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1 Introduction

This review is intended as a companion to Garvin'si concurrent sur-
vey, which examines aided target recognition (ATR) methods primarily

from the point of view of their implementations in digital-electronic and
optical hardware. He concludes, among other things, that the area of
this field which is undergoing the most intensive and mathematically
substantive study is the front end of the ATR problem, what has been
called the early-vision stage by computer vision researchers and the
pre-attentive stage by cognition theorists (cognitive psychologists and
artificial intelligence (Al) researchers). He further points out that while
many aspects of the ATR problem have been under investigation for
decades, only recently has this difficult and critical front-end aspect
been vigorously attacked.

Accordingly, the purpose of this survey is to closely examine the math-
ematical methods in use for this stage of the ATR problem. These
methods include maximum a posteriori (MAP) estimation, regulariza-
tion theory, the multiple deconvolution technique of Berenstein and his
collaborators2'3 (for image resolution enhancement), and the rigorous
simulated-annealing technique called stochastic relaxation and anneal-

ing. Other important and relevant methods that are not considered
in this review include the renormalization group approach of Gidas,'
the relatively new mean field annealing technique,' and the extensive
methodology known as mathematical morphologyf (this methodology
may be the subject of future review).

Except for the morphological techniques, all these methods are aimed
at solving "ill-posed" problems (defined in sect. 2), either at the formu-
lation of solutions or at devising efficient algorithms for their comnpu-
tation. Ill-posed problems invariably arise with the image-irocessing

'C. G. Garvin, Survey of Aided Target Recognition (ATR) Techniques from Digital and 0; lical Perspec-
tives, HDL technical report, to appear.

2C. A. Berenstein, B. A. Taylor, and A. Yger, Sur quclques fortnules explicites de d,',-onvolution, J. Opt.

(Paris) 14 (1983), 75-82.
3C. A. Berenstein and B. A. Taylor, Overdetermined Systems of Conrolution Equations, Proc. Sixth

Army Conf. Applied Comput. Math., Boulder, CO (June 1988).
4 Basilis Gidas, A Renormalization Group Approach to Image Processing Pi blem.s, IEEE Trans. Pattern

Anal. Machine Intell. PAMI-11, No. 2 (February 1989), 164 180.
5G. L. Bilbro, T. K. Miller, W. E. Snyder, D. VandenBout, and R \lann, S1imuhlted Annealing using

the Mean Field Approximation, IEEE Conf. on Neural Infortnation l'r,,cessing Syste'ms, D,nvr (November
1988).

KI. Serra, Image Analysis and Mathematical Morphology, Academic Press (1982).
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problem known as feature extraction, which is one of the main aspects
of the first stage of the ATR problem (discussed in detail in sect. 2). As
a consequence, much of the mathematical technique used in the ATR
field is concerned with the issue of ill-posedness, which is the thread
that ties together virtually all the discussion in this review.

The report is organized as follows. In section 2 the general aspects of
the first stage of the ATR problem are discussed, and the central impor-
tance of ill-posed feature extraction problems is established. Various
mathematical approaches to ill-posed problems are discussed in sub-
sequent sections. MAP estimation in its simplest form is the subject
of section 3. Section 4 describes the alternative and often equivalent
approach of regularization theory.

At this point the mathematical discussion is temporarily interrupted for
further discussion of the problem (raised in sect. 2) of the knowledge-
theoretic base and for a brief interim summary.

Section 6 resumes the mathematical discussion by giving a concrete
example of the ill-posed nature of the deconvolution problem. Sec-
tion 7 describes a relatively recent solution due to Berenstein and his
collaborators.2' 3 This solution is predicated on the production of several
different convolutional probings of the same unknown object, or, more
pertinently, several different images of the same scene. For complete-
ness' sake, section 8 gives an example of the application of regulariza-
tion theory to the image flow problem. In section 9, I discuss in detail
a more ambitious and sophisticated MAP estimation scheme (largely
due to S. Geman and D. Geman'). This scheme rigorously develops
a simulated annealing approach (known as stochastic relaxation and
annealing) to MAP estimation problems whose prior distribution is a
Markov random field (by prior distribution I refer to the statistics of
the image before the image is obtained). Section 10 gives an overall
summary.

7S. Geman and D. Geman, Stochastic Relazation, Gibbs Distributions, and the Bayeszan Restoration of
Images, IEEE Trans. Pattern Anal. Machine Intell. PAMI-6, No. 6 (November 1984), 721-741.
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2 The Nature of the Problem

What is the beginning-stage ATR problem, why is it important, and
what is so difficult about it?

In the context of computer vision and from the perspective of neu-
ral network research, Kersten et als have called early vision the "es-
timation of scene properties from image data," describing it as the
"intermediate goal-between data acquisition and the final achieve-
ment of recognition-which attempts the construction of a unified rep-
resentation of object surface information such as orientation, depth
and reflectance, inferred from various sources of information such as
stereo, motion, and color." In a recent review concerned with the
regularization-theoretic approach to vision, Poggio et a19 state that
"Early vision consists of a set of processes that recover physical proper-
ties of the visible 3-dimensional surfaces from the 2-dimensional
intensity arrays." They point out that these properties have been
generally assumed to be context independent, i.e., involve only gen-
eral constraints about the physical world and the imaging system, and
that they have consequently been treated as conceptually independent
modules that can be studied in isolation, at least to a first approxima-
tion, with the idea of combining them at a later stage in the overall
processing.

From the perspective of cognitive psychology and Al, l' l l" the same
problem arises in considering the first information-processing step that
either occurs in human cognition or should occur in an intelligent
machine.* The investigation of this first stage, known in these fields as
the pre-attentive stage, has led to the general description of its task as
the production (from the raw sensory or raw data input) of a collection
of features and some low level of organization among them (such as the
bars and edges and their associations in the primal sketch of Marrl),

'D. Kersten, A. J. O'Toole, M. E. Sereno, D. C. Knill, and J. A. Anderson, Associative Learning of Scene

Parameters from Images, Appl. Opt. 26, No. 23 (1 Dec. 1987), 4999-5006.
9T. Poggio, V. Torre, and C. Koch, Computational Vision and Regularization Theory, Nature, London,

317 (1985), 314.
"°John R. Anderson, Cognitive Psychology and Its Implications, W.H. Freeman & Co., New York (1985).
11D. Marr, Vision, W.H. Freeman & Co., San Francisco (1982).

*The work of D. Marr, although directed at vision, was in a decidedly different spirit from the early-
vision research discussed in the previous references (Kersten et al and Poggio et al), and is more appropriately
regarded as in the Al arena.
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which as a whole becomes the subsequent matter for the attentive fac-
ulty (or whatever plays this role in the intelligent machine).

Regardless of the field, be it cognitive psychology, Al, computer vision,
or ATR, the first-stage problem is essentially the same. The differences
in these fields pertain to the character of their raw data: whether they
are organized in a linear sequence (like the phonemes of speech) or in
two-dimensional arrays (like optical images), whether they arise from
electromagnetic or mechanical influences, etc.

The beginning-stage ATR problem can accordingly be stated in gen-
eral terms as follows: What, specifically, should first be done with the
raw data obtained? This question is to be answered in view of the
immediate objective of producing a collection of features and certain
groupings among them, i.e., feature substructures, which all together
form a scheme that generally describes the raw data field presented in
reduced terms. The importance of this step is that it determines the
computational feasibility of the overall task and establishes the strategy

for achieving the recognition goal.*

This problem has both a knowledge-theoretic and a mathematical as-

pect. The epistemological issue lies in the need to establish a knowledge
base for the overall identification task: what we know generally about

the data field that is relevant to what we want to recognize. From
this general knowledge the particulars will follow: i.e., what features
of the represented environment should be sought in the raw data field.
For example, the goal of computer vision research is to be able to dis-
tinguish and identify a certain class of objects that the vision system
represents in the form of a two-dimensional optical image obtained
from a particular viewing point. The image is a sampled distribution
of light intensity or color over a two-dimensional field; it will be, in all
essential respects, like the distribution of retinal stimulations humans
receive when looking at a scene. In order to distinguish objects (i.e.,

*It should be noted that this general assessment, although true for all machine attempts at speech

or image recognition, is an oversimplification of what is known about the recognition aspects of human
cognition. The pre-attentive transformations of raw sensory influences in humans do produce partially
organized collections of features-the icons produced from retinal stimulation by the visual apparatus and
certain hard-wired pre-processing operations in the brain, for instance-but it is not correct to regard these
feature schemes as sketching an ample data field in reduced terns, as though the more ample data were in
fact available to the brain, because these feature schemes are all that the brain ever has to work with. The
function of selectively reducing the amount of data to be further and intensively processed is performed in
humans by the attentive faculty, not, before the operation of this faculty.

. . ...1 nun i n n i i



three-dimensional figures with substance and color), we must abstract
from the image such characteristics as the boundaries of objects, their
colors, color textures, and relative locations, and perhaps even their
movements. Achieving such a sketch of the objects in the scene would
amount to pre-attentive success. (In the next step, the images of the
outlined objects would be more carefully examined to identify them,
by going back to the raw data emphasized by the sketch, but this is
beyond the point of our example.)

The human knowledge-theoretic base, which understands the environ-
ment in terms of bodies in a spatio-temporal relation, thus appears to
furnish a list of the image features needed for the early vision task:
object boundaries, their associated colors, textures, etc. In this case,
then, there is apparently no need to mount an investigation to establish
the knowledge-theoretic base.* For other ways of forming images of an
environment, however (sonar, synthetic aperture radar, and infrared
images, for instance), and indeed even for the vision case, other epis-
temological bases may be necessary or more convenient. In any case,
once the list of features has been drawn up, the mathematical aspect
of the task comes into play.

Here we need to etablish a mathematical theory of how the various
relevant features of the environment are reflected in the raw data field;
in other words, if we denote by i the mathematically structured way
in which an environmental feature f (which also needs a mathematical
definition) is reflected in the data field, we must begin with a functional
relation between f and i, say i = A(f). Suppose, for example, that we
are interested in the surface boundary feature of a three-dimensional ob-
ject, and that we are dealing with an optical image. Three-dimensional
features are of course not fully manifested in optical images because
such images contain only two-dimensional projections. Thus the sur-
face boundary feature, f = S, of an environmental object appears in
the overall image as a component I = A(S), where A is a projection
operator whose explicit form is determined by the characteristics of the

* Even this is not so clear, however. A ph( noncnologist would argue that the evidence for this knowledge
may be illusory or prejudicial. According to this view, it is not clear what in a visual image is being
recognized or, alternatively, what structures of retinal data ultimately induce us to imagine and see a
familiar object, i.e., recognize it. Moreover, there is a method, the Ilusserlian phenomenological method,
that can provide a very delicate evidentiary description of what actually happens when something is being
seen or recognized, and such a description might provide a better list of features for the recognition task.
(Personal communication from Jorge Garcia-G6rnez, a phenomenologist with expertise in the philosophy of
science, Philosophy I)epartment, Long Island University.)
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viewing system. The complete image is then a superposition of various
I's over the two-dimensional image field.

