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Abstract

Government agencies and academic institutions are very interested programming for concur-

rent processing to cut computer processing time. However, many of the world's problems have

already been coded for conventional serial computers. This research demonstrates the feasability

of modifying existing serial codes for execution in a concurrent processing environment. A electro-

magentic scattering prediction code known as NECBSC is incrementally modified to incorporated

various levels of concurrent computing. The data processed by the code are completely independent,

providing an avenue for data decomposition of the process. Portions of the data set are processed

on each node and the results combined for final output. The final version of the code demonstrates

a speedup of 3.59 on an eight node iPSC/2, verses the serial benchmark on that machine. Speedup

for the iPSC/860 is 2.51, lower (vs its baseline) because of the faster processor, but it's elapsed

time is shorter by 23%. Significantly better efficiencies are achievable when a more complex situa-

tion is simulated due to the relatively constant volume of output/communications. The success of

this effort demonstrates that, at least for problems easily data-decomposed, the decomposition and

implementation of existing serial codes for execution in a concurrent environment is both possible

and profitable.

xi



High Frequency Scattering Code in a Distributed Processing Environment

L Introduction

1.1 General

The reduction of the observables of current and future weapon systems constitutes a major

thrust in Air Force research and development efforts; the pursuit of lower Radar Cross Section

(RCS) receives considerable, if not the most, attention. Unfortunately, full-scale RCS range testing

is generally very expensive, impossible in some cases. Alternately, many organizations use computer

predictions of scattered electromagnetic fields to estimate RCS. All but the simplest of problems

require considerable time, at a relatively high cost, even on potent mainframes

Locally, the Target Recognition Branch, Mission Avionics Division, Wright Laboratory (WL/AARA)

uses the Numerical Electromagnetic Code - Basic Scattering Code (NECBSC, version 3), running

it on mainframes and snpercomputers. However, WL/AARA has an Intel iPSC/860 hypercube

with eight i860 processors and the Air Force Institute of Technology (AFIT) has an Intel iPSC/2

with eight 80386 processors. Such concurrent architectures have the potential power to deliver

supercomputer-like performance and accuracy at a much more affordable cost, if the software can

be adapted to take advantage of the iPSC's concurrent processing capabilities. This research

demonstrates the feasibility of modifying the existing FORTRAN prediction codes for solution in

concurrent environments by porting NECBSC to the Wright-Patterson iPSC hypercubes.

Like all concurrent processing computers, a hypercube completes a task more quickly by di-

viding the problem into pieces for each node to process concurrently. The challenge is to divide the

problem, compute partial answers, and combine the results more quickly than on a conventional

sequential computer where all data is generally available "instantaneously" to any routine. Al-

though a given combination of technique and architecture is usually optimum for only a particular

1



class of problem, concurrent computers are designed to be flexible to allow hardware/software/data

combinations which yield near maximum performance.

1.2 The Environment

1.2.1 The Computer: iPSC Iypercube The hypercube architecture consists of many in-

dividual "nodes", each consisting of a separate processor and memory. In the case of the AFIT

iPSC/2 computer, each node also has a numeric coprocessor and a separate communications pro-

cessor. As such, each node in this configuration can operate as an independent, self-contained

computer, autonomously performing as many tasks as its memory will allow. In addition, a node

can communicate with its neighbors through the communications processor and interconnection

network, allowing it to coordinate its activities, share data, and, if necessary, load/execute new

programming in order to continue work on the given problem.

1.2.2 The Software: NECBSC The code to be modified is NECBSC, a high-frequency

scattering code initially written to evaluate antenna placement on a space station. As such, it allows

multiple objects, antennas, and radiation sources to interact. It makes far- or near-field calculations

of the energy reaching a specified observation point from specified angles, or can compute antenna

coupling data. The code traces the path from each far-zone receiving direction backwards through

each possible scattering path to each of the sources. it also has the capability to measure the total

near-zone fields for a series of points along a specified path through space. Antenna coupling is

accomplished similarly with the receiver antenna defined in ternis of its free-field antenna pattern,

the intensity of the fields arriving in a given direction modified by the appropriate gain. Shadowing

is taken into account, and diffraction terms are calculated to smooth discontinuities in the reflected

fields.

2



1.3 The Problem

Adapt the NECBSC computer code to run on the AFIT Intel iPSC/2 and validate the ac-

curacy and efficiency of the combination. Evaluate the generic feasibility ef porting existing FOR-

TRAN code to run efficiently on concurrent computers.

1.4 Assumptions

NECBSC will run serially on a single node of an iPSC hypercube with no major modification.

1.5 Scope

This effort is limited to modifying NECBSC version 3/refnecbscman to run on the AFIT

iPSC/2 and WL/AARA iPSC/860 hypercubes, and evaluating the conversion process. The modi-

fied code will retain as much of the basic structure of the sequential code as is practical, allowing

direct comparison of accuracy and performance. The input section takes little of the total pro-

cessing time for complex runs and its code is long so their is no need to modify this segment.

However, the input code may be executed in parallel with the loading of the node programs. Once

the modified program runs satisfactorily, test cases are executed to assess the speedup, efficiency,

and accuracy of the new version. Test cases are executed with the original code on a VAX and on

a single processor of the iPSC computers for comparative purposes.

1.6 Approach/Methodology

The generic approach applied is one of incremental conservativeness. NECBSC is first run on a

VAX, then on other mainframes before executing on the iPSC. Once correct execution is cotifirmed,

the program is run on a single node of the iPSC. The code is analyzed for structural and data

segmentation which may allow simple decomposition into concurrent segments. A segmentation

plan is formulated and implemented incrementally, to ensure accuracy at each stage. At each stage,

3



the code is executed and times compared with benchmarks .rnd previous versions to determine the

worth of a given increment of modification.

1.7 Materials and Equipment

This research requires the u-- of the AFIT iPSC/2 and WL/AARA iPSC/860 computers to

test the adapted routines, a SUN workstation on which to do the programming, and a VAX to run

test cases. The use of FORGETM is desired, but not required.

1.8 Summary

This document records the relevant activities and processes used to complete the research

introduced in this chapter. The next chapter relates some information on the general subject of

concurient computers, and coding for them. This is followed by a description of the requirements for

this research. Next, the initial anlyses and subsequent code modifications are described. Finally,

the performance of the final version is described and conclusions rendeied.
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I. Background

2.1 Introduction

This chapter should impart to the reader a basic understanding of the issues involved in

the adaptation of a given problem for efficient solution in a concurrent processing environment.

The chapter begins with a discussion of computer hardware, then some concurrent programming

fundamentals, and specific techniques and tools for code conversion.

2.2 Concurrent Computers

2.2.1 Philosophy Characterist;cs of the target computer have a large impact on the approach

taken for decomposition of the source program. Concurrent processing computers fall into tw-

fundamental classes of computing philosophy, each with its own advantages.

Single instruction, multiple data (SIMD) computers have multiple processors each with iden-

tical code, working on different data elements in "lock-step". These machines are especially appro-

priate for problems involving matrix/array solutions such as finite-difference methods where each

processor calculates the same parameters for a single location in a grid or array (or a sub-array). It

is common for SIMD computers to have processors numbering in the thovu ands. They are necessary

to handle the types of problems which are the fort6 of SIMD.

Multiple instruction, multiple data (MIMD) computers have processors which may operate

independently on different parts of the problem and/or different parts of the data. MIMD is most

appropriate for solving problems where many unused options in a given run of the program and/or

the data flows through a coniputationally intensive sequential pipeline of processes.

2.2.2 Memory The structure of a crmputer's memory also has a profound impact on the

capability and suitability of a given architecture to a certain problem type.

5



When the oiputer has a single block of memory addressable by all of its processors, it

is referred to as % "shared-ra.:mory" computer. Each processor can freely exchange data with

the others through the intervening memory. This type of architecture lends flexibility to the

programmer, but adds the penalty of hardware complexity/cost due to the communications network

required and additional overhead due to memory contention and address decoding time.

When each processor has a dedicated block of memory to which it has direct exclusive access,

the memory ar hitecture is referred f,o as "distributed memory". This architecture is simpler,

but may impose overhead when required data passes between the processors via messages. The

distributed-memory architecture is appropriate for tasks that involve routines with large amounts

of independent plocessing relative to the amount of data shared between processes.

Given the more common distributed memory MIMD computer, the physical intercornection

topology of the processors has a large imract on the suitability of the machine to the task (with

shared memory, one can "communicate" through memory locations.) Each processor can be con-

nected directly to all others, but the complexity and serviceability of the hardware for even tens

of processors is imposing. Various topologies have been used (Figure 1). One is a ring format

that is suited to iterative control/data flow. A mesh interconnection scheme, with each processor

communicating with each of its nearest neighbors, is easily translated to hardware connections.

This works well for physically two-dimensional problems, but the scheme does not allow streamline

communications for physical problems of thlee or more dimensions. The connection architecture

for communicating directly with more than the physically closest nodes becomes unwieldy. There

are other concurrent configurations, but the demonstrations of this research will deal exclusively

with an architecture known as the hypercube.

2.2.3 The Hypercube The hypercube is a compromise architecture with a high degree of

flexibility, maintaining the ability to communicate efficiently between nodes that are not nearest

neighbor- A hypercube of dimension d has 2d nodes each directly connected to d neighbors
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Linear

Ring

Tree Mesh

Figure 1. Selected concurrent computer topologies

(Figure 1c).

The name hypercube refers to the configuration of the interconnection network between the

nodes of the computer. A d=3 (8 processor) configuration looks like a cube with a processor at each

corner (Figure 2). At d=4 (16 processors), one has a cube within a cube. With higher dimensions

it is more difficult to diagram, but "hyper-cube" is a good description.

2 3 4

Figure 2. Hypercubes of Various Dimensions
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This interconnection scheme becomes unwieldy when the dimension exceeds eight or so; the

Intel iPSC/2 series is limited to 256 nodes. However, in cases with practical numbers of nodes, the

hypercube exhibits a great degree of flexibility in adapting to problems of widely disparate "natural"

topologies(8:49). For instance, the cube may be logically "unfolded" to adapt to problems with two

or three dimensional meshes, or set up in a logical line or ring configuration for pipelined problems.

The iPSC/2 series hypercube nodes are also connected to a "host" ("front-end") computer, a

80386-based computer. The host has the responsibility of sending programming and data to each of

the nodes, collecting any returned data, and serving as the conduit for all communications between

the nodes and external entities such as the user, disk drives, and other computers. In addition

compilation and linking of programs is usually accomplished on the host computer.

In the case of the iPSC/2 and /860 hypercubes, the node interconnect network is a 2.8 Mbytes/sec

Direct-Connecttm Network (3:10). Each node of the system is connected directly to each of its

proximate neighbors through one of eight communications channels available in its Direct Connect

Module (DCM). If the required communication is not to a direct neighbor, the message must be

routed throu' preestablished link between the one or more intermediate nodes. The DCMs and

their associated software also establish the availability of a receiving data buffer prior to creating

a link. Only then do the DCMs actually forward any messages/data across the net (14:1-46). This

linking process imposes an additional overhead burden on all communications, making 100 byte

messages almost as "cheap" as single byte ones as shown in Table 1. In contrast, at the i860's

40 MHz clock speed, a single calculation takes considerably less than ipsec, orders of magnitude

less than even a short communication(16:17). This implies that the iPSC environment is ineffi-

cient when a problem is inherently "fine grained", that is, requires a large amount of data-passing

between processes(4:1627). When the grain size is large, the communications ovCrhcad does not

dominate, and reasonable efficiency can be obtained.

Since the iPSC hypercubes have only local memory, when a node needs data that is resident
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Time per iPSC/860 Message

Message Size (bytes) Time (psec)
1 81
10 85
100 122

Table 1. The Cost of Sending Messages

on a different node, it must request the data from the possessing node. The possessing node must

be explicitly programmed to receive and interpret the request and to retrieve and send the data

back to the requesting node. The requesting node must then explicitly receive the data (5:32).

The greatest impact of this configuration is that there are no true global variables available to the

programmer, as compared to the typical single-processor computer. This configuration requires

more forethought on the part of the programmer, in terms of how the data is to be divided and

sh' d among the processors. The situation is similar for the program code itself; the host must

explicitly "load" a piece of code onto a specific node. Subsequently, if a node is to execute a different

piece of code, the new code must be loaded through the standard interconnect network.

Though the physical environment is somewhat unconventional, Intel attempted to conform to

existing standards in terms of the operating systems and compilers available for their machines. The

iPSC/2 host processor uses the AT&T UNIX Version V operating system, and the processor runs

NX/2 (a UNIX-compatible operating system). In additon, the iPSC/2 FORTRAN-386 compiler

implements the full ANSI FORTRAN-77 standard (5:13). The iPSC/2's use of this standard

software makes standard FORTRAN programs transportable to the target environment.

2.3 Fundamentals

One of the fundamental properties of concurrent processing is that you do not get something

for nothing. Any sementing of work and/or data incurs a penalty in program loading and data

transmission. There is always a tradeoff in the total design to achieve maximum efficiency.



2.3.1 Standards There are three major standards used to evaluate the desirability of con-

current processing implementations: speedup, efficiency, and accuracy.

Speedup is the ratio of the execution time in the sequential implementation to the fastest

parallel implementation. It is a measure of merit of the success of the concurrent implemcntation

vs the serial version and has a normal maximum of n (on n nodes). Speedup can be referenced

to either the execution time on a reference computer or the parallel implementation running on

a single node. The former is usefu! for showing the gains associated with moving to a parallel

environment.

Efficiency is defined as speedup divided by the number of processors used. Qualitatively,

efficiency is the proportion of time that the average node is spending to further the task at hand.

Thus, efficiency has a theoretical maximum value of 1, corresponding to 100% processor utilization

with no additional parallelization overhead (9:604). This peak (relative to a single node) is only

theoretically achievable because there is always some setup and communications overhead associated

with concurrent processing. Computationally idle time during overhead/message passing functions

translates into degraded efficiency. Maximizing net performance while minimizing overhead should

be a goal of every parallel program design process. Efficiency figures for different numbers of nodes

can assist in determining the optimal number of processors to (ledicate to a given process.

Accuracy is used in the normal sense. In general, does the implementation produce results

that match the theoretical or actual solution? For the purposes of these investigations, accuracy

refers to the number of digits of accuracy of the con tre|i results, relative to measured results.

Accuracy can vary due to the implmentation used on a given machine, as well as differences in

round-off error due to the numeric precision of the hardware.

2.3.2 Concurrent Programming Using these measures of merit, the programmer attempts

to maximize speedup and/or efficiency and maintain accuracy while designing and implementing a

pioblem in software. Coding for a concurrent environment rtquires a totall3 different mind-set than
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sequential programming. Concurrent programming requires very high levels of abstraction in the

early design to preclude the inadvertent application of serial constructs in a written program. One

must identify only the prerequisite events for a given action in the initial design. Implementation

requires knowledge of the specific target hardware: to determine if the prerequisites should be sat-

isfied as sequential code on a given processor, or if the prerequisites are more efficiently completed

on other processors with the resultant data or message passed to the dependent process. In many

ways, programming in a concurrent environment is similar to object-oriented design/programming.

The design/programming language called UNITY (6:8) is a good example of a language that allows

clear distinction between processes and their interdepende cies without overtly adding serial con-

structs to a design. All data ana control dependencies must be identified and tracked throughout

the software development effort if one is to work efficiently. Thus, to have the greatest flexibi,.ity

in coding one has to design and write the code from scratch.

Unfortunately, designing and coding solutions to a given problem is very time-intensive and

requires intimate knowledge of both the concurrent environment and the problem posed. Conversion

of serial code is an alternate way of producing concurrent programs. Interest in this approach is

great because "canned" sequential programs are available to solve many of the problems currently

posed. Conversion of these codes is theoretically quick and cheap but there is always some added

overhead, sometimes this penalty outweighs the gains made by multiple concurrent processes.

2.4 Program Conversion

2.4.1 Vectoizing Compilers From a user's point of view, a vectorizirg compiler is the sim-

plest way to adapt an existing program to run on a concurrent computer. The details of the

Conversion are hidden from the user by the compiler itself. The ccmpilcr attempts to identify scec-

tions of the code that are appropriate for concurrent computation. This is the method commonly

used when port~ng a progrart for execution on the multi-processor supercomputers such as the
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Cray XMP. Some experts believe that vectorizing compilers produce code that is more efficient

than that of skilled progranimees (13:237). However, a compiler can only identify and parallelize

those constructs the compiler is specifically coded to find. In addition, a compiler does not execute

a program with actual data; the specific options specified by the input stream can affect the optimal

configuration and performance. The knowledge of an informed programmer is essential in designing

the optimal parallel implementation of existing code.

2.4.2 Domain Decompositwn One method of parallelization is to load identical programs

on each node and divide up thc data among the processors. This allows each processor to perform

the task on part of the data. This riethod, called domain decomposition, is particularly effective

when the problem has loops or operates on multiple sets data where each pass performs operations

that are data-independent of all other. If the different passes of the loop are spre ad among different

processors, there is no need for inter-process,, communication during the calculations, the overhead

is minimized, and efficiencies near one are possible. Of course, the code, input data, and output

data have to be send to/from the nodes and a controllihg program must coordinate their activities.

All of these actions lower the demonstrated efficiency by somc degree, but the technique generally

shows 6ood efficiencies when the number of iterations is high.

