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ANOMALOUS DISPERSION IN GASES DERIVED FROM THE OPTICAL DEPTH

Theoretical treatment; line by line calculations

I INTRODUCTION

This report describes the high resolution wave numuer dependence of

the refractive index in gases. The wave number dependence of the

refractive index is caused by the ability of a gas to absorb and emit

electromagnetic radiation. Knowledge of the spectral absorption (or

the optical depth) is the basis for refractive index calculations in

this report,

The spectral absorption can be calculated from the quantity optical

depth. The spectral behavior of the optical depth is mainly described

by the spectral line shape function. The correct line shape function

is not known, but the approximations of Voigt, Lorentz and Doppler are

normaily used for calculation of spectral absorption. These approxi-

mations will also be used in this report for the refractive index

calculationsl. They give a correct descriptiun of the line shape near

the resonance wave number but far away from resonance they are not

correct. This effect has greater implications on the accuracy of cal-

culated refractive index than calculated absorption due to differences

in the spectal behavior.

Line by line calculation of absorption at a certain wave number is

normally performed by only taking into account the influence from

transitions "nearby" the given wave number. The contribution to the

absorption from the "wings" of distant transitions is neglected. This

approximate calculation of absorption gives fairly good results

b~cause the line shape function falls off rapidly (~(o-oi) - 2) with

th3 distance from the resonance wave number (oi).

1A correct line shape function would, among other effects, have to
take the effect of line coupling into account. This effect will not
be discussed in this report.
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Line by line calculation of refractive index leads to a somewhat dif-

ferent situation with respect to accuracy than encountered in the cal

culation of absorption. The reason is that the contribution to the

refractive index from the "wings" of distant transitions is much

greater due to the slower fall off (~(o-oi) -') with the distance from

the resonance wave number. This means that calculation of tha -efra;-

tive index at a given wave number requires that the contribution from

the "wings" of all resonance transitions are taken into account. When

dealing with atmospheric refractive index especially the contribution

from the very strong UV-transitions has to be taken into account both

in the visible, infrared and p-wave part of the spectrum.

A computation of the refractive index as outlined above is not treated

in this report although the theoretical results of Chapter 4 are

suitable for such computation provided the Voigt or Lorentz line shape

function is used. The result from such computation will have limited

value due to the validity of the distant "wings" of the line form

functions, The computations in this report is performed by only tak-

ing into account the contribution to the refractive index from reo -

nance transitions in a limited wave number interval centered around

the wave number of interest (i e a procedure analogous to the one

described for calculation of absorption). The result from these com-

putations will therefore unly give the local wave number dependence of

the refractive index; more commonly named the anomalous dispersion due

to resonance transitions. This quantity is in this report called the

dispersion and is denoted An.

For the atmospheric refractive index an empirical formula has been

developed by Edl6n (1) based on measurements in the visible part of

the spectrum. This formula with corrections for atmospheric

temperature, humidity and pressure is also widely used for calculation

of atmospheric refractive index in the infrared, 1-wave and even

radio-wave part of the spectrum. The accuracy of these results is

however questionable since the basic measurements are only performed

in the visible. It is however reasonable to believe that Edl~n's for

mula expresses the total contribution to the refractive index from the

"wings" of distant strong transitions especially the very strong

UV-transitions in the atmospheric spectrum. The coarse (low
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resolution) wave nrumtber dependence of atmospheric refractive index is

then described by Edlin's formula whilst the fine s~ructure (high

resolution) wave number dependence is described by the dispersion

derived in this report. A sum of these two quantities is then an

estimate of the total atmospheric refractive index. The contribution

*n this sum from the dispersion is small in the visible and infrared

part of the spectrum. In the wave numbcr reginn below 400 cm-1 the

dispersion is important near the resonance transitions. This situation

will be demonstrated and discussed in Chapter 6.

The calculations in this report is motivated by the fact that there

already exists a computer code performing line by line calculations

of the optical depth. The code is named Fast Atmospheric Signature

Code (FASCOD), and is developed by the U S Air Force Geophysics

Laboratory (AFGL). In Chapter 5 it will be shown how line by line cal

culations of the dispersion can be performed within the framework of a

modified FASCOD.

This report consists of two main parts: A theoretical development of

the expression for the dispersion (Chapter 2-4) and an implementation

of the theoretical result in FASCOD (Chapter 5-6).

In Chapter 2 it is shown how the dispersion can be expressed in terms

of the optical depth by means of the linear susceptibility and the

Kramers-Kronig relations. The formulation of the optical depth used

in this paper is discussed in Chapter 3. An explicit expression for

the dispersion is calculated in Chapter 4.

A theoretical development analogous to the one described in this report

is given by Tomiyama (2). The theoretical result in this report has

however a more general validity since no approximations are needed

during the development. This gives an exact expression for the dis-

persion when the Voigt, Lorentz or Doppler line shape functions are

used.

In Chapter 5 it is shown how the expression for the dispersion can be

simplified to facilitate implementation within the framework of

FASCOD.



Results from calculated amtospheric dispersion in various wave number

regions are presented and discussed in ChaPter 6. The calculated

results are compared with the measurements of Liebe (3).

2 DISPERSION AND OPTICAL DEPTH

This chapter describes how the dispersion can be expressed in terms ul

the optical depth by means of the linear susceptibility and the

Kramers-Kronig relations.

The linear susceptibility, x(w), is a complex quantity describing the

relationship between ar external electric field, t, and the

polarization, , that is induced by the electric field. When the

medium is isotropic the linear susceptibility is a scalar, and the

polarization is given by

9= =x'(w)?+ =x'(w) +(2,j)

where x'(w) is the real- and x"(w) the imaginary-part of the suscept,

bility. w is the angular frequency.

In this context we shall assume a plane wave propagation for the

polarization

2 F i(Wt-Kz)
P C + c~c (2,2)

P is the complex magnitude and K = K'+iK" is the complex propagation

constant with real part K' and imagninary part K".

The large scale macroscopic phenomena of absorption, emission and dis-

persion of light are the results of transitions between the various

atomic or molecular energy levels. The equation of motion for the

electric and polarization fields in an isotropic medium are derived it)

Pantell (4). When a plane wave solution of the form (2.2) is asbuined,

the equations of motion gives the following expression for the propa

gation constant, K



K 2  2.
K - + (2.3)

In Equation (2.3) n is the contribution to the propagation constant

from transitions outside the frequency interval considered for deter

m ination of the susceptibility (i e the transitions that are not taken

into account in the calculations). The value of n is equal to unity

if the contribution from all transitions in a gas is accounted for in

the the determination of the susceptibility.

Equation (2.3) is solvec by taking the square root and assum-

ing (X(w)1q2 ) << I so that the expansion kt+x()In2] = l+X(w)/2 2

holds (which is the case for other than very strong transitions). lhe

result for the complex propagation constant is

K + ik" 2nc (2.4)

the real and imaginary part of the propdgation constant is then giver,

+ 11]+ (2.5)

dfld

K " = !LW) (2.62nc (2.5)

Since the optical depth, k(w), is defined with reference to the

absorption of radiant power it can be shown (4) that the imaginary

part of the propagation constant is related to the optical depth by

k(W) - 2K" = "(W) (2.)nc( . )

The refractive index, n(w), in the medium is defined as the ratio

between the phase velocity in empty space, c, and the phase velocity

in the medium, vf. By definition the phase velocity in the medium is

vf K (2.8)

The relation between the refractive index and the real part of the

susceptibility is then



n(w) = c ri + XO() (2.9)
v 2r

rhe dispersihn as defined in this report is

6n(w) 2 (2.10)= 2n

lhe Equations (2.7) and (2.10) connecting the imaginary and real part

of the suscept~bility to respectively optical depth and dispersion,

are the fundamental equations in this report.

