
.. j ~~ illA2$

AA

DEPARTMENT OF 7HE AIR FORCE

AIR UNIVFRSITY

AIR FORCE INSTITUT[OF TECHNOLOGY

Wright-Patterson Air Force Bose, Ohio

AFIT/GOR/ENS/91M-12

Irk"

JUL 2 3 1991 'Ni

A PROTOTYPE META-LANGUAGE
AND AUTOMATED TRANSLATOR FOR

DECISION ANALYSIS PROBLEM FORMULATION

THESIS

Jerry R. Puyear
Captain, USAF

AFIT/GOR/ENS/91M-12

Approved for public release; distribution unlimited

91-05755
S Illl11111111I l 1W II~ 91 7 19 144

REPORT DOCUMENTATION PAGE ! Form Approved
, OMB No. 0704-0188

IvuoIoc 'eoo-rnq Durcen 'c, - 'mton n o nio'r ation is estinateca tc; Averaq e . r oer esDOrs?. i.$. 0o, -: t'e tme of irns rtruct ioslflrc. rear ~n : e.stt n oat So" rt ..
aathen arO maintan - ; 3- 3a eeOvO. and t romotetina ana revte.- 'he etcn 'torma;l - ero :.,rnments reca-cino this ourten evimate or any other asDh.t .)' -
collectiar t i-t rmatOv in. s.get=etions tot recuon this ourcen t% nashlnton Heaoci.arters e -rectorate To nt rdton Ooerations ano ltet .rt%, 12'5 ete'S;
Davs gnwa . Suite 12C4 ..r 0 2U202-4302 and to the Office of Management ano uaget P oer orc Reduction P tJ704 0188), Washntcn 0,C 20503

1. AGENCY USE ONLY (L~eave blank) j2. REPORTDCI. TPLN DAECORD

I Matrs ei

4. TITLE AND SUBTITLE r 5. FUNDING NUMBERS
A PROTOTYPE META-LANGUAGE AND AUTOMATED TRANSLATOR FOR I
DECISION ANALYSIS PROBLEM FORMULATION

6. AUTHOR(S)JerryR. Puyear, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER

AFIT/GOR/ENS/91M- 12

1 9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 1 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION ;AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited I

13. ABA&T (Maximum 200, ord5)is esis research effort develops a prototype meta- language for decision analysis problem description and automatei]
software to translate the meta-language into a format useable by decision analysis software solvers. MELADA, the meta-
language developed, makes use of special symbols to provide a succinct language for the automation environment yet
provides the means for user comprehension. Complete syntax and implementation rules are included. The MELADA
translator software developed, DAT, stores the data given by MELADA in a file using a prototype standard format,
DASF, designed to hold all required data to solve a problem. DAT provides error checking and a message output file.
TREESOLVER, an add on program to solve decision trees stored in DASF format was designed. The program uses the
external DASF file directly to bypass size limitations of internal memory. All software is written in Turbo Pascal 5.5, is
compatible with any MS-DOS computer system and is free to government users in source code format, including a user's
manual. Finally, several example problems are solved using MELADA, DAT, DASF, and TREESOLVER to validate their
viability. N

14. SUBECT TERMS 15 NUMBER OF PAGE-
,.< Decision Analysis, Decision Theory, Decision Tree, Influence Diagram, Decision Analysis 1 82

oftware 1 t6. PRICE CODE

1, SECURITY CLASSIF)CATiO, I I. SECURITh CLASSIFICATION 1 1;. SECURITY CLASSIN ATION' 126. LIMITATION OF ABSTRACT
OF REPORT ' Cc THWS PAGE Or ABSTRAC ,

Unclassified Unclassified Unclassified UL
S I2

NFJN 7540-280-55 ,. S'.anoaa 295 -3 . .-

AFIT/GOR/ENS/91M-12

A PROTOTYPE META-LANGUAGE

AND AUTOMATED TRANSLATOR FOR

DECISION ANALYSIS PROBLEM FORMULATION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Operations Research)

Jerry R. Puyear,

Captain, USAF

March, 1991

Approved for public release; distribution unlimited

THESIS APPROVAL

STUDENT: Captain Jerry R. Puyear CLASS: GOR-91M

THESIS TITLE: A Prototype Meta-Language and Automated Translator for

Decision Analysis Problem Description

DEFENSE DATE: 20 February 1991

COMMITTEE: NAME/DEPARTMENT SIGNATURE

Advisor Major Bruce W. Morlan/ENS

Reader Major Ken W. Bauer/ENS

Accesion For

NTIS CRA&I
DTIC TAB 0
Uw announced []
Ucation...................

By ..

Dit ib,tion I
AvaiillbiRPY ro7'es

I #V~ .., Ior
Dist | Sp;:c'Iain-

Preface

This thesis provides the beginning of the standardization and automation of

decision analysis problem description and computer input. This effort was made

on behalf of my thesis advisor, Major Bruce Morlan, and anyone who has spent an

eternity at the computer keyboard trying to input data to make use of a "time and

effort saver" software package. If it saves anyone just a fraction of the time I spent

at the computer terminal working on this thesis, it will be worth all the effort.

I would like to thank Major Morlan for suggesting this topic and allowing me

to wander but never completely stray from my chosen task. I also want to thank my

reader, Major Bauer who was game enough to take on this task even though he was

busy advising several of my classmates.

Finally, I give my biggest thanks to my wife, Donna, and daughters Christine

and Renee, for their love and effort to get by while I was preoccupied with what they

must think was the world's longest computer game.

Jerry R. Puyear

ii

Table of Contents

Page

Preface.....

Table of Contents.......

List of Figures v

List of Tables. vii

Abstract viii

I. Introduction 1-1

1.1 Background. 1-1

1.2 Specific Research Objectives. 1-2

II. Review of Literature 2-1

2.1 Introduction 2-1

2.2 Concepts. 2-1

2.2.1 Basic concepts 2-1

2.2.2 Decision table 2-2

2.2.3 Decision tree. 2-2

2.2.4 Influence diagram 2-3

2.3 Format 2-3

2.3.1 Decison table. 2-3

2.3.2 Decision tree. 2-3

2.3.3 Influence Diagrams2-4

2.4 Terminology 2-6

iii

Page

2.4.1 Decision table 2-6

2.4.2 Decision tree 2-6

2.4.3 Influence diagram 2-7

2.5 Automated Encoding and Current Software 2-7

2.5.1 Automated encoding 2-7

2.5.2 Software 2-7

2.6 Conclusions 2-8

III. MELADA: Meta-Language for Decision Analysis 3-1

3.1 Requirements 3-1

3.2 Terminology of Concepts 3-1

3.3 Employment of Concepts 3-3

3.4 Syntax 3-5

3.5 Limitations 3-8

3.6 Employment of MELADA in an Automated Environment 3-8

IV. DAT: Decision Analysis Tranlator 4-1

4.1 Requirements 4-1

4.2 Program Philosophy 4-2

4.2.1 Parsing 4-2

4.2.2 Error handling 4-2

4.2.3 Storage 4-3

4.3 DASF: Decision Analysis Standard Storage Format . . 4-4

4.4 Implementation 4-8

V. TREESOLVER: Optimizing Software Using DASF Files 5-1

5.1 Program Philosophy 5-1

5.2 TREESOLVER vs Current Software Strategy 5-1

iv

Page

VI. Applications and Validati:on 6-1

6.1 First Application: Umbrella Problem 6-2

6.2 Second Application: IFF Problem 6-6

6.3 Third Application: Oil Drilling 6-6

6.4 Application Observations 6-9

VII. Areas for Further Research and Conclusions 7-1

7.1 Areas for Further Research 7-1

7.2 Conclusions 7-3

Appendix A, MELADA, DAT, and TREESOLVER User Manual A-1

A.1 MELADA Input File Preparation Checks A-1

A.2 DAT Preparation Checklist A-2

A.3 TREESOLVER Preparation Checklist A-6

A.4 DAT Compilation Checklist A-7

Appendix B.: Application Problem Listings B-1

B.1 Umbrella Problem B-1

B.2 IFF Problem B-1

B.3 Oil Problem B-4

Appendix C. DAT Procedures and Function Summaries C-1

C.A Listing of Functions C-1

C.2 Listing of Procedures C-4

Bibliography BIB-1

Vita VITA-1

v

List of Figures

Figure Page

2.1. Example Decision Tree 2-4

2.2. Example Influence Diagram 2-5

3.1. Example of Difference in Format 3-9

3.2. Automated Environment for Decision Analysis 3-11

4.1. Data in DASF Record 4-5

4.2. Parent, Child, Right Sibling Linkage Example 4-6

4.3. DASF Logical Record Tree 4-7

4.4. DAT Implementation Relationships 4-9

5.1. TREESOLVER and Associated File Relationships 5-2

6.1. Umbrella Problem Tree 6-3

6.2. IFF Problem Tree 6-7

6.3. Oil Drilling Problem Tree 6-8

A.1. MELADA Syntax Element Structure A-3

A.2. MELADA Syntax Sentence Structure A-4

vi

List of Tables

Table Page

2.1. Decision Table Format Example 2-3

3.1. List of Popular Terms 3-2

vii

AFIT/GOR/ENS/91M-12

Abstract

The major goals of this thesis research project were to prepare a prototype

meta-language for decision analysis problem description and provide a software pack-

age to automatically translate a problem from a meta-language ASCII file into a

format that can be used by decision analysis software solvers.

MELADA, a meta-language, was developed for decision analysis problem de-

scription/formulation. It makes use of special symbols to provide a succint language

for the automation environment yet allows for additional information to be added to

keep the data readable by the human user. Complete syntax and emplementation

rules are included.

DAT, a decision analysis translator was also developed. It provides an auto-

mated means of storing a MELADA problem discription into an external storage

file using a prototype standard format, DASF, designed to hold all required data

to solve a problem. It provides error checking and a message output file. Written

in Turbo Pascal 5.5, it is compatible with any MS-DOS computer system and the

source code and users manual are free to government users.

In addition, TREESOLVER, an add on program to solve decision trees stored

in DASF format was designed. The program uses the external DASF file directly to

bypass size limitations of internal memory. Like DAT, it is written in Turbo Pascal

and comes in source code format.

Finally, several example problems are solved using MELADA, DAT, DASF,

and TREESOLVER to validate their viability.

viii

A PROTOTYPE META-LANGUAGE

AND AUTOMATED TRANSLATOR FOR

DECISION ANALYSIS PROBLEM FORMULATION

I. Introduction

1.1 Background

Decision analysis is a methodology to apply logic and preference to problems

with uncertainty in order to provide a rational approach to problem solving. This

methodology can be broken into three phases: a deterministic phase in which the

structuring of a model of the problem takes place, a probabilistic phase in which

probabilities are assigned to the uncertainties in the model to arrive at an "optimum"

solution, and an informational phase in which a cost/benefit analysis of additional

information to reduce uncertainty is made (5:585-587). Viewed in a mathematical

sense, these three phases are analogous to formulation of the problem equation,

selection of values for the equation variables to obtain the solution, and running

sensitivity analysis on the variables.