This approach also seems correct when the data-set is 3mall, but the loading and data-transfer

time may negate any parallelism gains, resulting in ai ineffic;ent resulting configuration. It is

possible to formulate an expression to estimate the total e) ecutioi) time of a given segment of code

on a given computer to aid in the decompobition process (iK 719). Such a calculation requires a

significant amount of information on the characteristics cf a partv.ular conp'iter's architecture; the

cliaracterstics are often dependent on the 3oftware being evaluated. If so, t!,e calculations would

be based on many assumptions that miy nct, tpply to a gcreral haidware/software combination.

It is also important to note that simply dividing the data at t, . outer-most loop or does not

guarantee optimal efficiency. Imagine a prob!em with an oute: loop with 15 iterations, encompass-
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ing an inner loop with 7 iterations(13:235). Mapping this to a computer with 27 processors, an

obvious decomposition would be to divide the processors into three groups of seven, each processor

calculating five components of the inner lop, with six inactive processors (which could be used for

something else). However, there are other, more efficient solutions.

The number of iterations and the number of processors both play into the optimal solution.

For example, one could "collapse" or "coalesce" the double loop to create a single loop of 105

iterations. If this loop were divided among all 27 processors, each would calculate only four loops

and no process' -s would be idled. Collapsing is a process whereby multiply nested loops are

converted into a single loop with a number of iterations equal to the product of the original nested

loop sizes. This creates a one-dimensional vector where there might have been a doubly-subscripted

variable in the original program. Coalescing is analogous, but maintains a one to one mapping

betwcen the variable subscripts in the nested- and single-loop cases . Thus the last iteration of

an i=3, j=2, k=5 triply-nested loop would be element A(30) of a one-dimensional array in the

case of collapsing or element A[fl(30),f2(30),f3(30)] of a three-dimensional array in the case of the

coalesced loop.

2.4.3 Control Decomposition A second approach to parallelization is to divide the process

into segments, putting different "subroutines" on each processor. This approach is called control

decomposition. By passing multiple data in a stream through a sequence of nodes, concurrent

processing occurs and a speedup is possible. However, because a given data set must pass between

many or all of the node processes, there is a large communicatiops penalty, unless the computations

are time-consuming relative to the data-passing time required.

Once designed using control-decomposition, a problem can be mapped to the nodes in two

fundamental ways. The first is a static configuration; the entire program structure is divided

among the nodes and remains fixed throughout the lifetime of the program. The second uses

"slave" nodes, loaded with programming and data as needed by one or more "master" nodes. This
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type of configuration is most appropriate when the entire program is too large to load and run on

a single (every) node and the order of execution of the sub-processes (or whether they will be run

at all) cannot be determined before run time.

2.5 Tools

There are many tools available to aid in the decomposition, analysis, and evaluation of parallel

programming efforts. One tool appropriate for FORTRAN code conversion is FORGET M (7:5), a

decomposition/analysis aid which creates a database of program and data entities and their usage,

displaying them in a coherent format to the programmer/analyst. Other tools range from simple

automated flowchart creators, to sophisticated debugging systems. Most of these tools are fairly

intuitive and easy to use, with the notable exception of the debuggers.

2.6 Debugging

Debugging concurrent programs is more difficult to accomplish than debugging sequential

programs. Since different processes may occur simultaneously and independently, it is possible to

have a properly executing program give different answers on consecutive runs using the sarae input

data. The cause may vary: the processors could be finishing in different orders each run or they

could simply be finishing at the same time and competing for communications bus permission,

transmitting in different orders each run. Little can be concluded directly about the specific causes

of a case of erratic behavior.

In addition, symptoms of a problem can easily point in a spurious direction. Only with a

concurrent debugger running in the background can enough relevant data be recorded to isolate

any but the most obvious bugs. Unfortunately, the iPSC/860 does not allow multiple concurrent

processes on a single node (2:1-1), limiting the capability of debuggers. The problem is further

complicated by a manifestation of the fleisenburg uncertainty principle. Trying to accurately
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measure the behavior of the system influences the results obtained (12:594). Concurrent program

bugs are often timing-dependent; the introduction of a concurrent debugging process can easily

"cure" such a bug or activate others. Less intrusive passive event-recording systems are available,

but they only store limited amounts of data and are therefore less useful.

2.7 Load Balancing

Load balancing should be an integral part of the design process. There are various ways to

implement load balancing, from passive division of labor to complex token-passing master-slave

systems.

2.7.1 Passive Passive load balancing can be achieved by decomposing the problem such that

each processor gets an even share of tile work. This is, of course, problem-dependent. Optimally the

division must be such that when a node must stop to receive calculated data from another node the

sending node has already completed the required calculations. Such a division is easier to accomplish

and more likely to achieve high efficiency when the processes' calculations are independent of

eachother's results, requiring no internode communication/synchronization. In addition, the total

calculation time for each processor should be constant so no processors are idled at the end of the

calculations.

2.7.2 Active Active load balancing refers to detecting activity on a each node and supplying

more work, as needed. The detection and loading can be accomplished by the node itself, or by a

supervisory node.

In one approach, each node reads in more data when it finishes with a given set of calculations.

'This scheme requires that the problem's input data stream be accessible in a central location, such

as in a disk file, available to all of the affected nodes. Also, some pointer must be provided which

indicates where the next unprocessed data is located. This type of load balancing has little overhead
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because no node or process is dedicated to supervisory duty.

In the master-slave approach, such a process exists and ensures that all other nodes are kept

busy. When a processor is inactive, the master loads a new program or more data to keep it

busy. As long as the master has work to perform, all of the slave processors will remain busy.

The drawback is that a host or node is dedicated to supervisory duty. Assuming the supervisory

overhead is low, a master-slave system can keep efficiency relatively high.

In one of the more complex schemes, a message "token", is constantly passed among the

nodes and supervisory process. When a node is idle it adds its signature to the token. The token

continues to be passed until a process has work to give to the idled node. The sender removes

the recipient's signature from the token, assigns/sends the work and passes the token on. The

disadvantage is that the overhead for passing the token(s) is always present, regardless of whether

any work needs to be given away.

2.8 Summary

The field of concurrent program design is widely researched in the literature, but the issue of

serial to concurrent conversion is not discussed in great depth. Concurrent computers have many

ideosyncracies that must be taken into account when writing/converting code for them. tlow-ver,

there are tools available to help in the decomposition process. One can code from scratch, take

the domain- or command-decomposition approach to sequential program conversion, or allow a

commercial vectorizing compiler to control the parallelization task (if a compiler is available for

the target computer). In the end, it is up to the individual programmer to analyze the problem,

its data, and make the controlling decisions about how to effect the required parallelization. The

efficiency of the resultant code is directly dependent on the qualifications of the programmer and

the amount of time he is willing to invest in the development.
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III. Requirements

3.1 The Sponsor's Needs

The Target Recognition Branch of Wright Laboratory has a need for a high frequency scat-

tering code such as NECBSC which can be run on an on-going basis. They need relatively quick

turn-around times on a flexible schedule. They have access to DOD supercomputers, but though

the processing time is good, the turn-around time is slow, and funds need to be allocated to pay

for the CPU time. They have, in house, an iPSC/860 hypercube capable of 60 peak MFLOPS per

node (-6-10 avg.) (16:17) vs. 250 MFLOPS (-100 avg.) for an entire two processor Cray XMP

supercomputer. At eight nodes, properly programmed, the iPSC/860 can exceed the capability

of the Cray by a considerable margin. The sponsors need a version of NECBSC that will run

efficiently on the iPSC/860 so they can control costs and turnaround times.

3.2 Academic Needs

From an academic point of view, the sponsor and AFIT would like to evaluate the feasibility

of converting existing FORTRAN codes for use in distributed processing environments. The art of

programming for concurrent processing is not close to perfection, and until such time, the utility of

converting existing serial codes for execution on a multi-processor computer needs to be explored.

3.3 Specific Requirements and Approach

* Modify NECBSC to execute on the Intel iPSC/2 and iPSC/860 with concurrent processing.

* Accomplish the conversion in stages so as to always have a running version of the code if the

most recent modification technique is not successful.

" At each stage of conversion, the converted code must take maximum advantage of the technique

employed in that stage.

" Retain maximum compatibility with the original code to allow direct comparison of the timing
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analysis and to ease use of the resulting code.

" Obtain timing results at each stage of the conversion process and compare in terms of the payoff

verses the effort involved.

" Document any incompatibilities with NECBSC v3.0 and provide operating instructions for the

modified code.

3.4 Goals

Produce an end product which has the following characteristics:

* Operable on iPSC/2 or iPSC/860 computers with 1 to 128 nodes without code modification.

* 100% compatible with the unmodifi'2 NECBSC code input streams, producing identical output

formats.

* Output data with numerical precision at least as good as NECBSC run on a VAX.

* Speedup relative to sequential code on one node of thc same machine > 6.
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IV. Initial Analysis

4.1 Introduction

Prior to modifying any source code, there are several issues to be resolved. Is the unmodified

code compatible with the compilers available on the iPSCs? Are the details of the compilers and

accuracies of the iPSCs equivalent to eachother and the VAXs so that the results can be compared?

What is the speed of computation of the serial code on a VAX and the other platforms to be

used in comparison? How should the structure of the code or data be analyzed and what basic

approach should be used to decompose the code onto the multiple processors? How much memory

is required for the code and its data? Will any restrictions be necessary due to limited memory on

the hypercube nodes? These questions were answered in the Initial Analysis phase of this research,

and described in the remainder of this chapter.

4.2 Compatibility

4.2.1 Portability The unmodified NECBSC code compiled and ran successfully on a VAX

11/780, the iPSC hosts, and a single node of each of the iPSC/2 and the /860 computers. Attempts

to run the code on a Sun/3 workstation avd Alexi computer were less successful. The sun version

ran fine, but misinterpreted a boolean input in the input stream causing a phi-sweep to be performed

when a theta-sweep was requested. The results were consistent with the sweep performed, but not

with that requested. Due to the fundamental nature of the simple boolean comparison, use of the

Sun platform is not recommended. The code failed to compile on the Alexi.

4.2.2 Accuracy Aside from the large differences in run-time, the iPSC/860 64 bit precision

gave different results than the VAX 32 bit precision example output given in the documentation.

Figure 3 of the i860 vs. all others shows the differences for Example 1c; see Appendix B for tabulated

results. The traces show slight differences, but the answers are within 1 dB of eachother. The

iPSC/2 (80386: 32 bit precision) results are identical to the example results. The differences occur
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Figure 3. Numerical Precision, 32 vs. 64 bits

because the iPSC/860 hardware allows 64-bit precision internally, resulting in a larger dynam;c

range than the other platforms (all 32-bit) and therefore less roundoff/truncation error. Without a

valid, numerically exact solution or very high precision test data, accuracy cannot be determined

Since the VAX-generated reference data in the manual was originally verified against test data, on

can only assume that the iPSC/860 results are more accurate.

).3 Timing Baselines

To ease operation and timing of the serial code on the hypercubes, a short host program was

written to load, execute, and time the serial code. Unfortunately, the Green Hills F77 compiler for

the iPSC has no capability for recording elapsed time on the host (it dc.s support node elapsed

time). This is inadequate because measuring elapsed time from a totally independent node would

not include the time required to load the programs from the host frcnt-end to the nodes. This

component can be significant for some of the possible implementations. Getting a true elapsed

time would involve an embedded assembly-language or C routine, which may not be portable
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Run Time (sec): Example ic (no plot file)
VAX 11/780 microVAX iPSC/2 iPSC/860

Time: -143 -38 33.4 23.3
Speedup: 1.0 3.8 4.3 6.1

Table 2. Serial Run Times

between machines. Instead, timing data was collected to include the actual run time on the node,

by sending a start and stop reference time from the node, but only the process time (CPU time)

for the host to load the node routines was added. This method is consistent with a multi-user host.

See Appendix D for an example of the format of this timing data. The host/node timing data is

measured in the same manner in the later stages of the modification process.

Table 2 contains the timing baselines for this basic version of the code, from example Ic from

the NECBSC manual(1l:190). This example, described in Appendix A.1 was used as a benchmark

throughout the modification of the code. It is the most complicated example included in the manual

that includes both tabular and graphic data output formats for comparison. A tabular reference is

necessary because modification of the plot-file generator routines was a secondary objective of this

research and direct comparison of results is necessary in these analyses.

4.4 Memory Requirements

4.4.1 Memory Available The iPSC hosts have 8.5 Mb of memory, the iPSC/2 nodes have

12 Mb, and the iPSC/860 nodes have 16 Mb. This memory must hold not only the executable

code, but the program's temporary and permanent data variables as well as any machine/operating

system overhead memory burdens. Any additional data structures added in the code modification

process must also be allowed for.

4.4.2 Code Szze The source code for NECBSC is divided into six files which total 365

kilobytes (1 Kb = 1024 bytes) and compiles into a single executable file 590 Kb long on an iPSC
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host, 779 Kb bytes on the iPSC/2 node, and 889 Kb on the iPSC/860 node. Version 3 of NECBSC

has the command processor in separate subroutines in a separate file to simplify creating overlays

when memory is not adequate to keep the entire program in memory at all times(11:42). This is

an advantage over Version 2, allowing the code to be ported to more limited hardware and making

the code easier to read.

4.4.3 Data Size All data array sizing is determined by a few parameters in a single sectiop

of the NECBSC code. FORTRAN does not allow for dynamically allocated data structures, so the

memory requirements are fixed for a given compilation of the code. Examination of the variable

declarations for the arrays passed from the initialization routines reveals only 25 data structures

of any consequence, amounting to 200 Kb of data space. These default array sizes are more than

adequate, allowing 3600 azimuth sweeps with a 0.20 step size (1801 steps). The other data structures

are also adequate for typical problems.

4 4.4 Memoriy Needs Based on the above analysis, the memory available to each of the nodes

on either of the iPSC computers is more than adequate to hold the programs and data necessary to

execute NECBSC for reasonable problems. Therefore, memory conservation will not be a driving

issue in the development of the concurrent version of the code and control decomposition is not

required.

4.5 Code/Data Analysis

4.5.1 General With the portability was established and the precision and performance were

determined, an approach to the analysis of NECBSC is formulated, analyses performed, and a code

modification methodology created.

4.5.2 FORGEM Due to the sheer size of the NECBSC code (19,656 lines, 188 subroutines)

maximum use of auttomated analysis tools is indicated. One tool developed by Pacific-Sierra Re-
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search Corporation and marketed by Intel Corporation for such analysis is FORGE T M (7). By itself,

this tool should have provided ade tuate information for guiding a partial decomposition process.

FORGE T M parses standard FORTRAN-77 source code and develops a database of infor-

mation on each individual subroutines, calling order, symbol usage, data interdependencies, etc.

A timing profiler capability is also included. The package runs on a UNIX workstation under

X-windows, under Sunview/Sunwindows, and also has a batch-mode capability for otherwise un-

supported terminals when run on a UNIX host. The interactive development environment is quite

extensive, allowing interactive source code formatting and modification as well as a host of informa-

tional output formats. FORGETM helps a programmer analyze existing codc to determine the data

and procedural relationships. This information, in turn, can assist in the decomposition process.

An attempt to analyze NECBSC with FORGE"" was unsuccessful due to incompatibility

with the NECBSC source code. The FORGETM manual claims it is compatible with FORTRAN-

77, yet it will not allow the inclusion of data statements with complex arguments- which are used in

NECBSC and allowed by all of the compilers used to date. The offending routines must be excluded

or modified to conform to FORGETM F77 before a database can be created. Even so, FORGE'M

has another bug that causes ai, abnormal tcrmintion with core dump when processing some of the

NECBSC files (6 files, largest. 218KB), presumably somehow related to the code length or memory

requirements.

4.5.3 Manual Analysts Rather than modify the code to accommodate FORGETM, NECBSC

was analyzed manually for control and data structures. A block diagram of NECBSC is piovided

in the documentation (1:24) and is reproduced here as Figure 4 in a slightly different format. This

was used, along with the source code itsell, to atalyze the control structures. The NECBSC manual

provides the input data format and syntax, as well as specific examples of input and the corre-

sponding output for the code. Combined with tbw program structure, this information was deemed

sufficient for the manual anmysts.
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Figure 4. Block Diagram of NECBSC Version 3
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4.5.4 Control Structure As shown in the figure, the NECBSC code is organized with a

lengthy iaput parsing routine followed by a computation section composed of a series of nested

do-loops, wi'h the outer loops varying the pattern points. Inner loops calculate all the relevant

scattering terms for all of the objects and sources.

Input is read from a disk file containing two-letter command codes, followed by the required

data for that object, pattern, choice, etc. Multiple "runs" can be stacked in the input deck to allow

unattended continuous computing (11:154). Output is normally tabular in format proceeded by

header information that echoes the input deck in a more presentable format. This standard output

can be sent to the screen, printer or disk. A file of output data in a standard binary form can also

be requested for later plotting.

4.5.5 Data Dependencies Initial analysis showed that the code takes a brute force approach

to the problem, determining each possible route from each source to the destination point (or

direction if far-field). This can include up to three reflections and one diffraction (or one double

diffraction) in the path(15). Data within each pass of at a given level of the looping hierarchy

is independent of the data in other passes. Since the main program is constant to all calculation

options, it seems suitable to accomplish the decomposition at this point in the code.

4.6 General Methodology

Since the code easily fits and runs within the limitations of a nodes' memory, and an inde-

pendence exists in the data stream, data dccomposition was chosen as the preferred method for

breaking tip the problem for concurrent processilig. The general approach is to modify the code in

increments. Any simple, yet potentially effective (low risk) modificati,,s would be attempted first.