Because most of the difficulty in the mathematics of feature extraction
is nicely illustrated by this example, I will continue with it. (Tere
may be better examples from the standpoint of practical relevance, but
the point here is only to illustrate the mathematical difficulties.) The
surface boundary feature, S, that we wish to extract will present itself
in the image as a closed curve, say C, giving the body's two-dimensional
silhouette. It is clear that C does not give us nearly enough information
to find S. But the problem is even worse, because in practice several
factors combine to blur and distort our image of C: for instance, the
diffraction limit of the imaging system, the pixel size associated with
the system's detectors, and noise. Still another source of difficulty is
the fact that the images of other bodies may be confused with the one
bounded by C. Therefore, besides the projection A, we will clearly
need another operator, B, to express the pixelizing and blurring of C,
as well as a way to characterize noise and interference. Thus the actual

image of S is more adequately given by an equation like

I= B[A(S)] + N, (1)

where N denotes the noise.

It turns out that B is in general a convolution operator; it convolves
functions characterizing the various aspects of the imaging system's
resolution with the infinitesimally sharp silhouette C. This fact can be
seen heuristically as follows. In a rough sense convolution is a smooth-
ing operation: it turns rapidly varying functions into more slowly vary-
ing ones. In this sense it is like integration, whose inverse is differen-
tiation; thus the inverse of a convolution operator is something like a
differential operator. Now consider B. Its inverse would bring C out
sharply, apart from noise and interference. In applications to visual
images, where one seeks to bring out the profiles of objects by locating
the relatively sharp intensity or color changes, the operation typically
performed is either differentiation or something like it. Although this
argument may not be very convincing, the convolutional character of B
can be rigorously established by a theoretical analysis of typical viewing
systems. Thus, if we ignore interference, the problem of extracting the
object boundary feature from its image I is one of solving the operator
equation I = B[A(S)] + N (eq (1)) for S, where B is a convolution
operator and A is a geometrical projection operator of some kind.
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The problem expressed by equation (1) is an example of an "ill-posed"
problem. What is an ill-posed problem? Consider a functional equa-
tion of the form u = F(v), where v is an n-component vector, u is
an m-component vector, and F is a mapping of Euclidean n-space to
Euclidean m-space, regarded as an equation to be solved for v given u
and F. Such an equation is called an ill-posed problem (in the sense of
Hadamard) if it has more than one solution or if the inverse mapping,
F - 1, fails to depend continuously on the given data u. (Note that when
u = F(v) does have a unique solution, then F - 1 is not many-valued and
so exists strictly as a mapping in its own right.) The problem posed by
equation (1) is actually ill-posed in both senses of Hadamard's defini-
tion. Since A is a projection, the composite operator B o A will not be
one to one, and so the equation will have numerous distinct solutions.
Moreover, even though convolution operators are invertible on reason-
able function spaces (like the space of square-integrable functions, for
instance), their inverses generally fail to depend continuously on the
initial data.

To see how the discontinuity of an inverse can promote serious noise
problems, consider our generic equation u = F(v) when F exists
strictly but is not continuous, and suppose that we are asked to find v
given u. The exact solution is clearly

v = F-(u).

All that would seem to be needed to complete the solution is the explicit
form of F - 1 and an obvious computation. Unfortunately, however, the
matter is not that simple when u is corrupted by noise, for then the
failure of F's continuity means that the disturbance produced in v by
the noise-induced error in u cannot be bounded. We are thus forced to
conclude that given an even slightly erroneous u and the explicit form
of F - ', we can still determine almost nothing with confidence about
the actual v that produced u.

The crucial point is that virtually every feature-extraction problem is
ill-posed, and the causes of this are analogous to the ones illustrated by
the example we have considered. It is consequently of great importance
for the beginning-stage ATR problem that methods be developed that
practically circumvent the mathematical shortcomings of ill-posedness.
A number of such methods have in fact been developed, and still others
are under development. Let us consider some of these in a general way.

7



The methods being employed can be classified as probabilistic and
regularization-theory approaches. Although both of these often lead
to equivalent formulations of the feature extraction problem, they are
quite different in terms of both practice and prospects, depending on
the particular problem. In the probabilistic view of feature extraction
(which I address first), the method of solution is based on the idea of
MAP estimation. Its practitioners claim that MAP estimation methods
are particularly well suited to a learning approach which lets develop-
ing experience with actual scene statistics guide the imposition of the
constraints plainly needed for the useful solution of ill-posed problems.
MAP methods also seem to mesh well with the learning capahilities of
neural networks.8

How do MAP estimation theorists conceive the solution of ill-posed
feature-extraction problems?

8



3 Maximum a Posteriori Estimation

The problem, as before, is

zi- F(s)+ N, (2)

where s is an n-component vector, i is an rn-component vector, N is
noise, and F maps Euclidean n-space to Euclidean rn-space. This equa-
tion can be viewed in alternative ways. The collection of components
of s may constitute a single complex scene* feature which requires a
vector description, or it may constitute a description of several scene
features whose numerical specifications are somehow packed into the
components of s. Depending on which is the case, the image vector,
i, will represent the part of the image coming from either the single
scene feature or the collection of scene features. In other words, s gen-
erally constitutes either a part or the whole of Kersten et al's8 "unified
representation" of the environmental scene, i.e., the intermediate goal
of early vision. The components of s could form a partial or complete
representation of a certain object or objects; they might even consti-
tute the complete representation of all the objects of interest. In short,
equation (2) describes the problem of early vision with maximum flex-
ibility.

To approach this problem, given that it is ill-posed in either or both of
the senses indicated, a MAP theorist supposes a probability or statis-
tical model of the situation. The elementary events of this probability
model correspond to the various ways that the viewing system can be
related to the real environment, i.e., to the different positions and ori-
entations that the system can have in the environment, and to the
various lighting and other conditions that can affect the noise term
in equation (2). The occurrence of such an elementary event is fully
specified by the two vectors s and i, which thus furnish the immedi-
ate vector-random variables of the theory. An elementary event having
taken place (i.e., the viewer having obtained an image of the scene), the

problem then becomes the after-the-fact or a postcriori determination
of the probability of various s given that i has occurred: that is, the
determination of the conditional probability function p(sli). A knowl-
edge of this function will enable us in principle to find the scene vector
s whose probability conditioned on i is maximum; this s will then be
the maximum a postcriori or MAP estimate of the scene vector that
produce(] the observed image.

*1 use the language of the vision problem for specificity.
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But how can the conditional probability function, p(sli), be deter-
mined? And what if, for some actually encountered i, the maximum
of p(sli) is very broad, so that other s, differing considerably from the
MAP estimate, have nearly the same chance of having produced the
image? The answer to the first question is the substance of the mathe-
matical theory of the MAP approach. The answer to the second brings
in the learning aspect of this approach and the potential connection to
neural-network techniques.

The method of determining p(sli) is based on the application of Bayes'
rule in the form

p(sli) - p(ils)p(s) (3)
p(i)

where p(ijs) is the probability that the image is i when we know that
the scene is s (note that the noise term of equation (2) is the only
thing that makes p(ils) other than a -function centered on i = F(s)),
p(s) is the unconditioned probability that the scene is s, and p(i) is
the similarly unconditioned probability that the image is i. The use of
Bayes' rule places no restrictions on the validity of this analysis, since
the rule is a direct consequence of the completely general theorem of
total probabilities and the definition of conditional probability.

We can determine p(ils) directly from our knowledge of the mapping
F and the statistics of the noise term in equation (2). On the other
hand, p(s) represents, to the extent that it is not uniform, our a priori
knowledge of the environment (i.e., what we know before obtaining
the image). It could represent, for instance, accumulated knowledge
that was gained through prior views, perhaps from different aspects,
of the same environment over time. Generally speaking, p(s) is our a
priori model of the scene statistics. Likewise, p(i) can be thought of as
representing our prior expectations concerning the image we are about
to see: i.e., p(i) would be our a priori model of the image statistics.
We need not be much concerned with p(i), however, because the MAP
analysis supposes that i has just been obtained, so that p(i) is simply
a constant (one that we never need to know, as it happens).

We further assume (following Kersten et al) that both p(ils) and p(s)
are multivariate Gaussian, so that

p(ils) = kexp{-[i - F(s)]l[i - F(s)]/2ao} (4)

10



and
p(s) = k'exp[-.sT Ms / 2a']. (5)

Here a constant diagonal covariance matrix is assumed in equation (4),
s is taken to have zero mean in equation (5), and k and k' are normal-
ization constants. Given these assumptions, if we now take the natural
logarithm of equation (3), we find that the maximization of p(sji) is
equivalent to the minimization of

[F(s) - ilr[F(s) - i] + ZSTMS, (6)

where z, which is a Lagrange multiplier, equals the ratio of the noise
variance to the scene variance.

The essential assumptions expressed in equation (4) pertain to the noise
term in equation (2). These assumptions are specifically that (a) the m-
component noise vector is multivariate Gaussian, (b) the means of each
of its components are zero, so that (i) = F(s), (c) distinct components
of the noise vector are uncorrelated, and (d) the expectation values of
the squares of the individual components are all the same. Assumptions
(c) and (d) express the meaning of "a constant diagonal covariance
matrix" in more detail. The only truly restrictive assumption is (a),
because if we know the statistical moments of the noise present, we
can translate and rotate the coordinate system in the Euclidean m-
space of i (and the noise vector) so as to make the means zero and
the covariance matrix diagonal in the new coordinate system. If the
resulting covariance matrix fails to be constant, a simple change of scale
on the coordinate axes will make it so. All these transformations would
of course have to be applied to i and the mapping F as well.

Similarly, the essential assumption expressed in equation (5) is that
p(s) is multivariate Gaussian. In specifying this assumption as equa-
tion (5), the only specialization adopted for the coordinate system-in
the Euclidean n-space of s-is that its origin coincides v, ith (s). The
relationship between the matrix M and the standard covariance matrix
/I is

A =0 2l jl (7),i = 1, I'

where o is the squared length of the variance vector, 1ij denotes the
determinant of the covariance matrix, and Jlt 3jI is the cofactor of the
1jt h element of that determinant.

11



The final minimization problem for expression (6) is of course the pri-
mary focus. Given the image vector i, prior knowledge of the scene-
vector statistics in the form of the matrix M, and the mapping F, we
must find the global minimum of expression (6) as a function of s.

In obtaining this formulation of the MAP estimation problem, we should
note the essential simplification that results from the Gaussian-statistics
assumptions. These assumptions permit us to simplify matters by tak-
ing logarithms of the exponential functions, which in turn enables us to
split off the effect of p(i) as an additive constant term, which can then
be discarded in the optimization.* More ambitious treatments of MAP
estimation can be found in the literature (one of which, MAP estima-
tion by "stochastic relaxation and annealing," is addressed in sect. 9);
these more sophisticated treatments make much weaker assumptions
about the prior scene statistics and the image noise. But apart from
such treatments, it is interesting and potentially useful (as Kersten et
al point out) that the Gaussian formulation of MAP estimation is al-
most equivalent to another general formulation of the typically ill-posed
feature extraction problem, namely, that of "r,-gularization theory," to
which I now turn.

