.143; (2) The event (Read, o) can occur with probability .143; (3) Either (OKtoRead) or
(e), but not both, can occur with probability .143 (depending on the values of a.HiWaiting
and a.LoLock); and (4) Either (EndRead, ReadSuccessful) or (EndRead, ReadFailed), but
not both, can occur with probability .143 (depending on the values of u.HiStartRead and
a.EventCount).

Summing up these four, P(,,) (a, -y, a) = .572j regardless of the state a.

Therefore, we have,

P(-,') (al,, 7 al) = P(v, )(,, 7, U,) = P(-,,) (a2,7, ) ,2) (a2, Y, a)D

and Case 2.1 holds.

Case 2.2: or 6 a',
In this case, there is no or z a' and probability p, such that (aj, , a, p) E T. So,

P(v,) (aj, 7, a[) = 0. Similarly, since a, p a2 and so, a2 0 or', it can also be shown that

P(,,.) (r2,or') = 0. Thus, P(v,)(ay,a) = P(or)(a2,y,a) and Case 2.2 holds.

Thus (2) holds and (v, ;) is P-restrictive for Z2. []
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5.4 A First Attempt at Preventing Denial of Service

The above solution has no-probabilistic nterference. However, as mentioned previously, low writers-
can easily-deny service to high readers by writing fr-equently. In fact, Reed and Kanodi -8] poit out that
"No algorithm can simultaneously guarantee that readers will be able to complete reading and that readers
can-never signal writers..."

A reasonable approach to- partially solving this denial- of service problem -is -to nondeterininistically
decide-whether to grant write access to the low writer. If the low Writer were not always permitted to obtain
write access, then -the high reader would have a greater chance to complete reading.

A system designer might (maliciously or with good intentions) decide that if a high reader is currently
reading, then the low-writer should most often'be denied- write access. Whereas if -the high reader is not
reading, then the-low reader should most often be granted access.

With this strategy in mind, the following solution might be-advanced.

Let M3 be the state machine given-by (S, ao, E, 1, 0, T), where

S -m {O, 1} x {0, 1} x {0, 1} x object x integer x integer.

We-refer to, the components of a state oa by the following mfiemonics:
a.LoLock: boolean
aHi Waiting :boolein
o.HiReadingt-boolieAn
oa.O! object
1.'EventCount: integer

aU.Hi~tartRead :-integer.

The initial state of the system is given by
od0.LoLock = false
aO.HiWaitiing =false

aO.HiReadin§ false
oo.6-= null
a0.EventCount = 0
ao.HiStartRead = 0

E (P{eginRead, OMoRead, Read, EndRead, ReadSuccess! ul, ReadFailed , BeginWrite, OKtoWrite,
Not0KtoWrite, ObjectWritten, ObjectNotWritten, End Write, WriteSuccessf ul, E} U

object U I write o 1 E object }.

I = BeginRead, Read, EndRead , BeginWrite, EndWrite} U I Write o I E object }

0 = OKtoRead, ReadSuccessf ul, ReadFailed , OKtoWrite, NotO~oWrite, Object Written,

ObjectnotWritten, WriteSuccess ful} U object

T ={(oa, (BeginRead) , a', .143) ar' = oa except a'.HiWaiting = true }U
{(a, (OMoRead) , a', .143) Ia.HiWaiting = true and a.LoLock =false and a' = a except

a'.HiWaiting = false and a'.HiReading = true and or'.HiStartRead = oa.EventCount } U
{(or, (e);,a, .143)jI (or.HiWaiting = false or a.LoLock = true) } U
{(a, (Read, o), or,. 143) 1 o = or.O) U-
{(a, (EndRead, ReadSuccessf ul), r, .143) I a.HiStartRead = or.EventCount } U
{(a, (EndRead, ReadFailed), a, .143) I or.HiStartRead 76 a.EventCount } U
{(a, (BeginWrite, 0 KoWrite) , c', .043) 1 a.HiReading = true and ar' = a except

oa'.LoLock = true and a'.EventCount = a,.EventCount + 11} U

18
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T(ao'(BeinWi-ite, 1tOKtoWrite a,;1)[oa.HiReadin§ =trie) U
{ (, Begn~it, 0Kto~rte ?~'i.1 Ia.Hikeading = fasi&.and-oa'" = except

*e9.LoUbck =trub -and 4'.EvieitCuzt a.EventCoutnt +1 u
{ (&,-(BeqinWrite, NotO~oWrite) , o,.043) -1 q.HiReading = false)I U
{(a;(Write o,ObjedWrite.), I.13)o.L6o* true and a'= a* except a'.0 =o} V
-(o,; (1 Write o, ObjedtNct Written), d, .143)] oa.LoLock = false) U

{ (a, (End Write, WriteSuiccesf ul),o' , .143) I a'= d -except a'.LoLock = false}.