Formulation methods in the deterministic phase are as varied as in the mathe-

matical field. For example, a graphical formulation of the problem can be developed

using either the familiar decision tree or the influence diagram, "a recently devel-

oped graphical modeling tool for representing both the conceptual elements and the

mathematical structure of a problem" (2:1). If the problem is limited in size and a

graphical view is not desired, a decision table may be used instead. The selection of

a method to use is currently based on personal preference or the requirement of a

chosen software package.

1-1

The computer software packages designed to automate the decision analysis

methodology also vary in approach. Some of these packages process decision trees.

Others, like AFids, work with influence diagrams (2:8). However, the packages do

have some common elements. First, input is by user interaction which can require

a large amount of time at a terminal and a knowledge of decision trees or influence

diagrams in order to input the problem correctly into the computer. Second, each

package requires that all problem information fit within internal memory which limits

the size of problem that can be handled. Third, the packages do provide the ability to

store problem information in external files but each package has its own file format.

Finally, each package can "solve" the problem given the appropriate inputs.

1.2 Specific Research Objectives

Decision analysis methodology would benefit by having the ability to describe

and store a problem in common terms and format from which conversion to onr. of the

various formulation methods or software packages could easily be made. Therefore,

the four objectives of this research project were:

1. Develop a prototype meta-language to provide a standard means of describing

decision making problems under uncertainty in,, iving only discrete variables.

2. Build a user friendly software package that translates a meta-language text

file into a prototype standard format input file for decision analysis optimizing

software packages.

3. Develop a software package that uses the decision tree method to optimize

decision making problems stored in a standard format input file.

4. Provide application examples to validate the meta-language and software de-

veloped.

Each objective has an intended goal. The goal of the first objective is to have a

meta-language that is easy to write, read, comprehend, and, most importantly, can

1-2

efficiently express information and concepts required to solve decision making prob-

lems by computer. The goal of the second objective is to have a high level computer

language based translator that will provide error checking and the associated mes-

sages to aid the user in preparing an error free, complete meta-language input file for

translation. The translated file should hold the needed information in a format that

will allow the design of add on programs to convert from the translated file format to

the specific format needed for current software optimizers. The format should also

be designed to encourage direct use of the file as an input format for future software

programs. The goal of the third objective is to show that the translated storage file

can be used by optimizing software. The goal of the last objective is simply to show

that a meta-language and translator are viable for the decision analysis field.

1-3

Ir. Review of Literature

2.1 Introduction

This review will cover the underlying concepts, format, and terminology used

with three decision analysis model representations: the decision table, the decision

tree, and the influence diagram. It will also review automated encoding efforts and

current software in the decision analysis field.

2.2 Concepts

2.2.1 Basic concepts. According to Pratt, Raiffa, and Schlaifer decision mak-

ing under uncertainty is based on the assumptions that a decision maker will be able

to quantify preferences between outcomes, quantify beliefs in the possibility of events

occurring, and provide preferences that follow the consistency rules of transitivity

and substitution. From this base, they show that a decision maker can make a choice

by computing an index for each option and then selecting the option with the largest

index. They define the index as

H = P(E,)7r(c,)
i

where Ei is in a set of mutually exclusive events {E 1 , ..., E,}, 7r(ci) is a scaled prefer-

ence for consequence ci, and P(Ei) is a scaled measure of belief in event Ei happening.

In addition, Pratt, Raiffa, and Schlaifer suggest you could call the scaled measure

of belief a probability (since it acts like one), the scaled preference a utility, and the

computed index an expected utility. They show that by following the given choice

rule the decision maker will maximize his expected utility (13:35-40).

The suggestions of probability and utility by Pratt, Raiffa, and Schlaifer are

not unique. The suggestion to call the scaled measure of belief a probability since

it acts like one is given further credence by Lindley who states and shows in his

2-1

article that probability is the only scaled measure of uncertainty that makes sense

(8:1). What Pratt, Raiffa, and Schlaifer suggest could be called utility is based on

assumptions that are contained in the axioms of current expected utility theory.

In his article on expected utility (EU), Schoemaker lists the five axioms given by

John von Neumann and Oskar Morgenstern that infer the existence of numerical

utilities. The first and third axioms, as listed by Schoemaker, state people can make

preferences, those preferences are transitive, and the principle of substitution holds

(15:531). Obviously, those axioms are identical to the assumptions of Pratt, Raiffa,

and Schlaifer.

The use of probability and expected utility theory by each of the three de-

cision analysis models is documented by several authors. However, variations in

terminology and theory exist. A breakdown by method follows.

2.2.2 Decision table. When the decision table is used to analyze a problem,

the optimal selection is made by either minimizing expected oppoitunity loss (EOL)

or maximizing expected monetary value (EMV) (1:617-619)(14:8-9,27-29)(10:6). A

term not restricted to monetary value, maximum expected value (MEV), is used by

Moskowitz and Wright in place of EMV (11:123).

It should be noted that some of the authors consider the decision table limited

in use. The decision matrix is considered equivalent to the decision tree according to

Morris, but he thinks the tree is better because it depicts the order of the decision

process (10:8). Anderson, Sweeney, and Williams suggest that the best use of the

table for analysis is for problems having a limited size (1:619). Moskowitz and Wright

also agree with the problem size limitation, stating that "... complex problems are

very difficult to represent clearly in tabular (matrix) form" (11:132).

2.2.3 Decision tree. Analysis of the tree is accomplished through backwards

induction, a process which relies on the principle of substitution, maximizing ex-

2-2

pected value, and the use of Bayes' Theorem to provide the appropriate probabilities

(14:21-29).

2.2.4 Influence diagram. According to Baron, solving influence diagrams is

accomplished by using a node reduction algorithm, first developed by Shachter, that

is based on the maximizing expected value principle and Bayes' Theorem (2:12-

15). Baron further states that he improved on the solution efficiency and problem

size handling capability by implementing the Tatman and Shachter separable value

function solving algorithm using dynamic programming (2:16-21,31).

2.3 Format

2.3.1 Decison table. The format of the decision table appeared to be standard

in the works of several author3 (10:6) (1:613)(J 1:117) except for one minor variation

which exchanges the left side (alternatives or actions) and the top row (states of

nature or states) (14:7). An example decision table format is shown in Table 2.1.

Table 2.1. Decision Table Format Example
option/state JI low demand I high demand
Sell now 100 200
Sell later 50 25
Do not sell -10 -25

2.3.2 Decision tree. The decision tree format, like the decision table format,

appears to follow a standard convention in all the works reviewed. The convention

uses square nodes to represent decision points, circle nodes to represent chance out-

come points, and lines (branches) to represent each possible decision alternative and

chance outcome. Branches also connect the nodes from left to right across the tree

to show order (precedence). The far right hand side of the tree terminates with

values or payoffs that result from reaching that particular terminal branch (1:619-

2-3

621)(11:130-132) (14:10-13)(10:7-8)(9:49-50). An example tree is shown in Figure

2.1.

nodee

ecisionBranchesnrode

or Arcs

Figure 2.1. Example Decision Tree

2.3.3 influence Diagrams. Influence diagrams have an acyclic graph format

consistin, of four types of nodes (decision, chance, deterministic, value) connected

by arcs indicating iniormational flow and probabilistic dependence between the con-

nected nodes (2:2). An example influence diagram depicting all possible components

is shown in Figure 2.2. The following concepts are used in constructing the diagram

accordin, to Howard and Matheson:

1. Arcs may always be added between nodes (unless they create a cycle) because

they only represent possible dependence.

2. Lack of an arc between nodes shows their independence.

3. An arc may be reversed in direction as long as both nodes involved have the

same set of information (same immediate predecessors).

2-4

Decision node Chance node

Deterministic 0 Arc

node

Value
nodeU

Figure 2.2. Example Influence Diagram

2-5

Howard and Matheson also point out that an influence diagram representation of a

Droblem is not unique and that nodes do not need to be ordered nor do they depend

on all predecessors like in decision trees. Further, they state that many influence

diagrams can be converted into decision trees, but not all influence diagrams have

corresponding trees (6:732-740).

2.4 Terminology

2.4.1 Decision table. Terminology to describe the decision table, unlike the

format, was not as standard. Morris calls the table a matrix formulation that has

alternatives down the left, "possible futures" (possible future states of the world)

across the top, and an event at the intersection between the two (10:6). Anderson.

Sweeney, and Williams describe it as a payoff table having alternatives like Morris,

but use states of nature across the top and consider the intersection of the two to

be payoffs (1:613). According to Moskowitz and Wright, the decision table is a

payoff or decision matrix having actions on the left side, events across the top, and

consequences at the action-event intersection (11:117).

2.4.2 Decision tree. Like the decision table, the terminology to describe the

tree varies. Raiffa calls the tree a decision-flow diagram or tree while Moskowitz

and Wright use tree diagram and decision tree, but both say it consists of decision

and chance forks (Raiffa also calls the forks junctures, nodes or branching points),

branches, and terminal payoffs at the right side of the tree (14:10-11)(11:130-131).

Morris prefers chance node, event node, or probability node to chance fork. He

further defines branches extending from decision nodes as alternative branches and

those out of chance nodes as outcome branches. In addition, Morris says the tree

terminates with terminal states (the branches on the right side of the tree that have

a single payoff, value or outcome rather than a follow on node). (10:8). Anderson,

Sweeney, and Williams also use nodes and branches, but replace chance with state-

of-nature to describe the type of node or branch in the decision tree (1:619-620).

2-6

2.4.3 Influence diagram. Influence diagram terminology also has some minor

variations. Owen uses state variable node (12:766) and Shachter uses probabilis-

tic variable (16:590) rather than chance node like Howard, Matheson, and Baron

(6,'35)(2:2). Baron also breaks from the Howard and Matheson terms of informa-

tional influence and conditional influence by using informational flow and probabilis-

tic dependence. In addition, Baron describes the node connectors as "arcs" while

Howard and Matheson use "arrows" (2:2)(6:735).

2.5 Automated Encoding and Current Software

2.5.1 Automated encoding. The difficulty of entering problems into comput-

ers for solving has been addressed in several areas. Fourer, Gay, and Kernighan

believe that the difficulty of translation can be reduced by the use of a "modeling

language" and mention two languages (GAMS by Bisschop, Mearans, Brooke, and

Kendrick in 1982 & 1988; MGG by Simons in 1987) developed for problem translation

in linear programming (3:520). According to Ligeza, it is fairly common within the

decision support field to use a logic-lii language readable by the decision maker to

encode knowledge and Ligeza provides hi, awn if-then-conditional format prototype

language as an example (7:107).

