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1. Introduction

When a specimen with an edge crack is subjected to fatigue loading, anisotropic and
inhomogeneous damage will slowly develop and eventually evolve into a typical-
configuration in which a crack of length unity is lodged in a vanishingly small crack—tip
damage. Similarly when a notched specimen is fatigue loaded, a crack completely

surrounded by damage will eventually emerge. These two cases are depicted in Figs. 1 and

2 where ¢<<1 and r0(0) defines the shape of the damage zone.
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In order to understand the many tfundamental physical phenomena asscciated with
the indicated crack—damage evolution, a meaningful description of the so—called damage
must first be given. Then the kinetic relation associated with the damage evolution muss
also be fully explored and developed. Both issues have attracted the attention of many
researchers for many years, but the results have been rather inconclusive. It is partly for
this reason that neither issue was considered in a direct way in this projeci. Instead we
took an extremely simplistic approach by assuming that the main characteristics of a
damaged material is that it is softer than the original material. This assumption reduces
the unknown damage to an inhomogeneity that may be characterized by two elastic
constants which may in turn be interpreted as damage parameters.

When a crack is interacting with an inhomogeneity, such as the cases depicted in
Figs. 1 and 2, the associated elasticity problem is well defined and hence a full stress
analysis is possible. The availability of this solution makes it feasible to link the Eshelby
(configuration) forces to the inhomogeneity geometry and moduli. which are used as a gross
representation for the damage. Thus, devising an efficient numencal procedure for
obtaining the desired elasticity solution became a main objective of this one—year project.
This objective was completed and the relevant results may be found in Chao—Hsun Chen’s
thesis which was completed in 1990 under the supervision of the Pl (Appendix I}.

It 1s perhaps clear from the general nature of the problem that the desired solution
can only be obtained by numerical means. However, the actual computation must be
preceeded by a skillful asymptotic analysis so that the -0 limit is analytically factored
out of the ensuing calculation. This is necessary because no numerical scheme can possiblv
handle the conflicting limits required by ¢-+0 (almost no inhomogeneitv} and r‘l/2 -
(crack-tip inside the inhomogeneity). Such an asymptotic analysis, together with the
accompanying computational scheme, was successfully accomnlished.

A more detailed description of this accomplishment is summarized in Section 2.




The above objective bypasses the need and difficulty of addressing the many
physical phenomena associated with a typical siate of damage, and yet the defining of a
state of damage, together with the asscciated kinetics, remains to be the most crucial issue
It 1s with this consideration in mind that we chose to re—examine the implications of higher
order theories and found that the well—established grade--3 theory is the most outstanding

candidate. This accomplishment 1s summarized in Section 3.

2. Numerical Solution of a Crack Interacting with an Inhomogeneity

The elasticity problems considered are those depicted in Figs. 1 and 2 where the
damaged matenal is sirnplistically replaced by a different elastic matenal, and is
henceforth termed an inhomogeneity. The geometry of a typical problem is therefore
defined by a dimensionless half—crack length 1, an inhomogeneity denoted by D1 which in
term is embedded in a medium denoted by D2. The associated elasticity problems are
formulated in terms of complex functions.

Let (zl,z2) be rectangular Cartesian coordinates and z=2; + iz, the associated
complex variable in the z—plane. For plane problems, the displacements ua(zl’z'z)'

stresses Taf (zl,zz) and resultant force over an arc R = R, + iR, may be expressed in

terms of two complex functions W(z) and w(z) viz.

2u(uytuy) = kW(z) — 2W(z) - w(z)

iR =W(z)+zW'(z) + w(z)

where

3-4v plane stress
N =
 (3-v)/(1+4v) plane strain

and ux and v are, respectively, shear modulus and Poisson’s ratio. For the class of
proolems under consideration, the solution is more conveniently expressed in terms of W

and another complex function { defined by




N

f(z) = W(z) —2 W' (2) - w(z)

—

As @ convention, an additional subscript a 1s placed on a parameter or variable to
indicate 1ts region of definition Da' Thus, Wa and fa are defined on Da for which the
elastic constants are Fe Va and Koy Finally, for a two--component composite the

following composite parameters are important constants
It U RS S P
7_11-}-&15#2 T _1+K.1 B

where u, &, are associated with the inhomogeneity.

1
For a given problem the four complex functions \\71, fl’ W2 and f2 are obtained
as infinite series. The constant coefficients are then determined by employing the readilv

available Fast Fourier Transform Algonthm.

A, A Crack Lodged in a Tip Inhomogeneity.

The relevant analysis and results may be found in Chapter 111 of Appendix I. The
asymptotic analysis is thoroughly carried out tc the order of €, and the final set of
equations to be solved numerically are given by equations (3.21) and (3.22) of Appendix .
The implementation of Fast Founier Transform subroutines is illustrated by equation
(3.28).

Our scheme appears to be more powerful than most of the known techniques in that
solutions accurate to the order of ¢ can actually be computed (c.f. (3.29)). Moreover,
nonsymmetric problems can be handled just as easily as symmetric ones. The set of results
associated with Figs. 3.1 and 3.2 of Appendix I shows that the scheme is not affected by
the slenderness of the inhomogeneity (a circula imhomogeneity is the least troublesome in
every respect). To illustrate the efficiency of our scheme for nonsymmetric configurations,
a slender inhomogeneity inclined at an angle a from the main crack is used as an example,

and no convergence difficulties were encountered in the calculation (Fig. 3).
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(B) A Crack Surround by a Thin Inhomogeneity.

The relevant analysis and resuits mav be found in section 4.4 of Appendix I. One of
the presumed properties f the thin inhomogeneity is that it shrinks onto the crack as e~0.

The most important and new analytic conclusion of our investigation is the property
of the solution for D2 in the immediate neighborhood of a crack tip. It is shown that the
solution must involve powers of r 1/2 where 1 = 0 is the crack tip which 15 in D,.
This 1s in contrast to the crack—tip inhomogeneity solution where the series is of the form
of r—(n + 1/2).

This derived property establishes the form of the desired series solution upon which
the Fast Fourier Transform Algorithm is again applied. The accuracy and efficiency (in
terms of the number of terms needed) of the scheme are checked by the special case of a
confocal ellipse for which a numerically exact solution is available (Figs. 4.2.3, 4.2.4 and

4.3.2 of Appendix I).

(C) Esnelby Tensor and Eshelby (Configuration) Forces.

The relevant analysis are carried out in detail in Chapter V of Appendix I. Let
f(eaﬁ) be the strain energy density function, so that

Taf= af/ dfup"
The Eshelby tensor P Bo 1s defined by
Pfa = g, "By v.a

It is known that the various configuration forces, which are the generalized forces
associated with damage evolution, are but integrated forms of PGy The calculation of the
many configuration forces would be greatly facilitated by a suitable representation of P

This objective is realized in Chapter V of Appendix I. It is shown that

Pyp=Pay = 2AW* + W*')

(PygtPy) + 12899 = = 2z2W*" + w?’)




where w* and W?* are two new complex tunctions defined by
Ktd eer, a2

wr (z) = - W (2
(z) I (Wiiz))

w*'(z) = -—%l-iﬁw (z)w(z) .

Since both W and w are already 1n series form, the desired convenient representation is

complete.

3. Grade-3 Elasticity and Surface Phenomena

The issue of damage evolution was deliberately bypassed in the previous section for
the simple reason that there has not been to date a complete and definitive continuum
theory that may be used to study fatigue damage propagation. At the same time it is clear
that damage leads to failure and the creation of new surfaces. It is therefore desirable to
look for a theory that actually includes surface tension as one of its variables. The grade—3
elasticity, which was fully developed by Mindlin in 1965, has just such a variable. A
detailed re—examination of the theory, with special emphasis on surface phenomena, is
submitted as the second accomplishment of this one—year project. The main results are
delineated 1n a manuscript which is attached as Appendix II.

In view of the complexity of the theory, none of the mathematical deductions and
formulae are reproduced in this section. Highlights of our accomplishment include the
specific determination of the energy associated with a surface, with or without the presence
of body forces and/or other surface tractions. These results are presented in detail in a self
contained manner in Sections 6 and 7 of Appendix II.

The deduction given in Section 4 of Appendix II has effectively reduced the
complexity of the theory to an extent that only a series of much simpler problems ct
familiar properties needs to be solved. [n view of the exploratory nature of this
inestigation, this accomplishment is most significant in that it can be readily applied to

yield solutions to important benchmark problems upon which the physical significance of




the theory could be meaningfully evaluated. Point load, cracks and notches are among the

first ones to be continually examined by us.
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ABSTRACT

Newly engineered high~performance composite materiais are very often reinforced bv
particles, continuous or short fibers and thin lavers. Cracks encountered in such matenais
aré more often than not affected by its tip being located in one parucular small particle or
thin layer of a composite. The physical effect of such apparently small geometnc
alterations on the toughness of the material is finite and must be carefully exaruned.

Fatigue crack propagation usually leads to the formation of a thin layer of damaged
material surrounding the propagating crack. The thin layer of damage, however, is known
to have finite effects « » the vanous generaiized Esheiby forces that drive the damage.

The 1nteraction of a crack and a small inhomogenety in an otherwise homogeneous
medium is studied in this thesis. Asymptotically deduced computer codes are developed

for the purpose of computing any and all physical quantities relevant to the aforementioned

problems.
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CHAPTER
INTRODUCTION

With the advent of engineered multiphase materials in recent years, most notably
composites reinforced by particles, continuous or short fibers and thin layers, there has
come an interest in crack problems involving bodies of spatially varying material
properfies. One particular aspect of the problem is the alteration in the stress intensity
factor (SIF) from its apparent value due to either the crack tip being lodged in a region
with elastic moduli differing from the bulk or the complete crack being located in one
particular phase of a composite. A crack partially penetrating a thin fiber and a crack
situated inside of a thin layer are but two examples. It is noted that the word thin 1s
appended to stress the very often encounted physical situation. The results presented in
this thesis have direct bearing on the understanding of the class of problems.

Fracture toughness enhancement has been observed in a number of ceramic systems
containing particles which undergo a transformation of the martensite type (T.K. Gupta
etal 1978). The high stresses in the vicinity of a macroscopic crack induce a transformation
of the particles and thereby alter the crack tip stress field. The associated SIF could be
approximated by that for a crack tip lodged in a thin inhomogeneity with moduli softer
than the bulk.

It is now a common knowledge that there exists a fracture process region or damage
zone near a crack tip where fracture process such as nucleation of voids or microcracks and
their coalescence take place and the usual continuum theory does not apply. The damage
zone is usually small compared with the length of the crack and may be approximated by a

thin inhomogeneity with softer moduli.

The size and shape of a process region change as it moves along with the crack tip




J.

under fatigue loading conditions. The net result is that of a crack surrounded by an active
crack—tip process region together with an inactive wake, the damage region created and left
behind bv the traversing active region. This is just the crack-layer configuration
investigated by Chuduovsky, Moet and Botsis (1987). If we approximate the damaged
region by an elastic material with softer moduli, the crack—layer configuration 1s just that
of a crack lying inside of a thin inhomogeneity embedded in an otherwise homogeneous
medium. The change of the crack—layer configuration leads to a number of identifiable
energe~release rates which cannot be determined withour a careful stress analysis. The
results presented in this thesis provide effective means to perform the needed calculation.

With the above problems and the attending importance and applications 1n mind, we
direct our attention in this thesis to the following two specific classes of problems:

Problem [I. Disjointed Inhomogeneities

A crack of length 2 in an infinite plane is assumed to have its tips separately lodged
in vanishingly small inhomogeneities of size € (¢ < < 1), Fig. 1.1.

Problem II . Single Inhomogeneity

A crack of length 2 in an infinite plane is wholly embeded inside of an inhomogeneity
of vanishingly small thickness ¢ (¢ < < 1), Fig. 1.2

The choice of the basic configuration, a straight crack in an infinite piane, enables us
to remove the geometric and loading complications, which may be handled by conventional
means, from the new and essential asymptotic deduction as well as the appending
numerical scheme. In fact, the ultimate objective is to incorporate the
asymptotic/numerical result of the thesis into a general situation for practical applications.

Both the inhomogeneity and the infinite medium are assumed to be homogeneous and
isotropic in this thesis. The analysis may be straightforwardly extended to cases where the
thin inhomogeneity is anisotropic, but detailed calculations are not included in this thess.
Similar approach could be applied to the situation where the inhomogeneity is actually

inhomogeneous. This latter consideration requires extensive analysis and is not considered.




The soiutions to the two classes of problems depend, among other parameters, on the
size of the inhomogeneity, i.e., the small parameter ¢. [t is clear from the general nature of
the problems that no analytic and explicit solutions can be expected. The implementation
of a computational scheme, however, must be preceded by an asymptotic analysis to get nd
of the ¢, as no numerical scheme can possibly handle the conflicting limits required by e-o
(almost no inhomogeneity) and T2 o (crack tip inside of the vanishingly small/thin
inhomogeneity). Such an asymptotic analysis, together with the attending numerical
scheme, represents the main original contribution of this thesis. The final product are two
computer codes which, together with other codes that may be developed to accommodate
geometric and loading conditions, may be immediately adapted for application.

To ensure the correctness and accuracy of the computer codes, a number of
benchmark problems are also considered. Some of them are also new and original but the
main motivation was for the purpose of validating the anticipated computer codes.

For problem I, both the inhomogeneity and the medium contain a traction—free
boundary and the analytical structure of the solution follow directly from that of the
well-known crack—tip field representation. The standard Fast Fourier Transform routines
are used to determine the unknown coefficients in the series representation, and the
capability of generating the solution to the order of ¢ is established. The benchmark
problem is that of a semi-infinite crack penetrating a circular inhomogeneity, a
numerically exact solution obtained by Steif(1987).

For problem II, the medium contains no portion of the traction—free boundary and,
as a result, the analytical structure of the solution for the medium in the vicinity of a tip is
not clear. For this reason, the case of a crack embeded inside of a confocal elliptic
inhomogeneity is introduced as a benchmark problem and studied in detail. The confocal
gemetry accommodates a Fourier series representation but the convergence of the senes

becomes extremely slow as the inhomogeneity becomes vanishingly thin. Nevertheless the




€-0 iimut 15 established by extrapoiation and a numencally exact benchmarx :s estabiished.

The atorementioned analytic structure, however, is still unknown. This :mportant
information is revealed by a cetailed asymptotic analysis.

The required asymptotic analysis parailels to that used in thin airfoii anaivsis but is
much more involved, as both the "airfoil" and the outside medium are each governed by
iwo complex functions. Moreover, there is a square—root singularity inside the "airfoil".
The analysis is carried out systematically and the needed analytical structure is extracted
from the inrier expansion of the outer expansion. This property is used to construct the
needed series solution whose coefficients are again determined by employing the readilv
availaule Fast Fourier Transform routines. As an unexpected byproduct, an approximate
but expiicit solution 1s also obtained for the confocai crack problem. This resuit, together
with the numerically exact Fourier series solution, is used to validate the fnal computer
code.

Numerical results obtained from the computer codes developed for the two problems
are further validated by the following intuitive considerations. For problem II, the center
portion of the inhomogeneity is expected to have small effect on the solution as e~o. If so
the solution for Problem II should tend to that for Problem I in terms of a geometrically
obvious parameter. Such a tendency does appear to exist. Extending the iength of the
inhomogeneity of problem II would result an increase in SIF and its vallue would always be
bounded from above by that for a crack embeded in an infinite layer of vanishing
thickness. Our numerical results also conform with this intuitive observation.

Chapter 2 summarizes the formulation in terms of a complex variable. The rest of

the exposition follows approximately the order of outlining delinedted in this chapter.
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CHAPTER I
COMPLEX VARIABLE FORMULATION

Let (zl,zz) be rectangular Cartesian coordinates and z = 2; + iz, the associated
complex vanable in the z—plane. For plane problems, the displacements “a(zl'z?.)' stresses

Y (21‘22) and resultant force over an arc R = R1 + iR2 may be expressed in terms of

two complex functions W(z) and w(z), wnz.,

2ufu, + ,) = aW(z) —2W'(z) — w(z), (2.13
IR = W(z) +z2W’'(z) + w(z} , (2.2)
where
3 - 4 plane siress
&= (2.3)
(3-v)/(1+v) plane strain

and x and v are, respectively, shear modulus and Poisson’s ratio.
For regions containing a portion of the real axis along which displacement and trac-

tion are continuous, the function w(z) may be expressed in terms of W(z) and a new

function f(z) as follows (England, 1971):

w(z) = W(z) - 2W'(2) - £(z) . (2.4)

Using the above, we obtain from (2.1) and (2.2)

iR = W(z) + W(Z) + (z—3)W'(2) - {(3) , (2.5)

2u(uy + iuz) = (k+1)W(z) - W(z) + W(z) + (z~2)W’(2) — {(Z).
(2.6)

A traction—free crack of length 2 is located on the real axis with |z1| < 1. Thecrackis




partially or wholly embedded in an inhomogeneity, denoted by Dl' which 1n turn s
embedded in an indnite medium denoted hy D,, Fig. 2.2a. An additional subscnpt 2
will be placed on a parameter or variable to indicate its region of definition. Thus, u , v ,

Kp W, and fa are defined for region D .The crack is located in D, and the associated

traction—free condition may be integrated once to become (c.f. (2.5))
Wi(x) + Wi(x) = £(x) = 0 (1x] < 1) (2.7)

where the notation F*(x) = F(x ¢ i0) has been used.

The infinite medium is loaded at infinity by Taf= "af ° that

W2=W'z, f2=fz asz-+o (2.81
where

W=(ogy +0g9), =300y, =0g9) +i0yy, (2.9)
and

e=2W-f= Tog ~ 1019 (2.10)

is another parameter to be used in the sequel.

The interface between D, and D, is denoted by C and is defined by

iz = (2.11)
C.z z, - ( )

It is assumed that C is perfectly bonded so that traction and displacement are con-
tinuous along C. In particular, the traction continuity condition may be integrated once

to become a continuity condition in R (c.f. 2.5). The two conditions are

———

Wiz) + Wi(Z) + (2,2 )Wi(z) - £(3,) = Wylz,) + Wy(3,)

+ (2.5 )Wa(z.) - £5(2) , (2.12)




W, (z,) = TWo(zq) - 7'[\V2(zc) + Wo(z,) + (2,2, )W5(z.) = iz, |

(2.13)

where the R—continuity, (2.12), has been used in simplifving the displacement continuity

conditions, (2.13), and

(1+"2)/‘1 1 [

. 1
= = 1 - — 2.14
Al scy T3%, 5| (2.14)

are two composite parameters. A discussion of composite parameters may be found in

(Dundurs, 1969). Equations (2.7), (2.8), (2.12) and (2.13) constitute the governing condi-

tions for the solution of the desired problem.

We shall be dealing with vanishingly small inhomogeneities and the following two

cases will be considered.

A. Disjcinted Inhomogeneities.

The crack tips are separately embeded in a vanishingly small inhomogeneity, Fig.

1.1a. The interface around z=1 is defined by
C: [Right] : z=zc(s,5) = l4¢ {x(s)-{-iy(s)} , 0<s<s , (2.15)
where s is an arc parameter and e<<. a small parameter. The interface around z=-1 is

assumed to satisfy the condition C[Left|= —C|Right].

B. Singie Inhomogeneity

The crack is wholly embedded in a vanishingly thin inhomogeneity Fig. 1.2a. The
interface C is given by




‘xtieyz(:c) x| <1 ,
C:z=zc(x;e)=< (2.16)

eft(s) v ims)) ix] o=

where s is a conveniently chosen arc parameter that may be expressed in terms of x, and
€<<1 is again a small parameter.

The solutions to the associated boundary value problems must therefore depend on
the size of the inhomogeneity ¢. We shall use the generic symbol F(z;¢) to indicate the
dependence of F(z) on €. The objective of this thesis is to obtain the asymptotic expansion

of F(z;¢) as ¢ » 0. We note that the solution characterized by u{z) = u; + iu, satisfies the
condition

u(-2) = —u(z) !

to
b
-3

for both cases.