Theorem , 6: Let E3' =(S',,E,,,0',TV) Where S' = S, ao' = o, E' E, F' 1, 0' =-0, and
={(oi, 7, &2)'[3p E (0, 1],such that-(a,r,-y, a2ip) E T}

* Letst;-be-defined by:

For all a and a', a ; a! ifand only if d.LbLock = ba'.LoLock

and let
v = {(BeginWrite, OKtoWrite),- (BeginWrite, N\otOKtoWrite), (End Write, WriteSuccessful) U

{,(Wt'ite ojObjectWritten) I o E object} U I (Write o, ObjectNotWritten) Io E object)}.

-The projection (v, ) is restrictive for ET'.

P roof: Let (a, 'y, d') be an -arbitrary transition of EX3.

We must-show that:

(1) - I'and -y 0v =.a, ia' and

()VOa2 E S U1;: a2 #(3o,2 E S') (3-l' E E'")

[(2a) (o,2 ,o) E ET',

(2c) I > Ev 4 t

(2d) -y - (E'* - v)*,.and
(2e) -y O> It and -7 E v * (37y1, y2 E (E'* - v)*)[7' 721

(1) can be shown in exactly the same way as in the proof of theorem 4.

Now, -to show (2), let U2 be an arbitrary state such that a, a2. We must show that

(3a' E S') (3y' E EI*)

(2b) a' aior

(2c) - E> F an-yE v*7Y ='it
(2d) y 0v =- y' E (EI* v)*, and
(2e) -y O>IF and -y E v *(3-y1,7-2 E (I ))y

By examination of T', the transitions of E2' are described by 13 sets of transitions unioned together.
By showing (2) for all 13 sets we will have shown (2) for all transitions. We consider the 13 sets in 13
separate cases.
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Case 1:, (dji-, &') iE {.(o, (B0eginRead) ,a') o,= exceipt a' .HiWaitingi- true 1

Choose a2, = 012 exCept 0a2'.Hi Waiting = true.. Choose 'Y = -y. Now, (b,2,-Y, a2) E

1,(q, (Beg60iead), a') I a"= oa except or'.Hi Waiting = true }
so (?4) holds; by-the tansitivity of :z, (2b) holds;, since q/' = 7,j (26) holds; And (2d) and (2e)

hold vacuously since -j 4§I ahd'I E v. Therefore, Case -1 holdIs.

Case 2: (al, nt, a') -E {(, (OktoRead),o Iad.HiWaiting = true and- -a.LoLock = false
and, a, = o -except a'.iiWaiting = false and a".HiReading =-true and
doKHiStartRead = ~.ventCount }.

Suppose that o'2.HiWaiting "-.true. 'then, choose d2 = a2 except q2 .Hi Waiting = false
and a2.HiReading --'true and 4,2.HiStartRead =.a2.EventCount. Choose y' = y. Now,
(a2, Y, a2) E l- (q, (OKto~ead), a-,) a .Hi Wa itinig = reand a.LoLock = false
and a! =-or ,except a'-.Hi Waiting = false and o'.HiReadinqi = true., and
a"IHiStartRead = a.EventCount} so (2a) holds; by-the transitivity of ; , (2b) holds; since

7' - , (2)holds; and (2d) and (2e)-hold vacuously since y-E F' and -1 E v.

On -the other hand, suppose th -at a2.iffWaiting = false. Then,, choose &24 a 2 -and- choose
7y' = (f). No, -(a 2 , ry') E t-(ac, (f), a) I -(o.HiWaiting = false or a.LoLock = true)}
jso (2a) holds;,-by the transitivity of st, -(2b), holds;, (2c) and (2e) hold vacuously since t. v;

d (2d).holds since y' E (E'* - v)*. Therefore, Case, 2'holds.

