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1. Introduction

When a specimen with an edge crack is subjected to fatigue loading, anisotropic and

inhomogeneous damage will slowly develop and eventually evolve into a typical

configuration in which a crack of length unity is lodged in a vanishingly small crack-tip

damage. Similarly when a notched specimen is fatigue loaded, a crack completely

surrounded by damage will eventually emerge. These two cases are depicted in Figs. 1 and

2 where e<<1 and ro(0) defines the shape of the damage zone.
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In order to understand the many lundamental physical phenomena associated with

the indicated crack-damage evolution, a meaningful description of the so-called damage

must first be given. Then the kinetic relation associated with the damage evolution must

also be fully explored and developed. Both issues have attracted the attention of many

researchers for many years, but the results have been rather inconclusive. It is partly for

this reason that neither issue was considered in a direct way in this project. Instead we

took an extremely simplistic approach by assuming that the main characteristics of a

damaged material is that it is softer than the original material. This assumption reduces

the unknown damage to an inhomogeneity that may be characterized by two elastic

constants which may in turn be interpreted as damage parameters.

When a crack is interacting with an inhomogeneity, such as the cases depicted in

Figs. 1 and 2, the associated elasticity problem is well defined and hence a full stress

analysis is possible. The availability of this solution makes it feasible to link the Eshelbv

(configuration) forces to the inhomogeneity geometry and moduli, which are used as a gross

representation for the damage. Thus, devising an efficient numencal procedure for

obtaining the desired elasticity solution became a main objective of this one-year project.

This objective was completed and the relevant results may be found in Chao-Hsun Chen's

thesis which was completed in 1990 uder the supervision of the PI (Appendix I).

It is perhaps clear from the general nature of the problem that the desired solution

can only be obtained by numerical means However, the actual computation must be

preceeded by a skillful asymptotic analysis so that the e-40 limit is analytically factored

out of the ensuing calculation. This is necessary because no numerical scheme can possibly

handle the conflicting limits required by t-0 (lrnost no inhomogeneitv) and r- 1/2 , 'D

(crack-tip inside the inhomogeneity). Such an asymptotic analysis, together with the

accompanying computational scheme, was su cessfully accomnnlished.

A more detailed description of this accomplishment is summarized in Section 2.
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The above objective bypasses the need and difficulty of addressing the many

physical phenomena associated with a typical state of damage, and yet the defining of a

state of damage, together with the associated kinetics, remains to be the most crucial issuet

It is with this consideration in mind that we chose to re-examine the implications of higher

order theories and found that the well-established grade-3 theory is the most outstanding

candidate. This accomplishment is suunarized in Section 3.

2. Numerical Solution of a Crack Interacting with an Inhomogeneity

The elasticity problems considered are those depicted in Figs. I and 2 where the

damaged material is simplistically replaced by a different elastic material, and is

henceforth termed an inhomogeneity. The geometry of a typical problem is therefore

defined by a dimensionless half-crack length 1, an inhomogeneity denoted by D1 which in

term is embedded in a medium denoted by D The associated elasticity problems are

formulated in terms of complex functions.

Let (z 1 ,z 2 ) be rectangular Cartesian coordinates and z=z1 + iz2  the associated

complex variable in the z-plane. For plane problems, the displacements ua(zi,z2),

stresses raf (ZlZ 2 ) and resultant force over an arc R =R - iR 2 may be expressed in

terms of two complex functions W(z) and w(z) viz.

2u(u 1+ u2 ) = KW(z) - zW'(z) - w(z)

iR = W(Z) + z W"(Z) + w(z)

where

3-4v plane stress

- (3-v)/(1 +v) plane strain

and u and v are, respectively, shear modulus and Poisson's ratio. For the class cf

proulems under consideration, the solution is more conveniently expressed in terms of W

and another complex function f defined by



f(z) = w(Z) - z , -

As a convention, an additional subscript a is placed on a parameter or variable to

indicate its region of definition D . Thus, W. and f are defined on D for which the

elastic constants are La) V a and a . Finally, for a two-component composite the

following composite parameters are important constants

12 + t 1 A

where y, n1 are associated with the inhomogeneity.

For a given problem the four complex functions W1 , fl, W2 and f2 are obtained

as infinite series. The constant coefficients are then determined by employing the readily

available Fast Fourier Transform Algorithm.

A) A Crack Lodged in a Tip Inhomogeneity.

The relevant analysis and results may be found in Chapter III of Appendix I. The

asymptotic analysis is thoroughly carried out to the order of c, and the final set of

equations to be solved numerically are given by equations (3.21) and (3.22) of Appendix i.

The implementation of Fast Fourier Transform subroutines is illustrated by equation

(3.28).

Our scheme appears to be more powerful than most of the known techniques in that

solutions accurate to the order of t can actually be computed (c.f. (3.29)). Moreover,

nonsymmetric problems can be handled just as easily as symmetric ones. The set of results

associated with Figs. 3.1 and 3.2 of Appendix I shows that the scheme is not affected by

the slenderness of the inhomogeneity (a circula imhomogeneity is the least troublesome in

every respect). To illustrate the efficiency of our scheme for nonsyrnrmetric configurations,

a slender inhomogeneity inclined at an angle a from the main crack is used as an example,

and no convergence difficulties were encountered in the calculation (Fig. 3).
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(B) A Crack Surround by a Thin Inhomogeneity.

The relevant analysis and resuits may he found in section 4.4 of Appendix I. One of

the presumed properties .Af the thin inhorrogeneity is that it shrinks onto the crack as e-C0.

The most important and new analytic conclusion of our investigation is the property

of the solution for D in the immediate neighborhood of a crack tip. It is shown that the

solution must involve powers of r where r = 0 is tile crack tip which is in D1.

This is in contrast to the crack-tip inhomogeneity solution where the series is of the form

of (n + 1/2)

This derived property establishes the form of the desired series solution upon which

the Fast Fourier Transform Algorithm is again applied. The accuracy and efficiency (in

terms of the number of terms needed) of the scheme are checked by the special case of a

confocal ellipse for which a numerically exact solution is available (Figs. 4.2.3, 4.2.4 and

4.3.2 of Appendix 1).

(C) hshelby Tensor and Eshelby (Configura Lion) Forces.

The relevant analysis are carried out in detail in Chapter V of Appendix I. Let

f(ead) be the strain energy density function, so that

The Eshelby tensor pa is defined by

PC~a = f6 Oa T J37U -ya

It is known that the various configuration forces, which are the generalized forces

associated with damage evolution, are but integrated forms of pOa. The calculation of the

many configuration forces would be greatly facilitated by a suitable representation of p 0

This objective is realized in Chapter V of Appendix I. It is shown that

p12-p21 = 2(W*' + W*

(P 12 -t1-21) +i2P 22 -- 2(zW* +w')



where w* and W* are two new complex functions defined by

ft1 2i(Zw (z))2

Kit1 - )W Zw (Z) TT w I ,

Since both W and w are already iii series form, the desired convenient representation is

complete.

3. Grade-3 Elasticity and Surface Phenomena

The issue of damage evolution was deliberately bypassed in the previous section for

the simple reason that there has not been to date a complete and definitive continuum

theory that may be used to study fatigue damage propagation. At the same time it is clear

that damage leads to failure and the creation of new surfaces. It is therefore desirable to

look for a theory that actually includes surface tension as one of its variables. The grade-3

elasticity, which was fully developed by Mindlin in 1965, has just such a variable. A

detailed re-examination of the theory, with special emphasis on surface phenomena, is

submitted as the second accomplishment of this one-year project. The main results are

delineated in a manuscript which is attached as Appendix II.

In view of the complexity of the theory, none of the mathematical deductions and

formulae are reproduced in this section. Highlights of our accomplishment include the

specific determination of the energy associated with a surface, with or without the presence

of body forces and/or other surface tractions. These results are presented in detail in a self

contained manner in Sections 6 and 7 of Appendix 1I.

The deduction given in Section 4 of Appendi:x II has effectively reduced the

complexity of the theory to an extent that only a series of much simpler problems ci

familiar properties needs to be solved. In view of the exploratory nature of this

inestigation, this accomplishment is most significant in that it can be readily applied to

yield solutions to important benchmark problems upon which the physical significance cf



the theory could be meaningfully evaluated. Point load, cracks and notches are among the

first ones to be continually examined by us.
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ABSTRACT

Newiy engineered high-performance composite matenais are very often reinforced by

particles, continuous or short fibers and thin layers. Cracks encountered in such matenals

are more often than not affected by its tip being located in one particular small particle or

thin layer of a composite. The physical effect of such apparently small geometric

alterations on the toughness of the material is finite and must be carefully examined.

Fatigue crack propagation usually leads to the formation of a thin layer of damaged

material surrounding the propagating crack. The thin layer of damage, however, is known

to have finite effects .' the various generalized Esheibv forces that dnve the damage.

The interaction of a crack and a small inhomogeneity in an otherwise homogeneous

medium is studied in this thesis. Asymptotically deduced computer codes are developed

for the purpose of computing any and all physical quantities relevant to the aforementioned

problems.



CHAPTER I

INTRODUCTION

With the advent of engineered multiphase materials in recent years, most notably

composites reinforced by particles, continuous or short fibers and thin layers, there has

come an interest in crack problems involving bodies of spatially varying material

properties. One particular aspect of the problem is the alteration in the stress intensity

factor (SIF) from its apparent value due to either the crack tip being lodged in a region

with elastic moduli differing from the bulk or the complete crack being located in one

particular phase of a composite. A crack partially penetrating a thin fiber and a crack

situated inside of a thin layer are but two examples. It is noted that the word thin is

appended to stress the very often encounted physical situation. The results presented in

this thesis have direct bearing on the understanding of the class of problems.

Fracture toughness enhancement has been observed in a number of ceramic systems

containing particles which undergo a transformation of the martensite type (T.K. Gupta

etal 1978). The high stresses in the vicinity of a macroscopic crack induce a transformation

of the particles and thereby alter the crack tip stress field. The associated SIF could be

approximated by that for a crack tip lodged in a thin inhomogeneity with moduli softer

than the bulk.

It is now a common knowledge that there exists a fracture process region or damage

zone near a crack tip where fracture process such as nucleation of voids or rMcrocracks and

their coalescence take place and the usual continuum theory does not apply. The damage

zone is usually small compared with the length of the crack and may be approximated by a

thin inhomogeneity with softer moduli.

The size and shape of a process region change as it moves along with the crack tip



under fatigue loading conditions. The net result is that of a crack surrounded bv an active

crack-tip process region together with an inactive wake, the damage region created and leit

behind by the traversing active region. This 's just the crack-layer configuration

investigated by Chuduovsky, Moet and Botsis (1987). If we approximate the damaged

region by an elastic material with softer moduli, the crack-layer configuration is just that

of a crack lying inside of a thin inhomogeneity embedded in an otherwise homogeneous

medium. The change of the crack-layer configuration leads to a number of identifiable

energe-release rates which cannot be determined withour a careful stress analysis. The

results presented in this thesis provide effective means to perform the needed calculation.

With the above problems and the attending importance and applications in riund, we

direct our attention in this thesis to the following two specific classes of problems:

Problem I . Disjointed Inhomogeneities

A crack of length 2 in an infinite plane is assumed to have its tips separately lodged

in vanishingly small inhomogeneities of size e (e < < 1), Fig. 1.1.

Problem II . Single Inhomogeneitv

A crack of length 2 in an infinite plane is wholly embeded inside of an inhomogeneity

of vanishingly small thickness e (e < < 1), Fig. 1.2

The choice of the basic configuration, a straight crack in an infinite plane, enables us

to remove the geometric and loading complications, which may be handled by conventional

means, from the new and essential asymptotic deduction as well as the appending

numerical scheme. In fact, the ultimate objective is to incorporate the

asymptotic/numerical result of the thesis into a general situation for practical applications.

Both the inhomogeneity and the infinite medium are assumed to be homogeneous and

isotropic in this thesis. The analysis may be straightforwardly extended to cases where the

thin inhomogeneity is anisotropic, but detailed calculations are not included in this thesis.

Similar approach could be applied to the situation where the inhomogeneity is actually

inhomogeneous. This latter consideration requires extensive analysis and is not considered.



The solutions to the two classes of problems depend, among other parameters, on the

size of the inhomogeneitv, i.e., the small parameter f. It is clear from the general nature of

the problems that no analytic and explicit solutions can be expected. The implementation

of a computational scheme, however, must be preceded by an asymptotic analysis to get rid

of the E, as no numerical scheme can possibly handle the conflicting limits required by E-,o

(almost no inhomogeneity) and r- 1/ 2 -4 w (crack tip inside of the vanishingly small/thin

inhomogeneity). Such an asymptotic analysis, together with the attending numerical

scheme, represents the main original contribution of this thesis. The final product are two

computer codes which, together with other codes that may be developed to accommodate

geometric and loading conditions, may be immediately adapted for application.

To ensure the correctness and accuracy of the computer codes, a number of

benchmark problems are also considered. Some of them are also new and original but the

main motivation was for the purpose of validating the anticipated computer codes.

For problem I, both the inhomogeneity and the medium contain a traction-free

boundary and the analytical structure of the solution follow directly from that of the

well-known crack-tip field representation. The standard Fast Fourier Transform routines

are used to determine the unknown coefficients in the series representation, and the

capability of generating the solution to the order of E is established. The benchmark

problem is that of a semi-infinite crack penetrating a circular inhomogeneity, a

numerically exact solution obtained by Steif(1987).

For problem II, the medium contains no portion of the traction-free boundary and,

as a result, the analytical structure of the solution for the medium in the vicinity of a tip is

not clear. For this reason, the case of a crack embeded inside of a confocal elliptic

inhomogeneity is introduced as a benchmark problem and studied in detail. The confocal

gemetry accommodates a Fourier series representation but the convergence of the series

becomes extremely slow as the inhomogeneity becomes vanishingly thin. Nevertheless the



e-o nu*t is established by extrapolation and a numerically exact benchmark: ,s estabilshea.

The aforementioned analytic structure, however, is still unknown. THis :'-nortant

information is revealed bv a detailed asymptotic analysis.

The required asymptotic analysis parallels to that used in thin airfoil analysis but is

much more involved, as both the "airfoil" and the outside medium are each governed by

two complex functions. Moreover, there is a square-root singularity inside the "airfoil".

The analysis is carried out systematically and the needed analytical structure is extracted

from the innier expansion of the outer expansion. This property is used to construct the

needed series solution whose coefficients are again determined by employing the readily

avaiia'ale Fast Fourier Transform routines. As an unexpected byproduct, an approximate

but explicit solution is also otained for the confocal crack problem. This result, together

with the numerically exact Fourier series solution, is used to validate the Enal computer

code.

Numerical results obtained from the computer codes developed for the two problems

are further validated by the following intuitive considerations. For problem II, the center

portion of the inhomogeneity is expected to have small effect on the solution as E--o. If so

the solution for Problem II should tend to that for Problem I in terms of a geometrically

obvious parameter. Such a tendency does appear to exist. Extending the iength of the

inhomogeneity of problem II would result an increase in SIF and its vallue would always be

bounded from above by that for a crack embeded in an infinite layer oi .,anishing

thickness. Our numerical results also conform with this intuitive observation.

Chapter 2 summarizes the formulation in terms of a complex variable. The rest of

the exposition follows approximately the order of outlining delinedted in this chapter.
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CHAPTER II

COMPLEX VARIABLE FORMULATION

Let (zl,z 2 ) be rectangular Cartesian coordinates and z = z1 + iz2 the associated

complex variable in the z-plane. For plane problems, the displacements ua(zliz 2 )' stresses

r a (zlz 2 ) and resultant force over an arc R = R, + iR2 may be expressed in terms of

two complex functions W(z) and w(z), viz.,

2(u 1 + iu2 ) = XW(z) - zW'(z) - w(z) , (2.1',

iR = W(z) + zW'(z) + w(z) (2.2)

where
13 - 4v plane stress (2.3)

(3-v)/(l+t) plane strain

and A and v are, respectively, shear modulus and Poisson's ratio.

For regions containing a portion of the real axis along which displacement and trac-

tion are continuous, the function w(z) may be expressed in terms of W(z) and a new

function f(z) as follows (England, 1971):

w(z) = W(.) - zW'(z) - f(i) (2.4)

Using the above, we obtain from (2.1) and (2.2)

iR = W(z) + W(i) + (z-i)W'(z) - f(i) , (2.5)

+ iu2 )= (r'+1)W(z) - W(z) + W() + (z-i)W'(z) - f().
(2.6)

A traction-free crack of length 2 is located on the real axis with I z I < 1. The crack is



partially or wholly embedded in an inhomogeneity, denoted by DI, which in :urn :s

embedded in an infinite medium denoted by D2, Fig. 2.2a. An additional subscript a

will be placed on a parameter or variable to indicate its region of definition. Thus, L ,,J

al %V a and fa are defined for region D a The crack is located in D1 and the associated

traction-free condition may be integrated once to become (c.f. (2.5))

W () + W*()-f (x) = 0 (1xi < 1) (2.7)

where the notation F±(x) = F(x ± i0) has been used.

The infinite medium is loaded at infinity by ra = (. so that

W 2 = Wz, f2 = fz as z -. (2.8)

where

w= (v1 1 
+ 022 ), f= 1 ( 1 1 - 2 2 ) + i" 12 , (2.9)

and

f= 2W- -f 2 2  1l 2  (2.10)

is another parameter to be used in the sequel.

The interface between D and D is denoted by C and is defined by

C:z= z . (2.11)

It is assumed that C is perfectly bonded so that traction and displacement are con-

tinuous along C. In particular, the traction continuity condition may be integrated once

to become a continuity condition in R (c.f. 2.5). The two conditions are

Wi(Zc) + Wi( c) + (zc- c)Wi(,)1 - f1('c) = W 2(zc) + W 2('c)

+ (zcic)W'(zc)_ f2(z.) (2.12)



VvT1(z)~ ~ ~ f =W 2 z)1 [w() + Wv(k + (z~- %V )V(z) ~ c

(2,13)

where the R-continuity, (2.12), has been used in simplifying the displacement continutv

conditions, (2.13), and

=7"= (2.14)

are two composite parameters. A discussion of composite parameters may be found in

(Dundurs, 1969). Equations (2.7), (2.8), (2.12) and (2.13) constitute the governing condi-

tions for the solution of the desired problem.

We shall be dealing with vamnshingly small inhomogeneities and the following two

cases will be considered.

A. Disiinted Inhamogeneities.

The crack tips are separately embeded in a vanishingly small inhomogeneity, Fig.

1.1a. The interface around z=1 is defined by

C. (Rightj" z=Z.c(sC) = 1+e fx(s)+iy(s)j, O<s<so, (2.15)

where s is an arc parameter and e<<L a small parameter. The interface around z=-I is

assumed to satisfy the condition C[Leftl= -CIRight].

B. Sizwle Inhamofeneity

The crack is wholly embedded in a vanishingly thin inhomogeneity Fig. 1.2a. The

interface C is given by



13

C: z = z (x; ) = < I .(s) - itsA ix z 1 2.16)

where s is a conveniently chosen arc parameter that may be expressed in terms of x, and

e<<1 is again a small parameter.