2.5.2 Software. Current decision tree processing software packages include

ARBORIST a general purpose commercial package by Texas Instruments (17:iii) and

SUPERTREE, a package by Strategic Decisions Group (9). ARBORIST represents

the typical capability of decision tree software: problem size limited by the amount

of available internal memory, building of the tree by interactive entry of information

through the keyboard using menus, and varying levels of data storage of designed

trees for later retrieval. Personal experience with ARBORIST painfully teaches one

that not all information is retained in long term storage. For example, probabilities

and values are not retained unless entered as variables which means they must be

entered again each time the file is retrieved. SUPERTREE, unlike ARBORIST,

2-7

improves the input capability some by the ability to get partial input from popular

spreadsheet programs (9:255-261).

Current influence diagram software packages include PerForma, a very basic

package for small problems written by Burwell and Tatman; DAVID, a Duke Uni-

versity commercial package written by Shachter that has the most analysis features

available according to Baron; and AFids, a package using the latest advances written

by Baron (2:vii,8-9). AFids, the newest influence diagram package in the decision

analysis field, uses the keyboard to create new influence diagrams via menus and

the point and click method, but diagrams already created and stored in a file may

be read in (2:52). AFids also relies on internal memory for storage of the problem

which limits problem size (2:25).

2.6 Conclusions

Several conclusions can be made about a meta-language for decision analy-

sis. First, the use of a meta-language to aid automated encoding is recognized as

beneficial and is being pursued in other fields. Second, the decision analysis field

has not concerned itself with development of a meta-language, but has stayed the

course with nonstandard, interactive encoding of problems based on the graphicAl

method used. Finally, the three methods discussed in the review appear to have

some common analysis concepts and terms ,pon which a meta-language might be

based.

2-8

III. MELADA: Meta-Language for Decision Analysis

This chapter discusses the meta-language designed to meet the first objective

of this thesis, providing a standard way to describe decision making problems under

uncertainty.

3.1 Requirements

Several requirements exist for any meta-language designed to deal with decision

making under uncertainty. The language must be able to convey all the informa-

tion needed to apply the probability and expected utility concepts described in the

literature review. That means the language must be able to describe probabilities,

utilities (values), decisions, decision alternatives, chance events, chance outcomes,

deterministic nodes, value nodes, and the relationship between them. In addition,

the terms must be unambiguous and succinct enough for computer use. Finally it

requires a straightforward syntax that can be easily understood by both user and

computer.

3.2 Terminology of Concepts

Selection of terms to describe the concepts was based on use within the deci-

sion analysis field, commonality between the three methodologies, and current use

or ability to use in computer software. Frequency of use of a term within the de-

cision analysis field, noted during the literature review, provided a list of the most

popular terms for some of the concepts. Shown in Table 3.1 is a listing of the most

popular terms used to describe decision making elements, elements whose outcomes

are chosen randomly by nature, and worth to the decision maker of these particular

elements.

Terms selected for the meta-language to describe several of the conceptual

elements and their associated definition are listed below.

3-1

Table 3.1. List of Popular Terms
Decision analysis concept Most popular terms for concept
Dpcision maker (DM) chooses course Decision
Options DM can choose from branches, alternatives, actions
Nature randomly chooses course chance, state of nature
Options nature chooses from branches, outcome, states of nature
Decision maker's worth of concepts value, payoff

Decision A choice to be made from a list of alternatives by the decision maker.

Chance An event where nature randomly selects the outcome from among the avail-

able possibilities.

Alternative One of the possible options that the decision maker may choose from

for a particular decision.

Outcome One of the possible results of a chance event.

Probability A numerical measure of belief that a particular outcome of a chance

event will occur.

Payoff The worth (utility) to the decision maker of a particular combination of

decisions, or outcomes stated in numerical terms.

Value Node A node in the influence diagram that represents the objective function

(2:3).

Deterministic Node A node in the influence diagram whose value is totally de-

termined by a combination of the preceding nodes' values (2:3).

There are additional terms that are not directly needed by the meta-language

but can be standardized to help problem description. (To help clarify the following

descriptions, meta-language elements are in boldface and the suggested additional

standardized terms are in italics.) To standardize decision tree and influence di-

agram graphical description, a decision or chance should be called a node while

3-2

an alternative or outcome should be called an arc. Decision tables should have

a"ternatives on the left and outcomes listed along the top of the table. Because

influence diagrams have value nodes, the value (utility) of an individual node or

arc should be called a payoff to avoid confusion. Dependence or relational order

terms are not required in the meta-language because it is conveyed by the order

of the various elements within each sentence. However, predecessor and successor,

commonly used to describe order, are used in the translator software and should be

used as the standard terms.

3.3 Employment of Concepts

The specific information and relationships conveyed by MELADA to achieve

the requirements mentioned above are categorized below.

* Identify distinctly each decision and chance.

e Identify distinctly ea.ch alternative and outcome.

* Link alternatives to their associated decision.

• Link outcomes to their associated chance node.

* Link successor decision and chance nodes to their predecessor alternative and

outcome arcs.

* Assign payoffs to outcomes and alternatives that do not have successors.

* Assign probabilities to outcomes.

* Assign functions to value and deterministic nodes.

To accomplish these requirements in an automated environment some rules

are necessary to reduce computational problems. These rules reduce the options the

computer must handle, avoid the input of information prior to having the element to

which the data belongs, and ensures the entering of all required data. Violation of the

rules can result in an incorrect problem description or confusion as to what is correct

3-3

by an individual looking at the meta-language description. The implementation rules

are listed below.

1. Each identifier used must be distinct.

2. Assignment of probabilities or payoffs to an alternative or outcome can only be

made after the alternative or outcome arc is associated with its parent decision

or chance node.

3. Each alternative or outcome must be assigned either a follow on chance node,

a follow on decision node, or a payoff.

4. Every outcome must be assigned a probability.

5. A probability or payoff can only be changed by correcting the original assign-

ment sentence, not by overriding it with another assignment sentence.

Rule number two is required because the distinction of arc type (alternative

or outcome) in the meta-language is based upon the type of parent node (decision

or chance) and the fact that the information that can be assigned to an arc depends

on its type. Rule number five is not meant as a limitation but is used to help the

user avoid accidental changing of values. Since the meta-language is written to a flat

ASCII file the correction of an assignment statement will be fairly easy.

It should be noted that deterministic nodes are converted to chance nodes

by influence diagram software (2:33) and thus can be represented by chance nodes

during input without the need for deterministic nodes. Also, the meta- language

deterministic and value nodes were designed with string function inputs like AFids

uses. The AFids method was selected for two reasons. First, AFids is noncommer-

cial software and available at AFIT which makes it a logical choice to use as the

primary influence diagram software. Second, AFids uses dynamic programming in

its optimizing process and provides several state of the art advances for influence

diagram optimizers (2:33).

3-4

3.4 Syntax

MELADA uses selected symbols to delimit the conceptual elements mentioned

earlier in a sentence structure that conveys none, one, or more than one of the cate-

gorized requirements listed above. The delimiting symbols key the required data in

each sentence from the optional information used to increase comprehension. Brack-

eted within the delimiting symbols are specific identifiers consisting of up to twenty

characters selected by the user, special relational symbols, payoff values expressed

as real numbers by the user, and probabilities unique to the problem input by the

user. The delimiting symbols, special relational symbols, and special character com-

binations used in MELADA are listed below with a definition of what they represent

and an example as appropriate. Items in italics are the ones the user chooses, those

in boldface are required by the syntax.

[] Delimits a decision identifier- [takeumbrella?].

() Delimits a chance identifier- (rain?).

{ } Delimits an alternative or outcome- {yes}.

* * Delimits a value node identifier- *objective*.

Delimits a deterministic node identifier- #drilling costs#.

<> Delimits payoff values or probabilities- < 10.0 >.

Pr Probability of, used in front of chance or outcome identifiers when assigning

probabilities- Pr(rain?).

- Used within a decision or chance element to link a decision or chance with

one of its alternatives or outcomes. For example, (rain?-yes) means one

outcome of chance node rain? is yes.

Used to separate multiple entries or identifiers within payoff, probability,

alternative, and outcome elements. For example, { yes,no} are two out-

comes or alternatives.

3-5

Delimits a long definition of a particular identifier- "anything the user

puts within the double quotes is part of the definition ".

% % Delimits a function string for value and deterministic nodes. Anything

input by the user between the delimiting symbols is part of the function.

Marks the end of a MELADA sentence.

When a probability element Pr is used in a sentence the payoff element < payoff >

that follows is defined as holding probabilities and not payoffs. Multiple alterna-

tive and outcome identifiers, payoffs, and probabilities are allowed in certain cases

to reduce the sentences needed to input the data. Those cases are the linking of

alternatives and outcomes to their parent node, the assignment of all outcome prob-

abilities to a chance node, and the assignment of payoffs to several alternatives of

a decision node or several outcomes of a chance node. A complete syntax chart of

the MELADA elements is in Figure A.1, located in the users manual in Appendix

A along with instructions for its use.

The order of the above elements within the MELADA sentence have special

meaning so the sentence structure is limited to those element combinations needed

to convey the information required. Some of the legal combinations and what they

convey is listed below using proper delimiters and the standardized term as the

element identifier ([decision] is a decision element).

[decision] {alternative(s)} Assigns alternatives to the given decision.

[decision]< payoff > Assigns a worth (utility) to each alternative of the decision.

[decision] "definition" Provides a long definition of the given decision identifier.

(chance=outcome) [decision] Assigns outcome to chance if not already assigned

and assigns decision as a follow on node to outcome.

(chance=outcome) < payoff > Assigns a worth (utility) to the outcome and as-

signs outcome to chance if not previously done.

3-6

Pr(chance) < probability > Assigns a probability to each outcome assigned to

chance.

Pr(chance=outcome) < probability > Assigns a probability to outcome and as-

signs outcome to chance if not already assigned.

Pr{outcome} < probability > Assigns a probability to outcome.

{outcome} < payoff > Assigns worth (utility) to outcome.

{outcome} [decision] Assigns decision as a follow on node to outcome.

{outcome} (chance) Assigns chance as a follow on node to outcome.

{outcome} "definition" Assigns a long definition to the outcome identifier.

* value * % function string% Assigns a function to the given value node.

#deterministic# %function string% Assigns a function to the given determin-

istic node.

Additional legal sentences identical to the ones above that have a decision element

first can be made by substituting in a chance element for the decision element. Like-

wise, the compound chance element (chance= outcome) can be replaced with a

compound decision element [decision = alternative] and {outcome} can be re-

placed with an {alternative} element to make additional sentences.