Case 3: (a,, -y, o4.j) E I (a, (c), a) 1, (a.HiWaiting =false or a.LoLock =true)

This case is analagous to~Case 2.

'Case 4: (ai, 7,a')- {(a, (Read, o), a) I o a.0}

Choose or' (72 . Choose -Y = (Read, o') where o' = o2.O. Now, (a2,71, a2) E

E~a, (BeginRead), a!') Ia' = a except a'.iWaiting = true }
so (2a) holds; by the reflexivity and the transitivity of ;:z, (2b) holds; (2c) and (2e) hold
vacuously since -y 0 v; and (2d) holds since -I' E (E'* - v)*. Therefore, Case 4 holds.

Case 5: (011, -y, a') E { (a, (EndRead, ReadSuccessf ul), a) I a.HiStartRead = o,.EventCount

Suppose that a2.HiStartRead = oa2.EventCount, Then, choose a' = U2. Choose '= y.
Now, (12, ', a') E2
{.(a, (EndRead, ReadSuccessf ul), a) I or.HiStartRead = or.EventCount}
so (2a) holds; by the transitivity of --, (2b) holds; (2c) and (2e) hold vacuously since -y v;
and (2d) holds since -Y' E (EI* - v)*.

On the other hand, suppose that ar2.HiStartflead 54 a2.EventCount .Then, choose a2 U2

and choose y' = (EndRead, ReadFailed). Now, (0'2, Y, (4) E
{ (a, (EndRead, ReadFailed) ,a) I or.HiStartRead 96 a.EventCount}
so (2a) holds; by the transitivity of --, (2b) holds; (2c) and (2e) hold vacuously since ^I v;
and (2d) holds since .y' E (E* - v)*. Therefore, Case 5 holds.
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Case 6: ( 1 ,',a)E{(',(Endead, ReadFailed), a.),, a'.HiStart~ead 54 a'.Eventdount }
This -case is analagous to Case 5.

Cas 7:(ai, , '~)E (', (BeginWrite, OKtoWr;ite),a") j a.Hileaing,= true and a" = uexcept
a".LoLock "_ true -and a" .EventCount "_ .EvdentCount +-i}

Cbhoose- a,~ o= 65texet o'.LoLock = true a' 2'.EventC'ount a'2;EventCount + 1.
Choo6e 1-"_ y. N6wi if a'2.ieadinzg = -true , then (a2, -y'-a') it

{(',(Begin Write, OktoWrite) i od') a'.HiReading '-true--and o'=,-aexcept a".LoLock =
Atrit and a" .-EventCouit = a'.EventCount + i-}. If o-2.HiReading = false, thdn

(2,4) (o{ -,, (BeginWrite, OKtoWrite) , a") I a'.HiReadizg= false An do' = a except
at aLoLO&k = rueanda",Evnt~mtnt = a'.EventCdunt + I} so (2a) holds; since a'l.LoLock=

tre= ',L~ek 2b.ols sne y =',(2c),holds;-and (2d) and (2e) hold vacuously since

-T~1'and-y E v. Therefore,Cdase 7 holds.

Case -8: (al, -y, a'~) E I{ (o,(BeginWrite, NotO~oWrite) , a) I a'HiReadirtg =true }
This-case is analagous-to Case-7.

Case,9: (a1 , y a') E I (a, (BeginWrite, OKtoWrite) , a") I a'.fiReadirtg =false and a"' ora except
af.LoLock =,truO and a" .EventCoirnt = (7.EventCount + 11
This case is analagqus to Case 7.

Case 10: (ali,y, a') {z ((BeginWrite, Not~koWrite), a)] a'JiReading =false}

This, case is analagous to case 7.

Case 11: (a1 , -y, a') E {(q, (W'rite o, ObjectWritten) , a') Ia'.LoLock =true and 0 E object and
a/ = a except a".0=o}

Choose a'~ = a2 except a'2'.0 = o. Choose y' = -y. Now, since a2 -- a'1 , a'2.LoLock = true
and (a2, y', a') E f (a, (Write o, ObjectWritten& , a" I a'.LoLock = true and o E object and
at = a except a'.0 = o}I so (2a) holds; by the-transitivity of ;Zt, (2b) holds; since qt' = 'Y, (2c)
holds; and (2d) and (2e) hold vacuously since y E> 1' and y Exv. Therefore, Case 11 holds.