*Actually, the splitting off of p(i) as an additive constant term and its subsequent dismissal in the

optimization problem is a procedure that can be carried out regardless of the forms taken by p(ils) and p(s);
this is because the logarithm is an increasing function of its argument.
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4 Regularization Theory

Retaining the notation of (2) for the problem to be solved, regulariza-
tion theory begins with the need to adopt norms in the spaces of 1 and s,
and to choose a particular stabilizing mapping, P, which, like F, maps
n-space to m-space. Note the omission of the adjective "Euclidean";
in regularization theory it is sometimes more advantageous to adopt
norms other than the Euclidean distance function in the image- and
scene-vector spaces. Having made these choices, the theorist then typ-
ically reformulates the ill-posed problem in one of the following ways:

(1) Find the s that minimizes lIP(s)I and is such that

!IF(s) - ill < f, (8)

where the double bars denote the image-space norm and c is a small
constant determined from an appraisal of the image noise.

(2) Find the s that minimizes

JIF(s) - ill2 + zJJP(s)Jll, (9)

where z, which is understood to be real, is called the regularization

parameter.

What is the logic of the alternative procedures (1) and (2), and what
is the significance of the "stabilizing" mapping P?

Let us consider the second question first. When our original problem
is ill-posed in the sense that it has too many solutions (i.e., its solution
is underdetermined), the purpose of P is to provide the additional con-
straints needed to single out the one "right" solution. Thus we have
two distinct requirements for P. It must be such that either (8) or (9)
(depending on the formulation) has a unique solution from a purely
mathematical standpoint, and that the unique solution so obtained
is actually the one we are seeking for the concrete feature extraction
problem at hand. Loosely speaking, our original problem has too few
equations or too many unknowns; so the mathematical purpose of P

is to provide the extra equations. However, since the reason for the
underdetermination is that equation (2) does not specify a sufficient
number of the actual conditions that produced the image (that is, suf-
ficient for the unequivocal determination of the feature of interest), P
must also be chosen to reflect those conditions.
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A third requirement on P emerges from the answer to the first question,
about the logic of formulations (8) and (9): the mapping P must express
the additional a priori constraints so t.hat their satisfaction amounts to
the minimization of the norm of P(s), either absolutely, as in (8), or
relatively, as in (9). The essential difference between these two formu-
lations is as follows: In (8) we seek an s that satisfies i = F(s) to some
tolerance c, as measured by the image-space norm, and also separately
minimizes the norm of P(s). In (9), on the other hand, the degree of
satisfaction of i = F(s) and the degree of minimization of IIP(s)[I are
flexibly distributed between the two by means of the Lagrange multi-
plier z, whose appropriate value emerges from the solution.

In many of the pertinent applications of regularization theory, P is a
differential operator expressing certain a priori "smoothness" require-
ments on the feature we are seeking to extract. As an example, sup-
pose that we wish to take advantage of the fact that the surfaces of
manmade objects are relatively smooth compared with those of most
natural objects. The notion of surface smoothness can be captured in
mathematical terms through the derivatives of the functions defining
the surface. When we say that a surface is rough on a certain scale, we
mean that it has an undulating topographic structure, characterized
by some distribution of lengths which measure the distances between
peaks and valleys, and that this structure can be seen on the scale of our
observations. This meaning translates into the mathematical fact that
certain combinations of the partial derivatives of the functions defining
the surface change appreciably over the peak-to-valley distances. This
observation indicates how to impose smoothness constraints on a sur-
face: first insist on the continuity of all partial derivatives up to some
order (this will rule out abrupt changes in the partials over infinitesimal
distances); then prevent the combinations of derivatives that would reg-
ister the appreciable changes from changing much ovei the relevant dis-
tance scale by minimizing the derivatives of those combinations. This
is how the differential-operator character of the stabilizing mapping can
be understood as arising in the particular case of a surface.

In much of the general regularization theory of feature extraction, one
attempts to think of the feature of interest in the same way, that is,
in terms of smoothness; but now "smoothness" is understood in the
abstract sense of the mathematical theory of smooth or diffcitntiablc
inanifolds. Manifolds are generally defined by families of continuous
functions; when these functions are continuously differentiable up to

14



some order, say p, the manifold is said to be smooth or differentiable to
the pth order. Just as with the surface example, one first attempts to
define the feature of interest as a differentiable manifold of some order
of smoothness; then one imposes further smoothness constraints on this
feature/manifold by minimizing the norm of an appropriately chosen
combination of the continuous partials, to wit, P(s); this minimization
is what imposes our a priori expectations concerning the "smoothness"
of the feature. This, at any rate, is what characterizes the approach
that is sometimes called standard regularization theory, where the term
standard often also holds the additional implication that both F and
P are linear mappings, so that the problem specified by (9) becomes
the global minimization of a quadratic cost functional, a problem which
has been exhaustively studied and well-characterized in a general way
by Tikhonov and Arsenin. 12

Not all early-vision problems have yielded to the standard theory, how-
ever. Linear F and P and the implied quadratic cost functicial (9) are
insufficiently flexible to embrace a number of the concrete problems of
interest. For this reason there is a "trans-standard" theory, which I
will not discuss, that does not limit F and P to the linear mappings
and considers other formulations than (8) and (9). The Tikhonov and
Arsenin theory 12 can in fact be extended, with some limitations, to
nonlinear F and P, while at the same time retaining the formulation
of equation (9); but even this is not enough to handle some problems.

As a final point, we note with Kersten et al' that the regularization-
theoretic problem (9), including its Tikhonov and Arsenin generaliza-
tion to nonlinear F, is formally the same as the MAP estimation prob-
lem (6), provided that the Euclidean norm is used in the image space.
This can be seen as follows. First note that

[F(s) - i]T [F(s) - i] = IF(s) - II2

when the norm on the right is Euclidean. Thus, identifying the z in
equation (6) with the z in equation (9), we would like to have the
equality

5 TAs = IIP(s)ll2 ,
which will hold if we assume that P is linear and make the further

identification
A = pTp, (10)

"A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems, Winston, Washington, DC (1977).
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for then
sTMs = sTpTPs = IIP(s)II 2 .

This result (from Kersten et al') reveals the near-equivalence of the
MAP estimation and regularization-theoretic approaches (referred to
at the end of sect. 3).

The value of this observation should be evident. Although the MAP and
regularization-theory approaches are not fully equivalent, it is nonethe-
less valuable to have two distinct and potentially fertile ways of viewing
those problems for which the approaches are equivalent. In these cases
we can advance on the solution in various ways. We can employ our de-
veloping knowledge of actual scene statistics as an aid in determining M
(this is virtually an experimental method). We can propose reasonable
forms for the stabilization matrix P and analyze their consequences
(this is a heuristic method). Finally, and possibly most fruitfully, we
can compare the experimental and heuristic results.
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5 The Knowledge-Theoretic Base

Before considering the other mathematical methods I intend to treat,
I sum up the discussion so far and further elaborate on the knowledge
base issue.

The first stage of the ATR problem has two aspects: (a) choosing
the collection of scene* features to be extracted from the image and
(b) developing the theoretical/mathematical machinery needed for their
extraction. The purpose of the set of scene features is to render the
scene "intelligible" to the viewing system in a sketchy way that requires
much less data to specify than the original image. Once the scene is
sketched out, a much reduced quantity of the original image informa-
tion is thereby circumscribed for further scrutiny and final recognition:
specifically, the information belonging to the parts of the original im-
age that have emerged as "important" in the sketch. Deciding on the
particular collection of scene features to be used is both critically im-
portant and nontrivial. This choice must be made in view of what I
have called a knowledge-theoretic base. What does this involve?

The viewing-system designer has his own knowledge-theoretic base,
that is, his general way of understanding the world (insofar as it is
pertinent to the task at hand) and his specific technical knowledge of
how the objects of interest interact with the viewing system. He must
use all this knowledge to select a definitive set of features for the partic-
ular problem. Because the image data presented by the viewing system
are typically very complicated and are often related to a human visual
image in indirect ways, two distinct but interrelated approaches to the
feature-selection problem have necessarily developed: (a) the so-called
model-based approach and (b) the approach that seeks to make selec-
tions based on actual experience with the kind of imagery furnished by
the imaging apparatus- -what might be called an empirical approach.

Model-based approaches to feature selection necessarily begin to deal
with aspects of the development of the theoretical/mathematical ma-
chinery needed to extract thf selected features. They thus contribute
to both aspects of the overall front-end problem and are often intended
to address both aspects equally. By theoretically modeling the images
of the objects of interest ard typical backgrounds, as well as typical

*I continue to use the language of the vision problem.
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distortions and noise effects, model-based approaches launch various
studies to investigate methods for selecting and extracting the required
definitive scene features. Such approaches are generally preferred to
the empirical alternative.

Empirical approaches are usually developed with the aid of "trained
observers," that is, individuals who have had a certain degree of ex-
perience and training with the type of imagery in question and its
associated "ground truth," and who can therefore usually point to the
important parts of a given image. In a rough sense, such observers have
been trained to perform the first-stage ATR function. With empirical
approaches, the question becomes to what extent a trained observer's
knowledge of the imagery can be articulated and automated. This is
the essential question motivating Al research on expert systems. The
two primary aspects of such approaches are (1) putting the features
that trained observers look for in an explicit form, thereby providing
the basis for (2) attempting to devise algorithms that can extract these
features from imagery. With the first aspect, the problem is that ob-
servers are often unconscious of what they are looking for, and even
in the best of cases may be unable to fully articulate it. This leads to
the difficulty associated with the second aspect-that algorithms often
fail to extract such features because they are not defined with sufficient
precision. These problems, it should be clear, do not arise with model-
based approaches; in fact, the preference for the latter is a reaction to
these difficulties.
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6 The Ill-Posed Nature of Deconvolution Problems

After the important features are selected and the associated mathe-
matical theory formulated, what remains is the actual extraction of the
features from the image. As mentioned earlier, this virtually always
leads to an ill-posed mathematical problem.

A typical first feature-extraction problem is to determine the outlines of
bodies in an image, which is generally presented in the form of an array
of pixel values of either colored or grey-scale intensities. The determi-
nation of bodily outlines is always based on noting abrupt value changes
between adjacent or near-adjacent pixels. (An exception arises when
texture variations are the basis of boundary determinations.) When
the conditions of image formation are more or less ideal (that is, when
the pixel noise level is relatively low compared with the significant level
changes across boundary pixels), and when the resolution afforded by
the pixel size is adequate for the discernment of the important charac-
teristics of the extracted boundary (an important characteristic might
be the boundary's rectilinearity, for example), the problem of extract-
ing bodily outlines will not be ill-posed. This is because deconvolution
operations are not necessary in suich situations. However, available
signal-to-noise ratio and resolution are often far from ideal, and this is
when deconvolution becomes essential.