The solutions to the associated boundary value problems must therefore depend on

the size of the inhomogeneity E. We shall use the generic symbol F(z;e) to indicate the

dependence of F(z) on E. The objective of this thesis is to obtain the asymptotic expansion

of F(z;e) as e -. 0. We note that the solution characterized by u(z) = uI + iu2 satisfies the

condition

u(-z) = -u(z) '2. 711

for both cases.
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CHAPTER III

A CRACK WITH TIPS LODGED IN VANISHINGLY SMALL INHOMOGENEITIES

3.1 Introduction

For the case of a finite crack with tips lodged in vanishingly small inhomogeneities,

the asymptotic limit is just the solution for a semi-infinitz cracx lodged in an

inhomogeneity of finite size. The benchmark problem is that of a semi-infinite crack

penetrating a circular inhomogeneity which was solved by Stief(1987). No,:Sircuar

inhomogeneity cases have been considered by Hutclunson 1,1986). Dimension-analysis

considerations indicate that the asymptotic limit can only depend on the shape of the

inhornogeneity, as far as geometric dependence is concerned. This dependence is fully

accounted for in our calculation via the use of the readily available Fast Fourier Transform

Algorithm. Moreover, the size effect may be obtained by including an adcitional term in

the asymptotic expansion.

A recap of the formulation, together with the introduction of a boundary-layer

complex vanable ( , is given in section 3.2. Outer expansion, which is valid away from the

crack tips, is presented in section 3.3 in terms of z. Inner expansion of the outer expansion

is then used as a guide to establish the inner expansion, which is presented in section 3.4.

The application of the Fast Fourier Transform Algorithm to the system of interface

boundary conditions is discussed in section 3.5. Some numerical results are presented in

section 3.6 mainly for che purpose of illustrating the efficency of the numerical scheme.



3.2 Formulation

Using (2.15) and (2.5) , the resultant-free condition along the crack become (c.f.

Fig. 1.1 a):

W(x;e) + W (x;e) -ff(x;e) =0 for xi , (31

W (x;e) + W2(x;c) - f2(x-c) = 0 for lxi < I (3.2)

The resultant-continuity and displacement-continuity conditions along C are

W2(zc e) + W2(zc;E) + (zc-zc)W 2 ( z ) - f2(zcE)

= w 1 (zc; ) + wV(;E) + (z-;)w ( Z c ; ) - ff(Zc;f ),

(,3.3)

Wl(Zc;E) = 7W2(z,; )

+ 7 "[ W2(zc ,) + W 2 ( c;f) + (z.z C-)W 2 ( zc f Y ) - c;f ) 1,
(3.4)

where (3.3) has been used in deducing (3.4). The loading condition at infinity, (2.8) , is

W 2 (zle) = Wz, f2 (z;) = fz, as z - D. (3.5)

As e - 0 the conditions (3.1),(3.3) and (3.4) disappear altogether . Borrowing the

terminology used in thin-airfoil analysis (Van Dyke 1975) we shall call the attending

solution the outer expansion. Such an expansion is not valid near Iz I = 1. Inner

expansions near the crack tips must be constructed. For this purpose a boundary layer

complex variable t is introduced for the neighborhood containing z -- 1 . It is defined by

1peif= (3.6)



and the interface C 'nghti may be convenientiv written in the form

zc = I cp) e' = = e

where the single function Pct ) may be used :o defne the vanishingiy smail iaornogeneity

(Fig.1.lb). It is assumed that

P - Pc(f) - P% and m Pm (3.8)

so that )M characterizes the maximum dimension of the inhomogeneity. The quantites P\%

and dm are the key features of the function p ). Finally, the square-root character of a

crack tip suggests that the required asymptotic sequence must involve powers of E1 2

3.3 Outer panion (s $ * 1)

The outer expansion for W 2 and f2 are gonvered by (3.2) and (3.5). They are

£2(z;e) fz + 1/2z5 A( n +. a

2W 2(z;E) - f2 (z;f)

0(Z2_1)1/2  1 + B(E) + n 3.10)[ Z n,-1 [z+1 a l
L - m l .mJ

where a is given by (2.10) and W and f by (2.9), and the coefficients An(c) and Bn(c) have

representations of the forms

An() = 1 Anm ( (1/2 B n()= B 1/2 ) (3.11)
m=0 m--0

ii m m m I m I rI =



We shall be needing the inner expansions oi the outer expansion. These resuits, after

normaized by an as yet undefined factor T'i,, are

f 2(1+f E) 4 + f 1/2 '' (A /Pm

n=1

011
+ + - An(UP )

n=1

+ 3/2, A 2 (/p + - A1 0  + 3.12)
+ n=1 1

2W 2 (1+f(;E) - f2(l+e ;e)

1/2( )1/2 1 + B Bn0 ((/pm)-

n=l

+ E(( )1/2 Bnl(F/pm)-n 7
n=1 o

+ 3/2(,1/2 ' B 2/ )-n + - B10n--I 2

1 Bno 2o
O ++ (3.13)

n=1
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The above expansions reduce to the ordinary crack solution as e - 0 and the Laurent

series with unknown coefficients are needed to account for the as yet unknown eifects of the

vanighingily small inhomogeneities located at z = t 1. Similar situations have been

encountered in crack branching (Wu, 1978) and crack tip contact (Wu,1982). That the

Laurent series at z = 1 have same coefficients is a result of (2.17). The sigularities are

contained in D and have no effects on the analyticity of W 2 and f2 which are defined in

D 2 '

3.4 Inner ExPansions Near s = 1.

For a generic function F(z;e), the associated inner expansion is defined by

)F(I+e;e) (3.14)

Moreover,

n=O

It follows that

f(;, ,, ! ,l 2 n fn ) (3.16)

n=O

r n () 1/2], (3.17)

L1=0

where the right-hand side terms are just the terms defined in (3.12) and (3.13).

The functions f (;-E) and W( ;) must satisfy (3.2) in the appropriately

transformed form. This condition is identically satisfied if



(3.18)mmd

n=O

w'' (1/2) [,w -I f 1/

n=0

and

f*0)= 7f 2Wio( )-f 0 (() =0

kD-)= 1,, , ((ii% (3.20)
k=O

2W(,) - /2 1 '2bkl k

k=O

where the last two expressions are for n > 1. Al the unknown coefficients must now be

determined to satisfy (3.3) and (3.4) which now become

w * ( ) + W 2( ) + Uw n ( c ) -

Swn() + W ,2n ( ) + ( - (W(( ) -n(,

(3.21)

c= 7w2c( ) + w()+ wn(c)
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The expansions defined by (3.16) (3.17) (3.12) and (3.13) are valid for the region

outside the inhomogeneity, Fig 1.1b, and the unknown coefficients involved in (3.12),(3.13)

and (3.20) are determined by applying the standard Fast Fourier Transform (FFT)

algorithm to (3.21) and (3.22).

Before implementing the FFT calculation, the normalizing factor * should be

properly chosen for specific cases. This is explained in the following section.

3.5 Fast Fourier Transform Algorithm And Numerical Procedure.

It is convenient to consider shear loading '12 and axial loading (o,11 1 2 2 ) separately.

Let us first consider the case o12=0. We let a*= o22 and the first 4 sets of unknown

sequences become:

2o(4 = f / o', 2W~o(() 2

o( = f*(), 2W*o(() - Co(O (3.23)

CD

n=1

1/2 -' B ,o /, )-n]

2W 1 (() - f-*() = 12 +~

w2(-(=2( 11 Amid /,
n=1 (3.24)

I A.4 bOM))
n=l

n=0
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f v f/ 8 o -t- A (Up )-
n=l

CD

2W()-f()= 2((Ipm) 1/2 4'5 B 1 ((/p7

n=1
(3.25)

n=O

2W 12 (C) - fll(C) =1/2 1 5 2b ~ n
n=0

A + A -n(/7

n=1

2W 3 ()-f 3 ( 2 ((/pm 1l/2 1 -B 1  + 15

+3 f23(()B 0 /P
n=1 ~ in '
n~ l 

(3.26)

=1( ':.: afl((/PM)~

21 3(() -f;1 3(() I (12:: n2((/PM)~
n=o

where

'if . (3.27)
if ~ L 22
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Each set must satisiv the continuity conditions (3.21) and (3.22). We note that

(3.21.1 is the continuity in resultant force. The first set (3.23) satisfies the conditions

identically. For the other sets we truncate the sums at n=N so that a total of 4N+2

unknown coefficients are involved. Since the standard Fast Fourier Transform subroutines

FFTCF and FFTCB are written for functions of a real variable, complex functions of the

complex variable ' pc( )e',' typified by a generic symbol G(Qc), are represented as

follows:

N N M -M
G( c = ' nc C ,melm? + , '15"C'n im G* 0)

n=1 n=i1m=0 m=O0 (3.28)

where M = 500 has been used in all calculations. The truncation number N is determined

by a convenient convergence criteria.

We normalize the physical stress intensity factors KI and KII by a22 "i and the result

is

(1) (1)K1 -i K2 =(KI-iKII)/ 2 2Vi

00 + t 1/2 02 (3.29)

It is clear from (3.25) and (3.27) that b01 = 0 if 011 22"

For a pure shear loading condition, ,11 = a22 = 0 and we choose as -i 12

Equations (3.23) - (3.26) remain unchanged and (3.27) is replaced by

(3.30)
0'



The associated stress intensity factors are given by

(2) (2)
K2 + iK 1  (K II +iK)/ 1 2v'

~ boo + f1/2b01 + eb02 . ....... (3.31)

It is clear from the solution procedure that the solutions for (3.24) and (3.26) are

identical in form for both loading conditions. The solution for (3.25) is determined by

either (3.27) or (3.30) Thus, b01 is never zero in (3.31). On the other hand, bOO and b02 for

both cases are identical. The actual field variables, however, must be modified by the

factor T* and hence are completely different for the two cases.

3.6 Results and Discussion

As we have mentioned in the introduction that the c -, 0 limit depends only on the

shape of the inhomogeneity, as far as geometric dependence is concerned. To illustrate this

dependence and also to test the efficiency of our computer code, the class of problems

depicted in Fig. 3.1 is considered. The asymptotic configuration is that of a seni-infinite

crack with a tip inhomogeneity of thickness 2 and length 2 + a+ b. We mention in passing

that the actural physical dimensions are 2e - (2 + a + b) F. The material properties are

fixed by Y1 = I2 = 0.2 and ,, 2 = 0.5 so that the parametric study is purely geomotrical.

Moreover, onl) mode-I loading is considered in the illustration.

The benchmark situation of a circular inhomogeneity is recovered by setting a = b =

0 and the associated normalized SIF is 0.645 (Steif 1987). It is anticipated that increasing

a would lead to an decrease in SIF while increasing b would actually intensify the

associated SIF (Hutchinson 1986). Every method has its limitations and the present code

cannot be expected to function for cases where a and b are very much greater than 1.
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Considered as a function of a and b, the normalized SIF, K (a, b), is expected to approach
to certain asymptotic limits very rapidly. K (a), ) is just the soiuton for problem II and

K ( , a) 0.74 which is extrapolated from the results given in (Hilton and Sih, 1970).

The pertincnt results are protted in Fig. 3.2 as a function of b with a as a parameter.

The a = ® curve is produced by our second computer code which will be developed in

Chapter IV. It is seen that the results conform with all the expected trends.
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CHAPTER IV

A CRACK IN A THIN INHOMOGENEITY

4.1 Introduction

The present problem differs from that of Chapter III in that the complete crack is

wholly surrounded ' :he inhomogeneity. As a result, the infinite medium contains no

portion of the traction-free boundary .nd hence the analytical structure of the solution for

the medium in the vicinity of a crack tip is not known. For this reason and a' , the

purpose of setting up a benchmark for validation, the problem of a crack imbeded insxne of

a confocal elliptic inhomogeneity is first considered in detail.

A Fourier series solution is first constructed in section 4.2. The analysis is preceeded

by a brief discussion of the associated antiplane shear problem for which the exact solution

is presented. The exact asymptotic limits for very large and very small inhomogeneities

are deduced from the exact solution. Their exact dependence on size and moduli serves as

a guidence for the desired plane problem solution.

The Fourier series solution obtained for the plane problem is considered to be

numencally exact, as the convergence can be easily checked by varying the number of

terms included in the actual computation. The convergence of the series, however,

becomes extremely slow as the inhomogeneity becomes vanishingly thin. The asymptotic

Limit for the SIF, though, is easily extrapolated from the numerical results.

The series solution sheds no light on the desired analytical structure of the solution.

A complete asymptotic analysis is therefore carried out in section 4.3. The needed

analytical structure is revealed by the inner expansion of the outer expansion.. As an

unexpected useful byproduct, an approximate but explicit solution is obtained for the

confocal situation. This completes the establishment of the benchmark solution.
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The general ,ase is Ennlv presented in section 4.4 where the t-ickness of the

irlhomogeneity and the nose thickness, i.e., the length of the ..-Ihomogene,"t ,,inus -he

crack length, are assumed to have the same order of magnitude E. We note that for the

coniocal situation the nose thickness is oi the oraer of ef while the inhomogeneaty tl-ne-s

is of the order e. In this regard and in the context of the final boundary layer

computation, the confocal situation is even more difficult than our ger.eral case, as the

former requires the satisfying of boundary conditions specified on a parabola in the

boundary-layer variable. Neverthless, the analytic structure revealed by the benchmark

analysis is the key to the success of the general representation. The unknown constents

involved in the seies solution are again determined by the Fast Fourier Transform

Algonthm.
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4.2 Series Solution

4.2.1 Introduction

A family of confocal ellipses may be characterized by a single parameter p > 1. In

tht limit as p -. . the eLipse degenerates into a straight line of length 2. It tends to Z

c:cle of infmnte radius as p -. m. The geometry of the problem is fxed by the crack (p =

1) and the size of an elliptic inhomogeneity (p = po). Both the inhomogeneity and the

.nnmte medium are assumed to be ,omogeneou. and isotropic.

Section 4.2.2 summarizes the formulation in a transformed complex plane. The

exact solution for the anti-piane shear case is presented in Section 4.2.3. Explicit

asymptotic limits for large and small inhomogeneities are extracted from the exact formula.

Plane problems are dealt with in Section 4.2.4. The case of equai shear modulus and

unequal Poisson's ratio is solved exactly, and the general case is presented as , series

solution.

A large number of ieferences on inhomogeneity problems may be found in Mura

(1982,1988), but we have not found any reference dealing with the consideration of a crack

in a vanishingly small inhomogeneity. The closest situation is the one given by Warren

(1983), who considered the edge dislocation inside an elliptical ilahomogeneity, including

vanishingly small inhomogeneities.

Numerical results for th- plane problems are presented only for plane strain ard

Mode-I conditions. Parametric dependence of SIF on the size of the inhomogeneity is

discussed in detail in Section 4.2.5 for the range where the inhomogeneity is softer than the

medium.



29

1.2.2 Formulation

Let (zl,z2 ) be rectangular Cartesian coordinates and z = z, + iz., the associated

complex variable in the z-plane. A crack of length 2 in the z-plane is mapped onto a

unit circle in a new complex -plane via the mapping function

z = iM)= [+] (4.2.1)

where = + i( 2 - pe 9 (Fig. 4.2.1b) and p > 1. The image of the circle 0 -
jB

po0e  is the ellipse (Fig. 4.2.1a)

(zl/a)2 + (z2 /b) = (4.2.2)

where

01 b 01(4.2.3)
a= o°+ 1, = O o

The infimite z-plane is now conveniently divided into two regions D1 and D2 by the

single parameter Pop Viz.,

D1 : I <p<p , D2 : p >p o  (4.2.4)

We shall call D1 the inhomogeneity and D2 the medium. The two regions are of

different elastic materials characterized by shear moduli a and plane-elasticity constants

3-4v a  plane strain (4.2.5)

(3-va)/(l+va) plane stress

where v a are Poisson's ratios. The infinite plane is loaded at infinity by

Anti-plane: r3a = '3a as IzI (4.2.6)

Plane: rat= %, as I z 1, (4.2.7)

where r.. are the stress components.



30

For the anti-plane problem, the displacement u3(z',z 2 ), stresses 73 , zlZ 2 I and

resultant force R3 along an arc may be expressed in terms of a singie complex function

F(z). We have

r31 -i32 = p'()/m'(() (4.2.9)

3 + (4.2.10)

where +(() = F(m(()) and m(() is the mapping function (4.2.1).

For the plane problem, the displacements u (zl,z2 ), stresses raz, 2 ) and resul-

tant force RI + iR 2 = R along an arc may be expressed in terms of two complex func-

tions W(z) and w(z). We have

2A(uI + iu 2 )= l((-) M - w() (4.2.11)

iR= 1( ) + m(O f',(4.2.12)

where fQ(() =W(mff)) and (i) =w(m( )).

The complex functions must be determined for the two regions D1 and D2 sub-

jected to the loading conditions, (4.2.6) and (4.2.7), and the continuity conditions along the

interface boundary characterized by p0  The crack surface is assumed to be traction free.

The traction-free condition may be integrated along the crack to become a resultant-free

condition. Similarly, traction continuity along the interface may be integrated to become a

resultant continuity condition. The integrated forms of these conditions will be used in the

calculations to follow.

We shall place a subscript a on a complex function to indicate its region of defini-

tion. For example, Fa(z) and a () are defined for region Da ,
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4.2.3 Anti-Plane Shear

The problem may be most conveniently solved in the t'-plane. The integrated trac-

tion-free, integrated traction continmty, displacement cont:7-:y and loading conditions

are

Yei0) - Yl-- =(4.2.13)

,a, ["uo) - f1( uo)] )U 2[f2( o)- +2(o)] (4.2.14)

#1((o) + f1((o) = f2("o) + '2( o) (4.2.15)

42 = f as - (4.2.16)

where = poe  and

+ 1 2(3 i31•(4.2.17)

The solution is

((() = A( + < j < P) (4.2.18)

2 =+ 1+P2)A-~ P2;¢ P} (4.2.19)
where

2p / (P2 +1)+ -(- . (4.2.20)

The stress intensity factor may be readily determined. It is convenient to normalize the

SIF KIII by the factor o32V-, and the result is



K3 [Po' -0 1 (4.2.21)
A2 A2 'P2 +1 1 p 2 -i

1+-
A2 p 2 +1

0

The following limits may be easily obtained

K ,1 = 2 1, , (4.2.22)

K3 [11 A]- A. (4.2.23)

These two limits are plotted in Fig. 4.2.2. The sign of 3K3 /dp o is governed by (1 -

1//A2) . Thus

K, 4 1, K3 Po. < K 3  if 1. (4.2.24)

It is noted that the bounds are of practical significance for the cases where the inhomo-

geneity is softer than the medium.