By using the connections between angular frequency and wave number

(u - 2Tco) these equations can be rewritten

r(o 1 L (a)32.1
2n

2Trok(U) (ox ( )2.1/;
n

The purpose of this chapter is to express the dispersion in Equatiorn

(2.Jl) by the optical depth in Equation (?.12).

As stated by the Kramer-Kronig relations (4) the real and imaginary

pdrt of the susceptibiiity are Hilbert transformed pairs. Mathemati

caIJy this can be expressed ae

x'(o) - H[x"(o) ]  (2.13)

x"(o) = Hlx'(o)} (2,14)

The Hilbert transform, HIf(x)l, of a function f(x) is defined by

HI~) 4pp [ fx) dx' (2. i5)H[f(x) ] PP d X ' x( , 5
IT x ,-X

where PP means that the principal part of the integral is to be

evaluated.

From Equations (2.12) and (2.13) the relationship between the real

part of the susceptibility and the optical depth is



x'(o) H[- 2 °l ko)] - -H(2ro Tr 0(2. 16}

The Equations (2.11) and (2.16) then establish the folowing relation

between the dispersion and the optical depth

n(o) = 2 2-I

The relationship expressed by Equation (2.17) is the basis for the

descriptiun throughout the rest of this report.

In order to evaluate the Hilbert transform in Equation (2.17) the

explicit wave number dependence of the optical depth must be knovn.

ThiS pohIem will be addressed in the following chapter.

IHE OPTICAL DEPTH FORMULATION

This chaoter contains a formulation of the ootical depth which takes

intu account the molecular processes of absorption and stimulated

emission. The explicit wavE :7umber dependencE o the optical depth

ailso aescribed both for the Voigt, Lorentz and Doppler line shape

functions. The aim ol this chapter is to define that part of the

optical depth wrich has to be Hilbert tranfo-me in order to calculate

the dispersion and to define the Voigt, Lorentz and Doppler dispersion

functions.

The optical depth formulation of Van Vleck and Huber (5), will be used

in this paper. In this *ormulation the optical depth k(ol 3f a

mixture of different gases can be expressed in the following form (61

k(o) = o tanh ,ad) I W(m.) Si(1) [f(o,o.) + f(-o,oi) ]  (3.1)2 ij

where

W(mj) - Number density of molecular species mi (molecule/cm 3)

Si(T) - Line strength of the i'th transition at the temperature 1
(cml/molecule)

24
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f(o,o ) Line shape function (cm)

0 Wave number (cm-')

-iResonance wave number for the i'th transition

= hc/kT; where T iP temperature and hc/k is the se-ond
radiation constant (1.4388 cm-K)

The line strength, Si(T), in Equation (3,1) has a specific value for

e, h resonance Iransition belonging to the different molecular species

in the gas mixture. The temperature dependence of the line strength

's given by the asumption of thermal equilibriuJ; i e a Maxwell-

8'Pi.zmann .Astribution of molecules in the excited states and the

dssociated partition functions.

This formulation of the optical depth satisfies three important Prop

erties independent of the One shape function. These properties are

sdtisfied even if the fluctuation dissipation theorem for detailed

rddiation balance is not (5). The properties satisfied b' Equation

(3,!) are:

d) lhP generalized Nyquist theorem; i e transition strengths are
preserved, and radiation balance between emission and absorptio,,
satisfied in thermal equilibrium (7).

b) The Kramers-Kronig relations, (5) and (8).

c) Tt, f sum rule; which 's equivalent to the validity of the familiar

formula (qp-pq) = ih/21i nf matrix quantum algebra .5).

This means that Equation '3.1) should be valid for all wave numbers

provided the dipole approximation is valid and a classical despribti'i

of the radiation field is adequate. The accuracy of the calLulated

optical depth 1s only dependent of the quality of the approximate IPne

shape function.

In Chapter 2 the connection between dispersion ana optical depth is

expressed by EouaLion (2.17). By introducing the optical depth in

Equation (3.1) the dispersion can be expressed ty

n(o) W("'l)S,(r)[F(a.')a G(ao,)a (3.2)
lJ
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whrere

F(o~o ) =H[tanh (7-) f(o,o) (3.3)

G(o.c,) = HItanh ( -) - f( -o,oi) (3.4)

HI is the'Hilnert tranform.

To calculate the Hilbert tranforms described by Equations (3.3) and

(3.4) it 1s necessdry to introduce an explicit expression for the line

shape function, f(o,oi).

Irn order to obtain a theoretical result for the dispersion which con -

tain the influence of both homogeneous and inhomogeneous line broaden-

iriq mechanisms the Voigt line shape function is used for the theoreti

(il calculations in th1s report. The Voigt line shape is a convolu--

tion of the Lorentz line shape describing homogeneous broadening due

ro molecutar rollisions and the Doppler line shape describing

nnornogeneous broadening due to the distribution of molecular

velocities. The Voigt line shape function is described as

/'-"+_ x-_o i

e n2 1_ 12 df (0 ) = o -- 3- exp [-ln2 (-- -) ]dx (3.5)

The Lorentz and Doppler line shape functions are defined by

1 a
f¢(o~oi) =r (oTi)Ta- (3.6)

1In 2 1 .J
.0,0 1d exp 11 n2 (--d-) Idx (3.7)fd°°) = Tr a dad

where

a Lorentz half width (HWHM)

a - Doppler half widt (HWHM)

The hdlf widths are dependent of molecular species and the thermo-

dynamic situation in the gas mixture. The Doppler line width is also

proportional to the resonance wave number. At standard atmospheric
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temperature and pressure the Lorentz line width is normally much

greater than the Doppler line width.

The Voigt line shape in Equation (3.5) is easily obtained by a convo-

lution of the Lorentz and Doppler line shapes in Equations (3.6) and

(3.7) (regarding the wave number difference o-oi as free variable)

followed by a simple change of variable.

f v (ooi) f2(ooi) * fd(ooi)

f f2 (o-oiy) • fd(y)dy (3.8)

f fO(X) • fd(x-oi)dx

By using the notation in Equations (3.6) and (3.7) the last expres-

,ions in Equation (3,8) can fornTally be written

fv(0,o ) f Z (O,x) fd(x,oi)dx (3.9)

The notation in Equation (3.9) means that the variable indicated (with

x) in the Lorentz and Doppler line shape functions shall be substi-

tuted by the integration variable prior to integrations. This type of

notation is convenient at a later stage in this report.

The Voigt line shape functions is within the approximations of Lorentz

and Doppler line broadening mechanisms a reasonable description of the

line shape (to a certain distance from the line center) for most values

of temperature and pressure in a gas mixture. However at two extreme

situations the Voigt formula can be simplified since (9)

Tim fd(o,oi) 6(o-o I) (3.10)
a d-#0adO

Tim f I(o,oi) 6(o-oi) (3.11)
a-+O

where 6(.) is the Dirac 6-function.

I| _-. . . . . .
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The Equations (3.10), (3.11) and (3.9) leads to the following limits

for the Voigt line shape function when the half widths tends to zero

lim fv (o,oi) f (a.o j) (3.12)

lim fv(0,0i) fd(o-oi) (3.13)

Equation (3.12) describes a situation where homogeneous (Lorentz)

broadening completely dominates over inhomogeneous (Doppler)

broadening, i e the high pressure regime. Equation (3.13) describes

the low pressure regime when Od >> a. Since the natural line

broadening due to spontaneous processes is a homogeneous broadening

mechanism Equation (3.13) is only a good approximation for the low

pressure regime when the Doppler line width is much greater than the

natural line width; ad >> an , The natural line width is given by

a = (c I n 1 (3.14)

where In is the natural lifetime.