——

CHAPTER III
A CRACK WITH TIPS LODGED IN VANISHINGLY SMALL INHOMOGENEITIES

3.1 Introduction

For the case of a finite crack with tips lodged in vanishingly small inhomogeneities,
the asymptotic limit is just the solution for a semi—infinitc crack lodged in an
inhomogeneity of finite size. The benchmark problem is that of a semi-infinite crack
penetrating a circular inhomogeneity which was solved by Stief(1987). Noncircular
inhomogeneity cases have been considered by Hutchinson /1986). Dimension—analysis
considerations indicate that the asymptotic limit can only depend on the shape of the
inhomogeneity, as far as geometric dependence is concerned. This dependence 1s fully
accounted for in our calculation via the use of the readily available Fast Fourier Transform
Algorithm. Moreover, the size effect may be obtained by including an adcitional term in
the asymptotic expansion.

A recap of the formulation, together with the introduction of a boundary—layer
complex variable ( , is given in section 3.2. Quter expansion, which is valid away from the
crack tips, is presented in section 3.3 in terms of z. Inner expansion of the outer expansion
is then used as a guide to establish the inner expansion, which is presented in section 3.4.
The application of the Fast Fourier Transform Algorithm to the system of interface
boundary conditions is discussed in section 3.5. Some numerical results are presented in

section 3.6 mainly for che purpose of illustrating the efficency of the numerical scheme.
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3.2 Formulation

Using (2.15) and (2.5) , the resuitant—iree condition along the crack become (c.i.

Fig.l.1a):

W‘I(x;e) + W;(x;e) - FI(x;e) =0 forix{=1 |, (3.1)
W;(x;e) + W;(x;e) - f;(x;e) =0 for|x| <1l , (3.2)
The resultant—continuity and displacement—~continuty conditions along C are :
Wo(z i€) + Wz(;,c;e) + (zc—'.;.c)W2 (a,0¢€)~ fz(ic;e)
= W1(Zc;f) + Wl(ic;e) + (zC—EC)W1 (z.:¢ ) - fl(icif),
(3.3)
Wl(zc;e) = 7W2(zc;e)
+ 7'[ Wz ie) + Wo(zi€) + (zC—EC)Wé (z,.:1¢) —fz(ic'.f)]»
(3.4)

where (3.3) has been used in deducing (3.4). The loading condition at infinity, (2.8) , is

Wz(z;f) = Wz, fz(z;f) = {z, as z -+ o. (3.5

As ¢ - 0 the conditions (3.1),(3.3) and (3.4) disappear altogether . Borrowing the
terminology used in thin—airfoil analysis (Van Dyke 1975) we shall call the attending
solutiop the outer expansion. Such an expansion is not vahd near |z| = 1. Inner
expansions near the crack tips must be constructed. For this purpose a boundary layer
complex variable ( is introduced for the neighborhood containing z = 1 . It is defined by

p_z =1 (3.6)
€

(=pe




(a3}

and the interface C {right| may e convementiy wntten in the form

ZC =1 eacl\p) e"r y = g.C = pcl‘p" e~? 3.7

where the singie function p.L¥) may be used t0 denne the vanishingiy smail izhomogeneity
(Fig.1.1b). It is assumed that
pm < pC(’) < pl\«I and Dm <1¢ pI\I (38)

so that yy, charactenzes the maximum dimension of the inhomogeneity. The quantites g
and p_ are the key features of the function o.(y). Finally, the square—root character of a

oo : , : . 1/2
crack tip suggests that the required asymptotic sequence must involve powers of € / :

3.3 Outer Expansion (s # *+ 1)

The outer expansion for W, and f, are gonvered by (3.2) and (3.5). They are

2, A
fz(z;e) ~fz 4+ I 1/2‘> n( Ez)z + n ( :)1 (3.9)
T T
P €r
2W2(z;e) - fz(z;e) ~
(2212 |1+ :S‘ Bl 61)1 +_ta ( ei (3.10)
n;l [z___l.} [z-}-l.‘
P €.

where ¢ is given by (2.10) and W and f by (2.9), and the coefficients A _(€) and B (¢) have

representations of the forms

A (€)= :E:Am(el/z)m ' B_(e) = :E:Bm(e”z)m . (3.11)
=0 =0




We shall be needing the 1nner expansions of the outer expansion. These resuits, ater

. . N x
normaiized by an as vet undefined factor ¢ /2, are

f2(1+€g';e) v2f 12 ° N ‘ —n
< n— e D Angléleg)
¢ [V v ]
V2t 7 ‘3,
. -n
e+ ) AL eg)
7 n=1
2 1 v
3/2) W 1, 7B 12
T ‘Z‘ A ol¢lo )+ e Ao = + (3.12)
n=1

2W2(1+e(;e) - f2(1+e(,';f)

~

c* 2
MY B (¢eg)
n=1
1/2 w . —n‘\ 20
+e(¢ ) ) Byydleg) n
n=1 J 7
2, - 1
+ S22 S B ()™ + — By
n=l1 2
1 2, B 20
+_(< )[1+‘> ﬁo } . + .- (313)
‘ =




The above expansions reduce to the ordinary crack solution as ¢ - 0 and tze Laurent
series with unknown coefficients are needed to account for the as vet unknown etfects of the
vanighingly small inhomogeneities located at z = # 1. Similar situations have been
encountered in crack branching (Wu, 1978) and crack tip contact (Wu,1982). That the
Laurent series at z = + 1 have same coefficients is a result of (2.17). The sigularities are

contained in D, and have no effects on the analyticity of W, and fo which are defined in

D2'

3.4 Inner Expansions Near s = 1.

For a generic function F{z;¢), the associated inner expansion is defined by

*

F*((e) ~ F(1+€(e) z_ (3.14)
o
Moreover,
F(Gie)~ Y (13 B (3.15)
n::O

It follows that

3, .a
B~ 3 () 500, (316)
n=0
2Wy(Ge) = 5(Ge) Y () 2wy (- 65,00, (317)
a=0

where the right—hand side terms are just the terms defined in (3.12) and (3.13).

The functions f;((;e) and WI((;e) must satisfy (3.2) in the appropnately

transformed form. This condition is identically satisfied if




G~ Y 600, (3.18)
n=u
2, n
2WiGe) = (G~ 3 (A [aws (0 -5 0] (3.19)
n=0
and
folO =1t / ¢; AW - () =0
Gal0) =) &y oy (o™ (3.20)
k=0
WO =60 = 8 by (g
k=0

where the last two expressions are for n > 1. All the unknown coefficients must now be

determined to satisfy (3.3) and (3.4) which now become

Wanlle) + Wi ) + (=T W3 L (¢ ) -8 (1))

= Wzn(("c) t WIn(Zc) + (Cc _Zc) WI ;1 (¢ c ) t‘In(zc) '
(3.21)

F (= TIWy (¢,) ~f;n(zc)] . (3.22)
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The expansions defined by (3.16) (3.17) (3.12) and (3.13) are valid for the region
cutside the inhomogeneity, Fig 1.1b, and the unknown coefficients involved in (3.12),(3.13)
and (3.20) are determined by applying the standard Fast Fourier Transform (FFT)

algorithm to (3.21) and (3.22).

Before implementing the FFT calculation, the normalizing factor ¢° should be

properly chosen for specific cases. This is explained in the following section.

3.5 Past Fourier Transform Algorithm And Numerical Procedure.

It is convenient to consider shear loading ¢, and axial loading (011,022) separately.

Let us first consider the case 012=0. We let 7' = 799 and the first 4 sets of unknown

sequences become:

f;o(() =1 60(() ' 2on(C) - qo(()=0 (3.23)

=1
W3 (0 -0 =2(¢ ) {1 Y Bw(s/pm)‘“}
n=1
(3.24)
)
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(Gl =vEE) e+ 5 AL ((p )"
n=l1
2W3,(¢) = B,(0) = 2( o) ‘2 (¢ ™
) n=t (3.25)
12(( ‘>: an (/PM
n=0
2W}y(0) - £,(¢) = (M/? ‘>‘ 20,1 ((oyy)"
. n=0
( 63(()=_%_A10 + ‘>: A (/P )
n=1
2W33(0) = G50) = 2¢/o ) 2 5B + >B (Cpg)™
n—l
J + (/o) 1+> B (¢/pg) ]]
n-l JJ
(3.26)
G0 = 3, 2altloyg)
n=0
[ W50 - g0 = (1 ‘> 205((/ppg)®
n=0
where
2 =L[ ! _1] (3.27)
e’ Ny) 722




Each set must satisfy the continwty conditions (3.21) and (3.22). We note that
(3.21} is the continwty in resultant force. The frst set (3.23) satisfies the conditions
identically. For the other sets we truncate the sums at n=N so that a total of 4N+2
unknown coefficients are involved. Since the standard Fast Fourier Transform subroutines
FFTCF and FFTCB are written for functions of a real variable, complex functions of the

compiex variable ( ¢ = pc(p)ew, typified by a generic symbol G((C), are represented as

follows:

N N M —-M
_ Wwee n_ A R B Bul imp L ' im¢ _ PO
G(CC) - AZ-CHCC - 421{ ‘Z‘Cmne * ‘Z‘Cmne } G i)
n=1 n=1'm=4¢ m=0

(3.28)

where M = 500 has been used in all calculations. The truncation number N is determined
by a convenient convergence criteria.

We normalize the physical stress intensity factors KI and KII by "22'/; and the result

is :

(1) (1) ,
Ky —iKy =(K;—iKpy)/opt

i} 1/2 3.29
b00+e b01+eb02+--- ( )

It is clear from (3.25) and (3.27) that bgy = 0ifgyy =04y
For a pure shear loading condition, 711 = 099 =0 and we choose ¢° = —10y, -

Equations (3.23) — (3.26) remain unchanged and (3.27) is replaced by

__@f_ =— (3.30)

g




The associated stress intensity factors are given by

(2) . (2) .
K, +iK, =(Kp+iKp) /o,

1/2

/ e
~ boo 4+ € b01 + eboz + ... (3.31)

It is clear from the solution procedure that the solutions for (3.24) and (3.26) are
identical in form for both loading conditions. The solution for (3.25) is determined by
either (3.27) or (3.30) Thus, by, is never zero in (3.31). On the other hand, by, and b, for
both cases are identical. The actual field variables, however, must be modified by the

factor ¢ and hence are completely different for the two cases.

3.6 Results and Discussion

As we have mentioned in the introduction that the ¢ + 0 limit depends only on the
shape of the inhomogeneity, as far as geometric dependence is concerned. To illustrate this
dependence and also to test the efficiency of our computer code, the class of problems
depicted in Fig. 3.1 is considered. The asymptotic configuration is that of a semi—infinite
crack with a tip inhomogeneity of thickness 2 and length 2 + a+ b. We mention in passing

that the actural physical dimensions are 2¢ » (2 + a + b) e. The material properties are

fixed by v, = v, = 0.2 and p; /p2 = 0.5 30 that the parametric study is purely geomotrical.

Moreover, only mode—I loading is considered in the illustration.

The benchmark situation of a circular inhomogeneity is recovered by setting a = b =
0 and the associated normalized SIF is 0.645 (Steif 1987). It is anticipated that increasing
a would lead to an decrease in SIF while increasing » would actually intensify the
associated SIF (Hutchinson 1986). Every method has its limitations and the present code

cannot be expected to function for cases where a and b are very much greater than 1.




Considered as a function of a and b, the normalized SIF, K (a, b), is expected to approach
to certain asymptotic limits very rapidly. K (o, U) is just the solution for problem II and
K (o, ) = 0.74 which is extrapolated from the results given in {Hilton and Sih, 1970).

The pertinent results are protted in Fig. 3.2 as a function of b with a as a parameter.
The a = o curve is produced by our second computer code which will be developed in

Chapter IV. It is seen that the results conform with all the expected trends.
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CHAPTER IV
A CRACK IN A THIN INHOMOGENEITY

4.1 Introduction

The present problem differs from that of Chapter III in that the compiete crack 1s
wholly surrounded L, :he inhomogeneity. As a result, the infinite medium contains no
portion of the traction—free boundary ..nd hence the analytical structure of the solution for
the medium in the vicinity of a crack tip is not known. For this reason and a' . the
purpose of setting up a benchmark for validation, the problem of a crack imbeded insiae of
a coufocal elliptic inhomogeneity is first considered in detail.

A Fourier series solution is first constructed in section 4.2. The analysis is preceeded
by a brief discussion of the associated antiplane shear problem for which the exact solution
is presented. The exact asymptotic limits for very large and very smail inhomogeneities
are deduced from the exact solution. Their exact dependence on size and moduli serves as
a guidence for the desired plane problem solution.

The Fourier series solution obtained for the plane problem is considered to Dbe
numerically exact, as the convergence can be easily checked by varying the number of
terms included in the actual computation. The convergence of the seres, however,
becomes extremely slow as the inhomogeneity becomes vanishingly thin. The asymptotic
limit for the SIF, though, is easily extrapolated from the numerical resuits.

The series solution sheds no light on the desired analytical structure of the solution.
A complete asymptotic analysis is therefore carried out in section 4.3. The needed
analytical structure is revealed by the inner expansion of the outer expamsion. As an
unexpected useful byproduct, an approximate but explicit solution is obtained for the

confocal situation. This completes the establishment of the benchmark solution.




t

The genmerai (ase is finallv presented in section 44 where the thickness of the
inhomogeneity and the nose thickness, i.e., the length of the :nhomogene:ty munus +he
crack length, are assumed to have the same order of magmitude ¢. We note that for the
confocal situation the nose thickness is of the oraer of 52 while the inhomogeneity thiz':ness
is of the order e. In this regard and in the context of the final boundary layer
computation, the confocal situation is even more difficult than our gereral case, as the
former requires the satisfying of boundary conditions specified on a parabola in the
boundary—layer varizble. Neverthless, the analytic structure revealed by the benchmark
analysis is the key to the success of the general representation. The unknown constents

involved in the series solution are again determined by the Fast Founer Transtorm

Algorithm.




4.2 Senes Saolution

4.2.1 Introduction

A family of confocal ellipses may be characterized by a single parameter p > 1. In
the limit as p - 1 the elipse degenerates into a straight line of length 2. It tends to
c'.cle of infinite radius as p +o. The geometry of the problem is fixed by the crack (p =
1) and the size of an elliptic inhomogeneity (p = po). Both the inhomogeneity and the
infinite medium are assumed to be ..omogeneou. and 1sotropic.

Section 4.2.2 summarizes the formulation in a transformed complex plane. The
exact solution for the anti~piane shear case is presented in Section 4.2.3. Expiicit
asymptotic limits for large and small inhomogeneities are extracted from the exact formula.
Plane problems are dealt with in Section 4.2.4. The case of equal shear modulus and

unequal Poisson's ratio is solved exactly, and the general case is presented as o series

<

solution.

A large number of 1eferences on inhomogeneity problems may be found in Mura
(1982,1988), but we have not found any reference dealing with the consideration of a crack
in a vanishingly small inhomogeneity. The closest situation is the one given by Warren
(1983), who considered the edge dislocation inside an elliptical inhomogeneity, including
vanishingly small inhomogeneities.

Numerical results for the plane problems are presented only for plame strain ard
Mode-I conditions. Parametric dependence of SIF on the size of the inhomogeneity is

discussed in detail in Section 4.2.5 for the range where the inhomogeneity is softer than the

medium.




1.2.2 Formulation

Let (z;,25) be rectangular Cartesian coordinates and z =z, + iz the associated
complex variable in the z-plane. A crack of length 2 in the z-plane is mapped onto a

umt circle in a new complex (-plane via the mapping function
z_:m(o:% [(_,_%] (4.2.1)

where (= () +i(, = pe'’ (Fig. 42.1b) and p > 1. The image of the circle ( = (, =
poew is the ellipse (Fig. 4.2.1a)

(2,/2)% + (z,/0)" = 1 (4.2.2)

where

1 1 1 1
a=2[Po+al. b—g{ﬁo";—ol- (4-2.3)

The infinite z-plane is now conveniently divided into two regions D1 and D2 by the

single parameter Por viz.,
X ) 424
D1.1<p<p°, D2.p>p°. ( )

We shall call D, the inhomogeneity and D2 the medium. The two regions are of

different elastic matenals characterized by shear moduli By and plane—elasticity constants

34 lane strai
=] a prane strain (4.2.5)
a (3—ua)/(1+ua) plane stress

where v are Poisson's ratios. The infinite plane is loaded at infinity by
Anti—plane: Tag = 73, 38 lz| o, (4.2.6)
Plane: Taf=%af 2 lz| = o, (4.2.7)

where i are the stress components.
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For the anti-plane problem, the displacement u3(zl’z2)’ stresses r3a(z1,z.,) ana

resultant force R3 along an arc may be expressed in terms of a single compiex function

F(z). We have

up =3 [@(c) + ;(—(_)] . (4.2.8)
31~ i732 = pd¢’'(()/m’((), (4.2.9)
Ry=-i 4 [Q(() + Tc)] , (4.2.10)

where ¢(() = F(m(()) and m(() is the mapping function (4.2.1).
For the plane problem, the displacements u (z),24), stresses Taﬁ(z’ \2) and resul-

tant force R, + iR2 = R along an arc may be expressed in terms of two compiex func-

tions W(z) and w(z). We have

2w(uy +iuy) = w0(() - —2 g0y~ () | (4.2.11)
m’ ()
iR =0(¢) + —20 gy~ w0, (4.2.12)

where 0(() = W(m(()) and u({) = w(m(()).

The complex functions must be determined for the two regions D, and D, sub-
jected to the loading conditions, (4.2.6) and (4.2.7), and the continuity conditions along the
interface boundary characterized by Po The crack surface is assumed to be traction free.
The traction—free condition may be integrated along the crack to become a resultant—free
condition. Similarly, traction continuity along the interface may be integrated to become a
resultant continuity condition. The integrated forms of these conditions will be used in the
calculations to follow.

We shall place a subscript a on a complex function to indicate its region of defini-

tion. For example, Fa(z) and ia(() are defined for region D,
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4.2.3 Anti—Plane Shear

The problem may be most conveniently solved in the (—plane. The integrated trac-

tion—{ree, integrated traction continuity, displacement cont:~"::y and loading conditions

are

#,(e'%) - él(e‘y) =0, (4.2.13)
mlt) -4 | =y [tle) - 200 ] (4214)
8() + #(¢5) = #,(( ) + &,((,) (4.2.15)
b,=% as (-o, (4.2.16)
where g‘o =p Oew and
¢ = %“Lz (0g) ~irg). (4.2.17)
The solution is
() =AC+ A 4.2.18
¢ = T (L< il <py) (4.2.18)
,(¢) =¥ + [(1+p;)A - p;;] %, (¢l > pg) s (4.2.19)
where
A= 2pé§ / {(pé-}-l) + % (p;—l)] . (4.2.20)

The stress intensity factor may be readily determined. It is convenient to normalize the

SIF Ky by the factor 032ﬁ, and the result is




]
m K py 1208
1(3[p ,_l] =1L 71170 1 | (4.2.21)
0" Ky 13T P2+l py p2-
Pt
2 p°+1
The following limits may be easily obtained
[ 4] M B
K3MJ.=QJ/1_1, (4.2.22)
L Bo o) )
(8] s
K1, 1l =1 (4.2.23)
3 { ’uZJ Ko

These two limits are plotted in Fig. 4.2.2. The sign of 3K3/8po is governed by (1 —

M1 < Ml < 2t P!
1,;;} S K3[p0’/§} S K3 m,;; lf /‘_2.

“1/“2)' Thus

K,

VIIA
—

(4.2.24)

It is noted that the bounds are of practical significance for the cases where the inhomo-
geneity is softer than the medium.