An example of the type of ill-posed problem that can result when res-
olution and signal-to-noise ratio are less than adequate is furnished by
a previously investigated problem that arose in connection with an at-
tempt to determine the variation of certain optical characteristics of
clouds near their edges.1" These determinations were to be made from
existing data obtained by probing clouds with short laser pulses and
measuring the backscattered laser radiation. For these probings, in
which multiple scattering effects could usually be ignored, the theoret-
ical relationship between the optical characteristic of interest C, the
laser pulse P, and the measured backscatter signal V, is adequately
expressed as follows:

V(t) = j P(t - t')R(ct'/2)C(ct'/2) dt', (11)

where R is a function describing the optical receiver's relative sensitivity
to backscatter occurring at various distances, and c is the speed of light.

13 D. McGuire and M. Conner, The Deconvolution of Aerosol Backscaltered Optical Pulses to Obtain
System-Independent Aerosol Signatures, Harry Diamond Laboratories, tIDL-TR-1944 (June 1981).
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Both R and C are functions of x, the distance from the transceiv. - to
the scatter point along the laser beam. On the other hand, both V and
P are functions of the time, V(t) being the measured return-signal pulse
and P(t) being the instantaneous transmitted laser power. The return
signal V(t) is essentially a measure of the value of C(x) at various x,
but with the spatial resolution of the probing laser pulse. To see this,
consider equation (11) on the approximative assumption that P(t - t')
is proportional to a Dirac 6-function of the same argument; then

V(t) = PoR(ct/2)C(ct/2), (12)

where P0 is the mean transmitter power for a single laser pulse. The
dependencies on t in this equation can be translated into dependencies
on the distance x as follows:

V(2x/c) = PoR(x)C(x), (13)

where the translation between time and distance is via t = 2x/c; i.e.,
the time that goes with a given distance is the round-trip time of a
light signal travelling that distance. Thus the measured return pulse
V(t), with its argument expressed in terms of x, gives us the variation
of C(x) upon division by PoR(x), both of which are presumably known
characteristics of the transceiver. The two limitations on the accuracy
of this measurement are the noise in the measured signal and the spatial
width of the probing transmitter pulse; instead of acting as a precise
delta function, the actual width of P(t- t') in (11) gives an approximate
version of equation (13), one that is valid for an averaged or smeared
out version of R(x)C(x), where the averaging or smearing interval is
the spatial width of P.

Because the spatial width of P(t) was about 2 m, and some cloud edges
appeared (from other data) to change significantly over much shorter
distances, the investigation in question sought to deconvolve equation
(11) as an alternative to accepting the inadequate resolution of equation
(13).

Consider the Fourier transform of equation (11). We have

V(f) = P(f)h(f), (14)

where f denotes frequency, RC has been abbreviated by h, and the
caret indicates a Fourier-transformed function. Thus, apart from the
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noise in V(t), we can obtain R(x)C(x) exactly as the inverse Fourier
transform of V(f)/P(f); this implies that we can determine C(x) with
infinitesimal resolution by dividing that inverse transform by R(x).
This may seem too good to be true, but there is absolutely nothing
wrong with the sketchy argument just presented. Even the existence of
zeros of P(f) cause the argument no difficulty, because the ratio, I'/P,
remains finite at such frequencies (in fact, it remains continuous). Prob-
lems do arise, however, from the combined presence of these zeros and
noise, because then the ratio of V to P at the zeros of P is the nonzero
noise level divided by zero: i.e., the ratio is infinite. This, moreover,
gives rise to a catastrophic problem, because it is easily shown that
any one of these infinities will make the integral that defines the in-
verse Fourier transform diverge. In this divergence we find the primary
symptom of inverse-operator discontinuity for convolution operators.
The only apparent alternative is to band-limit the taking of the in-
verse Fourier transform to within the smallest frequency at which P
vanishes, but this approach leaves us with a nonzero resolution interval
whose precise value depends on the shape of the transmitter pulse.*

*See reference 13 for further details.
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7 Multiple Deconvolution

A less apparent approach to the problem in section 6 is due to Beren-
stein et al, 2'3 '14"15 who considered the following general problem. Sup-
pose that we are interested in measuring some physical property f,
which is distributed over a manifold with coordinates (x, y,...), so that
f = f(x,y,...). In practice the manifold is typically either the time
continuum-so that f = f(t) in this case-or the two-dimensional man-
ifold over which an image, perhaps an infrared or a synthetic aperture
radar image, is distributed-so that f = f(x,y) in this case. It is
proposed that we perform this overall measurement by performing a
number, say n, of subsidiary and different convolutional measurements
of f, namely,

gi(x ,,...) J7. ... i(u-x,v-y,...)f(u,v,...)dudv..., (15)

where jti(u,v, ...) is the convolution kernel for the Ith subsidiary mea-
surement, whose result is given by g2(x, y, ...). Note that we are here
dealing with the use of generally multidimensional convolutional mea-
surements, all of which have the same dimension as the manifold ove;
which the physical quantity of interest is distributed. Given such a
set of measurements, i.e., given the kernels pi, we seek corresponding
deconvolvers vi such that

.. vi (x -u, y -v,...) pj(it, v, ... ) dudA ... = (x,y,...). (16)
- 00

In other words, we want the sum of the n convolutions vi *.tj to produce
a Dirac delta function centered on the origin of our multidimensional
manifold (x,y, ...). If we can find such decorvolvers for a given set of
convolution kernels, it is rather straightfowa-d to show that the system
of equations (15) can be solved for f(xy, ... ) in the formn

(x,,,.) ... - V,... )gi (t, v, ...) du dv..., ( 17)

so that our measurements gi and the deconvolvers vi are sufficient to
construct f exactly, apart from the noise in our measurements.

A solution like (17) would not suffer from the noise catastrophe that
befell the similar attempt (sect. 6) to find C(x) exactly. In attempting

14C. A. Berenstein and A. Yger, Le problrne de la d-oivoltioln, J. Funct. Anal. 54 (1983), 113-160.
'C. A. Berenstein and A. Yg(-r, Analytic Bezout !dcntittmcs, Adv. Appl. Math. 10 (1989).
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to apply the current method to the previous example, we might for

instance have chosen to measure the aerosol backscatter signal with
two differently shaped transmitter pulses, Pl(t) and P2(t), and have
obtained the two measured backscatter pulses

V,(t) = P (t - t')R(ct'/2)C(ct'/2) dt', (18)

and
V2(t) j P2(t - t')R(ct'/2)C(ct'/2) dt'. (19)

Supposing that deconvolvers v, and v2 corresponding with P and P2

could be found, we would then have been able to determine C(x) exactly
from

R(ct/2)C(ct/2) J vi(t - t')V(t') dt' + j v(t - t')V2 (t') dt'. (20)

Because this equation simply entails convolving measured pulses with
well-behaved* deconvolution kernels, it should be clear that the noise
accompanying the measured pulses would not cause catastrophic prob-

lems; in fact, there would even be some smoothing of the noise trans-
ferred to the constructed function RC.

This proposed method calls forth a question: When do deconvolvers
exist? Deconvolvers exist if and only if the convolution kernels yj form
a strongly coprirne set. The strict technical definition of this term is
not particularly revealing to any but mathematical experts; however, an

easily appreciated necessary condition for the existence of deconvolvers
can be seen by taking the Fourier transform of the defining equation

for the v's-equation (16). One then gets the Bezout equation:

n

Z = 1. (21)
i= I

Because the convolutions and Fourier transforms involved here are gen-
erally multidimensional, one must think of the above transforms of the
v's and it's as depending on a multidimensional wave vector, say k,
rather than on the usual one-dimensional frequency W. In other words,
the last equation can be written out more fully as

Z i(k)fi(k) 1, (22)

*1 hav not mentioned the technical )oint, that when deconvolvers exist they are necessarily distributions

of compact .supporl, winch, in the one-dimensional example being consi(ered, essentiallyi means that they are
(ont111uons fuinclions that. vanish outside a hounded interval.
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and is understood to hold for all k. But if this equation is to hold
throughout k-space, it is evident that there can be no k at which all
the Ai vanish, for at such a k our last equation would read 0 = 1.
Therefore, a necessary condition for the existence of deconvolvers is
that the Fourier transforms of the convolution kernels do not possess
any common zeros-recall that it is precisely the zeros of the Fourier-
transformed convolution kernel that give rise to the catastrophic noise
problems already noted in the previous direct approach to deconvolu-
tion. The stronger necessary and sufficient condition (that the convo-
lution kernels form a strongly coprime set) requires the nonexistence of
common zeros, as above, plus a little more. This "little more" has to
do with how close together the separate zeros of the individual A's can
get, principally in the far reaches of k-space.

Strongly coprime sets of convolution kernels exist in great abundance
and are relatively easy to find; moreover, it would be possible, with-
out great difficulty, to implement and perform sets of strongly coprime
measurements in practice. This, in turn, raises the question of finding
the associated deconvolvers, as these would be needed for the explicit
interpretation of the data obtained by such measurements. Here too the
issues are well understood. Berenstein and his collaborators have de-
veloped explicit formulas2 for the computation of the deconvolvers from
the convolution kernels, and although these computations are generally
complex, they can be done off-line and once and for all for a given
experiment.

As a final point let us clarify the most relevant practical limitations of
this technique. We can regard the method, at least partly, as a form
of data processing that can achieve what amounts to a superresolved
convolutional measurement. In image processing, this method would
aim to enhance the resolution of images, which are generally diffraction
limited by the aperture size of the imager's collection system, and are
otherwise limited by such things as the nonzero areas of the imager's
radiation detectors. For these factors, the critical feature of strongly
coprime kernels is that they must be distributions of compact support
or, less strictly, must vanish outside some bounded closed region of the
image plane. Now this property is indeed possessed by the kernels that
correspond to the finite areas of radiation detectors, such as are used in
the image plane of infrared viewing systems, for example. The kernels
here are proportional to the sensitivity of the detectors within their
active areas and vanish outside these areas. On the other hand, the
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convolution kernels that correspond to the aperture sizes of collecting
lenses or radar antennas do not possess this property. The kernel that
describes the capture of radiation by a lens is the point-spread function
of the lens, which is never a function of compact support-for example,
the point-spread function of a perfect circular lens is the well-known
Airy pattern, which has nonzero values almost everywhere in the image
plane. Let us leave it at this: the multiple-deconvolution method can
be profitably used in image processing problems and can achieve results
that at first sight seem counterintuitive; however, it cannot defeat any
of the physical limitations on resolution that arise from the diffraction
limit and its analogs.
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8 Example of the Regularization Theory Approach

The problem of image flow is a practically relevant example of the
underdetermined side of the ill-posedness issue. A typical example of
this problem is the following. Consider a rigid circular hoop rotating
about one of its diameters with constant angular velocity. If we project
this motion onto a nearby plane that is parallel to the axis of rotation,
the resulting motion observed in the plane will be that of a simple
closed contour which exhibits a periodic transfiguration that ranges
from a circle through a continuum of intermediate elliptical forms and
back to the original circle. If all we saw was the projected contour, and
had no prior knowledge of the actual motion producing the observed
motion, except that it was the projected motion of a rigid body in the
shape of a closed curve, how might we proceed to gain some further

knowledge about the cause of what we see? The first matter we might
try to resolve is the question of the true image flow.