To make this theoretical development valid for both the high and low

pressure regime the Voigt line shape function is used in Equation

(,3X). The fact that fv(-o,oi) = fv(O -oi) (which is obvious by

change of variable in Equation (3.5)) gives the following expression

for the dispersion

(on(o) L 1 ( ,o() F4 F , (-o) (3.15)Ano)-47T . Wm)iT v F v(

where

F: (O'G.) = H[tanh (-) fv(o,oi)] (3.16)

Fv (,-oi) = H[tanh (-) fv(o,-oi)] (3.17)

From the definition of the Hilbert transform in Equation (2.15) and
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the Voigt line shape function in Equation (3.5) an explicit expression

for Equation (3.16) is

Fv (oi) /1-n ad H[tanh(L) -+T 1n (OX 2+ exp ln (x(' dxzl

(3. 18)

/1n2 1 00 1 a1 (J-0.
f- -an I \22 exp [1 n2 a-J

1T ad -- (-) + d

1he Hilbert transform in Equation (3.19) is given by:

F (oax) HI tanh (L) __a

- PPJ 1L tdflh 1Wl'.j a. . do'

1 £ +7J-L- tanh f ax do' (3,20)

1he integral in Equation (3.20) will be calculated in Chapter 4 by

analytic continuation and complex integration. The high and low pres.

sure limits for the dispersion are found from the limits of Equation

(3,16) using (3.12) and (3.13)

F2 (a, a )jlm F (a,a.) = 1 PP f *~ tanh()* flo,) do'
2a d-* I 0- (3.2j)

Fd(a~al) Slim F (0,0.) = 1 PP +-4-- tanh(L.2) f (a',aj) do'
da -* v 1 IT -a 2 d 1 (322)

The functions F v (a ~a1),FI(o,oi) and F d(oloi) will in the rest of this

report be called the Volgt-, Lorentz- and Doppler dispersion functions,

A comparison of Equations (3.21) and (3.20) shows that the high pres-

sure limit of the dispersion is readily calculated line by line from

Equation (3.15) as soon as the integration in (3.20) is performed and
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the variable x is substituted by the resonance wave numbers oi* At

intermediate pressures the integration described by Equation (3.19)

must be performed before a line by line calculation of the dispersion

can be evaluated.

A calculation of the integral in Equation (3.19) is difficult within

the framework of FASCOD therefore the mumerical examples given in this

report will mainly concentrate on the high pressure regime.

4 THE HILBERT TRANSFORM OF THE OPTICAL DEPTH

The purpose of this chapter is to calculate an explicit expression for

the dispersion based on the optical depth formulation in Chapter 3 and

the Voigt line shape function.

The development in Chapter 3 showed that the following Hilbert trans-

form has to be calculated in order to determine the dispersion.

r (o,x) = PP 1 tanh a-2 ) (ox)2+ 2 do' (4.1)

By using the rotation F(o') for the intergrand in Equation (4.1) the

evaluation of the principal part of the integral is by definition

1 0-C +
F (o,x) = 1 lim { f F(o')do'+ f F(o')do'} (4.2)

E*O - 0+E

To be able to evaluate the integral of Equation (4.1) a continuation

into the complex plane will be made. By defining a closed contour of

integration it is possible to use the residue theorem from complex

analysis to evaluate the integral. The contour of integration which

is used here is shown in Figure 4.1. It is called C, and it consists

of the curves r,r' and I.



(2n 1R

r'X+ iQ

-R 1 0 1 R Re[o'
0
X - ia

Figure 4.1 The integration contour C in the complex plane which is
used in the evaluation of the integral in Equation (4T)
The poles of the integrand of Equation (4.1) are indi-
cated by the symbol ()

The curve F in Figure 4.1 is a semicircle in the upper halfplane with

radius R. It meets with the real axes at the points a' =-R and

o = R, and it intersects the imaginary axes at the point a' = iR. In

appendix A it will be shown that the integrand of Equation (4.1) has

infinitely many poles on the imaginary axes. There is, however, a

finite distance unequal zero between these poles. This means that the

curve r can always be made to intersect between two such poles. 2 In

the limit where R- the integral along the curve r will tend to zero

since the integrand of Equation (4.2) goes to zero as R-3 for big 1 0r

The curve F' is a small semicircle with radius c centred in o'=o.

The integral along this curve will be evaluated for the limit c-O in

Appendix A.

The curve I consists of two intervals on the real axis, namely

-R5o'5o-e and o+cao':R, where 0. In the limit R- and £-O the inte-

2This may of course slightly distort the value of the intergrand on
the semicircle F, but in the limit R-- such a distortion will not
change the value of the integral along F.
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gral along I is the principal part of the integral in Equation (4.1).

By means of the residue theorem the closed contour integral is given

by

j F(o')do' f F(o?)do' + J F(o')do' + f F(oljdol

(4.3)

210 The surn of the residues of

LF(a') inside the contour C

In the limit R;- and c-*o the result is

+- rhe sum of the residues of -unfFod

PP f F(o')dn' = ' LT F(o') inside the contour C - i ~'d

(4.4)

A detailed calculation of the right hand side of Equation (4.4) is

described in Appendix A, and the result is given in Equation (A.18).

The result for the Hilbert transform described by Equation (4.1) is

F(o.x) 1-PP f F(o')do'

i x-0 + sin im I p(+iL(x-ia))- wc +i..(x+ia))lI
iT(-o2 a2 Lcosh(Ox 'cos it 21 2m1T

iT (x-o)'+a7 Fsh(x1 o(a T T

___Re [ I~io

The function tp(z) is the digaima function defined by

() L(1n (z)) =rZ (4.6)

where 17(z) is the gammua function (9).

The Volgt dispersion function Fv(o,oi) defined in Equation (3.19) can
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now be rewritten by Equation (4.5)

F (0o,0) n2(o,x) exp d-n2( )dx (4.7)

A notation equivalent to the one used in Equation (3.9) gives the fol-

lowing compact formula foe the Voigt dispersion function

Fv(0,0i) F J (Ox) • fd(xoi)dx

where fd(',') is the Doppler line shape function.

The high pressure limit for the Voigt dispersion function is found

from Equation (4.8) and (3.10)

irm FV (0,0 ) F (o,oi) (4.9)
ad *0

Ihe Lorentz dispersion function, Fe(o,oi), is given by Equation (4,5)

when the variable x is substituted with the resonance wave number, ol,

The low pressure limit for the Voigt dispersion function is also found

from Equation (4.8) when the limit of Equation (4.5), as the Lorentz

half width, a, tends to zero, is determined. The limit of Equation

(4.5) is

1 1 • an x
lim Y{o ,x) = a x---'

(4,10)

+ 6(x-o) Re['p( + i-x)- ,( + i~o)I

The low pressure limit for the Voigt dispersion function is then

lim Fv (o,o) : T tanh ( ) fd(xloi)dx (4.11)
aeo

Since the integrand in (4.11) diverges where x-a the integration must
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be performed by calculation of the principal part. In this respect

Equation (4.11) is identical to Equation (3.22) defining the Doppler

dispersion function, v.i.z

lim Fv ( , i) = Fd(OO i) (4,12)
a-o

An explicit expression for the Doppler dispersion function will not be

calcualted in this report.

At this stage it is useful to remind oneself that the dispersion,

An(o), given by Equation (3.15) has the following form

IT W- i W )Si (T)I v(o,) + Fv(O,-Oi)] (4.13)

By using Equations (A.5) dnd (4.9) it is now possible to give an

explicit expression for the dispersion in the high pressure limit

1 I c3 oi 0 1(a T (oi .+An(o) W°i °j( T2
W(m )  () (0i-) + a T I(oi  (o 0) +a 2'

1 0i +0  ( 1 a T.
+ Tr (oi+)+c • +07oi' + i (0i+0)2+&2 T2 (o,oi) (4.14)

The functions TI(.) and T2 (.,.) are easily identified from Equation

(4.5). To establish Equation (4.14) the following relations are used

T1(-oi) : -Tl(oi)

T2(o,-oi) : T2(o,oi) (4.15)

The well known anomalous dispersion form due to a resonance transition

is recognized from the first term in Equation (4.14).