A very slender inhomogeneity may be defined by po = I+ f where e << 1. The

exact result (4.2.21) may be used to obtain

K_ i+t [1+e [1 + (4.2.25)

provided that e("1 /A2 ) -, 0 as c -0 0. It is, therefore, clear that such a two-term asymp-

totic expansion is valid only for the cases where the inhomogeneity is either softer or slight-

ly harder than the matrix.
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4.2.4 Plane Problem

Since the plane problems cannot be solved exactly, we begin by constructing a senes

solution in the C-plane. The traction-free condition on the unit circle enables us to intro-

duce the stress continuation (England, 1971)

1 = _fl(1/ ) _ m( lm (4.2.26)

The function 81(() is now extended to the region I/p 0 < p < P., and the tra,.tlon-free

condition on p = 1 is identically satisfied. The conditions (4.2.7) are met if

Q2W - ( + 0 4.2.27)

v2( =)W(+O[I 0. (4.2.28)

where

1 ... i F ~ . 1(4.2.29)
-= (' 1 1 + "22 ), 4 =[ 2 2 - l) + i2 ,12.

The integrated form of the traction continuity condition along (o may be obtained

from (4.2.12), i.e.,

m((o)82( c) 2 (o) + w2((o)

J11((o)-al + M((o)-m 1] (4.2.30)

where (4.2.26) has been applied. Continuity in displacements along (o yields
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- 1o ) 1 -1 - ( o ) -
A 2 o)M (

()+fll ]- m)- i1 0 (4.2.31)

which, after applying (4.2.30), may be reduced to

1( o) = 7 (o) + 7' Q2 ( o) + 2Q( o) 02(_o)m' (2o)

(4.2.32)

where
(I+ r2)/I (4.2.33)

7 = 1 71 1  12

are two composite parameters (Dundurs, 1969). We note that (4.2.30) may be deduced

from (4.2.31) via the relation

(4.5) - [Letting /'l = ja2 = 1 and r-1 = 2 = -1 in (4.2.31)] (4.2.34)

Before proceeding, we shall first consider the special case al = 2"



35

i) Exact Solution for Equal Shear Modulus

For this case, the composite parameters defined by (4.2.33) become

1+ 2
7 2 = i---F 7=0 (4.2.35)

and (4.2.32) becomes

11 ( o) = 70f2((o) (4.2.36)

which serves as an analytic continuation of the two functions Qj( ) and .Q2(t). Making

the substitution 11( ) = o we obtain from (4.2.30)

+ m((o) (')-2(PO'/Zo) +  '(4/o1- o ( o f  P'/ o)

m/ ( p,/?

- (70-1 )2((o) 7 fl( o/p 2 ) (4.2.37)

where

-0)) p1(p-1)((1 p2)
( o) m(0 0, O ) (4.2.38)

mj(( ( (') 40' ) 0o( -0

It follows from (4.2.37) that the function H(() defined by

( 70 -1)fl 2() - 70 f12 ((/Po') (I ( I > PO)

/ + _ (__ (PI/ o)- 7oM(( )0(Po/Zo)
m'( p2/ 0 )

(4.2.39)

(I < Po)

is holomorphic in the whole (-plane. Moreover, its properties at ( = 0 and ® are

governed by the right-hand side of (4.2.39). The complete solution is
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H(() = Li + 7{ - ' + p + [1+7o(pI-1)II ! (4.2.40)

+2(() = + 0 1 (4.2.41)I o(Po-l)

2()= H(p'l ) + 70 ~~~f~( [M(p2I )Ii/M ] ,( (..2

(4.2.43)

Let us use the factors o22 F and 01 12 to normahize the SIF's KI and KII, and write

K1 =K K2 = KII/o 12 4/. (4.2.44)

The following explikit results are readily obtained

K 0 [(p2+ 1) + 7o(p-1)l 7o(1 -70 )(p2-1) ,K--,p20 (4.2.45)

1 2(1 + 7 (p-1)1 211 + 7o(p2-1)1 '22

K2 = (4.2.46)

1 + 70 (po-1)

There are the following exact limits

lim K1  and K+ I2 (4.2.47)

lir K = 1 o)- - ) -11 (4.2.48)

o" 22

lim K2 = . (4.2.49)
po-90
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ii) Series Solution

The complex functions a1, 2 and d2, together with their regions of definmon,

admit the following series representations

5'= , -A + a (4.2.50)
O.A0 0an

n=1

I 
1+n na1()= ( + '5 p~ n B (4.2.51)

n=1

v2 =v'+ Po bn (4.2.52)

n=lI

where n = 1,3,5,... The factors p 1-n and p+n are included for convenience and pose

no restrictions on the validity of the series representations. They are, nevertheless,

conceived from he fact that ua along I pI = p0 must be of the order of p0 as po " w"

ieSubstituting the above into (4.2.31), setting ( = and equating coefficients of

ein O to zero, we obtain

S-j + (n+2)[ 1- J1 +[a

+ F2 + (n+ 2 an+ 2 + 2 B - Bn+2

0 1 1

P 2 for n = 1

(4.2.53)

0 for n = 3,5,7,...
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X -v A + -A a,

[ I I l- .l. -B1 -::-- ( -~ + - $  (4.2.54)
1 2 2 2 2

+ P2 P Po01 0p0 . 0 0

and

+ A 2 + + A n IAn2 I

p 0  0

- -- ; n-2 +  -'  n -

2(n2 1 - a n-2 + -2 (n-2)] n-2 + - B n - b n + b-O bn-2

P 2 +1 2 o A2 P

forn=3(4.2.55)

0

0 for n 5,7,9,...

The relations derived from (4.2.30) are obtained by the substitution (4.2.34), i.e.,

[Letting Al =/A2 = I and r.I = r2 = -1 in (4.2.53),(4.2.54),(4.2.55)]
(4.2.56)

The infinite system (4.2.53)-(4.2.56) are truncated and the resulting finite system is

inverted numerically. The SIF's

KI - iK1I = 2(r) 1 / 2 Q'(1) (4.2.57)

are then normalized in accordance with (4.2.44). Values of plane-strain K1 are plotted in

Fig. 4.2.3 for the case P= IV 2 = 0.2 and a,1 1 = 0. The numerical results approach to a

limit very rapidly as po " w" The analytic expression for this limit is determined in the

next sub-section.
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The convergence oi the numerical scheme becomes extremeiy slow as do - i. For

this reason, values of K1 for fixed values of 41/,a are plotted as functions of 0/p 1 :n

Fig. 4.2.4. It is seen that all curves tend to finite limits as po - 1. The p0 = 1 curve

indicated in Fig. 4.2.3 is extrapolated from Fig. 4.2.4.

iii) Very Large Inhomogeneity
As we have indicated before that the factors p1*n built in (4.2.50)-(4.2.52) are con-

0

ceived from the fact that the displacements u a along I = p0 must be of the order of

P0 as po - m" Thus the series representation may also be interpreted as an asymptotic

expansion for large p0. In this interpretation, however, the four sets of constants must be

re-expanded in powers of p- 2, i.e.,

(A,a,B,b)n=( )no + ( )nl + (4.2.58)
n ~ Po2

p0

Substituting the above into (4.2.53)-(4.2.56) and equating to zero the coefficients of powers

of p-2, we obtain an infinite system of infinitely many equations for the determination of

the coefficients ( )nm" The asymptotic limit for the case of a very large inhomogeneity is

thus governed by the coefficients ( )no*

The system governing ( )no actually decouples into finite systems and the first clus-

ter of equations are

-A 1 0 + 3A30 - a1 0 + 2B10 (4.2.59)
A'2 2A1

-A.1 0 + 3A 30 - a1 0 - B 10 = j,, (4.2.60)

-A, IA10 + A0 - r0 (._

A 10 + A 10 - 61 = 21 , (4.2.62)



A3+ -(1 - b 4.2.63)

1 30 ) 1 0 b 3 0 )-u

A3 0 + 8 10 - b30 = 0 (4.2.64)

which may be explicitly solved to yield

A10 = (P2 + 1)11/ r1-1- + 2

B1 0 ~ 0 b .ii1 ~2+ 1 (4.2.65)B10 3 h0 = r2- 11 /+ rT2 2 .2t5

A 10 =-B lo- A0 l-

A30 =0, b1 0 = 2(AI 0 - 0).

In fact, the second cluster of equations yields

A50 = a3 0 = B30 = b50 = 0. (4.2.66)

The asymptotic limit for Q is merely

and

Q (A1 o - a1 o) + O 1 (4.2.68)

Equations (4.2.44), (4.2.57) and the above lead to the following explicit asymptotic limits

for very large elliptic inhomogeneity:



K -2 22 4.2.69)

A2 A2

K2  (1+,r2 )/ 1 +I "2  (4.2.70)

Equation (4.2.69) is in perfect agreement with the numerical asymptotic limit given in Fig.

4.2.3.

The series solution provides us with a complete family of numencaily exact

benchmark results. Still, the results vield io useiul analytic information concexning the

behavior of the solution for the medium 1i the vicinity of the crack tips. This important

information will be deduced from the asymptotic analysis of section 4.3.
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and the unit circle is the crack in the new complex
4-plane via mapping function
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4.3 Asymptotic Solution of a Crack in a Vanishingiy

Thin Elliptic Inhomogeneity

4.3.1 Formulation

Attention is now turned to the specific situation where the parameter p0 used in

(4.2.3) is almost equal to 1, i.e.,

PO 1-+e, a= Po+ i b= Po a b
(4.3.1)

where a and b are the major and minor axes of an ellipse with focal points located at

41. The ellipse is thin if e << 1. We have

a + C2_f3 (4.3.2)

6(e) = b/a - O(e) (4.3.3)

where 6 is another convenient parameter. Moreover, the radius of curvature of the ellipse

at z = *a is

= -2 62 + O(e4) (4.3.4)Pa a

The ellipse is assumed to be the interface boundary, viz.,

C:z= zc = x i(a 2  X2) 1 / 2 , (x2 <a 2) (4.3.5)

Thus, as e -0 , zc has the expansion

xc ~ x * i6(1-x2)1/ 2 * i6 3 1 (l-X2)-1/ 2 + (4.3.6)

which is valid for x2 < 1. It follows that the expansion cannot be used to satisfy the con-

tinuity conditioX~s near z = *a. The associated expansion is termed the outer expansion
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which will be presented in Section 4.3.3. The terminoiogy has its orgin in thin airfoil

theory which is well-known (Van Dyke, 1975).

To remedy the shortcoming of the outer expansion, inner expansions will be construc-

ted in Section 4.3.4. In view of the symmetry, we shall concentrate on the region near z =

a. The scaling factor for the needed boundary-layer complex variable is dictated by

(4.3.2). This complex variable is defined by (Fig. 4.3.1b)

__ z-1
Z-1 

(4.3.7)

The appropriate portion of C is now given by the expansion:

C: c 12 -6- (,_)2 + ... (4..3)
4

where ( < 1 and the leading term is just the parabola:

(c -(o= (1-12) + i2, - < < ) (4.3.9)

[COS cos e(- < 0 < ,) . (4.3.10)

4.3.2 Outer Expansion

The representation (4.3.6) will be used to satisfy (2.12) and (2.13). In view of (4.3.3)

and (4.3.6), we choose 6n as the asymptotic sequence and seek the solution of a generic

unknown function F(z) in the form

W
F(z)nF-) 1 SaFn(z) (4.3.11)

n0



where F stands for anv of the four unknown functions Wa and f a The value of the

function F(zc) may be computed from the scheme:

F(z) S XnF (z) p n[F't(x) i(x)1FA +.. (43.2
(4.3.12)

where (4.3.6) has been used for zc

The system of governing conditions (2.7), (2.12), (2.13) and (2.8) are now expanded

in accordance with (4.3.1) and (4.3.2). The S0 -terms are:

W*o(X) + W*o(X) - f!o(X) = 0 (4.3.13)

v ()+ W*O(x) - ff (x) = We. (x) + W* 0(x) - f! (X) (4.3.14)

,*o (x) = 7  W! (x) + 7,[W0 (x) + W1o(x)- oI(x], (.3.15

W20 (z) = Wz , f20(z) = fz as Z- -, (4.3.16)

where the first three conditions apply to the interval lxj < 1. It follows from (4.3.13)

that the left-hand side of (4.3.14) vanishes as well. It merely implies that when an

interface is asymptotically near a traction-free boundary it is itself asymptotically

traction-free. This is essentially the nature of the iteration associated with the outer

expansion. At the same time, it is clear that the iterative mechanism can not be valid near

z = *a where the interface traction is asymptotically large in (z-l)- 1/2 as z = a 1.

In any case, the solution to the above equations is

fo10() = 7f20(z) = Tz, (4.3.17)

2W 10 (Z) - flO (Z) = 7 12W 20(z) - f20(z)] = 70'X(z) (4.3.18)

where

X(s) = (z 2-1)1/2. (4.3.19)
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The 6-terms of the system of equations are then derived. They may be jurther sim-

plified by the use of (4.3.17) and (4.3.18). The results are

Wti (x) + Wj1 (x) - ff1(x) = (4.3.20)

W 1 (x) + W21 (x) - f-(x)= (7-1) ( X)x (f+l)i(l-X) 1 / 2

(4.3.21)

W*. (X) = TX! (x) + 77[(* ) (fO( 21/2 ] (4.3.22)

W2 1 (z) and f2 1(z)-,0 as z-.,. (4.3.23)

Combining the * forms of (4.3.21), we obtain

f 2'(x) - f 1 (x) = i2(7-1)(f+?)(1-x2)l/ 2 , (4.3.24)

2 1 (x) - f +2(x)] [2 ()-f 1 x]
(4.3.25)

which, together with (4.3.23), may be solved for f2 1 and W21 in terms of a Cauchy and a

Hilbert problem. The solutions are:

f2 1 (z) = (7-1)(f+1)X(z)--zi, (4.3.26)

2W2 1(z) - f2 1 (z) = -(7-1)(-)X(z)-z]J (4.3.27)

where z is a homogeneous solution of (4.3.24) and X(z) a homogeneous solution of (4.3.25).

They are included to meet the conditions at infinity. Substituting the above into (4.3.22)

and (4.3.20), we get

f1 j(z) = 71(- -27*)(O-i) - (7-1)(f+I)lz (4.3.28)

2W11(z) - f1 1(z) = 7[(7-1+2 7*)(f+f) - (7-1)(a-i)jX(z). (4.3.29)



The 62-terms of the system of governing conditions are obtained in a similar man-

ner. They are further simplified by the explicit lower order solutions and the results are:

W12(x) + W1 2(x) - f"12(x) = 0 (4.3.30)

v2(X) + w22(x) - 22(x) = (T-l)[(2 7-I)f- (27+3)flx

(7-1)[(2 7-1)f + (27-3)?1i(1-x2)1/2 _ (7-2)i (4.3.31)*i(i _X )1/2 '

w12 (x) = 7W*22(x) - 77*1(f+7)x t (o-1)i(1-x)1/2

+ 7 7 * [2 (7- i )(f- )x 2 ( 7 -1 )(f+ ? )i(1 -x 2)l / 2  - (1 x2)1 /2(
(4.3.32)

W22 (z) and f2 2(z)-0 as z , . (4.3.33)

Combining the forms of (4.3,31) again leads to a Cauchy and Hilbert problem, and the

solutions are

f22 (z) -(7-1)[(2 7-I)f + (27-3)1I[X(z)-zI - (7-1)aX-'(z)

(4.3.34)
W22() - t22 (z) = (7-1)[(27+3)f - (27-1)fl[X(z)-zj + C( 7-1)X-(z)

(4.3.35)

where the last term of (4.3.35) is a homogeneous solution and C an arbitrary constant.

The other two functions may again be determined from (4.3.32) and (4.3.30). They are

f1 2(z) = 2 1-7(7-1)(31 - (27-1)f] - 7 7(f+ f) + 2 7 ( -) f 1 z( . .6$ (4.3.36)

2W12 (z) - f12 (z) = [(C-1)(7-1) - 2'] 7*iX-I(z)

+ 217(7-1)[31 - (2-1)f - 77'(a-i)I - 27T(T-1)(f+I)}X(Z) (4.3.37)



The procedure could be continued to include as manv terms as we wish but the expii-

cit 3-term expansion is sufficient to reveal the most important characters of the desired

solution. To unveil these properties and also to facilitate matching, we need the inner

expansion of the outer expansion. This is accomplished by expressing z in terms of ' via

(4.3.7) and then expanding. The results are

fj - 7f + 6{7[(1-7)(f+f) - (1-7-27*)(a- )] + )n + 0(62)
nl

(4.3.38)

2W -f 6 0 12+ 7j71C- (y-1+27*)l

+ 1/2 n + 0(62), (4.3.39)

n=2

f f + 6 (-7)(f+) + (1-7)i 1 + )a + 0(62),

(4.340)

2W 2 - f2  61u 1/2 +(-)(-) + (7-1P)C 1 +n=2 n + 0 ( 6 2 )

(4.3.41)

where the generic symbol ( )n denotes an expression depending on the explicit forms of

the outer expansion, (4.3.11). Some of them may involve arbitrary constants such as C

given in (4.3.35). These constants can only be determined from matching.

The above expressions represent the properties of inner expansions, which will be

derived in the following section, for ( -. w. It follows from (4.3.38) and (4.3.39) that



f 1 =Holomorphic functionoi
as - ,

2WI - f 1 1/2[Holomorphic function of

(4.3.42)

a property that can be directly deducted from the traction-free condition. On the other

hand, (4.3.40) and (4.3.41) indicate that both f2 and W involve powers of (-1/2 as

-. m. This property cannot be conceived directly from any of the governing conditions and

will be needed in the series representation to be constructed in the sequel.

4.3.3 Inner Expansion

The independent variable is the boundary layer variable " defined by (4.3.7).

Guided by (4.3.38)-(4.3.41), we shall seek the expansion of a generic unknown function

F(z) in the form (c.f.(4.3.11))

a

n=O

where F stands for any one of the four unknowns W and f . Using F*( ) to denotea
F*((,S) for simplicity, we obtain from (2.7), (2.12) and (2.13) the governing system:

W, () + W**(o)- f M() = 0, ( < 0) (4.3.44)

2 )+ W*2(Z) + (( - Zc)W2(c) -f-

-w c ) + Wi( N ) + (c - ?c)W,'(() - *( .

(4.3.45)

w*( C) ! W*( C) - W((c) + w*(Z¢)

+7 c 7 c (
+ ((c - ?c)W I' ((c) - f,(?c)], (4.3.46)
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where ( is defined by (4.3.8). As ( - , the functions must be matched with the inner

expansions of the outer expansions [4.3.38)-(4.3.41).

The 6n-order conditions may be derived by using the following substitution:

F*( C)(~ p 6[F*(S.) * 62i 1 (1-() 3 / 2 F*'(cO) + -
(4.3.47)

where o is defined by (4.3.9). For the 6°-terms, the choice

W () = f f () = 7W*o = f = f (4.3.48)

satisfies all the conditions and yields no useful information. The 6-order system governs

the desired asymptotic limit (6 -, 0) and the subsequent discussions will be concentrated

on the solution of the system.