It should be noted that the sentences above show only the key elements and

their required order within the sentence for clarity. Additional information can be

added before, between, and after the elements as long as the information does contain

character strings that could be considered elements according to syntax rules. A

chart of the complete sentence structure syntax is in Figure A.2, located in the users

manual in Appendix A along with the instructions for its use.

3-7

3.5 Limitations.

It must be noted that the ability to use the meta-language to transfer problems

between influence diagrams and decision trees will be limited. Not all influence dia-

grams have counterpart decision trees (6:740) due to the fact that influence diagrams

are not only used to solve decision making problems but to describe the elements

and relationships of a problem without worrying about the mathematical aspects

(2:1). For those problems that can be expressed by both methods the difference in

format must be overcome. Influence diagrams hide the alternative and outcome data

within each decision and chance node instead of displaying them like decision trees.

Influence diagrams also allow for more than one predecessor or successor, unlike the

decision tree. However, the data required remains the same. For example, ea .h out-

come of the influence diagram chance node must have a probability value for each

predecessor's input (a conditional probability) just as each chance node in the deci-

sion tree is conditioned on its predecessor. The only difference is that the decision

tree uses multiple chance nodes to represent the same uncertainty situation based

on a different predecessor (condition). The difference in format between decision

trees and influence diagrams for a simple problem is shown in Figure 3.1. Thus, to

transfer from one method to the other requires the expansion or contraction of the

nodes and the ability to realize which nodes are identical except for their predeces-

sor (conditional given) input. MELADA does not have a direct means of showing

those relationships at the present time. However, problems that result in symmetric

trees could be transferred since the nodes at each level are the same and could be

transformed into one influence diagram chance node or vice versa by a conversion

package.

3.6 Employment of MELADA in an Automated Environment

This section explains how MELADA fits into the automated environment and

its relationship to the software developed in this thesis effort.

3-8

yes rain

Take yes

umbrella?

later? yes rain

no

no rain

Decision Tree Diagram of simple problem

Rain
later?

Take
umbrella? Value node

Influence Diagram of same problem

D - Decision Q Chance

Figure 3.1. Example of Difference in Format

3-9

MELADA is designed to be the standard language used to build a flat ASCII

input file that describes a decision making problem for the automated environment.

The file can be built by the user with any word processor that makes ASCII files.

This input file is then used by DAT, the decision analysis translator described in the

next chapter, to build a file with a standardized format for holding only necessary

problem information. The standardized storage file is then used as an input file for

optimizing software, like TREESOLVER, the optimizing software package developed

during this thesis effort and descri ed in a later chapter. Figure 3.2 shows the

progression from the user building a MELADA file to receiving the optimal results

and the relationship between MELADA and the software.

In the following chapters the software packages just mentioned are described

in greater detail to include their use of MELADA, program philosophy, and im-

plementation instructions required to achieve the automated environment given in

Figure 3.2. In addition, example applications are provided demonstrating the entire

cycle from MELADA to optimum solutions.

3-10

DAT TREESOLVER

Program
Program

\ /

Data
Transfer DASF

File

TREESOLVER

InputOutput

USER

Figure 3.2. Automated Environment for Decision Analysis

3-11

IV. DAT: Decision Analysis Translator

This chapter discusses the software package designed to achieve the second

thesis objective of providing an automated means of translating decision analysis

problems in MELADA ASCII files into a standard format file for use by optimizing

software packages.

4.1 Requirements

To achieve the second objective, the proposed translator must be able to meet

several requirements. These requirements are:

* Parse an ASCII file written in MELADA.

* Provide error checking to find:

1. incorrect syntax

2. duplicate identifier entries

3. data assigned to undefined elements

4. elements assigned incompatible data

5. duplicate data inputs (changes to data)

6. probabilities outside of values {0, ..., 1}

7. predecessor/successor loops

8. probabilities for each chance node sum to 1.0

9. missing data needed to solve a problem

* Provide a file of error messages.

* Provide a file of long element definitions given.

* Store the data in an file using a standardized format.

* Be easy to use, update or expand.

4-1

4.2 Program Philosophy

This section discusses the programing concepts and tradeoffs used in DAT to

meet the meet the requirements set forth above. The areas of discussion include the

parsing, error handling, storage of information, and the programming language used

by DAT.

4.2.1 Parsing. DAT uses a character input rather than a line input from

the MELADA file while parsing each MELADA sentence, the basic MELADA data

block that is examined to find the special characters delimiting key elements to

set them apart from optional data. This allows for a straightforward approach to

parsing MELADA sentences, even when they are longer than one line or written

in paragraph format. While this method requires more reads from the MELADA

file, it eliminates the problems encountered with a character string. Those problems

include keeping a pointer to remember at what position in the string the computer

is 'looking', removing the key data by getting subsets from the string, and knowing

when to refill the string.

One of the checks made during parsing is to see if the identifier just encountered

already exists or is a new one. This check requires searching through the records to

check for an identifier match. To help speed up the search which in the worst case

(new identifier) must check every existing record, DAT begins the search from the

latest entry and searches toward the first entry. If the person writing the MELADA

file follows a logical tree progression then the identifier in question, should it exist,

is more apt to be in the latest records stored. Therefore, it will be found with fewer

comparisons than would be the case if the search started with the first record.

4.2.2 Error handling. Most of the error checking is accomplished during in-

put to allow for giving the error location within the MELADA file. DAT counts the

number of sentences processed and if an error is found during input, a descriptive

error message containing the sentence number in which the error occurs is printed to

4-2

a message file. Once an error is encountered the remaining MELADA assignments

of that sentence are not carried out to prevent further erro-'s. However, processing is

continued, thus providing the user with feedback on all attempted sentences, rather

than just through the first erroneous sentence. Only the check for missing data and

the check to see that each chance node's probability sums to one occurs after input

of all information. These two have error messages which give the identifier name of

the node or arc containing the error.

4.2.3 Storage. The parsed information is stored during processing into a

DASF (Decision Analysis Standardized Format) file (discussed in detail in the next

section). This eliminates the internal memory size limitation on a problem and allows

for problems limited only by the available external storage capacity. The tradeoff

for size is speed of processing since random access to the file must be made to read

and write data into the records. However, this program was intended to allow for

processing of large problems on a PC based system and speed was not considered

to be a big requirement. To speed up the system at the cost of a relatively large

maximum size for the problems that can be handled, a RAM virtual disk can be set

up to hold the DASF file. Another method is to use higher speed hard drives, espe-

cially those with cache systems (basically a buffer system) that allow for optimizing

access by keeping the latest and most used information in RAM.

4.2.3.1 Program language and structure. The program is written in

Turbo Pascal, a common high level language that is easy to update and provides

many user-friendly options. The Turbo Pascal record and object structures make

updates to the storage record format simple to accomplish should the need arise. In

addition, Turbo Pascal is very expandable with its unit structure which will help fa-

cilitate the design of programs to convert the DASF file into a required input format

of current software. To help toward that end, DAT's procedures and functions were

designed and put into units for easy incorporation into conversion programs.

4-3

Every procedure is included in the DA TPRO. TPU unit, except Readsentence,

which has the unit called READSENT. TPU all to itself. DATPRO. TPU contains

all the procedures that read and write the records in the standard format storage file

and is the unit needed by any conversion program. The functions are in a unit called

DATFUN. TPU and all the global variables are in a unit called GLOBALS. TPU. The

source code is in files with the same name but have the .PAS extension. The source

files include documentation for each procedure and function stating what it does,

what procedures and functions it calls, and what global variables, if any, it uses.

Additional in-line documentation exists within the procedures and functions to aid

programmers. Appendix C contains an alphabetical summary of each procedure and

function to include its use, input variables, and output variables.

4.3 DASF: Decision Analysis Standard Storage Format

A key to providing automated input and flexibility of choice between the var-

ious software packages available is a standard input format. If the input format is

standardized, every new software program can be designed to use the one format.

Current programs can have conversion programs designed to convert data from the

standard format to the input format required or be updated to accept the format

directly.

The decision analysis standardized format, DASF, makes use of the storage

node record format used by DAT. It builds one record in the file for each storage

node DAT builds. Each storage node contains the required information on one node

or arc in the problem and has a standard format itself. The information included

in each storage node and thus, each record in the DASF file, is shown in Figure 4.1.

The use of the Pascal record structure makes the addition of new data requirements

as simple as adding another field. Those fields not required by the particular element

being described are given null or set values that reduce the space required in the file.

The individual records in the file are stored in the order that DAT builds the

4-4

Field names: Pascal type

* Name : id.str

* Node-type : nodetypes

* Pred-rec : longint
(predecessor record number)

DASF Record Succ..rec : longint

(successor record number)

* Next-arc : longint
(record number of next out-
come qr tlernative from the
same decision or chance node)

(Dat Storage * Payoff: real
node)

• Opt-arc : longint
(record number of best
alternative for a decision)

• Prob : real
(Probability value)

* Funct-str : function-str
(function string for value
or deterministic nodes)

NOTE: id.str is a string of length 20
function.str is a string of length 255

Figure 4.1. Data in DASF Record

4-5

storag nodes, which is based on the order that the data is given in the MELADA file.

The first record (record number zero) contains the problem identifier in the name

field, the record number of the root node in the succrec field, and the number of the

last record in the file in the next-arc field. To provide the logical order of the records,

record numbers are used to point to the predecessors and successors. Therefore, the

records are logically linked togetber in a tree format using a parent, child and right

sibling approach. Figure 4.2 shows the link from one node using the parent, child,

and right sibling approach. The parent is the record number contained in pred-rec.

I Parent node

=Right Sibling

Child node

Figure 4.2. Parent, Child, Right Sibling Linkage Example

The child is the record number stored in succ-rec and the right sibling, used to link

all the alternatives or outcomes of a particular decision or chance node together, is

stored in next-arc. While the decision or chance node is only linked directly to its

first (left most) alternative or outcome, each alternative and outcome can directly

access the parent decision or chance node via the record number stored in pred-rec.

The logical tree format that the computer 'sees' for the umbrella example shown in

Figure 3.1 is given in Figure 4.3.

4-6

Decision
take umbrella

Alternatives N
yes and no

Chance ? ?
rain later?

R NR

Outcomes
- NR rain andno rain.

O DAT storage node. Each node and its
data become one record in DASF file.

--- Arcs show pointer references.
Reference is by record number in
DASF file.

Figure 4.3. DASF Logical Record Tree

4-7

4.4 Implementation

DAT is a stand alone program that requires two input files and builds three

output files during execution. One input file is the ASCII MELADA file with a

problem name or identifier written on the first line of the file. DAT uses a line

read to get the problem identifier so it must be the only item on the first line. The

problem name can be as long as the line but only the first 20 characters are kept.