A very slender inhomogeneity may be defined by j o = 1+e where ¢ << 1. The
exact result (4.2.21) may be used to obtain

B B I
1+€,_1. vl l4eli =2 + .- (4.2.25)
Ha) Ho Ko

provided that e(;:1 /“2) +0 as e~ 0. Itis, therefore, clear that such a two—term asymp-

totic expansion is valid only for the cases where the inhomogeneity is either softer or slight-
ly harder than the matrix.
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4.2.4 Plane Problem

Since the plane problems cannot be soived exactly, we begin by constructing a senes

solution in the (—plane. The traction—free condition on the unit circle enables us to intro-

duce the stress continuation (Fngland, 1971)

“

1 , .
() =-91(1/Z)-ML0 L£0) (4.2.26)
m’(()
The function Ql({ ) is now extended to the region l/po < p < p,, and the traction—free

condition on p =1 is identically satisfied. The conditions (4.2.7) are met if

Q5(¢) = Q¢ + 0[%] 1{] +a, (4.2.27)

s({) = w( + 0[%] (| ~a, (4.2.28)
where

Q=5 (o), +059), u=1 [(«22 —o )+ izalz] . (4.2.29)

The integrated form of the traction continuity condition along (, may be obtained

from (4.2.12), i.e.,

m((,)
Oy((,) + ——==—05(( ) + up((,)
m’ ({,)
Q 1
=0,(¢,) ~ 0 {ZL] +m(()-m {.Zl_] i) (4.2.30)
o of] m’((,)

where (4.2.26) bas been applied. Continuity in displacements along ( yields
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. 1
m{(,)
i el ) = === 04l(g) — () ¢
2 m((,)
A Q:((
= = ey (() + 0y [L ~|m(¢) -m | = fillo) (4.2.31)
! o off m(¢)
which, after applying (4.2.30), may be reduced to
m((, )
Ql(ﬁo) = 702(40) +1* 02(40) + 02(40) - “'2((0)
m(()
(4.2.32)
where
(1+"‘2)/‘1 . 1 By
7= T .#2 . 1t = T-_*-Tl [1 - “_2 (4.2.33)

are two composite parameters (Dundurs, 1969). We note that (4.2.30) may be deduced

from (4.2.31) via the relation

(4.5) = [Letting by =Wy =1 and &, =%, =-1 in (4.2.31)]
) (4.2.34)

Before proceeding, we shall first consider the special case Py = b
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i)  Exact Solution for Equai Shear Modulus

For this case, the composite parameters defined by (4.2.33) become

L+x, (4.2.35)
—_ = ¥ _ L.
T=17 IS 7" =0
and (4.2.32) becomes
0,((5) = 185(¢,) (4.2.36)

which serves as an analytic continuation of the two functions QI(C ) and 92((,’). Making

the substitution {1 ( )= 70 ( ), we obtain from (4.2.30)
m(({,) —— —
unlp2f7) + o Qa(p2/3,) = 1M((105(02/ L)
“(p2/1,)
= (1,=1)0(( o) = 1,89(¢/02) (4.2.37)

where

M(() = m((,) - mlf{,) _ _Paleg)(G - pg) | (4.2.38)

m'(( ) (€2~ 0d)

It follows from (4.2.37) that the function H(() defined by

(1,-1)085(C) = 1,85(¢/02) (L¢l > pg)
H(() = 4

vy(o2T) + =2 (o277 ) - 1,M(( ) 95(03/2,)
| m'(p2/{,)

(4.2.39)
(1< < s,)

is holomorphic in the whole (-plane. Moreover, its properties at ( = 0 and o are

governed by the right—hand side of (4.2.39). The complete solution is
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H(Q) = |1+ 71— ng+{ap;+[1+70(pg-1)m}-}, (4.2.40)
pO
vog 1
(¢} =0a¢- |0+ —i 7 (4.2.41)
1+ 1,(p5-1)

o) = H(p3/7) + 15M(e2 /0040 - [ mio/Dfm (0] 0000, (4:2.42)

01(() = 7002(4) . (4.2.43)
Let us use the factors ‘722‘/; and ’12'/; to normaiize the SIF's K; and Kip and write
K, = KI/"22‘/; . Ky= Kn/alz./? . (4.2.44)

The following expiicit results are readily obtained

K — Tol(p3+1) + 1,(p2-1)] ) 141 =1,)(#2-1) ™

) L2 (4.2.45)
2(1 +7,(e3-1)] 201 + 7 (p2-1)] “22
2
K, = Tobo . (4.2.46)
L+ 1,(p2-1)
There are the following exact limits
) 1+x 947
lim K, and K2=7°=m—, (4.2.47)
po-ol . 1
. 1 1 ‘11
111‘1‘1 K1=?(1+70)—7(1—7o)a_’ (4.2.48)
Po e 22
lim Ky=1. (4.2.49)
p o
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i) Series Solution

The complex functions Q,, 8, and u,, together with their regions of definition,

'S

admit the following series representations

®
W' 1- n —
2,(¢) ‘?_d Py n[Ang + 2 “] , (4.2.50)
n=1
[}
WYy 14 -
Q)=+ % »,7"B (", (4.2.51)
n=1]
(1]
. Ww' 1+ —
ugl@) =wg+ 5 7 (7, (4.2.52)
n=]
where n = 1,3,5,... The factors pi_n and pé-{-n are included for convenience and pose

no restnictions on the validity of the series representations. They are, nevertheless,
conceived from .he fact that u, aong |(| = p, must be of the order of o as p - a.
Substituting the above into (4.2.31), setting ( = poela, and equating coefficients of

emo to zero, we obtain

1 1 !
—nl——zAn+(n+2)1——2An+2— 1+'—233n
%o Po Po
! ! ! 1 g
My s zln+2$an+2+g"2 Bn"’? n+2
ol I3 I
f
M
oL
ko pé for n=1
_ | (4.2.53)
L0 for n = 3,5,7,...




' £
s+ 1A+ 1-L]A - L L—;a,+—l- 1--la
1 % M 2 1 2 2 2 2] 1
pS pg ol Pe Pq ol
k . K " -
+21Ls -5 -2B | =- L0+ 20, (4.2.54)
2 p2 p2 B9 p2
o 0 o
and
1 1 1 n 1.
It S 1t At P
Po Po Po Po )
=2 h-Llls +ﬁ (n-2)B. ,+2B -b_+—b
2(n-2) 2] n=2 Ko “n-=2 n n—2
Po o o o
M0
) "2 2 =
Py for n=3
= 9 . (4.2.55)
L0 for n =5,7,9,...
The relations derived from (4.2.30) are obtained by the substitution (4.2.34), i.e.,
[Letting py=pg=1 and s, = Ky =-1 in (4.2.53),(4.2.54),(4.2.55)] .
(4.2.56)

The infinite system (4.2.53)—(4.2.56) are truncated and the resulting finite system 1s

inverted numerically. The SIF’s

K -iKy = 2n)! /%0 (1) (4.2.57)

are then normalized in accordance with (4.2.44). Values of plane—strain K, are plotted in

Fig. 4.2.3 for the case v, =

limit very rapidly as p 0™ o The analytic expression for this limit is determined in the

vy = 0.2 and 1 = 0. The numerical results approach to a

next sub—section.
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The convergence of the numerical scheme becomes extremely siow as p = L. For

. - . , 2 ;
this reason, values of K1 for fixed values of ,‘11/;1., are plotted as functions ot l/po n
Fig. 4.2.4. It is seen that all curves tend to finite limits as p - 1. The p, =1 curve

indicated in Fig. 4.2.3 is extrapolated from Fig. 4.2.4.

iii) Very Large Inhomogeneity

As we have indicated before that the factors pétn built in (4.2.50)—(4.2.52) are con-
ceived from the fact that the displacements u along [(| = p, must be of the order of

Py 3 Py~ o Thus the series representation may also be interpreted as an asyroptotic

expansion for large Py In this interpretation, however, the four sets of constants must be
re—expanded in powers of p:, le.,

1
(AaBb), = ()pe+=()gy + -+ (4.2.58)

Po
Substituting the above into (4.2.53)—(4.2.56) and equating to zero the coefficients of powers
of p:?, we obtain an infinite system of infinitely many equations for the determination of

the coefficients ( ) om:  The asymptotic limit for the case of a very large inhomogeneity is

thus governed by the coefficients ( )no'

The system governing ( )n o actually decouples into finite systems and the first clus-

ter of equations are

2! 2!
- - —_ = — 4.2.59
AIO + 35.30 a0t ™ ‘2310 = s v, ( )
- - - = 4.2.60
Ko +3hy-a,;-B=3, ( )
k1 - 21
- - = — 2 (gom 4.2.61

A +A,-bp=2, (4.2.62)




_ e O 4.2.63)
1830 57 (Byg —bgp) =0, 3.2.03;

= 2.64
30=0" (4.2.64)

which may be explicitly solved to yield

_H q !
AlO—E(KfH) / 1:1—1—-+-2#—2 ,
By A1
= = {|— = ¥ —_— .2.65
B,g = b3g [“2 1]u/+ [“2 Ry + 1] , (4.2.65)
Ajg=-Byg= Ay

In fact, the second cluster of equations yields
- = = = .2.66
Agg =239 =Bgg=bgy=0. (4.2.66)

The asymptotic limit for 01 is merely

. 1 1 v
Q,(¢) ~ [Amc +ayq Z] +0|= (4.2.67)
o
and
, 1
Q1) ~(Ajg-a,0) + O ; (4.2.68)
[o]

Equations (4.2.44), (4.2.57) and the above lead to the following explicit asymptotic limits

for very large elliptic inhomogeneity:




e
-

, 1 - a'.- _ J‘.;
17 12 22
K, ~x— (1 -4.2.69)
1+ =5y g,—-1 + 2 =
Bo - 1 )
Hy 2!

Equation (4.2.69) is in perfect agreement with the numerical asymptotic limit given in Fig.
4.2.3.

The series solution provides us with a complete family of numericaily exact
bencnmark results. Still, the resuits weld 1o useful analytic information concerung the
behavior of the solution for the medium in the vicinity of the crack tips. This important

information will be deduced from the asymptotic analysis of section 4.3.
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(zl/a)2 - (z:/b)z =

(a)
Lo
= o z:=m =345 77
L 10
3 = 1 T 2 o¢
»o= 1.+ E
(b)
Fig. 4.2.1 A crack in a confocall elliptic inhomogeneity
a) Corfiguration in the physical z—plane
b) The image of of the circle ¢ 0 =" oel bis the ellipse

a.nd the unit circle is the crack in the new compiex
(—plane via mapping function
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4.3 Asymptotic Solution of a Crack in a Vanishingiy

Thin Elliptic Inhomogeneity

4.3.1 Formulation

Attention is now turned to the specific situation where the parameter p used in

(4.2.3) is almost equal to 1, i.e.,

(4.3.1)

where a and b are the major and minor axes of an ellipse with focal points located at

+1. Theellipseis thinif ¢ << 1. We have

a=l+%(ez—e3+---),b=c—%(ez-—es+---) (43.2)

é(¢) =bfa~ O(e) (4.3.3)

where & is another convenient parameter. Moreover, the radius of curvature of the ellipse

at z = %a is

Py = b{- ~ % + 0(e4) . (4.3.4)
The ellipse is assumed to be the interface boundary, viz.,

Ciz=3 =x#i g (a® - x’)ll2 . (x* < a?) (4.3.5)
Thus, as ¢ -+ 0, z, has the expansion

2~ x2i6(1-) 2 2 ig L (o)1 (4.3.6)

which is valid for x? < 1. It follows that the expansion cannot be used to satisfy the con-

tinuity conditions near z = #a. The associated expansion is termed the outer expansion




which will be presented in Section 4.3.3. The termunoiogy has its origin in thin airfoil
theory which is well-known (Van Dyke, 1975).

To remedy the shortcoming of the outer expansion, inner expansions will be construc-
ted in Section 4.3.4. In view of the symmetry, we shall concentrate on the region near z =
a.  The scaling factor for the needed boundary—layer complex variable is dictated by

(4.3.2). This complex variable is defined by (Fig. 4.3.1b)

z—1

C = 4.3.7
(=T a (4.3.7)
2
The appropriate portion of C is now given by the expansion:
. 1/2
C: C ~ g‘clv 6 tXZ[(l"é)_%(l-()z e (4.3.8)
where { <1 and the leading term is just the parabola:
(o~ (o= (1-1%) +i2q (o < 1< +o), (4.3.9)
-9 y
= [cos %] e (~r<g<r). (4.3.10)

4.3.2 Quter Expansion _
The representation (4.3.6) will be used to satisfy (2.12) and (2.13). In view of (4.3.3)

and (4.3.6), we choose ¢ as the asymptotic sequence and seek the solution of a generic

unknown function F(z) in the form

F(z) ~ Fi. §) ~ 2 8°F_(a) (4.3.11)
n=0




where F stands for any of the four unknown functions Wd and fa, The vaiue of the

function F(zc) may be computed from the scheme:

F(zc) ~ ZJHFn(zC) ~ 2 6n[F;(x) + i&(l_xl)l/zpf‘(x)_ +. ]

n
(4.3.12)

where (4.3.6) has been used for z.

The system of governing conditions (2.7), (2.12), (2.13) and (2.8) are now expanded
in accordance with (4.3.1) and (4.3.2). The §°—terms are:

Wio(x) + Wig(x) - £ o(x) =0 (4.3.13)
Wg(x) + Wig(x) = (x) = Wio(x) + Wig(x) - £ 5(x) | (4.3.14)
W1g(x) = TWy(x) + 7*[W;0(x) £ WE(x) - f;o(x)] , (4.3.15)
wzo(z) =Wz ) fzo(z) =fz as z-o, (4316)

where the first three conditions apply to the interval [x| < 1. It follows from (4.3.13)
that tbe left—hand side of (4.3.14) vanishes as well. It merely implies that when an
interface is asymptotically near a traction—free boundary it is itself asymptotically
traction—free. This is essentially the nature of the iteration associated with the outer
expansion. At the same time, it is clear that the iterative mechanism can not be valid near
z = *a where the interface traction is asymptotically large in (z—l)-l/ 2 s z=a-1l

In any case, the solution to the above equations is

£,4(3) = 7ig(2) = 1tz , (4.3.17)

2W, o (2) - £q2) = 7[2W20(z) - fzo(z)] = 10X(2) , (4.3.18)

where

X(z) = (22-1)1/2 (4.3.19)




The )—terms of the system of equations are then derived. They mav be further sim-

plified by the use of (4.3.17) and (4.3.18). The resuits are
W1, (%) + Wi (x) - £1(x) =0, (4.3.20)

Wi1(x) + W3 () = () = (1-1) [(o-2)x = (8 Dig1—x) /2],

(4.3.21)
Wil(X) = 7W§1(X) + 77‘[(4—6):: £ (f+?)i(1—x2)1/2] : (4.3.22)
W21(z) and le(z) -0 as z-+o. (4.3.23)
Combining the + forms of (4.3.21), we obtain
£51(x) - 5, (x) = i2(-1)(E+ (1) 2 (4.3.24)
2w, 00 - 60| + [y - Gy0)] = 2o-)a-1)x,
(4.3.25)

which, together with (4.3.23), may be solved for f21 and W21 in terms of a Cauchy and a
Hilbert problem. The solutions are:

fy1(2) = (1-1)(f+1)[X(2) , (4.3.26)
2W,,(2) — £y, (2) = ~(1-1)(0-7){X(2)—] , (4.3.27)

where z is a homogeneous solution of (4.3.24) and X(z) a homogeneous solution of (4.3.25).

They are included to meet the conditions at infinity. Substituting the above into (4.3.22)
and (4.3.20), we get




n
Cy

The ¢*~terms of the system of goverming conditions are obtained in a similar man-

ner. They are further simplified by the explicit lower order solutions and the resuits are:

W) + Wi(x) = £,(x) = 0,

i (4.3.30)
Wali) + W3p(x) = (x) = (1-1){(21-1)f - (2743)T}x
7 (1-1)[(27-1)f + (27-3)B)i(1-2)}/2 - :i(l—-lz;-rl , (4.3.31)
Wix) = 1Way(x) = 17°[(£+D)x = (s-2)i(1-x2)!/?]
+ 17‘[2(7—1)(f—f)x s 2(7-1)(f+Di(1—x2)H/2 - *,(1-—;)1/7] ,
(4.3.32)
Woo(z} and f0(z)+0 as z-a. (4.3.33)

Combining the =+ forms of (4.3,31) again leads to a Cauchy and Hilbert problem, and the
solutions are

fy9(z) = =(1-1){(21-1)f + (21-3)E)[X(2)—] - (1-1)7X"'(2) ,

(4.3.34)
sz(z) - tzz(z) = (1-1)[(2743)f — (27-1)f}{X(2)—2] + C(1-1)5X"'(2) ,

(4.3.35)
where the last term of (4.3.35) is a homogeneous solution and C an arbitrary constant.

The other two functions may again be determined from (4.3.32) and (4.3.30). They are

f14(z) = 2{"7(7‘1)[3I = (29-1)f] = 19*(f+1) + 217‘(1—1)(f—f)}z ,
(4.3.36)
2W12(z) - f12(z) = [(C-1)(1-1) - 21°]78X"'(2)

+ 2{7(1—1)l3f = (279-1)f - 19%(0-7)] - 217'(7-1)(f+z)}xu) .
(4.3.37)




e
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The procedure could be continued to inciude as many terms as we wish but the expii-
cit 3—term expansion is sufficient to reveal the most important characters of the desired
solution. To unveil these properties and also to facilitate matching, we need the inner
expansion of the outer expansion. This is accomplished by expressing z in terms of ( via

(4.3.7) and then expanding. The results are

= ()
£~ 9f + 8 1l(1-1)(F+1) = (1-1-21*)(s~7)] + 2 —Cn—“ +0(8%)
nel (4.3.38)
ZW1 - fl ~§ 70(1/2 + 15{(7-1)C - (1=-1+27*)] gwl'g
+ (1/2 2 (_%rz + 0(42), (4.3.39)
n=2 (
£~ £+ 6{(1-1)(E+T) + (1-7)7 = + i( )y + 0(6%),
(4.3.40)

()
2W, - fon § a<1/2 + (1-1)(e~7) + (1-1)C7 Fl-z + 2 ng + 0(4%),
(4.3.41)

where the generic symbol ( ), denotes an expression depending on the explicit forms of
the outer expansion, (4.3.11). Some of them may involve arbitrary constants such as C
given in (4.3.35). These constants can only be determined from matching.

The above expressions represent the properties of inner expansions, which will be

derived in the following section, for ( + o. It follows from (4.3.38) and (4.3.39) that




wn
[£54

fl = Holomorphic functionof ¢

1/2
1=9/

as (~o,

W, —~ f

1 (Hol omorphic function of (]

(4.3.42)

a propenty that can be directly deducted from the traction—free condition. On the other
hand, (4.3.40) and (4.3.41) indicate that both f2 and W2 involve powers of (-1/2 as (

- o. This property cannot be conceived directly from any of the governing conditions and

will be needed in the series representation to be constructed in the sequel.

4.3.3 Inner Expansion

The independent variable is the boundary layer variable ( defined by (4.3.7).

Guided by (4.3.38)—(4.3.41), we shall seek the expansion of a generic unknown function
F(z) in the form (c.f.(4.3.11))

@

F(z) ~ F*((,8) 2 §°F2(() (4.3.43)
n=0

where F stands for any one of the four unknowns Wa and fa. Using F*(() to denote

F*(({,8) for simplicity, we obtain from (2.7), (2.12) and (2.13) the governing system:

WIS + WITO) -7 =0, (¢ <0) (4.3.44)

———

W(0) + Wa(T) + (- TOW3 (¢ ) - £5(2.)

(4.3.45)

¢ ZC)W;’((C) - f{(Zc)] ) (4.3.46)




w
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where (_ is defined by (4.3.8). As (- o, the functions must be matched with the inner

expansions of the outer expansions (4.3.38)—(4.3.41).

The §"—order conditions may be derived by using the following substitution:

B~ 3 R~ X e e g -0 IR )+ "](4 3.47)

where ( is defined by (4.3.9). For the §°~terms, the choice
1 o .
Wig(0) = 55000 = 1Woo () = Ff50(¢) = § £ (4.3.48)

satisfies all the conditions and yields no useful information. The {—order system governs

the desired asymptotic limit (§ - 0) and the subsequent discussions wiil be concentrated

on the solution of the system.