We begin by writing

f(() = 7[(1- 7 )(+) - - + 7.h 1() , (4.3.49)

2W 1 M - f[ 1 ) = ,1/2 [,+H(o] (4.3.50)

=21 (1- 7 )(f+) + oh2 (() (4.3.51)

W 1 7 (+) - + 1/ + .' (4.3.52)

Comparing the above with (4.3.38)-{4.3.41), we conclude that the explicitly listed terms

are matched and

h,(C), Ha(( ) = 0 as (-, (4.3.53)



Since the geometry is symmetric and the ioading symmetry is maintained by the factor j

defined by (2.10), we conclude from the above that the functions h and H. , signified by

a generic symbol F, must satisfy the condition

F( ) = F(?) for h and H (4.3.54)

Finally, (4.3.44) is identically satisfied if h1  and Hl are holomorphic in D in the

(-plane. We must now determine ha and H to mcet the two remaining conditions

(4.3.45) and (4.3.46).

Before proceeding, we establish a few identities associated with the function o

given by (4.3.9). Since

(1/2 = 1+in , (4.3.55)
0

we may express ZI/2 in terms of (1/2, i.e.,0O 0

Z1/2 = +((o) = 2-(I/2 (4.3.56)

where (() is holomorphic in the ((=(I+i( 2 )-plane with a cut along the i axis, the

crack boundary. We have

+2(()] - (1/2 ,(4.3.57)

1 4 (-4, (4.3.58)

1 o2 - 1 (4.3.59)

Substituting (4.3.49), (4.3.50) and (4.3.52) into (4.3.46) and using (4.3.54), (4.3.56)

and (4.3.59), we find that the condition is satisfied if
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H2(i ) =H-{Hl,h}l+hW]-7{ h ,~

+ 1 / 2H() + (()H 1 [I,(())]] + 0"[(1/212 [Hl( 2 ~

where+ 21(()H'(~2Q + 2h' [+2(()] + i~}(4.3.60)
where

- +1 ;r = 0.22
0" _ f if 2 2 (4.3.61)

Substituting the above into (4.3.45) and using (4.3.56) and (4.3.57), we irA that the

condition is satisfied if

1/2 1 2

+ i() ( + h, [4I2(c))] -(7+7.p){1 [(./ 2 H,(() - hfl

+ fV[1-(1/2)[ (1/2+ 2( 1 / 2 H'(() + 2h'((jj (4.3.62)

The above two expressions H*{HIhl} and h2{Hj,hj} may be taken as two calcu-

lating machines which convert the input hI and H1 into the products h2 and H2 in

such a way that the continuity conditions are identically satisfied. For a pair of chosen H1

and h1 satisfying (4.3.53), H2 and h2 calculated from (4.3.61) and (4.3.62) also satisfy

(4.3.53). The only condition that is left to be enforced is that ha anid Ha must be holo-

morphic in D in the (-piane (c.f. 'ig. 4.3.1b).
a



Let us begin by setting H. = h 0. Then,

H*JOOj (4.3.63)

h*{OO (I-7'-7 " f 2 '( 1-I ) (4.3.64)
2'1/ 1/2 1-'/

which have poles at ( = 4, i.e.,

H{0,0} = P 0 () = (( - 4) (4.3.65)

2 24h;{0,01 p20( ) + +-- 7 4 .,.3.66)

Thus, H1 = h1 = 0 cannot be the correct choice. To obtain the complete solution, we

write

Hl(()= RI0(()

hl(() = Io(C)

(4.3.67)

H =(( H{O,0} + [R 20 (() - *0 ]

h = h;{0,0} + r20(()-

where Rao and rao are holomorphic in D The following series are assumed

® a b
I- ((-4)"' 10 = a (jn

(4.3.68)

r 20 7n7R 2 0  X
ni=1 n=i

which conform with the requirement at = w characterized by (4.3.38)-(4.3.41). The

constants a., bn, An and Bn must be chosen in such a way that the substitutions (c.f.

(4.3.49)-{4.3.52))
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2W"- f.*- 7U11 2 R,

f: ur204) -P 2 0(J](4.3.69)

W;: or[R 2 ((C) - P;O0 )]

satisfy the two continuity conditions (4.3.45) and (4.3.46). Since all terms are bounded,

the standard Fast Fourier Transform algorithm may be applied. This provides a numerical

scheme for the direct computation of the needed asymptotic solution as opposed to the

numerically extrapolated result of section 4.2.

Let K, and K1i be the SIF's. They may be normalized by the factors ,22v7 and

1 , r i.e.,

K K I 02 2 v , K2 = K ,/r,2vrf (4.3.70)

where KI and K2 depend on the small parameter 6. As 6 0, they tend to finite

dmits which may be obtained from (4.3.50). The results are

K(1 = 7(1 + H1 (O)] [*= 1]
(4.3.71)

K2 =7[1 + H(o)]

where

H(o) = RIo(O) n- .-. (4.3.72)
nl=1

The above analysis establishes the basis for the general solution which will be discussed in

section 4.4.



4.3.4 An Approximate Analytic Solution

It appears that an approximate but explicit solution may be constructed for the

special confocat geometry. This is accomplished in the following manner. Another way of

removing the poles defined by (4.3.65) and (4.3.66) is to define HI and hI as follows

PL P 1
PP1(_) = P1( = I + P2 (4.3.73)

( -4 ((-4)

h p!(() = 1 P12 (4.3.74)(-4 ((-4)2

where PII P12 1 P1 and P1 2 are constants and both expressions are holomorphic in D,.

in the s'-plane.

Substituting the above into (4.3.60) and (4.3.62) and requiring that the calculated

H2 and h2 are free of poles at (= 4, we obtain

2P(() + p(() 1+H(O)I 1 = , (4.3.75)

- pl(() - 4[12PI(( + Pj(()] =0 ,(4.3.76)

and hence

PI(-)= I 1+  (4.3.77)

I' = '-2 + 8 (4.3.78)
4---* ( 4 (( 4)2 _

where

8 =r -e [1 + HI(0)] . (4.3.79)

The newly generated H2 and h2 are now free of poles at ( = 4, but new poles are gener-

ated at ( = 16. This is so because H(I 2(()) now include powers of



12 as 1-.16. (4.3.801)

Removing the poles at " = 16 will lead to new poies at 4 = 36.

The process may be continued for a chosen number of times so that

N

11= P N{)=X n( ), (4.3.81)

n=1

N

h= (m = Pn(() (4.3.82)

n=1

where

2n p

= n, nm (4.3.83)

2an P
Paw I .---m(4.3.84)

M=1 [(-(2 n )21 ']

which may be expressed in terms of Pn-1() and pnl( via recurrence formulas. The

derivation is straightforward but lengthy and is not included in the thesis.

The functions generated by substituting (4.3.81) and (4.3.82) into (4.3.60) and

(4.3.62) have poles at = 2(N+1) 2 , i.e.,

as .. [2(N+)1 2  (4.3.85)

2 {P.IN((O3 P*N(() =P2}(

where P and have forms similar to those given by (4.3.81) and (4.3.82). Thus,

(4.3.81) and (4.3.82), together with the generated H2 and h2, cannot be the correct

solution. The complete solution must be of the form
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P N( ) + RiN )

h() - N() + rlN(()
(4.3.86)

H2(p IN H{ 1 , P Ill + jIR2N( ) - N )

h2(i) 2 1{N, Pill + [r2N(() - P*()

where R aN and r aN play the roles of R and r., in (4.3.67) and must be determined

in a similar manner. In fact, the series (4.3.68) may be taken as the solution for the new

unknowns. The input to this problem is provided by PN and p which have poles of

order 2N at = [2(N+1)12 . Ncting that the nearest interface point is at ( = 1, we

conclude that the contributions of R aN and raN are perhaps small for large N. This,

aowever, is not proven in the thesis.' Taking the statement for granted, we have

H 1(I) - PIN(M) hl(C') z piN({)

H {P~ P~N (4.3.87)H2( ) _- 11* PNJ Pill - P *2N( ( ) I

• h{. .1~1} •h2()h2P*N' PINJ - P2N ( ( ) "

For a two-term approximation, P1 and p, are given by (4.3.77) and (4.3.78). A

lengthy computation yields the following expressions for P 2 and P2

2( )= (7PP (3 .L* + 1-7 IT("

r64(1z..71 487"(2+30'] 1 + 3847( 3+11J0)
L 7+7 +1-7 72 ((-16)'

(3.16)37 1 (4.3.88)

'The recurrence formulas associated with (4.3.83) and (4.3.84), together with the explicit
forms of (4.3.85), are needed for such a proof.



P2( ) 7- -4- P2(() + L 7-t7" + -7* 7 7

+ 64(+-1-7-) + 48, *' 1 3847(11 *--3) 1
+ 7+7* 1:"- ((-16)2 7 (-16)3

-(3"16)37 1 (4.3.89)
1-7 * (- _16)] j

where r is defined by (4.3.79). It follows from the approximation

H1(0) z PI(0) + P 2(0) (4.3.90)

that H, (0) 7,PT, 14{ 22o*1+,O 17) 4- 1-3L 7'I

(91+59f*)T*. (4.3.91)2 2(1-T*) I J

The approximate expressions for the asymptotic values of K1 and K2 (4.3.71) are

K 1 (4.3.92)
3-77* + 1 [6(17-+7-7)+ 75 

L 7+7 )

K52 = (4.3.93)

5- Ig f21I-* +I6
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4.3.5 Rsuits And Discussion

We shall restrict our attention to the range 0 < j!/I2 < 1 to reflect our interest in

the physical situation of crack damage interaction. The confocal nature of the problem

allows a series solution in a transformed plane. Such a series solution was obtained in

section 4.2. The convergence of the needed matrix inversion becomes extremely slow for e

< 0.05. Nevertheless, the e -. 0 limit was accurately extrapolated from the extensive

numerical results. This limit is reproduced for K, for the case Y1  2 = 0.2 in

Fig.4.3.2 where the numerical results generated by (4.3.68) is also shown to be in

agreement with the series solution. To substantiate the accuracy of our two-term

approximate solution, (4.3.92) and (4.3.93), K is also plotted in Fig.4.3.2. The

agreement is almost perfect.

Our formulation indicates that the solution to the problem depends explicitly on the

two composite parameters 7 and 7* defined by (2.14). It is therefore desirable to

present the SIF's in terms of them. The choice of the two composite parameters in a typi-

cal two-phase problem is not unique (Dundurs, 1969). The parameters 7 and 7" appear

naturally in our problem. Moreover, exact solution may be obtained for the case 7" = 0,

(4.2.47). Still, the range of the two parameters may be easily determined from Dundurs'

discussion. In terms of 7 and 7$, Dundurs' a and 0 parameters are

a = 1 1 2 ,(4.3.94)

which may be inverted to yield

l-a 0-8_
S= I-'' T = . (4.3.95)

Dundurs' a-# plane, together with the admissible ranges of a and /0, are reproduced in

Fig. 4.3.3. Also plotted in the figure are the constant 7 and 7* lines. Thus the ranges of

7 and 7* may be straightforwardly calculated, i.e.,
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1 (1-47*) < 7< 2(1-27*) for 0 < <1

(4.3.96)

0 < 7 < 2(1-27*) for < 7-

which covers the range of interest set by 0 < u1/"2 < 1. Results pertaining to (4.3.92) and

(4.3.93) are plotted in Fig.4.3.4 as functions of 7 with 7' as a parameter. It is felt that

results for all inhomogeneity problems should be presented in terms of 7 and 7' in the

fashion characterized by Fig.4.3.4.
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4.4 A Crack in a Thin Inhomogeneity of Arbitrary Shape

4.4.1. Introduction

Equiped with the benchmark results of section 4.2 and the analytic information

revealed by the asymptotic analysis of section 4.3, we are now ready to construct the

asymptotic solution for problem II where the inhomogeneity is thin but is otherwise

arbitrary. The geometric configuration is examplified by the right-hand side of (2.16). It

is noted that the nose dimension implied by the second expression of (2.16) is of the order

of the thickness , c , of the inhomogeneity. This choice is made to reflect the physically

observed damage-zone shape reported by Chudnovsky, Moet and Botsis (1987).

Mathematically, though, the situation is in contrast to that of a confocal geometry where

2
the nose dimension is of the order of e , (4.3.2) and (4.3.7). In this connection and also in

terms of mathematical considerations, the confocal situation is even harder to solve than

the general case, as the former requires the satisfying of boundary condition on a parabola

in the boundary layer variable.

Our final product is an asymptotically accurate series solution which is valid in the

neighbourd of a crack tip for both the inhomogeneity and the medium. As a result, the

solution may be manupilated to yield any and all desired physical quantities of physical

importance. For example, the various generalized Eshelby forces along the interface

boundary may be straightforwardly computed. These quantities will be discussed in

Chapter V.
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4.4.2 Formulation

We now turn to the situation depicted in Fig 1.2. Geometnicaiiy speaking, it is the

elasticity counterpart of the thin airfoil problem (Von Dyke, 1975). The proolem is of

course much more involved as it involives four complex functions. The geometric

description is given by (2.16) where, in general, y±(x) = y*(x,e) may be assumed to have a

given asymptotic expansion. We are mainly concerned with the first order solution and

such a generalization is not pursued in our analysis. The mathematical problem consists of

(2.7), (2.12), (2.13) and (2.8), and is recapitulated as follows:

WIV(, ) + W*(x,Ej -_(x,e) =0 for lxI < 1, (4.4.1)

W2(zc;) + W2(zc;) + (zc-Zc)W2 ( z c a ) - f2(z c;E)

Wi(zc;E) + Wl(Zc;f) + (zc-Zc)w 1 ( Z c C ) - f( ) (4.4.2)

W1(zc;e) = 7W2(zcl)

7[ W2 (zc 2e) + W2( c;e) + (zc-z)w 2 ( c ' ) f2(ci 1E
(4.4.3)

W2 (z;1) = Wz, f2(z;f) = fz as z - c. (4.4.4)

4.4.3 Outer Expansion.

We seek the expansion of a generic unknown function F(z) in the form.

F(z;e) - Fo(z) + 61(e)Fl(z) + 62 (e)F 2 (z) +. ..... (4.4.5)

where 6 (e) is an asymptotic sequence that may depend on zc(x;c). The value of the
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function F(zc;e) may be computed from the scheme

~ (C) F I(x) *ify*,(x)F '(x) + .. ](4.4.6)

where (2.16) has been used for z a ... I -(x) = F (x iO).

The system of equations (4.4.1) - (4.4.4) are now expanded inaccordance with (4.4.5)

and (4.4.6). "'ha 0(I) - terms are:

W1 *(x) + W1 *(x) - fPl* x) = ( (4.4.7)

\'o(X) + Wo(x) - f! (X) = W. 0 (x) + W 0 (x) - f o(X), (4.4.8)

W*O(x) = 7Wto(x) + 7*jI. (X) + Wo(X) - %(X)] (4.4.9)

W2 0 (z) = Wz , f20(z) = fz as z . c , (4.4.10)

where I xI < 1. As c -. 0 the interface boundary is asymptotically close to the traction-free

boundary. This is formally -mplied by (4.4.7) and (4.4.8). The vanishing o' the left-hand

side of (4.4.8), together with (4.4.10), l.eads to the ordinaa rv crack solution, viz.

f2(z) = fz '4.4.11)

2W2 0(z) -f 2o(z) = OX(z) (4.4.12)

where

X(Z) = (zi)1/2 (4.4.13)

Equations (4.4.7) and (4.4.9) are identicaily sitisfied by

I I I' imi ml i I
m
l~a ll l 

m
D D i l illlH l II i F'



f 1,z) = 7' 20 (z) = 7fz, (4.4.141

2W10 (z) - flO(z) = 72w2 0 )- f20 ] = X(z) (4.4.15)

Unlike the situation described in chapter 3. the analysis for the present case depends

heavily on the shape zc(x;c), (2.16). For example, if zc is an ellipse then the

boundary-layer variable should be scaled by e 2 and the required asymptotic sequence is

just 6n(f)=f n . On the other hand, if y*(x)=l in (2.16) the required asymptotic sequence

may involve eLne. For this reason, we shall restnt our attention to the determination of a

one-term approximation for a round-nosed inhomogeneity with (3.6) as the assocciated

boundary-layer complex variable..

To the first order of approximation the inner expansion of the outer expansion near z

I 1is

f2(l+E;E) - f + o(e 1/2) (4.4.16)

2W 2(l+f;E)_f 2 (1+E);f) 1/ 2 4 1/2 + (4.4.17)

/f + o(( 1/2 (4.4.18)

2W(l+,;e) - f 1(l+E(;C) f 1/27 4 01/2 + . . (4.4.19)

4.4.4 Inner Expansion Near z = 1

For a generic function F(z;f), the associated inner expansion is defined by

F~ ( + I/ 2 F ( ') +.

/2

where 61 (e) = e is determined from (4.4.16)-(4.4.19). Thus



) + El/2 (.)+ .q. .. (4.4.21)

2W( -c 2W*((;e )- -1

+ f1/2 + .... (4.4.22)

N ~() 112 . ..... (4.4.23)

2* - f((;c 2W20(()  0

+E I /2 2W ()f( + (4.4.24)
+1 *1( .....

In the (-plane, D is infinite and D is a semi-infinite strip Fig 1.2. Equation (4.4.1)

requires fj*((,;) to be holomorphic and 2W*-f double valued along the negative axds. The

continuity conditions are just (4.4.2) (4.4.3). Their conditions at c - are governed by

(4.4.16)-(4.4.19). The choice
fM0 ()= 7f-( M= T, (4.4.25)

2W 0(() - f 0() = 2W*0 ( )- 0(() = O, (4.4.26)

meets all conditions and yields no useful information.

Before proceeding, we give a more precise description of the interface boundary z=z

in terms of the boundary-layer variable defined by (3.6). It is

z -I ()e? <p<(..7__ C= c - = P~ ) e f  (: )(..7

and

Pc (p) eif "- as 9-* (4.4.28)
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Moreover, the scaling of the e is chosen in such a way that

Max pc(F)cosP = 1 (4.4.29)

It follows that

-2 1 (4.4.30)

Finally, the minimum value of pc(p ) is denoted by Pm i.e.,

PM - Nin pc(F ) < I (4.4.31'

The desired asymptotic limit is governed by f! Wl f*2 and W*I. For the region
ill i1l 21

D in the - plane, the following series are assumed

2 -n/ 2 (4.4.32)

/n= I

2W_" - 2 ( 1/2 { + Bn/P)

n=I
(4.4.33)

where a is defined by

4 = 22 for "12 = 0 (4.4.34)
-if"12 a11 = t22 = 0

so that al/ =1 for both cases (c.f. (2.10) for definition of a). It is noted that the above

satisfy the conditions at ( = w required by (4.4.16) and (4.4.17). The form of the series

follows from the analytic structure revealed by the benchmark analysis.

We employ the property (4.4.30) to set up the series solution for region D1 . It is
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n=0
IDD

5~() 1 a i (4.4.35)2wu( )- ( ) 1 T =2. ,,

n=O

whe:e

21 b - (4.4.36)
imd 1 •dz==0 n=0

so that the conditions at - ,(4.4.18) and (4.4.19) , are identically satisfied.