Case 12: (a,, -y, a'~) E I (a, (Write o, 0 bjectNot Written) , a) I a'.LoLock = false }

Choose or' = a2. Choose y' = -t. Now, since U'2 ;Zt U1, a'2.LoLock = false and (U2,-', a') E
{ a,(Write o, 0 b ectNotfritten) , a) I a'.LoLock = false }

so (2a) holds; by the transitivity of ;:t, (2b) holds; since -y' =y,(2c) holds; and (2d) and (2e)
hold vacuously since y E> I' and 7 E v. Therefore, Case 12 holds.

Case 13: (a,, 7y, a') E I (a, (End Write, WriteSuccessf ul), a") I or a except or'.LoLock = false }

Choose a' = U2~ except a'2'.LoLock = false. Choose y' = .Now, (a'2 , 7', or') E{(a, (End Write, WriteSuccess! ul), a") I a"'= a except a'. LoLock =false }
so (2a) holds; since a'.LoLock = false = a', (2b) holds; since -t' 7 (2c) holds; and (2d) and
(2e) hold vacuously since y E>I' and -1 E v. Therefore, Case 13 holds.

Thus,(2) holds and (v, -) is restrictive for F,2'. []
Given the three objectives that the solution 1) be restrictive, 2) limit denial of service, and 3) provide

good performance, E23 is very reasonable. However, E23 contains a probabilistic covert channel.
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Th6eem 7: Lt -and--v be defined as in the, previous theorem.

Te-projection (v,:zt) is rot P-restrictive fort:3.

Proof-. Let 01 be a state such that toi.HiReadintg =-true. Let or2 be a state such that ou2.HiiReading=

L-of rli a-except aj.LoLock. = true and a'.EventCount ai.EventCount + 1. By the definitions of P
an&dT,,

(al, (BeginWrite, 0 KtoWrite), a') .043

Let or' = 2 except- d2.LbLock =true and a2.gventCount, = 2.EventCouht + 1. By the -definitiojis of P
and T,

But Siuicdo-a2 ,r

P(v,;:) (or2, (Be ginWrite, 0a'~it),u) P ,. (a2, (BeginWrite, 0 KtoWrite) , a') =.1

It (v,; :) were P-;restrictive, then it would be the case that

P(,,) (or,, (BeginWrite, OKtoWrite) , a') =P(,,,) (a2, (BeginWrite, OKtoWrite) , a')

Since they are not equal, (v,;z~i-is not -P-restrictive for E3.

5.5 A P-Restrictive Solution
We now develop a solution to the secure readers-writers problem that limits denial of service and is

P-restrictive.

-Let E4 be-the state machine given by (S, ao, E, 1, 0, T), where

S = {0, 1} x f{0, 1) -x object x integer x integer

We refer -to the components of a state a~ by the following mnemonics:
c.LoLock: boolean
a.HiWaiting: boolean
e.0: object
o.EventCount: integer
oa.HiStartRead: integer

The initial state of the system is given by:
oro.LoLock = false
ao.HiWaiting = false
o.0 = null
o.EventCount = 0

ao.HiStartRead = 0

E = {BeginRead, OMoRead , Read, EndRead, ReadSuccessf ul, ReadFailed , BeginWrite,
OKtoWrite, Not0KoWrite, ObjectWritten, ObjectNotWritten, EndWrite, WriteSuccessful, C}U
object U I write o Io E object}
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1 {Begin~ead, Read, End~ead, BeginI'Vrite, End Write), p Write o 10 E objectJ}

0 = OKtoRead, ReadSucesf u1, ReadFailed , OKtoWrite, NOt0KtoWrite; ObjectWritten,
ObjectNotWfitten, WriteSuccess! ul } U object

T = {.(&, (beginlead);, a',; W4) o = except a' .Hi Waiting =true) U

{-(a, (OKtoRead), a', .143), I .HiWaiting - true and a.LoLock =false and d' ora except
oa!.HiWaiting = false- and or'.HiStartRedd ao.EventCount I U