Further modifications would subsequently be attempted, bolstered by the knowledge acquired dur-

ing the earlier modifications. At each stage, timing would determine the effectiveness of the then

current implementation, and guide the course of subsequent work. Load balancing issues will be
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considered if results indicate the need, though basic decomposition/comamunications modifications

will be exploited to the point of diminishing return before attempting an active load balancing

system.

4.6.1 Decomposition Options A direct approach is to modify the main FORTRAN routine

to calculate segments of the required data, the specific segment for a given node determined by

the total number of nodes and the number of the node in question. By index;ng the loop on

each node to a different start, step, and end point, each node will calculate an equal share of the

data. If points in the sweep are interleaved, computationally intensive objects or directions would

naturally be split among multiple nodes, forming a natural passive load-balancing system. The

outer volumetric pattern angle loop is an obvious point to attempt this modification. By modifying

the main routine, all underlying routines should have the correct data.

Another option initially considered was to modify each of the input routines as they read

the input file and initialize the looping process index variables. By initializing the variables to

a different start, step, and end, each node would calculate an equal share of the data. Because

there were many such routines, this method was initially discarded in favor of the Main program

modification described earlier.

4.6.2 Output Options After propcrly decomposing the problem, implementing a method for

the retrieval of the output remained. Several options were considered:

* F77 writes from nodes w/indexed filenames

" Form ASCII array of output, send to host for output

" Individual messages to host for output

• Foun array of data, :wid to host for output

The first option is simple, but involves post-processing the individual data files to foim a

composite output file. This would add an element of code which is entirely serial, adding directly
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to the run time. The second option would involves writing a subroutine and replacing each write

statement with a subroutine call which would format the data properly before sending it to the

host for final output. The third and last options are similar to the first two, but the data would be

in a more compact format, four bytes per number, rather than one byte per character. Since the

first option is simpler, it was chosen to be part of the initial implementation. Depending on the

performance penalties produced by the initial modifications, other options would be exercised.

4.7 Summary

The initial analyses performed prior to code modification demonstrate that automation is

not always necessary, or the best approach. Attempts to use the powerful analysis tool FORGE

failed; manual methods found and formulated a viable approach to decomposition of NECBSC.

This approach starts with the data decomposition of the problem, dividing the data streams in the

outer loop of the main routine of NECBSC.
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V. NECBSC Modifications

5.1 General

This chapter relates the actual modification of the NECBSC code. One of the first tasks

was to code a robust host program to obtain the necessary inputs from the user and control/time

the computation process. After that, the levels of code modification are described in terms of the

structural changes and the performance results.

To ease in identifying the different versions of the code, a numbering scheme was established.

Each version of the code has a modification number ranging from ModO to Mod4.0. Table 3 lists

the different versions produced, and a brief description of their relevant features. For ease in

handling, the source filenames are shortened to, for example: "32v.f" from the distribution name

"NECBSC32V.F".

As discussed in the background chapter, background processes influence the elapsed and, in

some cases, CPU times required to complete a process. The times given in this chapter are typically

the result of a single run of the code and therefore may be off by a few percent. The numbers used

for the baseline (ModO.5) are averages from 5 runs. The elapsed times from the host, and VAX

machines are measured manually and the minimum time obtainable over several runs is reported.

Every attempt was made to take such measurements when the multi-user workload was minimum,

lower times tended to indicate less background workload.

5.2 Host Program

The host program is greatly expanded for the concurrent modified versions of NECBSC. It

now includes routincs to get, parse, and transmit to the nodes the input filename , luvd exeutable

programs on the nodes, open a file for host output, and get start/end times from the nodes. In ad-

dition, it writes a short header with version information, progress messages, and timing information

to the screen. A complete listing of the Mod4.0 host routine is included as Appendix C.1.
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Version Files Salient Features Results

NECBSC 32.f, 32m.f, Unmodified code, no host Runs on hosts, can't get
32v.f, 31c.f, input filename on nodes
31d.f, 31p.f

ModO host.f, 32.f, Original Code, less VAX-VMS-specific Gives only Host CPU
32m.f, 32v.f, commands, exlc.inp hard-wired time required
31c.f, 31d.f
31p.f

ModO.5 host.f, 32.f, Host: get/load single node, get/send Long execution times,
32m.f, 32v.f, filename to one node, receive start/end minima! timing data for
31c.f,31d.f times; Node: NECBSC + receive (vs. baseline purposes.
31p.f read from console) filename + send times

Modl.0 - same - Host: same; Node: index outer loop in All data calculated by
main program (32.f), replace VAX-VMS 0th node, others only
timing routine with iPSC calls (profile write banner
data)

Mod1.1 - same - Host: same; Node: index input data Single iteration, no divi-
stream in command processor (32m.f) sion of labor

Modl.5 host.f, 32.f, Host: merge individual output files, parse Works fine, but slower
32m.f, 32v.f, input filename on host - send corename, than unmodified code,
31c.f, 31d.f open & close node tempfiles and host out- quickest times on 2 nodes
31p.f file; Node: write to separate files whose

names are indexed by node #
Modl.6 - same - Host: adjust for header info; Node: write Times better (almost 1

header info only from node 0 speedup) but same "in-
verted" trend

Mod2.x Host: host.f, Host: Parse input stream for banner, numerical errors intro-
32h.f(32out.f), receive n 2D arrays, load into 3D ar- duced, times good
32mh.f(32m.f); ray, write all output from host in dupli-
Node: 32.f, cate output routine; Node: load 2D ar-
32out.f(output rays with numerical data, output routine
routine), moved to separate file
32m.f, 32v.f,
31c.f, 31d.f
31p.f

Mod3.x - same - Same as 2.x with only the near-zone out- numerically OK,
put routines modified run times slightly faster

than serial times, 2 and
4 nodes comparable - 2.4
speedup

Mod4.0 - same - Similar to 3.x, but modify all output op- times
tions, change to ID array of data blightly better, ,ear-zone

I & coupling inoperative

Table 3. Modified Versions of NECBSC
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5.3 Alter Main Program (Modl.0)

5.3.1 Volumetric Angle Loop The initial decomposition of the code consists of modifying

the main segment of the NECBSC to index the outer DO Loop by the number of a given node.

This modified code, labeled Modl.0, runs flawlessly, but each node calculates the entire problem.

The file from the first node contains the entire output, the other nodes produce only the "banner"

information which precedes the actual tabulated data. Obviously the "volumetric angle" outer loop

is not executed multiple times, and thus does not result in evenly divided output files.

5.3.2 Pattern Cut Loop Further investigation disclosed that the azimuth sweep index was

incremented in a loop three levels deeper in the nest ("pattern cuts" in Fig 1). Dividing the work

at this point in the code is successful in dividing the workload, but it seems the output files are

indexed by other variables, not common-blocked from the main routine. The segmentation of the

calculations is not passed to the output routine, and the nodes wrote NPN output points not

NPN/NUMNODES points as desired. Excerpts from the main node routine are included as

Appendix C.2. Because there are many options and segments yet to adjust in the output routine,

a simple, generic modification was not evident. Widespread modification also raises the risk of

introducing a numerical error into the code. Therfore, the main program loop indexing approach

was abandoned in favor of an alternate approach.

5.4 Indez the Input Data Stream (Modl.1)

The alternate approach involves modifying the several routines which initialize the indexed

variables such that each node processes only the data points desired. With this approach, the input

deck as "seen" by each node is modified to request only a portion of the problem. By modifying

the pattern cut variables immediately after being read by the routine, the proper loop and the

output routine are effectively modified and the structure of the code itself need not be changed, for

the calculations or the output. The indexing is such that each successive angular increment is on

30



a different node. This static load balancing attempts to divide up any computationally intensive

regions between nodes.

The modifications also include modification of the VAX-VMS specific timing routines which

report the amount of time spent in the different computational routines. These times are intended

to supply guiding information to the user of NECBSC. In Modl.1 the VAX calls are changed to

call iPSC system routines. As a result of the concurrent processing, each output banner includes

the information indicating the times elapsed on each node separately.

This version returns acceptable output, though the data remains spread over as many files as

there are nodes, and each has a duplicate banner section with individual timing and data blocks.

Elapsed time for eight nodes is roughly twice the serial time, without an attempt to collate the

output. This modification does not meet basic requirements, it simply demonstrates multiple

simultaneous file writing.

5.5 Merge on Host (inodl.5 & Modl.6)

5.5.1 Modl.5 This modification includes an expanded host program which merges the out-

put files created by the nodes. The host now parses the input filename to obtain the root name for

the output files and passes it along to the nodes when they are ready. This occurs while the nodes

are initializing. The host then collects timing data and opens the node output files for input to

the file merge routine. The collation process is simple because the format of the output is known.

Duplicate header information has to be read, but is discarded before writing to the output file.

The performance of Modl.5 is poor, partially due to the relatively inefficient F77 write emu-

lation and partially due to an apparent overload of the node interconnect network. The F77 write

requires a hefty setup period and is less efficient than an iPSC write . Therefore, the time for

the multitude of individual writes accumulates rapidly. In addition, the structure of NECBSC is

to perform fll calculations for a given case, then call the output routine (see Figure 4 in Chapter
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i860: Modl.6, exic

# of Nodes Elapsed Time (ms) Speedup Efficiency
1 37303 1.24 124%
2 38478 1.20 60%
4 48496 0.95 24%
8 71964 0.64 8%

Table 4. Performance: Multiple-Banners, Merge on Host(Modl.5)

4). Presuming the nodes stait at essentially the same time and the passive load balancing causes

them to finish all at once, thousands of individual F77 write "messages" are dumped on the system

network together. The resulting saturation causes nodes to be idled, and elapsed times to increase

as shown in Table 4. This saturation effect causes the concurrent times to greatly exceed the serial

benchmarks. In addition, the banner information is replicated in all of the individual files, creating

overhead.

An immediate improvement is to writ, the header information from only one node. Since

the header is approximately half the total ou °put, a reduction in communications traffic of nearly

50% is possible There is an additional sy .ergistic effect if the communications traffic is reduced

to below the saturation level.

5.5.2 Modl.6 This incremental modification eliminates the passing of duplicate header in-

formation. Solely node 0 now writes the header block. The times indicated in Table 5 include

elapsed time on one node and the host CPU time required to load the code on the nodes, merge

the data, and output the results. The performance is poor, and has a disappointing trend. Ide-

ally the times should drop as the number of nodes working on the problem increases. With the

demonstrated performance it would be reasonable to use only 2 nodes (near maximum speedup

with better processor utilization). This is obviously not a very woi thwnle approach since the same

problem can be solved on the host or one processor in less than 25 seconds.

Another limitation of this approach is it works with no more than 64 nodes, the F77 file
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i860: Modl.6, exIc

# of Nodes Elapsed Time (ms) Speedup Efficiency
1 59685 .39 39%
2 40808 .57 29%
4 39463 .59 15%
8 46982 .50 6%

Table 5. Performance: Single Banner, Merge on Host (Modl.6)

system allows only 99 units (files) open at a time. Work-arounds are possible (multi-stage merges)

but would add further performance penalties. Performance could be improved by using the iPSC

concurrent file system (CFS), but calls to the CFS do not correlate with formatted writes available

in standard F77. The burden of conversion would overly complicate the code modification process

and the penalty iii execution time would likely cancel any gains made by using CFS. Other options

for output are available and the programming to performance ratio is more favorable.

5.6 Data via 2D Array - Write from Hos, (Mod2.0 0. Mod3.5)

5.6.1 Mod2.O This modification requires duplication of the output routine on the host and

nodes. At the point when the data would be written, the nodes load the numerical output data into

an array of real numbers, in the order in which the data is normally printed out. After completing

one segment of the output array (in near- and far-zone cases there are two segments), it is sent in a

single iPSC message to the host (see Appendix C.4 for code excerpts). Because the setup overhead

is limited to a few messages rather than thousands, the transfer efficiency are much higher than in

the F77 writes approach.

The host parses the input deck and prints the banner information while the nodes are com-

puting and waits for the nodes to complete. It receives the 2D arrays and loads them into a 3D

array for ease of processing. Rather than calculate the output data, the array data is extracted

and loaded back into the output variables and a version of the standard output routine prints the

column headers (Appendix C.3).
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i860: Mod3.5, exlc 777 7_
# of Nodes Elapsed Time (ms) Speedup Efficiency

1 21611 1.08 108%
2 17116 1.36 68%
4 15329 1.52 38%
8 15541 1.50 19%

Table 6. Performance: 2D Array messages, All Output from Host

While attempting Mod2.0, a numerical error was introduced. At the time, the error could not

be located, so that version was set aside and ostensibly the same modifications were re-implemented

in Mod3.0. Corrections and improvements advanced the version to Mod3.5 before fixing the con-

figuration.

5.6.2 Mod3.5 This time the modifications implemented successfully despite the numerous

problems that surfaced. In Mod3.5 the array scheme is applied to the near zone case only, to

demonstrate the technique. Speedups significantly above one are obtained, as shown in Table 6.

However, the trend is still skewed between 4 and 8 nodes: it is quicker to compute using 4 nodes

than with 8.

Each segment of that output has 7 columns, necessitating a 7 by 361 (typically) real array for

output data. Since F77 does not allow dynamic memory allocation, the array to be sent must be

a fixed size. Because the array is declared larger than needed, only the length (number of output

lines) necessary is sent. However, the near zone segments, not parallelized in Mod3.5, have between

5 and 12 columns. If the data array were sized for the maximum number of columns, sending a

5-column segment would requirc sending 140% more data than necessary.

5.7 Data via Linear Array (Mod.O)

This version of the code implements a linear array representation of the output data. The

"(ectorization" is applied to all sections of the output routine because the technique is equally
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i860: Mod4.0, exlc

# of Nodes Elapsed Time (ms) Speedup Efficiency
1 20475 1.14 114%
2 16416 1.42 71%
4 14645 1.59 40%
8 1 14723 1.59 20%

Table 7. Performance: ID Vector Messages, All Output from Host

efficient with any number of output columns since the vector only has one "column". A section of

the declared data vector is filled and sent to the host where it is loaded into the same 3D arlay as

used in Mod3.5.

Mod4.0 is the most efficient version created to date, for far zone output. Modifications to

the near-zone and antenna coupling options contain bugs which prevent the use of these output

options. The results for the benchmark example Ic, which uses the far-zone output option, are

shown in Table 7. For this example, the 4 node case is still the fastest option.

5.8 Timing Summary

Each subsequent version of the code showed improvement over previous modifications as

shown in Table 8. The most drastic improvement in speedup is when the output data is passed via

message (actually starting with version 2.0). Beyond that change, subsequent improvements are

slight.

5.9 General Observations

5.9.1 Choice of Loop Decomposition Division in the looping structure at the pattern cuts

loop directly (through the input routines) implies that any calculations performeil outside the

pattern cut loop are repeated by all of the nodes. Unfortunately, if the structure of the problem is

such that the volumetric angle variable has many iterations and the iterations of the pattern cut

loop variable are few (and not a multiple of the number of nodes), a significant penalty is incurred.
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Example 19 on iPSC/860
Speedup (SU) & Efficiency (EFF)

S UEff
Mod# Nodes Time (ms) 1(vs. Mod0.5)

4.0 1 43016 1.07 1.07
4.0 2 28064 1.64 .82
4.0 4 21036 2.19 .55
4.0 8 18359 2.51 .31
3.5 1 44348 1.04 1.04
3.5 2 28711 1.60 .80
3.5 4 22221 2.08 .52
3.5 8 18947 2.43 .30
1.6 1 39076 1.18 1.18
1.6 2 33000 1.40 .70
1.6 4 36217 1.27 .32
1.6 8 45104 1.02 .13
0.5 1 46132 1.00 1.00

Table 8. Speedup Summary (by Code Version)

In general, this is not true of NECBSC problems; users usually specify pattern cuts of some sort,

resulting in a reasonable division of effort despite the use of differing reference locations.

There is a significant amount of code positioned prior to the pattern cut looping structure:

initialization, input parsing, and geometry precalculations. The information is calculated on all

the nodes and is needed by all nodes. Based on the penalty for using communications, it seems

appropriate to leave the duplication, rather than compute the data once and send it to all the nodes.

Normally (especially in the far zone) a complete azimuth sweep (360 degrees) is spccified. Even

at a step size of 5 degrees, 64 calculations are necessary, coincidentally a multiple of the number

of nodes availab! If the user is judicious and chooses a multiple of 8, the code will always retain

its efficiency. If the number of iterations drops to a small, non-integer multiple of the number of

nodes, efficiency will drop due to the idled nodes.

5.9 2 GetCols Program Rather than implement a data transfer routine for the creation

of a binary plot-data file, a simple data extractor was coded. This program (getcols.f, listed in

Appendix C 5) processes an output file created by NECBSC (any version) and selectively extracts

36



desired columns from each data section of the output. Getcols creates a standard space-delimited

two-column output file that is compatible with most plotting programs. It also limits the number

of points in the resulting file to 150, to fit the limitations of the gnuplot graphing program used in

these analyses.

5.9.3 Understanding the Problem Almost without exception, any problem or bug encoun-

tered was a result of a misunderstanding of the true nature of the code or programming environ-

ments. It is essential to fully understand the nature and structure of the problem (and/or existing

code) as well as the compiler, operating system, and hardware. Anything less than full under-

standing will be amplified by the concurrent environment and typically result in problems during

coding.

