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Abstract

This investigation was initiated to increase 'he speed, accuracy and capacity of

m-0implex algorithms for solving multiple objective linear programming problems.

Specifically, improvements were sought through the application of general numerical

techniques. Objectives included:

1. Decompsing the m-simplex algorithm into functional elements which may be

independently improved.

2. Focusing upon the implementation of computationally intensive portions of the

algorithm.

3. Utilizing well-known modular library routines.

4. Using ADBASE as a vehicle for integrating and demonstrating improved algo-

rithms.

It soon became apparent that the m-simplex algorithm, like the simplex algo-

rithm, is heavily dependent upon the technology of solving related sy ems of linear

equations. Gill, Murray and Wright have emphasized the importance of rank-1 up-

dates to simplex performance (6). This research extends their emphasis to the case

of rank-k updates and m-simplex performance.

The numerical arguments for application of LU triangular matrix factorization

techniques to simplex computations are well known. A stable and efficient LU ap-

proach to the rank-k update problem is discussed. Accompanying software supports

the solution of linear and transposed linear systems formed from rank-k updated LU

factorizations. The design is constructed using BLAS and Linpack libraries. At this

time, the software has not been integrated into ADBASE.

v ii



MAPPING EFFICIENT NUMERICAL METHODS TO THE

SOLUTION OF MULTIPLE OBJECTIVE

LINEAR PROGRAMS

I. Introductioh

1.1 MuLiple Criteria Optimization

Multiple Criteria Optimization (MCO) techniques help decision makers to

identify efficient u-es for tiieir resources. When multiple criteria are applied, the

idea of 'best' suffers from potential ambiguity. Despite the presence of ambiguous

cases, many choices may exist where one decision alternative is clearly better than

another. We say a solution 'dominates' another when it is preferred according to

all criteria. Dominating solutions which cannot, themselves, be dominated are said

to be Pareto optimal, or efficient. 'Best' solutions are efficient solutions, but the

converse is not always the case. There are implied trade-offs in selecting between

ftficient so'utions. The region formed by the b-. of efficient points is known as the

efficient frootier.

For example, suppose a software engineer wishes to minimize his algorithm

storage requirements. Simultaneously, he wishes to arrange computations in a man-

ner that ,iinimizes floating point operations (FLOPS). These are two competing

criteria. MCO tehniques may be applied to identify efficent alternaties. Suppose

out of four hundred proposals, three efficient designs are identified. The first pro-

posal minimizes FLOPS by storing intermediate values in mermory for convenient

reference. The second reduces storage requirements by recomputing intermediate

values as they are needed. The third stores some intermediate values and recom-

putes others. Depending upon the marginal costs of storage requirements and FLOP
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counts, one of the efficient alternatives will emerge as 'best'. The software engineer,

applying hs expert knowledge of the computing environment may then make an

informed decision by considering only three alternatives.

1.2 Multiple Objective Linear Programs (MOLP)s

MOLPs solve a very restricted set of MCO problems. A MOLP identifies

efficient solutions for a set of linear criteria evaluated over a linearly constrained

feasible region. All such problems may be easily transformed into a standard form.

For a standard Form MOLP, we seek a vector x e R' to

minimize:

Vl C1IXI + C12X2 + " + clnx,

Y2 C21XI + C22X2 + + C2,,Xn

Yr crIX + Cr2X2 + "+ CrnXn

subject to:

ai1 x1 + a 12X 2 + "" + aIx, b

a 2 1-T1 + a 2 2 x 2 + ''+ + a2nxn b2

amlXl + am2X2 + "'" + amnXn bm

xi>0 for each i= 1,2,...,n.

According to standard form:

1. Each maximization criteria is written as minimization criteria;

Max yk = fk(x) becomes minymk = -fk(x).

1-2



2. Each negative resource level, bi is written as a positive level by applying a

negative scalar to the entire ith linear constraint;

ai1x1 + ai 2 x 2 + ainXn bi

becomes

-ailx 1 - ai 2 x 2 - ainX n = -bi.

3. Each inequality constraint is written as an equality constraint by generating

an independent variable, Si, to account for slack or surplus relations;

aix 1 + ai2 x 2 + "'" + ainXn bi

becomes

aixl + ai2x 2 + + ainXn + Si = bi.

Any MOLP in standard form may be compactly written using matrix notation

as:

minimize: y = Cx

subject to: Ax = b

xi > 0 for eachi = 1, 2,...n.

In the MOLP literature, vector optima are defined as Pareto optimal, non-inferior,

admissible and non-dominated solution sets (17:22). A clear and formal develop-

ment of Pareto preference structures and optimization theory is available from Yu in

Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions (17:10,21-

53).

The form of a MOLP is reminiscent of that for a linear program (LP), only C is

a matrix instead of a vector. According to MCO theory, minimization will generate

a region of feasible points which is denoted as the efficient frontier. For a MOLP,
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this frontier is contiguously located on the surface of the feasible region and is simply

connected. It is completely specifie by a finite subset of efficient vertex solutions,

together with any associated emanating unbounded efficient edges.