I (a,, (e), o,. .143) 1.QrJSiWaiting = false or a.LoLock =,true) }'U
(,(a, (Read, o), a, .143)- 0 = a'.OJ U
I (a, (End~ead, ReadSuccessf ul), a, .143) I oa.HiStartRead,= a.EventCount } U
((, (EndRead, Read~ailed), a,.143)] or.HiStartRead 96 a.EventCount } U

{t(a, (BeginWrite, 0 KiaWrite) , a', .71) Iao' = ar except a'.LoLock = true and
a'.EventCbunt _" o.EventCount + 1)} U

{(a, (BeginWrite, N otOKtOWrite) , ar,.71) Ia E S } U

~(a, (Write o, 0 bjectWritten) , a',. JAR) I a.LoLock = true and a' =a except ar'.O o }U
{(a, (Write o; ObjectNotWritten) , a, .143)1 a.LoLock =false} U

{(a, (End Wt, WriteSuccessful), a', .143)1I a' =a-except a'.LoLock =false}.

E4 limits denial of service assuming that the low writer releases its write lock (i.e., performs an
EndWrite) within some reasonable amount of time after obtaining 't. If we cannot make this assumption
(i.e., if the low writer is possibly erroneous or possibly malicious), the,. the probability of one of the existing
transitions can be reduced by .01, and the following set can be added to T:

{ a, LockBroken, a', .01) I a.LoLock = true and or' =a except a'.LoLock = false).

With this additional transition, the system may at any time break the low writer's lock on the object,
thus preventing the low writer from obtaining a lock on the object and never releasing it.

E4 (with or without the additional set of transitions) contains no probabilistic interference.

Theorem 8: Let ;:z be defined by:

For all a and or', a ;zt a' if and only if
a.LoLock = or'.LoLock

and let
v = {BeginWrite, OKtoWrite), (Be ginWrite, Not O~oWrite), (EndWrite,

WriteSuccessful) } U I (Write o, ObjectWritten) I o E object }U I (Write o,
ObjectNotWritten) I o E object)

The projection (v,;z ) is P-restrictive for E4.

Proof: Let al and o' E S be arbitrary states, -y E E* be an arbitrary event sequence, and p E (0, 1) be a
nonzero probability.

We must show that:

(1) (al, j, a', p) E T and -y E3> I and -y v vs, al zt a', and
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Cm 1: - (es i.
TUC Ody 5986 UdMMM tht mtq* BV*W~ftd AS *Nt MC SpwuA ktw

4(r. (Besiafa4., -143) 1 O'=~ m wqCVt u Hi~xs =ine e)

Th, a, =.o mc , ,,WxW.aa = u. A .d the d&mkim e :, ra: a,.

Ca2 = (Reud,a).
The ady state tUmmik tha es is (Read.) we sis. )w

(r. (R 0). -o.-143) I o = ,.o}

Tsw tbew is no €b in stat,,an so.k d., = all
Case 3. z(hsd ead gw~epessfA).

The - state traif ,, taLOt .lI(Em 4Reaua,. wfwQ , we u,, Er

(. (E Re4 ,ReudSuo.es ..l,.-143) I o-.HiSttRead = -.EvwoU }.mat

Thu there is no dwWg in state and soi ol 4:01
Case tC z = (Endgead, ReadFailed):

the 00ly state Irarsiduu that inag (ExdRw4dReadFuied) ate g by--1

4(a,, (End Rewu ReadFiile), or. -143) 1 ar.liStrtRead 0 or-EvenlCosnL)-

'lha thae is no ee sno instate ad so, a, %.

Thm" (1) holds.

Now, to show (2), let o2 be an arbitrary state such that a, - 2. Wemustshow that P, ) (or,, ) =

We have two major cases: -Y E v and -f J v.

Case 1: yEv.
According to the definition of v, there are five different event sequences -f E v for which we must show
the above equality. We proceed with one subcase for each of these event sequences.

Case 1.1: --y = (BeginWrite, OKtoWrite).
By examination of T, the transitions that can engage in -y are given by:
{ (o, -y, a', .71) 1a' = o except a'.LoLock = true and o'.EvenlfCount = u.EventCount + 1
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Sn"M el 4 Gr t Then P~('i~o~r?1A) = _71- By the tranitity of tl ,ads

Suippee, on the otrisband, that. 4t *-ors p, ) u 4 .B h tr~aSitii

Of~ 4_ Ol *z and 4 So P~~v.~.4 .Hence ag204t (u-,4

Theffte -cam 12 bowk

Cme 13: -r = (Write oO&J'ectWritten) for some objecto.
kBr e-Amination of-T, the transitions that can engag in -y are giwen bv:

{(f.-yr,o',_143) I er.LoLock= trute arni o' r excepta'.O a).