We begin by writing
5300 = 1[(-n(E+1) - (1=1-27)o-)] + 10b,(0), (4.3.49)
2W(0) - 6300 = 1021+ ()] (4.3.50)
£5,(¢) = (1=1)(E+1) + ohy(() (4.3.51)
W31(0) = 3 @=n(E+D) - (¢-0)] + 5 7+ e1y00) (4352)

Comparing the above with (4.3.38)—(4.3.41), we conclude that the explicitly listed terms

are matched and

B (), H()=0 as (~+o. (4.3.53)




w
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Since the geometry is symmetric and the ioading symmetry 1s maintained by the factor s
defined by (2.10), we conclude irom the above that the functions h and Ha' sigmfied by

a generic symbol F, must satisfy the condition

F(()=F({) for h and H_. (4.3.54)

Finally, (4.3.44) is identically satisfied if h1 and H1 are holomorphic in D, in the

(—plane. We must now determine h, and Ha to meet the two remaining conditions

(4.3.45) and (4.3.46).

Before proceeding, we establish a few identities associated with the function ¢

given by (4.3.9). Since

Ci/ 2= 14in, (4.3.55)

we may express Zé/z in terms of 4‘1)/2, ie.,

L2 =g )= 2-(M? (4.3.56)

where ¥(({) is holomorphic in the ((=¢( 1+i(2)—-plane with a cut along the (; axs, the
crack boundary. We have

&[vp?(g)] =2 (4.3.57)
WIU=_Z§—'4 as (~4, (4.3.58)
1 <o Zo 1 (4.3.59)
4—2i7r “qTh e

Substituting (4.3.49), (4.3.50) and (4.3.52) into (4.3.46) and using (4.3.54), (4.3.56)
and (4.3.59), we find that the condition is satisfied if




Hy(¢) = Hy{Hy b} = 3 (28,00 + ny00)] - r{% [hlu) -y [#(0)]

[ELE)
+ My + @(c)Hl[V(o]] +at[H] [H—‘m—-

+ 24(QH; [#(0)] + 2n; [«pﬁ(g)]] + *{ra} , (4.3.60)
where

ot =

Qll

+1 r=aq
- { i 2 (4.3.61)

—1 7= 1’12

Substituting the above into (4.3.45) and using (4.3.56) and (4.3.57), we fini that the

condition is satisfed if

. ® [ PR 4 ¥ 2 *
ha(¢) = hy{H; by} = Ho(() = 4o LCl/z-l]sz + % =77 )[Zfrg

.
+ @(()Hl[qﬂ(g’)] +hy [qﬂmf - (7+1‘)F’ [(1/2H1(C) - hl(é)]

H,({)
”'{1“1/2] [‘ﬁ'/’:”w 21:(¢) +2h1(<)] - (4.3.62)

The above two expressions H;{Hl‘hl} and h;{Hl,hl} may be taken as two calcu-
lating machines which convert the input hl and H1 into the products h2 and H2 in
such a way that the continuity conditions are identically satisfied. For a pair of chosen H,
and b, satisfying (4.3.53), H, and h, calculated from (4.3.61) and (4.3.62) also satisfy
(4.3.53). The only condition that is left to be enforced is that h . 2nd Ha must be holo-
morphic in Da in the (-piane (c.f. 1g. 4.3.1b).
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Let us begin by setting H., = by =0. Then,

00} = - 5 £3.63)
* £ ¥ 1/2
. _ (I=r=1t)g* _qte® o 29%(77%-1) 4
hs{0,0} = f-—h—— + (4.3.64)
2 T Wy )
¢ 41/2[2_4.1/2]
which have poles at ( =4, ie.,
H3{0,0} = P3q(() = 2787 (¢ - 4) (4.3.65)
2WEr = Fapls) = 7 *
» . 4q4*g* 16+*
h5{0.0} = pyp(¢) =<1 *(4_;)2 (¢~ 4) (=-3.66)

Thus, H1 = h1 = 0 cannot be the correct choice. To obtain the complete soiution, we

write

Hl(C) = R10(<)

hl(C) = rlO(C)

(4.3.67)
Hy(() = H3{0.0} + [Ryg(¢) = P3o(0)]
hy(€) = 0500} + [rg(€) - 3(0)]
where R and r  are holomorphicin D . The following series are assumed
® a @ b
o= Y —2=.  Ry= Y 2,
(e 10 ,,;(44,“
(4.3.68)

2 A i :
rgo(()zzlc_nr;}v R20=szn'2"
n= n=i

which conform with the requirement at ( = o characterized by (4.3.38)—{4.3.41). The

constants a_, bn’ An and Bn must be chosen 1n such a way that the substitutions (c.f.

(4.3.49)—(4.3.52))




(84}
-3

f; 7”10( ()

WS - ) 9a¢ 2R, ()

(4.3.69)
f;: 0[120(4) - Péo(g‘)]
W3 o[Ryg(0) = P3g(0)]

satisfy the two continuity conditions (4.3.45) and (4.3.46). Since all terms are bounded,
the standard Fast Fourier Transform algorithm may be applied. This provides a numerical
scheme for the direct computation of the needed asymptotic solution as opposed to the

numerically extrapolated resuit of section 4.2 .

Let K; and KII be the SIF's. They may be normalized by the factors Jzzv’; and
612'[;‘ 1.e.,

K =KpfogplT, Ky =Kyfo,/i (4.3.70)

where K1 and K, depend on the small parameter §. As § - 0, they tend to finite

umits which may be obtained from (4.3.50). The results are

K1=1[1 +H1(0)l (a‘:%: +1] . s
Ky =1[L+ H,(0)] [r=2= -1,

where
H,(0) = R;4(0) 22:{ (421)“ | (4.3.72)

The above analysis establishes the basis for the general solution which wiil be discussed in

section 4.4.
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4.3.4 An Approximate Analytic Solution

It appears that an approximate but expiicit solution may be constructed for the
special confocal geometry. This is accomplished in the following manner. Another way of
removing the poles defined by (4.3.65) and (4.3.66) is to define H, and h; as follows

P P

H,(¢) = P,({) =Py(() = 4—3 + ((—_1427 , (4.3.73)

. A _ P11 P
h () =p(O=p()=—+ , (4.3.74)
1 11 1 (= ——2(4_4)

where Pll’ P12’ Pqq and Py are constants and both expressions are holomorphic in D1
in the (—plane.

Substituting the above into (4.3.60) and (4.3.62) and requiring that the calculated

H2 and h, are free of poles at ( = 4, we obtain

81%¢*{1+H,(0)]
P =0, (4.3.75)
2 1(() +p1(<)+ N =3 0
(2=e*)P1(0) - py(() - 4[2?1(4) + pi(()] =0, (4.3.76)
and hence
T 1 4
P,({) = -—+ (4.3.77)
P e | 4 (44)’]
py(()=—— |-, 8 2] (4.3.78)
ot | (4 ((4)
where

*

r= %%’.- [1 + Hl(O)] | (4.3.79)

The newly generated H, and h, are now free of poles at ( =4, but new poles are gener-

ated at ( = 16. This is so because Hl(\lf’(( )) now include powers of




e
O

= - as (- 16. (4.3.80)
B~ (16

Removing the poles at { = 16 will lead to new poles at ( = 36.

The process may be continued for a chosen number of times so that

N
H, =P {() = 2 E Q) (4.3.81)
n=1
N
hy = piy(6) = Y., Py(6) (43.82)
n=1
where
2n P
P_(()= 2 . (4.3.83)
ast [(~(20)?]
2n
p,(() = 2 —_om . (4.3.84)

it e ™

which may be expressed in terms of P _,(() and p _,({) via recurrence formulas. The
derivation is straightforward but lengthy and is not included in the thess.

The functions generated by substituting (4.3.81) and (4.3.82) into (4.3.60) and
(4.3.62) have poles at { = [2(N+1)]2, ie.,

Hy{Piy(0, Pin(0) = Pinl0)

as (= [2(N+1))2

(4.3.85)
a5 {PIN(O, PiN(O} = Bo(0)

where P;N and p;N have forms similar to those given by (4.3.81) and (4.3.82). Thus,
(4.3.81) and (4.3.82), together with the generated H, and h,, cannot be the correct

solution. The complete solution must be of the form
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Hl(é) = pIN(Q) + RIN{(’) )

hl(f) = p]'.N(“) + rlN(O )
(4.3.86)
Hy(() = B3{Phy, pix) + [Ron() - Piy()]

hy(() = b{ P, Py} + [ran(O) - B3]

where RaN and TN play the roles of RaO and r a0 in (4.3.67) and must be determined
in a similar manner. In fact, the series (4.3.68) may be taken as the solution for the new
unknowns. The input to this problem is provided by P;N and p'SN which have poles of
order 2N at ( = {2(N+1)]2. Ncting that the nearest interface point is at ¢ = 1, we
conclude that the contributions of R N and TN e perhaps small for large N. This,

aowever, is not proven in the thesis.! Taking the statement for granted, we have
H(O*Pig((),  by(¢)=pln(C),
By(0) = B3PI Pl = Pon(0). (4387

hz(() = h;{PlN' PIN} - P;N(C) :

For a two—term approximation, P, and p, are given by (4.3.77) and (4.3.78). A

lengthy computation yields the following expressions for P, and p,

Pz(()=w).%{'.6:3_d,7{[2(1:1—7‘)a‘ +4(z+,3ﬁ] 1

1+1 1-1 -~
[64(1-—1-1') 481‘(2+3a‘)] 1 3847*(3+11¢*) 1
- + - + o ¥ 3
T+ 1 ((-16)° =1 (¢-16)
- (3-11_67), M 71} (4.3.88)
((~16)

tThe recurrence formulas associated with (4.3.83) and (4.3.84), together with the explicit
forms of (4.3.85), are needed for such a proof.




Ple) = =T I |T¢T8)

. [64(1—7-1") . 487'0"] ( 1, 38477(110°-3) 1

T e T (e

3 () ] {[m—w—w‘)a’+4(2+a’h']( |

3-16)%* 1
_LT;),_L___&(H& , (4.3.89)

where [' is defined by (4.3.79). It follows from the approximation

HI(O) 5 PI(O) + PZ(O) (4.3.90)
that

H, (0) . .
1 . g _ 1 (2+e*)(1-1—2")
m;m(ﬁ‘m-—m{“ T s

+ Qﬁ‘%:%ﬂ]} . (4.3.91)

The approximate expressions for the asymptotic values of K, and K2 (4.3.71) are

371(1-*
K, = ) , (4.3.92)
s PR *
=110 + I [6_(_1#?1_) + ’lf_fz,]
57(1-1*
KZ: S . (4.3.93)
* PP s
s—1* - Iy [2_%33?14 + 1510 ]




4.3.5 Rsults And Discussion

We shall restrict our attention to the range 0 < By / ko <1 to reflect our interest in
the physical situation of crack damage interaction. The confocal nature of the problem
allows a series solution in a transformed piane. Such a series solution was obtained in
section 4.2. The convergence of the needed matrix inversion becomes extremely slow for €

< 0.05. Nevertheless, the ¢ » 0 limit was accurately extrapolated from the extensive

numerical results. This limit is reproduced for K1 for the case vy = vy = 0.2 1
Fig.4.3.2 where the numerical results generated by (4.3.68) is also shown to be in
agreement with the series solution. To substantiate the accuracy of our two—term

approxamate solution, (4.3.92) and (4.3.93), K, is also plotted in Fig.4.3.2. The

agreement is almost perfect.

Our formulation indicates that the solution to the problem depends explicitly on the
two composite parameters 7 and 7* defined by (2.14). It is therefore desirable to
present the SIF's in terms of them. The choice of the two composite parameters in a typi-
cal two—phase problem is not unique (Dundurs, 1969). The parameters 7 and 7* appear
naturally in our problem. Moreover, exact solution may be obtained for the case 71* =0,
(4.2.47). Still, the range of the two parameters may be easily determined from Dundurs’

discussion. Intermsof 7 and 7*, Dundurs’ o and J parameters are

Q=E%, 5=%_-3_§_5, (4.3.94)

which may be inverted to yield

l1—a a—
7 - m ) “" - ﬁg . (4.3.95)

Dundurs’ a—f plane, together with the admissible ranges of a and f, are reproduced in

Fig. 4.3.3. Also plotted in the figure are the constant 7 and 7* lines. Thus the ranges of

7 and 7* may be straightforwardly calculated, i.e.,
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%(1—47‘) <7< 21-27%) for 0 ¢ S%’»
(4.3.96)
0< 1< 2(1-21%) for 7¢1° ¢35

which covers the range of interest set by 0 ¢ pl/ Ho < 1. Results pertaining to (4.3.92) and
(4.3.93) are plotted in Fig.4.3.4 as functions of 7 with 7* as a parameter. It is felt that
results for all inhomogeneity problems should be presented in terms of 7 and 7* in the

fashion characterized by Fig.4.3.4.
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Fig. 1.3.4 K1 and K2 for all admissible combinations of 7 and 7
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44 A Crackin a Thin Inhomogeneity of Arhitrary Shape

4 4.1 Introduction

Equiped with the benchmark results of section 4.2 and the analytic information
revealed by the asymptotic analysis of section 4.3, we are now ready to construct the
asymptotic solution for problem II where the inhomogeneity is thin but is otherwise
arbitrary. The geometric configuration is examplified by the right—hand side of (2.16). It
is noted that the nose dimension implied by the second expression of (2.16) is of the order
of the thickness , € , of the inhomogeneity. This choice is made to reflect the physically
observed damage—zone shape reported by Chudnovsky, Moet and Botsis (1987).
Mathematicaily, though, the situation is in contrast to that of a confocal geometry where
the nose dimension is of the order of ez, (4.3.2) and (4.3.7). In this connection and aiso in
terms of mathematical considerations, the confocal situation is even harder to solve than
the general case, as the former requires the satisfying of boundary condition on a parabola
in the boundary layer variable.

Our final product is an asymptotically accurate series solution which 1s valid in the
neighbourd of a crack tip for both the inhomogeneity and the medium. As a result, the
solution may be manupilated to yield any and all desired physical quantities of physical
importance. For example, the various generalized Eshelby forces along the interface

boundary may be straightforwardly computed. These quantities will be discussed .a
Chapter V.




4.4.2 Formulation

We now turn to the situation depicted in Fig 1.2. Geometrically speaking, it is the
elasticity counterpart of the thin airfoil problem (Von Dyke, 1975). The proolem 1s of
course much more involved as it involves four complex functions. The geometnc
description is given by (2.16) where, in general, y*(x) = y"(x,€) may be assumed to have a
given asymptotic expansion. We are mainly concerned with the first order solution and
such a generalization is not pursued in our analysis. The mathematical problem consists of

(2.7), (2.12), (2.13) and (2.8), and is recapitulated as follows:
Wi(x,6) + Wilxe) - {xe) =0 for |x] <1, (4.4.1)

Wo(z.i€) + Wz(ic;e) + (zc-Z )

= W, (zi6) + Wy(3ge) + (23, )W, (2,5 € ) —£(36), (4.4.2)

W (2i€) = TW,(z ie)

+ 7‘[ wz(zcif) + Wz(ic;e) + (zc—z-zc)W2 (z i€ ) ~f2(2c;e)],
(4.4.3)
Wz(z;f) = Wz, ) fz(z;e) =1z as z -+ o. (444)
4.4.3 Quter Expansion.
We seek the expansion of a generic unknown function F(z) in the form.
Fzi€) ~ F (2) + 6,(¢)F(2) + b5(€)Fy(z) + ... (4.4.5)

where § (¢)is an asymptotic sequence that may depend on z (x;¢). The value of the
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function F(zc;e) may be computed from the scheme

F(z ie) ~ L § (e)F (z.)

~ 3 6n(e)[F:(x) £ iey*(x)f‘:(x) + ] (4.4.6)

where (2.16) has Geen used forz a ..} qlx) = Fo(xs 10).

The system of equations (4.4.1) — (4.4.4) are now expanded inaccordance with (4.4.5)

and (4.4.6). Tue O(1) — terms are:

ng(x) + W, 5(x) - fl,j(") =0, (4.4.7)
Wg(x) + Wag(x) = (%) = Wig(x) + Wp(x) ~ f(x) (4.4.8)
Wig(x) = Wi(x) + 7% [ Wag(x) + Wio(x) - 6] (4.4.9)
Woolz) = Wz, f20(z) =fz as z-+o, (4.4.10)

where |x| < 1. As e + 0 the interface boundary is asymptotically close to the traction—free
boundary. This is formaily ‘mplied by (4.4.7) and (4.4.8). The vanishing oi the left—hand

side of (4.4.8), together with (4.4.10), 'eads to the ordinazry crack solution, viz.

fon(z) = fz, '4.4.11)

AW, (2) —fpg(2) = oX(2) (4.4.12)
where

X(z) = ('=i)V/2 (1.4.13)

Equations (4.4.7) and (4.4.9) are identicaily sotisfied by




fm\z) = 7f20(z) = 1iz , (+.4.14)

2W10(z) - flO(z) = 7[2W20(Z) - f20(z"} = 10X(z) . (4.4.15)

Unlike the situation described in chapter 3. the analysis for the present case depends
heavily on the shape zc(x;e), (2.16). For example, if z_ is an ellipse then the
boundary-layer variable should be scaled by 52 and the required asymptotic sequence 1s
just 5n(e)=en. On the other hand, if y*(x)zl in (2.16) the required asymptotic sequence
may involve e{ne. For this reason, we shall restrit our attention to the determination of a
one—term approximation for a round—nosed inhomogeneity with (3.6) as the assocciated

voundary-laver complex vanable..

To the first order of approximation the inner expansion of the outer expansion near z

=1is

fo(1+¢(ie) £+ o) . (4.4.16)
W,(L+e(ie) — Ey(1egie) w e /20 (M2 .o (4.4.17)
£ (1+eGie) w16 + (el - (4.4.18)
2W,(1+eie) — £ (1+e(ie) ~ N pedity (4.4.19)

4.4 4 Inner Expangion Nears = 1

For a generic function F(z;¢), the associated inner expansion is defined by

(o)~ B (O 4 PR (O 4 oo (4.4.20)

where §,(¢) = ¢/ is determined from (4.4.16)—4.4.19). Thus




GG~ 50+ 28 0+ (4.4.21)

2W(Gie) = £(Ge) » [2Wg(0) = 5(0)]

10
+f”22WﬂO-QﬁO]+ ..... (4.4.22)
f;((;e) N 50(4) YL 551(4) oo (4.4.23)
2W,(Gie) = 6(Ge) w [2W30(0) = £54(¢)
+ 20y 510 - B0+ (4.4.24)

In the (-plane, D2 is infinite and D1 1s a semi-infinite strip Fig 1.2. Equation (4.4.1)
requires f;(( ;€) to be holomorphic and ZWI—f; double vaiued aiong the negative axis. The

continuity conditions are just (4.4.2) (4.4.3). Their conditions at ( = o are governed by

(4.4.16)—(4.4.19). The choice
fo(0) = 1650() = 1t (4.4.25)

ZWIO(O - fIO(O = 2W20(<) f;()(() =0, (4.4.26)

meets all conditions and yields no useful information.

Before proceeding, we give a more precise descniption of the interface boundary 2=z

in terms of the boundary-layer vaniable ( defined by (3.6). It is

(=( =——=0p[nNe? (~1<y<r) (4.4.27)

and

pc(y) ef -0 as po T . (4.4.28)
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Moreover, the scaling of the € 1s chosen in such a way that

Max pc(p)cosp =1. (4.4.29)
It follows that
e
‘Y—Tc- ‘ 1. (4.4.30)

Finally, the minimum value of pc(p) is denoted by P » 18

P, T Min pc(p) <1 . (4.4.31°

The desired asymptotic limit is governed by {II’ WIl,

D2 in the ( — plane, the following series are assumed :

f;l and W;l. For the region

* 2, -n/2
fal(c)/ o :Z. An“/f’m)n (4.4.32)
2 n=l

* 2, -n/2
W3, (0-5,(0)] /L= =2 (1 [ 1+ % B (¢/og)

72 =
(4.4.33)
where ¢° is defined by
4 T.a=10
S IR (4.4.34)
RSP} 11 =792 =0

so that ¢/s° =1 for both cases (c.f. (2.10) for definition of #). It is noted that the above
satisfy the conditions at ( = o required by (4.4.16) and (4.4.17). The form of the senes
follows from the analytic structure revealed by the benchmark analysis.