1.3 Solution with Simplex and M-Simplex Methods

The simplex method is a practical technique for solving LPs. The simplex al-

gorithm searches for optimal solutions by moving between vertex solutions. Suppose

the standard form is expressed in expanded matrix ijotatoi1

minimize:

Y1 Cll C1 2  " " Cln Xl

Y2 C21 C2 2 ... C2n X 2

Yr Crl Cr2 Crn Xr

subject to:

all a12  a,, bl

a 21  a 2 2  a2n b2x, + X2 + ""+ xn

am] a.2 amn bm

i >0 for each i = 1,2,...,n.

Vertices and unbounded edges are defined by forming a basic vector set, B, from

independent columns of the constraint matrix, A. Every formation of B which pro-

duces non-negative coordinates (a basic feasible solution, x) for b is associated with a

vertex solution. Movement between vertex solutions clearly involves updating a basis

to reflect the formation of a new vertex solution. If movement can no longer improve

the solution, it is determined to be optimal. The efficient vertex solutions of a MOLP
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may be determined according to an approach which is a natural generalization of

the simplex method.

First, consider an LP experiencing degeneracy at optimality; moving to a de-

generate vertex does not improve the current solution. However, for the simplex

method to confirm 'optimality', all vertices must be explored until it is determined

that only degenerate paths remain. This determination is a sufficient condition of

optimality. The exploration also identifies every optimal vertex solution. Consider

the following example taken from problem ATEST 1010 in Part II of the ADBASE

Operating Manual (15):

maximize: y = X2

subject to: x1  < 4

X2 < 3
-XI +X 3  < 0

X1 +x 3  < 6

X1 > 2

XI, X 2 , X 3  > 0

Optimality is not necessarily the property of a unique vertex solution (see

Figure 1.1). For this problem, four additional slack variables and one surplus variable

must be included to write the equation in standard form. There are five optimal

vertex solutions given by the superscripted solution vectors, x ,x ,x 3 , x4 and x5 .

Notice that when evaluated by the criterion function,

y f f(XI,X2, X3,...,zX8) =X2

that

y y2 = y3 = y4 = 5 =3.
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A 'cycling prevention rule' is essential to determine that the exploration of degenerate

paths is complete and to ensure the algorithm will terminate.

Figure 1.1. An LP with 5 Optimal (Efficient) Vertex Solutions

x 2X
2  X

X3

.. L X1

ATESTI Example 1010 in Part II of ADBASE Operating Manual (15).

To generalize the simplex to an m-simplex method, stretch the concepts of

'optimality' and 'degeneracy' to additionally encompass the idea of efficiency. With

the m-simplex method, movement is taken to dominating vertex solutions. Re-

member that when multiple criteria are involved, only 'dominating' alternatives are

guarenteed to improve the current solution. If movement cannot be made to a 'dom-

inating' alternative, the current vertex solution is determined to be efficient. From

an efficient vertex, a situation develops which is similar to that of a LP experiencing

degeneracy at optimality. All alternate efficient vertex solutions now need to be ex-

plored. For each efficient vertex solution, all unexplored, adjacent efficient feasible

vertices are detected and their associated bases encoded. The coded bases form a

spanning tree whose traversal specifies the order of future movement between vertex

solutions. Tree traversal ensures each and every efficient vertex solution is visited

once, an,[ that any efficient emanating edges will be detected. In the presence of

degeneracy, as in the LP case, many distinct vertex solutions may be evaluated as
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equivalent according to criteria measures. Look again at the five efficient points

illustrated in Figure 1.1. The necessary record keeping and encoding of the tree, by

definition, prevent cycling. When all detected efficient vertex solutions have been

visited, the algorithm terminates. Termination signals the identification of the entire

set of efficient vertex solutions and unbounded edges.

1.4 Simplex Method and Changing Bases

When applying the simplex method to an LP, movement between vertex solu-

tions is associated with an exchange of basic and non-basic column vectors. Since

all such movement is between immediately adjacent vertex solutions, each simplex

iteration is equivalent to a rank-1 linear update of the basis vectors. When applying

the m-simplex method to a MOLP, movement between efficient vertex solutions is

associated with an exchange between n basic and n non-basic column vectors. This

is equivalent to performing a rank-n linear update of the current basis vectors. For

the m-simplex method, movement is not necessarily between immediately adjacent

vertex solutions, but such that a path may be constructed by tracing a succession

of immediately adjacent, efficient vertex solutions. Such a path may be constructed

from a breadth-first traversal of the spanning tree formed according to the m-simplex

algorithm. The n basic vectors which are updated in an m-simplex movement reflects

the number of levels which must be traversed in order to find a common ancestor

between subsequent efficient bases (4:138).