Suppose- that ci .LoLock = O4.LoLock = true- There is exactly one state a' such that or' =',
except o'.0 = o. Since (or,, (Wfrite o,OPbjedi~riften)or'.143) is thus a member of the above
set and ff'v a,-P(~(u,~s4 A43. By the same reasoning (sincie ori :: a2 and hence.
0r2 LOLO*A = O4.LoLOck = true aloP(v.:-)(0r2 7,-yt) = .143. Hence, =

On the other hand, suppose that to1.LoLock, = false or O .LoLock = false. In this case,
there does not excist a or' :t a, such that or.LoLock = true and ar' = or, ex~cept va'.O
o, and so. P(,~(r 3 y4 0. Similarly, since a,1 = 02 and so oa2.LoLock = ori.LoLock,

P(,_)O2,e)= 0- Hence again, P(Po(,y4 =2. Therefore: Case 1.3
holds.

Case 1.4: -y= (W~rite 0, ObjectVot Written) for some object o.
By examination of T. the transitions that can engage in -y arc given by:

{ U ,o,.143) 1 o.-LoLock = false).

Suppose that o 1l.LoLock = a'.LoLock = false. Tiu, (a,-',.43 saneibro h

above set, and or, :L a'., and so =.143. By thc saine rcasoning (sinlce
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P.,,) 2,/ =.143

vi, awd h ek 4.Bysim arreal , P, )(2,-r ) = .143 Hence,

0.the tew hand, suandm that ajLoLock =true or .LoLock- true- In this case, ithet
(rj,-y, .4;) as ntata membe c the .above aset or An o, and-so, -_)(l,7) =0.

S.ilaty- .m a, z ft and again2.LoLek = .LoLock, P.,-. o, -y 0. Hence
PTe(e, ase ) 1.5,:h01(ds 1 7,u.Theefr Ose 1.4 hods.

Cae willr divideot lSme itosfucsl). zan z

,By e fintion fT, te tran-tios that c tigage in-y a s given by:

* {(ajo,.143) I W =tr eccept W-LoLock= false}.

Sipre 4bLoL k -Wee Then, there is exactly one state a' such that ao' = * ex-
Cs$ 7t' LoL#* -- fiLbe. Since aOr.Lockt = fakeo = £2r.LoLo*, .a'j ;Z ci' and there-
o, i43 By similar reasoning, .143. Hence,

-Sppone , n the- other hand Athat- o,.LoLoax, = true. In-this case, there doesnot eista
the ao eutat a except '.LoLock_= false. And so, P(sim)(led And

by~miar eaonigP(.*)(or2,7,cij) =0._ Hence again, P(.,.)(cil,'yycj) 2,~

Therefore, Case 1.5 holds, and so Case 1 holds.

-case2:7 .

We w*il divide this case into wo subcases: ai, -t:,e and aii# elj.

By ihe definitions of T v, and =, it can be shown that for any possible transition, (a,, a=', p)
whriere 7 is an2-invisible event sequence, it is the case that oi c (i.e., for any Ey' -Ev,
_(01, Y~,) El' -7 implies Orl ;:t 02).

Now, by the definition of P,

P~,- (ci,7cj jI lay,~
iY'EB*-v and

2 ,

Since or, zc a and, for any e' E E - v, (al,-y', 0 ,' ,p) E T implies a, a2c4 (as noted above),
the above equation can be simplified to;

P(v,:z:) (Oc,.7,c) CI 2 (,)U,,ci

Claim: Given that -t 0 v, for any ci E S, P(v,,)(,,ci, ) = .572.
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Justification: ,GiWn any state o, (1) the event (BeginRead) can occur- with probability-.143;
(2) the event (Read, o) occur with probability .143; (3) either (OKtoRead) or e), but not
both; can occur sith p robabilit .143 (depending on the values of ao.HiWaiting and d.LoLock).
(4) either- (EndRe, ReadSu'cxsful) or (E#dRead, ReddFailed),.but not both, can occur
with-probability .143-(dejendihngon-the values of u.HiStartRead and -u.EventCount). Sum-
miig up-these four, -P(.,.)(, Io) = .572, iegardless of thestate a.