The true image flow can be described as follows. At every instant, each
point on the moving material loop has a certain velocity vector, say v.
The only component of " that is evident in the plane projection of the
motion, however, is that parallel to the observing plane. But we cannot
precisely determine even this by observing the changes in the figure of
the projected contour over a small time interval (which is all that we
can observe), because in observing any two distinct contours we do not
know which point on one contour moved to which point on the other.
The field of the parallel-velocity components over the full extent of the
observed contour is called the image flow (the optical flow in the case of
optical images). Consequently, the plainly underdetermined problem of

intelligently estimating this parallel-velocity field is called the problem
of image or optical flow.

The solution to this problem can be regarded as a first step in the
determination of the motions of bodies in a scene. Both regularization-
theoretic and MAP techniques-the latter with neural networks-have
been successfully investigated for the determination of the image flow.8'9

The human flavor of these solutions is nicely conveyed by the fact that
among the numerous correct answers that these techniques produce,
there are also erroneous ones, "optical illusions" that often coincide
with well-known human optical illusions: for instance, the so-called
"barber-pole illusion," where a helix rotating about its axis is seen to
be moving up that axis.
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Let us consider a regularization-theoretic solution of this problem to
see how these methods are concretely used in matters ,f practical rel-
evance. As already said, having the contour at two closely separated
times would be enough to determine the image flow at that time, if
we knew the right correspondence between points on the two contours.
Nothing in the immediate visual evidence tells us this, however. To
solve this problem, the regularization theorist uses the directions nor-
mal to the earlier contour to compute an estimate of the normal com-
ponent of the image flow. The unknowns are then the corresponding
tangential velocity components. He then assumes that the actual mo-
tion is that of a rigid body having a relatively smooth surface. This
leads to the implied constraint that the associated velocity field is also
relatively smooth in the differentiable-manifold sense. His problem thus
becomes the formulation of this smoothness constraint in the structure
of a specific stabilizing mapping, P. Letting V denote the image-flow
velocity vector, the following simple stabilizing operator has been found
quite adequate for a number of cases:

IlP(V)112 = V 2 ds,
as

where s is the arclength along the contour, and the integral is taken

along that contour. The mapping denoted by F in our previous general
discussion is taken to be F(V) = V. N, where N is the unit normal
to the earlier contour, pointing from it toward the later one, and "."
indicates the usual vector dot product. Formulation (8) is used with
this P and F when the normal-velocity estimates are deemed so good
that we can replace

IiV. N - VNI[ < c

with V- N = VN, where VN denotes the estimated normal velocity.
When this is deemed insufficiently accurate, formulation (9) is used in-
stead. Both formulations can be shown to have unique solutions. When
(9) is used, the reciprocal of the emergent value of the regularization
parameter, z, indicates the reliability of the data. The image flows ob-
tained with either of these formulations are essentially approximating
vector splines.

This formulation of the image-flow problem can be easily implemented
and efficiently solved by computer (comparatively speaking) because
of the linearity of F and the simple form of P as a linear differential
operator. This comparative computational simplicity and efficiency
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are not usually met with in the solution of feature-extraction problems,
however, which brings us to the final problem area of the first-stage
ATR task: how to efficiently implement solutions to well-formulated
feature-extraction problems. Most of the difficulties we meet with here
are quite familiar.

These difficulties are the usual ones associated with complex extremal
problems in many variables: obtaining an effective and computation-
ally feasible solution algorithm in view of such stumbling blocks as the
existence, typically, of many local extrema. We can often develop or
select an effective solution algorithm (though even this is sometimes
quite difficult), but it often happens that its computational complex-
ities and volume render it impractical. Usually, success with restruc-
turing an algorithm to render it machine practicable hinges on making
it more amenable to parallel processing, on using statistical computa-
tional techniques of the Monte Carlo genre, or both. I now turn to a
recent development which engages all these issues.
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9 Stochastic Relaxation and Annealing

One of the most striking and promising developments in the field of
MAP estimation has been the recent emergence of the stochastic relax-
ation and annealing (SRA) technique of Geman and Geman.' This is
a model-based approach to the problem of image restoration and fea-
ture extraction that ambitiously attempts to simultaneously deal with
obtaining effective algorithms that produce manageable computational
loads. It (a) provides a rigorous technique for the solution of a broad
class of MAP estimation problems, and (b) produces a relatively par-
allel, statistical algorithm of the Monte Carlo type.

Because of its comprehensiveness and complexity, the work of the Ge-
mans is given more intensive coverage than the previous topics. Section
9.1 discusses a general scheme and procedure which

1. starts from a prior probability distribution of a composite random
field whose components are the random field of the restored (de-
blurred and noiseless) image to be determined, and a random field
describing the feature or set of features (e.g., bodily outlines and
textures) one would like to extract,

2. proceeds by a Bayesian construction to obtain the posteriorproba-
bility distribution of the same composite random field conditioned
on the raw image obtained, and

3. concludes by finding the state of the composite field that maxzi-
mizes the posterior distribution and hence finds the most likely
restored image and set of features consistent with the prior prob-
ability distribution and the raw image.

This last step is what the SRA algorithm is designed to perform. Its
sole limitation is that it can operate only on the class of posterior dis-
tributions called Gibbs distributions. In this connection it is important
that so-called Markov random fields (MR.F's) and Gibbs distributions
are rigorously equivalent in a certain sense, and that prior distributions
which are MRF's necessarily give rise through Bayes' rule to posterior
distributions that are also MRF's. Thus a Markov random field model
of the prior distribution will give rise to a posterior distribution suited
to the SRA algorithm.

Section 9.2 gives the formal definitions of Markov random fields and
Gibbs distributions, stating their equivalence in a rigorous way. Section
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9.3 describes the SRA algorithm, and succeeding sections describe how
one sets about to obtain the explicit Gibbsian form of the posterior
distribution required as input to the SRA algorithm.

9.1 MAP Estimation and Image Processing

Stochastic relaxation and annealing is a statistical computational means
for finding the state of maximum probability of a Gibbs distribution.
This maximization problem arises in the context of a MAP estimation
approach to the following general image processing problem. Given an
image, find a processing scheme that will simultaneously reduce noise
and blurring, and as well extract such primitive features of the scene
presented as the outlines of bodies, the textures of backgrounds, etc.

In this overall MAP estimation approach, 7 the composite of the image
of the scene being viewed and its primitive features is regarded as a
stochastic process X of the following form:

X = {Xij,lpq : (i,j) E Zm,(p,q) E Dm}, (23)

where Zm and Dm are two-dimensional integer lattices, and the x9
and lpq are random variables associated with the corresponding lattice
sites. The lattice Zm is rn x m and labels the pixels in the image, so
that the xij represent the image intensities associated with the various
pixels. The pixel intensities are typically in the form of an integer grey
scale, but could just as well describe a color image where each xij is
a vector whose components correspond to the various color elements.
The lattice Dm is called the feature lattice. It and its associated field
of random variables, Ipq, are best described through an example.

If we are attempting to outline the objects presented in an image, it
is convenient to let Z. be the set of pixel midpoints, and then let D,
be the set of points that are midway between all the adjacent vertical
and horizontal pairs of pixel midpoints. We then associate a variable
line element with each of the points in D,. The presence and various
admissable tilts of each line element can be represented by the values of
some modular integer variable 1 q. For example, lp, might be a binary
variable where 0 indicates that no line element is present and I in(licates
the opposite. In the latter case, if (p,q) is a feature lattice site between
a vertical pair of pixel sites. then the line element is understood to be
horizontal; otherwise it. is taken as vert ical. This is just one example of
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a body-outlining feature-lattice scheme with a clear generalization to

one in which more than two tilt angles are used.

In the general situation, Dm is a lattice associated with the pixel lattice
Zm in some way (such as the foregoing), and the Ipq are random vari-
ables, associated with the sites of this feature lattice, that describe the
image features of interest in accordance with some scheme (again such
as the foregoing). In addition to the body-outlining schemes alluded
to, there are others that describe textural features by means of a Dm
with the same number of sites as Zm and a texture label field variable.'"
It should be clear that the feature-describing potential of Dm and its
associated lattice field depends primarily on our ingenuity.

The raw image that we obtain is similarly specified by its set of corre-
sponding intensity levels,

which represent a generally blurred and noisy image of the scene of
interest. Let us briefly denote this collection by x', and likewise the
collections xi0 and lpq by x and 1. respectively. thinking of x and I
as two variable random fields over their respective lattices. The pri-
mary objective is to determine tite joint conditional probability function
P(x, llx'), which gives the probability of varioms iriages x, and various
feature configurations 1, conditioned on ':ec pixel intensities X' of the
raw image. Note that x represents a varia.,le image that is understood
to be noiseless and unblurred; that is. w- , of the goals of the scheme
under consideration is to use MAP estimation techniques to obtain a
most probable noise-reduced and deblurred version of the raw image.
The other goal is to obtain the most probable configuration of the fea-
tire field lpq . Part of the difference between this rather ambitious use of
MAI) estimation and the simpler one described in section 3 lies in the
first- mentioned goal. In the simpler case a feature vector alone maxi-
mizes the posterior densit.y, whereas in the present more ambitious case
the posterior prolbability, Ox, l iI'). is inaxinized bi y both a new image
vector or array, x. and an array. 1, of feature indicators.

In this general MAP estimation scheme. we begin with an a priori joint
probability density. (.r, 1), which represents our prior knowledge (up

16)S. Geman and C. (rafligne, Markor Random Fhcid Imago, Models and T'her Appiacations to Computer
Vision, Proc. International (Congress of Mathveiaticians. Berkeey, ('A (198), 1196 1517.
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to obtaining the raw degraded image) of what to expect in the way of
noiseless unblurred images x and feature configurations 1. We wish to
determine the joint conditional probability P(x, ll'), and then find the
x and 1 that maximize this conditional probability. This will be the
best one can do to restore the degraded image x' as x, and to estimate
the primitive features present in the image as 1. To determine P(x, lix')
we use Bayes' rule in the form

P(X, lIX') = P(x'Ix, l)P(x, 1)
P(X')

Here we presumably know the prior P(x, 1), can eliminate P(x') in
the maximization process, and must determine the reverse conditional
probability P(x'Ix, 1) from what we know.

We are thus dealing with two stochastic processes, Xb and Xa, which
refer, respectively, to the statistical behavior of the composite random
field {x, l} before and after the raw image is obtained. We must now
make some general assumptions about these processes in order to carry
out the proposed program of determinations in a general way. The least
restrictive assumption that has been found to make this program pos-
sible is to assume that Xb is a so-called Markov random field (MRF).
Three points should be re-emphasized before I give the technical defi-
nition of an MRF: (1) Bayes' rule guarantees that Xa will be an MRF
when Xb is; (2) the statistics of an MRF always admit a mathemati-
cal description in terms of a Gibbs distribution; and (3) the stochastic
relaxation and annealing algorithm is aimed directly at the problem of
maximizing Gibbs distributions. Therefore, since Xa necessarily has a
Gibbs distribution description (because of our general assumption that
Xb is an MRF), we will be able to apply the SRA technique to find-
ing the maximum of the posterior conditional P(x, lix') once we have
succeeded in establishing its Gibbsian form. The rest of my discussion
of Geman and Geman7 focuses on obtaining this Gibbsian form and
describing the SRA algorithm. First, however, I discuss MRF's and
Gibbs distributions, and their equivalence.
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9.2 Markov Random Fields and Gibbs Distributions

Loosely speaking, an MRF on a lattice--Zm U Dm-is a random field
that exhibits only local correlations; i.e., there is some "radius" about
each lattice site, whether a pixel or a feature site, such that there is
significant correlation between the field value at this site with only the
field values at sites within the "radius." This idea is made more precise
with the concept of a lattice neighborhood system, which is a formal way
of specifying the lattice sites that are "in the neighborhood" or within
the "radius" of a given lattice site, for all the lattice sites.