1.5 A DBASE

Steuer has implemented an m-simplex algorithm within ADBASE (16). He

provides a terse description of the algorithm (denoted as Phase III) in section 7.1 of

the ADBASE Operating Manual:

Phase III operates by pursuing each efficient edge emanating from each
efficient extreme point. This involves a bookkeeping system to keep track

1-7



/

of where ADBASE has been and where ADBASE has yet to go in its
search for all efficient extreme points anrd unbounded edges. (15)

The list structures he implements for bookkeeping support what amounts to an

implicit breadth-first tree search. (2:182-187).

1.6 Solution with Non-Simplex Methods

Identifying efficient adjacent vertex solutions and efficient unbounded emanat-

ing edges appears to be a problem which prescribes the simplex approach. However,

there are other practical ways of exploring the efficient frontier. One such approach

is somewhat empirical and relies upon the systematic application of explicit weight-

ing vectors. Whenever weights are established which relate criterion measures, a

MOLP will collapse to a regular LP formulation where the multiple criteria may be

replaced by a single vector expression. To exploit this property, hypothetical sets

of standardized weights may be systematically applied and the resulting LPs solved

for optimal points. Each weighted problem identifies a mapping to a point on the

efficient frontier. To explore remaining gaps or extreme areas, additional weights

may be selected and the associated LPs solved to provide additional mappings. This

'shot-gun' approach does not guarantee finding all of the extreme boundary of an ef-

ficient frontier, but it can be done without application of the simplex and m-simplex

methods. This research effort will focus upon the implementation of efficient numer-

ical methods for the solution of MOLPs according to the m-simplex algorithm.
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II. Numerical Approach

The main limiting assumption treated by this investigation concerns the nu-

merical caracteristics of m-simplex implementations. Achievement of algorithmic

stability is central to the discussion. Over the years, several numerical developments

have supported extensive and powerful revisions to simplex implementations. It

seems natural these revisions should benefit m-simplex implementations, as well.

2.1 Simplex Revisions

Katta Murty, in his 1983 text Linear Programming, reported that;

At present, the revised simplex method is still the only approach that has
proved to be computationally efficient and robust in practice (12:231).

For a numerically stable form that can preserve sparsity, he recommended the version

which maintains a matrix B, formed from the basic vectors 3, in a lower - upper (LU)

triangular matrix factorization, B = LU. He reasoned that it provides much better

accuracy than either the explicit inverse or product form of the inverse. Bazaraa,

Jarvis and Sherali, in their 1990 text declared the explicit and product forms of the

revised simplex method to be

... computationally somewhat obsolete because it is based on a complete
Gauss-Jordan elimination technique for solving systems of equations. A
more popular technique used by most modern computer packages is the
LU factorization method, which is based on the more efficient Gaussian
triangularization strategy. .... it is accurate and numerically stable (round
- off errors are controlled and do not tend to accumulate). (1:199-200)

2.2 Basis Formations

As the previous paragraph indicates, revised simplex implementations are fre-

quently classified according to the form in which the basic set is held and how solu-
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tions are updated. When an explicit inverse is maintained for the current basis, linear

systems involved in the revised simplex method may be solve14 by straight forward

matrix multiplication. Updating the basis (inverse) may be directly accomplished

by applying a special form of the Sherwin-Morrison formula adapted for column re-

placement to construct 'simplex-pivot' matrix operators. Applying a simplex-pivot

amounts to the direct application of Gauss-Jordan elimination without stabilization

from partial pivoting. Gill, Murray and Wright point out, in their 1990 textbook:

Broadly speaking, numerical difficulties arise with the Sherman-Morrison
formula because the quality of each updated inverse is affected by the con-
dition of all previous matrices. ... We repeat that, with the Sherman-
Morrison formula, the lingering effects of former ill-conditioning may
damage all subsequent updated inverses ... In contrast, standard tech-
niques for updating LU and QR factorizations can (and do) "recover"
from an initial ill-conditioned [matrix B.] ... [C]losely related systems
of equations shold be solved numerically by updating matrix factoriza-
tions. (6:149-150)

2.3 Avoiding Explicit Inverses

Numerical analysts appear to agree that the computation and storage of inverse

matrices is unnecessary and may be avoided. According to Golub:

... [W]hen a matrix inverse is encountered in a formula, we must think
in terms of solving equations rather than in terms of explicit inverse
formation (7:121).

Rice notes:

In particular, any matrix expression applied to a vector can be evaluated
efficiently without inverting any matrices, no matter how many inverse
matrices there are in the expression. ... If you are not actually examining
the elements of an inverse matrix, then it is very unlikely that you should
be computing the inverse. (13:23)
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2.4 Solving Ax = b

Gill, Murray and Wright dispell the notion that a solution to a rank-m linear

equation " ... obtained with the inverse is somehow 'better','more accurate', or 'more

elegant' (6:100)." Specifically, the number of operations to obtain a solution, given

the inverse of a rank rn system, is of 0(m'), the same as for the solution, given an LU

or QR factorization. They analyzed ill-conditioned matrices using the singular value

decomposition, A = UEVT (7:70-74). Given A has distinct singular values, they find

that accurate solutions are obtained with the inverse only when the right-hand side

of the linear equation is close to a multiple of the column of U associated with the

largest singular value of A. In this case, b is said to reflect the condition of A and the

inverse computes a 'large' solution. 'Large' solutions have the best chance of being

accurate and producing a small residual. Solutions are poor when aligned with the

column associated with the smallest singular value. Out of numerical consideration,

they find that even when an inverse is formed as accurately as possible, its explicit

use should be a-oided. (6:101-104)

2.5 Adaptations

The original version of ADBASE supports an m-simplex algorithm with a gen-

eralized revised simplex implementation that carries an explicit form of the inverse.