Leading spaces will count as part of the name. The other input file is a small text file

providing DAT the drive, path, and name of the MELADA input file and the three

output files, each on a separate line. The file must be named Filesfor.dat and placed

in the same directory as DAT in order for DAT to find it. The file provides the

flexibility to name the input and output files as desired without changing the DAT

source code and recompiling it every time. The three output files are the message file

which contains the error messages and processing remarks, the definition file which

holds the long definitions or explanations of the shorter identifiers used for each node

and arc, and the actual DASF output file which holds all the problem information.

Figure 4.4 shows the relationship between DAT and the files it uses.

Instructions for using DAT are in the users manual provided in Appendix A.

4-8

MELADA Input File
FILESFOR.DAT

C:\dir\MELADA.fle Problem Id
C:\dir\DASF.fle sentence 1

C:\dr\Mesageflesentence 2

Data flow

f D DAT

DASF Program

File

Figure 4.4. DAT Implementation Relationships

4-9

V. TREESOLVER: Optimizing Software Using DASF Files

This chapter describes the software designed to meet the third thesis objective

of using an optimizing software package with the DASF file. The reason for designing

a new software versus using a current package is also discussed.

5.1 Program Philosophy

The TREESOLVER package is a stand alone program, written in Turbo Pascal,

designed to work directly on a DASF file to solve and store within the DASF file the

optimum results. Because it alters the payoff and optimal alternative fields within the

DASF file, making a copy of the DASF file may be advisable prior to solving to permit

recovery to an unaltered file. Solving for an optimum is accomplished by obtaining

the maximum expected utility (value) of the problem. Thus, if a minimization is

desired the payoff values must be entered with their sign reversed.

Besides altering the DASF file, TREESOLVER also provides an output file that

lists each decision within the problem, the optimum alternative for the decision, and

the payoff of the alternative. The decisions are listed in the order found in the DASF

file, not in any logical order or information sequence.

The output file can be named as desired in the file named filesfor.tre , a small

text file that works exactly like the one used for DAT. The file contains the DASF

file name and path on the first line and the desired name and path for the output

file on the second line. Figure 5.1 shows the relationship of TREESOLVER and its

associated files.

5.2 TREESOLVER vs Currcnt Softwarc Strategy

TREESOLVER was developed rather than building a conversion program to

create, for example, an AFids input file, for two reasons. First, current software does

5-1

FILESFOR.TRE

O:\dir\DASF.fle TREESOLVER
C:\dir\Result~fle RESULTS

Output

Data flow

TREESOLVER

DASFj Program

File

Figure 5.1. TREESOLVER and Associated File Relationships

5-2

not have the capability to handle problems needing more storage space than what

is available in internal memory. Since DAT is designed to handle large problems

without the internal memory limitation, using a current package would reintroduce

this limitation to DAT problems. Second, the best optimizer available at AFIT with

enough documentation to help in building a conversion package for is AFids. That

means the unsolved problem of converting from decision tree to influence diagram

would need to be solved. In addition, AFids requires horizontal and vertical po-

sitioning information for its graphical representation of the problem which means

those coordinates would also need to be generated or input. Thus, it was much

easier to develop a new package that would overcome the problem size limitations

and yet show that the automated input could be accomplished. Choosing to develop

TREESOLVER does not mean that a conversion package for AFids is not possible,

only that it was a task deemed too time consuming for this research effort.

5-3

VI. Applications and Validation

This chapter provides applications of MELADA, DAT, and TREESOLVER

together on three different problems to demonstrate the last objective of this thesis,

the viability of having a meta-language and software to standardize and automate

the decision analysis field.

A brief problem description and reason for inclusion of each of the three prob-

lems is listed below followed by the sections on each individual application.

Umbrella Problem This is the simple problem used to show the difference between

decision tree and influence diagram formats. It consists of the decision to take

an umbrella or not based on the chance of rain later in the day.

It is used as an example because its size allows for a thorough first inspection

of MELADA, DAT, and TREESOLVER in use on a problem that contains the

basic elements (decision, alternative, chance, outcome, probability, and payoff)

of any decision making problem.

IFF Problem This problem deals with the decision of whether or not to wait to

visually identify an incoming aircraft before deciding whether or not to shoot.

This problem was included because it provides a problem larger than the first;

it introduces a nonsymmetrical tree structure, decisions between chance nodes,

chance nodes conditioned on other chance nodes; and it was provided in story

format.

Oil Drilling Problem This problem deals with deciding whether or not to make

a seismic test to help determine the possibility of oil prior to deciding whether

to drill or lease the land in question.

This problem was selected because it i- a well known standard example prob-

lem, can be solved using either influence diagram or decision tree methodology,

6-1

uses money instead of utility as the payoff, introduces the use of tolls instead

of applying the cost to payoffs, and introduces the use of terminal alternatives.

6.1 First Application: Umbrella Problem

The four possible outcomes and the associated payoffs expressed in utils, a

nondescript unit of utility, are:

Rain, Umbrella taken : 10 utils

No Rain, Umbrella taken : 4 utils

Rain, No Umbrella : 0 utils (worst case)

No Rain, No Umbrella : 6 utils

The probability of rain for that day is also assumed to be 0.4, making the probability

0.6 for no rain. The decision tree for the problem is given in Figure 6.1.

The MELADA file used for solving the problem, written with extra prose to

help comprehension, is listed below.

Umbrella Problem

1 The initial decision [take umbrella?] has alternatives

{yes, no}.

2 Alternative {yes} leads to chance event (rain later?).

3 Alternative [take umbrella?=no] leads to chance event

(rain?).

4 Chance event (rain?) "is the same chance event as rain

later? but no umbrella is taken.". 5 The probability of

rain given an umbrella Pr(rain later?=yeslumbrella) is

< 0.4>.

6 The outcomes of chance (rain?) are {yeslno umbrella,

nolno umbrella}. 7 The payoffs for (rain?) are <0,6>.

6-2

Rain 10

Take / YES IA (4

Umbrella? 6.4 No Rain 4
(.6)

Rain\no umbrella6.4 RAN (A)0

Expected value 3.6 \No Rain\no umbrella -6

Probability value

Figure 6.1. Umbrella Problem Tree

6-3

8 the probability of no rain given an umbrella

PR(rain later?=nolumbrella) is <.6>.

9 the payoffs for the outcomes of (rain later?) are <10, 4>.

10 The probabilities for the outcomes of Pr(rain?) are <.4,.6>.

11 [take umbrella?] "is the decision on whether or not to

take a- umbrella given the chance for rain later.".

Various sentence structures were used to show the flexibility the user has. For exam-

ple, sentence two shows one way of assigning a successor node to an alternative while

sentence three shows the other. Notice that sentence two can only be used after the

alternative is assigned to its parent decision node (sentence one). Sentence five is

not started on a new line to show the capability of DAT to process the sentences

in a paragraph writing style. The last sentence demonstrates the use of the long

definition which provides a longer definition or explanation of what the decision take

umbrella, mentioned in sentence one, stands for. The long definition will be printed

out in a separate definition file to provide the user with a concise listing of selected

identifiers and their associated definitions or explanations.

For a comparison of how concise the language can be, the following listing

is what the file looks like with only the necessary elements in each sentence to

describe the problem. Note that further code reduction could be done by using more

compound decision and chance elements to reduce the number of sentences used.

Umbrella Problem

1 [take umbrella?] {yes, no}.

2 {yes} (rain later?).

3 [take umbrella?=no] (rain?).

4 (rain?) "is the same chance event as rain

later? but no umbrella is taken.".

5 Pr(rain later?=yeslumbrella) < 0.4>.

6-4

6 (rain?) {yeslno umbrella, nolno umbrella}.

7 (rain?) <0,6>.

8 PR(rain later?=nolumbrella) <.6>.

9 (rain later?) <10, 4>.

10 Pr(rain?) <.4,.6>.

11 [take umbrella?] "is the decision on whether or not to

take an umbrella given the chance for rain later.".

The definition file provided as output by DAT for this problem, which should

contain two definitions according to the MELADA input code, is shown below.

rain?

is the same chance event as rain later? but no umbrella is taken."

take umbrella?

is the decision on whether or not to take an umbrella given the chance

for rain later."

The identifier being defined is placed on the first line with its definition starting on

the following line. A maximum of 75 characters per line is printed and a line is

skipped between definitions.

The best choice in this case is decided by selecting the alternative with the

maximum expected utility. As shown in Figure 6.1 , the expected utility for taking

the umbrella is

Uumbrella = (.4 x 10) + (.6 x 4)

- 6.4

6-5

while the expected utility for not taking the umbrella is

Unoumbrella = (.4 x 0) + (.6 x 6)

= 3.6

Thus, the correct answer is take the umbrella with a payoff of 6.4 utils.

Identical results were obtained by using DAT and TREESOLVER on the

MELADA umbrella problem file given above. A printout of the results from TREE-

SOLVER is given in Appendix B.

6.2 Second Application: IFF Problem

The IFF (Identify Friend or Foe) Problem decision tree, with the appropriate

probabilities and payoffs included, is given in Figure 6.2.

Description highlights of the problem are given in Appendix B along with the

MELADA file derived from the information. Because MELADA requires the correct

conditional probabilities for each element, the user must convert the probabilities

given using Bayes' Rule to those needed.

The hand calculated results along with the TREESOLVER results are given in

Appendix B after the problem description. In this case the TREESOLVER results

matched the hand calculations for the problem.

6.3 Third Application: Oil Drilling

This textbook problem is given as an example by Hillier and Lieberman (4:597-

613) as well as Baron (2:3). The decision tree for the problem is given in Figure 6.3.