5.9.4 Concurrent Debugginq The complications introduced by the concurrent environment

are well demonstrated by examining the debugging process. Simple programming errors can man-

ifest themselves quite differently in a concurrent processing environment. For instance, an actual

error (diagramed in Figure 5): a bug in the code of a node process blocks a message expected

by the host process. The host process waits to receive a message that never comes and "hangs",

causing the user to abort the run. The difficulty in diagnosing the problem is that the external

manifestation of these events point in a different direction. A series of write statements that cre-

ate an output file earlier in the process one code appears to have failed because the output file is

incomplete.

In fact, the writes completed successfully prior to the buggy send-receive statements, writing

the complete data to several system buffers; the last buffer is not completely filled by the writes, so

the operating system waits until it does fill or is flushed by the normal termination of the program,

the last buffer's contents are destroyed when the program is manually killed. Thus the indications

are that the problem exists in the writes in the output routine on the host, when the problem is

really in a second process on the node in a section that is executed after the symptomatic output
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ROUTINE ROUTINE i
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END-TIME

Figure 5. Example of Debugging in a Concurrent Environment

section has completed. Adding a debugging breakpoint to the program could confuse a programmer

because the writes would terminate normally and one might search indefinitely for a timing problem

that doesn't exist. In the case of this real problem, only a deep understanding (by others) of the

hardware • d operating system unraveled the problem.

5.10 Summary

Modifications to the NECBSC source code were generally successful, though some were em-

inently more worthwhile than others. In a generic data decomposition poblem, the input and

output of the problem should be examined for data structures that are conducive to consc-lidation.

The use of a post-process for the actual output of results is viable, though use of the first idle

node for this purpose should be investigated, if the data structure permits output before all nodes

complete. F77 writes should be avoided on node processes, and passed data should bc consolidated

to minimize the communications setup overhead. In any case, the modifications performed on

NECBSC demonstrate the viability of modifying existing data-decomposable code.
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VI. Mod4.0 Performance

6.1 General

6.1.1 Documentation No additional documentation for the iPSC versions of NECBSC was

written in the course of this research. The Mod4.0 version is a direct replacement for the original

cod 3, with a few caveats: some commands are unavailable (see Section 6.1.2); the subroutine timing

blocks provided for in the original code are disabled (they are included in Modl.6); UNIX System

V is case sensitive so the input filenames must be given in proper case; the input file must have a

".inp" extension (NECBSC requires ".INP"), ".inp" is added, if not entered with the filename.

6.1.2 NECBSC Command Limitations Mod4.0 has several limitations imposed by the mod-

ifications, over and above original limitations. The following optionb are inoperable at this time

(see (11:45-156) for detailed explanation of commands):

* Near-Zone ("PN", "BN", )

" Antenna Coupling (uses"PN")

* Plottable Output ("PP")

6.2 Concurrent Performance

6.2.1 Speedup vs ModO.5 The performance of Mod4.0 is outstanding. A speedup of 4.68 is

achievable on the iPSC/2 (2.51 on the /860) as shown in Table 9. These data are from example

19, a far-zone, eight-sided cylinder section (11:298).

Since the AFIT iPSC/2 has both the Weitek and 80387 math coprocessors available, the code

was compiled under each environment and timing data taken. These data show that the Wietex

coprocessor holds a significant computational advantage over the 80,7, though the communications

time need be subtractcd if one is to get a real figure of rncrit. The trend across the three platforms
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Exanple 19 Speedup (SU) & Efficiency (Eff) by Machine
iPSC/860 iPSC/2 (Weitex) iPSC/2 (80387)

Mod# Nodes Time (ms) SU I Eft Time (ms) SU I Eft Time (ms) SU I E ft[(vs. ModO.5) (vs. Mod0.5) (vs. 1 node)

4.0 1 43016 1.07 107% 80562 1.07 107% 132032 1.00 100%
4.0 2 28064 1.64 82% 47308 1.82 91% 72761 1.81 91%
4.0 4 21036 2.19 55% 31496 2.72 68% 43897 3.01 75%
4.0 8 18359 2.51 31% 23923 3.59 45% 30231 4.37 55%
0.5 1 46132 1.00 100% 85931 1.00 100% - - -

Table 9. Performance vs Computer

is that, although raw times are smaller on the faster machine, the speedup and efficiencies are better

on the slowest machine (relative to a serial baseline on the same hardware.) The communications

overhead for the three machines is fairly constant, causing the overhead-to-computation ratio to

increase when computation speed is slower.

6.2.2 Speedup vs Mainframes When one references Mod4.0 speedups and efficiencies to

those of the VAX and microVAX, the speedups and efficiencies given herein are simply multi-

plied by a constant factor equ;valent to the corresponding speedup figures given in Table 2. For

exaD'n!e, exl9 on the iPSC/860 produces a speedup of 2.51 x 6.1 = 15.9 referenced to the VAX

11/780 or 4.03 vs. the uVAX.

6.2.3 Speedup vs Problem Size The size of NECBSC output is relatively constant, indepen-

dent of the complexity of the problem. Since the communication time is related to only the output

requireineilts, larger problems have less overhead per calculation. As such, larger problems show

better speedup and efficiency, as shown in Table 10.

6.3 Aui ,ala('Y

All the modifications of NECBSC return results to the same degree of numeric precision as

ModO 5 run on the same hardware. Changing the math coprocessor used on the iPSC/2 did not
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iPSC/860 Speedup (SU) & Efficiency (Eff) (Mod4.0 vs MOS0.5)
Problem Ic Problem 6 J Problem 19

#of Nodes Time (ns) [ SU lEff Time (ms) SU Eff Time (ms) I SU Ef

! 20475 1.14 .14 40344 .83 .10 43016 1.07 1.07
2 16416 1.42 .18 26858 1.24 .16 28064 1.64 .82
4 14645 1.59 .20 20544 1.63 .20 21036 2.19 .55
8 14723 1.59 .20 18440 1.81 .23 18359 2.51 .31

ModO.5: 23347 33438 46132

Table 10. Performance vs Problem Size

effect precision. Without actual data or a numerically exact solution, accuracy as defined herein

cannot be determined.

6.3.1 General Given a constant communications requirements, the combination of the ma-

chine with the slowest processor/numeric coprocessor and the most complex problem will have less

overhead per calculation producing greater speedup and efficiency. The maximum speedup actually

demonstrated by Mod4.0 is 4.37 (efficiency: 55%), relative to a baseline on the same hardware.

This confirms that reasonable performance is achievable through existing program modification

without resorting to the long and expensive method of re-coding from scratch.
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VII. Conclusions

7.1 Existing Code Modification

7.1.1 NECBSC As demonstrated with Mod4.0, modifying existing serial code for execu-

tion in a distributed processiag environment is both possible and profitable, though the results

are machine-, code-, and problem-dependent. Results show that, given common communications

hardware, the faster the processing capability of the machine, the less profitable it is to move from

a single processor to concurrent processing with like processors. Likewise, the larger the ratio

of calculations to output data size in a problem, the more efficient the code becomes. Since the

overhead is I/O limited, and the output data size is normally fixed, the efficiency of an infinitely

complex problem would approach 1. The data show actual speedups in the 4.6 range (28 referenced

the VAX 11/780) for problems much simpler than those one would anticipate in real life. Higher

speedups can be expected from more realistic problems.

7.1.2 Feasibzlity Based on the work accomplished, the generic task of porting existing serial

codes which are data-decomposable is both achievable and profitable. The techniques used with

the decompositioin of NECBSC should be applicable to other problems of this type, and to aless er

degree, to other types.

7.1.3 General It is essential the designer/programmer has a clear understanding of his oper-

ating environment (hardware/opcrating system) as well as the particular problem at hand. Almost

without exception, any problem or bug encountered in this research was a result of a misunder-

standing of the true nature of the code or environment.

7.2 Recommendations

7.2.1 Complete Mod4j.O Though Mod4.0 is the most efficient version of NECBSC produced

in this research, the inipleinentation is not complete, and there are some significant restrictions
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on which options can be used. Most of these limitations can be removed without a deep technical

knowledge of concurrent programming. Re-enabling the plot-file option may take a little extra

effort, but the technique used for the tabular output can be applied directly, or the getcols program

can be used or incorporated into the NECBSC code. The NECBSC subroutine timing blocks could

be re-enabled in a similar fashion.

7.2.2 Change Control Structure Great gains could be made by streamlining the code through

control decomposition of the problem, without using the structure of the existing program. The

numeric subroutines could be retained to avoid the need to reprogram the electromagnetic details,

but an intimate knowledge of the functioning of NECBSC would be required.
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Appendix A. Example 1c

The following is a description of Example 1c (11:190), as modified for use as a benchmark in
this research.

A.1 Example 1c Physical Problem

z

7Y

7

i y

lambda/2 Dipole

x
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A.2 Example 1c Input Data

CE: FAR ZONE PLATE TEST, EXAMPLE iC.
UN: UNITS IN INCHES
3
US: SOURCE UNITS IN WAVELENGTHS

0
FR: FREQUENCY IN GHZ

8.0
PF: PATTERN CUT
45. ,90. ,90. ,0.
T,90.
0. ,1. ,361
PG: PLATE GEOMETRY
4,0
0.,3.5,3.5
0. ,-3.5,3.5
0. ,-3.5,-3.5
O. ,3.5,-3.5
SG: SOURCE GEOMETRY
5.12,0.,0.
0. ,0. ,90. ,0.

-2,0.5,0.
1.,0.
LP: LINE PRINTER OUTPUT
T
XQ: EXECUTE CODE
EN: END CODE

This input deck differs from that in the manual because the "PP" option is disabled in the
modified code.
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A.3 Example Ic Screen Output

mbvsrm>runbsc
* NEC-BSC for iPSC/2 & iPSC/860 * 3.2i4.0, 6 May 91
* Scott Suhr & Gary B. Lamont

AFIT School of Engineering
- Banner written to disk from host
- Numeric data sent to host in real vector &

written to disk from host
Input desired Cube-Type (8rx, 4sx, etc):
8rx
Number of nodes attached: 8

Enter a filename for input (70 charactecs max)
exlc.inp
Input Filename = "exic.inp"

Host: CREAD Complete
Receive Far Zone E-Field arrays from nodes

Arrays received
Receive Far Zone Total Field arrays from nodes

Elapsed: Node Total Time (msec)
0 6452
1 6525

2 6512
3 6535

4 6510

5 6524

6 6561

7 6549

Output elapsed time (node 0, msec): 3793

Host CPU time required for startup: 1930
Host CPU time required for output: 6590

Total Host CPU time required: 8530

Approx. total elapsed time required: 14972
(node 0 + Startup + Output)
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A.4 Example 1c Output Data

* NEC-BSC 3.2i4.0, 6 May 91 *

* THE OHIO STATE UNIVERSITY *
* ELECTROSCIENCE LABORATORY *
* 1320 KINNEAR RD. *
* COLUMBUS, OHIO 43212 *

* WRITTEN BY RONALD J. MARHEFKA *

* MODIFED FOR iPSC/2 & iPSC/860 BY *
* SCOTT SUHR AND *
* DR GARY B. LAMONT *
* A.F. INSTITUTE OF TECHNOLOGY *
* &FIT/ENG *
* Wk:!HT PATTERSON AFB OH 45433-6583 *

* CE: FAR ZONE PLATE TEST, EXAMPLE IC. *

* UN: UNITS IN INCHES *

* ALI THE LINEAR DIMENSIONS BELOW ARE ASSUMED TO BE IN INCHES *

* US: SOURCE UNITS IN WAVELENGTHS *

* SOURCE LENGTH HS AND WIDTH HAWS ARE ASSUMED TO BE IN WAVELENGTHS *

* FR: FREQUENCY IN GIZ *

* FREQUENCY= 8.000 GIGAHERTZ *

* WAVELENGTH= 0.037474 METERS *

************************************************************************$****

* PF: PATTERN CUT *
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* PATTERN AXES ARE AS FOLLOWS: *

* VPC(1,1)= 1.00000 VPC(1,2)= 0.00000 VPC(l,3)= 0.00000 *

* VPC(2,1)= 0.00000 VPC(2,2)
= 

0.70711 VPC(2,3)
-0 .7 071 1

*

* VPC(3,1)= 0.00000 VPC(3,2)= 0.70711 VPC(3,3)= 0.7071. *

* PHI IS BEING VARIED WITH THETA= 90.00000 *

* START= 0.00000 STEP= 10.00000 NUMBER= 36 *

* PG. PLATE GEOMETRY *

* THIS IS PLATE NO. 1 IN THIS SIMULATION. *

* METAL PLATE USED IN THIS SIMULATION *

* PLATE* CORNER INPUT LOCATION IN INCHES ACTUAL LOCATION IN METERS *

* 1 1 000 3.0 .00 000 0.8, 009 *

* 1 1 0.000, 3.500, 3.500 0.000, 0.089, 0.089 *

* 2 0.000, -3.00, 3.500 0.000, -0.089, 0.089 *

* 1 2 0.000, -3.500, -3.500 0.000, -0.089, -0.089 *

* 1 3 0.000, -3.500, -3.500 0.000, -0.089, -0.089 *

* SG: SOURCE GEOMETRY *

* THIS IS SOURCE NO. 1 IN THIS COMPUTATION. *

* THIS IS AN ELECTRIC SOURCE OF TYPE -2 *

* SOURCE LENGTH= 0.50000 AND WIDTH= 0.00000 WAVELENGTHS *

* SOURCE LENGTH= 0.01874 AND WIDTH= 0.00000 METERS *

* THE SOURCE WEIGHT HAS MAGNITUDE
=  

1.00000 AND PHASE= 0.00000 *

* SOURCE* INPUT LOCATION IN INCHES ACTUAL LOCATION IN METERS *

* 1 5.120, 0.000, 0.000 0.130, 0.000, 0.000

* THE FOLLOWING SOURCE ALIGNMENT IS USED: *

* VXSS(1,, = 1.00000 VXSS(,2, 1)
= 
0.00000 VXSS(1,3, 1)

= 
0.00000 *

* VXSS(2,1, 1)= 0.00000 VXSS(2,2, 1)
= 

1.00000 VXSS(2,3, )
= 
0.00000 *
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* VXSS(3,1, 1)= 0.00000 VXSS(3,2, 1)= 0.00000 VXSS(3,3, 1)= 1.00000 *

* *

* LP: LINE PRINTER OUTPUT *

* DATA WILL BE OUTPUT ON LINE PRINTER !! *

* XQ: EXECUTE CODE *

THE FAR ZONE ELECTRIC FIELD

THE FIELDS ARE REFERENCED TO THE PATTERN COORDINATE SYSTEM

E-THETA E-PHI
THETA PHI MAGIITUDE PHASE DB MAGNITUDE PHASE DB
90.00 0.00 8.8940E+00 -84.45 -9.79 8.8940E+00 -84.45 -9.79
90.00 10.00 4.7805E+01 173.96 4.82 4.7189E+01 175.34 4.70
90.00 20.00 9.7150E+01 -171.72 10.98 9.1802E+01 -172.26 10.48
90.00 30.00 1.6891E+01 63.95 -4.22 1.4346E+01 71.77 -5.64
90.00 40.00 4.5892E+01 -10.23 4.46 3.5318E+01 -8.07 2.19
90.00 50.00 4.9061E+01 168.09 5.04 3.2444E+01 165.52 1.45
90.00 60.00 3.7278E+01 -11.82 2.66 1.8220E+01 -8.70 -3.56
90.00 70.00 3.4701E+01 158.19 2.03 1.1771E+01 152.71 -7.36
90.00 80.00 3.9181E+01 -49.22 3.09 6.5564E+00 -40.56 -12.44
90.00 90.00 3.8790E+01 86.62 3.00 9.4583E-01 -114.94 -29.26
90.00 100.00 3.5702E+01 -123.80 2.28 5.1622E+00 55.67 -14.52

0
90.00 110.00 4.0396E+01 18.61 3.35 1.4679E+01 -158.43 -5.44
90.00 120.00 4.1535E+01 -169.40 3.59 2.0830E+01 7.60 -2.40
90.00 130.00 3.2226E+01 18.32 1.39 2.0759E+01 -156.99 -2.43
90.00 140.00 2.4078E+01 -160.21 -1.14 1.7693E+01 16.28 -3.82
90.00 150.00 1.8294E+01 56.05 -3.53 1.5279E+01 -116.90 -5.09
90.00 160.00 1.8854E+01 -132.10 -3.27 1.7585E+01 44.68 -3.87
90.00 170.00 7.6055E+00 138.59 -11.15 6.9786E+00 -33.29 -11.90
90.00 180.00 1.8794E+01 -28.10 -3.29 1.8794E+01 151.90 -3.29
90.00 190.00 7.6055E+00 138.59 -11.15 6.9786E+00 -33.29 -11.90
90.00 200.00 1.8854E+01 -132.10 -3.27 1.7585E+01 44.68 -3.87

0
90.00 210.00 1.8294E+01 56.05 -3.53 1.5279E+01 -116.90 -5.09

90.00 220.00 2.4078E+01 -160.21 -1.14 1.7693E+01 16.28 -3.82
90.00 230.00 3.2226E+01 18.32 1.39 2.0759E+01 -156.99 -2.43
90.00 240.00 4.1535E+01 -169.40 3.59 2.0830E+01 7.60 -2.40
90.00 250.00 4.0396E+01 18.62 3.35 1.4679E+01 -158.43 -5.44
90.00 260 00 3.5702E+01 -123.80 2.28 5.1622E+00 55.67 -14.52
90.00 270.00 3.8790E+01 86.62 3.00 9.4582E-01 65.06 -29.26
90.00 280.00 3.9181E+01 -49.22 3.09 6.S564E+00 -40.56 -12.44
90.00 290.00 3.4701E+01 158.19 2.03 1.1771E+01 152.71 -7.36
90.00 300.00 3.7278E+01 -11.82 2.66 1.8220E+01 -8.70 -3.56