To limit catastrophic errors resulting from well-known instabilities, a filter sets very

small basis entries to zero. The threshold for small pivot elements is (TPIV = 1.0d-6)

and the threshold for large problem coefficients is (COEFMX = 5.0d5). To retard the

accumulation of roundoff errors, all computations are performed in double precision.

Effectively, the ADBASE algorithm operates at single precision. Many of the

extra digits are used to contain the accumulation of remaining round-off errors.

Suppose the pivoting was stabilized by maintaining the basis in the form of an

LU factorization. Digits are then free space for greater operating prec:sion or may

be eliminated from storage. The implementation of a stable algorithm according
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to efficient numerical methods is key to the practical extension of the m-simplex

algorithm.

2.5.1 Ease of Use The difference which might become apparent to a user

of a numerically improved m-simplex implementation would be that execution time

might be shorter, or that the algorithm might become practical for use on a larger

class of problems. The ability to compute an inverse might be restricted or possibly

eliminated from the code. Inverses are not necessary to the performance of m-simplex

algorithms.

Useful numerical information, such as the condition number, or some other

measures of merit might provide indicators concerning the accuracy of feasible basic

solutions.

2.6 Research Objective

This investigation was initiated to increase the speed and capacity of m-simplex

algorithms through implementation of efficient numerical methods. The research

objectives are as follows:

1. Decompose the m-simplex algorithm into manageable elements which may be

independently improved.

2. Identify computationally intensive areas.

3. Identify utilizations for general numerical methods, basic linear algebra sub-

routines (BLAS) and other higher level library modules.

4. Modify ADBASE accordingly.

5. Compare performance of resulting software with the performance of the original

package. Potentials for comparison include issues of stability, speed, accuracy

and maintainability.
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III. Methodology

3.1 Engineering Software

A defining character of any implementation is the way a problem is broken down

and solved. Structured, modular approaches to programming speed the development

of reliable software, increase programmer productivity and improve the clarity and

maintainability of the final product (10:92). Software which is easy to understand

can be readily integrated into larger systems.

Modularity implies a minimum of complexity in connecting program units.

Further, it suggests that all interaction between program units is controlled by the

explicit use of well-defined, formal structures. In a modular environment, the de-

tails within a module may be hidden from all other modules and be independently

and incrementally refined. Vell-designed libraries are instrumental in establishing

modular environments.

An excellent example of modular implementations is provided by the Linpack

library (3). Linpack routines are constructed with level-I BLAS routines. As BLAS

routines are refined, client routines, such as Linpack, are automatically benefitted

without modification. Mathematical programs which invoke routines such as Linpack

likewise benefit by the association.

The m-simplex is a mathematical program whose function may be decomposed

into simpler, more manageable elements. Some of these program elements are nat-

urally expressible in terms of established library routines. Other elements demand

the design and development of additional library capabilities. For example, the m-

simplex algorithm requires an efficient capability for solving linear systems altered by

rank-k column replacements. A desirable addition to a library collection might then

include general routines for solving related systems of equations. Any applications

exploiting such routines would then benefit from library refinements.
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Library routines built from low-level standard libraries enjoy additional ben-

efits from portablity across machine platforms. For example, programs employing

BLAS, when ported to more capable platforms, can fully benefit ficnn the additional

power of the new environment, without requiring any alteration of program source.

The reason is that native BLAS implementations efficiently utilize available machine

capabilites.

Top-down design and modular implementation achieves clarity, flexibility and

efficiency. Esoteric numerical refinements may be accumulated in library modules

whose implementations may be hidden from application programmers. Further, such

library development allows the natural and terse statement of general, machine in-

dependent algorithms by researchers.

3._ Dcfining the At-Simplefx Algorithm

The essential processing of an in-simplex algorithm is outlined in Figure 3.1.

This breakdown reduces the algorithm into several components which may be en-

capsulated and developed in separate routincs. The following description describes

m-simplex activity according to the flow diagram.

Obtain a First Efficient Vertex Solution. There are several methods of securing

an initial efficient vertex solution. An intuitive approach is to collapse the MOLP

into an LP by selecting non-zero weights for each criteria function. As mentioned

before, an optimal LP solution to such a problem is also an efficient ver+2 x solution.