We emyloy the property (4.4.30) to set up the series solution for region Dl' It is




T4

J‘ ‘2, . n

fh(()/ﬂ = ) a, (=) (4.4.35)

n=90

. 2. ., 1
wiy0-8y00] =21 Y by (4.436)
n=0
whe.e

:s. a,=0 ‘Sl b =1. (4.4.37)
n=0 a=0

so that the conditions at ( = o, (4.4.18) and (4.4.19) , are identically satisfied.
The constants involved in the series are then determined from the interface conditions

that have forms similar to (4.3.45) and (4.3.46) via the Fast Fourier Transform Algorithm.

The associated stress—intensity factors are :

k(U - i k(M= (K -iKp) / rgT =1y . (4.4.38)

= (K +iKp / sy Fm 1y (4.4.39)

where b0 is the same complex number solved from the same mathematical equations which,

via the scaling factor ¢*, govern the solutions o two different physical problems.

4.4.5 Results and Discussion

The computer code is used to compute the K (w, b) curve discussed in seciion 3.6 and

presented in Fig. 3.2. Other relevant comments may be found in section 3.6.
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CHAPTER V

ESHELBY TENSOR AND THE ASSOCIATED ENERGY RELEASE RATES
5.1 Plane Elasticity — The r — Problem

We begin by reviewing the well-established results of plane elasticity. The
exposition will be delineated in such a way that parallel development in the manupilation
of Eshelby tensor in a homogeneous region will be demonstrated. Most of the results can
be found in Eshelby’s publications which will be cited-at the proper places. The purpose is
to summarize all the known results and the many still not fully utilized concepts advanced
by Eshelby in a unified setting.

Let O - (21’ Zg, z3) be rectangular Cartesian coordinates a. d let (ll' o 2,3) be the
associated unit vectors. The two dimensional Kroncker delta and alternator are denoted
by 4, 8 and e 83 A typical two dimensional region in (zy, z5) will be denoted by R, its
boundary by 4R, and the outward unit normal to JR by n. The displacement, strain and

stress are denoted by Uy €4f and Taf respectively. The strain—displacement and
stress—strain relations are:

€0f= 1/2 (ua,ﬂ+ uﬁa) (5.1)
raﬂ:-df/deaﬂ=2yeaﬂ+)éaﬁe” (5.2)

where f is the strain—energy :emsity function, and 4 and i the Lame’ constants.

We shall first restrict ourselves to the case of constant u and ) and consider the

r—problem defined by :

raﬂz r& , (53)
= 0. (5.4)
vzr” =0, (5.5)

r&nﬁ.—_’ Ta , (5.6)




-1

[}

where V2 is the Lapiacian and Ta are prescribed on dR. There are the following assocated

relations :
2
=9 5.7
) e" ) (5.7)
2 A+u
== 5.8
Tu ¥ S1nal (58)
A+2u
= 5.9
Y158 %183 %8 (5.9)
2, =0, (5.10)
where
U=eaﬂ3 ua’ﬁ . (511)

Equilibrium considerations lead to the necessary conditions

IR Ta de =0, (5.12)
fﬁR e7a3 2, Ta dr =0, (5.13)
and the identity
rata ]
‘JR Tra da = R z7Ta de , (5.14)

wuich is commonly used to define average stress in terms of boundary traction. The trace

of the above may be related to the trace of

¢

‘JR eaﬂda= 1/2 J;R(uanﬂ+ uﬂna) ds , (5.15)

which is commonly used to define average strain in terms of boundary displacement.

Multiplying (5.4) by u, and integrating over R, we obtain




J;Ru‘]TQdd = JRTQB ua’ﬂ da

The trace of the above is Clapeyron's Theorem :

.
f T u de=2]) fda
0R a a JR
Forming the skew—symmetric part of (5.16), we obtain

”~

J;ReaﬂB u, Tﬂdu = .JReaﬁB ua'T raﬂda

which must hold for all R.

7

(5.16)

(5.17)

(5.18)

Finally, in terms of the complex variable z = 2 + iz4 and two holomorphic functions

W(z) and w(z), there are the following results (England, 1971) :

711+ Top =2 (W +W7)
(117 = 7T9g) +i2 7y =2 W +w")
(T, +iTy)do=-id[W +2W" + w]|
((2;Ty - 2,T;) +i(z,T; +2,T,)} do
= —d[z?w' +aw— [wdz —i Im fz‘z"w'dz]
[(T2u1 - Tu,) +i(Tu, + T2u2)] ds

=——2%‘—(5W-zw-’——;)d(w+7W’ + w)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)




vhere

(3 -4v) plane strain
K= { (5.25)

(3=v) /(1 +v)  plane stress

and v Poisson’s ratio. The imaginary part of (5.23) and real part of (5.24) are not
commonly used in studying elasticity problems. These well-known results are recorded
here because, as we shall see, the Eshelby tensor permits a representation that is identical

in form to (5.19)—(5.24). In particular, the full form of (5.23) and (5.24) are associated

with the now well known conservation integrals.

5.2 The p— Problem and r* — Prohlem

We shall discuss in this section a mathematical problem, the p—problem, governing

the solution of a tensor field Pag which is not symmetric. The p—problem is defined by

Paa =0 (5.26)
p&,ﬁ= 0, (5.27)
2 .

v eam paﬂ=0’ (5.28)
P Bg= Pa , (5.29)

where P are prescribed on JR. The problem is well posed, as there are four unknowns and

four equations. Indeed, the situation becomes zpparent if we convert the p—problem into a

" ~problem via the transformation:
3
Taf= %aA3 PA =%@3 Pa) » (5.30)

*
Ta=eaA3 P,. (5.31)
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we shall call r* af? pseudo—stress field.
Substituting the above into (5.26)—(5.29), we find that the equations governing r; g
are identical in form to (5.3)~(5.6). It follows that a 7"—problem is a r—problem. As a

result, holomorphic functions W¥(z) and w'(z) may be obtained to defined the

pseudo—stress field r*

af’

Since no "kinematic variables" are involved in the p—problem, and hence the

r‘—problem, we may even stretch the above mathematical analogy further by introducing
pseudo strain rate ;azi via the inverse of
3 x
Tf= 2 € ﬂ +1* 6

5.32)
aﬂ 1 (

where 4 and A* are pseudo viscosity coefficients. Since the 7 af field is "Compatible" by
(5.30) and (5.28), the psseudo strain rate éab may be integrated to yield a pseudo velocity
field u} via

éa;j:—é—( {xa’:ﬂﬁxﬂ:a) . (5.33)

To obtain the solution to a mathematical p—problem we merely express the

associated 7 —problem solution in terms of W*(z) and w"(z), and ‘hen make :he

substitutions :
3
P = Pyy =711 + 799 (5.34)

. % *® .
(Pyg +Pgy) +12pgp = (r)) ~7199) +i2 7,7, (B = ~Ppy);

(5.35)

(Py +1Py)do =i (T] +iT;)do , (5.36)
[(z1 Py=2,Py) +i(s) P, +1, Pz)] do

=i () Ty~ 2y T} +1 (s, T 45, T)]de. (5.37)




The asterisked versions of (5.12) and (5.13) yield

Y

P de=0 , z P de=0,
aR a JaR a Q (5'38)
and the asterisked version of the trace of (5.14) is
”
J;Reaﬁ3zapﬂdg=.,Reaﬁ3paﬁda . (5.39)

The byproduct of the solution to a 7 —problem is a pseudo velocity field u; which
may be expressed in terms of W* and w’ via the assumed 4" and A*. We may therefore

introduce yet another pseudo velocity field v, to pair with the tensor p, 8 It is defined as

follows :

vaz-eaﬁ3{1:9 , ‘:‘:=eaﬂ3vﬁ' (5.40)

5.3 Eshelby Tensor Assodated with A r — Problem

For the sake of argument and convenience, let us assume that the strain—energy
density function f introduced in (5.2) depends explicitly on place and time, i.e., f = f(¢ g
z.; t). Using Eshelby’s language, we may regard {(..., Zy t) as a calculating machine which
works out the value of f when €0f are inserted. The explicit dependence on 2, and t then

means that the machine characteristics are continuous functions of place and time. We

introduce the notation:

or|rn
Qf W

{ (5.41)

of

)
‘ € pand z_ constant
af a

N frn

f
7 %

(5.42)

SO
af @

€afit and za(a#-y) constant
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so that
af _ 3£ - lf
T = 5 eaﬂfaﬁ"_ﬁ'_t , (5.43)
i f _ 8 f R
7 27_ 5 Eaﬂeaﬂ!7 -1-—-3——-27 ) (5.44)

Let pﬂa be the Eshelby tensor (1951, 1954, 1956, 1970). In terms of our notation the
tensor is defined by

pﬁa=”ﬁa‘fg,“7,a : (5.45)
Using (5.1)—(5.4) and (5.44), we may easily shows that

a

where the right—hand side is zero 1f f is homogeneous in space. We now show that for such
a case the Eshelby tensor field is the solution to a p — problm defined by (5.26)—(5.29).
Equation (5.26) is identically satisfied by (5.45). Equation (5.27) follows from (5.46) in a
homogeneous region. Using (5.1) and (5.2), we find from (5.45) that

eaﬂ3p0ﬂ=—()+p)uu (5.47)

T

It follows from (5.7), (5.9) and the above that (5.28) is also satisfied. The necessary
conditions (5.36) are the three well-known conservation integrals (Budiansky and
Rice,1973; Chadwick, 1975; Golebiewska~Herrmann. 1981,1982; Knowles and Sternberg,
-972; Rice, 1968). This completes the asseriion that the Eshelby—tensor feld is the

solution to a p — problem. Finally, using the identity

= - = — 5.48
eaﬂB Pag €af3 Taq 4, 4 eaﬁ3 Ty Y49 ( )

we obtain from (5.39) that
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.

_ 5.49
JaRea zapﬂd”+«aReaﬂ3uaTﬁdd 0 ( )

which is another one of the conservation integrals?

We shall say that a p — problem and a r — problem are associated problems in a
homogeneous region if Pag is the Eshelby tensor associated with the r — problem. We
recall that the solution to a r — problem may be expressed in terms of (W, w), and the
solution to a p — problem may be obtained via the solutionof a "~ problem expressed in

terms of (W*, w*). A tedious but straightforward calculation leads to the following simple

relations for a perfect associations :

W"(z)=—%—F—i(W’(z))2 : (5.50)
w.,(z)=—%2—1i2W’(z)w’(z) , (5.51)

£ 4 FEashelbv—Tenscr force in Elastostatics

The many important implications of Eshelby tensor are discovered by Eshelby via the
consideration of the total energy of a system. In elastostatics, the total energy E, , is the
potential energy. Using Eshelby’s machine description f (ea g2y t), the total energy at

time t 1s

.
= - .52
By, (t) = }R fda T, u, de (5.52)

iR

It follows from the equilibrium conditions (5.2) and the notation (5.43) that

Blt) = [, (559

2The first two equations of (5.38) are commonly referred to as J  are even more commonly

referred to crack—tip contours (Rice,1968). In view of the resultant force appearance, it is
perhaps more appropiiate to call them Fa_ integrals. The last of (5.38) is commonly called
the M—integral.
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which wiii be examuned in conjunction with (5.46), i.e.,

7«

D4 = _ (5.54)
fof= T o,
The discussion cannot be continued without first specifying a machine (- -; z7, t).

The machines that have been considered by Eshelby and many other researchers are mostly

alecewisely uniform in space. To fix ideas, let us introduce a curve or contour C defined b.y
iz = xa(t) (5.55)
and kbence v = J'ca(t) defines the velocity of C. If the machine f(---; Z t) is uniform in

space on both sides of C, then for a region R containing C

E‘tot(t) = J —g% da = - ‘JC -1 v, n,ds (5.56)

where £ are the uniform mackizzs ou the + n sides of C. Since f(:--; Z t) is a step

function in space, the right—hand side of (5.56) is

» ~
+ _ I
_Jc(f "{_)"a“ad"‘JR‘aTa"ada* (5.57)
and hence
: SN _
Etot(t)=—}C(Pa -P, ") v ds (5.58)

which was first obtained by Eshelby (1951) and is the essence of the physical significance of
the Eshelby tensor. If C is the boundary 4R of a region R and v, = ia is Linear 10 x ,
(5.58) gives the energy release rates associated with the "hypothetical", in Budiansky and
Rice’s words (1973), translation, rotation and expansion of R. Eshelby identified (5.58)

with the interface force assocated with a martenstic transformation.
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The various energy—release rates associated with (5.58) play the roles of generalized
forces and hence are of fundamental importance in analyzing fatigue crack—damage
propagation. If the crack—damage description could be approximated by the two classes of
problems examined in this thesis, then analytic means must be provided to perform the
nontrival calculations implied by (5.58). Th'. was our motivation and we have completed

our self-imposed goal. The foliowing flow chart indicates the sequence of steps that may

be straightforwardly performed to complete (5.5R) -

solution

——— —_—
fihittes |20 | T [
wilz . j W zZ a

%5.34) \ | ‘ Energy
. Pog Pa Release Rates ‘

The linking of the energy—release rates to the damage evolution kinetics is the intent of our

next objective.




CHAPTER VI
SUMMARY

Our interest in toughness of composites reinforced by particles, fibers and layers, and
generalized forces associated with crack—damage propagations have led us to consider the
two classes of elasticity problems stipulated in Chapter I. Two computer codes, one for
each of the two cases, have been developed and are ready for adaptation. The
mathematical complication associated with the small geometnc parameter has been
effectively removed. The remaining arbitrariness associated with a general physical
problem may be handled by cne or several of the conventional anaiytic and/or numencal
methods.

The computer codes effectively give the coefficients of a series solution which is valid
in the neighbourhood of a crack tip. It follows that they may be manupilated to yield any
and all physical quantities of significance. In particular the various Eshelby forces along
the interface boundary may be easily computed by following the flow chart provided in
Chapter V.

The efficiency of the two codes are illustrated and the class of problems depicted 1o
Fig. 3.1 is discussed in section 3.6. Since we are most interested in the situation where the
inhomogeneity is softer than the medium, Mode—I SIF’s for five cases are summarized in
Fig. 6.1, where the normalized SIF is plotted against 4, /4y for v = vy = 0.2. It is seen
that the effect of an inhomogeneity is strictly of a shielding nature for the range 4, /pg < 1.
Moreover, the exact value of the SIF for a specific configuration falls in the rather narrow
lens—shaped region bounded by f.he very large inhomogeneity limit, (4.2.69) and the
straight line K = ;41/;;2 which is the exact SIF associated with a semi—infinite crack
perpendicular to a two~phase boundary (Hilton and Sih, 1971). We conclude the summary

with the following rather unexpected conjecture.

A conjecture: Let a crack be surrounded by a doubly symmetric inhomogeneity of
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modull Ky and vy = v which, in turn, is embedded in an infinite medium of moduli b and
vy = . The inhomogeneity may consist of two disjointed inhomogeneities surrounding the

tips. The normalized Mode-I SIF is a function of the two composite parameters

(1+"2)l‘1 e

7=—(1+"1)#2 T
8!

By

1
)= T (1™ Bo )

and is denoted by K1(7,7'). It satisfies

1<K, (117) ¢ —1 (p#177 )
2(1+7 ) (1-27")

for 0 < 9= /41/;;2 < 1. The right-hand side of the above is deduced from (4.2.69) and
equalities hold for 7 = “1/“2 =0and 1.

The curves summarized in fig. 6.1 apparently satisfy the conjecture. Curves (1) and
(5) are respectively the right—hand and left—hand sides of (6.1). Curve (4) is the thin

confocal ellipse and (3) the circular inhomogeneity. Curve (2) corresponds to the

configuration of Fig. 3.1 witha = 0.5 and b = 2.0.
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Cohesive elasticity is the grade—3 theory of elasticity developed by Mindlin in 1965.

has 2 modulus of cohesion which gives rise to surface—tension. The concept of adhesion

1s introduced, and interfacial energies and energy of adhesion are defined. The interfacial
energy solution may also be used to define a grain boundary energy. Also presented are the
thin film energy and the concept of an interface—phase. The stretching of a thin film is

analyzed in detal; and it is found that the apparent Young’s modulus obtained from a film

is higher than that obtained from a plate.
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1. Introduction

Every continuum field theory contains only a limited amount of physics, and even
the limited amount of physics is very often only of a phenomenological nature in the sense
that the various constants employed in the theory are closely related to but not directly
derived from more fundamental physical parameters. It could be argued that Ycung's
modulus should be directly derived from more fundamental bonding forces, but the
"correct" Young's modulus has always been directly measured from a tension test. It is
hard to define the exact physics content of the theory of elasticity, but it is perhaps
reasonable to say that most of the so—called micromechanics phenomena we are so eager to
understand are not derivable from the limited amount of physics that was built in
elasticity. When the implications of a continuum theory have been exhaustively revealed
by the mathematic solutions to the associated field equations, additional mathematical
manipulations become redundant even though new solutions will always & of usefulness.

In terms of a lattice theory, elasticity incorporates only the nearest neighbor
interactions, and that is it. The theory does not have an intrinsic length scale and, as a
result, a 30—cm slab behaves the same as a 40—um film, and there is no difference between
a microcrack and a geological fault. An intrinsic length scale appears when the forces
between particles are extended to include first, second and n—th neighbor interactions.
Moreover, an initial, homogeneous, self-equilibrating stress will lead to surface tension
(Toupin and Gazis, 1964; Gazis and Willis, 1964). The surface—tension solution is of a
boundary—layer type, and the associated decay constant has been estimated from
electron~diffraction data obtained by Gerner, MacRae and Hartman (1961).

The continuum version of the n—th neighbor—interaction lattice theory is the
so—called grade—n theory. If the strain energy—density is assumed to depend on the
rotation—gradient, in addition to the strain, there results the couple stress theory. A

complete grade—2 theory depends on all eighteen components of the strain—gradient, and




the additional stress quantity is sometimes termed the double stress (Toupn, 1962). The
inclusion of yet a third gradient, whick has thirty independent components, leads to a
grade—3 theory and the associated new stress quantity is sometimes termed the triple stress
(Mindlin, 1965). There is also a very general theory which includes strain—gradients of any
order (Green and Rivlin, 1964).

Couple stress and higher order gradient theories were popular topics of research in
the sixties, and Mindlin's work are most noteworthy in that his goal was specifically
targeted at understanding the effect of microstructures on the failure of solids (Mindlin,
1962, 1964, 1965a, 1965b, 1968; Mindlin and Eshel, 1968). In particular, and to the best of
our knowledge, his grade—3 theory (Mindlin, 1965) is the only continuum theory that is
fully developed and ha$ the capability of defining surface phenomena via nontrivial
displacement fields. The most important concept of this theory is a new constant called
the modulus of cohesion which is essentially an initial, homogeneous, self—equilibrating
triple stress. It is for this most important constant that we have coined the name cohesive
elasticity to stress the significance of the theory.

The availability of self—equilibrating states is fully exploited in this paper. In
addition to surface free energy, which was considered by Mindlin, we have introduced the
concept of an adhesive joint to define various interfacial energies and erergy of adhesion.
When suitably defined, an interfacial energy becomes the grain boundary energy. Also
introduced are the thin film energy and the concept of an interface—phase. The stretching
of a thin film is analyzed at the end. It is shown that the apparent Young's modulus
obtained from a film is higher than that obtained from a slab.

The basic equations are first recapitulated in a dimensionless form. Stress function
representations are then presented in terms of solutions to thirteen uncoupied second order
equations. A complete boundary-layer solution is obtained for a regular boundary, and

several significant, outstanding problems are outlined at the end.




2. Notation

We consider vectors in three—dimensional Euciidean space. Such vectors wiil be
denoted by lower—case bold—face letters (a, b, n, etc.). Let «,, e,, e; denote the umt
vectors in the directions of the three coordinate axes 21, 29 23 of a rectangular
right—handed cartesian system with origin 0. The position vector of a point P reiative to
0 is denoted by s.