Hillier and Lieberman minimize the expected opportunity loss to solve the

problem in their text. But TREESOLVER only maximizes, so the MELADA file

was set up to maximize profits. Again, the correct posterior probabilities had to be

6-6

YESGOOD (.3)1

W(.1T) 3.10 NOYES - KILLED? (.3) I

YES

(.8 .8FIR .3 BAD (.3)10

GOOD ACTUALLY(.8571) NO 2

42)4.3 WHO? GOOD

D NO1) 10

WHBAD2

WIT ' 3.14 A(.8571) -2

YES 1

4.33GOOD (.7)
/ .069) NO

YES .-]3.7 1

e. 1F PKILLED. .3)

6FB(.3)
OVIS BAD ACTUALLY .44 NO2

ID? (.58) 435 WHO? GOO (.J)2

\ NO /-/(.069) i10

7.84 !2.55 BAD -2
(.931)

YES 7 J 2.8KLLD (.2) 10

FIRE?'4- GOOD P

SOWATACTUALLY('9) 8.4/ N O 2
7.WHO? (.2)

7.4 NOGOOD 1

2.8 2

Figure 6.2. IFF Problem Tree

6-7

High -650,000
Get
what? Medium -200,000

Drill (5

Do Low 25,000

what? -51,250 Dry (.25 75,000
no test

whL (.5)

-, Lease -45,000

Conditional lease -40,000

Do Drill -127,700

closed Lease -45,000

est?(.351) -127,700 Conditional lease -65,500

Do Drill -60,275
maybe wh

a3K ease-45,000
(.259) F- es 4)0

12,000 -60,275 Conditional lease 43,050

test s High -650,000says tGet ,-5,0

test (.what? Medium (.1) -200,000

-594 -77,984 Do0 Low 25,000

opnwhat? 15,500 Dry (.25) 75,000
(.215) 500 Lease 4.5y 00.5

-45,00-45,000

Conditional lease -18,450
D oD rl
what? r33,675

(.175) [- Lease
-45,000

-45,00 Conditional lease -10,700

Figure 6.3. Oil Drilling Problem Tree

6-8

calculated for input into the file. In this case, the numbers given in the text were used

for all probabilities and payoffs (except payoff signs wei reversed for maximization)

to ensure a common starting ground. This also provided a chance to compare a

"proven" solution with the TREESOLVER output.

The TREESOLVER solution nearly matched the text answer. The decisions

and payoffs for all nodes were the same except for the overall payoff was different by

the cost of the testing, which Hillier and Lieberman apply between the test chance

node and the initial decision to test.

6.4 Application Observations

In each case except the last one, the automated solution matched, the hand

calculations. In the last case, the reason for the difference is MELADA's inability to

handle any cost of testing treated as a toll. MELADA can only handle the testing

costs by accounting for them in those payoffs conditioned on the testing. Another

option, once a conversion program is built for AFids to allow for the use of influence

diagrams, is to use a deterministic node to handle the money calculations (2:4) when

solving the problem.

Calculations must still be made by the user to provide the correct conditional

probabilities for each element. DAT cannot reverse conditional probabilities and

does not know if a probability entered is the right one.

Producing the MELADA file goes fairly quick with a word processor if good

identifiers are used that allow for copying sentences that are repeated using slightly

different identifier names. An example where the sentences were copied and then

modified using the find and replace capability of a word processor was in the Oil

drilling MELADA input file in Appendix B. Lines 12-21 were copied over to make

lines 22-31 and then 'closed' was found and replaced with 'maybe'. Then the prob-

abilities, payoffs, and line numbers were changed as required.

6-9

Although not required, numbering sentences and putting each one on a separate

line aids in debugging the file. For a very small problem it would be easier to solve

by hand than make up the MELADA file. Only when the size becomes comparable

to the oil drilling or iff problem does use of the automated system make sense for

saving time.

In each case MELADA was able to describe the problem, DAT was able to

format the problem in the standard format, and TREESOLVER provided results

consistent with hand calculations.

6-10

VII. Areas for Further Research and Conclusions

7.1 Areas for Further Research

Since MELADA and DAT are basic prototype attempts to standardize and

automate the decision analysis problem description process several future areas for

research and enhancement are possible.

The following areas deal with the MELADA language primarily but would

require changes or updates to the DAT software.

* Provide for the inclusion of continuous decision and random variables. This

would require a research effort to determine what additional concepts would

be required. Even influence diagram work is very basic in this area (2:49) and

the work involved would probably extend current limits.

e Provide more user work reduction capability such as a way to equate elements

that have identical data or nearly identical data.

The next group of topics deal primarily with the software developed during

this research effort but may require MELADA changes.

* Addition of a graphics capability. Graphics would allow a viewing of the logical

tree structure and its contents. An automated location computation algorithm

that represents n -ary trees would need to be researched, otherwise, the DASF

file would probably need the inclusion of location coordinates for positioning

on the computer screen.

* Develop the conversion program necessary to transfer between tree and influ-

ence diagram formats. Additional MELADA constructs may bc nccdcd such

as using '&' to link decision and chance nodes that can be collapsed into one

node for an influence diagram. An additional means for describing determin-

istic and value nodes may be needed if software other than AFids were to be

7-1

used. Like in the graphics enhancement case above, the location computation

algorithm would be helpful here.

* Improvement in processing speed. Research into various systems such as a

buffer system within internal memory that would store a large number of

records. Processing would take place on the records in memory reducing the

delays required when reading a file. The file only would be accessed when

writing the buffer back and reading in another block that contains the records

needed.

I lusion of a program to reverse the order of conditional probabilities (apply

Bayes'Rule) for use when entering the data in a MELADA file. Taken one

step further, research into incorporating this capability into DAT to allow for

MELADA to provide general probabilities and let DAT provide the correct one

for each case.

9 Inclusion of a program to provide value lotteries for use in determining payoffs

for the MELADA file. Perhaps the program could be called by the DAT

program when it finds missing payoff values or at least allow the user to execute

it if desired at that point.

e Provide an interactive shell to group the programs together and allow for in-

teractive update of the MELADA file, files containing the input and output

file paths and names, and the DASF file. In addition, each program could be

run by selection from a menu.

9 TREESOLVER could be modified to allow for minimization problems and

provide the capability to output the results to several devices at the same

time.

7-2

7.2 Conclusions

MELADA provides a good, basic taxonomy of decision analysis for problems

with noncontinuous random events and decisions. It allows for the use of word

processors to build complete problem description files for input into software packages

that can then solve the problem. Although at the present time influence diagram

optimizing software cannot be used to solve a problem, MELADA has the basic

elements in place to provide for that option. In addition, the language has the

capacity for expansion of new elements.

The associated software, DAT and TREESOLVER, provide an automated in-

put and solution capability as demonstrated by several example problems. Increased

user flexibility and standardization within the decision analysis field can be achieved

through the use of the DASF file as an input file for future software packages and for

conversion packages for existing software. The software also overcomes the limitation

of internal memory on problem size by using the DASF file for working storage rather

than internal memory. Because the software is written in Turbo Pascal and contains

documentation within the source code, programmers can expand and update the

programs easily.

Although not a polished package, the MELADA language and software de-

veloped in this research effort provide the ground work for a viable, standardized

language and format for decision analysis.

7-3

Appendix A. MELADA, DAT, and TREESOLVER User Manual

This is a checklist guide designed for the casual user for preparing MELADA

files, Running DAT, and Running TREESOLVER.

A.1 MELADA Input File Preparation Checks

" Use a word processor to build an ASCII file containing the MELADA language

describing the problem.

• Use the syntax charts given in Figure A.1 and Figure A.2 to ensure proper

MELADA element and sentence structure. Instructions for using the charts

are:

1. Arrows show direction of progression (order of inputs). General progres-

sion is left to right. Complete travel from left to right must be made to

ensure including all required items for each element or sentence.

2. When multiple paths are depicted by arrows going from left to right, any

one path or option may be taken. For example, using the element Prob

of (probability of), shown on the element syntax chart third from the

bottom, the option is given to use either Pr or PR.

3. Arrows directed from right to left depict the ability to repeat items within

the "cycle" created by the arrow as many times as necessary unless restric-

tions are given. For example, on the MELADA element chart, Identifier is

made by repeatedly adding a character, but only 20 characters are used.

4. In the sentence chart, any element within the <> are optional.

5. Any combination not given by the syntax charts is not a legal MELADA

construct and will not be recognized by DAT.

A-1

* In addition to having proper syntax, ensure the MELADA input file has:

1. a problem identifier in the first 20 characters of the first line of the file.

2. the sentences starting on the second line.

3. a distinct identifier for each element.

4. an alternative or outcome linked to its parent decision or chance node

prior to the assignment of payoffs or probabilities.

5. not assigned a payoff to any alternative or outcome that has a successor.

6. every outcome assigned a probability.

7. a probability or payoff assigned to an element only once.

" To aid in debugging, begin each sentence on a new line and number the sen-

tence.

* If a sentence exceeds the line length, DO NOT break an element in the middle

of an identifier, payoff value, or probability value. ONLY break an element if

it has multiple identifiers, payoffs, or probabilities, and make the break between

identifiers (after a comma).

" Remember that MELADA is case sensitive so "Name" and "name" are con-

sidered distinct identifiers.

A.2 DAT Preparation Checklist

These guidelines are designed to help in setting DAT up for processing a

MELADA file.

* Compile the source code using the Compilation Checklist included at the end

of this manual if a DAT.EXE file does not exist.

* Place the DAT.EXE file in a drive other than the one used for the DASF file

to allow for increased storage capacity for the DASF file.

A-2

Identifier = character
Sletters are case sensitive

only 20 characters saved
* except]) = , } * # which marks

the end of certain elements below

CHRS = any string of characters whose order does not
define any of the elements below within the string

Decision Id = [Identifier

Chance Id = (Identifier)

Outcome Id or Alternative Id { Identifier

(Ids if more than one Identifier)

Compound Decision Id [Decision Id = Alernative Id]

Compound Chance Id = (Chance Id = Outcome Id)

Value Id = Identifier *

Deterministic Id = # Identifier #

Payoff or Prob val =< number >

(Probability of) Pr * number is any real
number except -9999

_lJ for payoff and between
Function string - % character- 0 & 1 inclusive for

f probability value

Definition - " character

NOTE: character is any character that can be typed in

Figure A.1. MELADA Syntax Element Structure

A-3

VALID SENTENCE = j KEY: <optional entry >
<CHRS> <CHRS>

Decision Id <CHRS> Alternative Ids

Alternative Id

Payoff

DefinitionCompound Decision Id <CHRS> Decision Id

Chance Id

Paycff

Chance Id <CHRS> Outcome Ids

Outcome Id

Definition
Payoff

Compound Chance Id <CHRS> Decision Id

Chance Id

Payoff

Prob of Chance Id <CHRS> Prob val

Compound Chance Id

Outcome Id

Outcome Id <CHRS> Payoff

Alternative Id Decision Id

Chance Id

Definition

Deterministic <CHRS> Function string

Value

Figure A.2. MELADA Syntax Sentence Structure

A-4

* Create a FILESFOR.TRE ASCII file in the same directory the DAT.EXE file

is located using the instructions below.

1. Place the drive, path, and name of the chosen MELADA input file as a

single string (C: \DIRECTORY\FILENAME. EXT) on line one of the file.

2. Place desired drive, path, and name of DASF file on line two of the file.

3. Place desired drive, path, and name of message file on line three of the

file.

4. Place desired drive, path, and name of definition file on line four of the

file.

An example FILESFOR.TRE for a hypothetical computer system with two

hard drives, labeled "C" and "D", which will be used to hold all files, is given

below. DAT and all the files except the DASF file will be placed in the directory

"DA" on drive "C" while the DASF file will be in the root directory of drive

"D". In this example, the type of file will be used as the filename and the

extension will be .INP for input files and .OUT for output files.