Let us use a more convenient notation for the full lattice Zm U Din.
Let this lattice have N sites altogether, where N equals m 2 plus the
number of sites in the feature lattice. Let S = {1, 2,..., N} be some
fixed enumerative labeling of all these sites, so that if s E S, then s
points, once and for all, to a particular one of the sites in the full lattice.
Then let y, stand for the random field variable associated with the site
s, which could be either an x or an 1, depending on whether s indicates
a pixel site or a feature site. In this way we can denote our random
field, Xb or Xa, by the new notation Y = {Ys : s E S}. A neighborhood
system on the lattice S is defined as follows. A neighborhood system
on S is a collection, G, of subsets G, C S, one for each site s in the
lattice, such that

1. s does not belong to its own G,, which is called the neighborhood
of s or the set of s's neighbors, and

2. s is a neighbor of r if and only if r is a neighbor of s; i.e., the
relation of being a neighbor is symmetric.

A subset C C S is called a clique if all the distinct pairs of sites in C
are neighbors. The set of all S's cliques is denoted by C'.

There is of course an underlying probability space, Q, of elementary
events, w, on which we have some kind of probability measure P. Also,
each y, is a variable in some definite variable space denoted R,. For in-
stance, in our case, when s is a pixel site, R, might be defined as the set
of integers {0, 1,..., k}, where k is the maximum value of the pixel grey
scale; on the other hand, if s is a feature site, R, might be defined as
the set {0, 1} describing the presence or absence of line elements, as dis-
cussed before. We can take the elementary events, uw, of the underlying
probability space, Q, to be the various distinct configurations

(YI,Y2,...,YN) = L (24)
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of the random field Y, where each y. ranges over its associated R5.

We can now give the formal definition of an MRF. A random field Y is
said to be a Markov random field relative to a neighborhood system
G if the following two conditions hold.

1. The probability P (y1, Y2, .--, YN) of the configuration (yi, ... , YN) is
everywhere positive on Q.

2. For each s E S we have

P (Y ., Y 1,, ...,,Y s- I1,Y ,+ I, ... Y N ) -- P (Y , Jy , : r C G ,) ,

where the symbol to the right of the conditioning bar on the right-
hand side of the equation means "all yr such that r is a neighbor
of s," and where all the y's are understood to vary over the whole
of their domains R. In other words, the conditional probabilities
on the left of the equation above are independent of any y's that
are not associated with sites in the neighborhood of s.

These conditional probability functions are called the local character-
istics of the MRF. The MRF concept is just one of several ways which
have been devised to generalize the more familiar notion of a Markov
chain to multidimensional lattices.

There is an equivalence between MRF's and the random lattice fields
defined by Gibbs distributions, and this equivalence turns out to be of
great practical value for the analysis of MRF's. Because Gibbs distribu-
tions have been used in physics for some time (in statistical mechanics),
much of the general terminology used to discuss such distributions has
been borrowed from physics, as can be seen in the following formal
definition.

As before, we have a lattice, S, a neighborhood system, G, and a ran-
dom field Y on S. In this setting a Gibbs distribution relative to G is
a probability measure p, defined on Q2, which has the following form:

p (w) = -I exp[-U (w) /T]. (25)

Here Z and T are constants; U is called the energy function and has
the form

U(LO) V(L) (26)
CEC'
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where each V is a function on Q that depends on only those coordinates
y, of w for which s is in the clique C. Such a family, {Vc : C E C'}, is
called a potential. The parameters T and Z are called the temperature
and partition function, respectively, following the terminology of statis-
tical mechanics. The term partition function is used for the constant Z
because the sum of p(w) over Q must be unity, since p is a probability
measure; this leads to the identity

Z = yexp[-U(w)/T], (27)

whose right-hand side will be recognized by physicists as the canonical
partition function of statistical mechanics.

The connection between MRF's and Gibbs distributions is given by the
following.

Theorem. The random field Y is an MRF relative to a neighborhood
system G if and only if P(w) is a Gibbs distribution relative to G.

This means that for an MRF the joint probability distribution P(w) is
given by the right-hand side of (25) for some potential {Vc : C E C')
and some constant temperature T. Thus, if we are referring to the
MRF X, (the posterior case), so that P(w) is actually P(x, lix'), then
the global maximization of the latter is the same problem as finding the
configuration that renders U a global minimum, because of the nature
of the exponential function. To solve this problem we can use methods
that were developed some time ago in statistical mechanics."

17N. Metropolis, A. NV. Rosenbluth, M. N. Rosenbluth, A. 11. 'Feller, and E. Teller, Equations of State
Calculations by Fast Computing Alachines, J. Chem. Phys. 21 (1953), 1087- 1091.
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9.3 Stochastic Relaxation and Annealing Algorithms

Let us assume that we have already modeled the poster 3r Markovian
probability function P(x, ljx') with a Gibbs distribution; more specif-
ically, suppose that we have imposed a certain neighborhood struc-
ture on the lattice, relative to which a specific modeling potential,
{Vc : C E C'}, has been constructed, and finally that the tempera-
ture parameter, T, needed to make the model distribution fit, is known
(it will turn out that we do not really need to know T).

Our first need is to establish formulas for the calculation of the local
characteristics of an MRF in terms of the corresponding potentials of
its Gibbs distribution and the temperature. These formulas are quite
easy to obtain from the Gibbsian expression for P(w) and the definition
of conditional probability. One gets

P(YsIYl,...,Ys-1,Ys+l,...,YN) = ZS1 exp [- Vcw/T] , (28)

where

Z= exp-Z Vc(w)IT
yZR, C:3ECI

and the coordinates of wy coincide with those of w except in the Sth

position, i.e., the y, of w is y, which is understood to be a variable
ranging over all of R,. An important point about this result, in explicit
agreement with condition (2) above, is that the local characteristic at
s depends on only y, and those yr with r E G,, because any site in a
clique containing s must be a neighbor of s-the notation C : s E C
means that the pertinent sums are over all cliques containing s. Thus
the indicated calculation, for any given site, is merely a local one.

The relaxation algorithm, described next, makes repeated use of the
local computation indicated by (28) to relax from an arbitrary starting
configuration to a limiting configuration with the probability density
P(w). The precise technical meaning of the last phrase is given in the
relaxation theorem, which follows the description of the algorithm.
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Relaxation Algorithm. As before, I continue to use the general
notation

Y = {y: s E S}

for the random field. We discretize time according to t = 1,2,3,...,
and suppose an arbitrary starting (t = 0) configuration Y(0). Let
us envision that a separate processor is associated with each site of the
pixel/feature lattice. Each such processor is connected to the processors
associated with its neighboring sites and to no others. Let us further
envision that a sequence

Y(0), Y(1), Y(2), Y(3),

of configurations of the random field will be produced by this intercon-
nected system of processors, starting from the first, Y(0), where the
arguments 1,2, 3, etc, correspond to the above discrete time sequence.
This is done by (possibly) changing the field at only one site at each
time in the sequence, where the sequence of site visitations is deter-
mined by a previously chosen sequence, {s(t) : t = 1,2,3,...}, of site
locations. This unending sequence must be such that it revisits each
site infinitely often, so that the lattice-path described by s(t), as t in-
creases without bound, will be a discrete analog of a Peanc space-filling
curve. (An unending raster-scan pattern satisfies this requirement.) At
each t in the discrete time sequence, the following situation occurs:
Y(t - 1) has just been determined, and we are about to produce Y(t)
by (possibly) changing the value of Ys(t). Every time another term
is produced in this sequence of configurations, it will be necessary to
update the configuration so that the changes become the current data
available to each processor whose neighborhood has been affected. This
is accomplished via the processor interconnections: a change at site s
is communicated to all processors connected to s, i.e., all processors
in s's neighborhood. The (possible) change of Ys=s(t) is decided by
sampling the pertinent local characteristic in accordance with equation
(28). Thus each processor is programmed to make the computation
specified by that equation, and executes this program each time its site
is visited, according to s(t). This computation is local in the sense that
it involves only the field data that are associated with s(t) and the sites
in its neighborhood G,(j); moreover, because of the updating process,
all these required data are immediately available to the processor. This
relaxation algorithm is thus local in the sense described, relatively par-
allel, and statistical, since it entails repeatedly sampling the steadily
updated local characteristics.
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Relaxation Theorem. For any starting configuration, Y(O), and any
w E Q, we have

P[Y(t) = w] P(w) as t *oo.

The meaning of P[Y(t) = w] needs clarification. Suppose that we
generate a representative ensemble of configuations, Y(t), by running
the relaxation algorithm on a sufficiently broad and numerous set of
starting configurations, Y(O). Then P[Y(t) = w] means the relative
frequency of occurrence of the configuration w in this ensemble. The
theorem's statement can therefore be rephrased to say that we can
generate a representative ensemble of configurations whose probability
density coincides with P(wo) by carrying the pi,-ess just described to
the limit of indefinitely increasing t. Alternatively ,Liu less strictly, by
picking just one starting Y(O) at random, we can generate, in the Y(t)
that results, a good approximate sample of the distribution P(w) by
choosing t large enough. The relaxation theorem thus reveals that the
relaxation algorithm provides an implementable way to sample P(w).
This result was established by Geman and Geman.'

A slight modification of the relaxation algorithm produces the more
directly useful SRA algorithm, for which an associated convergence
theorem can be proved.' For these it is convenient to define the quan-
tities

U* -max U(w),

U. min U(w),

and
A--U* -U.,

where the max and min are taken over all w E Q. We also let

Qo = {W Q:U(W)= U.}

(i.e., Q is the set of all configurations having the minimum energy),
and define 7r0 as the uniform probability density on Q0 , so that all con-
figurations without minimum energy have probability zero with respect
to ir0 , while the remaining configurations with minimum energy all have
the same nonzero probability relative to 7r 0.
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SRA Algorithm. To introduce "annealing" into the relaxation algo-
rithm, we need only a prior schedule of temperatures, T(t) : t = 1, 2,...,
which are to be used in sequence at tle appropriate times, i.e., when
sampling the local characteristics. In other words, at t = i we use
T(i) for T in equations (28) when we draw a sample at s(i). The tem-
perature sequence, which is taken as slowly decreasing, is literally an

annealing schedule, because it is being used in the attempt to drive
the resulting sequence of configurations toward one which renders the
energy U a global minimum. Note that the latter would constitute
a successful maximization of P(x, lix'). The theorem supporting this
algorithm is as follows.