0
90.00 310.00 4.9061E+01 168.09 5.04 3.2444E+01 165.52 1.45
90.00 320.00 4.5892E+01 -10.23 4.46 3.5318E+01 -8.07 2.19
90.00 330.00 1.6891E+01 63.95 -4.22 1.4346E+01 71.77 -5.64
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90.00 340.00 9.7150E+01 -171.72 10.98 9.1802E+01 -172.26 10.48
90.00 350.00 4.7805E+01 173.96 4.82 4.7189E+01 175.34 4.70

TOTAL RADIATION INTENSITY IN DB

THE FIELDS ARE REFERENCED TO THE PATTERN COORDINATE SYSTEM

THETA PHI MAJOR MINOR TOTAL AXIAL RATIO TILT ANG SENSE
90.00 0.00 -6.78 -100.00 -6.78 0.00000 45.00 LINEAR
90.00 10.00 7.77 -30.59 7.77 0.01208 44.63 LEFT
90.00 20.00 13.76 -32.82 13.75 0.00469 43.38 RIGHT

90.00 30.00 -1.88 -25.30 -1.86 0.06744 40.30 LEFT
90.00 40.00 6.48 -28.31 6.4e 0.01823 37.58 LEFT
90.00 50.00 6.61 -27.10 6.62 0.02063 33.47 RIGHT
90.00 60.00 3.58 -29.76 3.59 0.02152 26.03 LEFT
90.00 70.00 2.50 -28.23 2.51 0.02905 18.68 RIGHT
90.00 80.00 3.21 -29.00 3.21 0.02453 9.40 LEFt
90.00 90.00 3.00 -37.96 3.00 0.00895 -1.30 LEFT
90.00 100.00 2.37 -55.23 1.37 0.00132 -8.23 LEFT

0
90.00 110.00 3.89 -31.73 3.89 0.01657 -19.95 RIGHT
90.00 120.00 4.57 -29.01 4.57 0.02095 -26.61 LEFT
90.00 130.00 2.89 -25.68 2.90 0.03727 -32.75 RIGHT
90.00 140.00 0.73 -29.94 0.73 0.02926 -36.29 LEFT
90.00 150.00 -1.25 -25.59 -1.23 0.06064 -39.83 RIGHT

90.00 160.00 -0.55 -31.60 -0.55 0.02804 -43.00 LEFT
90.00 170.00 -8.52 -31.54 -8.50 0.07066 -42.51 RIGHT
90.00 180.00 -0.28 -100.00 -0.28 0.00000 -45.00 LINEAR
90.00 190.00 -8.52 -31.54 -8.50 0.07066 -42.51 RIGHT
90.00 200.00 -O.SS -31.60 -0.55 0.02804 -43.00 LEFT

0
90.00 210.00 -1.25 -25.59 -1.23 0.06064 -39.83 RIGHT
90.00 220.00 0.73 -29.94 0.73 0.02926 -36.29 LEFT
90.00 230.00 2.89 -25.68 2.90 0.03727 -32.75 RIGHT
90.00 240.00 4.57 -29.01 4.57 0.02095 -26.61 LEFT
90.00 250.00 3.89 -31.73 3.89 0.01656 -19.95 RIGHT
90.00 260.00 2.37 -55.23 2.37 0.00132 -8.23 LEFT
90.00 270.00 3.00 -37.96 3.00 0.00895 1.30 RIGHT
90.00 280.00 3.21 -29.00 3.21 0.02453 9.40 LEFT
90.00 290.00 2.50 -28.23 2.51 0.02905 18.68 RIGHT
90.00 300.00 3.58 -29.76 3.59 0.02152 26.03 LEFT

0
90.00 310.00 6.61 -27.10 6.62 0.02063 33.47 RIGHT
90.00 320.00 6.48 -28.31 6.48 0.01823 37.58 LEFT
90.00 330.00 -1.88 -25.30 -1.86 0.06744 40.30 LEFT
90.00 340.00 13.75 -32.83 13.75 0.00469 43.38 RIGHT
90.00 350.00 7.77 -30.59 7.77 0.01208 44.63 LEFT

* EN: END CODE
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Appendix B. Precision Comparison

B.0.1 VAX , '0386

4*4* 4*444**4*444****44**************4**** **** 444444 *****

* NEC-BSC 3.214.0, 6 May 91 *
* *

* CE: FAR ZONE PLATE TEST, EXAMPLE IC.

THE FAR ZONE ELECTRIC FIELD

THE FIELDS ARE REFERENCED TO THE PATTERN COORDINATE SYSTEM

E-THETA E-PHI

THETA PHI MAGNITUDE PHASE DB MAGNITUDE PHASE DB

90.00 0.00 8.8941E+00 -84.4S -9.79 8.8941E+00 -84.45 -9.79

90.00 10.00 4.7239E+01 174.14 4.71 4.6800E+01 175.80 4.63

90.00 20.00 9.7978E+01 -171.28 11.05 9.2693E+01 -171.70 10.57

90.00 30.00 1.6908E+01 61.19 -4.21 1.4053E+01 68.78 -5.82

90.00 40.00 4.5705E+01 -10.26 4.43 3.4954E+01 -8.62 2.10

90.00 50.00 4.8741E+01 167.18 4.98 3.2245E+01 164.18 1.40

90.00 60.00 3.7481E+01 -11.56 2.70 1.8403E+01 -8.88 -3.48
90.00 70.00 3.4858E+01 157.66 2.07 1.2208E+0i 152.74 -7.04

90.00 80.00 3.8895E+01 -48.68 3.02 6.0098E+00 -38.92 -13.20

90.00 90.00 3.9183E+01 86.42 3.09 1.3009E+00 -97.21 -26.49

90.00 100.00 3.5275E+01 -124.09 2.18 4.9598E 00 49.57 -14.86

B.0.2 i860

* NEC-BSC 3.2i4.0, 6 May 91 *

* CE: FAR ZONE PLATE TEST, EXAMPLE IC. *
* ** * ***44***4**4*4 ** **$** ** *$** ***$*** *** *** *** * ** *4***444

THE FAR ZONE ELECTRIC FIELD

THE FIELDS ARE REFERENCED TO THE PATTERN COORDINATE SYSTEM

E-THETA E-PHI

THETA PHI MAGNITUDE PHASE DB MAGNITUDE PHASE DB

90.00 0.00 R.8q40R+O0 -84.45 -9 79 8.8940EI00 -84.45 -9.79

90.00 10.00 4.7805E+01 173.96 4.82 4.7189E+01 175.34 4.70

90.00 20.00 9.7150E+01 -171.72 10.98 9.1802E+01 -172.26 10.48

90.00 30.00 1.6891E+01 63.95 -4.22 1.4346E+01 71.77 -5.64

90.00 40.00 4.5892E+01 -10.23 4.46 3.5318E+01 -8.07 2.19

90.00 50.00 4.9061E+01 168.09 5.04 3.2444E+01 165.52 1.45

90.00 60.00 3.7278E+01 -11.82 2.66 1.8220E+01 -8.70 -3.56

90.00 70.00 3.4701E+01 158.19 2.03 1.1771E+01 152.71 -7.36

90.00 80.00 3.9181E+01 -49.22 3.09 6.5564E+00 -40.56 -12.44

90.00 90.00 3.8790E+01 86.62 3.00 9.4583E-01 -114.94 -29.26

90.00 100.00 3.5702E+01 -123.80 9 ?A S 16??F+00 55 67 -14 52
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Appendix C. Code Samples

C.1 Mod4.0 Host Main Routine

Program run-bscnode
CCC
C!!! Host Program for NECBSC-iPSC/2 & i860

C!!!
C!!! Get InputFileName, output decision, & size of cube from user
C!!! Get & Load Cube
C!!! Get start & end time from each node
C!!! Receive data from nodes, Print Header and Data to tile
C!!! Calculate Elapsed time for each node
C!!! Calculate CPU Time for host
C!!!
C!!! Version and date information.

CHARACTER VERDAT*18
PARAMETER (VERDAT='3.2i4.0, 6 May 91')

C!!! ( '

CHARACTER VERDTE*18
COMMON/VRSDAT/VERDTE

integer MSG-LENGTH, START, STARTUP, MTIME
integer STARTIME(129), TOTIME(129), TIME, MIN-TIME, HOST-START
character NAMINP*70, LPRSAV*70, NAMOPN*70, NAMCOR*70, MSG*70
character STTOPN*7, FRMOPN*IS
CCC! Pattern information.

INTEGER NPN NPV
LOGICAL LPATR,LPATS,LVOLP
COMMON/OUTPNV/NPN,NPV,LVOLP,LPATS,LPATR

C!!! Frequency information.
INTEGER NFQG
LOGICAL LFQG
REAL FQGI,FQGS,FRQG
COMMON/OUTPFQ/FRQG,FQGS,FQGI,NFQG,LFQG

C!!! Test information.
LOGICAL LDEBUG,LOUT,LTEST,LWARN
COMMON/TEST/LDEBUG,LTEST,LWARN,LOUT

C ----------------------------------------------------------------------
CCC Node Information.

character CUBETYPE*3
integer INTSIZE, REAL-SIZE
integer MY-HOST, NUMNODES, PER _NODE, NODE, INDEX8, INDEX2
common/iPSC/MYHOST, NUMNODES, PER-NODE, INTSIZE, REAL-SIZE

integer IUI,IUO,IUP,IUG,IUT,IUW,IURI,IUSI
COMMON/INOUT/IUG,IUI,IUO,IUP,IURI,IUSI,IUT,IUW
real OUTREAL
integer OUT-START, HOST-START
INTSIZE=4
REALSIZEz4
HOSTSTART=mclock()
VERDTE=VERDAT

C!!!
C!!! Print Header Info to Screen
C!!!

write(*,*)' * NEC-BSC for iPSC/2 & iPSC/860 * ',VERDTE,' *'
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write(*,*)' *Scott Suhr & Gary B. Lamont
write(*,*)' AFIT School of Engineering'
write(*,*)' - Banner written to disk from host'
write(*,*)' - Numeric data sent to host in real vector &I
write(*,*)' written to disk from host

C!!!-------------------------------------------------------------------
C!!! Get # of nodes from user & get-cube
C!M'

write(*,*)'Input desired Cube-Type (8rx, 4sx, etc):'
READ(* ,*) CUBE-TYPE
call getcube('neebsc',CUBE.TYPE,' ',O)
call setpid(8i)
NUM-.NODES~numnodeo
write(*,*)'Number of nodes attached:', NUM..NODES
if (KUM-NODES.LT.1) goto 999

C!!! ------------------------------------------------------------------
C!! Get filename from user & parse for "core" name
CM'
30 call Parse-Filenames(IC,NAMCOR)

C!! ---------------------------------------------------------
C!! Open input file & call Parse-Filenames again if necessary
C!''
NAMOPN(.: IC)=NAMCOR
NAMOPN(IC+ : IC+4)=' inp'
STTOPN(1:7)'IOLD
FRMOPN(1 :i5)='UNFORMA'PTED'

OPEN (UNIT=IUI ,FILE=NAMOPN ,FORM=FR4OPN,
2 STATUS=STTOPN ,IOSTAT=IERR)

IF (IERR.GT.O) THEN
WRITE(*,*) ' CAN NOT OPEN FILE: ',NAMOPN
NAMOPN(1:ICX)='I
WRITE(*,FMT='(A)') ' TRY AGAIN'
GO TO 30

END IF
write(*,*)'Input Filename = ',NAMOPN(1:IC+4),'"'
C!! ------------------------------------------

C!'! Send sizeof(NAMCOR)=IC and NAMCOR to nodes
CM I

call isend(100,IC,INT-SIZE,-1,0)
call isend(1O1,NAMCOR,IC,-1,0)

C!!! --------------------------------------------------------
LPRSAV= 'Y'
call load('bscnode', -1, 0)

C!!' ---------------------------------------------------------
C!! Opea Single Output File
C!'!
if ((LPRSAV.NE.'N').AND.(LPRSAV.NF.'n')) then

NAMOPN(i:IC)=NAMCOR(1 :IC)
HAMOPN(IC+l:IC+4=' .OUT'
STTOPN(1:7)'IUNKNOWN'

FRMOPN(1:11)-FORMATTEDI
OPEN (UNIT=IUO ,FILE=NAMOPN ,FORM=FRMOPN,

2 STATUS=STTOPN, IOSTAT=IERR)
if (IERR.NE.O) then
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WRITE(*,FMT='('10-) ' CAN NOT OPEN FILE m',NAMOPN,""
STOP

end if
c else
c IUO=6
c IUW=6

end if
CC M ---------------------------------------------------------.... ..... .....

CM Initialize variables used by CREAD & OUTWRT
C!MI

VERDTE=VERDAT
call CMDNX
goto 1001
C!M ---------------------------------------------------------.... ..... .....

C!!! Loop back to here if multiple runs in input deck
C!' !
1000 continue

11UST-ST.. IARPI -nu~,lc ()

1001 continue
C!M' -------------------------------------------------......................
C!! Read input deck & produce header info
C!!!
c write(*,*)'Host: call CREAD'

call CREAD
write(*,*)'Host: CREAD Complete'
STARTUPmclocko()-HOST.START
C!! ---------------------------------------------------------
C!! Get start time from each node
CM'

do 100 j=1,NUM-NODES
call crecv(102,TIME, INT-SIZE)
iinfonodeoC
STARTIME(i+1 )=TIME

100 continue
C!! ---------------------------------------------------------
C!! Receive output data & write/print outpit files
CM'
OUTSTARTmclockoC
C!M Pick namber of idices for actual output

IF (LFQG) THEN
NFPI=NFQG

ELSE
C!! Initialize pattern point number.

IF (LDEBUG .OR.LTEST.OR.LFQG) THEN
NFP1~i

ELSE
NFP 1=NPN

END IF
C!'
c write(*,*)'Call OUTWRT'
call OUTWRT(NFP1)
c write(*,*)'Host: OUTWRT complete'
C!'! ---------------------------------------------------------
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C!!! Get end time from each node,
C!!! calculate total, & print to screen
C!!!
c goto 1000

do 900 j=i,NUMNODES
call crecv(200,TIME,INT_SIZE)

i=infonode()
TOTIME(i+1)=TIME-STARTIME(i+1)
c write(*,*) i, STARTIME(i+l), TIME, TOTIME(i+1)
900 continue

write(*,*)'Elapsed: Node Total Time (msec)'
do 901 i=l,NUM-NODES

write(*,*) i-I,' ', TOTIMEi)
901 continue

call crecv(201,TIME,INT_SIZE)
write(*,'(A,i7/)'),'Output elapsed time (node 0, msec):', TIME

C!!! -------------------------
C!!! Get Host elapsed times & print out
C!!!

write(*,'(A,i7)'),' Host CPU time required for startup:', STARTUP
MTIME=mclock()-OUTSTART

write(*,'(A,i7)'),' Host CPU time required for output: ', MTIME
TIME=mclock()-HOSTSTART

write(*,'(A,i7)'),' Total Host CPU time required:', TIME
TIME=STARTUP+MTIME+TOTIME(1)

write(*,'(A,i7)'),'Approx. total elapsed time required:', TIME
write(*,*) ' (node 0 + Startup + Output)'

C!!!
C!!! Go back to next problem or exit normally from CREAD.CMD.EN
C!!!
goto 1000
999 continue

C ! ! ! -- - - - - - - - - - - - - - - - - - - - - - - - - - - -

C!!! Close input & output files after fatal error

call FLCLS(IUI)
call FLCLS(IUO)

end
C!!!.
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C.2 Mod4.0 Node Main Routine Ezcerpis

C!I
Cl!! 0. iPSC STARTUP/OVERHEAD SECTION
C!!

INTSIZE=4

REALSIZE=4
MYHOST=myhost()
MYNODE=mynode()
TIME=mclock()

C!!!
C!!! Send Start-Time to host
C!!!

call isend(102,TIME,INTSIZE,MYHOST,81)
C! !!

C!!! i. INPUT SECTION
C!!!
C!!! Initialize the input commands.
CW!

VERDTE=VERDAT
CALL CMDNX

C!!!
C!! Open read and write files.
C!!!

CALL FLOPN(IUI)
CALL FLOPN(IUO)

IF(IUW.NE.IUO) CALL FLOPN(IUW)
C! !!-----------------------------------------------
C!!! Read input commands.
C!!!
2999 CALL CREAD

C!!!
C!!! 2. INITIALIZATION SECTION
C!!!

C!!!
C!!! 3. MAIN COMPUTATION SECTION
C!!!
C!!! Loop thru volumetric pattern points.

DO 1190 IIV=1,NPV
C!!! Set E fields to zero.

DO 2 I=1,NOX
CT(I)=(O.,O.)

DO 1 N=1,3
ET(N,I)=(O. ,0.)
HT(N,I)=(O.,O.)

1 CONTINUE
2 CONTINUE
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C!!! Initialize arrays used to define double diffraction sectors.
DO 42 J=i,NPX

DO 41 1=I,NEX
ID(I,J)=-1

41 CONTINUE
42 CONTINUE

DO 43 I=i,NOX
IDD(I)=O

43 CONTINUE
IF (LTERM) THEN
CALL FLOPN(IUG)
CALL FLOPN(IUT)

END IF
C!!! Loop thru individual GTD fields.