Therefore,-we have,

-and Case:2.1 holds.

Case- 2.2: al -)4
In this case, there does not exist-.a. .a'2 and a probabilityp, suchtthat (6,, -y, a, p) E T.
So, P(,,)(a, ' a) = 0. Similarly, since a r o,2, And so, a2 6 o, it can also be shown that
P(r,;) (&2 , -, o 0). = 0. Thus, P(v,.)(u,,-Y, ra) = (v,) (d2,7,or')- and Case 2.2 holds.

Thus(2).hoids and (v, ).is P-restrictive-for E4. 0

6. Composing Systems

'It is desirable -for P-restrictiveness to be composable (as, is restrictiveness). To show that -P-
-restrictiveness is composable requires a formalization-of the composition of probability-extended state ma-
chines. However, there is not only one Way to define this, composition. The main difficulty we encountered
in defining the composition of-machines was how to treat time. -0n.the one hand timing considerations can
affedt the probabilities of events. For-example, consider two systems: system A simply outputs-a continuous
sequence of J's and system B simply Zutputs a continuous scquence of O's. When these two systems are com-
posed, the composite system outputs a continuous, nondeterministic sequence of l's and 0's. The probability
that the composite system-will output-a 1 at any given state of the system is based on the-relative speeds at
which'the component systems operate. On the other hand, time-is not represented in our model. Therefore,
We have no way to model the composition of probability-extended state machines in- a fully general-way.

'In-future work, we may incorporate-the notion of time into the current model. In so doing, it may be
possible to-incorporate constraints on timing interference (which is not constrained at all in the present work)-
as well-as allow us to properly define the composition of systems and demonstrate the general composability
of P-restrictiveness.

In the meantime, we offer the following limited result. In the following sections, the simple composition
of probability-extended state machines is defined and P-restrictiveness is shown to be composable under
simple composition. In defining the simple composition of machines, we assume that the composed machines
operate at an identicali constant rate. This is a reasonable assumption in some applications (e.g., two
machines executing the same software on the same hardware at the same clock speed).

6.1 The Simple- Composition of Systems

Let A = (SA, SOA, EA, IA, OA, TA) and B = (SB, SOB, EB, IOB, TB) be two state machines. Pro-
vided that EA n EB = 0, we define the simple composition of A and B, denoted AIIB, as the machine
(S, sOi E, 1, 0, T), where

S = S xB
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EO.~A,U S.B)

I IA U Ik

OAU OB

7' = { ((SA, SB)j,7, (t,&)4p) I (BA, SB) S' nd-(tA, tB)-E SadpE[,]and

(((AtAp)TAand SBB t Or

If. it, is not truethat.EA, flEB = 0 then AllB is undefined.

6.2 T9he'Comnpositioni ofProjectionts

LetAi (SAOAEAiAOA, TA) and BP (SB, SOB, EB, b, OB, TB),be two state machines. As
let (VA,j1:tA) -and'_(VB, --B) be projections of A andB, respectively. Provided-that VAnfVB 0, we define -the
composite~projection,,Aenoted by (VA,:t$A) O (VB,; $B), as the view (v,; ), where

V VA U VBJand

(V(SA ,B),tA, tB) E S) (AB)_ --(tA, tB) 4== 8A 1ZA tA and SB r-B IBI

If -itis nottrtie that VAnf vB= 0 then. the, composite prqjection- is -undefined.

6.3 The Comnposability of P-rRestrilctiveness

Theorem 9:-Let A = (SASdAEAIAOAiTA)-and.,B =(SB,SOB,EB,IB,OB,TB) be two state machines,
'and- (VA,; $A) and (VB,; B). be projections of A and B, respectively. If AflB = (S, sO, E, 1, 0, T) is defined,
-and.(VA, --A) is' P-restrictive-for A and (yE, zzD) is P-restrictive for B, then (VA,; tA) 0 (VB, SZB) = (V,;:e) is
P-restrictive for AIIB.