Steuer implements additional techniques in ADBASE which incorporate a lexico-

graphic approach to criteria optimization. This approach is more capable of finding

Pareto optimal vertex solutions in the locality of unboundedness. Steuer also in-

cludes additional options which allow the detection of efficiency, if it occurs, before

optimality is realized. (15)

Encode the first efficient vertex solution as the 'root' of a spanning tree. By

the time of termination, this spanning tree will grow to accommodate the coded
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Figure 3.1. Vector Optimization Algorithm

Start

Obtain First Efficient
Vertex Solution x

I
Eicode as 'Root' Vertex

of Spanning Tree

From Current Vertex Solution
Test Efficiencies of Feasible Edges:
Encode All New Efficient Vertices

Record Any Emanating Efficient Rays

Check Tree: ,Exit
Any Unvisited Coded Vertices? / No

Obtain Next Vertex Solution, x

Evaluate y = Cx
Record New y
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vertices of all efficient vertex solutions. Each vertex is uniquely identified by the

formation of a basic set, B, from the column vectors of A. The matrix /, formed

from B, is used to produce the vertex solution. To encode the vertex, the subscripts

of B are stored.

Given an initial efficient solution, the algorithm enters a four step search loop.

1. From the current vertex solution, examine all adjacent feasible edges for effi-

ciency. A subproblem routine identifies all effirient adjacent vertices and up-

dates the spanning tree to include any new additions. Any unbounded efficient

edges emanating from the current vertex solution are recorded as output.

Subproblem toutines are usually formulated as LPs and feasibility tests. Both

are dependent upon the solutions of linear and transposed linear systems of

equations involving the current basis matrix. Because of this, the subproblem

can be encapsulated in its own module and its operating details hidden.

2. Check the tree. If all coded vertices stored on the spanning tree have been

visited, then exit the search loop: The m-simplex search is complete.

3. Use the spanning tree to identify an efficient vertex which has not yet been

visited. Identify the vectors which will enter the basic set and the vectors

which will leave.

4. Update B and solve for the vertex solution x. Evaluate x in terms of the

criteria and identify a vector in the criteria space: y = Cx. If y is distinct from

previous evaluations, then record y as an efficient and extreme solution of the

MOLP. Return to the first step in the search loop.

3.3 Updating Vertcx Solutions

The major computational effort for the simplex method involves the solution

of related systems of linear equations (6:365). This is also the case for the m-simplex

method as described above. It is, perhaps, more important since there are many
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morc related systems to solve. The simplex case need only be concerned with rank-1

changes.

3.4 Sherman-Morrison Formula.

3.4.1 Rank-1 Updating. Suppose the jth column of a square, invertible, m by

m matrix B is replaced. The change may be expressed by the following procedure:

Let v = ej, the jth column vector of the identity matrix, 1, and let d be the

vector difference by which the jth column vector of B is changed by the replacement,

then:

Bne, = Bold + dvT

The solution of related systems involving B,,,,, when given B- is practicable

through application of the Sherman-Morrison Formula (11:70):

B-1 = B- + a(Bd)(vT B -)

where
1

a 1 - vTB-d

This yields the form of a 'simplex-pivot' operator, T, which may appear familiar

to analysts who have hand-solved revised simplex tableaus. Let w = B-d and

T = (I + awv T ), then:

B1= T.B-

3.4.2 Rank-k Updating. Generalizing to the rank-k update of k changed vec-

tors implies:
B = TkTk_ ... TB-

where T 1, T2,. .. , Tk arc simplex-pivot operators. Note that the rank-k update may

be conveniently held in product form apd traces a path of rank-1 updates. These
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rank-I updates are reminiscent of a string of Gaussian elimination operators (without

the benefit of partial pivoting).

Generalizing for a direct update implies a more complicated relation according

to the Sherman-Morrison-Woodbury formula which requires the inversion of a rank-k

matrix (7:51).

3.5 Stable Update Formula

The Sherman-Morrison Formulas are not numerically stable algorithms. We

know that using the inverse to numerically solve linear systems is generally not

necessary or even advisable. Efficient solutions usually involves factorizations such

as the LU decomposition.

3.5.1 Rank-1 Updating. Stable and efficient rank-1 update techniques applied

directly to LU factorizations have become popular in simplex applications. Two

t('chniques for the LU f actorization are presented and illustrated with examples by

Gill, Murray and Wright in Chapter 4 of Numerical Linear Algebra and Optimization,

(Vol. I) (6:139-150).

3.5.2 Rank-k Updating. This subsection discusses the generalization t, rank-

k updates. To determine a rank-k update of B, let Bieav be the submatrix formed

from the column vectors of B which are to be replaced (updated). Let Bente be

the submatrix formed from the k entering column vectors which are replacing the

k vectors leaving B. Compute the matrix difference, D, resulting from the vector

replacements:

D = Bet - Beave

Let the 'change' subscripting denote the positions in B where columns will be re-

placed. Let Echang, be a submatrix formed from the column vectors of an identity

matrix subscripted by the change array. Then, letting V = Ech0 .9., column replace-
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ment is described by the following matrix algebra:

B,, = BoLd + DVT

3.5.3 Explicit LU. By following the example of Gill, Murray and Wright,

the following rank-k update technique may be constructed from the explicit form of

the LU factorization. Suppose that we have the factorization Botd = LU. The two

triangular factors may be formed in the storage provided foi the original formation

of BoLd if it is understood that the unit diagonp! of L is overwritten by the diagonal

of U (Figure 3.2):

Figure 3.2. Original Decomposition of BoLd

U

L

It follows from the Sherman-Morrison update formula that,

B,,w = L(U + WVT)

where the matrix W is solved according to the lower triangle system:

LW=D

Updating the factor U to reflect the changes incurred in the formation of Bnew

(Figure 3.3):

U c = U+ WVT

where Uc is an upper triangular matrix with 'spikes' in the columns indexed by
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I

change'. A spike in an upper triangular matrix occurs when a column has a non-

zero value below the main diagonal. Direct elimination of the 'spikes' destroys the

structure that can provide expedient solutions for updated linear systems. Therefore,

to preserve useful structure, we crowd the 'spikes' over to the right side of Uc.

Th application of the columiin permutation matrix, Q, causes no loss of num,-ri'a 1

precision and results in the formation of a generalized upper Hessenberg matrix, UH

with k subdiagonals (Figure 3.4):

UH = UCQ

The U" may then be triangularized by elimination with partial pivoting to

annihilate the subdiagonal elements. The elimination and permutation factors used

for partial pivoting may be stored compactly as a string of operators, denoted by S,

and held in product form. Then the restored upper triangular matrix Unew may be

computed (Figure 3.5):

Un, = SUH

For the explicit form of the LU factorization, L need not be updated. However,

the accumulated product string must remain stored for use in computing solutions to

the updated factorization. In general, an updated LU factorization takes the form:

B, ,t, = LS-' UnQ
T

This factorization takes the same form as the rank-I case. Note that by exploit-

ing triangular factors, S - 1 need never be computed to obtain an updated solution

involving Bnew.
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Figure 3.3. Updating U to Express the Formation of Be

Figure 3.4. Permuting Uc to Achieve Generalized Hessenberg Form

Figure 3.5. Restoring Upper Triangular Form

UH U.eS 
0
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3.5.4 Elimination Form of LU. Another interesting LU approach to the up-

date is to arrange computations according to the elimination form. Suppose that

we have the factorization MBod = U (elimination form where M = L-1 ) . It follows

that:

MB"", = U + WI1T

where the matrix W is solved according to the lower triangular system:

W=MD

Updating U:
Uc = U + WVT

Where Uc is an upper triangular matrix with 'spikes' in the columns indexed

by 'change'. We may still take advantage of the remaining structure of the matrix.

Specifically, permuting columns of UC into a generalized upper Hessenberg matrix,

UH with k subdiagonals, yields:

UH =UCQ

Note that the operation of the permutation matrix, Q, causes no loss of nu-

mericai precision. The UH may then be triangularized by elimination with partial

pivoting to annihilate the subdiagonal elements. The elimination and permutation

factors used for partial pivoting may be stored compactly as a string of operators,

S, held in product form:

U = SUM

M is updated in the following manner:

M.e= SM
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which provides the factorization:

Note that M does not remain triangular since the permutations involved in the

partial pivoting during elimination causes elements to spread above the diagonal.

The form of this updated factorization is also the same as for the rank-1 case.

3.6 Applying General Methods

Issues of computational performance include far more considerations than

counts of floating point operations and memory requirements. Other important

issues include memory access, stride, and other data movement overheads. The rou-

tines in the general numerical libraries (BLAS, Linpack, and etc) are highly refined

to deal with all of these practical issues. Many versions exist which are tailored to

specific machine architectures. However, the high level FORTRAN calling interface

remains standard. Such generic routines enable reliable, modular implementations.

Every effort was made to take advantage of these powerful computational kernals in

constructing general LU rank-k update and solution routines.

There is little sense in re-inventing the wheel. Libraries of general numerical

methods have become widely available for the solution of a number of numerical

problems. Routines maintained in the Linpack, Quadpack, Minpack, and SLATEC

libraries are known throughout the world's scientific and research communities. They

are widely used within U.S. national laboratories and represent the state of the art

in current mathematical software (11:4). Many of these routines have profitted from

years of research, practical refinements and computational experience in organizing

efficient and robust computations on both vector and scalar environments. These

general methods provide FORTRAN access to high level, efficient and reliable com-

putational kernals. Many of the kernals such as the level-i, level-2 and level-3 Basic
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Linar Algebra Subroutines (BLAS), are already being implcmented in hardware.

The latest computational developments encourage the arrangement of computations

to be rich in matrix multiplications (7). These computations can be performed

efficiently on modern, high performance architectures.

Using either the explicit or elimination form of the LU factorizations, the rank-

m linear equations

B,,,x = b or BT = b

may be solved in 0(m 2) operations (6:143,146). This is the same order as the case

for the explicit form of the inverse, but with improved numerical characteristics.