The constants involved in the series are then determined from the interiace conditions

that have forms similar to (4.3.45) and (4.3.46) via the Fast Fourier Transform Algorithm.

The associated stress-intensity factors are :

K(1) -i K(1) ( KI-iKII) '22"* ~ 7 b0 , (4.4.38)

(2) + K 2 )( +iK) (4.4.39)
K2  1 K11  o1 2 vr' 1 7b0  44.9

where b0 is the same complex number solved from the same mathematical equations which,

via the scaling factor o*, govern the solutions to two different physical problems.

4.4.5 Results and Discussion

The computer code is used to compute the K (w, b) curve discussed in section 3.6 and

presented ia Fig. 3.2. Other relevant comments may be found in section 3.6.
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CHAPTER V

ESHELBY TENSOR AND THE ASSOCIATED ENERGY RELEASE RATES

5.1 Plane Elasticity - The T - Problem

We begin by reviewing the well-established results of plane elasticity. The

exposition will be delineated in such a way that parallel development in the manupilation

of Eshelby tensor in a homogeneous region will be demonstrated. Most of the results can

be found in Eshelby's publications which will be cited at the proper places. The purpose is

to summarize all the known results and the many still not fully utilized concepts advanced

by Eshelby in a unified setting.

Let 0 - (z 1 , z z3 ) be rectangular Cartesian coordinates a,.d let (1i'2' '3) be the

associated unit vectors. The two dimensional Kroncker delta and alternator are denoted

by 6 ao and ea# 3. A typical two dimensional region in (z1 , z2) will be denoted by R, its

boundary by OR, and the outward unit normal to OR by n. The displacement, strain and

stress are denoted by u a, ea and raOt, respectively. The strain-displacement and

.tress-strain relations are:

fa= 1/2 (u uf+ ua) (5.1)

a= Of/ d f 2 ae a+A (5.2)

where f is the strain-energy zensity function, and u and I the Lame' constants.

We shall first restrict ourselves to the case of constant us and A and consider the

-- problem defined by:

r ao 'roa(5.3)

ra, o 0 (5.4)

V2 r =0, (5.5)

77
r~flnfJ= T a (5.6)
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where V2 is the Laplacian and T are prescribed on dR. There are the following associateda

relations :

V 0 2 , (5.7)

V2 u + (5.8)
a A 77,a

A+2u e (5.9)A, 7#3 'aa,al

V2 = o, (5.10)

where

&= ea 3 u, (5.11)

Equilibrium considerations lead to the necessary conditions

. T  a  (5.12)OR

fR e 7a3 z7 T a do = 0, (5.13)

and the identity

Jrd a  fzT do, (5.14)
R 3R

wLich is commonly used to define average stress in terms of boundary traction. The trace

of the above may be related to the trace of

JR fa# da = 1/2 f(uan# + u0 na) do, (5.15)

which is commonly used to define average strain in terms of boundary displacement.

Multiplying (5.4) by u7 and integrating over R, we obtain
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fRuTT do r adua,0 da (5.16)

The trace of the above is Clapeyron s Theorem

Tu a do=2J fda (5.17)ORaR

Forming the skew-symmetric part of (5.16), we obtain

ea3 ua T do = 3 ua, 7 rao da (5.18)

which must hold for all R.

Finally, in terms of the complex variable z = z+ - iz2 and two holomorphic functions

W(z) and w(z), there are the following results (England, 1971)

2 u (u, + iu 2 ) = KW - zW '" - w (5.19)

r11 + r 2 2 = 2 (W' + W-) (5.20)

('1- ' 22 ) + i2 12= -2 (zW + w') (5.21)

(T1 + ;T2)do = -i d[ W + ,W T + _w (5.22)

((zT 2 - z2TI) + i(z1 T1 + z2T 2 )] do

-d[zzw +zw-fwdz-iImf2w'dz] (5.23)

(T2uI- T Iu 2 ) + i(Tjuj + T 2u2 )] do,

1 (W- zW - _W ) d(W + _-W' + w) (5.24)
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.vhere

(3 - 4) plane strain (5.25)

(3- v) / (1 + v) plane stress

and Y Poisson's ratio. The imaginary part of (5.23) and real part of (5.24) are not

commonly used in studying elasticity problems. These well-known results are recorded

here because, as we shall see, the Eshelby tensor permits a representation that is identical

in form to (5.19)-(5.24). In particular, the full form of (5.23) and (5.24) are associated

with the now well known conservation integrals.

5.2 The P - Problem and r* - Problem

We shall discuss in this section a mathematical problem, the p-problem, governing

the solution of a tensor field p a which is not symmetric. The p-problem is defined by

Pa- = 0, (5.26)

p = r , (5.27)

V2 ea0 p, o, (5.23)

P % no= P a (5.29)

where Pa are prescribed on OR. The problem is well posed, as there are four unknowns and

four equations. Indeed, the situation becomes ".pparen if we convert the p-problem into a

r -problem via the transformation:

rao ea13 PO =e O 3 P (5.30)

T = eGA3 PA. (5.31)
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we shal call ra 0 a pseudo-stress field.

Substituting the above into (5.26)-(5.29), we find that the equations governing 7.

are identical in form to (5.3)-(5.6). It follows that a r -problem, is a T-problem. As a

result, holomorphic functions W*(z) and w*(z) may be obtained to defined the

pseudo-stress field r*

Since no "kinematic variables" are involved in the p-problem, and hence the

r -problem, we may even stretch the above mathematical analogy further by introducing

pseudo strain rate f4 via the inverse of

r* *2se~~ (5.32)~ao3= 2A* f ao +. A*afe 7i

where As and are pseudo viscosity coefficients. Since the r* field is "Compatible" by

(5.30) and (5.28), the psseudo strain rate a may be integrated to yield a pseudo velocity

field u" via

E # ua*,e 0 l, + ) "(5.33)

To obtain the solution to a mathematical p-problem we merely express the

associated r -problem solution in terms of W*(z) and w*(z), and 'hen make :he

substitutions

(5.34)
P12 - P21 = '1l + '22 '(.4

(P12 + P21 ) + i 2 P2 2 = (rTl - i 22 ) + i 2 ( p i(lr =
(5.35)

(P + i P2 ) do, = i(T* + i T*) dg (5.36)

[(Z, P2 - z2 PI) + i (z, P1  + "2 P2 )} da

-- i [(z, T; - z T) + i (z T +z T)de. (5.37)
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The asterisked versions of (5.12) and (5.13) yield

f P d=0 ,
a  J z P do =0 (5.38)

OR O

and the astensked version of the trace of (5.14) is

jRea03 za P do, = Rea0 3 Pao da (5.39)
ORR

The byproduct of the solution to a r--problem is a pseudo velocity field u* which
" -*a

may be expressed in terms of W* and w* via the assumed u" and A*" We may therefore

introduce yet another pseudo velocity field va to pair with the tensor Pai It is defined as

follows:

v =-e 3 u , ua e 3 v . (5.40)

5.3 Fshelby Tensor Associated with A r - Problen

For the sake of argument and convenience, let us assume that the strain-energy

density function f introduced in (5.2) depends explicitly on place and time, i.e., f = f(e I

z7; t). Using Eshelby's language, we may regard f(...; zT, t) as a calculating machine which

works ou* the value of f when lare inserted. The explicit dependence on za and t then

means that the machine charactenstics are continuous functions of place and time. We

introduce the notation:

If a f (5.41)
tand za constant

I - ,f a (5.42)
77 Ie I ,t and za(a#7) constant
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4+ + a 1- T (5.43)

Sf (5.44)
7 2f1 7

Let p.6 be the Eshelby tensor (1951, 1954, 1956, 1970). In terms of our notation the

tensor is defined by

Pl = f 5l -rO u7A (5.45)

Using (5.1)-(5.4) and (5.44), we may easily shows that

IfP , = (5.46)

where the right-hand side is zero if f is homogeneous in space. We now show that for such

a case the Eshelby tensor field is the solution to a p - problm defined by (5.26)-(5.29).

Equation (5.26) is identically satisfied by (5.45). Equation (5.27) follows from (5.46) in a

homogeneous region. Using (5.1) and (5.2), we find from (5.45) that

e., 3 pail=-(, + A)& u7, 7  (5.47)

It follows from (5.7), (5.9) and the above that (5.28) is also satisfied. The necessary

conditions (5.36) are the three well-known conservation integrals (Budiansky and

Rice,1973; Chadwick, 1975; Golebiewska-Herrmann. 1981,1982; Knowles and Sternberg,

.'.972; Rice, 1968). This completes the asierion that the Eshelby-tensor field is the

solution to a p - problem. Finally, using the identity

earl3 Pal-4 - e., 3 r. 7 u,,, e,# 3 r,? u,, (5.48)

we obtain from (5.39) that
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Sdo-+J e 3 "aT d=0 (5.49)

which is another one of the conservation integrals 2

We shall say that a p - problem and a r - problem are associated problems in a

homogeneous region if pai is the Eshelby tensor associated with the r - problem. We

recall that the solution to a r - problem may be expressed in terms of (W, w), and the

solution to a p - problem may be obtained via the solutionof a r*- problem expressed in

terms of (W*, w*). A tedious but straightforward calculation leads to the following simple

relations for a perfect associations :

W (z) - - '()) 2  (5.50)

W*'(z r4(,1=- i 2 w'(z) w I(z.) .(5.51)

5.4 Eshe lb-Tenor force in Elatostatics

The many important implications of Eshelby tensor are discovered by Eshelby via the

consideration of the total energy of a system. In elastostatics, the total energy Eto t is the

potential energy. Using Eshelby's machine description f (en.; z, t), the total energy at

time t is

Etot(t)J f da -f T. u. do (5.52)
R R

It follows from the equilibrium conditions (5.2) and the notation (5.43) that

E t (t)=J J' f da (5.53)Etot~t R _ da

2The first two equations of (5.38) are commonly referred to as Ja are even more commonly

referred to crack-tip contours (Rice,1968). In view of the resultant force appearance, it is

perhaps more appropiate to call them F - integrals. The last of (5.38) is commonly called

the M-integral.
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which ,il be examined in conjunction with (5.46), i.e.,

If (5.54)
a

The discussion cannot be continued without first specifying a machine f(-; z , t).

The machines that have been considered by Eshelby and many other researchers are mostly

piecewisely uniform in space. To fix ideas, let us introduce a curve or contour C defined by

C z: a = xa(t) (5.55)

and hence v= x (t) defines the velocity of C. If the machine f(...; z , t) is uniform in
aa7

space on both sides of C, then for a region R containing C

E =J, da = - (f -') v n d (5.56)

where f* are the uniform machi mz :u the * n sides of C. Since f(...; z a, t) is a step

function in space, the right-hand side of (5.56) is

- (f+ - f-) v ndo J" I - da , (5.57)
C R a

and hence

Et+t(t)= J( p  P -)vdr , (5.58)

which was first obtained by Eshelby (1951) and is the essence of the physical significance of

the Eshelby tensor. If C is the boundary OR oi a region R and va = x is hnear in x.,

(5.58) gives the energy release rates associated with the "hypothetical", in Budiansky and

Rice's words (1973), translation, rotation and expansion of R. Eshelby identified (5.58)

with the interface force associated with a martenstic transformation.
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The various energy-release rates associated with (5.58) play the roles of generalized

forces and hence are of fundamental importance in analyzing fatigue crack-damage

propagation. If the crack-damage description could be approximated by the two classes of

problems examined in this thesis, then analytic means must be provided to perform the

nontriva calculations implied by (5.58). Th., was our motivation and we have completed

our self-imposed goal. The following flow chart indicates the sequence of steps that may

be straightforwardly performed to complete (5.5P •

Series Wz) via (5.50)_[ WS z)
solution wz) (5.44 wz)

(5.34) ----- MW-------70 Energy
L.ii W Release Rates

The linldng of the energy-release rates to the damage evolution dnetics is the intent of our

next objective.
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CHAPTER VI

SUMMARY

Our interest in toughness of composites reiniorced by particles, fibers and layers, and

generalized forces associated with crack-damage propagations have led us to consider the

two classes of elasticity problems stipulated in Chapter I. Two computer codes, one for

each of the two cases, have been developed and are ready for adaptation. The

mathematical complication associated with the small geometric parameter has been

effectively removed. The remaining arbitrariness associated With a general physical

problem may be handled by one or several of the conventional analytic and/or numerical

methods.

The computer codes effectively give the coefficients of a series solution which is valid

in the neighbourhood of a crack tip. It follows that they may be manupilated to yield any

and all physical quantities of significance. In particular the various Eshelby force3 along

the interface boundary may be easily computed by following the flow chart provided in

Chapter V.

The efficiency of the two codes are illustrated and the class of problems depicted in

Fig. 3.1 is discussed in section 3.6. Since we are most interested in the situation where the

inhomogeneity is softer than the medium, Mode-I SIF's for five cases are summarized in

Fig. 6.1, where the normalized SIF is plotted against Al/ 2 for vI = v2 = 0.2. It is seen

that the effect of an inhomogeneity is strictly of a shielding nature for the range ps/1 2 < 1.

Moreover, the exact value of the SIF for a specific configuration falls in the rather narrow

lens-shaped region bounded by the very large inhomogeneity limit, (4.2.69), and the

straight line K = lul/I2 which is the exact SIF associated with a semi-infinite crack

gerpendicular to a two-phase boundary (Hilton and Sih, 1971). We conclude the summary

with the following rather unexpected conjecture.

A conjecture: Let a crack be surrounded by a doubly symmetric inhomogeneity of
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moduli A, and v, = v which, in turn, is embedded in an infinite medium of moduli 42 and

V'2 = V. The inhomogeneity may consist of two disjointed inhomogeneities surrounding the

tips. The normalized Mode-I SIF is a function of the two composite parameters

(1+r.2)AI I
7=

* = -- I - - 1--A

and is denoted by KI(7,7*). It satisfies

7 < K1 (7,j*) < 7 (7+-7)
2(7+7* ) (1-27*')

for 0 7 = /ul//2 1. The right-hand side of the above is deduced from (4.2.69) and

equalities hold for 7 41/-u2 = 0 and 1.

The curves summarized in fig. 6.1 apparently satisfy the conjecture. Curves (1) and

(5) are respectively the right-hand and left-hand sides of (6.1). Curve (4) is the thin

confocal ellipse and (3) the circular inhomogeneity. Curve (2) corresponds to the

configuration of Fig. 3.1 with a = 0.5 and b = 2.0.
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ABSTRACT

Cohesive elasticity is the grade-3 theory of elasticity developed by Mindlin in 1965.

has a modulus of cohesion which gives rise to surface-tension. The concept of adhesion

is introduced, and interfacial energies and energy of adhesion are defined. The interfacial

energy solution may also be used to define a grain boundary energy. Also presented are the

thin film energy and the concept of an interface-phase. The stretching of a thin film is

analyzed in deta.1; and it is found that the apparent Young's modulus obtained from a film

is higher than that obtained from a plate.
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1. Introduction

Every continuum field theory contains only a limited amount of physics, and even

the limited amount of physics is very often only of a phenomenological nature in the sense

that the various constants employed in the theory are closely related to but not directly

derived from more fundamental physical parameters. It could be argued that Ycung's

modulus should be directly derived from more fundamental bonding forces, but the

"correct" Young's modulus has always been directly measured from a tension test. It is

hard to define the exact physics content of the theory of elasticity, but it is perhaps

reasonable to say that most of the so-called micromechanics phenomena we are so eager to

understand are not derivable from the limited amount of physics that was built in

elasticity. When the implications of a continuum theory have been exhaustively revealed

by the mathematic solutions to the associated field equations, additional mathematical

manipulations become redundant even though new solutions will always - of usefulness.

In terms of a lattice theory, elasticity incorporates only the nearest neighbor

interactions, anid that is it. The theory does not have an intrinsic length scale and, as a

result, a 30-cm slab behaves the same as a 40-/an film, and there is no difference between

a microcrack and a geological fault. An intrinsic length scale appears when the forces

between particles are extended to include first, second and n-th neighbor interactions.

Moreover, an initial, homogeneous, self-equilibrating stress will lead to surface tension

(Toupin and Gazis, 1964; Gazis and Willis, 1964). The surface-tension solution is of a

boundary-layer type, and the associated decay constant has been estimated from

electron--diffraction data obtained by Gerner, MacRae and Hartman (1961).

The continuum version of the n-th neighbor-interaction lattice theory is the

so-called grade-n theory. If the strain energy-density is assumed to depend on the

rotation-gradient, in addition to the strain, there results the couple stress theory. A

complete grade-2 theory depends on all eighteen components of the strain-gradient, and

........... m m m m
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the additional stress quantity is sometimes termed the double stress Toupin, 1962). The

inclusion of yet a third gradient, which has thirty independent components, leads to a

grade-3 theory and the associated new stress quantity is sometimes termed the triple stress

(Mindlin, 1965). There is also a very general theory which includes strain-gradients of any

order (Green and Rivlin, 1964).

Couple stress and higher order gradient theories were popular topics of research in

the sixties, and Mindlin's work are most noteworthy in that his goal was specifically

targeted at understanding the effect of microstructures on the failure of solids (Mindlin,

1962, 1964, 1965a, 1965b, 1968; Mindlin and Eshel, 1968). In particular, and to the best of

our knowledge, his grade-3 theory (Mindlin, 1965) is the only continuum theory that is

fully developed and has the capability of defining surface phenomena via nontrivial

displacement fields. The most important concept of this theory is a new constant called

the modulus of cohesion which is essentially an initial, homogeneous, self-equilibrating

triple stress. It is for this most important constant that we have coined the name cohesive

elasticity to stress the significance of the theory.

The availability of self-equilibrating states is fully exploited in this paper. In

addition to surface free energy, which was considered by Mindlin, we have introduced the

concept of an adhesive joint to define various interfacial energies and energy of adhesion.

When suitably defined, an interfacial energy becomes the grain boundary energy. Also

introduced are the thin film energy and the concept of an interface-phase. The stretching

of a thin film is analyzed at the end. It is shown that the apparent Young's modulus

obtained from a film is higher than that obtained from a slab.

The basic equations are first recapitulated in a dimensionless form. Stress function

representations are then presented in terms of solutions to thirteen uncoupied second order

equations. A complete boundary-layer solution is obtained for a regular boundary, and

several significant, outstanding problems are outlined at the end.
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2. Notation

We consider vectors in three-dimensional Euclidean space. Such vectors wil be

denoted by lower-case bold-face letters (a, b, n, etc.). Let %;, e2 ' e3 denote the unit

vectors in the directions of the three coordinate axes zl, z2, z3  of a rectangular

right-handed cartesian system with origin 0. The position vector of a point P relative to

0 is denoted by s.