To illustrate the wave number dependence of the different terms in

Equation (4.14) the four terms (exclusive the T1 and T2 functions) are

plotted separately for two different resonance wave numbers

(ai = 1 cm-1 and oi = 100 cm- 1) in the Figures 4.2 and 4.3. The

Lorentz half width and the temperature are 0.1 cm-1 and 296 K. The
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value of the functions Tl(n1 ) and T2(o,oi)o=oi is given (on the

figures) for each resonance wavE number.

Figure 4.2 illustrates the situation when the resonance wave number is

I cm-1  The numbers referin to the different curves indicate the

term number in Equation (4.14).

4e 0 = 1 cm1

0 = O,1 cm t

l 3(296K) = 4.86-1 0cm
3 

T1 (O,) =243.10' 3

0 2 (00.O,) = 2.43.10-4

Wave number, cm1

-2

Figure 4.2 Wave number dependence of the different terms in Equatior
(4.14) for resonance wave number oi = 1 cm

-1

The functions TI(oi) and T2(o,oi)o=oi have the values
indicated

For the discussion of the results in Figure 4.2 the following symbolic

representation of the wave number dependent part of Equation (4.14) is

useful (Assuming T2(0,o) is a slowly varying function when ooi)

i = ( T1(o.) + • T(o.,o) + • T(oi) + T (
21 1 (DT2(oi'o

(4.16)

The results in Figure 4.2 shows that the peak value of the first term

in Equation (4.16) Is dominating. The peak values of the second and

third term are about one and two orders of magnitude less than the

first term. The value of the fourth term is negligible.

At this point some comments about the values of the functions Tl(oi)
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and T2(Oi,Oi) given in Figure 4.2 are worthwhile. Disregarding the
diaganna. function (this approximation is discussed in Chapter 5) these
functions are given by:

T00- sinh(~oi) 1 1ah 0i oI1 o cosh(Oo .)+cos(o) 2 2ah-- ~-(.?

TsinOa) $a OT2(0~10) cosh(Oo. i+cosoa 8a cosh( oi)+1 4.8

when Oa << 1 and Boi << 1.

The values of TI(oi) and T2(0i,Oi) given in Figure 4.2 are exactly
reproduced by the approximations (4.17) and (4.18). The very low
value of TI(oi) (=2.43-10-3) indicates that at this low resonance wave
number stimulated emission is an important process with regard to dis-
persion (and absorption).

Figure 4.3 illustrates the situation when the resonance wave number
100 cnv'.

4- 0, = 100 cm'1

= =0, 1CM '1
3-I (296K) =4.86-10 3 CM

T, (0.) = 0.24
1) T2 W(O) = 2.31.10-4

3and

97 98 99 100 101 -102 103 104

-1 r ljWave numa:er, cm1

-2

Figure 4.3 Wave number dependence of the different terms in Equation
(4.14) for resonance wave number 61 = 100 cm-r
The functions T1(oij) and T2(0,oi)001O- have the values
indicated
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lhe results in Figure 4.3 shows that the peak value of the first term

in Equation (4.16) is dominating with at least two orders of magnitude

over the other terms.

The values of Tl(oi) and T2(oi,oi) stated in Figure 4.3 are almost

exactly reproduced by the approximations (4.17) and (4.18). The value

of TI(o i) (0.24) has increased by two orders of magnitude indicating

the reduced importance of stimulated emission as the resonance wave

number increases.

The part of the approximations in (4.17) and (4.18) which are valid

when only 0a << 1 shows that T1 (oi) - 1 and T2(o,oi) - 0 when the re

sonance wave number increases. For oi > 500 cm-1 , T1(oi) > 0.84 and

12(0,0) < 8.5.10- 5 when the temperature is 296 K.

As a result of this discussion it is reasonable to assume that, at

standard atmospheric pressure (Lorentz broadning dominates) and

temperature, the dispersion in the infrared and visible part of the

spectrum is well approximated by

0oi- 0

An(o) = 41ij W(m.) Si(T) - (a°)2+a (4.19)

The result in Equation (4.19) could easily be obtained by doing the

following approximations in the expression for the optical depth

(Equation (3.1)) tanh(Oo/2) = I and f(-o,oi) = 0 prior to the Hilbert

transformation.

A general line by line calculation of the dispersion valid for differ

ent pressures and temperatures may in principle be implemented by

means of the Equations (4.5), (4.7) and (4.13). However, the presence

of the digamma function in Equation (4.5) makes such an implementation

rather awkward. In the next chapter approximations that simplify the

expression of Equations (4.5) and (4.7) will be made. The validity of

these approximations in different domains of wave numbers and thermo-

dynamic parameters will be discussed. One of these approximations

will be implemented as a computer program for line by line calculation.
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5 APPROXIMATIONS AND IMPLEMENTATION TN FASCOD2

The aim of the work described in this chapter is to develop an

approximation for the dispersion formulas calcuiated in Chapter 3

vhicn is suitable for line by line calculation within the framework of

FASCOD2 (10).

TI.e first part of this chapter will mainly discuss the importance of

the different terms in the dispersion formulas especially the Loren~z

d ispersion function given by Equations (4.9) and (4.5). The result of

this discussion will establish certain domains for the resonance wave

numbers and tne th e.-modynamic parameters where difftrent approxima-

tions for the Lorentz dispersion function are valid.

'he second part of this chapter describes one specific approximation

dnd the implementation of this approximation in FASCOD2 for line by

line calc~lation of dispersion.

54l Approximations for the Lorentz dispersion function

The discussion in this part will concentrate on approximations for the

Lorentz dispersion function, Fg(ooi), given by Equation (4.9) and

(45). The rcason is that a valid approximation fir the Lorentz dis-

persion function also imply a valid approximation for the Voigt dis-

pers'nn function given hy

F (ja) n2 1 X-O* 2v .o ad F(ox) • exp[-ln2 (--d-) ]dx (5.1)

This statement requires that the exponentia, in Equation (5.1) has

diminishing values near the edge of the validity rdqion for the

approximate Lorentz dispersion function. In other wods the vali-

dity region for the approximate Volgt dispersion function will be

some Doppler half widths less than the validity region for the

approximate Lorentz dispersion funct*on.
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From Equation (4.5), (4.9) ino (4.i4) the Lomplete expressions for

the Lorentz dispersion functions are

F 1 00 1 a
F) (a -o)I+a' " T (0.3) (+ (i-o )1+0~ " 2(0'i)

(5.2)

0 0140 1 a
FT(o,-oi) oi + ( )2+- 2 ('a

IT (o +C)2+a" T1  (a i +-*0

where

sinh( oi)

1 (0 cosh( oi )+Cos a )  T m-a(ia)) -(
+ ia )

(5.3)

(O' s -n Lo ) +_ 'Re  { (+

('sO) cosh() +IT 1T + Tr

2Re {'( + j. o)}

Irn order to do a line by line computation of dispersion based on the

Voigt dispersion function, Equation (5.1), or even the Lorentz disper

siun function, the functions Ti(oi) and T2 (o,oi) are rather awkward.

Especi lly the digamma functions with complex arguments.

It is therefore necessary to analyse th. value of the terms in ECJa

tion (5.3) in order to determine a dorain of resonance wave number"

and t..crmodynamic parameters where the digamma functions can be

neglected. This analysis is described in detail in Appendix B. The

result is given in Equation (B.1O) stating that the diagamma func-

tions can be neglected when

sinh(o i) 3

cosh(Ooi)+cos(5a) F

Since the value of O*a (= hcikT-a) normally is much less than one (in

atmospheriL physics O'a < 10-) the inequality (5.4) is equivalent to
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o >> 2 arctanh ( 3-- a) Z 6 (5.5)

in atmospheric physics the maximum value of the Lorentz half width is

of the order 0,5 cm-'. A neglection of the digamma functions is then

a valid approximation when

01 >> 0,3 cm-' (5.6)

ThiS means that the digamma functions have some influence on atmos-

pheric dispersion for resonance transitions in the wavenumber interval

up to -1 cm- . In the visible and infrared wave number domain the

influence of these functions are of no importance, but atmospheric

influence on electromagnetic radiation with wave number less than

cm-1 (corresponding to a frequency of 30 GHz) is of great importance

in many teLhnological applications.