ITERM=O

1150 ITERM=ITERM+I
CALL CTERMS(ITERM)

yr TvT .'f 4n . N nT1124"l

if(W) WRITE(UNIT=IUO,FMT='(A,5X,A,T79,A)')
2 ' *',CTERM,'I*'

CALL GETCP(IDTIM)
END IF
IF (CTERN.EQ.'END') qO TO 1160

C!!! Loop thru sources when they do not move.
DO 1250 MSF=I,MSXF

IF (.NOT.LPATS) THEN
MS=MSF

C!!! Specify source geometry.
CALL GEOMS

C!!! Define various geometry properties of structure relative to the
C!!! source.

IF (LPLA) CALL GEOMPS
IF (LCYL) CALL GEOMCS
IF (LPLA.AND.LCYL) CALL GEOPCS

END IF
C!!! Loop thru pattern points.

DO 1100 IIC=1,NPNP
II=IIC

C!!! If source moves, determine source point in reference coordinate
C!!! system.

IF (LPATS) THEN
CALL PATPT(DS,RS,VPS,XPTS,VF1 S,PATS,IPTS,LRCTS,LNEAS

2 ,IICIIV)
END IF

C!!! If observer moves, determine observation point in reference
C!!! coordinate system.

IF (LPATR) THEN
CALL PATPT(DR,RR,VPRXPTRVPTR,PATR,IPTR,LRCTR,LNEAR

2 ,IICIIV)
END IF

C!!! Loop thru various sources if they move.
DO 1200 MSM=i,MSXM

IF (LPATS) THEN
MS=MSM
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C!!! Specify source geometry.
CALL GEOMS

C!!! Define various geometry properties of structure relative to the
C!!! source.

IF (LPLA) CALL GEOMPS
IF (LCYL) CALL GEOMCS
IF (LPLA.AND.LCYL) CALL GEOPCS

END IF
C!!! Loop thru receivers

DO 1170 MR=1,MRXP
C!!! Specify receiver location.

CALL GEOMR

C!! Loop on frequencies, if specified.
DO 1175 IIQ=I,NFQG

IF (LFQG) THEN
FQG=FQGS+FQGI*(IIQ-1)
WL=.2997925/FQG
WK=TPI/WL

END IF
C!!! Initialize individual UTD field type storage variables.

CTT=(O.,O.)

DO 1116 N=1,3
HTT(N)=(O.,O.)
ETT(N)=(O.,O.)

1116 CONTINUE
C!!! Calculate fields for the different UTD terms.

CALL CFIELD(CTERM,CTRM)
C!!! Pick storage idex.

IF (LFQG) THEN
IK=IIQ

ELSE
IK=IIC

END IF
C!'! Write out subtotal fields

IF (LOUT) THEN
CALL PRIOUT(SUBTOTAL',ITERM,IK,O,O,ETT)
IF (LRCVR) THEN

CALL PRIOUC('SUBTOTAL',ITERM,IK,O,O,CTT)
END IF

END IF
C!!! Superposition of the field components, and conversion of
C!!! the polarization to the pattern cut coordinate system.

IF (LRCVR) THEN
CT(IK)=CT(IK)+CTT'

ELSE IF (LSHDW) THEN

DO 1205 NJ=1,3
DO 1204 NI=1,3

ET(NJ,IK)=ET(NJ,IK)+ETT(NI)
HT(NJ,IE)=HT(NJ,IK)+HTT(NI)

1204 CONTINUE
1205 CONTINUE

ELSE
DO 1203 NJ=I,3

DO 1202 NI=1,3
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ET(NJ,IK)=ET(NJ,IK)+ETT(NI)*VPR(NJ,NI)
HT(NJ,IK)=HT(NJ,IK)+HTT(NI)*VPR(NJ,NI)

1202 CONTINUE
1203 CONTINUE

END IF
C!!! End of loop on frequencies.
1175 CONTINUE
C!!! End of loop on receivers.
1170 CONTINUE
C!!! End of loop on moving sources.
1200 CONTINUE
C!!! End of loop on pattern cut points.
1100 CONTINUE
C!!! End of loop on fixed sources.
1250 CONTINUE

IF (IIV.EQ.1) THEN
CALL GETCP(IETIM)
IFTIM=IETIM-IDTIM

IF (LTEST.OR.LDEBUG.OR.LOUT) THEN
if(W) WRITE(UNIT=IUO,FMT='(A,SX,2A,F1.5,A,T79,A)')

2 ' *',CTERM,' = ',CTIME,' CPU MINUTES','*'
ELSE

if(W) WRITE(UNIT=IUO,FMT='(IH+,A,5X,2A,FII.5,A,T79,A)')
2 '*',CTERM,' = ',CTIME,' CPU MINUTES','*'

END IF
END IF

C!!! Go get another UTD term.
GO TO 1150

C!!! End of loop on UTD terms.
1160 CONTINUE

IF (LTERM) THEN
CALL FLCLS(IUG)
CALL FLCLS(IUT)

END IF
C!!! Pick number of idices

IF (LFQG) THEN
NFP=NFQG

ELSE
NFP=NPNP

END IF
C!!! Extended field output, if specified.

IF (LOUT) THEN
DO 1206 II=I,NFP

IF (LRCVR) THEN
CALL PRIOUC('TOTAL ',II,II,II,II,CT(II))

ELSE
CALL PRIOUT(&TOTAL ',II,II,II,II,ET(1,II))

END IF
1206 CONTINUE

END IF
C!!! Calculate cpu time for each subroutine.
CCC! seconds instead of minutes
C !!!
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IF (IIV.EQ.NPV) THEN
CALL GETCP(IBTIM)

ICTIM=IBTIM-IATIM
CTIME=0.166667E-3*ICTIM

CTIME=0.1*ICTIM

if(W) WRITE(UNIT=IUO,FMT=FMBOX)
if(W) WRITE(UNIT=6,FMT='(A,SX,A,Fl.5,A,T79,A)')

2 ' *','CPU TIME FOR FIELD EXECUTION = ',CTIME
3 ,' SECONDS','*'
3 ,' MINUTES','*'

if(W) WRITE(UNIT=IUO,FMT=FMBOX)
END IF

C!!! Results are sent to unit IUO -- Output File

IF (LWRITE) THEN
CALL OUTWRT(ET,HT,CT,NFP,IIV)

END IF
C!!! Write plot data to file, if desired.
C!!! Note that the plot routines are not included, since they can
C!!! not be used on all systems. The user's own plot algorithms
C!!' can be interfaced through the plot data files.

C!!!
CCC ''PP'' Disabled
c IF (LVPLT.OR.LPLT) THEN
c IF (IIV.EQ.1) CALL FLOPN(IUP)
c CALL OUTPLT(ET,HT,CT,CTIME,NFP,IIV)
c IF (IIV.EQ.NPV) CALL FLCLS(IUP)
c END IF

C!!! End of volumetric pattern loop.
1190 CONTINUE

CCC--------------------------------------------
C!!! iPSC CLEAN-UP SECTION
C!!! (send end-time to host)
C!!!

TIME=mclock()
call csend(200,TIME,INTSIZE,MYHOST,81)

C!!! Return to read more commands (second input deck or END).
GO TO 2999

C!!!
C!!! ----------------------- END MAIN PROGRAM-------------------------
CM

END
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C.3 Mod4.0 Host Output Routine Excerpts

CCC CC.....-

SUBROUTINE OUTWRT(NFPI)
C !!!
C!!! ---- HOST VERSION ---- mod4.0 6 May 91
C!!!
C!!! This subroutine is used to output coupling and field
C!!! pattern data to a disk file.

C+++ Specification of maximum dimension sizes.
C+++
C+++ Maximum dimension for observation points.

INTEGER NOX
PARAMETER (NOX=1801)

CCC ------------------------------------------
C!!! Receive length of array(s) to be passed
C!!!
call crecv(900,NFP,INTSIZE)

NFPM1 = NFP-1

NFPREAL = NFP*REALSIZE
C!!!
CCC -------------------------------------------------------------------

IF (.NOT.LNEAR) THEN

CCC ---------------------------------------------------------------
CCC ---------------------------------------------
C!!! Output E-theta and E-phi representations,
C!!!--------------------------------------------
CCC ------------------------------------------
C!!! Length of array(s) to be passed
C!!!
if (LPATS) OUTSIZE2=2*NFPREAL
OUTSIZE7=7*NFPREAL
OUTSIZE8=8*NFPREAL

CCC -------------------------------------------
C!!! Write Header
C!!!

WRITE(UNIT=IUO,FMT=FLINE)
WRITE(UNIT=IUO,FMT='(/)')
WRITE(UNIT=IUO,FMT=FLINE)
WRITE(UNIT=IUO,FMT='(A,/)')

2 ' THE FAR ZONE ELECTRIC FIELD
WRITE(UNIT=IUO,FMT='(2A,/)')

2 ' THE FIELDS ARE REFERENCED TO THE PATTERN COORDINATE'
3 ,' SYSTEM I

WRITE(UNIT=IUO,FMT='(41X,A,31X,A)') 'E-THETA','E-PHI'
IF (LFQG) THEN
WRITE(UNIT=IUO

2 ,FMT='(IIX,A,14X,A,SX,A,6X,A,IIX,A,SX,A,6X,A)')
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3 'FREQ.','MAGNITUDE','PHASE','DB'

4 ,'MAGNITUDE','PHASE','DB'
ELSE
WRITE(UNIT=IUO

2 ,FMT='(6X,A,6X,A,IOX,A,5X,A,6X,A,IIX,A,SX,A,6X,A)')
3 'THETA','PHI','MAGNITUDE','PHASE','DB'
4 ,'MAGNITUDE','PHASE','DB'

END IF
IMAX=11

CM''
C!!! End Write Header
CCC -------------------

CCC----------------------------------------
C!! Receive Far Zone array(s) #1 from node
C!''
write(*,*)'Receive Far Zone E-Field arrays from nodes'
do 930 i2=1,NUMNODES

IF (LFQG) THEN
nall crecv(902.flTREAL.OUTSIZE7)

INDEX8=infonode()+l
ELSE

IF (LPATS) call crecv(901,OUTREAL2,UTSIZE2)

INDEX2=infonode()+1
call crecv(902,OUTREAL,OUTSIZE8)

INDEX8=infonode()+l
END IF

c write(*,*)'Received OUTREAL(2,2)=',OUTREAL(2,2)

do 931 i3=0,NFPM1
i37=i3*7
i38=i3*8
i3P1 = i3+1

IF (LFQG) THEN
do 929 i4=1,7

OUTREAL8N(INDEX8,i4,i3PI) = OUTREAL(i37+i4)
929 continue

ELSE
if(LPATS) then
OUTREAL2N(INDEX2,1,i3Pl)=OUTREAL2(i3*2+1)
OUTREAL2N(INDEX2,2,i3PI)=OUTREAL2(i3*2+2)

end if
do 932 i5=1,8

OUTREAL8N(INDEX8,i5,i3Pl) = OUTREAL(i38+i5)
932 continue

END IF
931 continue
930 continue

write(*,*)'Arrays received'
C!''
C!!! End Receive Far Zone Data #1
CCC -----------------------------------------------

CCC--------------------------------

62



CM Write Out Far Zone Data #i -

C!!
CCC initialize maximums

ETHMX=OUTREALSN(i ,3, i)*RANG
EPHMX=C2UTREAL8N(i,6, i)*FtANG
ETOTHX=ETHMX*ETHMX+EPHHX*EPHMX

DO 2 I=i,NFP

do 2 II11,NUM-.NODES
ITEMP=( (I-1)*NUM-NODES+II)
if (ITEMP.GT.NFPI) goto 299

IF (LFQG) THEN
CCC! load node data back into appropriate variables
FQG =OUTREAL8N(II,1,I)
ETHMR =OUTREAL8N(II,2,I)
ETHP =OUTREAL8N(II,3,I)
ETHDB = OUTREAL8N(II,4,I)
EPHMR = OUTREAL8N(II,5,I)
EPHP =OUTREAL8N(II,6,I)

EPHDB = OUTREAL8N(II.7.I)
WRITE(UNIT=IUO

2 ,FMT='(lH ,6X,F9.3,SX,2(7X,lPE11.4,3X,OPF7.2,3X,F7.2))')
3 FQG,ETHMR,ETHP ,ETHDB,EPHMR,EPHP,EPHDB

ELSE
IF (LPATS) THEN

CCC! load node data back into appropriate variables
PSA(2) =OUTREAL2N(II,i,I)
PSAC3) =OUTREAL2N(II,2,I)

WRITE(UNIT=IUO,FMT='(iH ,2(3X,F7.2))') PSA(2),PSA(3)
END IF

CCC! load node data back into appropriate variables
PRA(2) =OUTREAL8N(II,1,I)
PRA(3) =OUTREAL8N(II,2,I)
ETHMR = OUTREAL8N(II,3,I)
ETHP =OUTREAL8N(II,4,I)
ETHDB = OUTREAL8N(II,5,I)
EPHMR = OUTREAL8N(II,6,I)
EPHP = OUTREAL8N\(II,7,I)
EPHDB = OUTREAL8N(II,8,I)
C!!!

WRITE(UNIT=IUO
2 ,FMT=I(iH ,2(3X,F7.2),2(7X,IPEil.4,3X,OPF7.2,3X,F7.2))')
3 PRA(2) ,PRA(3) ,ETHMR,ETHP,ETHDB,EPHMR,EPHP,EPHDB

END IF
IF (ITEMP.GT.IMAX) IMAX=IMAX+iO
IF (ITEMP.EQ.IMAX) WRITE(UNIT=IUO,FMT=' (IHo)')

CM! Find maximums.
IF (ETHM.GT.ETHMX) ETHMX=ETHM
IF (EPHM.GT.EPHMX) EPHMX=EPHM
ETOT2 =ETHM*ETHM + EPHM*EPHM
IF (ETOT2.GT.ETOTMX) ETOTMX = ETOT2

299 continue
2 CONTINUE
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CC ----------------- ----
C!M Output Far Zone total field representations.
CCC -------------------------------------------
C!M Write Header
C!!!

CM '
CM! End write header
CCC ------------------

CCC ------------------------------------ I------
C!! Receive Far Zone total field array(s) from nodes
CM'

CCC ---------------------------------------

CCC --------------------------------------------------------------------
C!! Write out FZ data set #2
CM'

C'MI
CCC -----------------------------------------------------------------

ELSE IF (.NOT.LRCVR) THEN

CCC ---------------------------------------------------------------------
CCC -----------------------------------
CCC Near zone E-field representation.
CCC -----------------------------------

CCC -------------------------------------
C!! Near zone H-field representations.
CCC ---------------

CCC --------------------------------------------------------------------
CCC ----------------------------------
C!! Near zone power representation.
CCC ----------------------------------

CCC --------------------------------------------------------------------

ELSE
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CM! Antenna to anitenna coupling representation.
ccc--------------------------------------

WRITE (UNIT=IUO ,FMT=FLINE)
END IF

c write(*,*)'32h.f: OUTWRT Complete'
RETURN
END

65



C.4 Mod4.O Node Output Routine Examples

SUBROUTINE OUTWRT (ET,HT,CT,NFP,IIV)
C!!!
C!!! - NODE VERSION - mod4.0 6 May 91
C!!!
C!!! This subroutine is used to output coupling and field
C!!! pattern data to the host for output to disk.
C!!!

C+++ Specification of maximum dimension sizes.
C+++

C+++ Maximum dimension for observation points.
INTEGER NOX
PARAMETER (NOX=801)

START-TIME = mclock()
INTSIZE=4
REALSIZE-
MYNODE=mynode()
CCC ----------------------------------------------
C!!! Send length of data vectors to be transmitted
C!!!
call csend(900,NFP,INTSIZE,MYHOST,81)
NFPREAL = NFP*REALSIZE
CCC ----------------------------------------------

IF (.NOT.LPATR) THEN
DO 99 N=1,3

PRA(N)=XR(N)
99 CONTINUE

END IF
CCC -----------------------------------------------------------------

IF (.NOT.LNEAR) THEN

CCC------------------------------------------------------------------
C!!! Set up constants for the far zone.
CCC-----------------------------------------------------------------

FRANG=CMPLX(I.,O.)
IF (LRANG) THEN
RANGL=RANG/WL-AINT(RANG/WL)
FRANG=CEXP(CMPLX(O.,-TPI*RANGL))

END IF
IF (IPRAD.EQ.1) THEN

FACP=1./(60.*PRADS)
ELSE

FACP=I./(240.*Pl)
END IF
FACS=SQRT(FACP)

C!!! Find maximums.