In addition to scalar product aeb and vector product axb of the two vectors a and

b, the dyadic product is written aeb which, in case of no confusion, is also written ab. A

second-order cartesian tensor T can be expressed as a linear combination of unit dyads,

so that it takes the form

T = T. .e.ee. (2.1)

where the summation convention is employed. As a rule, we shall use bold-face capitals to

denote cartesian tensors of second (and higher) order. Moreover, an over-script is used to

denote the order. Thus, a cartesian tensor of order n can be expressed in components as

n
T=T ... m e.e. *-.e (2.2)

nindices n factors

n m I 1 4 4"

The inner product AoB and outer product AeB are illustrated by

2 22
A.B = AijBjkei ek (2.3)

2 2
AeB = AijBk1 e ie jek.el (2.4)

n m
In addition, the rule of contraction A* B of tensors is illustrated by



(ala 2 )(blb 2 b3) = (a Ibj)(a2 b2 )b3  2.5

(aa 2a3)*(blb 2) = al(a 2.b,)(a 3.b,) , (2.6

(ala 2a3)* (bl b2b3) = (a.b 1)(a2 #b2)(a3 "b3 ) (2.7)

where, for example, (ala2 ) = aOa2 . The dyadic product indicator 0 will, for

convenience, not be explicitly shown in places where no apparent confusion will be resulted

from the omission.

The theory developed by Mindlin involves a material length-scale I which is

assumed to be much smaller than the geometric length-scale L associated with a problem.

The ratio e = I/L plays a key role in the theory, as well as in the ensuing asymptotic

analyses and results. It is for this reason that we have chosen to recapitulate the theory in

a dimensionless form.

Throughout this paper the length-scale L is prefixed so that, e.g.,

Dim. s = Ls,

and hence z. are dimensionless. Let p be the shear modulus. The force-scale used
12

throughout this paper is just L 2 4. Also, the notation Dim.( ) is used to mean dimensional

form of ( ), instead of dimension of ().

3. Governig Equations

Let u(s) be the dimensionless displacement vector. Following the original work of

Mindlin (1965), the dimensionless strain energy-density, W, is assumed to be a function

of three displacement-gradient tensors:
2 3 4

W = W(E,E,E) (3.1)s

where

2 1 u
E= (Vu+uV),E.= (ui, z + u (3.2,

3 * Multiply W by ]u to recover its dimension.
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3)

E = VVu Eijk = Uk,ij (33)

4

E = VVVu E ikjl = Ulijk (3.4)* 4

and V is the gradient operator in the dimensionless s. The symmetry properties of the

above are self-explanatory.

The variation of the total strain energy, in a (dimensionless) volume V, with

arbitrary variation of u, is

1 2 3 4
L J Wdv = J [T*(V6u) + T.(VV6u) + T*,VV6u)ldv (3.5)

V V

where dv = dzIdz2 dz3 and

2 2 3 3 4 4

T = AW/O, T = OW/aE, T = OW/aE. (3.6)s

The right-hand side of (3.5) may be reduced to include a surface integral by application of

the chain rule of differentiation and the divergence theorem. In doing so, however,

additional caution must be taken to recognize the fact that V5u, together with other

similar terms, is not independent of 6u on the (dimensionless) surface oV of the volume

V.

A number of surface operations and surface operators are needed in completing the

desired reduction. Let n be the unit normal to WV and pointing &.vav from V. The

following are applicable and defined on ON:

V6u = na 6u + V~ou (3.7')
n

0 E nov (3.8)

V° - (I - nn)*V (3.9)

n -n+24*Multiply E by L to recover its dimension.

, n n-2
5 Multiply T by pL to recover its dimension.



ri-n Vuon) - = [ + - VO  (3.10)
Ri R

where I is the unit tensor and (1/R1 + 1/R 2 ) the mean curvature of the surface. It is

noted that for a flat surface V' is just the negative of V1, the plane gradient operator.

Using the above relations, we obtain from (3.5)

J Wdv {[+ V.LV*+) o budi + J to6u +t

V V ~aT2 2u
+ t*On 6u da (3.11)

where

t= no I - VeT + (VV)-T] + To V. [ [n*T]] +T nVo T-VOT

-(Von) [(nn) ,T] (3.12)

=(-[T-.T] + n V [. ] + V'.[(nn) 4 ] (3.13)

2 4
t (n.nn)*T (3.14) "6

are the generalized surface traction vectors associated with the generalized surface

2
kinematic vectors u, anu and anU, respectively. The Generalized Principal of

Stationary Potential Energy and stress-equation of equilibrium are:

] ' " J [O 2 2Wd =J fo6udv + J tou+ Oan t n-'I da (3.15)

V V eaT

F2 3 41

V. T-V.T+(VV)*T] + f = o (3.16)

* n n
6 Multiply t by AL to recover its dimension.
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For homogeneous and isotropic materials, the following 21.d degree polynomial W

was deduced by Mindlin:
w= FE..E..+ 3-K EiE1 2j] E..

=[ijij + E i6 Eiijj

+ 3aiik jjk + a.EijkEijk + a5EijkE -i

+ [+E kk +3E.11+ Ej + 0E ijkEllkj+0 Eiijk + Eiii Eijl

+ 0 Eijk Ej] + 2 [7,EiiEjjkk+ 7VEijEijkk+ 7,EijEkkij] (3.17) "

where f I/L,

3-4v (general and plane strain) 8 (3.18)

3-v (plane stress of elasticity)*

and v Poisson's ratio. All the remaining constants are expressed in dimensionless form

via As and a material length-scale 1, which is assumed to be small so that e<<l. We

shall refer to e as the small parameter from time to time. For example, as the small

parameter tends to zero (3.17) tends to the strain eneigy-density of the theory of linear

elasticity. All important mathematical and physical implications of the assumed W may

be found in Mindlin's original work and are amplified by the explicit introduction of I

and e. Finally, the material constants introduced by indlin are

{ a n, bl bn cn} {=,a j' LJ30it3ni 1Yn}

I The dimensional forms of the various terms are illustrated by, e.g., E2aE.-.. -- (i 0 )0 1133
(Eiij/L 2 )•

8 The meaning of plane stress in the new theory should be reexamined.
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From (3.6) and (3.17) follow the constitutive equations:
T 3-E Eii6pq]+f21

Tpq [2EL I+ Ej-1 +e 1 E.pq + 72 E pqii

+17 3 (Ejipq+E-i )1 (3.19)

Tpq e2 2a (E iSqr+Eqii-Sr) + 1 a (E. S +2E .. 6 +E.- Sp 2 iip qr ni qp iiq pr

+ 2a3Eiir6pq + 2a4E pqr+a(gErqp+rpq)] (3.20)

T~ ii pqj + pqr S rqp( rEpqjSpqrs 1 pqrs + Ejkiijkrs 1 ik+E.kj] jpq js .jpqr]

.6 2 2jq 23 7 E ++ 3 04 E- uisj jpqr + I )sEiijs63pqr + 20 6 pqrs + 3 07(Eqrsp + Erspq + Espqr)}

+ E' ['7,Ej s+ 1qS. + ~7Eis 2 1 06prl (3.21)

wheere 6ij is the Kronecker delta and

6ijkl = 6ij 6k + 6ik 6jl + 6il6jk (3.22)

ijkldmn ikjl +ikjmn + 6il6jm6kn (3.23)

n n
The symmetry of T follows from that of E, and the very last term of (3.21) was

identified by Mindlin as a cohesive force which gives rise to surface tension. As we shall

see that it also gives rise to interface phase and interphase interface energies.

Let W [u] be the total elastic energy. Then (3.17)-(3.21) lead to the conclusion

that

= 2 V2V 22 3 3 +44 4E23 T*E+T*
V + f j u T " F TE]dv (324)
v v v
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where the appearance of the first integral is a result of the fact that the 3 -term in W is
0

linear in Eiijj. The second volume integral may be converted into a surface integral by

following the steps from (3.6)-(3.11), and the net outcome is the Generalized Clapeyron's

Theorem:
f'Wd J "j" " [o 2 2

2 =Wdo fouda + 00 0 V2Voudv + tsu + teanU + tOanu da . (3.25)
V V V OV

Finally, the total potential energy U of the system is
U -W - feudv - ltu+t.nU+t.enu da . (3.26)

V 6V
0 1 2It follows from the above that if there are no external forces, i.e. if t, t, t and f

are identically zero, the total potential energy is merely

U* = 2 3V2Vu(e)dv = J1 2u(e)da (3.27)

V 6N
where u = u(e), if exists, is a self-equilibrating state. The total potential energy of the

system, (3.26), is the free energy, either the Gibbs free enerrgy or the Helmholtz free

energy. When a traction-free surface is the source of the disturbance, the free energy is

(3.27). It follows that the dimensionless surface free energy per unit surface area F is

given by

Fs = 0 , /OU(e) (3.28)

the dimensional form of which is termed the surface tension by Mindlin. We shall see that

(3.26) can be used to define many surface related energies.

The displacement-equation of equilibrium deduced from (3.16)-(3.21) is

+-D D VV*u-D D VxVxu+f=0 (3.29)
I1 12 21 22



II

where
2 2V

D 1 - e2a V2 , A =1, 2; 4= 1, 2 ; (3.30)

and
1/2

a = a - 2-* (a-2) -40ru+ l  (3.31)

2 2 1/2

2 = a -K 3 40'] (3.32)

in which A=1,2; and

a= 2(a+a+a+a+a) , =2(a 3+a)
1 2 3 4 5 3 2

7' = 3'1+ '2 +3

As the small parameter f tends to zero, (3.29) reduces to the displacement-equation of

equilibrium of the theory of elasticity.

.As it was pointed out by Mindlin that the conditions for positive W do not include

relations between a(or a') and 1, 7 (or 1 ',-y 3) and hence, supply no indications of the

character, real or complex, of the four constants a,,. In all the specific solutions

considered in the sequel, the aA. will be treated as if they were real and positive; but

complex aA, are equally admissible. The character, real or complex, of the four constants

aA,, dictates the behavior of the field variables. On the other hand, for the most part, the

final products of the problems to be analyzed are energy expressions of one form or another.

These energies turn out to be indpendent of the character of aA. In any case the two

pairs of constants (a ,a 2) and (a 2,a 22) are assumed to be positive throughout this paper.

In case they are actually complex, the following substitution is presumed:

a = a , Real a > 0; (3.34)
12 11 11

a22 = a , Reala >0 ; (3.35)
22 21 21
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which, of course, satisfy (3.31) and (3.32).

Equations (3.5), (3.11), together with the equilibrium equation (3.16), Yield the

identity

f [4Vu) + T*(VV6u) + T*(VV6u)]ddv

V
( ro 2 21

= f.6udv + j Ltobu+t. 8n6U+t On 6u] da (3.36)
V OV

which may be used to establish certain useful integral identities. The result of setting

6u=c, an arbitrary constant vector, is

CO j fdv + j tda =0, (3.37)

V jV

and the vanishing of the resultant force is a necessary condition for (3.16) to have a

solution. The result of setting bu= wx s, where w is an arbitrary constant vector, is

W [Jsxfdv+ (sxt+nxt)da = 0, (3.38)

V 9v

and, hence, the vanishing of the moment becomes another necessary condition. The rest of

1 2 1 2
t and t, i.e. ton and the full t, are self-equilibrating and, hence, may be arbitrarily

specified.

It is possible to obtain additional integral indentities from (3.36) which may become

useful in establishing the expected new Eshelby (1951, 56, 70) tensors and the associated

conservation laws (Knowles and Sternberg, 1972; Budiansky and Rice, 1973), but the

possibility is not pursued further in this paper.

The stress equation of equilibrium, (3.16), may be written

V.Tc+f = 0 (3.39)

where

2 3 4Tc =- T-V*T + V*(V*T) (3.40)
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may be considered as the Cauchy stress tensor with the associated Cauchy stress vector t ¢

defined by

c n = 0
= nOT= t-V.{...} (3.41)

where V'{...} may be identified with the terms given in (3.12). It is clear that

JfdY+ Jt cda=o0 (3.42)
V 6V

J uxfdv + J x t = a 0 .(3.43)

V aV

The following surface integral indentity will enable us to show that (3.37), (3.38) are

equivalent to the above.

Let A be an aribtrary second order tensor. We have

JV0.Ada J V0.n(n.A) + [A-n(n.A)I} da

= J" (Ve.n)(neA)da + J.'V°*[A-n(noA)] da (3.44)
6V 6V

where V0 is the plane gradient operator defined by (3.9). For a smooth closed surface Nv,

the last surface integral vanishes. It follows that

J [(VO°n)(n.A) - V°.Ajda = f V'.Ada = 0, (3.45)
0V 0V

which is the desired identity.

In the usual continuum theory of thermodynamics, the work term is axiomatically

defined to be

a*n Tco uda (3.46)
0 V

even if Tc is assumed to depend on Vu, VVu and VVVu. This led Dunn and Sernin (1984)

to conclude that "a troubling aspect of all higher-grade models is that they are in gneeral

incompatible with the usual continuum theory of thermodynamics". They then proceeded



14

to introduce the so-called interstitial working into the work integral. Mindlin's derivation,

however, clearly indicates that the correct work term is the surface integral of (3.26), and

an appropriately modified continuum theory would lead to thermodynamic compatibility.

Similar discrepancies also show up in other higher order gradient theories (see, e.g. Gurtin,

1989).

4. Stress Functions

The solution to the displacement-equation of equilibrium was obtained by Mindlin

in terms of the solutions to four uncoupled partial differential equations of order six. We

give a more direct deduction and show that Mindlin's representation can be further

simplified. Moreover, our deduction is constructive in that it lends itself to the actual

construction of general solutions. The well-known Galerkin-Somigliana and

Papkovich-Neuber representations serve as the starting point, and the

component-function approach employed by Doyle (1967) is then used to reduce the system

to a set of thirteen uncoupled 2nd order equations.

The displacement-equation of equilibrium (3.29) is first rewritten in the form

[[r+, 2, .D,2 - D 1,.. +D2 D2 Vul +f=o. (4.1)
X- 1  It 12 21 22J 21 22 j

In case of zero body force, the divergence of the above yields

D2 D2 V2V*u=0 . (4.2)
11 12

Applying D2 D2 V to (4.1) and using (4.2), we conclude that for zero body force
11 12

D2 D2 D2 D2 V4u =0 (4.3)
11 12 21 22

which, for the case e = 0, is just the well-known result that u is biharmonic. We are

thus led to the Generalized Galerkin-Somigliana Representation:

2 u=D 2 D 2 V2G_ [D2 DD2 r"- Il 
2 D2 1VV.G (4.4)

XT II 12 L 1 I 2 r6 21 221
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The result of substituting (4.4) into (4.1) is

D2 D2 D2 D2 V4G 2 (45)
It 12 21 22

which, together with (4.4), completes the desired generalization.

Let the first term of (4.4) be denoted by B, i.e.

B = D2 D2 V2G (4.6)
11 12

Then, by (4.5),

D2 D2 V2B =  2 f  (4.7)
21 22 (7

If the objective is to reexpress (4.4) in terms of B, the solution to a lower order equation,

the remaining terms in (4.4) must be appropriately modifed.

We begin by expressing the solution to (4.7) in terms of three component functions

as folllows:

B = B(o) + 62C B() + 2C B(2) (4.8)
21 22

B( ° ) = D2 D2 B , B(2)= D2 V2B, B(2)= D2 V2B , (4.9)
22 21 22 21

V2B(O) - f (4.10)

D -2 B() f (4.11)
21

D2 B(2) f (4.12)
22

where

4 4
~a

C - 2 2 , C , (4.13)

in which 0= 1,2; and C , C are defined for a similar equation to be developed in the
11 12

sequel. The validity of the above decomposition may be easily verified by direct

substitution (Doyle, 1967).
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The divergence of (4.6) is
D2 D2 V2V*G = V*B (4.14)

11 12

which, together with the first of (4.9), yields

D2 D2 V2(D2 D2 V*G) = V .B
(°)  (4.15)

11 12 21 22

From the identities, which are applicable for any F,

V2 s.F = seV2F + 2V.F (4.16)

2

D 2 , F = sD 2 F- 2 a V*F , (4.17)
aao3 a3

The following representation is conceived:

DDVeG + (4.18)
21 22

where B is a new scalar function. Substituting the above info (4.15), we find that B
o o

must satisfy

D2 2  
- -[D

2 12 sef- 2e2(a2 ±a2 1)2 )v.fj
11 12 0 r-+ 1 11 12 11 12 V =- J

2 ~D D sof- 2 3(a 2 + a2 2)V.f - 2Ea 2 C D2 V2V.f
11 12 1 12jf 11 it 12

- 2e4a2 C D2 V2V fl (4.19)
12 12 11 J

It follows from the above that the component representation for B is:0

B = B(°)* + E2C B(1)+ e2C B(2) (4.20)
0 0 11 0 12 0

B(O)* D2 D2 B, B() = D2 V2Bol B(2) = D2 V2Bo (4.21)
0 it 12 0 0 12 0 i 0

V2B(O)* = f- 2 2(a  + a2
0 -a )Vf , (4.22)

D2 B(')=_ 4 f 2a2 Vef (4.23)
11 0 +l It

D 2 B(2)= 4 e2a2 Vef . (4.24)
12 0 -- 12

We have thus effectively expressed the last term of (4.4) in terms of B( ° ) and B 0
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Substituting (4.8) and (4.9) into (4.14), we get

2D 2 D 2 V*G - d C0 D 2 + C D 2j1VoBi = VOB(O) (4.25)
L 11 12 1 21 22 22 2J J

which, in view of (4.16), permits the convenient representation

D2 D2 VG e2(C D2 +C D2 )V.B + 1 OB(O) + B(O) (4.26)
11 12 21 22 22 21 o

where B(0) satisfies
0

V2B(O) _- V2B(O) 2 f (4.27)
(

The second term on the right-hand side of (4.4) is now expressed in terms of B and B(O)0

by (4.26). In view of (4.22) and (4.27), it is convenient to decompose B(O)* into two0

parts as follows:

B(o)* + B(0)) (4.28)
0 0

S- 2( 2  + a 2 )Vef. (4.29)

The final form of the Generalized Papkovich-Neuber Representation is obtained by

substituting (4.6), (4.18) and (4.26) into (4.4), viz.

2u = (K.+l)B - V3sB(0) + 'V [K1B-K1B

- E2(-t-)(C D2 + C D' )VV.B (4.30)
21 22 22 21

where the last term may be further simplified by (4.8) - (4.13). The most explicit form of

the representation is

2u = [(+l)B(0) - Vs.B() -,B)

2(r+1) [C2 B(1) + CB(2) - (a,2 + a2)VV' B(O)

+ I 1 V [,-2+C B(')+C B(2)
[ + 12

-1r+)V Co ao Bl + Ca2B()4.1
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where e- 20 is the particular solution of (4.29), as the homogeneous solution, which is

harmonic, may be absorbed by B(°). The elasticity solution is recovered as 6 tends to
0

zero. We note that each one of the component functions is governed by a second order

equation. The functions B( °), B( ° ) and 0 are associated with the Laplacian operator
0

and, hence, has no boundary-layer phenomena. The functions B(a), B( a) (a = 1,2) are
0

governed by the operators D' defined by (3.30) and contribute to the new
a13

boundary-layer phenomena.