C:\DA\MELADA.INP

D:\DASF.OUT

C :\DA\MESSAGE. OUT

C:\DA\DEFINE.OUT

WARNING: the three output files (DASF, Message, and Definition) will

overwrite any existing file with the same name designated in this file.

e Run DAT by first ensuring the DOS prompt of the drive and directory con-

taining the DAT file is displayed on the CRT screen and then type:

DAT <cr>

DAT will give real time processing status updates on the CRT screen and

inform if errors were detected.

A-5

A.3 TREESOLVER Preparation Checklist

This checklist provides guidance for using TREESOLVER to solve a problem

stored in a DASF file.

1. Compile source code (TREESOLVER.PAS) if a TREESOLVER.EXE file does

not exist. The only compiler option needed is to compile to disk to get an

executable file. Further help can be obtained from Turbo Pascal User's Guides.

2. Select a drive and directory to place the executable TREESOLVER file.

3. Create an ASCII file named FILESFOR.TRE using the instructions below and

place it in the same directory as the TREESOLVER executable file.

e Place the drive, path, and filename of the DASF file holding the problem

to be solved on the first line exactly the way described for the FILES-

FOR.DAT file in the DAT Preparation Checklist.

* Place the drive, path, and filename for the output file that will hold the

problem solution on the second line in the same manner as for the DASF

input file.

4. Run TREESOLVER by ensuring the current drive and directory is the one

containing TREESOLVER, and type at the DOS prompt:

TREESOLVER <cr>

TREESOLVER provides a running count of decision and chance nodes "solved"

during execution on the CRT screen.

WARNING: TREESOLVER makes updates to the DASF file and overwrites

any file with the drive, path, and filename given for the output file.

NOTE: Remember that TREESOLVER only maximizes expected utility,

thus minimization problems must have the payoffs' signs reversed to provide correct

results.

A-6

A.4 DAT Compilation Checklist

This checklist provides only general guidance and assumes the user has some

familiarity with compiling Turbo Pascal programs. If further help is needed, refer to

a Turbo Pascal User's Guide or someone with Turbo Pascal expertise.

1. Ensure the following files are present in one directory:

DAT.PAS Main program file.

GLOBALS.PAS Source code of the Pascal Unit containing all global vari-

ables and declarations for DAT.

READSENT.PAS Pascal Unit for the procedure Readsentence, which drives

the parsing of each MELADA sentence.

DATPRO.PAS Pascal Unit containing the procedures used by DAT.

DATFUN.PAS Pascal Unit containing the functions used by DAT.

2. Set the compile to disk option to obtain compiled files. No other compilation

options need be set.

3. Compile DAT using the BUILD command. This will cause the compilation of

all the Units along with DAT, including the recompilation of any files already

compiled. Compiled Units have the same name as the source code but have

.TPU extensions. Use of the BUILD command will ensure an executable DAT

file based on the compiling computer's capabilities.

NOTE: Units may also be compiled individually. Compile with the compile

to disk option just like for programs. Instead of .EXE files, the .TPU files will be

built. After all Units have been compiled, compile the DAT.PAS file with the compile

to disk option.

A-7

Appendix B. Application Problem Listings

In addition to the listings shown here, the MELADA input files for all three

problems are included with the DAT and TREESOLVER source code on diskette.

B.1 Umbrella Problem

Since the input files were listed earlier only the TREESOLVER output file will

be included here.

Results/Decisions for Umbrella Problem

DECISION BEST ALTERNATIVE PAYOFF

take umbrella? yes 6.400E+00

B.2 IFF Problem

The IFF problem story description highlights are listed below.

" Prior odds of an aircraft being hostile were 9 to 1.

* Probability of a kill if fired before visual range was .8.

* Probability of a kill if waiting for visual id and plane was a friendly was .7.

* Probability of a kill if waiting for visual id and plane was enemy was .3.

" Probability of correct visual identification was .6.

" Utility of killing an enemy equals letting a friendly through (live).

" Killing a friendly equals one half the utility of letting the enemy through.

* Letting a friendly through was 5 times the utility of letting an enemy through.

B-1

In this situation the utility of letting a ffdendiy through was set at~ 10. The

MELADA file for the problem is listed below.

1FF test problem

1 [wait to vis id=wait] (vis id who?).

2 [wait to vis idno wait] [firelno wait].

3 [firelno wait=fire now] (wholfire now).

4 [firelno waitno fire now] (wholno fire now).

5 (who mLo fire now=good guy) <10>.

6 (whoino fire nowbad guy) <2>.

7 Pr(wholno fire now) <0.1,0.9>.

8 (wholfire ncw=goodlfire now) (kill?Igood).

9 (whoIf ire now=badlfire now) (kill?Ibad).

10 (kill? Igood) {klledlgood,no killlgood}.

11 (kill?Ibad) {klledlbad,no killlbad}.

12 (kill?Igood) <1,10>.

13 (kill?Ibad) '%10,2>.

14 Pr(wholfire now) <0.1,0.9>.

15 Pr(kill?Igood) <.8,.2>.

16 PR(kill?Ibad) <.8,.2>.

17 (vis id who?=id good) [fire?JIid good].

18 (vis id who?=id bad) [fire?Iid bad].

19 Pr(vis id who?) <.42,.58>.

20 [fire?Iid good=firelid good] (wholfire id g).

21 [fire?Iid good=no firelid good] (wholno fire id g).

22 [fire?1id badfirelid bad] (wholfire id b).

23 [fire?Iid bad=no firelid bad] (whotno fire id b).

24 (wholfire id ggoodlfire id g) (kill?Igood id g).

25 (wholfire id g=badlfire id g) (kill?Ibad id g).

B-2

26 (wholno fire id g) {good id g, bad id g}.

27 Prfgood id g} <.1429>.

28 Prfbad id g} <.8571>.

29 {good id g} <10>.

30 {bad. id g} <2>.

31 (kill?Igood id g) {killedlgood id g,no killigood id g}.

32 Pr(kill?Igood id g) <.7,.3>.

33 (kill?Igood id g) <1,10>.

34 (kill?Ibad id g) {killedlbad id g, no killibad id g}.

35 (kill?lbad id g) <10,2>.

36 Pr(kill?Ibad id g) <.3,.7>.

37 (whotfire id bgoodifire id b) (kill?Igood id b).

38 (wholfire id b=badlfire id b) (kill?Ibad id b).

39 (wholno fire id b) {good id b, bad id b}.

40 Prfgood id b} <.069>.

41 Prfbad id b} <.931>.

42 {good id b} <10>.

43 {bad id b} <2>.

44 (kill?Igood id b) {killedlgood id b,no killigood id b}.

45 Pr(kill?Igood id b) <.7,.3>.

46 (kill?Igood id b) <1,10>.

47 (kill?Ibad id b) {killedlbad id b, no killibad id b}.

48 (kill?Ibad id b) <10,2>.

49 Pr(kill?Ibad id b) <.3,.7>.

50 Pr(wholfire id b) (.069,.931>.

51 Pr(wholfire id g) <.1429,.8571>.

The "approved" results for the decisions involved in thc- 1FF problem are:

Wait to vis Id? no; payoff = 7.84.

B-3

Fire-no wait yes; payoff = 7.84.

Fire-id friendly yes: payoff = 4.299.

Fire-id enemy yes; payoff = 4.352.

The results from TREESOLVER are listed below.

Result s/Decis ions for 1FF test problem

DECISION BEST ALTERNATIVE PAYOFF

wait to vis id no wait 7.840E+00

firelno wait fire now 7.840E+00

fire?Iid good firelid good 4.300E+00

fire?Iid bad firelid bad 4.352E+00

B.3 Oil Problem

The MELADA file for the wildcat oil drilling problem is given below,

Oil Drilling Problem

1 [testno][dolno test].

2 [dolno test=drilll1no test] (weillino test).

3 (welllno test) {hilno test,medlno test,lowino test,

drylno test}.

4 (well mo test) <650000,200000,-25000,-75000>.
5 Pr(welllno test) <.i,.15,.25,.5>.

6 [dolno test=leaselno test] <45000>.

7 [dolno testcond leaselno test] (wellicondino test).

8 (wellicondlno test)

B-4

{hIcondlno test, medicondino test,lowlcondlno test,

dry IcondIno test}.

9 (welllcondino test) <250000,100000,0,0>.

10 Pr(welllcondino test) <.1,.15,.25,.5>.

11 [test=yes](test says).

12 (test says=closed)[dolclosed].

13 Edo iclosed=drilllIclosed] (well drilled Iclosed).

14 (well drilledlclosed){i drillediclosed,

med drillediclosed, low drillediclosed,

dry drilled Iclosed}

15 Pr(well drilledlclosed) <.166, .24, .327, .267>.

16 (well drillediclosed) <650000,200000,-25000,-75000>.

17 [do iclosedleaselIclosed] <45000>.

18 [do Iclosed=cond leaseiclosed] (well leasediclosed).

19 (well leasediclosed) {hi leasediclosed, med leasediclosed,

low leasediclosed, dry leasedlclosed}.

20 (well leasediclosed) <250000,100000,0,0>.

21 Pr(well leasediclosed) <.166,.24,.327,.267>.

22 (test says=maybe)[dolmaybe].

23 [do Imaybe=drilllmaybe] (well drilled Imaybe).

24 (well drilledlmaybe){hi drilledimaybe, med drilledimaybe,

low drilledimaybe, dry drilledlmaybe}

25 Pr(well drilledlmaybe) <.129, .108, .241, .522>.

26 (well drilledimaybe) <650000,200000,-25000,-75000>.

27 [dolImaybe=leaselImaybe] <45000>.

28 [dolmaybe=cond leaselmaybe] (well leasedimaybe).

B-5

29 (well leasedlma'be) {hi leasedimaybe, med leasedimaybe,

low leasedimaybe, dry leasedlmaybe}.

30 (well leasedimaybe) <250000,100000,0,0>.

31 Pr(well leasedimaybe) <.129,.108,.241,.522>.

32 (test saysopen) [dolIopen].

33 [do Iopen=drilllopen] (well drilled lopen).

34 (well drilledtopen){hi drilledlopen, med drilled lopen,

low drilled lopen, dry drilled Iopen}

35 Pr(well drilledlopen) <.039, .087, .i46, .728>.

36 (well drilledi open) <650000,200000,-25000,-75000>.

37 [do Iopen=leaselopen] <45000>.

38 [dolopencond leaselopen] (well leasedlopen).

39 (well leasedlopen) {hi leasedlopen, med leasedlopen,

low leasedlopen, dry leasedlopen}.

40 (well leasedlopen) <250000,100000,0,0>.