When the inequality (5.4) holds it is possible to define approximate

Vciqt and Lorentz dispersion functions, FvA(O,Oi) and FIA(O,oi)

FvA(O'Oi) f F2A(O,x).fd(x,Oi)dx (5.7)

where

fd(x,oi) The Doppler line shape function

F 0i-0 I a
2A I =T (ai- o)+a • TiA(oi) + i (oi-o)2+a2  2A(oi)

(5.8)

sinh(Oo.)
TA(a.) =

cosh(BOo)+cos(Oa)

(5.9)

T 2A(O i) si(a
cosh(Ooa)+cos(Oa)

In order to get a picture of the importance of the different terms and
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variables in the approximate Voigt dispersion function a computer

program that performs the integration in Equation (5.7) for one

single resonance transition is developed. In this case the dispersion

is given by the simplified formula

An(o) 1 W(m.) [ oi) + F ,-o)] (5.ir)4Tr i FvA(1' vA(

The programme calculates only the sum of the two approximate Voigt

dispersion Functions in Equation (5.10). This sum can be expressed as

a sum of a Dominating term, FvAD(O,ai), and a Correcting term,

FvAC(O,oi), v.i.z

FvA(o"oi) + FvA(O,-oi) = FvAD(Ooi) + FvAC(Ol'i) (5.11)

where

F x-o

vAD(' : = f TIA(x) ii (x-o)2 +a2  d(x'ai)dx (5o12)

I x+o

FvAC(o = A(X) IT (x+o) 2+a2  fd ,0i

1 a 1
+f r2A (x) T (x-o)+o 2  T (x+o)2. 2_a fd(x,oi) dx

(5.13)

f (x1a ) 1n2 1 exp[-In2 (X--a) 2] (5,14)d i ad d

The calculat4 on of the sum in Equation (5.11) and the correcting term

in Equation (5.13) is done for two different thermodynamic situation.

One in the high pressure limit where the homogeneous (Lorentz) broad-

ening dominates and one in the intermediate regime where the homogene-

ous and Inhomogeneous (Doppler) line widths are equal. The calcula-

tions are done for two resonance wave numbers oi - 1 cm-' and

oI = 100 cm-1 . The Doppler line width used in the calculations is

adequate for a H20 molecule.
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The Figures 5.1 and 5.2 show both the sum of the dominating and cor-

recting term and the correcting term only for the two different ther-

modynamic situations when the resonance wave number is I cm-1.

P =1013 mb, I 296 K

a = 0.1 CM1

4- FvAD FvAC a d (HZ0) =1,45.10-
6cm 1

0, = 1 Cm1

3-

2-

1 ,- FVAC

02---- 34 5

-1 Wave number, cm-1

Figure 5.1 The total Voigt dispersion function (5.11) and the cor-
recting term (5.12) at standard temperature andLressure
when ai 1 cm-1
TB 7=._86.-10-_" cm, T1AOO ) 2,43-10', T2A(Oi) =2.43,10-')

300, P 1.2. o 2 mb, T = t K

1 a Ocd (H20) = 1.27.10o6CM-1

FvAD + FvAC 20I-,-c

FvAC 100

0.99990 0.99995 Wave number, cm1I 1.00005 - 1.00010

-100.

-200-

-300-

Figure 5.2 The total Voigt dispersion function (5.11) and the cor-
recting term (5.12 when the Lorentz and Doppler half
widths are equal and oi * 1 cm-1
TO- 6.23-10" cm, TWAOl) - 3,11.10O',T2A(Oi) - 3.96-10-')
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The big differences between the shapes and peak values in Figure 5.1

and 5.2 are mainly due to the five order of magnitude change of the

effective line width. This is also the reason for the vanishing cor-

recting term in Figure 5.2. When the results in Figure 5.1 and 5.2 are

used for calculation of the dispersion by Equation (5.10) (assuming

equal line strength Si) the number density must be scaled oroperly by

the factor (p/po)-(To/T)). The resulting peak dispersion is almost

equal for the two situations.

Figure 5.3 and 5.4 show almost the same situations as the preceeding

figures when the resonance wave number is 100 cm- .

ine difference in shape and peak values between Figure 5.3 and 5.4 is

mainly due to the tree order of magnitude change of the effective line

width. The correcting term vanishes in both situations mainly because

the resonance wave number is increased by two orders of magnitude.

The peak value in Figure 5.4 scaled by the number density factor is

almost equal to the peak value in Figure 5.3 resulting in about equal

peak dispersion for the two situations (assuming equal line strength

SO).

The peak value of the dispersion for resonance wave number 100 cm- , is

however about two orders of magnitude greater than the peak value of

the dispersion for resonance wave number 1 cm-1. This is seen by com-

paring the peak values in Figure 5.1 and 5.3. (The same result is

obtained by comparing the peak values of Figure 5.2 and 5.4 after

proper scaleing by the number density factor). The reason is that the

value of the function T1A(Oi) is almost linear with wave number in this

region. This again demonstrates the reduced importance of stimulated

emission with increasing resonance wave number.
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X10-1

P = ~1013 mb, T = 296 K

aI = .1Cm-1

31 - (H20) =1,45.10-4CM-1

FvAD + vAC / i 100 Cm- 1

2

FVAC

96 98 Wave number, cm1l 102 -- ~-104-
-1-

-2-

-3

-4r

Figure 5.,3 The total Voigt dispersion function (5.11) and the cor-
rectin tern (5.12) at standard ternperature an~d pressure
when oj = 100 cnr'
F = 4.86-10-3 cm.' T1A(Oi) =0.24, T2A(o1) 2.31-10-1)

Pale=c 1,1 mb, T 17 K

300-
(- =U(Ad (H2) 1.24.i _M1

FVAD + FvAC 200 0 0 m

FvAC 100

99.990 99.995 Wave number, cm* 100.005 - 10.010

-100-

-200-

-300r

Figure 5.4 The total Voigt dispersion function (5.11) and the cor-
recting tern '5.12) when the Lorentz and Doppler half
widtl;s are equal and oi a 100 cm-1

=6.63-10-3 cm, TWAOi) = 0,33,T2A(Oi) = 8.22-10-7)
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5.2 Implementation in FASCOD2

The discussion in this part will concentrate on the implementation of

an appropriate formula for line by line computation of dispersion by a

Iiahtlv modified FASCOD2.

For line by line computation of absorbtion the Voigt line shape func-

tion of Equation (3.5) is used. This necessitates a numerical inte-

gration to achieve each value of the Voigt line shape. To speed up

this integration process a special algorithm has been developed based

on the fact that the Voigt line shape has a "fall off" - (o-0i)-2 dis

tant from the line center while the inhomogenous (Doppler) broadning

is important near the line center.

This algorithm will probably not give a correct result for the

approximative Voigt dispersion function of Equation (5.7) since the

dominating term has a "fall off" - (o-oi) -1 (see Equation (5.12)) dis

tant from the line center. To implement the Voigt dispersion function

in FASCOD2 a new algorithm for numerical integration has to be

developed. This problem is not addressed in thic rport.

Due to the lack of a new numerical integration algortihm only the

approximative Lorentz dispersion function has been implemented in

FASCOD2. The implemented formula for line by line computation of

dispersion is

AnIo) W(m Si(T) [F+A( Ai (,-oi)] (5.15)

where

FIA(OOi) + (l- ) + 1TAi) a T
ST (o1 io)

2+a2 T2Al (5.16)

FIA("O_i) -1 (°I +0) 2+a2 TIA(oi+O)+iT (oi+o)r+_a_ T2A(Ol 5.7

sinh(Oo i)
T1A(O i) cosh(Ooi)+cos(0a) (5.18)
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T o ) sin (5.19)

T2A(ai) = cosh(Oai)+cos(Oa)

= hc/kT

a - Lorentz half width (HWHM); function of temperature and pressure

The connection between the line strength, Si(T), in Equation (5.15) and

the line strength, Si(T), filed on the HITRAN molecular database (11) is

Si(T)
Si(T) (5.20)Boi

oitanh()

The units of the HITRAN line strength is cm/molecule.