ETHMX=BABS(ET(2,1))
EPHMX=BABS(ET(3,1))
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ETOTMX=ETHMX*ETHMX+EPHMX*EPHHX
DO 1 11I,NFP

ETHM=BABS(ET(2,I))
IF (ETHM.GT.ETHIMX) ETHMX=ETHH
EPHM=BABS(ET(3 ,I))
IF (EPHM.GT.EPHMX) EPHMX=EPHM
ETOT2=ETHM*ETHM+EPHM*EPHH
IF (ETOT2.GT.ETOTMX) ETOTMX=ETOT2

1 CONTINUE
IMAX=11

CCC -------------------------------------------
C!!! Output E-theta and E-phi representations.
Ccc -------------------------------------------
C!!! Length of vector(s) to be passed
C!!!

if (LPATS) OUT-SIZE2 = 2*NFP-.REAL
OUT-SIZE7 = 7*NFP-REAL
OUTSIZE8 =8*NFP-.REAL

C!II

DO 2 I=1,N"FP

IM1=I-1
12=IMI*2
17=IMI1*7
18=IMI*8

ETHR=ET(2, I) *FRANG
ETHM=BABS(ET(2,I))
ETHMR=ETHM/RANG
ETHP=DPR*BTAN2(AIMAG(ETHR) ,REAL(ETHR))
ETHDB=20 .*BLOG10(FACS*ETHM)
EPHR=ET(3 ,I)*FRANG
EPHM=BABS(ET(3, I))
EPHMR=EPHM/RANG

EPHP=PPR*BTAN2(AIMAG(EPHR) ,REAL(EPHR))
EPHDB=20. *BLOG1O(FACS*EPHM)
IF (LFQG) THEN

FQG=FQGS+FQGI*(I-1)
CCC
C!!! Write output variables to real vector for transmission to host
C!!!
OUTREAL(17+1) =FQG
OUTREAL(I7+2) =ETHMR
OUTREAL(I7+3) = ETHP
OUTREAL(I7+4) = ETHDB
OUTREAL(I7+5) =EPHMR
OUTREAL(I7+6) = EPHP
OUTREAL(I7+7) =EPHDB

ELSE
IF (LPATS) THEN

CALL PATPAR(PSA,PATS,IPTS,LRCTS,I,IIV)
CCC
C!!! Write output variables to real vector for transmission to host
CMI

OUTREAL2(I2 -i)=PSA(2)
OUTREAL2(I2+2)=PSA (3)
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END IF
IF (LPATR) THEN

CALL PATPAR(PRA,PATR,IPTR,LRCTR,IIIV)
END IF

CCC
C!! Write output variables to real vector for transmission to host
C!!!
OUTREAL(I8+1) = PRA(2)
OUTREAL(18+2) = PRA(?)
OUTREAL(I8+3) = ETHMR
OUTREAL(I8+4) = ETHP
OUTREAL(I8+5) = ETHDB
OUTREAL(I8+6) = EPHMR
OUTREAL(I8+7) = EPHP

OUTREAL(I8+8) = EPHDB
END IF

2 CONTINUE

CCC -----------------------------------
C!!! Send real vector(s) #1 to host
C!M'

IF (LFQG) THEN
call csend(902,OUTREAL,OUTSIZE7,MYHOST,81)

ELSE
IF (LPATS) call csend(901,OUTREAL2.OUTSIZE2,MYHOST,81)

call csend(902,OUTREAL,OUTSIZE8,MYHOST,8i)

END IF
CCC ---------------------------------------
C!!! Far Zone Total Field representations.

CCC ---------------------------------------

CCC -----------------------------------
C!!! Send FZ Total Field vector(s) to host
C!!!

C!MI
C!!! End Far Zone
CCC-...-------....

CCC ----------------------------------------------------------------------

ELSE IF (.NOT.LRCVR) THEN

CCC ---------------------------------------------------------------------
CCC -----------------------------------
C!!! Neaf zone E-field representation.

CCC-----------------------------------
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CCC C................... --.......
C!!! Near zone H-field representations.
CCC ------------------------------------

C!M---------------------------------
C!!! Near zone power representation.
C!!!--------------------------------

CCC---------------------------------------------------------------------

ELSE

CCC ---------------------------------------------------------------------
CCC---------------------------------------------

C!!! Antenna Coupling via the Reaction Principle
CCC ---------------------------------------------

C --------------------------------------------------------------------

END IF

C!!!------------------------------------------------------------------

TI 1
=  mclock() - STARTTIME

call csend(2Ol,TIME,INTSIZE,MYHOST,81)
c write(*,*)'32out.f: Returning from OUTWRT to main'
c call torflush(6)

RETURN
END
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C.5 GeCols

Program getcols
CCC Scott Suhr - AFIT/EN

CCC Program to extract a 2-column plotfile from
CCC a NECBSC output file.
CCC

character TEMP*120, TEMP1*I1, TEMP2*11, ANSW, A*1
character INFILE*70, OUTFILE*70

integer IASC, COLCOUNT, COLl, COL2, SEG, LINE
real RA, RB
logical DATSEG, INCOL, SKIP
C ----------------------------------------------------------------------
write(*,*)'Enter INPUT-FILE-NAME:'
read(*,FMT='(A)') IN-FILE
call Open_File(11,INFILE)
write(*,*)'>',INFILE,'<'

write(*,*)'Enter OUTPUT-FILE-NAME:'
read(*,FMT='(A)') OUTFILE
call OpenFile(13,OUTFILE)
write(*,*)'>',OUTFILE,'<'

call Open_File(1O,'TEMP')

DATSEG .false.
INCOL .false.

C ----------------------------------------------------------------------
do 998 SEG = 1,3
SKIP = .true.
write(UNIT=6,FMT='(A,i1,A)')

2 'Do you wish to retain from data section #', SEG, ' ? (Y/N)'
read(*,FMT='(A)') ANSW
if (((ANSW.EQ.'Y').OR.(ANSW.EQ.'y'))) SKIP=.FALSE.
if (.NOT.SXIP) then

write(*,*)'Input Col you wish placed in output Col 1'
read(*,FMT='(i)') COLl
write(*,*)'Input Col you wish placed in output Col 2'
read(*,FMT=(i)') COL2

end if
C ----------------------------------------------------------------------
CCC Infinite Loop until end of data section or EOF
C!!!

line = 0
200 continue
TEMP(1:121)=''
TEMP1(1:15)=''
TEMP2(1:1S5)=''
Read(UNIT=11,FMT='(A)',IOSTAT=IERR,END=999) TEMP

IF (IERR.GT.O) THEN
WRITE(*,FMT='(A)') ' CAN NOT READ FILE "',NAMOPN,'"'

goto 999
end if
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C! '
C! 1 check for header info & skip
C! I
if(TEMP(1:2).EQ.' *') goto 990
if(TEMP(1:2).EQ.'0 ') then
if (.NOT.DAT-SEG) then
goto 990

else
goto 200

end if
end if
if(TEMP(i:2).EQ.11 1) goto 990
if(TEMP(1:2).EQ.'+ ') goto 990
if(TEMP(1:15).EQ.' ' goto 990
CCC ------------------------
do 20 i1i,120
A = TEMP~i:i)
if(A.EQ.' ') then

if((COL-COUNT.GE.COLi) .AND. (COL-COUNT. GE.COL2)) goto 21
if (IN-.COL) then
IN-COL =.false.

end if
goto 20
end if
IASC = ichar(A)
C!!! goto 990 indicates non-numeric data in current line:
if ((IASC.LT.48).OR.(IASC.GT.57)) then
if((IASC.NE.43).AND.(IASC.NE.4&) .AND.

2 (IASC.NE.46).AND.(IASC.NE.69)) goto 990
end if
C!!! DAT..SEG indicates currently in data Segment:
DATSEG =.true.

C!!! SKIP indicates don't want current section so Read new line:
if (SKIP) goto 200

C!!! INCOL indicates traversing numeric data column
if (.NOT.IN-.COL) then

i2 = 1
IN..COL =.true.
COL-C0UNT =COL-.COUNT + 1

end if

if (COL..COUNT.EQ.COL1) then
TEMP1(i2:i2) =A

else if (COL-COUNT.EQ.COL2) then
TEMP2(i2:i2) =A

end if
i2 = i2 + 1

20 continue
21 continue
write(UNIT=1O,FIT='(3A)')TEMP1,' 1, TEMP2
c write(*,*)TEMP1,' ', TEMP2
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LINE = LINE + 1
INCOL = .false.
COLCOUNT = 0
goto 200

C!MH Loop Back to read new line
CCC --------------------

C!M'
C!!! goto 990 indicates non-numeric data in current line:
990 continue
INCOL = .false.
C!!! if were in data segment, now not
if (DATSEG) then
write(*,*)liue,' lines of data written from section #', SEG
LINE = 0
DATSEG = .false.
goto 998

end if
C!!! Go get New Line

goto 200

C!!! Goto 998 indicates loop bank at start of new non-data segment
998 continue
C!!!--------------------------------------------

999 continue
rewind(10)
write(*,*)'Data as output to file ',OUT_FILE(i:10),':'
step = 361/150+.5
rnext=1
do 500 i=1,10000
read(UNIT=10,FMT='(2(PEII.4,3X))',END=IOOO)RA,RB

if(i.gt.rnext) then
write(UNIT=6,FMT='(fi5.7,A,fI5.7)')RA,' ',RB
trite(UNIT=13,FMT='(fiS.7,A,fiS.7)')RA,' ',RB

rnext=rnext+step
end if
500 continue

1000 continue
write(UNIT=13,FMT='(fi5.7,A,fI5.7)')RA,' ',RB
write(UNIT=6,FMT='(fl5.7,A,flS.7)')RA,' ',RB
close(lO)
close(1l)
close(13)
write(*,*)'Exit GetCols',i,' lines output
end
C -----------------------------------------------------------------
C ---------------------------------------------------------------
Subroutine Open-file(IU,NAMOPN)
CHARACTER FRMOPN*11,NAMOPN*70,STTOPN*7

FRMOPN(1:11)='FORMATTED'
if (IU.EQ.11) then
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STTOPN(i:7)='OLD'
else

STTOPNC1:7)='UNKNOWN'

en fOPEN (UNIT=IU ,FILE=NAMOPN ,FORM=FRMOPN,

I STATUS=STTOPN, IOSTAT=IERR)
if(IERR.NE.O) write(*,*) 'Error: ',IOSTAT,

I ) Opening TEMP files'

RETURN
END

C -----------------------------------------------------------------
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Appendix D. Complete Timing Results

Redundant output information is removed for conciseness (An example of the complete out-
put from Mod4.0 is given in Table A.3. Results are from a single run , not averages(except ModO.5
times); times may include variances due to UNIX overhead or other tasks running simultaneously
on the host computer. Below is a sample of the results for different versions, with the calculated
speedups and efficiencies.

Example 19 on iPSC/860
Speedup (SU) & Efficiency (EFF)

Mod# odesSU IEff
SNodes ime (ms) (vs. od0.5)

4.0 1 43016 1.07 1.07
4.0 2 28064 1.64 .82
4.0 4 21036 2.19 .55
4.0 8 18359 2.51 .31
3.5 1 44348 1.04 1.04
3.5 2 /8711 1.60 .80
3.5 4 22221 2.08 .52
3.5 8 18947 2.43 .30
1.6 1 39076 1.18 1.18
1.6 2 33000 1.40 .70
1.6 4 36217 1.27 .32
1.6 8 45104 1.02 .13
0.5 1 46132 1.00 1.00
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D.1 ModO.5

D.1.1 i860: ModO.5, Example 1c

NECBSC serial code on one node iPSC/2 or /860
Mod 0.5 (13 Apr 91) - Serial code + timing

Enter a filename for input (70 characters max)
exlc.inp
NODE: INPUT FILE NAME = exlc.inp
WRITE PRINTED OUTPUT TO DISK (T OR F)?
T

Host CPU time required for load: 440 ms
Total Host CPU time required: 450

Elapsed Node time required: 22870
Approx. total elapsed time required: 23310
(node elapsed + host cpu for load)

-- run #2:
Host CPU time required for load: 430 ms

Total Host CPU time required: 440
Elapsed Node time required: 22933

Approx. total elapsed time required: 23363
-- run #3:

Host CPU time required for load: 490 ms
Total Host CPU time required: 500

Elapsed Node time required: 22899
Approx. total elapsed time required: 23389
-- run #4:

Host CPU time required for load: 420 ms
Total Host CPU time required: 430

Elapsed Node time required: 22905
Approx. total elapsed time required: 22125

mbvsrm>runbsc
NECBSC serial code on one node iPSC/2 or /860
Mod 0.5 (13 Apr 91) - Serial code + timing

Enter a filename for input (70 characters max)
input.inp
NODE: INPUT FILE NAME = input.inp

WRITE PRINTED OUTPUT TO DISK (T OR F)?
T

Host CPU time required for load: 410 ms
Total Host CPU time required: 420

Elapsed Node time required: 5458
Approx. total elapsed time required: 5868
(node elapsed + host cpu startup)
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D.1.2 i860: ModO.5, Other Examples

NECBSC serial code on one node iPSC/860
Mod 0.5 (13 Apr 91) - Serial code + timing

Enter a filename for input (70 characters max)
exia.inp
NODE: INPUT FILE NAME = exla.inp

Host CPU time required for load: 470 ms
Total Host CPU time required: 480

Elapsed Node time required: 8548
Approx. total elapsed time required: 9018

NODE: INPUT FILE NAME = exlb.inp
Host CPU time required for load: 420 ms

Total Host CPU time required: 440
Elapsed Node time required: 21202

Approx. total elapsed time required: 21622

NODE: INPUT FILE NAME = ex6.inp
Host CPU time required for load: 450 ms

Total Host CPU time required: 450
Elapsed Node time required: 43881

Approx. total elapsed time required: 44331

NODE: INPUT FILE NAME = exlla.inp
Host CPU time required for load: 440 ms

Total Host CPU time required: 450
Elapsed Node time required: 9338

Approx. total elapsed time required: 9778

NODE: INPUT FILE NAME = ex19.inp
Host CPU time required for load: 430 ms

Total Host CPU time required: 430
Elapsed Node time required: 45702

Approx. total elapsed time required: 46132
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D.1.3 386: ModO.5, Example 1c

NECBSC serial code on one node iPSC/2 or /860
Mod 0.5 (13 Apr 91) - Serial code + timing

Enter a filename for input (70 characters max)
exlc.inp
NODE: INPUT FILE NAME = exlc.inp
WRITE PRINTED OUTPUT TO DISK (T OR F)?
T

Host CPU time required for load: 500 ms
Total Host CPU time required: 510

Elapsed Node time required: 32590
Approx. total elapsed time required: 33090
(node elapsed + host cpu for load)

---- Run #2
Host CPU time required for load: 520 ms

Total Host CPU time required: 530
Elapsed Node time required: 33000

Approx. total elapsed time required: 33520
---- Run #3

Host CPU time required for load: 520 ms
Total Host CPU time required: 540

Elapsed Node time required: 33101
Approx. total elapsed time required: 33621
---- Run #4

Host CPU time required for load: 540 ms
Total Host CPU time required: 550

Elapsed Node time required: 32983
Approx. total elapsed time required: 33523

c386 9:runbsc
NECBSC serial code on one node iPSC/2 or /860
Mod 0.5 (13 Apr 91) - Serial code + timing

Enter a filename for input (70 characters max)
input.inp
NODE: INPUT FILE NAME = input.inp
WRITE PRINTED OUTPUT TO DISK (T OR F)?
T

Host CPU time required for load: 520 ms
Total Host CPU time required: 530

Elapsed Node time required: 6575
Approx. total elapsed time required: 7095
(node elapsed + host cpu for load)
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D.1.4 386: ModO.5, Other Examples

NECBSC serial code on one node iPSC/2
Mod 0.5 (13 Apr 91) - Serial code + timing

Enter a filename for input (70 characters max)
exia.inp
NODE: INPUT FILE NAME = exia.inp

Host CPU time required for load: 540 ms
Total Host CPU time required: 550

Elapsed Node time required: 14230
Approx. total elapsed time required: 14770

NODE: INPUT FILE NAME = exlb.inp
Host CPU time required for load: 480 ms

Total Host CPU time required: 490
Elapsed Node time required: 30582

Approx. total elapsed time required: 31062

NODE: INPUT FILE NAME = ex6.inp
Host CPU time required for load: 500 ms

Total Host CPU time required: 520
Elapsed Node time required: 90069

Approx. total elapsed time required: 90569

NODE: INPUT FILE NAME = exlla.inp
Host CPU time required for load: 500 ms

Total Host CPU time required: 510
Elapsed Node time required: 11555

Approx. total elapsed time required: 12055

NODE: INPUT FILE NAME = ex19.inp
Host CPU time required for load: L20 ms

Total Host CPU time required: 530
Elapsed Node time required: 85411

Approx. total elapsed time required: 85931
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D.2 Modl.6

D.2.1 i860: Modl.6, Example Ic

NECBSC modified for iPSC/2 & /860 by Scott Suhr
node: modl.6 host: modl.6

(header write by node 0) (w/merge sort
& multiple time blocks)

Number of nodes attached: 8
INPUTFILENAME= "exlc.inp"
Elapsed: Node Total Time (msec)

0 32854
1 30827
2 30685
3 30856
4 30776
5 30890
6 30866
7 30867

Host CPU time required for startup: 820
Host CPU time required for merge: 11430

Total Host CPU time required: 16080
Approx. total elapsed time required: 45104

(node 0 + Startup + Merge)

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 25207
1 23943
2 24047
3 24070

Host CPU time required for startup: 810
Host CPU time required for merge: 10200

Total Host CPU time required: 14480
Approx. total elapsed time required: 36217
--------------------------------------------------------

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 22560
1 20738

Host CPU time required for startup: 790
Host CPU time required for merge: 9650

Total Host CPU time required: 13610
Approx. total elazsed time required: 33000

Number of nodes attached: 1
Elapsed: Node Total Time (msec)

0 28846
Host CPU time required for startup: 830

Host CPU time required for merge: 9400
Total Host CPU time required: 15720

Approx. total elapsed time required: 39076
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D.2.2 i860: Modl.6, Example 6

NECBSC modified for iPSC/2 & /860 by Scott Suhr
node: modl.6 host: modl.6

(header write by node 0) (w/merge sort
& multiple time blocks)