In addition to scalar product aeb and vector product axb of the two vectors a and
b, the dyadic product is written a®b which, in case of no confusion, is also written ab. A
second—order cartesian tensor T can be expressed as a linear combination of umt dyads,

so that it takes the form

T =T, .ese. (2.1)
1)

where the summation convention is employed. As a rule, we shall use bold—face capitals to

denote cartesian tensors of second (and higher) order. Moreover, an over—script is used to

denote the order. Thus, a cartesian tensor of order n can be expressed in components as

n
T=T...-- . ®--.8 . 2.2
o™ eee e (2.2)
\—\, v A L
n indi ces n factors
nm nm

The inner product AeB and outer product A®B are illustrated by
2z
— /
AeB = Aiijkeioek , (2.3)
2 2
AeB = A, B, ¢ 0e 00, 0¢; (2.4)

n m
In addition, the rule of contraction AsB of tensors is illustrated by




n

(a1a2)'(b1b2b3‘) = (alobl)(a2ob2)b3 ) (2.5.

(alaza3)t(b1b2) = al(a2°b1)(a3'b2) . (2.6
(a1a2a3):(b1b2b3) = (al.bl)(a2.b2)(a3.b3) , (2.7
where, for example, (a;a,) = a,®a,. The dyadic product indicator e wll, for

convenience, not be explicitly shown in places where no apparent confusion will be resulted
from the omission.

The theory developed by Mindlin involves a material length—scale (¢ which 1s
assumed to be much smaller than the geometric length—scale L associated with a problem.
The ratio ¢ = {/L plays a key role in the theory, as well as in the enswing asymptotic
analyses and results. It is for this reason that we have chosen to recapitulate the theory i1n
a dimensionless form.

Throughout this paper the length—scale L is prefixed so that, e.g,

Dim.s = L,
and hence z, are dimensionless. Let 4 be the shear modulus. The force—scale used

throughout this paper is just Lzy. Also, the notation Dim.( ) is used to mean dimensional

form of { ), instead of dimension of ( ).

3. Governing Equations

Let u(s) be the dimensionless displacement vector. Following the onginal work ot

Mindlin (1965), the dimensionless strain energy—density, W, is assumed to be a function

of three displacement—gradient tensors:

2 3 4 <
W = W(E,E,E) (3.1)e3

¥ )

where

21 1 \
E= 5 (Vu + UV), El] = 5 (ui,z + uj,i) , (3.2)

3*Multiply W by u to recover its dimension.




3
E =VWu , Eljk = uk'ij ,

4
E = VW , Eikjl = Uy
and V is the gradient operator in the dimensionless s. The symmetry properties of the

above are self—explanatory.

The variation of the total strain energy, in a (dimensionless) volume V, with

arbitrary variation of u,is

g c o2 3 4
§ ) Wdv= | [Te(V6u) + Te(WWsu) + To(VWWsu)ldv (3.5)
\Y \"
where dv = dzldzzdz3 and
2 2 3 3 4 4
T=0W/0E, T = dW/0E, T = 6W/E . (3.6)e

The right—hand side of (3.5) may be reduced to include a surface integral by application of
the chain rule of differentiation and the divergence theorem. In doing so, however,
additional caution must be taken to recognize the fact that Véu, together with other
similar terms, is not independent of fu on the (dimensionless) surface oV of the volume
V.

A number of surface operations and surface operators are needed in completing the
desired reduction. Let n be the unit normal to 4V and pointing &vay from V. The

following are applicable and defined on JV:

Véu = nd bu + 5 (3.7
5n = neV (3.8)
V= (I1— on)eV (3.9)

n
+*Multiply E by L70+? to recover its dimension.

* n n-2
S Multiply T by uL to recover 1ts dimension.




-3

VenWen)-V= 2 +1 |n_w (3.10)

where 1 is the unit tensor and (l/R1 + 1/R2) the mean curvature of the surface. It is
noted that for a flat surface V' is just the negative of ¥°, the plane gradient operator.

Using the above relations, we obtain from (3.5)

~ ~

“ 2 3 4 0 1
é J Wdv = — J {Vo [T = VeT + Vo [VOT]]} e judv + J [tuiu + ted bu
\ \' av
2 2 ]
+ ted_ fulda (3.11)

where

: =ne [’%’ - VO’i‘ + (VV)"i‘] + Ve [V‘o [m'i‘]] + V’O{no {’}—Wﬂ

~ (Vn)e [(nn)"‘l‘]} : (3.12)
; = (nn)» ['i‘—Vo"I‘] + ne [V’o [no'i‘]] + Ve [(nn)a'i‘] , (3.13)
Z = (nnn)c'i‘ : (3.14)%¢

are the generalized surface traction vectors associated with the generalized surface

2
kinematic vectors u, Onu and Bnu, respectively. The Generalized Principal of

Stationary Potential Energy and stress—equation of equilibrium are:

§ } Wdy = J fofudy + J tedutted Sutted dulda (3.15)
= u u n n d .
v v oV
2 3 4
Vo[T-VoT+(VV)aT] +f=0 . (3.16)

= n n
6§ Multiply t by uL to recover its dimension.




For homogeneous and isotropic materials, the following 21.d degree polynomial W

was deduced by Mindlin:

- 3-K 2
W= (BB + oty By + @48

2

4
t+e [B‘Eﬁijkku’“ﬂinjkkEiju+53EiijkEjkn + BB Bt B B Bt BB Bija

2 *7
+ ﬁyEijklEjkli] +e [7,EiiEjjkk+72EijEijkk+”3EijEk1dj] (3.17)

where € = {/L,

{ 3—4v (general and plane strain)
K =

8 (3.18)
3—v  (plane stress of elasticity )=
T+v

and v Poisson’s ratio. All the remaining constants are expressed in dimensionless form
via u and a material length—scale ¢, which is assumed to be small so that e<<1. We
shall refer to ¢ as the small parameter from time to time. For example, as the small
parameter tends to zero (3.17) tends to the strain energy—density of the theory of linear
elasticity. All important mathematical and physical implications of the assumed W may
be found in Mindlin's original work and are amplified by the explicit introduction of ¢

and e. Finally, the matenal constants introduced by Mindlin are

{2 By B 0} = (L l8,48, L)

2
7‘The dimensional forms of the various terms are illustrated by, e.g., 6260Eiijj — (W B)

(Byy5/L%)

*
¢ The meaning of plane stress in the new theory should be reexamined.




From (3.6) and (3.17) follow the constitutive equatiOnS'

33—«
T [2E Srg E .
Pq * 116?‘1] te 71 iiji’oq * T2Epaii

+ 3 75(E (3.19)

iipq+Eiiqp)] ’
TPQ: =¢ [ax (Ep11§QI+EQ116pr) + Za (Eupéqr+2Equp+E“qépf )

20
+20 B 6 + 2a B +a(E +E )] , (3.20)

qurs {3 51 1jj pqrs ﬁ2 jkii Jkpqrs 6 53[[ qu+Eiikj] 6jkpqrs + 2Ejsii5qur]

2
* 3 A Biisiipar * ﬂ itjs’ipar T 26Epqrs +3 ﬁ (Bgrsp + Erspq * Espar) }
1
+ ¢ [37 Eu‘qurs ’3"2Eij5ij1:'qrs+ 373E1561pqr]+ ¢ §ﬁ 6pqrs ' (3.21)
wheere 5ij is the Kronecker delta and
§5kdmn = 5ik5jl5 + 60 m51n + &10imbin (3.23)

n n

The symmetry of T follows from that of E, and the very last term of (3.21) was
identified by Mindlin as a cohesive force which gives rise to surface tension. As we shall
see that it also gives rise to interface phase and interphase interface energies.

 d
Let W [u] be the total elastic energy. Then (3.17)—(3.21) lead to the conclusion
that

. a r P2 02 33 4 4
W = J Wdv = 5 B, J VWeudv + J [T+E + T+E + T+E]dv  (3.24)
Vv




where the appearance of the first integral is a result of the fact that the ﬁo—tenn in W is
linear in Eiijj' The second volume integral may be converted into a surface integral by

following the steps from (3.6)—(3.11), and the net outcome is the Generalized Clapeyron’s

Theorem:

2 J’Wda = ‘pruuda + ezﬁo ‘J”VZVoudV + JF [ 2cu + i.anu + iobiu] da . (3.25)
\' \Y A av

*
Finally, the total potential energy U of the system is

U =w - ff.udu - f
v v

o 1 2 2
[t-u+toﬁnu+t06nu] da . (3.26)

001 2
It follows from the above that if there are no external forces, i.e. if t, t,t and f

are identically zero, the total potential energy is merely

* " "
U =W =38 | mela = ep | 6 vl (3.27)

Vv av
where u = u(e), if exsts, is a self-equilibrating state. The total potential energy of the

system, (3.26), is the free energy, either the Gibbs free enerrgy or the Helmholtz free
energy. When a traction—free surface is the source of the disturbance, the free energy is
(3.27). It follows that the dimensionless surface free energy per unit surface area F_ is
given by

F =3 ezgoanv.u(e) , (3.28)
the dimensional form of which is termed the surface tension by Mindlin. We shall see that
(3.26) can be used to define many surface related energies.

The displacement—equation of equilibrium deduced from (3.16)—(3.21) is

k+1 2

2 2 2
3D D Weu-D D VxVxu+f=0 (3.29)
K— 11 12 21 22




11

where
2 2
D"#El—ezamv2 C oA =1,2, =12 (3.30)
and
1/2
1 2 1
2:%1(11) =aq-27+% [(a—27)2-—4ﬂ%§—1-] (3.31)
202 , SR 172 332
a)= a-7 ¢[(a-7) -4 (3.32)

in which A=1,2; and
a = 2(al+az+as+a4+a5) , a'= 2(as+a4) ,
B=2B+B+6+B+B+B+8), B =20+8) . (3.33)
7=7+1,+7,
As the small parameter ¢ tends to zero, (3.29) reduces to the displacement—equation of
equilibrium of the theory of elasticity.

As it was pointed out by Mindlin that the conditions for positive W do not include
relations between a(or a') and S, 7 (or S ',73) and hence, supply no indications of the
character, real or complex, of the four constants ay, In all the specific solutions
considered in the sequel, the a)w will be treated as if they were real and positive; but
complex a A are equally admissible. The character, real or complex, of the four constants
@y, dictates the behavior of the field variables. On the other hand, for the most part, the
final products of the problems to be analyzed are energy expressions of one form or another.
These energies turn out to be indpendent of the character of a Au In any case the two

pairs of constants (au,an) and (cx2 ,a“) are assumed to be positive throughout this paper.
1

In case they are actually complex, the following substitution is presumed:

a =a
12 1

, Reala_>0 ; (3.34)

1

a =a , Reala >0 ; (3.35)
2 2 21
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which, of course, satisfy (3.31) and (3.32).
Equations (3.5), (3.11), together with the equilibrium equation (3.16), yield the

identity

j T*(V6u) + T*(VWeu) + T*(VWV4u)] dv

v
= [ fotudy + [ [fosutted uries su)da , (3.36)
v oV

which may be used to establish certain useful integral identities. The result of setting
fu=c, an arbitrary constant vector, is

co[ ffdu + ﬂda} =0, (3.37)
v v

and the vanishing of the resultant force is a necessary condition for (3.16) to have a
solution. The result of setting fu= wx s, where w is an arbitrary constant vector, is
a 0 1
we Jsxfdv+ J(zxt+nxt)da =0, (3.38)

vV av
and, hence, the vanishing of the moment becomes another necessary condition. The rest of

o

1 2 1 2
t and t, i.e. ten and the full t, are self—equilibrating and, hence, may be arbitranly

specified.

It is possible to obtain additional integral indentities from (3.36) which may become
useful in establishing the expected new Eshelby (1951, 56, 70) tensors and the associated
conservation laws (Knowles and Sternberg, 1972; Budiansky and Rice, 1973), but the
possibility is not pursued further in this paper.

The stress equation of equilibrium, (3.16), may be written

VoT +f = 0 (3.39)

where

¢ 2 3 4
T" =2 T-VeT + Ve(VeT) (3.40)
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. . ¢
may be considered as the Cauchy stress tensor with the associated Cauchy stress vector t

defined by

c ¢c_ ¢
t7=neT" = t-Ve{. } (3.41)
where V'o{...} may be identified with the terms given in (3.12). It is clear that
" »
Jtav+ [ tda=o, (3.42)
\' av
~ »
_J s x fdv + sztcda =0 . (3.43)
\' av

The following surface integral indentity will enable us to show that (3.37), (3.38) are

equivalent to the above.

Let A be an aribtrary second order tensor. We have

‘JPV‘)oAda = fvo.{n(n.A) + [A—n(noA)]} da
oV v

" r
= | (Ven)(neA)da + | ¥e[A-n(neA)) da (3.44)

av av
where VO is the plane gradient operator defined by (3.9). For a smooth closed surface dV,

the last surface integral vanishes. It follows that

JF[(V°-n)(n-A) ~V%Alda = f V'eAda = 0, (3.45)
av av

which is the desired identity.

In the usual continuum theory of thermodynamics, the work term is axiomatically

defined to be

ﬂ
| neTeida (3.46)
v
evenif T is assumed to depend on Vu, ¥Wu and ¥¥V¥u. This led Dunn and Serrin (1984)

to conclude that "a troubling aspect of all higher~grade models is that they are in gneeral

incompatible with the usual continuum theory of thermodynamics”. They then proceeded




14

to introduce the so—called interstitial working into the work integral. Mindlin’s derivation,
however, clearly indicates that the correct work term is the surface integral of (3.26), and
an appropriately modified continuum theory would lead to thermodynamic compatibility.

Similar discrepancies also show up in other higher order gradient theories (see, e.g. Gurtin,

1989).

4. Stress Functions

The solution to the displacement—equation of equilibrium was obtained by Mindlin
in terms of the solutions to four uncoupled partial differential equations of order six. We
give a more direct deduction and show that Mindlin’s representation can be further
simplified. Moreover, our deduction is constructive in that it lends itself to the actual
construction of general solutions. The well-known Galerkin—Somigliana and
Papkovich—Neuber representations serve as the starting point, and the
component—function approach employed by Doyle (1967) is then used to reduce the system

to a set of thirteen uncoupled 2nd order equations.

The displacement—equation of equilibrium (3.29) is first rewritten in the form
[[ﬁﬂD2 D? — 2D2]7V0u+D2 D? y? } f=0 . (4.1)
k—1 "1
In case of zero body force, the divergence of the above yields

D2D? VWeu =10 . (4.2)

11 12

Applying DLD;V to (4.1) and using (4.2), we conclude that for zero body force

D2D2D2D? V'u=0 (4.3)
11 12 21 22

which, for the case ¢ = 0, is just the well-known result that u is biharmonic. We are

thus led to the Generalized Galerkin—Somigliana Representation:

2 4= D? D? V%G - |D* D? _5=lpipy |gpeG . (4.4)
x+1 . x+1

12 K+l T 22




The result of substituting (4.4) into (4.1) is

2
P2 D2 P PAC ~ L
DquzszDzzv G= n+1f

which, together with (4.4;, completes the desired generalization.

Let the first term of (4.4) be denoted by B, i.e.

B=D*D?VG .

11 12

Then, by (4.5),

2
2 N2 2R —
D! D* VB = mf.

21 22

15

(4.7)

If the objective is to reexpress (4.4) in terms of B, the solution to a lower order equation,

the remaining terms in (4.4) must be appropriately modifed.

We begin by expressing the solution to (4.7) in terms of three component functions

as folllows:
B=280) 4 2c Bl 4 2c B0
21 22
Bl) =2 p2 g, B()= p2 2B, B()= p2 v28B |
22 21 22 21
aplo) — _ 2
B TS d
2p(1) - _ 2
szB =- f
2pl2) - _ 2
D22B = -5 f
where
4 4

am_aﬁl am_am

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

in which 8= 1,2; and Cu, C12 are defined for a similar equation to be developed in the

sequel. The validity of the above decomposition may be easily verified by direct

substitution (Doyle, 1967).




The divergence of (4.6) is
D? D V!7eG = VB

which, together with the first of (4.9), yields

D? D? §%(D? D? ¥eG) = VeB(0) .
112 a2
From the identities, which are applicable for any F,
VizeF = seV2F + 2VeF |
2
D;ﬁa-F = 50D;ﬁF - Zezaaﬁ VeF |

The following representation is conceived:

2 2
D D VoG=%zoB(°)+%B
21 22 0

16

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

where B0 is a new scalar function. Substituting the above info (4.15), we find that B0

must satisfy

2 2
DD VB = [Dz D? gof ~ 26a? +a? D? )v-f}
0 +1 11

11 12 12 11

%T{D D [s.f 28(c2 + o )v.f] ~ 260’ C D? V¥0ef

—2¢'a? C D? V’V-f} .

12 12 1

It follows from the above that the component representation for Bo is:

B ==B(°)‘+ e2C B(')+ e2C B(z)
o o T 12 0

Bl =prp2 Bl =pt v, BlY) = Dt v2B
12 0 o 1t

1 12 o

2 2
VZBEO)‘ = R_-%-_l [’.f- 262(&11 + axz)v.f] '

D? B( )= -7‘3_—1- eza2 Vof

11 0

() __4
D:iBoz —n v.f

We have thus effectively expressed the last term of (4.4) in terms of B(0) ang Bo.

(4.19)

(4.20)

(4.21)
(4.22)
(4.23)

(4.24)




Substituting (4.8) and (4.9) into (4.14), we get

v2[1)2 D? VoG - ¢ [c D! +C D? ]V-B] — veB(®) (4.25)
2 21 22 22 21

11 1

which, in view of (4.16), permits the convenient representation

D2 D2 VoG = 2(C D2 C D2 Bll B(°)|1B(°) 9
11 1zv. e( 21 22 22 21)Vo 3 8¢ 25 (4.26)
where B£°) satisfies

an(o) _ _ ..g2mlo) _ 2

') Bo = - zeV‘B =1 sof . (4.27)

The second term on the right—hand side of (4.4) is now expressed in terms of B and B§°)

by (4.26). In view of (4.22) and (4.27), it is convenient to decompose B£°)‘ into two

parts as follows:

glo)* = 4 4 lo), (4.28)
0 0
2, _ 4 22 2
Vo=-—7¢ (n11 + au)Vof : (4.29)

The final form of the Generalized Papkovich-Neuber Representation is obtained by

substituting (4.6), (4.18) and (4.26) into (4.4), viz.
2u = (x+1)B - VsoB(°) + % v [(R—I)Bo—-(n-i-l)Bg")]
— &(xk+1)(C_D? +C_D? )TVeB (4.30)
20 22 22 2

where the last term may be further simplified by (4.8) — (4.13). The most explicit form of

the representation is

2u= [(n+1)B(°) - VsoB(°) - VB§°)]

e(+1) [CzaB(l) + szB(Z) - (a:1 + a:2)w.B(0)

+3 [:—:}]v [e‘2¢ +c Bl + cuBgi)ﬂ

- e‘(~+1)vv.[c 2Bl 4 ¢ a? B(’)] (4.31)
21 21 22 22
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where ¢ 2¢ is the particular solution of (4.29), as the homogeneous solution, which is
harmonic, may be absorbed by BE°) . The elasticity solution is recovered as ¢ tends to
zero. We note that each one of the component functions is governed by a second order
equation. The functions B(°), BE°) and ¢ are associated with the Laplacian operator
and, hence, has no boundary-layer phenomena. The functions B(a), Bga) (a = 1,2) are
governed by the operators Dgﬁ defined by (3.30) and contribute to the new
boundary—layer phenomena.

For antiplane deformations defined by us(z , zz) we have
1

2u3 = (n+1)B(3°) + e2(k+1)(C B(‘) + Cntz)) (4.32)

21 2
where Bga) are of the boundary—layer type. For plane deformations defined by ua(zl,

zz) the displacements are

2ua = K'B((.IO) B B(O) ~B BE{C)! + €(k+1) [CNB(I) M szngz) B (¢?;+a§2)Bﬁ

0, Q a ,Ba
(1) (2)
1 [x—1 -
+ 7 [:Ti] [CuBo,a + C12B0,a : 2¢,0]]
‘ (2)
- e [C 0t By o+ C oo g ) (233)

(1)
where Ba , Bo are of the boundary—layer type. It follows that the terms B0 o 2T
expected to have the most significant contribution to the new boundary—layer phenomena.
Thus, the constants a“ and al2 are also expected to be more significant than a21 and

a . We shall see that the former pair appears in all the surface energetic expressions.