SRA Convergence Theorem. Assume there exists an integer -r > N
such that for every t = 0, 1,2, ... , the set of sites

{s(t + 1), s(t + 2),...,s(t + T)}

includes all the sites in S. Let {T(t) : t = 1,2, 3, ... } be any decreasing
sequence of temperatures (with limit zero) such that for some integer
to > 2 we have

T(t) > NA (29)

for all t > to. Then, for any starting configuration and any w E Q, we
have

P[Y(t) = W] - ro(W).

Again the meaning of the left-hand member is in terms of the repre-
sentative ensembles, for various t, that can be generated with the SRA
algorithm. This theorem therefore asserts that the relative frequency
of a given configuration in the limiting asymptotic ensemble is exactly
zero whenever the configuration has grr'ater than the minimum energy.

Thus, if we start from a lone arbitrary initial configuration and take t
very large, the chances are excellent that the resulting Y(t) will be a

configuration of globally minimum energy, and thus a solution of the
maximization problem for P(x, ljx').

This remarkable result tells us that all we need of the posterior dis-
tribution's model is a neighborhood system and its associated energy
function; with these alone, and the relatively parallel and local statisti-
cal SRA algorithm described above, we can compute the most likely x
and I for the degraded image x'. A few things need to be said about this
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result (and also about the relaxation theorem), but let us first observe
that with these results, the issue shifts to that of modeling the G and
U of the posterior density (for whatever concrete problem we wish to
solve). So let us briefly consider, in general terms, how this modeling
can be done, so as to bring out the remaining elements of the overall
method and show how they all fit together.

9.4 Modeling the Posterior Distribution

The modeling begins with the a priori situation, before the degraded
image is obtained. Based on the modeler's prior knowledge, the Gibb-
sian form of the prior density, P(x, 1), must first be established; that
is, we must impose a neighborhood system, G, on the full set, S =
Zm U Din, of lattice sites, and we must likewise impose a corresponding
energy function, U(x, 1), on this neighborhood system. We must also
determine the best-fit T for the resulting Gibbs distribution, but this
aspect is often handled by scaling to make T = 1. After this generally
difficult task is done, construction of the Gibbsian model of the pos-
terior density, P(x, lix'), begins. This first requires that we model the
image formation process. In general, the visible image matrix, x', is
related to the undegraded image matrix, x, by a formula like

X'= Q[H(x)] + Nd, (30)

where H denotes the typically convolutional blurring function associ-
ated with the viewing system's optics, Q denotes the possibly nonlinear
transformation that the system's detector performs on H(x), the out-
put of the optics, and Nd is the detector noise process. The noise
is indicated as additive, but it could be multiplicative or some other
kind; whatever the case, it should be appropriately incorporated into
the above formula. This image formation model and the degraded im-
age are next used to construct the neighborhood system and energy
function of the posterior density from the corresponding G and U of
the prior density. Geman and Geman7 establish a rather general theo-
rem pertaining to this construction (discussed in sect. 9.6). The main
point about any such construction is that it allows us to incorporate
our knowledge of H, Q, Nd, and x' into the modified neighborhood
system and energy function for the posterior density. The final step is
to run the SRA algorithm on the posterior model to obtain the MAP
estimate of the most likely x and 1.
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9.5 Discussion of the Convergence Theorems

Let us first clarify a technical point of the SRA convergence theorem:
its requirement for the existence of the integer r. This simply means
that there must be a certain minimum fixed length of the site-visitation
sequence, which, when moved along that sequence to any arbitrary reg-
istration, will always encompass all the sites in the lattice. A raster-
scanning pattern certainly satisfies this requirement, which in practice
generally presents no problem. The same cannot be said of the re-
quirement that the annealing temperature decrease at no faster than
an inverse-logarithmic rate with t. This very slow rate of decline often
makes the execution of the algorithm impractical.

The computational content of the relaxation theorem is closely analo-
gous to the statistical-mechanical computation of the thermodynami-
cal equations of state of physical systems-especially those with lattice
symmetry-where the physics is based on the canonical-ensemble par-
tition function, i.e., where the system is in a constant-temperature heat
bath. This analogy can be outlined as follows. Both are based on for-
mulating the statistical features of their respective problems in terms
of Gibbs distributions. In the relaxation theorem, the problem ad-
dressed is the sampling of a complex Gibbs distribution; for statistical
mechanics, the problem is to calculate the interesting thermodynami-
cal properties of the system, a problem that always amounts to finding
the average value (relative to the Gibbs distribution) of the system's
internal energy as a function of the appropriate independent macro-
scopic variables. Though these problems appear quite different, the
computational techniques for solving them are quite similar.

Before fast computing machines became available, the aim of statisti-
cal physics was to perform fully tractable theoretical calculations of the
thermodynamic properties of interest. This, however, was seldom pos-
sible except in the simplest cases: systems of noninteracting particles or
molecules (like the ideal gas), and those relatively weakly interacting
systems that could be approached via expansions based on the ideal
case as its zero-order term (like the near-ideal gas via the virial expan-
sion). The notorious intractability of most statistical-mechanical cal-
culations (and the difficulties of extracting useful results in closed form
from apparently simple macroscopic systems) is strikingly illustrated by
the case of the famous Onsager solution of the two-dimensional Ising
model of ferromagnetism. The Gibbs distribution for this lattice prob-
lem gives rise to a canonical partition function which could almost not
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be simpler: a two-dimensional cubic lattice with only nearest-neighbor
spin-spin interactions to form the energy function. Nonetheless, the
theoretical derivation of the ferromagnetic equations of state from this
partition function (by Onsager's method and even by other somewhat
simpler ones following Onsager) is an enormous labor.*

This Onsager derivation is indeed a kind of frontier post represent-
ing the limits of our ability to perform such theoretical analyses. The
computer, however, has made achieving somewhat more modest goals
rather commonplace. By statistically modeling the action of complex
partition functions on the computer, we can obtain numerical represen-
tations of equations of state and even investigate such things as phase
transitions. The so-called Monte Carlo methods that have evolved
along these lines are arguably the most important statistical computa-
tional techniques we have today. These methods emerged in the fifties
from the work of Metropolis et al 7 which addressed the basic issue of
how to efficiently compute (canonical) statistical-mechanical averages
of the general form

f P(w)f(w) dwff) =d , (31)f P(ca) dC
where f is the dynamical variable of interest and P(w) is the relevant
Gibbs distribution. Because the dw in such computations stands for
an exceedingly long string of separate differentials, the numerical com-
putation of such multiple integrals by brute-force techniques is out of
the question. The Metropolis method consists of replacing the brute-
force method (which would entail evaluating f on a regular lattice of
points in the space of w, and then summing the appropriately weighted
results to get an estimate of the integral) with one based on a random
sampling of the values of f at a much reduced number of points. The
problem with the brute-force method is that an impossibly large num-
ber of points are needed to get accurate results. With the Metropolis
algorithm, however, the computation becomes possible because virtu-
ally only points that make a significant contribution to the integral are
chosen, and a greatly reduced number of them will give good accu-
racy. The chosen points are those with a high probability according
to P(a), i.e., they are chosen by effectively sampling P(w), which will
tend to produce w with high P(w), and hence w, that make a relatively
greater contribution to the integral. Since the relaxation algorithm of

*1 once witnessed the unfolding of such a derivation over about a dozen consecutive lecture hours, a
derivation characterized by the most compact reasoning. It was during about the eighth session that the
lecturer identified the mode of demonstration: "proof by intimidation."
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Geman and Geman 7 is an effective computational technique for sam-
pling a Gibbsian P(w), it should not be surprising that this algorithm
is a close analog of the Metropolis algorithm.

9.6 Construction of Posterior Distribution

I now describe the explicit construction of P(x, lix') in its Gibbsian
form from the elements thus far assembled. This final step provides
the input for the stochastic relaxation and annealing algorithm whose
output is the solution of the overall problem.

Given the neighborhood system and energy function, G and U, for the
prior density P(x, 1), and given the blurring function H, the detector
transformation Q, and the nature of the accompanying noise process,
we may proceed as follows to construct a new neighborhood system
GP , and a new energy function UP (relative to G'), where GP will be
the appropriate neighborhood system and U' the appropriate Gibbsian
energy function for the posterior conditional P(x, lix'). In what follows,
assume that U is measured in units such that T = 1. As a consequence,
the corresponding temperature parameter for Up is also one, as will be
seen. Let us begin with the construction of Gp , which is closely tied to
the convolutional blurring function H.

The function H can be expressed in matrix form as follows:

H,2 (x) = E Hjnj,._.i~j,, (32)

where Hk,k' is a (2m - 1) x (2m - 1) matrix of constant elements, and
k and k' run from -(m - 1) to m - 1. Generally, the matrix H has
nonzero elements only within a certain "window" of its central element
H0,0 . Equation (32) therefore asserts that the blurred value H(x) at
a given pixel site (i,j) is essentially a weighted average of xj and the
corresponding x's at all the surrounding sites within H's window of
(i, j). Take, for example, the case of a rectangular window, where all the
matrix elements of H vanish when the magnitudes of k and k' exceed
certain positive-integer constants giving the window's horizontal and
vertical extents. In the square-window case where Ilk,k' = 0 whenever

either Jkl or Ik'! exceeds 1, the only nonzero values of Hkk' would be
the nine in the center of the array, namely,
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where H0,0 weights x,,, and the rest weight the "true" grey levels at
the eight adjacent surrounding pixels. The nonzero values of Hkk' are
of course positive, and the effect of (32) would be a true average if H
were r1 'rrnalized to make the sum of its matrix elements equal to 1.

We can now use the blurring function window and the prior neighbor-
hood system to construct a new system of neighborhoods for Z,,, U Din.
For each pixel site s (i.e., for each s E Zm), let K, denote the set of
pixels in the blurring-function window around s. We then put

K 2  U Kr. (33)
r EK.

The new neighborhood system G' - {GP : s E S} can now be defined
as follows. If s E Din, put

G P = G,

in other words, the neighborhoods of the feature sites remain unchanged.

On the other hand, if s E Zm, put

G' = G, U K' - {s}. (34)

It is not difficult to see that Gp is a neighborhood system for Zm U D,.

The next step is to form an energy function UP for GP , one which will
be a valid Gibbsian energy function for P(x, llx') over the neighborhood
system G'. For this let us make two assumptions, one necessary, the
other not: namely, that the noise in (30) is additive white Gaussian
noise of mean p and standard deviation a (which is the unnecessary
assumption), and that this noise is independent of X= {x ,l} (which
is the necessary one). The first assumption means simply that the
grey-level noise at each pixel is a Gaussian random variable of mean it
and standard deviation (7, and that its mode of combination with the
pixel grey level is addition. This assumption is unnecessary because
the following proof can be modified to apply to any type of noise and
any mode of noise combination that is invertible -- that is, any noise
process that can be expressed as sonie function of x' and Q[II(x)], such
as x'- Q[H(jr)], which is the case with additive noise.