Proof: Let (A,, BI) E S and (A', B') E'S be arbitrary states, -Y E E* be an arbitrary event, and p E(01
-be a nonzero probability. We must show that

(1) ((A,, Bl);-f, (A', B'), p) E T' and -y e> I and -y 0 v =: (A,,BI) ;z~ (A', B'), and

(2) V(A2, B2) E S, (Ai,,BI) ;:t (A 2 , B2 ) P,)((A,Bl), -t, (A', B')) = P(v,,) ((A 2, B 2) ,'/', (A', B").

To show (1), let. ((A,, BI), -1,(A!,,B'),P) E T' and -y EC>I and -y v. By the definition of T', we have two
cases:

Casel1: (Al,1,'yA2p) ETA and B = B11.
By tlie definition of v, -y 0 V => 'Y 0 VA. Also, since -y Et>I and EA nlEB 0 and -YE EA, it
must be the case that -y e3 IA. And so, by the P-restrictiveness of A, Al ;ZZA A'1.By the reflexivity Of --B, B, ;ZB B', anTd therefore, (A,, BI) ;z (A', B').
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This' cAs iiikust ~

Now r to sh6*w(2),.let .'(A2, BP2 ) be a state such that,(A1, B1) p B).

We must sho* that 7 1, B =) B(,)( 2 , qf, (A', B). We Will show this in three

d&ase:1: T VA.

- L P(Ai,-y,A2,) [dM. and P]

= 2 (VA, A)(A1),,Ai) [def. P(vA,IA)

- Z P((A 21 B32 ),'y,(A'2,B2)) [def. T and pJ

=P(,)((A 72 ,, (A', B')) [ def. P(,,,,)J

And so, Case 1 holds.

Case 2: -y E VB.

This case is analogous to Case 1.

Case 8: -y V v.

P(.,.4) ((A,, B1), 7, (A', B')) =P((A 1 ,B,),-1',(A2,B2)) (def. P(v, )J
-''EB-v and
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YEB-~AA an"d -'E-i 3 and

[def. T and P]

= "2 (VA, A) (Aj, 'y,-) x)+-P,, B) (Bi, 7, B')- _[def. P("A,%A)J

2 PVA(A 2 , 7 ,Ai + A~n~( 2 7Bl

,[P-rest. (VA, A) and (vB, )]

= ~~ P(Ajy,A2-):+-- P(2-';3
7'GEA-t)Ailld Ir'vB1, and-

( def. P(vA, A) and-P(,,,-B)]

-: i -P((A,B 2 ;',(A'-B)) [def. T andp]
,'YE-v and.

= P(v,:)((A 2, B 2),Y7 (A', B')) [def. P(,,,:)]

And so,, Case,3'holds and the theorem -is proved. 0l

7. Conclusibns and Future Work

We have shown with -examples that small-, systems that are restrictive (and that may appear to.be
reasonable),can contain probabilistic interference (i.e., probabilistic covert channels). Furthermore, it is clear
that with larger systems that are~shown tobe restrictive, probabilistic covert channels may exist that are
subtle and difficult to detect. Our extension to McCullough's work provides a security policy that, when
applied to asystem, guarantees that the system will contain no probabilistic interference.

Additionally, the main example of this report showed how nondeterminism can be used to prevent
deniaLof service, and that useful, nondeterministic systems can be shown to be P-restrictive. Of course, the
introduction of nondeterminism to prevent denial of service, as in our example, adversely impacts overall
system performance. A tradeoff must be made between prevention of denial of service and system perfor-
mance.

To apply P-restrictiveness in the development of secure systems, an implementation language that
supports th6 specification of probabilities is needed. The compiler and target machine for this implementation
language must accurately implement the specified probabilities, so that the actual system will belave exactly
as in the specification, and thus be P-restrictive. Therefore, any effort to apply P-restrictiveness must be a
long-term effort.

As discussed in the introduction, our plans for futuro work are to extend the present model and
definition of security to include timing considerations. &his will result in a definition of perfect security.
Following that, it is our intention to weaken our definition of security to allow a quantifiable amount of
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= intkrferen e..H6pefully, this will make thedefinitioi more usable (i.e., more systems will satisfy the definition)
ad willallqw system developers to-formally and precisely, determiiie the rate at which a-system can-leak

Siformation. Furthermore,. such-a dfinitioi would allow syst.m designers to trade off the security of the
system" i with other design goals such as system performance and prevention-of denial of service.
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