For antiplane deformations defined by u 3(z, z 2) we have

2u = (r+1)B ( ° ) + f 2(.+I)(C B( ' ) + C B(2)) (4.32)
3 3 21 3 22 3

where B(O) are of the boundary-layer type. For plane deformations defined by u (Z
3

z2) the displacements are

(0[C() (o)2ua=,B 0()-Bo)a-ZOBl a+ fl(r.+i)C ) + C B - -+a 2)Bfj
a 1 a 22 a 2

[C~T LiB(oa + C B (2) -20'a]]+i 0,a + C12B0,CL

4 C a 2 B +Ca-3 (4.33)

(p3) (1 ()
where Ba  B are of the boundary-layer type. It follows that the terms B area 0 0Oa

expected to have the most significant contribution to the new boundary-layer phenomena.

Thus, the constants a and a are also expected to be more significant than a and
11 22 21

a 2. We shall see that the former pair appears in all the surface energetic expressions.C22"

5. Boundary Layer Along A Smooth Boundary
The appearance of the small parameter E in the operator D 2  defined by (3.30)

a.4
indicates that the main difference between elasticity and cohesive elasticity lies in a

boundary layer. An elasticity solution is but the interior solution of an associated cohesive
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elasticity problem. The self-equilibrating state u = u(e) given in (3.27) is a

boundary-layer phenomenon and was discussed by Mindlin.

To fix ideas, let us consider a body with a smooth boundary defined by s = 50. The

following traction boundary-value problem is considered for the case f- 0:

0 0 (5.1)

t-
0 (5.2)

t E B )

2 _ ,zo;f), (5.3)

where the function- on the right-hand side are prescribed generalized tractions, which may

be specified to depend on f. The explicit appearance of e in the governing equation

(3.29) and surface-traction expressions (3.12) - (3.14) suggests the appropriateness of a

regular perturbation solution in the form

u(s,E) - u(0)(.) + fu(1)(g) + (5.4)

Since (3.29) contains only powers of f2, it is clear that both u(0) and u( I) satisfy the

ordinary elasticity equation, i.e.

[Elasticity Operator] u ( 0) and u( I) = 0 , (5.5)

which are of second order. The solutions to (5.5) cannot be adjusted to satisfy the three

sets of boundary conditions (5.1) - (5.3). The expansion (5.4) is thus termed an

outer-expansion (Cole, 1968, and Van Dyke, 1975). The appropriate boundary conditions

for (5.5) can only be determined from matching. To facilitate such a computation it is

necessary to set up a set of normal coordinates relative to the boundary surface z = so.

Such coordinate systems are routinely used in the theory of shells.

Let a (a=1,2) denote a set of Oau:;i.,,, cooidinates, so that the boundary surface

is given by
,=3s0 = g0() = *0(C,) (5.6)

The associated base vectors and first fundamental tensor are denoted by a and a a.(a{2
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In addition, a third base vector a is identified with the normal n to the surface, so that
3

the position vector , becomes

a = 0( a) +  a =n (5.7)

where 3 is the dimensionless distance from the surface along n. The interior of the body

is therefore defined by 43 < 0.

In terms of the normal coordinates ai, the displacement vector is

u(*;e) = U M= ui(4) a,/ i, (5.8)

so that u. are the physical components. The outer-expansion (5.4) is now rewritten as

U+ E * ,(0 0)4 3 + .. aj/F'j. (5.9)

which, for small values of (3, may be approximated by

u {[U*(D)( Cd) + u.*(0)(4a, 0) 3 +

+ e [ 0) + u*(i)(40)4 + + a./Fa.j (5.10)

The coordinate 43 i.s now stretched to become a boundary-layer coordinate ( defined by

=: 3/f -(5.11)

The inner-expansion of the outer-expansion is obtained by substituting (5.11) into (5.10),

and the result is

u.' {u*(O)(,O)+,E [u*(')( , 0) u()(cL0)] + }aj/IFa . (5. 12)

Let 7.*(n) (i), n = 0,1, denote the physical components of the ordinary elasticitv
u*(n)(

stress tensors associated with the ordinary elasticity solution u (i), i.e.

-r 2e + 3- 6. * (5.13)
ii Z-7 ij kk

where ij are the physical components of the ordinary strain tensor. On the surface 43-

0, we have
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33 33 O)

* 1 I1 *

eaa = _ u ( ,o)+-u ( ,o) (a= 1,2; nosum) (5.14)
aa a. a( +R a U(0 '(514

* I u *
a3 " u u o)+u ( ,o

a R aa

where R R are the normal radii of curvature. The curvatures are positive if the
11 22

centers of curvature are on tne side < 0.

The desired inner-expansion, consistent with (5.12), is

UN {uj(O)([,O) + ev-( af ) + .aj/J~j (5.15)

where v. are again physical components. The governing equations deduced from (3.29)J

are

a2 a2 2] 3--=0 , (5.16)1 1, 2 0(2 0(2

r~a~i~ O2~ 02v

l---a2 2 2 0=2 (5.17)

The leading terms of the displacement gradient tensors are:

E * 2*(o) u*(o)1E E = v a, 3 La~
33 3, 30 t3 0,

E* *(0) (5.18)

* I

* 1

3331 2 1,

where all components are physical and refer to the base a.

There are more than a few nonvanishing stress components associated with the

above but only the following are needed for the boundary conditions:
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33 , (o)K-
* * + 3-7"0

T =T a V + +2*() u ()
3a 3 a, a (f C3 - ,3

T :~a (5.19)
333 cav3,U

T =2(a + a)v1 ,

T* 7r E*( 0)
333 Pe O +v + OV3v,) + aa .

T 2{[1 + 2(13 (2f*(O)~ -a,3J)
33a 73 Vll + 06)Va~j+7 a3 a,

Finally, the leading terms of the traction vectors are obtained from (3.12) - (3.14). They

are

t= T T + 1 T ai/ 1 ia
C i 2 , a3 i / ,

t= IT 3 3i -e 3 33i, J a ' (5.20)

2 *

t = T333i a/ai"

The traction boundary conditions (5.1) - (5.3) are first rewritten in terms of and

a i.e.

0 0 1 2 22
t =,(( ), t C f*( aE), t e2T( U (5.21)

The final form of the boundary conditions are

2, pT 2*(0) (5.22)
00 + " +  , r(,0)- +, aa

(a-i') v, -(v (1=0;0) (5.23)

v;+1 + (27-a)v -+ T - E*(J),u); (5.24)_ , +3,4 + 3,4 ( 4(,.,) -) ;aa a

2= 2 *( O) 2,(0) - * ( ° )  (5.25)
3 +1 35vA6 3 A3 UA (525
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[2(a + )- ~ -2(~3+~v~ O (5.26)

vAm + [73- 2(a 3+a 41VA + 2( ~ +BvA~

+ u"(0)((,,O) - 2"j0)(o,)A + a , s f ,) a 3 2 ( 0) (5.27)

The following identities, which are obtained from (3.31), will be used repeatedly:

2 2 X-1I 22 -Ia 2a= X a-27) , a t

a2 +a 2 =2(a + )- ,a a = 2(n+ 3) . (5.28)
21 22 3 4 )  3 a 21 22

Using these identities, we find that (5.24), (5.27) are, respectively, the first integrals of the

governing equations (5.16), (5.17). The solutions to these equations, for < 0, are

v =u(1)(M + Uu3  + A e + B e 2 (5.25)
3;3 13 1

., (o) C/,1  C/I-
v= u*I ( ,o) + u, (0) ,0) + A Oe 21 + B2 e U ; (5.26)

and

u* ,O) 0 X1 K-i a)C, (5.27)
ao) T. "

u, 3 (Ca,) Tra) + u 3 ((a,0)-2e O)(a,0) (5.28)

where the last two conditions are the results of matching, i.e. the outer-expansion of the

inner-expansion must match the inner-expansion of the outer expansion given by (5.12).

Using (5.13) and (5.15), we find from the above that the boundary conditions for the

elasticity solution ui ( ) are just the traction conditions:

ir (o);0 ,
13 *(uC0) = i(Ca) , (5.29)

and, hence, the first term of the outer-expansion (5.9) is completely defined.

The remaining boundary conditions (5.22), (5.23) and (5.25), (5.26) involve only

derivatives of v and, hence, the constant terms u(1)(aO) cannot be determinedf

he in re s io coi e e ts from

the inner expansion. A lengthy calculation yields the following concise results for the other
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two sets of constants:

A [a - 30 +  a  I2 t L J2 aa a0 a, (5.30)
O3 [2 + 2] 2 22

a~ o + C- [aC1,3 1 ct6 at3 1 C 3

2+ 2 2 F 2  21 a2 L2
B --- a A a03 2 L + Ca/3 + aA)a I (5.31)
B O3 2 2 2 2 2 (-1

cto+ a] a -10 + ao a]02

where

02 a 2 I (5.32)to = 7-+i'  20= 73

L a a -r* ;0) , (5.33)
3t it 12X+1 3 CI

i-1-a 2 U 0 + T'+ 13 a)U) f a (5.34)

L 1= a2a2 - j), (5.35)

L = 2 1 3  (0) - aI * ( *(0) (o) (5.36)

02 20 U-O- 3o (, CI 0) + r,3 (( , ,o1 A3.

'With the exception of the terms u*(I) ( 0), which are but constants in the

inner-expansion (5.15), the desired two-term ininer-expansion, (5.15), is now complete.

Had we actually began with the presumption that cAare complex, (3.34) and

(3.35), then B ~ should be replaced by A 0 . and (5.30) and (5.31) still hold, as the

latter is merely the complex conjugate of the former.

6. Traction-Free Surface Free Engery

Consider now a body, of volume V and bounding surface V, that is completely

free of external forces, i.e.
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= 1T 6) =* ;~CE) *U 2 (6.1)

It follows from (5.229) that the first term of the outer-expansion, u*(o)(s), is identically

zero and, hence,

L =L!-- = L =L = 0 (6.2)
32 i 0 31

by (5.33) - (5.36). The inner-expansion (5.5) is merely

U(e) ev () a (6.3)

v =A e t1 +B e 12 (6.4)
3 13 13

where

A = K- 2 (a 2 + a 2 )/D (6.5)
13 - t1 11 12 0 1

B -- 2 (2 +a2 /D (6.6)
13 = 12(to i 01

2 2
D (a 2 +a 2 ) a (a +a 2 ) 1 (6.7)

1 10 12 it 10 It1 2

which are determined by (5.30), (5.31).

The above solution is a self-equilibrating state and, hence, (3.27) and (3.28) apply.

Thus,

=U=AFSI F S -2e f w 0(a -a 2 2)/D1 (6.8)

where A is the total surface area and F the free surface energy associated with the

traction-free surface of a completely unloaded body. The dimensional form of F is
5

(-I) b2 (a 2  a 2

Dim. F =0 11 12

2( +1)111 3 D
I

(K-1)b 2  a + a
0 11 12 (6.9)

2(K+1)U13 (a2 - a -a ct (a + a) 2

which was first obtained by Mindln. Thus, to the first order of magnitude, as e-0, the
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surface energy associated with a regular traction-free boundary of a completely unloaded

body is a material constant.

The expression (6.8) remains the same if a is the complex conjugate of a ,
12 1

(3.34). Since Fs must be positive, we have

(a 2 - a a 2 )2 _a a1 (a 1 + a) 2 >0 (6.10)to It 12 -It 12 it 12 2

a condition that must be satisfied by the new material constants.

The surface energy given by (6.8) is the energy, per unit area, associated with the

formation of a new regular surface. The free end of a thin wire is not a regular surface as a

whole unless it is sufficiently thick, in terms of the material scale 1, as it is interacting

with the free cylindrical surface. As to how thin is thin or how thick is thick the

self-equilibrating state associated with a free cylinder must by analyzed. It goes without

saying that the surface in the neighborhood of a notch (or crack) tip is not regular in the

sense that (6.8) is also not applicable. The conclusion is that the energy required in the

formation of new surfaces is not always determined by (6.8), and many relevant

self-equilibrating states must be analyzed to understand the phenomenon. In short, the

energy required to scoop a smooth marble out of a chunk of solid, or slice it into halfs, may

be computed from (6.8). The so-called toughness may not be directly obtained from the

material constant F .s

Let us now consider a traction-free surface on a loaded body. To avoid the

unnecessary complication of dividing up the bounding surface into different portions, we

assume that the load is merely a body force so that the bounding surface is still completely

free. The outer-expansion u* 101(t), (5.9), is now no longer zero. Using the fact that W

is traction free, we have

S *',) ,0 (6.11)

where r*1 0) ( 0) is the surface (elasticity) stress invariant produced by the nonzero

body force f. The inner-expansion associated with the still traction-free O is now given
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by (5.15), (5.25), (5.26), (5.30), (5.31) with

L L--I 2 3-r r* ()) (6.12)L=0, L =----3 +a ((6.12)

31 32 X.+ 0 10 2'.- a . a
2 *0

L =0, La = a-,oU, (),0). (6.13)
A 23 A03 a~&

The total potential energy of the system may be computed from (3.26), (3.25), viZ.

Us I f~uy + , 0  Vuda (6.14)

V OV

as the surface ON is still free. For e = 0, we recover the ordinary elasticity potential

energy associated with the system, i.e.

e= E
V

where u (() = u* W )

The second integral of (6.14) is now computed to give

U* =UE + AFs(ra) (6.16)

where, to the first order of magnitude,

1Fs(raa) = t 3,33

1 00[, -l 2 3-r. *0) ] ( 2  2
a-T 0 - r*( a0) (a - a )/D 1  (6.17)

which is to be compared with (6.8). It is noted that the contributions of u ( 0) and va in

the surface integral of (6.14) are of one order lower than that of v and, hence, do not

appear in (6.17). The contribution of the modulus of cohesion 00 is a constant triple

stress, the last term of (3.21), which gives rise to Fs(0) = F s of (6.8). It follows that the
interaction between and f, which gives rise to r* (0), is

AFs=Fs(T*0)_ s= _  o- 3- , 0  (6.18)

which is negative if the surface stress (not to be confused with surface tension, a term that
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is deliberately avoided in our presentation) invariant -r*  is positive. The totalaa

potential energy of the system now becomes

U* U + AF 5 + A(AFs) (6.19)

Consider now an infinite slab of thickness H with a cylindrical hole of radius R.

The slab is uniformly stretched at infinity by a tensile stress t = aer while er is the unit

radial vector. The elastidty potential energy is

2 2R H (6.20)

where U* is the energy associated with the slab without the hole and the second term is
OD

the so-called flaw (hole) energy (Sih and Liebowitz, 1967). The cohesive elasticity
potential energy may be obtained from (6.16) and (6.17) with

T* ( 0) = 2o + 2ya = 7T-o o (plane strain) (6.21)*9

aa

Thus,

U =U*+2rRH 1 3-r.) - oI F s , (6.23)

and the change of U* associated with a hypothetical hole expansion is

=-HR +2H 1- (3-,.) Fs (6.24)

where the first term is the elasticity potential energy release rate. The vanishing of (6.24)

is the condition for the hypothetical expansion and the elasticity counterpart of such a

condition is the Griffith criterion:

il( HRa2+2zHF =0 (6.25)H2 2  2H s

The relevancy or irrelevancy of the hypothetical expansion condition is not the purpose of

our discussion. Rather, we use (6.24), (6.25) to illustrate the main difference between

cohesive elasticity and elast -y. The surface energy term is a part of the total potential

etergy computed from the fie.u solution in (6.24), whereas it is merely an appended side

s9 Th stress concentration factor is 2.
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condition in (6.25). Moreover, the role of the interaction energy, (6.18), is apparent in

(6.24).

7. Interfacial Energies

Let us now assume that the upper and lower half spaces V* are taken from two

different solids. We propose to glue them together, by a layer of adhesive of vanishing

thickness, to form a composite body V. Such a process cannot be nontrivially defined by

the ordinary theory of elasticity. Noting that the most striking difference between

elasticity and cohesive elasticity is the exdstence of a constant triple stress Tiijj = 23o,

(3.21), we assume that the desired adhesion is the result of a sigular variation in 00-

Moreover, the two half spaces V* are assumed to be identical in every respect other than

the possibility of a difference in 00o. Before proceeding, it is convenient to summarize the

relevant one-dimensional theory as follows:

- a1-da2 d 'd + - 1 " =0 ,(7.1)1 12 d d X d 3/

0~2 .. j-12 d2 2  + 2'l dv~o, 71

a rd [1 a-,2  (7.2)
3 - 1 12 d

,_, d2v dv44 (7.3)

2 ~ d C4

#1 +7 + d3 v  (7.4)
3 3 d4

where v(C) is the v of (5.16), (5.22) - (5.24), and the possibility of a spatially varying

03 is retained in the equation of equilibrium (7.1). The above equations are to be applied

to V* defined by 4 >< 0 in which the modulus of cohesion 00 is assumed to be of different

constant values 0o" In addition, is assumed to have certain singular behaviors at ( =

0. Specifically, we assume that
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where o( ) and 6(e) are, respectively, the unit step function and delta function, such

that

d ( f =U4dC = 1 . (7.6)
Tfo()- 

( f+ .

The constant Xo is a new parameter characterizing the adhesion. For convenience, it is
0

defined in terms of yet another parameter _. the modulus of cohesion of the adhesive

material, by the expression

X - 2 12] 11 1 (7 .7 )
0 (a 2  

_ 1 1a 2 _ a a a + a 2

where the dimension of the dimensional form of the factor, which is introduced for

convenience (c.f. (6.9), (6.10), (3.34)), is I and

Dim. 6A-b - 2IA (7.8)000

so that the interpretation of (7.5) is dimensionally correct.
0*

The solution satisfying (7.1) and r 3(0) = 0 is

v*( ) *A *2 0) (7.9)
V, Ae "+B e(C )

where the four constants A*, B* must now be determined to meet the implication of

(7.5). It follows from all the above relations and additional continuity requirements that

vw(0) - N 0 - 0) (7.10)

v,(o) - v; (o) =- , (7.11)

vC(O) = v(O) , (7.12)

(o)= o) , (7.13)
3

,r = I(0) (identity), (7.14)

where the last condition is identiraly satisfied if (7.10) and (7.12) are met. It is also clear



31

from (7.13) and (7.2) that, in addition to (7.10) and (7.11), the 4th and 5th derivatives of

v are also discontinuous, even though the generalized tractions are all continuous. The

condition (7.12) conforms with the ordinary elasticity requirement, as there is no

concentrated force in the problem.

The four constants obtained from the application of (7.10) - (7.13) are

2 2]

2(r - D1 0 a a
12 11

2 2 + -1
B = 11 2 O T (7.16)

12 it.

where D1 is given by (6.7). The combination of (7.9) is a self-equilibrating state, as far

as the composite body V is concerned, and (3.26) gives the potential energy for the

system

U* = Ar , (7.17)

2

a - a1

r 1 It 12, (7.18)D1  "aa" (al + a)
11 12 11 12

where r'I is the interfacial free energy. Since the interfacial free energy must be

nonnegative, we have
r 2 aa12 +1

OA OA10 11 12 - 0 (7.19)
[ao,, + a 12 1,,o 12 00+1

where the right-hand side is positive by (6.10).