41 Pr(well leasedlopen) <.039, .087, .146, .728>.

42 (test saysnone) [do inone].

43 [do Inonedrilllnone] (well drilled Inone).

44 (well drillednone){hi drillednone, med drillednone,

low drilledinone, dry drilledlnone}

45 Pr(well drilledlnone) <0, .107, .238, .655>.

46 (well drilledinone) <650000,200000,-25000,-75000>.

47 [do inone=leaselnone] <45000>.

48 [dolnone=cond leaseinode] (well leasedinone).

49 (well leasedInone) {hi leasedinone, med leasedinone,

low leasedinone, dry leasedlnonel.

B-~6

50 (well leasedinone) <250000,100000,0,0>.

51 Pr(well leasedinone) <0,.107,.238,.655>.

52 Pr(test says) <.351,.259,.215,.175>.

The textbook results (4:611) for the oil drilling problem decisions were:

Do seismic test? yes; payoff = -65,984.

Do what-no test? drill; payoff = -51,250.

Do what-closed drill; payoff = -127,700.

Do what-maybe drill; payoff = -60,275.

Do what-open lease; payoff = -45,000.

Do what-none lease; payoff = -45,000.

Adding the test costs back in will result in the test decision's payoff changing to

-77,984, the payoff computed for alternative yes of that decision.

The results from TREESOLVER without taking into account the testing cost

tolls are shown below. Remember, the payoff signs are reversed.

Results/Decisions for Oil Drilling Problem

DECISION BEST ALTERNATIVE PAYOFF

test yes 7.798E+04

dolno test drillino test 5.125E+04

doiclosed drilliclosed 1.277E+05

dolmaybe drillimaybe 6.027E+04

dolopen leaselopen 4.500E+04

dolnone leaselnone 4.500E+04

B-7

Appendix C. DAT Procedures and Function Summaries

This appendix contains brief summaries of what each function and procedure

does, the variables involved, and the other functions and procedures called. The

functions and procedures are listed in separate sections and listed in alphabetical

order within each section.

C.1 Listing of Functions

FINDRECORD(var id : id.str;

var dat-file : data-file) : longint;

Checks DASF file records for id given.

Input variables:

id = identifier name to search for

dat-file = DASF file

Output variables:

Find-Record = record number of the match

-1 if there is no match

Calls: Get-record, reset, filesize

C-1

GETID(var F: text; stopchr : string) : string;

Reads in the identifier for an element from the MELADA

Input File. Only allows 20 characters to the iaentifier

and has a warning message printed if it is exceeded

prior to reaching the stop character: storpchr

Input Variables:

F = MELADA Input File

stopchr = one of the special delimiting characters

Output variable:

GetId = identifier (name)

CALLS: Warning

GETPROB(var F : text) : real;

Reads in the probability from the file assinged to F,

prints out a warning if the value is not legal.

Input variable:

F = MELADA Input File

Output:

GETPROB = probability value between 0 and I

Calls: Get-Id, Val, Str, Warning

C-2

LOOPADDED(node : stprage-node;

succ-rec : longint) : boolean;

Checks to see if a cycle is added to the records in the

DASF file. Check is accomplished by seeing if the

successor to be added is already a predecessor further

up the logical tree of DASF records.

Input variables:

node = record containing the predecessor of the

node to be added

succ-rec = record number of the node to be

added as a successor.

Output variable:

LOOP-ADDED = True, if there would be a cycle

False, if no cycle formed

Calls: Get-Record, Warning

C-3

C.2 Listing of Procedures

ADDARC(var pred node : storage-node;

pred index longint;

var arc-node storage-node;

arc-index : longint;

var dat-file data-file);

Links predecessor node (record) with successor node

(record). Checks to see if a cycle would be added,

the predecessor already has a successor, and if the

successor already has a predecessor. Has an error

message printed if any of those conditions occur and

does not link the nodes.

Input variables:

pred-node = predecessor node

pred-index = DASF record number of predecessor node

arc-node = successor node

arc-index = DASF record number of successor node

dat-file = DASF file

Output variables:

pred-node = gets arc-index put in succ-rec field

arc-node = has predindex put in pred.rec field

Calls: Loop-Added, Store-Node, GetRecord, Warning

Updates global variable: arc-not-added

C-4

ASSIGNVALUES(node : storage-node;

index : longint);

Assigns the payoff values to the various elements

dependent upon type. Checks to see if the element has

a successor. If it does, a value is not assigned, but

an error message is written. Stores node in DASF file

at record index after payoff is assigned to node.

Input variables:

node = RAM storage record holding element to be

assigned payoff

index = DASF record number for node

Output variable:

node = Gets payoff assigned to field payoff

Calls: Warning, Get-Record, GetValueFor, Store-Node,

Uses and changes global variable: Inchr

CHECKFOCORRECTDATA(var dat-file : data-file);

Checks the DASF file completeness after all input from

the MELADA file. Also assigns record keeping info

(root node record number, last record number) to record

C-5

zero in the DASF file. Prints error messages for any

errors found.

Input variable:

dat-file = DASF file

Calls: Get-Record, Store-Node, Warning, Filesize

GETNODE(var node : storage-node;

var index : longint;

stopchr : string;

type-of-node : node-types);

Reads in the name (identifier) of the node and checks to

see if it exists already. If it does then it checks to

see if it is the correct type, warning message if type

is wrong. If id is new then initializes a new node.

Input variables:

node = RAM storage record whose name is being

checked

index = number of the record with the same name

stopchr = right delimiting symbol passed to GetId

type-of-node = node type (decision, chance, etc.)

Calls: Get_Id, Find-Record, New-Node, Store-node,

Warning

C-6

GETRECORD(record-number : longint;

var dat-file data-file;

var node storage-node);

Reads DASF file record into variable node.

Input variables:

record-number = DASF record to be read

dat-file = DASF file

node = a RAM record that holds the data read

in from a DASF record

Output variable:

node = storage record filled with data of record

read in

Calls: Reset, Read, Seek, Close

GETVALUEFOR(var node : storage-node);

Reads in the payoff value from the MELADA Input File and

places it it the payoff field of node. Writes an error

message if the node already has a payoff value and does

not update the payoff value.

C-7

Input variable:

node = RAM storage record exactly like DASF record

Output variable:

node = payoff value in field payoff

Calls: GetId, Val, Str, Warning

PROCEDURE LONGDEF(var Id : Id-str);

Reads in long definition for Id from MELADA Input File

and writes Id and the definition to the output file

assigned to hold definitions.

Input variable:

Id = MELADA element Identifier (Name)

Calls: Read, Writeln, Append, Close

Uses global variable: Inchr

NEWNODE(var node : storage-node;

var file-num : longint);

Initializes a storage node with the name given by the

input node and is assigned the record position file-num

for the DASF (data file) file.

C-8

Input variables:

node = temporary storage record being initialized

to hold data of new MELADA element (arc or

node)

file-num = record position in DASF file for node

Output variable:

node = the input node fully initialized

Uses and increments global variable next-record

READ-SENTENCE;

Main procedure that parses one sentence in the MELADA

file by finding the key elements based on key delimiting

characters and the order found.

CALLS: Read, Eof, GetId, Find-Record, Get-Record,

Warning, Get-Node, AddArc, Store-Node, GetProb,

Longdef, Assign-Values

Changes global variable: Inchr

C-9

STORENODE(var node : storage-node;

index : longint;

var dat-file : data-file);

Stores a node in a DASF record.

Input variables:

node = RAM record containing data to be stored

index = record number in DASF file to store data at

dat-file = DASF file

Calls : Seek, Write, Reset, Close

WARNING(num : warn-num; id : Id-str);

prints error messag" to a file assigned to msg

Input variables:

num= number of warning statement to be printed

id = name or identifier of node with the error

uses global variable: sent-num

changes global variable: error-msg}

C-1O

Bibliography

1. Anderson, David R. and others. An Introduction to Management Science
(Fourth Edition). St. Paul: West Publishing Company, 1985.

2. Baron, Capt Christopher T. Influence Diagrams: Automated Analysis With
Dynamic Programming. MS thesis, School of Engineering, Air Force In-
stitute of Technology (AU), Wright-Patterson AFB, OH, December 1988.
AFIT/GOR/MA/88D-1.

3. Fourer, Robert and others. "A Modeling Language for Mathematical Program-
ming," Management Science, 36(5):519-554 (May 1990).

4. Hillier, Fredrick and Gerald Lieberman. Operations Research (Second Edition).
San Fransico: Holden-Day, Inc., 1974.

5. Howard, Ronald A. "The Foundations of Decision Analysis." In Howard, R. A.
and J. E. Matheson, editors, Readings on the Principles and Applications of
Decision Analysis, Menlo Park, CA: Strategic Decisions Group, 1984. reprinted
from IEEE Transactions on Systems Science and Cybernetics, Vol. SSC-4, No.
3, September 1968.

6. Howard, Ronald A. and James E. Matheson. "Influence Diagrams." In Howard,
R. A. and J. E. Matheson, editors, Readings on the Principles and Applications
of Decision Analysis, Menlo Park, CA: Strategic Decisions Group, 1984.

7. Ligeza, Antoni. "Expert Systems Approach to Decision Support," European
Journal of Operational Research, 37(1):100-110 (October 1988).

8. Lindley, Dennis. "Scoring Rules and the Inevitability of Probability," Interna-
tional Statistical Review, 50:1-26 (1982).

9. McNamee, Peter and John Celona. Decision analysis for the professional with
Supertree. Redwood City, CA: Scientific Press, 1987.

10. Morris, William T. Decision Analysis. Columbus, OH: Grid, Inc., 1977.

11. Moskowitz, Herbert and Gordon P. Wright. Operations Research Techniques
for Management. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1979.

12. Owen, Daniel L. "The Use of Influence Diagrams in Structuring Complex Deci-
sion Problems." In Howard, R. A. and J. E. Matheson, editors, Readings on the
Principles and Applications of Decision Analysis, Menlo Park, CA: Strategic
Decisions Group, 1984.

13. Pratt, John W. and others. "The Foundations of Decisions Under Uncertainty;
An Elementary Exposition," Journal of the American Statistical Association,
pages 35-57 (June 1964).

BIB-1

14. Raiffa, Howard. Decision Analysis Introductory Lectures on Choices under Un-
certainty. Menlo Park, CA: Addison-Wesley, 1968.

15. Schoemaker, Paul J. H. "The Expected Utility Model: Its Variants, Pur-
poses, Evidence, and Limitations," Journal of Economic Literature, XX:529-
563 (June 1982).

16. Shachter, Ross D. "Probabilistic Inference and Influence Diagrams," Operations
Research, 36:589-604 (July/August 1988).

17. Texas Instruments Inc. Arborist Decision Tree Software User's Guide, 1985.

BIB-2