Equation (5.15) should give an adequate description of the dispersion
in a mixture of gases when the following conditions are fulfilled:

a) The dipole approximation and a classical description of the

radiation field are valid

b) Line coupling effects are negligible

c) Homogenous (Lorentz) broadning is dominant

d) The resonance wave number oi ' I cm-1

The theoretical description in this report makes it possible to defeat

condition d) by introducing the digamma functions in Equations (5.18)

and (5.19), and condition c) by developing a new numerical integration

algorithm for the Voigt dispersion function.
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6 LINE BY LINE CALCULATION OF ATMOSPHERIC DISPERSION

This chapter describes results from some line by line calculations of

atmospheric disperbion by FASCOD2 modified according to Equations

(5.iL)-(5.19). Four results are presented and discussed. These

results show the atmospheric dispersion in different wave number

regions at different spectral resolution for the Midlatitude summer

model, i e temperature 294 K, pressure 1013 mb and a water content of

14 g/m3 at ground level.

Figure 6.1 shows a result where the contribution to the dispersion

steems mostly (though not totally), from one single transition in the

water molecule with resonance wavenumber oi = 1684.837 cm
-1 and

Lorentz half width a 0.0962 cm-1 .

WAVELENGTH (MICROMETER)
5.938 5.937 5.936 5-935 5.934 5.933 5-932

1 2E 05 ....

&OE 06

40E 06

0

&0E 06

-1.2E -05 -

1684 1685 lbS6
WAVENUMBER (CM - 1)

Figure 6.1 The atmospheric dispersion at ground level in the wave
number interval 1684-1686 cm-1 for the Midlatitude sum-
mer model.
The main contribution to the dispersion is from a transi-
tion in the water molecule with resonance wavenumber
ai - 1684.837 cm-1.

The result in Figure 6.1 shows the classical dispersion connected to

one single resonance transition. The maximum and minimum value of the

dispersion in Figure 6.1 are
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Anmax 8.9-10-* (6.1)

A, n 1.0.10-' (6.2)

For this single line in the infrared part of the spectrum it is easy

to verify the result in Figure 6.1 from Equation (4.19). For a single

line Equation (4.19) is modified to read

1 - oi- 0
An(o) 4Tr W(mi). Si(T) - (oi-o)

2 
+ al (6.3)

By introducing the HITRAN line strength from Equation (5.20) and the

approximation tanh(Ooi/2)zl in the infrared at standard temperature,

Equation (6.3) is modified to

1 1 ai- 0

An(o) 1 a2  W(mi) - Si(T) (6.4)
iT (oi_ 0)2 + 1 1-I

The maximum and minimum value of Equation (6.4) occur when the wave

number is equal to oi ± a and the peak values of the dispersion are

n 1 W(m.) Si(T)
Anma i:± 1 " o i • ____ (6.5)

max,min= :t *-F a

when

amaxmin = oi± a (6.6)

The number density of water molecules and the line strength on the

HITRAN data base for this transition gives the following value for the

product of number density and line strength

W(mi) • Si(T) = 0.1304 cm-2  (6.7)

Wave number and value for the peak dispersion calculated from Equation

(6.5) and (6.6) is
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Anmax,m n ± 1.0"10- (6.8)

omax 1684.741 cm-

0mi n = 1684.933 cm-1  (6.9)

The calculated result in (6.8) and (6.9) are in very good agreement

with the results presented in Figure 6.1. Wave number and value for

the minimum dispersion have the best agreement due to less influence

from another resonance line at lower wavenumbers in the FASCOD2

calculations.

The conclusion from the preceeding comparison between the FASCOD2

result and a theoretical result is that the implementation in FASCOD2

most probably performs a correct calculation of the dispersion.

Figure 6.2 shows the atmospheric dispersion in the wavenumber region

35-45 cm-', where several transitions in the water molecule are con-

tributing to a rather complex result due to interference between dif-

ferent lines. The atmospheric model is still Midlatitude summer at

ground level.

FREQUENCY (GHz)
1050 1200

60E -04 -

4 OE -04

20E 04

0

0~

20OE 04

40OE 04

6 OE -04
35 40 45

WAVENUMBER (CM -1)

Figure 6.2 The atmospheric dispersion at ground level in the wave
number interval 35-45 cm'1 for the Midlatitude sunmmer
model.
Teiveral transitions in the water molecule with different
line strength are contributing.

1166-
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The complex nature of the dispersion in Figure 6.2 is aue to the

interference between a number of different water vapour lines with

different line strength. The peak dispersion in Figure 6.2 is about

one order of magnitude greater than the peak dispersion in Figure 6.1.

This effect can be infered from Equation (6.5) although this equation

is not strictly correct in this wavenumber region.

Figure 6.3 shows the atmospheric dispersion for the entire wavenumber

region 0-500 cm-1 . The majority of the "lines" are due to transitions

in the water molecule.

FREQUENCY (GHz)
0 2998 5996 8994 11992

12E 03-

80E 04

40E 04

2 1cc0 J- )

4 OI 04

8.OE 04

I 2E -03 . .. . .... .
0 100 200 300 400 500

WAVENUMBER (CM 1)

Figure 6.3 Atmospheric dispersion at ground level in the wave-
number interval 0-500 cm- for the Midlatitude summer
model.
The main contribution to the dispersion steems from seve-
ral transition in the water molecule

The maximum and minimum value of the dispersion in Figure 6.3 is

1.06.10 -3 for the resonance line near 150 cm-1 . By anticipating the

validity of Edln's formula, see (1), for dry air in the p-wave region

it is possible to calculate the maximum and minimum value of the

refractive index around -150 cm-1 for the gas mixture in this example.

Edln's formula corrected for a temperature of 294 K gives (a = 150 cm- 1).
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(n-m )dryl= 2.6f10-o (6.10)

The influence of water vapour on the refractive index then gives the
following maximum and minimum value for the refractive index of the

gas mixture near the wave number 150 cm-1

1 + 0.26"10-1 ± 1,06"10 - 3  
= (6.11)

n min] =099920

The calculations in (6.11)show the rather peculiar result that the

minimum refractive index is less than unity. The calculations o

show that every resonance line in Figure 6.3 with a minimum ,al. for

the dispersion less than 2.6.10-1 will exhibit a corresponding minimum

refractive index less than unity. The majority of the resonance lines

in this wave number region will, as seen from Figure 6.3, exhibit this

pecularity. Whether these results are correct remains to be deter-

mined by experiments.

Figure 6.4 shows the atmospheric dispersion in the wave number

interval 2300-2400 cm-1 for the Midlatitude summer model, at ground

level. It is mainly the CO2 molecule that contributes to the disper-

sion in this wavenumber interval.

The structures of the dispersion in Figure 6.4 are due to the P- and

R-branch of viberational-rotational transition of CO2 centered at wave

number 2349.146 cm-1 .

In this wave number interval the Edlin formula gives the following

value for the refractive index of dry air (a = 2350 cm-1 )

(n-l)dry = 2.7.10 - 4  (6.12)

The peak dispersion in Figure 6.4 are about two orders of magnitude

less than the Edlin value. Resonance lines in this wave number region

therefore contribute negligible to the refractive index of air in the

Midlatitude summer model.
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WAVELENGTH (MICROMETER)

432 4.29 426 423 -220 4 17

3 0E 06

2 OE 06

0

1 OE 06 r.

-2 OE 06

3.OE 06
2300 2350 2400

WAVENUMBER (CM -1)

Figure 6.4 Atmospheric dispersion at ground level in the wave number
interval 2300-2400 cm-1 for the Midlatitude surmmer model-.
It is mainly C02 that contributes to the disperison in
this interval.