The energy of adhesion, EAd, is defined as the amount of work necessary to

increase the separation of two surfaces from zero to infinite distance, and is defined by

(Murr, 1975)
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EAd= Fs+ Fs -r (7.20)

where F "* are computed by (6.8). The energy of adhesion must also be non-negative.
S

Thus,

:OA<OAo o ° a It a121 _ 0 (7.21)_< +-3o+  + )

12 aa1 , +

In summary, we have

OA <01- OA(7.22)

Perfect Adhesion

o=o =O, F" + _(.3
o PI 0,Ad= s+F (7.23)

Adhesionless Adhesion

O M 'O Fs + Fs EAd 0 (7.24)

For the case of identical V*, i.e. 3o = = 00, we have

0 = OA < ,A < A
om <  o , "o . (7.25)= m - 0O - PoM- 0

It is seen from (7.9), (7.15) and (7.16) that

v, 0 for o = 0 =- O3'O=0 (7.26)

of (6.4), for 0 =I0 0 = 00o, A= 20  (7.27)

The last condition indicates that the traction-free solution is recovered via the singularity

representation (7.5) without the specific stipulation that the generalized tractions T- and
2
T be zero. In this connection, it is more convenient to interpret the singular 0o-

variation of (7.1) as the body force, i.e.
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3
d( 3 d0 

(7.28)

Thus, the solution to two disjointed half spaces, in the sense of (7.27), may be obtained

from the solution to a full space subjected to a suitably defined singular body force. This

observation opens up the possibility of defiming a microcrack via the introduction of

singular body force systems. A crack is termed a microcrack if its dimensionless length is

of the order of E and, as a result, every term of the governing equation (4.1) is of the same

order, as the independent variable s must be rescaled by E. The explicit

component-function representation obtained in Section 4, together with the above

body-force observation, lead us to believe that an explicit solution for the microcrack

problem is an achievable goal. This problem is being pursued by us.

In terms of cohesive elasticity, which is still a crude continuum model for solids, a

grain boundary or an interphase interface is but a special adhesive boundary. Thus,

different physical interpretations could be assigned to the quantities roA, r and EAd.

When a grain boundary meets a free surface, a thermal groove profile for grain

boundary-surface equilibrium may be induced. If the angle sustained by the groove is Q s)

then the grain boundary free energy rgb, which may be identified with r I of (7.8), is

rgb = 2FsCos (Fs/2) . (7.29)

The groove configuration is a singular boundary layer phenomenon, in .erms of our

analytical treatement, and must be analyzed separately. It is now also possible to refine

the mathematical definition of an interfacial crack - another class of singular problems to

be solved.

8. Thin Film Energy and The Concept of An Interface-Phase

A layer of solid is called a plate if its thickness is much larger than the material
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length scale L. It is termed a film if its dimensioniess thickness is of the order of e. The

governing equations for a free film are just (7.1) - (7.4), and the boundary conditions are

0 1 2
73 =r =r =0 at =±h (8.1)3 3 3

where 2h is the dimensionless thickness. The solution is

(K.+1)Dj(h) + 12J 1i 2 Si

+ 2 + a] Sinh - Sinh

12 10 i a a a
11 12

where
Dj)= II[ a2 a22] 2 Csa h ihh

+ a Cosh -- Sinh -- ?(8h)

11 12

12 [a20 It a a
12 11

wh is wh ich is to be compared with D of (6.3) - (6.7).
The above solution is self-equilibrating, and (3.27) still applies. The total potential

energy for the system is

U* AF F ,(8.2)

FF a - [2o ,- a 2 Sinhh Sinh -h-/Dl(h) ,(.)

111 12

where FF is the film free energy, per unit area of the film, which is to be compared with

(6.8). We have

lim FF(h) = 2F 8.4)h-4® w

where F is the free-surface free energy (6.8). The limit simply states the fact that the

free surfaces of a (thick) plate do not interact. As h tends to zero, we have

l imFF(h)=e- h / a a a (8.5)
h4M+ 10  11 12J

which is to be interpreted as the mathematical approximation for FF(h), for small values
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of h. Since FF must be non-negative, we have (c.f (3.34))

a > a a (8.6)
10 11 12

It follows from the above that (6.10) may be replaced by

2 -a a> l aa 1/2 (8.7)
to 11 2

Here we see that material-parameter properties are not solely governed by the positive

definiteness of the strain energy density (c.f. the paragraph before (3.34)). It is anticipated

that many, many more conditions of the kind will eventually come out of many different

physical situations. It can be easily checked that FF is a monotonically increasing

function of h.

Gluing two half spaces and a layer together, the layer in between is termed an

interface-phase if its dimensionless thickness is of the order of 6. Let us assume that the

two half spaces are identical, so that only half of the symmetric problem needs to be

analyzed. The set of equations (7.1) - (7.4) still applies, and the lower half of the problem

is defined by

v(0) = 1 (8.8)
)o ( <-h)

We still keep the simple assumption that all the other material properties are the same for

both the half spaces and the layer.

The associated self-equilibrating solution is

v, ()- Cosh -L + - Cosh +  - /h2 (-h< <O) (8.9)
1 11 12 12

A ((+h)/a BS0 (+h)/a
V'(f) a it e + a 12he (810)

11 12

where

A ASinh B =-BSinhh (8.11)0 o a
11 12
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A =A*/(Cash- -+Sinh h) B B*/(Cosh h + Sinh (8)2
a a aa

11 11 12 12

3 23
a a IA- 11 ;- = __ _ __--I

A 2 it - 0- , B1 (8.13)a 2 a2 R h 2 2  -2a& 1 h 2

12 11 12 11

The total potential energy of the system is again given by (3.27) except that '8()

is now the function defined by (8.9). We have

U* = Ar , (8.14)

= e(~4] h [2 - 2 ]

a2 hCosh s!! -a Sinh ] a2 [hCosh h a Sinhh]1

Sinh ---- + Cosh h Sinh _h + Cosh (815
a a a a

12 12 1l 11

where PII is the interface-phase free energy, per unit area of the interfae, which is to be

compared with r'I of (7.18) where the interface-phase was taken as a idealized dividing

surface. We have
2

lim ri(h) /3a a (a + a(.
h-,0 r.+ 1L0 1 12 11 12(

which is to be taken as the mathernatic limit of rII, for small values of h. It is noted

from (8.15) and (8.16) that Pr 1 is always positive, regardless of the sign in front of 0-o in

(8.8). In other words, P11 remains the same for

The difference between the above and (8.9) lies in the fact that
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<o (°)= 3- 3o for (8.9)

(8.18)

POW) > o0 0o0(°) )= + o for (8.17)

The strength of such a joint is dictated by the minimum value of 0().

The 0 (C) variation defined by (8.8) is arbitrary. It is used to illustrate the

meaning of an interface-phase. However, it is clear that ( may be required to yield a

minimum for r i. This proposition is not pursued further in this paper. It is also

apparent that the energy associated with a film deposited on top of a substrate can also be

meaningfully defined.

9. Stretching of Thin Films.

Consider now a (thin) film occupying the region

where z = z /e. The film is biaxially stretched, so that

U1= z , u =e z , u = Ev(U) (9.2)

where c and e are the constant elasticity strains. For convenience, we define r and
11 22

r by

,r+1 3-K. (9.3)
r.+ -1 + -r.

3-K

22  r- 2 +

which are obtained by substituting e I I e = 0 into the ordinary stress-strain11' 22 33

relation with r. being the first expression (not the plane-stress version) of (3.18).

In terms of cohesive elasticity, the nonzero components of the strains are

E =e , E =e , En ~ ,

I1 I 1i 22 22 33 '

(9.4)

E J ;E L=13 33 ev, ;E3. - v,
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The nonzero components of the stresses are

T = 3-,v v, (a=1,2; no sum), (9.5)Taa "a+-1 , 7 ,I

T= 3- + E+ (9.6)T33 -- 2-2_el r. v, + 7v, 'm 96

T = (9.7)
333

T = T =T = f(a + a)v, ; (9.8)

T = '2 [(00 + _rv, + 1',?) + 'y(e + C22)1 (9.9)33330 I 2

T e2{ hr [(f + f )S1 + 'Ya1f

a+1 2a 2 3-

+1[ +(Y + '3'', '2 1 - + +2 + 2 = 0 (9.10)

T = 21112 .

3130 1~.-Y I(Ei + f)26ao + 7%Y3 fa

+ + ) V + (2+-/ = 0 ),e] Sa(9.11)
2 1 2 1 2

T f~=21l 7 1(f + C ) + 7 '(C +E C6 + f
aA7~JIt 22 Q/376+ 2 43 -S a- 0 6  07 a6

+13 ( a',3a/b7 + a06+ 6 fr6ab)

1+ 1 [/63 + 'YIV,~ +2 2 /v fl 606i (9.12)

The governing equation for v is just (7.1), and the traction-free conditions on

h are

x+1r -2 d2 2 d2N dvi 3-.
~-rL~l-+ -)ia- 0 ,(9.13)

2 4

(a-) d V _d V= 0  (9.14)

7e + 7 dv d Ov0 (9.15)
1 aa 0 2

The solution is
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3-n + ASinh -L + B Sinh __ (9.16)

= +T 6aaa a
11 12

where

A =a a(a0+a) Sinh + ( 7 - )+- ) /Dl(h), (9.17)
it to 12 a 12 r. a ]

B 2 (a2+a2 ) Sinh-[a + (7 - +K y)ea /Dl(h), (9.18)
11

in which D1 (h) is just the expression given by (8.3). The solution reduces to (8.2), which

was obtained for a film with a fixed edge, when e aa = 0.

On the cross-section z = constant, the stress-traction is
0

0tte ,t ( )=T -2T +3T (9.19)
t 11 e 11 311,3 3311,33

which follows from (3.12). It is noted that the stress-traction is no longer independent of

the thickness coordinate. We have

t() = Tit + 7() , (9.20)

) v= + (27 +7-2a-a )v'N + (23 f+f +3 )v, 6. (9.21)

Similarly, the stress-traction on the cross-section z = constant is
02

0t = t e , t 22( T T - 2T + 3T 3 (9.22)
22 2 2'' 22 322,3 3322133

t22() = r,2 + () . (9.23)

The average of r( ) over the thickness is

h

-h

=1 [3- v(h) + (27+ -2a-a dh +(20+20+) d v(h)
72 1a2 d f 2  1 2 3

2

2 1 aL f [ ,,_3'7ea F(h) (9.24)
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where

F(h) 7 - (27 y - 2a-a) - (20 +202+1)(a-7)/)3

x (a 2 -a 2 ) Sinh Sinh h / hD1(h) (9.25)
11 12

The averaged forms of (9.20) and (9.23) are

( + (T) , (t)22 = 7- + (r) (9.26)

A necessary condition for a film of finite size to be completely free is (t) = (t2) 2 0. It

follows that there exists an co such that
=6 = ,T =T - a ° (.7

11 22 11 22 r =, (9.27)

2 7-r.) [ _---K y) 2,0] F(h)= 0 , (9.28)

where the last condition is merely the requirement that (t 1) = (t2) = 0. The associated

solution is therefore self-equilibrating, and (3.27) again applies. The total potential energy

of the system is
u==AF, F - ;[oo + (7 -+-- 7)2c ° ' F (9.29)

where FF is the film free energy associated with a film with a fixed edge, (8.3). The new

film free energy F* is associated with a film with a free edge. It must be nonnegative and

also less than FF, and hence

_ ( 3-r.
- < (y 7)2 0 < 0 (9.30)

It can be shown that for positive 030, which is presumed throughout this paper, a material

volume contracts in the presence of a traction-free surface. For example, vq of (8.2) is

negative. It follows that el < 0 which, together with the second inequality of (9.30),

implies that

3-. 2 3-. (9.31)KT' r. 1+' - 1= XT (72+73) > 0 .(.1
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The first of (9.30) and (9.28) leads to the conclusion that

F(h) 3- [ -yK7 (27 +v -2a -a )-( 9 03 +2f3 +,83)(ct . jF' G(-92)

if

1 < r. < 3 (9.33)

which is a condition for the ordinary theory of elasticity. Since FF is positive, we have

3-- (27 +7-2ai-a ) -(2/ +2 l )(a-7)/3 < 0 (9.34)

A unidirectional tension test, in the z --direction, performed on the free film is

defined by

e =e 0 +e , e 2=e+e , (9.35)

(t ) x + 3-r.) 2  --- 7)F(h)eaa = 0  (9.36)
22 11 K 2-I]T.a

(tI) = 2(e -e) , (9.37)

where (9.36) has been used in defining (t ).

The vanishing of (t2), (9.36), yields

e22= - G(h) (9.38)

where

G ~ r.+ +1 x- 3__( -r.Z 7 )F(h)l (9.39)
G(h) = [:- -9- (71 3-

It follows from (9.31), (9.32), (9.33)and (9.25) that

G(h) > 1, lim G(h)-1 (9.40)

The tension-test result finally becomes

(t, =2 [1 + 3 G(h)]e 1  (9.41)

If the film is actually a plate, i.e. h-o., the elasticity result is recovered, i.e.

(t) = F e - 2(1+v) e (Elasticity) (9.42)
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where 2(1+v) is to be identified with Young's modulus, as Dim.(t) = 1(t). The

cohesive elasticity solution is

(t) = 2(1+v) + [G~li - 11 e .(9.43)

11 1 L j 11

It follows from (9.40) that the apparent modulus for a film is greater than Young's

modulus and, in fact, size dependent. It is widely known that the apparent strengths of

some materials are effected by strain gradients. Using a couple-stress theory, which

employs only a portion of the strain gradients, Mindlin (1962) was able to show a reduction

in stress-concentration factor around a small hole. The above result is consistent with the

general belief that increasing strain gradients appear to make some materials stronger.

Finally, the analysis of this section has essentially established the groundwork for a new

plane-stress theory suitable for films.

10. Concluding Remarks

The inclusion of higher order gradients of displacements in a continuum theory leads

to boundary-layer phenomena that are absent in all grade-1 theories of which the ordinary

theory of elasticity is a special case. This character may be exploited to facilitate the

introduction of nontrival self-equilibrating states, so that surface phenomena of solids may

be defined by special displacement fields. If material isotropy is presumed, a the. y must

include at least the first three gradients of the displacements before a material constant can

be introduced to capture the desired surface phenomena (Mindlin 1965). This is the

grade-3 theory of Mindlin and the constant that gives rise to all the surface phenomena

was termed the modulus of cohesion by him. It is for this reasc that we have coined the

name cohesive elasticity.

The most striking approach in Mindlin's formulatic -s the inclusion of the linear

term c2' Ei.jj in the strain energy-density W of (3.17). It , -:es rise to a constant triple



43

stress and leads to the concise energy expression U* of (3.27). This practice, however, is

a matter of convenience in the sense that one could have left the term out of W but

introduced the constant triple stress as an initial or residual state. In fact, one could have

interpreted the triple stress as a special body force in the sense of (7.28). The important

point is that however we interpret it, it is possible to introduce a new constant to generate

a self-equilibrating state.

It is, of course, completely legitimate to include the linear term Eli in the

elasticity version of strain energy-density. Such a term may also be interpreted as a initial

or residual stress. The stress, however, must be completely relieved in the presence of a

free boundary, as elasticity equations do not exhibit boundary-layer behavior and, as a

result, the exercise leads to no useful results. It is obviously for this reason that a grain

with an eigenstrain must interact with a nontrivial surrounding (Mura, 1982, Eshelby,

1957). A nontrivial displacement field is associated with a free grain according to cohesive

elasticity. We have analytically defined the meaning of grain boundary energy in Section

7. Unlike ordinary elasticity, cohesive elasticity requires the implementation of corner

(boundary) conditions in case the boundary is not a smooth surface. In this connection, it

is instructive to recall the presence of a corner force in a plate theory (a grade-2 theory).

A notch- or crack-tip and a corner on a grain are among many meaningful problems to be

analyzed. Even the meaning of a concentrated force may be re-examined. We have

already found that the displacement under a point load is finite.

A grade-2 theory contains couple stress and double stress. It is mathematically

more tractable than a grade-3 theory and also exhibits boundary-layer behavior.

However, since it is not possible to include a term linear in Eijk in W, it is not possible

to introduce a material constant to induce a self-equilibrating state for defining, say,

surface free energy. On the other hand, one could introduce an initial or residual double

stress, instead of triple stress, to induce a self-equilibrating system. The constant double

stress is not a material constant any longer, but is still associated with a special chunk of a
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material. This possibility may turn out to be a simpler way of generating the desired

surface phenomena.

1ighCr gr.dicntt.z I, cs wcrc t,..- p;,pular 6opics of research of the sixties. Of the

many known published results, Mindlin's work consistently placed the most emphasis on

relating to real inicroscopic phenomena of solids. If the goal of today's micromechanics

initiative is actually aiming at establishing physically relevant microcontinuum mechanics

field theories, then Mindlin's work are indeed of a pioneer nature and should be carefully

reexamined.

Every time the word continuum is mentioned, the term constitutive relation follows

One of the commonly asked questions during the sixties was how to determine the so many

constants involved in a grade-n theory. It is our belief now that the negative implication

of the question was a result of our preoccupation with the term constitutive relation which,

in one way or another, is perceived as a response to a uniform sample. The existence of a

uniform sample, say, the tension specimen, is a consequence of the assumption that the

behavior of a solid is completely characterized by E... While the concept of Cauchy stress

and stress vector is not dependent on the former presumption, they are actually consistent

in that the components of the surface traction vector would turn out to be just the

appropriate components of the stress tensor if the latter were defined in terms of a strain

energy-density via the stationary potential energy approach of Section 2. It is clear from

Section 2 that once higher gradients are included the exact meaning of a Cauchy stress

0
becomes vague and the direct connection between stress and stress vector t, is gone. In

general, there is no uniform sample to speak of anymore. Many new nontrivial problems of

a more fundamental nature must first be solved before new test specimens can be devised.

The surface free energy, unidirectional test solution, and point load solution (not included

in this paper) are but a few of the anticipated test configurations.

No continuum field theories can be a hundred percent physical. For example, it

could be argued that Young's modulus should be derived from more fundamental physical
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constants, but the "correct" Young's modulus is always measured from a tension specimen

which was designed in accordance with the mathematical solution that a = P/A and 6 =

A/L. it is our oehief that many, many more P/A formulas must and will be discovered in

the future. Finally, in connection with failure, the all important Eshelby tensor must be

modified. The tensor itself could be straightforwardly defined by casting the spatial

derivatives of W into a divergence free form, but the associated conservation laws remain

to be examined. It is even possible to couple the current grade-3 theory with a higher

order diffusion equation, the Cahn-Hilliard equation (Cahn and Hilliard, 1957, Gurtin,

1989), so that the modulus of cohesion will depend on concentration and one of the

diffusion coefficients will depend on the triple stress. It is perhap. time again to reexamine

the role of higher gradients in our pursuit for the understanding of failure of solids.
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