5. Boundary Layer Along A Smooth Boundary
The appearance of the small parameter ¢ in the operator D;‘; g defined by (3.30)
indicates that the main difference between elasticity and cohesive elasticity lies in a

boundary layer. An elasticity solution is but the interior solution of an associated cohesive
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elasticity problem. The self-equlibrating state u = u(e) given in (3.27) is a
boundary—layer phenomenon and was discussed by Mindlin.
To fix ideas, let us consider a body with a smooth boundary defined by s = s°. The

following traction boundary~value problem is considered for the case f= 0:

t = 1(s) (5.1)
it:= e;(s°;e), (5.2)
:= 62;(50;5), (5.3)

where the functions on the nght—hand side are prescribed generalized tractions, which may
be specified to depend on e. The explicit appearance of ¢ in the governing equation
(3.29) and surface—traction expressions (3.12) — (3.14) suggests the appropriateness of a
regular perturbation solution in the form

w(se) ~ ul®)(m) + ewlim) 4 . (5.4)
Since (3.29) contains only powers of €2, it is clear that both u(°) and u(‘) satisfy the
ordinary elasticity equation, i.e.

[Elasticity Operator| ul®) ang ul) = 9 | (5.5)

which are of second order. The solutions to (5.5) cannot be adjusted to satisfy the three
sets of boundary conditions (5.1) — (5.3). The expansion (5.4) is thus termed an
outer—expansion (Cole, 1968, and Van Dyke, 1975). The appropnate boundary conditions
for (5.5) can only be determined from matching. To facilitate such a computation it 1is
necessary to set up a set of normal coordinates relative to the boundary surface s = s’

Such coordinate systems are routinely used in the theory of shells.

is given by
s=20=s(() = L) (5.6)

The associated base vectors and first fundamental tensor are denoted by a, and 3,8
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In addition, a third base vector 33 is identified with the normal n to the suriace, co that

the position vector & becomes
= g0 =
z—z({a)+{3a3 , a =1 (5.7)
where ¢ , is the dimensionless distance from the surface along n. The interior of the body
is therefore defined by {3 < 0.

In terms of the normal coordinates a, the displacement vector 1s

ume) = u (€)= (€ a,/¥ gy

u !

(5.8)

x
so that u, are the physical components. The outer—expansion (5.4) is now rewntten as

u~[u;( )({)+eu()({ 0)¢ +~--]a//_ (5.9)

which, for small values of {3, may be approximated by

we {00 + il o) + -]

*(1) *(4) ] }

. . . ...} a. . 5.10

+ € [uJ ({a, 0)+u)'3 (fa,O)f3+ + :-IJ/./:JJ (5.10)

The coordinate {3 is now stretched to become a boundary—layer coordinate { defined by
(= /e (5.11)

The inner—expansion of the outer—expansion is obtained by substituting (5.11) into (5.10),

and the result is

we (g 0yre [0 0+l 0] + g ay (5.12)

Let rlgn) ({i), n = 0,1, denote the physical components of the ordinary elasticity

*
stress tensors associated with the ordinary elasticity solution ui(n)(fi), ie.

x *® 3 —K *

Tij = 2¢.. ij + 1 61_)Ekk (5.13)
%

where eij are the physical components of the ordinary strain tensor. On the surface 53 =

0, we have




s
21
x
€
33

=u (g0

e = aa(fﬁ 0) + (gﬁ 0) (a = 1,2 no sum) (5.14)

aa
/a
aa aa

* _ 1 1 * x 1 *
o= 2 [ T alla 9 ol - il m}

where R , R22 are the normal radii of curvature. The curvatures are positive if the
11

centers of curvature are on tae side ¢ ; < 0.

The desired inner—expansion, consistent with (5.12), is

u~{u()(f 0)+ev({ £) + } //—J (5.15)

where v; are again physical components. The governing equations deduced from (3.29)

are
02
[1-.,2 ﬁ”l_az ﬁ].ﬁ: , (5.16)
[ [ §1 352 12 a£2 662
02 02 32v
[l—a2 —] [1-(:12 ——] =0 . (5.17)
21 afz 22 5{2 afz

The leading terms of the displacement gradient tensors are:

* _ % _ 1 ‘( )— ‘(0)
Eas =V Eaa -2 [va'f + 2'50:«;o 4 } ’

Qa,s
E;ﬁz e;(ﬁ°) : (5.18)
B = vig
B =3 et

6
where all components are physical and refer to the base a.
There are more than a few nonvanishing stress components associated with the

above but only the following are needed for the boundary conditions:
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* okl 3—x *(o)
T =" T Ve T Wttt 5T Caa

* * #(0)_u*(0)

Tm =T03=va,£+%va,“£+2ea3 @y

*

T

333 e (5.19)

Tap= <o, +a)vge
T3333 = ez {(ﬁo +v3n£ + ﬁvhfﬁf) + 71 ea‘(ZO)}

3

T333a = 62{[% T, Vat + 2([35 + ﬁs)va,“{] + 73(25;5") - “;(,:))}

Finally, the leading terms of the traction vectors are obtained from (3.12) — (3.14). They

are
0 x 1
t= [Tsi € Tssl (" 2 Ty, ff] //—
1 *
= e 5.20
t [Tssl € 3331 f] //— ' ( )
2 %
t= T333i a/'/:ii :
The traction boundary conditions (5.1) — (5.3) are first rewritten in terms of { and
a., e
1
:—o* i— r* 2—22* ; (5.21)
=T (fa)l = €7 (fane): =7 (fale) : .
The final form of the boundary conditions are
— 26 0y_ 4 *(0) 5.22
Bt T * Pagee = TG0 77, faa (522
— - 5.23
(=), 0 = e g = Tilea) (523)
K+1 0 3-«

vt 1A B e = ) - SE el 0 52

% N, a g tUABHBIVY e = 2T'(fﬁ,ﬂ) - 73(26,‘\£°) - u3(°)) , (5.25)

'3
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[2a,+ @) =3 1]v) ¢~ 28 + By e = TalEgi0) (5.26)
W [73 - 2(as+a‘]v/\,“£ + z(ﬁ5 + BQ"A,{{{{{
= TE9 +u g g.0) 26 e ,0) (5.27)
The following identities, which are obtained from (3 31), will be used repeatedly:
o +a® =5Ha21),a ?al =515,
azl + QZz = 2(a3 + a‘) -1, ailaiz = 2(ﬁ5 + ﬁs) . (5.28)

Using these identities, we find that (5.24), (5.27) are, respectively, the first integrals of the

governing equations (5.16), (5.17). The solutions to these equations, for ¢ < 0, are

o =0+ O 0+ a Tap (5.25)
t(l) * ¢ {/a
vg=ug (£ 0) + {uﬁ(’z)({a,O) + Azﬁe /a“ + Bzﬁe 2 (5.26)
and
0,0 ,0) = 57 [0 ) - S e lohe 0] (5.27)
*(0) * '
ug 3 ({ ,0) = Tﬁ(f tug G ?fa,O) 2e (o )(( 0) (5.28)

where the last two conditions are the results of matching, i.e. the outer—expansion of the
inner—expansion must match the inner—expansion of the outer expansion given by (5.12).
Using (5.13) and (5.15), we find from the above that the boundary conditions for the

%
elasticity solution ui(‘)(fj) are just the traction conditions:

e 0y =Ti(e) (5.29)
13 a 1‘vra’
and, hence, the first term of the outer—expansion (5.9) is completely defined.
The remaining boundary conditions (5.22), (5.23) and (5.25), (5.26) involve only
]
derivatives of v and, hence, the constant terms ui(')(f o0) cannot be determined from

the inner expansion. A lengthy calculation yields the following concise results for the other
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two sets of constants:

2 2 2 (2 2 L
Aﬁ.= [aﬁo + aﬂzJ ag sz - aﬁo + aﬂlJ aé L. | (5.30)
] 2 272 2 2 32
[aﬁo + aﬁz] ag - [aﬁo + aﬂ‘] ag,
2 2 2 L 2 2 L
B.. —= ["ﬁo * "BJ %8, i + [‘igo *"Bz] ’6 (5.31)
Bi 2 232 2 2 32
["ﬁo * aﬁz] A ‘[“ﬂo * °ﬁt] %6,
where
afo =%}}7 ’ a:o=%73 ’ (5.32)
L31= auang—i;: (60;0) ! (5.33)
_ +(0) _ .
Lsz - _!I:-F_i ﬂo - aio ua.: (fa‘o) + L;T} [:: (60’0) - 71601(10)} (5.34)
Lg=aa ‘r;({a;O) , (5.35)
Ly, ==, w1640 + Fy(60) = 1265 - wfo) (5.30)
B2~ % 6 Ve A\l T\%€5 Y837 )

%
With the exception of the terms ui(‘) ({,0), which are but constants in the
inner—expansion (5.15), the desired two—term inner—expansion, (5.15), is now complete.
Had we actually began with the presumption that ay, are complex, (3.34) and

(3.35), then Bﬂj should be replaced by Aﬁj and (5.30) and (5.31) still hold, as the

latter is merely the complex conjugate of the former.

6. Traction—Free Surface Free Engery

Consider now a body, of volume V and bounding surface 4§V, that is completely

free of external forces, i.e.




f=1(¢) = T(£u0) = (€)= 0 - (6.1)

It follows from (5.229) that the first term of the outer—expansion, u“(°)(s), is identically

zero and, hence,

_-__.5 L =Lg=Lg=0, (6.2)

32

by (5.33) — (5.36). The inner—expansion (5.5) is merely

u=u®. w3 a /J (6.3)
{/a {/a
v=Ae "4+Be 1, (6.4)
3 13 13
where
__ K1 2,9 a?

A13 =319 ( )ﬁ/D , (6.5)
=1y 6.6
D 2 2 2 2 2 2 6 7)

1 (axo + a:z) a" - (axo + a“) a:z ! (6.

which are determined by (5.30), (5.31).

The above solution is a self—equilibrating state and, hence, (3.27) and (3.28) apply.
Thus,

U'=U = AF, , F, "—13 (a2 - a2 )/D (6.8)
~ Ve S 2 k+1 12 1 )

where A is the total surface area and F_ the free surface energy associated with the

traction—free surface of a completely unloaded body. The dimensional form of F_ is

(x-1) b2 (a? - al)

Dim. Fs=
2(n+1)p13 Dl
(x-1)b2 a + a
_ 0 11 12 , (6.9)
3 (2 2 _ 2
2(w+1)ut (axo a"an) a“au(a“ + au)

which was first obtained by Mindln. Thus, to the first order of magnitude, as ¢+0, the




26

surface energy associated with a regular traction—free boundary of a completely unloaded

body is a material constant.

The expression (6.8) remains the same if a , is the complex conjugate of a
1

. . 21nce must be positive, we have
(3.34). Since F_ be positi h

2 2
(@ ~aa)-aala +a ) >0, (6.10)
10 1112 o2 a2

a condition that must be satisfied by the new material constants.

The surface energy given by (6.8) is the energy, per unit area, associated with the
formation of a new regular surface. The free end of a thin wire is not a regular surface as a
whole unless it is sufficiently thick, in terms of the material scale {, as it is interacting
with the free cylindrical surface. As to how thin is thin or how thick is thick the
self—equilibrating state associated with a free cylinder must by analyzed. It goes without
saying that the surface in the neighborhood of a notch (or crack) tip is not regular in the
sense that (6.8) is also not applicable. The conclusion is that the energy required in the
formation of new surfaces is not always determined by (6.8), and many relevant
self—equilibrating states must be analyzed to understand the phenomenon. In short, the
energy required to scoop a smooth marble out of a chunk of solid, or slice it into halfs, may
be computed from (6.8). The so—called toughness may not be directly obtained from the
material constant Fs.

Let us now consider a traction—free surface on a loaded body. To avoid the
unnecessary complication of dividing up the bounding surface into different portions, we
assume that the load is merely a body force so that the bounding surface is still completely

free. The outer—expansion u*(%(¢), (5.9), is now no longer zero. Using the fact that V

is traction free, we have

*(0) = _ 3=k %0
“s (a0 =~ 907y 75" () (1)
where T;(‘z O (¢ a’O) is the surface (elasticity) stress invariant produced by the nonzero

body force f. The inner—expansion associated with the still traction—free dV is now given
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by (5.15), (5.25), (5.26), (5.30), (5.31) with

— _ _ K=l | 2 3=k _*(0) : .12
Lsx =0 Lsz B! ﬁo %0 W7=%) "aa (fa’o) ' (6.12)
— - 2 *0) 6.13

Lﬂl =0, Lﬂz =-a ug (€50) - (6.13)

The total potential energy of the system may be computed from (3.26), (3.25), viz.

Ut = -4 proudv + 5 e Jfa Veuda (6.14)
2% n ’
\' av
as the surface 4V is still free. For ¢ = 0, we recover the ordinary elasticity potential

energy associated with the system, i.e.

™

*
= Ug = —%J feu!%dy (6.15)
\'

Ut

=0
where uf® (s) = u* (9 (¢).

The second integral of (6.14) is now computed to give

*
x *
U* = Ug, + AF (r} ) (6.16)

where, to the first order of magnitude,

=\ 1
Fs(Taa) -3 eﬂo v3,33

g k—1 2 3«

_1 K=l _ *(0)
=755 | kF1 ﬁo @0 207-%) Taa (ca’o) (a

' ~a )/D, (6.17)

1

which is to be compared with (6.8). It is noted that the contributions of u!® and v _ in
the surface integral of (6.14) are of one order lower than that of v, and, hence, do not
appear in (6.17). The contribution of the modulus of cohesion ﬁo is a constant triple
stress, the last term of (3.21), which gives rise to FS(O) =F, of (6.8). It follows that the

N . . . . % N
interaction between ﬂo and f, which gives rise to Ta:(zM' is

_ ()P — _ 53—K]% 10 .
AFs - Fs(Taa ) Fs - —x)B, Taa Fs (6.18)

which is negative if the surface stress (not to be confused with surface tension, a term that
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is deliberately avoided in our presentation) invariant T;;"’ is positive. The total

potential energy of the system now becomes

U* = Ug, + AF + A(AF) . (6.19)

Consider now an infinite slab of thickness H with a cylindrical hole of radius R.
The slab is uniformly stretched at infinity by a tensile stress t = oe_ while e is the unit
radial vector. The elasticity potential energy is

Up, = U2 - 1520 2pep (6.20)

where U; is the energy associated with the slab without the hole and the second term is
the so—called flaw (hole) energy (Sih and Liebowitz, 1967). The cohesive elasticity

potential energy may be obtained from (6.16) and (6.17) with

T;((I°) =20+ 2v0= ZE-'S o (plane strain) . (6.21)%9
Thus,
U*=U% +2RE (1881, | F (6.23)
El A s

and the change of U* associated with a hypothetical hole expansion is

x
%E— = - M5t gRo? + 25H [1 - %—"Bﬁ a} F, (6.24)

o
where the first term is the elasticity potential energy release rate. The vanishing of (6.24)

is the condition for the hypothetical expansion and the elasticity counterpart of such a

condition is the Griffith criterion:

-1l BRo? + 24HF, = 0 (6.25)

The relevancy or irrelevancy of the hypothetical expansion condition is not the purpose of
our discussion. Rather, we use (6.24), (6.25) to illustrate the main difference between
cohesive elasticity and elast :y. The surface energy term is a part of the total potential

erergy computed from the fie.u solution in (6.24), whereas it is merely an appended side

*
9 ‘The stress concentration factor is 2.
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condition in (6.25). Moreover, the role of the interaction emergy, (6.18), is apparent in

(6.24).

7. Interfacial Energies

Let us now assume that the upper and lower half spaces V* are taken from two
different solids. We propose to glue them together, by a layer of adhesive of vanishing
thickness, to form a composite body V. Such a process cannot be nontrivially defined by
the ordinary theory of elasticity. Noting that the most striking difference between
elasticity and cohesive elasticity is the existence of a constant triple stress Tun e,
(3.21), we assume that the desired adhesion is the result of a sigular varation in ﬁo.
Moreover, the two half spaces V* are assumed to be identical in every respect other than
the possibility of a difference in ﬁo. Before proceeding, it is convenient to summarize the

relevant one—dimensional theory as follows:

a? ) dtv . =19
1-a? S |1-q E|2¥ 4 E =0, (7.1)

11 dfz 12 dfz dfz s+1 d£3

0 _ K+l d? d?) dv
A Hl o, g;z] [1 -a, ;;:} HE] : (7-2)

t div ,Ld'v

e "
T=B g+ d ’, (7.4)

where v({) is the v, of (5.16), (5.22) — (5.24), and the possibility of a spatially varying
ﬁo is retained in the equation of equilibrium (7.1). The above equations are to be applied
to V* defined by f > 0 in which the modulus of cohesion ﬁ is assumed to be of different
constant values ﬂ; . In addition, ,60 is assumed to have certain singular behaviors at { =

0. Specifically, we assume that
B(¢) =B, + (B, - B) 8,(¢6) + B &¢) (1)
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where 60({ ) and &(¢) are, respectively, the unit step function and delta function, such
that
+ o
Fa0 =80, [ soa=1 (76)

- o0

The constant ﬂ; is a new parameter characterizing the adhesion. For convenience, it is

defined in terms of yet another parameter ﬂ‘g , the modulus of cohesion of the adhesive

material, by the expression

ﬂ(‘): - [au -: axzj a:la:2 2 ﬂA (1.7)
a ~a a —aa [a + a ]
[ 10 11 12] 11 12 [ 11 12

where the dimension of the dimensional form of the factor, which is introduced for

convenience (c.f. (6.9), (6.10), (3.34)),is ¢ and
Dim. g = v® = urgh (7.8)

so that the interpretation of (7.5) is dimensionally correct.

The solution satisfying (7.1) and 3':(0) =0is

vf((f) = A" e;{/a11 +B* e;é/a12 (¢€20) (7.9)

where the four constants A*, B* must now be determined to meet the implication of

(7.5). It follows from all the above relations and additional continuity requirements that

V:E“(O)"’V:“f(o) =—%(ﬁ;-ﬁ;) 1 (7.10)
v:“(O) vig(0) = %ﬁ; (7.11)
v,(0) = vif(O) : (7.12)

7(0) = ~0) , (7.13)

5;(0) = '2r;(0) (identity), (7.14)

where the last condition is identically satisfied if (7.10) and (7.12) are met. It is also clear
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from (7.13) and (7.2) that, in addition to (7.10) and (7.11), the 4th and 5th derivatives of
v are also discontinuous, even though the generalized tractions are all continuous. The
condition (7.12) conforms with the ordinary elasticity requirement, as there is no

concentrated force in the problem.

The four constants obtained from the application of (7.10) — (7.13) are

o ) . ]
_ a + a ]a B,- B
A% = §:+1= - [ 10 5 12 1132; SR S (7.15)

1 a - a
L 12 1

+

. _nlja,. +a ]a B.- B
B* = ()|l e " ngh. g o, (7.16)
alz all

where D, is given by (6.7). The combination of (7.9) is a self—equilibrating state, as far
as the composite body V is concerned, and (3.26) gives the potential energy for the

system

Ut = AT, , (7.17)

r

I=

+ - + - 2
ETE"::_B Efx_ ajz} [ﬂo M ﬁolﬁ";‘_ Eﬂo_ﬁol (7.18)

D 3
1 % 12(01: + au)

where [ is the interfacial free energy. Since the interfacial free energy must be

nonnegative, we have

ﬁAZﬂ‘o\ = [ajo — aualz]z -1 [ﬂ; _ ﬁ‘;]z (7.19)

2 ¥ 3
[au + au] 2% ﬂo + B,

where the right—hand side is positive by (6.10).

The energy of adhesion, E Ad’ is defined as the amount of work necessary to

increase the separation of two surfaces from zero to infinite distance, and is defined by

(Murr, 1975)
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Epg =F, +F, - T} (7.20)

where F: are computed by (6.8). The energy of adhesion must also be non—negative.