An overview of the dispersion for the entire wave number region
500 cm-1 - 15000 cm24 for the Midlatitude summer model is given in

Appendix C.

The input data for FASCOD2 are as mentioned provided by tl~e line data

base HITRAN. This database contains l4ne data for molecular transi-
tions with resonance wave numbers in the wave number interval

0-17900 cnr'. In the wave number interval dove 5000 cnr the disper-

sion is a very small quantity in air (less than 310- for the Mid-

latitude summner model). It has not been possible to find measureme.ts
with an acc-uracy that makes the verification of the fine structure of
our computatl:ns possible in this interval. Below bOQO cm-' there are

wave number intervals where the dispersion has a substantially higher

value. The most interesting domain, when it comes to compari.ans

between calculatoce and measurements, is the wave number interval

0-500 cm -1 . In this wave number interval the modified version of

FASCO02 predicts that the value of the disperison is in the range

±1.2-10- for Oe Midlatitude sumer model.

1 1Lh anacrc htmkstevrfiaino h iesrcueo
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A paper by Liebe, (3), investigates a model made for the computat'on

rf ittcn,.ition ind dispersive delay in the wave number interval

$-33 cm- . Comparisors between his model and measurements are done,

anc Liebe ciaims thtt ;ood agreement between model predictions and

field/laboratory experiments is obtained.

Figure 5.5 shows tre resu ts from Liebe's model for the dispersion,

whilst Figure 6.6 shows 'l e dispersion calcilated by the modified ver-

sion of FASCOD2. The ,gis mixture and thermodynamic parameters are

identical.

1 r-

o ,

,.lo 3i °  ~i ~ ----------- -

71log
5 10 15 20 25 '0

WAVENUMBER (cm - )

Figure 6.5 lhe calcualted dispersion for air where the relative
humidity is 100%, the temperature is 303 K and the
pressure is 1013 mb. From Liebe. (3).
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Figure 6.6 The disperslrn calculated by the modified version of
FASCOD2.
The gas mixture and the thermodynami. parameters are
identical to those used by Liebe (3).
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A close comparison between the dispersion in Figure 6.5 and 6.6 shows

excellent agreement especially between the peak dispersion at

18.5 cm-1 wave number.

The results presented in this chapter demonstrate that the modified

version of FASCOD2 performs a correct line by line calculation of the

dispersion due to resonance transitions when homogenous (Lorentz)

broadening is dominant.

7 CONCLUSIONS AND PROPOSITIONS FOR FURTHER RESEARCH

From the connection between the complex propagation constant of an

electromagnetic field in a medium and the complex linear suscepti-

bility, a Hilbert transform relationship between the anomalous dis-

persion and the optical depth has been established via the Kramer-

Kronig relations. Based on the Van Vleck-Huber formalism for the

optical depth an explicit expression for the dispersion in a mixture

of gases is developed. This expression determines the dispersion

whether the line shape is described by the Voigt, Lorentz or Doppler

line shape functions.

The derived dispersion is valid for all wavenumbers provided the

dipole approximation is valid and a classical description of the

electromagnetic field is adequate. The effect of line coupling is not

taken into account. The Hilbert transformation of the optical depth

is performed without approximations.

The importance of the different terms in the derived expression is

visualized and discussed by numerical examples.

Since the complete expression for the dispersion is rather awkward for

numerical computations an approximation is developed. This approximate

expression for the dispersion is valid when the resonance wave number

for a transition is greater than 1 cm-1 (30 GHz). Numerical examples

of the approximate dispersion for a single resonance line described by
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a Voigt line shape function is also visualized and discussed.

In order to perform a line by line computation of the dispersion in a

mixture of gases the computer code FASCOD2, developed by the US Air

Force Geophysics Laboratory (AFGL), has been modified. The modified

version of FASCOD2 only performs correct computation of the dispersion

when the gas pressure is in the regime where homogenous (Lorentz)

broadning is dominant and the resonance wave number is greater than

I cm- 1.

Examples of line by line calculated atmospheric dispersion for the

Midlatitude Summer model at standard atmospheric pressure are given.

One example shows that the calculated dispersion from FASCOD2 is iden-

tical to the theoretical result for a specific transition in the

infrared region. This result confirms that the modifications in

FASCOD2 are correct. Another example from the wave number region

1-33 co-r, is a comparison between the calculated result from FASCOD2

and the measurements of H J Liebe at the Institute for Telecorrinunica-

tion Sciences, USA. These two results are in excellent agreement.

The result from these two examples leads to the conclusion that the

theoretical expression for the dispersion derived in this report and

the implementation in FASCOD2 gives a correct line by line computation

of the dispersion in a mixture of gases when line coupling effects are

negligible.

In order to achieve increased confidence in the theoretical results

derived in this report a greater effort is needed. The rest of this

chapter is therefore devoted to propositions for further research.

Results from the existing modified FASCOD2 should be compared with

high resolution measurement of dispersion in different wavenumber

regions at different temperature and humidity.

In order to do line by line calculations for resonance transitions

< 1 cm-1 (30 GHz) the neglected digamna functions in the Iorentz dis-

persion function should be incorporated in the existing line by line

code. This would facilitate comparison between calculated and mea-

l|.
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sured dispersion for frequencies below 30 GHz; a frequency range of

great technological importance.

To get a complete description of the dispersion valid for all gas

pressures the Voigt dispersion function should be used by the computer

code. This requires the development of a fast numerical integration

algorithm for the calculation of the Voigt dispersion function.

The hypothesis that the refractive index of air in the visible and

infrared is the result of adding the "distant wing dispersion" due to

all strong UV-transitions, should be tested by the existing modified
FASCOD2. This requires that data for the relevant UV-transitions

exists on the HITRAN data base, and a change in FASCOD2 of the maximum
distance from the line center where the effect from a line is taken
into account. The result of this line by line calculation depends

heavily on the correctness of the Lorentzian "wings" but even a result

of the same order of magnitude as given by the Edl~n formula would be

an encouragement.
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A PP EN D IX A

DETAILS OF THE HILBERT TRANSFORMATION IN CHAPTER 4

i m (W'}
(2n +. 1)n

3 3

0

x-iQ

Figure A.1 The integration contour C in the complex plane which is
used in the evaluation of the integral in e uation A.1)
The poles of the integrand of equation (A.1) are
indicated by the symbol 0

In Chapter 4, Equation (4.4), it was shown that in the limit where

R a n ad E -* 0

PP fF(a')do' - 2-fi 1The sum of the residues ofI- i F(ol)do'
-e' nieth otu c-*o r,

(A.1)

where

F8ol) - 1 ahF~F'0 Tran (0'-x)Z+Cz

(A.2)

2tanh (0) 1 1 a 1

r olo 1To'-xia '-x+Iua
The integration of the function in Equation (A.2) along the curve r,
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can be evaluated as follows. The pole of F(o') at 01=0 is simple, SO

that the Laurent series has the form

b1(o) -n

F(ol) aT + ja (a'o A3
0 n=O n(A3

By doing the substitution

ol-0 = c e je (A.4)

the integral along 171 is given by

0 b 1(o) ie n 0.in
f F(ol)dol f i ice d8 + i an cn i e end8

1' T ce n=1 T

(A.5)

=-Ti b'o' + n1cn 1l-( n )n

In the limit e-~O one gets

Mim f F(o')dol = -Tibl(o) (A.6)
E-*0 P'

bl(o) is the residue of F(o') at o'=o. From Equ3tion (A.2) this

residue is given by

b (a) =res F(o') = tanh a- (A7
0 O=0 2 1T (o-x)2+az A?

In the limit E-*0 the integral along r' is then

lim f F(o')do' = -Ti-ltanh(L2) . 1 a (A.8)__

e-.o r, 2 1T o-x)+a 2  IA8

To evaluate the integral in Equation (A.1) the sum of the residues of

F(o') inside contour C remains to be determined.