3.7 Choosing Explicit LU

The update technique proposed in this study keeps an explict L and the up-

date stored in product form. The primary application of this form has been the

solution of sparse linear programs (6:139-147). With sparse LPs, the growth of the

product-string is retarded. However, the breadth-first tree search of the current

ADBASE algorithm suggests other possible means for retarding the growth of the

product-string by exploiting 'backtracking' types of algorithms (2). Without doing

any computational backtracking, it is clear that breadth first arrangements minimize

the likelihood of worst-case update situations where restoration of U to trangular

form requires the annihilation of m - 1 subdiagonal elements. (6:143). The breadth-

first tree traversal encourages the situation where the vectors which are likely to

'leave' will be the ones which have most recently 'entered'. This implies that very

few elimination multipliers will be required for most updates to the basis.
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IV. Results

4.1 Decomposition of M-Simplex Algorithm

The m-simplex algorithm has been decomposed into conceptually simpler ele-

ments. The bulk of numerical computations are concentrated in two elements:

1. Testing efficiencies of feasible edges.

2. Moving to the new vertex solutions.

Research and development centered upon the latter because that is where errors

accumulate and stability is threatened. Standard numerical library routines, such

as BLAS were incorporated where possible. As might be predicted, the lower level

routines were the easiest to integrate. A convenient pair of Linpack routines were

used to develop basic routines supporting m-simplex operations. Only one level-3

call appeared to be immediately practical. Incorporation of additional higher level

BLAS routines would require the reformulation of algorithms to be richer in matrix

multiplications. This would probably be the natural result of a second generation of

development based upon the elimination form of the LU factorization rather than

the explicit form (as is case with the current routine).

4.2 Research Code

This research has identified a need for implementations of general methods for

solving updated systems of linear equations. An initial design based upon the explicit

LU factorization has been implemented. Working code is listed in the appendices.

It has achieved successful results using old factorizations produced by DGEFA (A

Linpack PLU factorization routine). These initial routines are capable of solving

regular and transposed systems of equations affected by rank-k updates. The phi-

losophy of the design was naturally influenced by some of the considerations in the
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Linpack design. The processing is strongly oriented towards efficient use of FOR-

TRAN's column-based structures. If refined, these routines could probably be made

to perform very efficiently upon many platforms. It, also, relies heavily on level-1

BLAS and may potentially be refined to be an extremely portable routine. The

current version uses COMMON declarations and an INCLUDE statements. These

may be dropped from subsequent versions. The interface may also be further refined

for simpler application.

4.2.1 Experimental Subroutine Implementation. Routines were developed to

support the operation of the, m-simplex requirements to generate solutions for new

linear systems which are related by rank-k updates to previously solved systems.

URANKN updates the LU factorizations used to solve old systems to a form which

can be used by VECSL or VECTSL to solve new systems. This update technique is

expected to be more stable than straight application of Sherman-Morrison formula

and possibly faster. The basis of the update routines are the stabilized triangular

system solution strategy which underlies the development of the LU factorization,

itself.

4.2.2 Linpack Source Code. The LU factorization code which provides the

initial decomposition (and could be used for periodic reinversons) is the Linpack rou-

tine DGEFA (See Appendix A.1). The ordinary Linkpack solution routine, DGESL

(See Appendix A.2), was found to be a little too coarse for application to an update

formula. It was modified by the introduction of additional entry and exit points to

allow the direct and independent solution of equations involving explicit L and U

factors. The added entry calls, DLSL, DUSL, DLSLT, DUSLT use the same formal

parameters (identically defined) as the original DGESL parameters, except for JOB

(JOB is treated as a dummy variable). Modification was implemented in a manner so

that ordinary DGESL processing will not be affected. A more elegant solution would

be to break DGESL into four component routines. The level-2 BLAS has a triangular
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matrix system solver routine which will directly solve equations involving U, but L

would have to first be inverted to its elimination form. Further, permutations would

have to be applied to ensure correct ordering of solutions. Modifying the DGESL

routine appeared to be the most straight forward option to keep compatibility with

DGEFA.

4.2.3 BLAS Utilization. DGEFA and DGESL are supported by calls to level-

1 BLAS. The level-i calls are also instrumental in supporting the lower level functions

of the factorization update routines.

4.3 ADBASE and System Integration

In order to develop a test bed for the factorization update routines, a version of

ADBASE was modified with the intent of eventual integration of the research code,

without disrupting ADBASE functionality. The organization of ADBASE code ap-

pears modular. However, subroutines have been discovered to be tightly integrated.