Let i denote the 7n x n? matrix all of whose elements are equal to p.
We define the nonncgative function U"(x) by

I"() = -lip -. + Q[1I(x)]12  (35)
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where the double bars indicate the standard matrix norm-the square
root of the sum of the squares of the matrix elements. Then we have the
following Bayesian result, which is established by Geman and Geman.7

Bayesian Theorem. For every fixed image, x', the posterior density
P(x, lx') is a Gibbs distribution over {S, GP } with energy function

UP(T ;1) = If(x.1) + U'(x) (36)

and temperature parameter unity.

Proof. Because the proof is instructive I give it in full. We start from
Bayes' rule, namely,

P(x, lix') P(x'ix, l)P(l) (37)

P(x')

Now from (25) we have

1
P(x, 1) = exp[-U(x, 1)]; (38)z

moreover, P(x') is just a constant depending on x'. What needs elu-
cidation, then, is P(x'lx, 1), i.e., the probability of getting the blurred
and noisy image we did get, given that it was produced by (x, 1). Since
the noise is assumed independent of x and 1, it is clear that P(x'Ix, 1)
is just the probability that the noise matrix is equal to x' - Q[H(x)].
And since we have assumed that the noise is Gaussian, white, etc, it
follows that

P(x'lx,l) = kexp[-U'(x)], (39)

where k is a normalization constant. Consequently,

P(X, I') = I exp[-Up(x, 1)], (40)

where Z1' is a normalizing constant depending on x'. It thus remains to

show that UP is a Gibbs energy function relative to the neighborhood
system GP .

This is most readily seen by analyzing the local characteristics of P(x, ljx')
as given by (.10). If .- C S is a feature site, the relevant local character-

istic is, by definition,
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P(1, Ix, {1 "r s,r E Dm},x') =

exp[-Up(x, 1)] exp[-U(x, )] (41)= j, exp[-UP(x, 1)] =Ej, exp[-U(x,l1)]' (1

where the sums are over all values in the range of I,, and the second

step follows from (36). This is precisely the result we would get for the
corresponding local characteristic of P(x,l), and this shows that the
neighborhood structure of Up for feature sites is the same as for the
prior U, as in the definition of GP . Similarly, if s is a pixel site, then
the relevant local characteristic of the posterior is

P(xl, {x, : r / s, r E Zm},x') = exp[-UP(Xl )] (42)Ex, exp[_UP(x,1)1, 42

but now the cancellations in the above ratio are less evident than in
(41). To clarify which cancellations can be made, we decompose the
energy in the form

V P (x, ) = C Y(X,1) +E C(,1+
C:sEC C:s C

Z {y-[x'-Q(H(x))]1}2/2o 2 + : {y-[x'-Q(H(x))]l} 2/2a2 ,
r:sEKr r:sVKr

where the first two terms give U(x, 1), and the second two give U'(x).
We can see that the sum of the second pair of terms gives U'(x) as fol-
lows: by (35), the quantity being summed in either of the last two
terms is the contribution to U' of the rth pixel site; but since the
total r-range of the two sums taken together is precisely all r E Zm, this
contribution is clearly U'(x). Note that the second and fourth terms of
this decomposition of Up do not depend on x,, so that (42) becomes

P(X, 11, {Xr : r s,r E Zm},x') =

exp[- CSEc Vc(x,1) - Zr:SEK,{Ir -[x' - Q(H(x))], }/202]

X, exp[- ZCSEC Vc(x, 1) - Z :Kt {' - [x' - Q(S(x))]r 1'/202]

(43)
To see that the fourth term does not depend on x,, we merely write
the dependencies of [x' - Q(H(x))]r explicitly as follows:

[x' - Q(H(x))] = ¢D(x;, {x1 : t E K,}). (44)

Thus the ratio in (42) depends on only the first two terms of the de-
composition of Up. Now the first of these terms depends solely on the
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(x, l) for sites in G, (because s E C =. C C G,), and the second term
depends solely on the sites in

U K, = U Kr=K
r:SEKr rEKA

This is enough to show that the neighborhood structure of Up for pixel
sites is as given in (34).

End of proof.

With this we have produced a complete description of the general con-
struction of the posterior conditional P(x, lIx'). The items needed for
this construction are (1) the prior probability density, P(x,l), (2) the

model of the image-formation process, and (3) the raw image. Thus
the method under consideration is now totally explicit. To produce a

concrete example, we need only a model of the prior probability density
P(x, 1).

I conclude this overall section by summarizing the status of this ap-
proach to the image processing problem in terms of the issues which
have emerged in its description, and also with some indication of al-
ternatives. I begin with the last point mentioned, namely, the issue of
providing explicit models for P(x, 1).

To compose a Gibbsian model of P(x, 1) that incorporates our prior
knowledge, one must first decide on the neighborhood system G. The
criteria for specifying C must come from an appraisal (for the spe-
cific image processing problem being addressed) of the correlation dis-
tance expected in the image, the two-dimensional analog of the width
of the autocorrelation function of a random signal. After such an ap-
praisal, a reasonable specification of G will be possible. One must then
go through the details of what is essentially a combinatorial problem,
namely, the enumeration of the full set of G's cliques: the set C'. For
all but the smallest neighborhood structures (such as nearest-neighbor
neighborhoods), this will be an arduous task that must nonetheless be
done before we can assign local energy functions, VC, to all the cliques

C E C'. This is the last point at which our a priori knowledge is in-
jected. The criteria and guidelines to be used for this task are presently
obscure, aside from making intuitively reasonable guesses. Much work
must yet be done on this aspect of the problem.
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Having completed the specification of P(x, 1), we must next construct
P(x, lix'), or equivalently, G P and Up . Though the task to be per-
formed here is clear, achieving it would entail much ingenuity and sys-
tematic labor in all but the simplest cases. Such effort is nonetheless
required to provide the data needed to execute the SRA algorithm and
obtain the results sought.

As has been mentioned, the SRA scheme was developed to make it
computationally feasible to solve a very complex problem, and SRA has
made a great deal of progress in this direction. Nevertheless, the rather
slow annealing schedules allowed by rigorous SRA most often produce
impractically long computation times. It is thus apparent that we need
to determine whether more rapid annealing schedules are viable, and
to exploit the potential of further parallelization of the SRA algorithm.

Unfortunately, there appears to be little chance for significant improve-
ment in annealing schedules, as the inverse-logarithmic lower bound
on the rate of temperature decline appears tight. (This has not been
proved, however.) In addition, attempts at further parallelization of
the algorithm have produced some bizarre results, namely, the loss of
all image information in the product of the parallelized version of the
algorithm. This, however, seems to indicate some basic conceptual
problems in algorithm theory, rather than any flaw in the SRA tech-
nique. Consequently, a speed-enhanced SRA algorithm will likely have
to await the resolution of a paradox in pure algorithmics. It is therefore
reassuring that alternatives to SRA exist.

The primary alternatives to SRA include the renormalization group
approach of Gidas,4 the less fundamental approach called mean field
annealing,' and finally the methodology of mathematical morphology.6

Like SRA, both the renormalization group and mean field annealing
approaches are based on a Markov random field model as described in
section 9.1. The Gidas method consists of a radical reorganization of the
needed computations analogous to the renormalization group analysis
developed in statistical mechanics. The less fundamental mean field
annealing technique attempts to approximate and simplify the required
annealing calculations (again in analogy with a theoretical technique
used in physics), so that a sufficiently accurate and computationally
feasible result can be obtained. Both approaches are quite promising.

The techniques of morphological image processing are quite different
from all the methods discussed thus far. Mathematical morphology
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sets out from an altogether distinct set of principles aimed at the direct
analysis of the shapes and textures in an image. It is based on the
consideration of a general class of morphological transformations of the
closed subsets of the image manifold. The subsets acted upon by these
transformations can be either the direct image sets in the case of binary
images, or the cross sections of the intensity function defining a grey-
tone image. The class of morphological transformations is defined in
accordance with the principles of translational and scale "invariance,"
a "principle of local knowledge," and a certain continuity requirement.
All these can be viewed as general requirements that emerge from the
image-processing goal of shape and texture analysis. Morphological
transformations differ from the more familiar image-processing trans-
formations of windowing, cross-correlation, and Fourier transformation,
in that they are intrinsically nonlinear and involve the probing of the
image with user-specified structuring elements. The method can be
generally viewed as a type of nonlinear filtering that leads to the di-
rect extraction of shape information. This approach also holds great

promise.
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10 Conclusion

ThL report has attempted to convey a relatively detailed perspective on
the beginning stage of the ATR problem, which simply concerns what

needs to be done with the image data at the beginning of processing to
determine the presence or absence of certain important objects. This
primary task must at least result in limitinig the wealth of data that
make up a typical image to those which might be reflections of these
important objects. It is simply not possible to intensively process, for
example, a 4000 by 4000 pixel image for any relatively immediate prac-
tical purpose. I have accordingly considered what the basic elements of
the beginning-stage task are: (1) the determination of a definitive set
of image features for the particular recognition task, and (2) the estab-
lishment of the various mathematical methods needed to extract these
features from the image data. This report has shown in detail that
much progress has been achieved in these areas, but it has also made it
clear that the problems of feature identification and the establishment
of methodologies for systematic feature extraction are far from fully
resolved. Powerful mathematical methods have been devised to deal
with the primary difficulties of the ill-pced problems presented by fea-
ture extraction, and an array of important feature extraction problems
have been adequately solved; nevertheless, the solutions of a number
of these problems tend to bog down in the complexities of carrying out
the procedures of the method, primarily those concerned with fashion-
ing realizable and effective computer implementations. There is little
choice here but to continue attempting to advance on these complexity
issues, and a number Gf apparently fruitful avenues are being pursued.

In feature identification, which has not been considered in any methodi-
cal detail, a great deal of work needs to be done. Although not claiming
any particular expertise in feature identification, on this subject I ob-
served a surprising lack of literature, possibly because the problem does
not fall under a single technical discipline. Questions arising in this
area inevitably lead to comparisons with the human process of recogni-
tion, and these in turn lead to psychological or philosophical matters.
As these are normally not subjects in which engineers, physicists, and
mathematicians have expertise, it is not surprising that their applied
literature does not deal with these questions systematically. The prac-
titioners of the "hard" applied sciences tend (with some justification) to
avoid philosophical concerns, thinking or hoping that the "recognition

problem" does not really have a substantive philosophical or psycho-
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logical element. But this may not be true. As a possible symptom of
the shortsightedness of this view, consider the often reported frustra-
tion experienced with apparently algorithm-resistant imagery in which
trained observers can nonetheless point to and rather simply describe
what is important for recognition purposes. The elusiveness of what
they describe may be due to an innocent difference between what they
do in recognizing and what they say they do. A trained observer's ver-
bal description of an object's important features has to be based, at
least in part, on a (possibly mistaken) conceptual prejudice, that is, on
an explanation that he unwittingly gives to himself of what that object
is in terms of its recognizable modes of appearance. How else could he
formulate his observations of what he does in recognizing an object?
We may thus be forced to heed the phenomenologist's dictum that we
should be quite sure that a thing has been adequately described before
we try to explain it.
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