Number of nodes attached: 8
INPUT.FILENAME= "ex6.inp"
Elapsed: Node Total Time (msec)

0 26873
1 25133
2 24928
3 25133
4 25143
5 25294

6 25240
7 25311

Host CPU time required for startup: 800
Host CPU time required for merge: 12820

Total Host CPU time required: 17460
Approx. total elapsed time required: 40493

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 24697
1 23535
2 23368
3 23629

Host CPU time required for startup: 880
Host CPU time required for merge: 11570

Total Host CPU time required: 16640
Approx. total elapsed time required: 37147

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 29257
1 27118

Host CPU time required for startup: 820
Host CPU time required for merge: 11000

Total Host CPU time required: 18990
Approx. total elapsed time required: 41077

Number of nodes attached:
Elapsed: Node Total Time (msec)

0 46296
Host CPU time required for startup: 800
Host CPU time required for merge: 10780

Total Host CPU timc rcquircd: 25520
Approx. total elapsed time required: 57876
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D.2.3 i860: Modl.6, Example 19

NECBSC modified for iPSC/2 & /860 by Scott Suhr
node: modl.6 host: modl.6

(header write by node 0) (u/merge sort
& multiple time blocks)

Number of nodes attached: 8
INPUTFILENAME= "exl9.inp"
Elapsed: Node Total Time (msec)

0 32572
1 30620
2 30093
3 30711
4 30250
5 30842
6 30813
7 30874

Host CPU time requirea for startup: 880
Host CPU time required for merge: 13440

Total Host CPU time required: 18320
Approx. total elapsed time required: 46892

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 27093
1 25621
2 25742
3 25835

Host CPU time required for startiip: 840
Host CPU time required for merge: 11530

Total Host CPU time required: 16610
Approx. total elapsed time required: 39463

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 29338
1 26227

Host CPU time required for startup: 820
Host CPU time required for merge: 10650

Total Host CPU time required: 17740
Approx. total elapsed time required: 40808

Number of nodes attached: 1
Elapsed: Node Total Time (msec)

0 48635
Host CPU time required for startup: 850

Host CPU time required for merge: 10200
Total Host CPU time required: 26410

Approx. total elapsed time required: 59685
-----------------------------------------------------1
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D.3 Mod3.5

D.3.1 i860: Mod3.5, Example Ic

* NEC-BSC for iPSC/2 & iPSC/860 * 3.2i3.5, 9 Apr 91
Input desired number of nodes:
Number of nodes attached: 8
Enter a filename for input (70 characters max)
Input Filename = "exlc.inp"
Elapsed: Node Total Time (msec)

0 7081
1 7111
2 7086
3 7126
4 7099
5 7152
6 7138
7 7164

Host C"'T time required for startup: 1930
Host CPU time required for output: 6530

Total Host CPU time required: 8470
Approx. total elapsed time required: 15541

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 7149
1 7140
2 7172
3 7189

Host CPU time required for startup: 1660
Host CPU time required for output: 6520

Total Host CPU time required: 8190
Approx. total elapsed time required: 15329

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 8896
1 8918

Host CPU time required for startup: 1690
Host CPU time required for output: 6530

Total Host CPU time required: 8230
Approx. total elapsed time required: 17116

Number of nodes attached: 1
Elapsed: Node Total Time (msec)

0 13231
Host CPU time required for startup: 1630
Host CPU time required for output: 6750

Total Host CPU time required: 8400
Approx. total elapsed time required: 21611
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D.3.2 i860: Mod3.5, Example 6

* NEC-BSC for iPSC/2 & iPSC/860 * 3.2i3.5, 9 Apr 91 *
Number of nodes attached: 8
Input Filename = "ex6.inp"
Elapsed: Node Total Time (msec)

0 10204
1 10238
2 10226
3 10250
4 10262
5 10301
6 10287
7 10278

Host CPU time required for startup: 2860
Host CPU time required for output: 6520

Total Host CPU time required: 9400
Approx. total elapsed time required: 19584

(node 0 + Startup + Merge)
............................................................

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 12116
1 12127
2 12178
3 12127

Host CPU time required for startup: 26(0
Host CPU time required for output: 6450

Total Host CPU time required: 9110
Approx. total elapsed time required: 21226

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 18466
1 18412

Host CPU time required for startup: 2470
Host CPU time required for output: 6430

Total Host CPU time required: 8900
Approx. total elapsed time required: 27366

Number of nodes attached: 1
Elapsed: Node Total Time (msec)

0 34035
Host CPU time required for startup: 2600
Host CPU time required for output: 6510

Total Host CPU timo required: 9120
Approx. total elapsed time required: 43145
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D.3.3 i860: Mod3.5, Example 19

* NEC-BSC for iPSC/2 & iPSC/860 * 3.2i3.5, 9 Apr 91
Number of nodes attached: 8
Input Filename = "ex19.inp"
Elapsed: Node Total Time (msec)

0 9967
1 9892
2 9902
3 9961
4 9967
5 9956
6 10001
7 9995

Host CPU time required for startup: 2280
Host CPU time required for output: 6700

Total Host CPU time required: 9000
Approx. total elapsed time required: 18947

(node 0 + Startup + Merge)

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 13411
1 13371
2 13445
3 13395

Host CPU time required for startup: 2170
Host CPU time required for output: 6640

Total Host CPU time required: 8820
Approx. total elapsed time required: 22221

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 20031
1 19977

Host CPU time required for startup: 2040
Host CPU time required for output: 6640

Total Host CPU time required: 8680
Approx. total elapsed time required: 28711

Number of nodes attached: 1
Elapsed: Node Total Time (msec)

0 35538
Host CPU time required for startup: 2150
Host CPU time required for output: 6660

Total Host CPU time required: 8810
Approx. total elapsed time required: .44348
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D.4 Mod4.0

D.-4.1 i860: Mod4.O, Ezample le

* NEC-BSC for iPSC/2 & iPSC/860 * 3.2i4.0, 6 May 91
Number of nodes attached: 8
Input Filename = "exlc.inp"
Elapsed: Node Total Time (msec)

0 6663
1 6682
2 6664
3 6695
4 6677
5 6727
6 6716
7 6706

Output elapsed time (node 0, msec): 3592
Host CPU time required for startup: 1570
Host CPU time required for output: 6490

Total Host CPU time required: 8090
Approx. total elapsed time required: 14723

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 6605
1 6618
2 6606
3 6632

Output elapsed time (node 0, msec): 3533
Host CPU time required for startup: 1590
Host CPU time required for output: 6450

Total Host CPU time requtrC. 8050
Approx. total elapsed time required: 14645

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 8356
1 8372

Output elapsed time (node 0, msec): 3552
Host CPU time required for startup: 1620
Iost CPU time required for output: 6440

Total Host CPU time required: 8070
Approx. total elapsed time required: 16416

Number of nodes attached: 1
Elapsed: Node Total Time (msec)

0 12365
Output elapsed time (node 0, msec): 3664
Host CPU time required for startup: 1600
Host CPU time required for output: 6510

Total Host CPU time required: 8130
Approx. total elapsed time required: 20475
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D-4.2 i860: Mod4.O, Example 6

* NEC-BSC for iPSC/2 I iPSC/860 * 3.2i4.0, 6 May 91
Number of nodes attached: 8
Input Filename = "ex6.inp"
Elapsed: Node Total Time (msec)

0 9260
1 9278
2 9260
3 9288
4 9267
5 9304
6 9298
7 9314

Output elapsed time (node 0, msec): 3666
Host CPU time required for startup: 2640
Host CPU time required for output: 6540

Total Host CPU time required: 9200
Approx. total elapsed time required: 18440

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 11514
1 11618
2 11560
3 11514

Output elapsed time (node 0, msec): 3632
Host CPU time required for startup: 2590
Host CPU time required for output: 6440

Total Host CPU time required: 9040
Approx. total elapsed time required: 20544

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 17798
I 17749

Output elapsed time (node 0, msec): 3636

Host CPU time required for startup: 2630
Host CPU time required for output: 6430

Total Host CPU time required: 9060
Approx. total elapsed time required: 26858

Number of nod.es attached: 1
Elapsed: Node Total Time (msec)

0 31274
Output elapsed time (node 0, msec): 3781
Host CPU time required for startup: 2580
Host CPU time required for output: 6490

Total Host CPU time required: 9070
Approx. total elapsed time required: 40344
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D.4.3 i860: Mod4.0, Example 19

* NEC-BSC for iPSC/2 & iPSC/860 * 3.2i4.0, 6 May 91
Number of nodes attached: 8
Input Filename = "exl9.inp"
Elapsed: Node Total Time (msec)

0 9549
1 9457
2 9509
3 9456
4 9515
5 9521
6 9561
7 9526

Output elapsed time (node 0, msec): 3698
Host CPU time required for startup: 2140
Host CPU time required for output: 6670

Total Host CPU time required: 8820
Approx. total elapsed time required: 18359

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 12256
1 12195
2 12242
3 12200

Output elapsed time (node 0, msec): 3659
Host CPU time required for startup: 2120
Host CPU time required for output: 6660

Total Host CPU time required: 8800
Approx. total elapsed time required: 21036

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 19314
1 19265

Output elapsed time (node 0, msec): 3668
Host CPU time required for startup: 2140
Host CPU time required for output: 6610

Total Host CPU time required: 8760
Approx. total elapsed time required: 28064

Number of nodes attached: 1
Elapsed: Node Total Time (msec)

0 34266
Output elapsed time (node 0, msec): 3778

Host CPU time required for startup: 2100
Host CPU time required for output: 6650

Total Host CPU time required: 8760
Approx. total elapsed time required: 43016
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D.4.4 386(Weitex): Mod.0, Ezample Ic

* NEC-BSC for iPSC/2 & iPSC/860 * 3.2i4.0, 2 May 91
Number of nodes attached: 8
Input Filename = "exic.inp"
Elapsed: Node Total Time (msec)

0 11493
1 i1sis
2 11346
3 11166
4 11501
5 11353
6 11079
7 0

Output elapsed time (node 0, msec): 5811
Host CPU time required for startup: 1910
Host CPU time requ:ired for output: 6670

Total Host CPU time required: 8600
Approx. total elapsed time required: 16804

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 9444
1 9468
2 9449
3 0

Output elapsed time (node 0, msec): 3616
Host CPU time required for startup: 1830
Host CPU time required for output: 6480

Total Host CPU time required: 8330
Approx. total elapsed time required: 16534

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 12318
1 12334

Output elapsed time (node 0, msec): 3611
Host CPU time required for startup: 1790
Host CPU time required for output: 6420

Total Host CPU time required: 8210
Approx. total elapsed time required: 16434

Number of nodes attached: 1
Elapsed: Node Total Time (msec)

0 19928
Output elapsed time (node 0, msec): 3780
Host CPU time required for startup: 1770
Host CPU time required for output: 6480

Total Host CPU time required: 8250
Approx. total elapsed time required: 16474
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D.4.5 886(Weitex): Mod4.O, Example 6

* NEC-BSC for iPSC/2 & iPSC/860 * 3.2i4.O, 2 May 91
Number of nodes attached: 8
Input Filename = "ex6.inp"
Elapsed: Node Total Time (msec)

0 15332
1 15459
2 15299
3 15445
4 15311
5 15457
6 15484
7 15421

Output elapsed time (node 0, msec): 3696
Host CPU time required for startup: 2680
Host CPU time required for output: 6530

Total Host CPU time required: 9230
Approx. total elapsed time required: 17434

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 23035
1 23033
2 24074
3 22853

Output elapsed time (node 0, msec): 3661
Host CPU time required for startup: 2820
Host CPU time required for output: 6450

Total Host CPU time required: 9290
Approx. total elapsed time required: 17494

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 40014
1 40028

Output elapsed time (node 0, msec): 3700

Host CPU time required for startup: 2770
Host CPU time required for output: 6460

Total Host CPU time required: 9230
Approx. total elapsed time required: 17454

Number of nodes attached: I
Elapsed: Node Total Time (msec)

0 75064
Output elapsed time (node 0, msec): 3881
Host CPU time required for startup: 2750
Host CPU time required for output: 6530

Total Host CPU time required: 9300
Approx. total elapsed time required: 17504
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D.4.6 386(Weitez): Mod4.O, Example 19

* NEC-BSC for iPSC/2 & iPSC/860 * 3.2i4.0, 2 May 91
Number of nodes attached: 8
Input Filename = "ex19.inp"
Elapsed: Node Total Time (msec)

0 14820
1 14546
2 14699
3 14571
4 14721
5 14587
6 14584
7 14564

Output elapsed time (node 0, msec): 3722
Host CPU time required for startup: 2360
Host CPU time required for output: 6680

Total Host CPU time required: 9050
Approx. total elapsed time required: 17264

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 23486
1 23478
2 23441
3 22863

Output elapsed time (node 0, msec): 4251
Host CPU time required for startup: 2320
Host CPU time required for output: 6710

Total Host CPU time required: 9030
Approx. total elapsed time required: 17254

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 38233
1 38187

Output elapsed time (node 0, msec): 3781

Host CPU time required for startup: 2330
Host CPU time required for output: 6650

Total Host CPU time required: 8990
Approx. total elapsed time required: 17204
Input desired Cube-Type (8rx, 4sx, etc):

Number of nodes attached:
Elapsed: Node Total Time (msec)

0 71643
Output elapsed time (node 0, msec): 3929
Host CPU time required for startup: 2220
Host CPU time required for output: 6700

Total Host CPU time required: 8930
Approx. total elapsed time required: 17144
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D.4.7 386(80387): Mod4.0, Example Ic

* NEC-BSC for iPSC/2 & iPSC/860 * 3.2i4.0, 6 May 91
Number of nodes attached:
Input Filename = "exlc.inp"
Elapsed: Node Total Time (msec)

0 10622
1 10501
2 10645
3 10500
4 10666
5 10509
6 10511
7 0

Output elapsed time (node 0, msec): 3707
Host CPU time required for startup: 1760
Host CPU time required for output: 6540

Total Host CPU time required: 8320
Approx. total elapsed time required: 18922

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 13743
1 13748
2 13737
3 13668

Output elapsed time (node 0, msec): 3605
Host CPU time required for startup: 1770
Host CPU time required for output: 6410

Total Host CPU time required: 8190
Approx. total elapsed time required: 21923

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 22185
1 22204

Output elapsed time (node 0, msec): 3733
Host CPU time required for startup: 1710
Host CPU time required for output: 6440

Total Host CPU time required: 8150
Approx. total elapsed time required: 30335

Number of nodes attached: 1
Elapsed: Node Total Time (msec)

0 40343
Output elapsed time (node 0, msec): 4034
Host CPU time required for startup: 1710
Host CPU time required for output: 6500

Total Host CPU time required: 8220
Approx. total elapsed time required: 48553
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D.4.8 386(80387): Mod4.0, Example 6

* NEC-BSC for iPSC/2 & iPSC/860 * 3.2i4.0, 6 May 91
Number of nodes attached: 8
Input Filename = "ex6.inp"
Elapsed: Node Total Time (msec)

0 22124
1 21964
2 22108
3 21966
4 22097
& 22029
6 22031
7 21961

Output elapsed time (node 0, msec): 3766
Host CPU time required for startup: 2V30
Host CPU time required for output: 6560

Total Host CPU time required: 9400
Approx. total elapsed time required: 31814

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 36018
1 35994
2 36071
3 35903

Output elapsed time (node 0, msec): 3749
Host CPU time required for startup: 2660
Host CPU time required for output: 6520

Total Host CPU time required: 9210
Approx. total elapsed time required: 45198

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 66138
1 66093

Output elapsed time (node 0, msec): 4505
Host CPU time required for startup: 2650
Host CPU time required for output: 6540

Total Host CPU time required: 9210
Approx. total elapsed time required: 75328

Number of nodes attached: 1
Elapsed: Node Total Time (msec)

0 125757
Output elapsed time (node 0, msec): 4216
Host CPU time required for startup: 2640
Host CPU time required for output: 6500

Total Host CPU time required: 9150
Approx. total elapsed time requiredt 134817
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D..9 386(80387): Mod4.0, Example 19

* NEC-BSC for iPSC/2 & iPSC/860 * 3.2i4.0, 6 May 91
Number of nodes attached: 8
Input Filename = "exl9.inp"
Elapsed: Node Total Time (msec)

0 21301
1 21296
2 21205
3 21236
4 21243
5 21195
6 21215
7 21210

Output elapsed time (node 0, msec): 3782
Host CPU time required for startup: 2260
Host CPU time required for output: 6670

Total Host CPU time required: 8940
Approx. total elapsed time required: 30231

Number of nodes attached: 4
Elapsed: Node Total Time (msec)

0 35037
1 35013
2 35059
3 34932

Output elapsed time (node 0, msec): 3800
Host CPU time required for startup: 2250
Host CPU time required for output: 6610

Total Host CPU time required: 8870
Approx. total elapsed time required: 43897

Number of nodes attached: 2
Elapsed: Node Total Time (msec)

0 63951
1 63971

Output elapsed time (node 0, msec): 3914
Host CPU time required for startup: 2220
Host CPU time required for output: 6590

Total Host CPU time required: 8810
Approx. total elapsed time required: 72761

Number of nodes attached: 1
Elapsed: lode Total Time (msec)

0 123162
Output elapsed time (node 0, msec): 4160
Host CPU time required for startup: 2200
Host CPU time required for output: 6670

Total Host CPU time required: 8880
Approx. total elapced time required: 132032
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