One of the poles inside the curve C is a simple pole at ol = x+ia.

The residue of F(ol) at this point is

res F(o') = tanh ( OL~x~ia) 1 1 1- (A.9)9

o' =x+ia2 x-0 -+a

The rest of the poles of the function F(o') in Equation (A.2) inside

the closed contour C lie on the imaginary axes. These poles are
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infinitly many, simple, and they steem from the factor tanh (Bo')/2 in

F(o'). This factor is singular when

0o- = i 1 (2n+1), n = 0, 1, 2, (A.10)
2 2

Ine residue of pole number n is

res F(o') = 2 1 a (A.11)
r .2n+I .2n+10 , 2 n + i~ i f-B - - o ( ---- 1 ---X ) 

2  +

Note that this sequence of residues goes as n-3 for big n, so that the

corresponding sum of residues converges. To find an explicit expres-

sion for the series one can use partial fraction decomposition and the

relation (12)

(na(nb 1 1{O(b)-*(a)j (A.12)

n=o

where W(z) is the digamma function which is defined by

d (in F(z)) = r (A.13)

r(z) is the gamma function (9).

The sum of the residues on the imaginary axis is after some algebra

res F(o') =
n=o 0=i2n+1,

i [1 1 i+ (x-ia)) 1 1 + (x+ia))

T (o-x)+ia 2 T i1T (o-x)-ia 27t

+1 2ia i a (A.14)
+T (ox)2 +a (+

By using the Equations (A.8), (A.9) and (A.14) the result of the

integration is
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- FI o 1 a
PP f F(o')do' iTi tanh (00) 1 (-x)2+a2

- LI
1 2 1

+ IT tanh (8(X+ia)) 1 (x-1)+ia

+ i (o-x)+ia 27( + -- a)) - (o-x)-ia 21 T "
L

1 2ia iB -1
+- o--x) +a (h + -o) (A.15)

The principal part of the integral evaluated is by definition a real

function, but a brief look at the right hand side of (A.15) can hardly

convince anyone that this is so. By rewriting (A.15) using the fol-

lowing, relations (13)

Im{W( +iy)I IhT tanh (Ty) (A.16)

*(l-z) - *(z) = r cotg irz (A.17)

(z* : (z)(A.18)

the result in (A.19) is obtained after some cumbersome algebra

PP f F(o')do' =

1 X-0 sinh( 8x 1
i+ IM [*s(n + y(x-ia))-( + iBx+ia)

-1T Tx-o)z+az cs(x2  T

+ a IT sin 0aj+ 18 1
1T Tx-o)T+a L cosh(Ox)+cos(Oa) + Re i ( x + -ia))+*( + (x+ia)}

- 2Re {[( + 2-o) (A.19)

The result in (A.19) is obviously a real function.
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APPENDIX B

NEGLECTING THE DIGAMMA FUNCTIONS

In order to reduce the computational burden in the computation of the

Lorentz dispersion function it is necessary to establish an approxima-

tion where the digamma functions can be neglected. The Lorentz dis-

persion function defined by Equation (5.2) is:

F Z(0,i) =

1 °i- a [sin(Boi) 1 Im{ iB i-+(-4~o +io )
I a- o)2+a2  Lcosh(Ooi)+cos(Oa) +  I I( +'(oi-ia)) (i 2T( i r

1 a [ sin(Ba) + +1-a) i
+ 1 (oi- o)2+a2  cosh(Ooi)+cos(Oa ) + Re{1(7 1(oi +-(oi+i

2 ReW + 1$ o)} (B.1)

The desired approximation is:

1 0i- 0 sinh(Ooi)
F2A(o'°i) = (0 - o)2 + a2 cosh(Dai) + cos(oa)

a sin Oa)
IT T i- 6) + a cOsh 8aoi) + cos(8.2)

Note that the peak value of the second term in equation (B.2) will

only be of the same order of magnitude as the peak value of the first

term when the resonance wave number is small. However the wave number

dependence of the second term is such that it will always be unequal

to zero when the first term equals zero. This is why the second term

is kept for all resonance wave numbers.

The purpose of this appendix is to find the domain of resonance wave

number and thermodynamic parameters where the approximation (B.2) is

valid. In order to compare Equation (B.1) with Equation (B.2) the
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factors containing the digamma functions in (B.1) are expanded in

Taylor series.

IIm [ (Ih+ Oa +io~ V4(,, La + i L ~f

IT dx0LL) ( (L) 2

I t[Px+1i Oi 3x [ni **2r (8.3)

and

I a 0 O a 8.0
Re [ I+ +i2-a)+ 2(h + i-a - 2V(7Z +~ J &0

0(O))+ 2 d~ jip(x+iy)} L= 0) + 0(0 0 % (8.4)

The Figures (8.1) and (B.2) show that

-3 :s Lim[P(x+iy) I <(0 when y 0 (B.5)

This means that

Tm '2Tr 2T -i 277 oil(0 86

for all resonance wave numbers oi.

The second tern in the first [.] in Equation (8.1) is then negligible

compared to the first term when

Sinh(Ba i)> 3 Oa
cosh(BOO )+ Cos (Ba) (8.7)
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Figure B.1 The function d + -
dx ImX(x+wen0 i

A-Im {qP(x + iy)}x= 1

0 dx -210

-3'
0 90 y

Figure B.2 The function d ImI*(x + iy)x: when 0 : y < 90

The Figures (B.3) and (B.4) show that
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0 ids Re {[(x + i y) < 3 when y 0 (B.8)

which implies that

3B(o i- o)
0 Re { ( T i 0i )+i( -2-i -T oi)- 21T ( +i - )<

(B.9)

The fourth term in Equation (B.1) is then neglible compared to the

first term in (B.1) when

ai- a sinh(Ooi) a 3$(oi- a)

(ai- 0)2 a " cosh(0oi) +cos(Oa) >>(0 i- O)z + az " 2

(B.10)

A simplification of Equation (B.10) yields

sinh (Oo) 30a

cosh (Foi) + cos(Ba) (1

Since the Equations (B.7) and (B.11) are identical the digamma func-

tions in (B.1) can be neglected when Equation (B.11) is satisfied.

d

Figure B.3 The function Ref{i(x + ilx:when 0 y 9
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Re{YJ(x + Iy)lx3-

0 )0 y

Figure B.4 The function d-Rey (x + :yi hen 0 y -
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APPENDIX C

AN OVERVIEW OF ATMOSPHERIC DISPERSION IN THE WAVE NUMBER INTEOVAL
500-15000 cm-'

This Appendix gives an overview of calculated atmospheric dispersion

in thp wave number interval 500-15000 cm-'. The atmospheric model useo

in these calculations is the Midlatitude summer model, (pressure

10)3 mb, temperature 294 K).

The interval (0-500) cm-' is not presented here because Figure 6.1 cow

ers this spectral range. The interval 15000-17900 cm-' is not shown

because the dispersion is iery small in this region (<<10-9).

Each 'igure co\e,"s a broad interval of wave numbers. These figures

therefore gives only an impression of the magnitude of the dispersion

in the different wave number intervals. The dispersion varies about

four orders of magritude throughout the wave number interva.; from

aboit 10-s-10 - 1.
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Figure C.1 The atmospheric dispersion for t~ie wave number interval
500-3000 cm- . Midlatitude summer
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rigure C.2 The atmospheric dispersion for the wave number interval
3000-6000 cm-'. Midlatitude jummer
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Figure C.3 The atmospheric dispersion for the wave number interval
6000-9000 cm-1 . Midlatitude summer
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Figure C.4 The atmospheric dispersion for the wave number interval
9000-12000 cm-1 . Midlatitude summer
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Figure C.5 The atmospheric dispersion for the wave number interval
12000-15000 cm-1 . Midlatitude summer
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