Thus,

ﬂﬁfﬁﬁM:ﬁ’*“ﬁ_* &jo- a11a12J2 _B; — 6(;}2 . (7.21)
[a“ + axz]z %% [5‘: + ﬁo]

In summary, we have

PRTYr i

Perfect Adhesion

— — —n T 9
ﬁﬁ—ﬁﬁm’FI—O’EAd—Fs+Fs' (7.23)

Adhesionless Adhesion

Ba=phy T =F.+F B, =0 . (7.24)

For the case of identical V*, i.e. ﬂ; = ﬂ; = ﬁo' we have

0}

It is seen from (7.9), (7.15) and (7.16) that

A, A ..,
mSHO SHOM_LPO : (7~25)

v, 20 for = = B =0 (7.26)
vig=v, , of (6.4), for B=6=<6,60=20 (7.27)

The last condition indicates that the traction—free solution is recovered via the singularity

) 1
representation (7.5) without the specific stipulation that the generalized tractions T and
T be zero. In this connection, it is more convenient to interpret the singular ﬁo—

variation of (7.1) as the body force, i.e.
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3
d

f(¢) = —3 . 7.28
(¢) —c—i? (7.28)

Thus, the solution to two disjointed half spaces, in the sense of (7.27), may be obtained
from the solution to a full space subjected to a suitably defined singular body force. This
observation opens up the possibility of defining a microcrack via the introduction of
singular body force systems. A crack is termed a microcrack if its dimensionless length is
of the order of ¢ and, as a result, every term of the governing equation (4.1) is of the same
order, as the independent variable s must be rescaled by ¢  The explicit
component—function representation obtained in Section 4, together with the above
body—force observation, lead us to believe that an explicit solution for the microcrack
problem is an achievable goal. This problem is being pursued by us.

In terms of cohesive elasticity, which is still a crude continuum model for solids, a
grain boundary or an interphase interface is but a special adhesive boundary. Thus,
different physical interpretations could be assigned to the quantities ﬂﬁ , I‘I and E Ad
When a grain boundary meets a free surface, a thermal groove profile for grain

boundary—surface equilibrium may be induced. If the angle sustained by the groove is ﬂs,

then the grain boundary free energy Pgb’ which may be identified with FI of (7.8), is
Py, = 2F.Cos (A/2) . (7.29)

The groove configuration is a singular boundary layer phenomenon, in .erms of our
analytical treatement, and must be analyzed separately. It is now also possible to refine

the mathematical definition of an interfacial crack ~ another class of singular problems to

be solved.

8. Thin Film Energy and The Concept of An Interface—Phase

A layer of solid is called a plate if its thickness is much larger than the material
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length scale /. It is termed a film if its dimensioniess thickness is of the order of ¢. The

governing equations for a free film are just (7.1) - (7.4), and the boundary conditions are

0 1 2
T =7 =7 =0at {=+h (8.1)
3 3 3

where 2h is the dimensionless thickness. The solution is

(k-1)8
()= ——2 |4 {az +a2] Sinha—h—smhai
(K+1)D1(h) i1 12 12 11
2 2
+a [a + az] smhlsmh—ﬁ-] , (8.2)
12 10 11 Qa Qa
11 12
where
3 2 12 h o b
Dl(h) = a“[a‘0 + an] Cosh < Sinh
11 12
2 2 )2 h ... h ,
_ b h 8.3
an[aw + a“] Cosh . Sinh - (8.3)

which is to be compared with D, of (6.3) - (6.7).
The above solution is self—equilibrating, and (3.27) still applies. The total potential
energy for the system is

U* = AF (8.2)

F)
_oKk—1 2 2 2 . h @ h (R
Fp = ¢ frt Ao, - ) Siab g sian g /D (0] 83)

where Fp is the film free energy, per unit area of the film, which is to be compared with

(6.8). We have

111am Fp(h) = oF, 18.4)
~ @

where F_ is the free—surface free energy (6.8). The limit simply states the fact that the

free surfaces of a (thick) plate do not interact. As h tends to zero, we have

. k=12 . 2 2
11mFF(h)_emﬁoh/[am—a a ] , (8.5)

h-o 11 12

which is to be interpreted as the mathematical approximation for Fg(h), for small values
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of h. Since Fp must be non—negative, we have (c.f. (3.34))

2

a >aa . (8.6)
10 11 12

It follows from the above that (6.10) may be replaced by

2jo %% > [au + axz} [auaiz]l/z ’ (87)

Here we see that material-parameter properties are not solely governed by the positive
definiteness of the strain energy density (c.f. the paragraph before (3.34)). It is anticipated
that many, many more conditions of the kind will eventually come out of many different
physical situations. It can be easily checked that FF i1s a monotonically increasing
function of h.

Gluing two half spaces and a layer together, the layer in between is termed an
interface—phase if i1ts dimensionless thickness is of the order of ¢. Let us assume that the
two half spaces are identical, so that only half of the symmetric problem needs to be

analyzed. The set of equations (7.1) — (7.4) still applies, and the lower half of the problem
is defined by

B, +% Bf)[[ﬁ]z— 1] (-h< ¢ <0)

8, (¢<—h)

(8.8)

<
—_—
Fass
~—

Il
om
—~
L a.s
~—

I

— —

vif)

We still keep the simple assumption that all the other matenial properties are the same for

both the half spaces and the layer.

The associated self—equilibrating solution is
I

V() = 3 Cosh o+ 22 Cosh b+ 2L gt (cneg<o) (8.9)
11 11 12 12
A (¢+h B h
FOE a_°e( e, | E"—e“+ Ve, (¢<~h) (8.10)
11 12
where
A,=-ASioh 2~ | B =-BSinh (8.11)

11 12
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A=A%/(Cosh 2+ Sinh L) B=B*/(Cosh 1 +simn 1), (812)
11 11 12 12

3 3
A* = Q“ K—1 6}) : B‘ - _ a12 K—1 ﬁI

— —— T 2 (8.13)
& - & h2 2 - h?
12 11 12 11

The total potential energy of the sys.em is again given by (3.27) except that ﬂo(f )
is now the function defined by (8.9). We have

* —
U* = AT, (8.14)

—1 [ﬂi]
= ‘[

K.+1] h [az _ az]

12 11

2 |hCosh =2~ - a  Sinh 2| o [hCosh 2o — & Sinh -
a a 12 a 1 a 11 a
12 12 11 11

x - Pl (s.15)
; h h . h h
Sinh a t Cosh e Sinh - t Cosh 5

12 12 11 11

where PII is the interface—phase free energy, per unit area of the interface, which is to be
compared with Ty of (7.18) where the interface—phase was taken as a idealized dividing

surface. We have

llxl?)l I‘II(h) - e[:—:i-] [ﬁé]z/3a“au(au + au) (8.16)

which is to be taken as the mathematic limit of FII’ for small values of h. It is noted

from (8.15) and (8.16) that Ty is always positive, regardiess of the sign in front of ﬁi in

(8.8). In other words, I';; remains the same for

B(6)=8-38 [[§]2-1] (~h<£<0) . (8.17)

The difference between the above and (8.9) lies in the fact that
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_ 1
B(6)< B, B(0)=F, 3 f for (89)
(8.18)
B(€)> B, , B(0)= B, +5 B for (817)
o » Fo o' 2% '
The strength of such a joint is dictated by the minimum value of Bo(f )-

The ﬂo(f ) variation defined by (8.8) is arbitrary. It is used to illustrate the
meaning of an interface—phase. However, it is clear that ﬁo(f) may be required to yield a
minimum for FII' This proposition is not pursued further in this paper. It is also
apparent that the energy associated with a film deposited on top of a substrate can also be
meaningfully defined.

9. Stretching of Thin Films.
Consider now a (thin) film occupying the region

< ¢h or

z
3

(| <n (91)
where { = za/ €. The film is biaxally stretched, so that
u1=ez , U =€ 2 ,u=€V({) (9~2)

where ¢ and €, are the constant elasticity strains. For convenience, we define T, and
11

b
T Y
_ k+1 3—« 9.3
=g T €32 (9-3)
F = K+1 ¢ 3—-x ¢ |
2 K1 2 Kl
which are obtained by substituting ¢ , ¢ |, €, = 0 into the ordinary stress—strain
n' 22

relation with x being the first expression (not the plane—stress version) of (3.18).
In terms of cohesive elasticity, the nonzero components of the strains are

E =¢ ,E =¢ , E =Vig s

11 1 22 22 33

) _1
Ygg Esss_zv’fff '
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The nonzero components of the stresses are
3—
TaazTaa+nT'fv'{ +'yl v,“{ (a=1,2; no sum) , (9.5)
_ 3= K+1 .
Tas - ,T.f("“ + 522) + "= g (9:6)
= 9.7
T333 Eav:f{ ) ( )
= - _ _ 1 _
Tsu - Tm - Tszz - Tzaz B E(al t3 az)v,“ ’ (8.8)
T3333 = le(ﬁo + W){ + 5";{{{) + 71(5“ + 522)] ) (9'9)
— .21
Taﬂ“ = { 3 [71(€n + 622)503+ 7260;3]
1 9.10
+ gl (1t 1) v + (2B, + 8 428 +26) v G, (910)
\ — 2 1
Y1aaB= € {3 7 (e, + € )bag* 7,0]
+ % 18, + (71+ 72) Vie * (2ﬁ1 +20 + Bs)v'fff] Jaﬁ} , (9.11)
_ 1 1
T0ﬁ‘75 - 62{3 71(611 + e22)60;3'76 t3 72(606 676 + €a76ﬁ5 + 661606)
1
+ 3 73(6aﬂ€76 + 6076&5 + 6ﬁ'7605)
1
+3 [ﬂ0 + AL + wf“{({”aﬁy&} . (9.12)
The governing equation for v is just (7.1), and the traction—free conditions on { =
+ h are
2
k+1 - __g_ — 2 i dv 3—« = 13
ﬁ.——-T[l andfﬁ(l ax2df2)a?]+.’_‘:re°a ¢ 913
2 \
(a—)4¥_pdv_g (9.14)
dé? d¢!
dv , .d
v v _
71€aa+ﬁo+7af+ﬁ§;_0 : (9.15)

The solution is
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v=-3r. ¢+ ASmh b+ BSinn b (9.16)
11 12
where
k=1 2.2 2\ a: h 3—«
A=-1H a“(aw+au) Sinh a—”[ﬂo + (')r1 -7 1 7)eaa] /D4(h), (9.17)
k=1 2,2 2. o h 3—x
B =1t a(a,te,) Sion [ﬁo + (1 -2 7)eaa] /D, (), (9.18)

in which Dl(h) is just the expression given by (8.3). The solution reduces to (8.2), which
was obtained for a film with a fixed edge, when €a=0

On the cross—section z = constant, the stress—traction is
1

t=te,t (()=T —2T +3T (9.19)

1’ 1 1 31,3 331,33
which follows from (3.12). It is noted that the stress—traction is no longer independent of

the thickness coordinate. We have
= 9.20
t (=7 +76), (9.20)

f) = G g+ (1 e1,2ama g + (BFEHBY e (02

Similarly, the stress—traction on the cross—section z, = constant is

0
t=t e ,t (()=T —2T  +3T , (9.22)
22 2 22 22 322,3 3322,33

t (=7 +f) . (9.23)

22 2

The average of 7({) over the thickness is

h
<> = ml;f r(£)d¢
-h

2 4
=1 [i—r v(h) + (27.+1-2a —a ) dT‘;g‘l +(26+28+6) d_d%El]

2
=- ) -l8,+ (1, - e | F D) (9.24)

x2-1
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where
F(b) = 57 |5 1- (27, +7,-2a—a)) = (26+26,+6 )(a-1)/5

x(a2 -a )Smh—}—l—anh——-/hD (B) . (9.25)

11 12

The averaged forms of (9.20) and (9.23) are

(¢ y=r +(1) () =71 +(1) . (9.26)

1 11
A necessary condition for a film of finite size to be completely free is (tu) = (tn) =0. It

follows that there exists an ¢° such that

= = ¢’ = =—4 0
== P T ST T (9.27)
2(7-x 3—
Crda- (8, + (1, -5 2] Py =0 (9:28)

where the last condition is merely the requirement that (t ) = (t ) = 0. The associated
1 22

solution is therefore self—equilibrating, and (3.27) again applies. The total potential energy

of the system is
Ut -AF FF‘ B— [ﬁ + (7 n+1 7)2e°] Fp (9.29)

where Fp is the film free energy associated with a film with a fixed edge, (8.3). The new

film free energy F;, is associated with a film with a free edge. It must be nonnegative and

also less than FF’ and hence

- _3—x 0
BO < (’71 m ’7)26 <0 (930)
It can be shown that for positive ﬁo, which is presumed throughout this paper, a matenal

volume contracts in the presence of a traction—free surface. For example, v, ¢ of (8.2) is

negative. It follows that ¢ < 0 which, together with the second inequality of (9.30),
implies that

_3—=x__2(k-1) 3—«
7 m 1= s+1 71 - x+1 (72+73) >0 (931)
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The first of (9.30) and (9.28) leads to the conclusion that

F(h) = [%:—'1-‘1—(2‘71+'72—2al-a2)—(?,61+2ﬁz+,6’3)(a—'y)/ﬁ] FF/eﬂ:< 0, (G.32)
if
1<x<3 (9.33)

which is a condition for the ordinary theory of elasticity. Since Fp is positive, we have
3—
ST 7~ (21 +1-2a~a) - (26+28.+B )(a=1)/B< 0 . (9.34)
A unidirectional tension test, in the z‘—direction, performed on the free film is

defined by

e ="+e , e = +e , (9.35)
1 u' 22 22
_ K+l 3-x _
) = e, + e, (L v - SRy, =0 030)
= 37
<tu) 2(e"-en) ! (9.37)
where (9.36) has been used in defining (t").
The vanishing of <tzz>’ (9.36), yields
_ 3k
ezz = - T G(h) (938)

where

G(n) = |1 - ¥ (v, - 0P|/ [1 - 52 0, - Sr)] (039)
It follows from (9.31), (9.32), (9.33) and (9.25) that
Gh)>1, l'®gm)=1 . (9.40)

—®

The tension—test result finally becomes
- , 9.41
) =21+ HFom)e, (9.41)
If the film is actually a plate, i.e. h-w, the elasticity result is recovered, i.e.

15 _ . .
(t") =ge = 2(1+v) e (Elasticity) (9.42)
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where 2(1+v) is to be identified with Young's modulus, as Dim‘(tu) = p(tu). The

cohesive elasticity solution is
3-x
= - ) 9.43
(tu) { 2(1+v) + = [G(h) 1]} e, (9.43)

It follows from (9.40) that the apparent modulus for a film is greater than Young's
modulus and, in fact, size dependent. It is widely known that the apparent strengths of
some materials are effected by strain gradients. Using a couple—stress theory, which
employs only a portion of the strain gradients, Mindlin (1962) was able to show a reduction
in stress—concentration factor around a small hole. The above result is consistent with the
general belief that increasing strain gradients appear to make some materials stronger.

Finally, the analysis of this section has essentially established the groundwork for a new

plane—stress theory suitable for films.

10. Concluding Remarks -

The inclusion of higher order gradients of displacements in a continuum theory leads
to boundary—layer phenomena that are absent in all grade—1 theories of which the ordinary
theory of elasticity is a special case. This character may be exploited to facilitate the
introduction of nontrival self-equilibrating states, so that surface phenomena of solids may
be defined by special displacement fields. If material isotropy is presumed, a the. -y must
include at least the first three gradients of the displacements before a material constant can
be introduced to capture the desired surface phenomena (Mindlin 1965). This is the
grade—3 theory of Mindlin and the constant that gives rise to all the surface phenomena
was termed the modulus of cohesion by him. It is for this reasc that we have coined the
name cohesive elasticity.

The most striking approach in Mindlin's formulatic . is the inclusion of the linear

term ezﬂoEiijj in the strain energy—density W of (3.17). It _ ~es rise to a constant triple
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stress and leads to the concise energy expression U" of (3.27). This practice, however, is
a matter of convenience in the sense that one could have left the term out of W but
introduced the constant triple stress as an initial or residual state. In fact, one could have
interpreted the triple stress as a special body force in the sense of (7.28). The important
point is that however we interpret it, it is possible to introduce a new constant to generate
a self-equilibrating state.

It is, of course, completely legitimate to include the linear term Eii in the
elasticity version of strain energy—density. Such a term may also be interpreted as a initial
or residual stress. The stress, however, must be completely relieved in the presence of a
free boundary, as elasticity equations do not exhibit boundary-layer behavior and, as a
result, the exercise leads to no useful results. It is obviously for this reason that a grain
with an eigenstrain must interact with a nontrivial surrounding (Mura, 1982, Eshelby,
1957). A nontrivial displacement field is associated with a free grain according to cohesive
elasticity. We have analyticaily defined the meaning of grain boundary energy in Section
7. Unlike ordinary elasticity, cohesive elasticity requires the implementation of corner
(boundary) conditions in case the boundary is not a smooth surface. In this connection, it
is instructive to recall the presence of a corner force in a plate theory (a grade—2 theory).
A notch— or crack—tip and a corner on a grain are among many meaningful problems to be
analyzed. Even the meaning of a concentrated force may be re—examined. We have
already found that the displacement under a point load is finite.

A grade-2 theory contains couple stress and double stress. It is mathematically
more tractable than a grade—3 theory and also exhibits boundary—layer behavior.
However, since it is not possible to include a term linear in Eijk in W, it is not possible
to introduce a material constant to induce a self—equilibrating state for defining, say,
surface free energy. On the other hand, one could introduce an initial or residual double
stress, instead of triple stress, to induce a self—equilibrating system. The constant double

stress is not a material constant any longer, but is still associated with a special chunk of a
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material. This possibility may turn out to be a simpler way of generating the desired

surface phenomena.

Higher gradicnt theodes were the pupular topics of research of the sixties. Of the
many known published results, Mindlin’s work consistently placed the most emphasis on
relating to real inicroscopic phenomena of solids. If the goal of today's micromechanics
initiative is actually aiming at establishing physically relevant microcontinuum mechanics
field theories, then Mindlin’s work are indeed of a pioneer nature and should be carefully
reexamined.

Every time the word continuum is mentioned, the term constitutive relation follows.
One of the commeonly asked questions during the sixties was how to determine the so many
constants involved in a grade—n theory. It is our belief now that the negative implication
of the question was a result of our preoccupation with the term constitutive relation which,
in one way or another, is perceived as a response to a uniform sample. The existence of a
uniform sample, say, the tension specimen, is a consequence of the assumption that the
behavior of a solid is completely characterized by Eij' While the concept of Cauchy stress
and stress vector is not dependent on the former presumption, they are actually consistent
in that the components of the surface traction vector would turn out to be just the
appropriate components of the stress tensor if the latter were defined in terms of a strain
energy—density via the stationary potential energy approach of Section 2. It is clear from
Section 2 that once higher gradients are included the exact meaning of a Cauchy stress
becomes vague and the direct connection hetween stress and stress vector g, is gone. In
general, there is no uniform sample to speak of anymore. Many new nontrivial problems of
a more fundamental nature must first be solved before new test specimens can be devised.
The surface free energy, unidirectional test solution, and point load solution (not included
in this paper) are but a few of the anticipated test configurations.

No continuum field theories can be a hundred percent physical. For example, it

could be argued that Young's modulus should be derived from more fundamental physical
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constants, but the "correct" Young’s modulus is always measured from a tension specimen
which was designed in accordance with the mathematical solution that o0 = P/A apd ¢ =
A/L. it is our oehef that many, many more P/A formulas must and will be discovered in
the future. Finally, in connection with failure, the all important Eshelby tensor must be
modified. The tensor itself could be straightforwardly defined hy casting the spatial
derivatives of W into a divergence free form, but the associated conservation laws remain
to be examined. It is even possible to couple the current grade—3 theory with a higher
order diffusion equation, the Cahn-Hilliard equation (Cahn and Hilliard, 1957, Gurtin,
1989), so that the modulus of cohesion will depend on concentration and ome of the
diffusion coefficients will depend on the triple stress. It is perhaps time again to reexamine

the role of higher gradients in our pursuit for the understanding of failure of solids.
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