The complete structure of the control elements is not clear and attempts at integra-

tion has been difficult and time consuming. Partial integration of the routines has

been accomplished. Full integration continues to be viewed with optimism.
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Appendix A. Linpack A = PLU Routines

A.1 DGEFA

c

c ********************* LINPACK DGEFA *************************
c * *

c * This Software has been obtained via "netlib orni.gov." *

C * *

C

C

C

subroutine dgefa(a,lda,n,ipvt,info)

integer lda,n,ipvt(1),info
double precision a(lda,1)

c

c dgefa factors a double precision matrix by gaussian elimination.
c
c dgefa is usually called by dgeco, but it can be called
c directly with a saving in time if rcond is not needed.
c (time for dgeco) = (1 + 9/n)*(time for dgefa)
c
c on entry
c
c a double precision(lda, n)
c the matrix to be factored.
c
c ida integer
c the leading dimension of the array a

c
c n integer
c the order of the matrix a
c
c on return
c
c a an upper triangular matrix and the multipliers
c which were used to obtain . .

c the factorization can be written a = l*u where
c 1 is a product of permutation and unit lower
c triangular matrices and u is upper triangular.
c
c ipvt integer(n)
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c an integer vector of pivot indices.
c
c Info integer
c = 0 normal value.
c = k if u(k,k) .eq. 0.0 . this is not an error
c condition for this subroutine, but it does
c indicate that dgesl or dgedi will divide by zero
c if called. use rcond in dgeco for a reliable
c indication -f singularity.
c
c linpack. this version dated 08/14/78
c cleve moler, university of new mexico, argonne national lab.

c
c subroutines and functions

c
c blas daxpy,dscal,idamax
c
c internal variables
c

double precision t
integer idamax,j,k,kpl,l,nml

c
c
c gaussian elimination with partial pivoting
c

info = 0
nml n - 1

if (nml .1t. 1) go to 70
do 60 k 1, nml

kp1 = k + 1
c
c find 1 = pivot index
C

1 = idamax(n-k+1,a(k,k),1) + k - 1
ipvt(k) = 1

c
c zero pivot implies this column already triangularized
c

if (a(l,k) .eq. 0.0d0) go to 40
c
c interchange if necesoary
c
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if (1 .eq. k) go to 10
t =a(l,k)

a(l,k) = a(k,k)

a(k,k) = t
10 continue

C

c compute multipliers

c

t = -1.0d0/a(k,k)
call dscal(n-k,t,a(k+l,k),1)

c

c row elimination with zolumn indexing

c
do 30 j = kpl, n

t = a(1,j)
if (1 .eq. k) go to 20

a(l,j) = a(k,j)
a(k,j) = t

20 continue
call daxpy(n-k,t,a(k+1,k),1,a(k+l,j),1)

30 continue
go to 50

40 continue

info = k
50 continue
60 continue
70 continue

ipvt(n) =n
if (a(n,n) .eq. 0.OdO) info =n

return
end
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A.2 Modified DGESL

C

C

c ****************** LINPACK DGESL **************************

C * *

c * (MODIFIED FOR 'UPDATE' SOLN ENTRY) *

c * *

c * This Software has been obtained via "netlib ornl.gc'.'." *

c * *

c * This is a LINPACK routine. It relies upon level-i and *

c * level-2 BLAS. If BLAS is not available at your site, *

c * it can be obtained through the same source. *

C * *

c * All modifications are shown between "*-lines" which *

c * are bounded by double dashed lines. *

c * *

c
c

subroutine dgesl(a,lda,n,ipvt,b,job)

C Routines allow clean insertion of LU update code for LP
C simplex application. (Especially since I used standard
C DGECO or DGEFA code for initialization and re-inversions):
C
c

c Solve l*y = b:
C entry dlsl(a,lda,n,ipvt,b,job)
C
C ------- > LU update code may be inserted here!
c

c Solve u*x = y:
C entry dusl(a,lda,n,ipvt,b,job)

C
C Modified by M. Shields, Jan '91:
C
C This program is hash of the standard LinPack double precision
C 'solve' routine for DGEFA factorizations.

C I have added entry and return codes to obtain use of
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/

C fragments for solving triangular systems of LU factorizations:
C -- Specifically created an integer flag called FRAG to

C determine if want fragment or not ...

C
integer frag

integer lda,n,ipvt(1),job
double precision a(lda,l),b(1)

c

c dgesl solves the double precision system

c a * x = b or trans(a) * x = b
c using the factors computed by dgeco or dgefa.

c
c on entry
c
c a double precision(lda, n)

c the output from dgeco or dgefa.
c
c Ida integer
c the leading dimension of the array a

c
c n integer
c the order of the matrix a
c
c ipvt integer(n)

c the pivot vector from dgeco or dgefa.

c
c b double precision(n)
c the right hand side vector.
c
c job integer

c = 0 to solve a*x = b

c = nonzero to solve trans(a)*x = b where
c trans(a) is the transpose.
c
c on return
c
c b the solution vector x
c
c error condition
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C

c a division by zero will occur if the input factor contains a
c zero on the diagonal. technically this indicates singularity
c but it is often caused by improper arguments or improper
c setting of lda . it will not occur if the subroutines are
c called correctly and if dgeco has set rcond .gt. 0.0
c or dgefa has set info .eq. 0

c

c to compute inverse(a) * c where c is a matrix
c with p columns
c call dgeco(a,lda,n,ipvt,rcond,z)
c if (rcond is too small) go to ...

c do 10 j = 1, p
c call dgesl(a,lda,n,ipvt,c(l,j),O)

c 10 continue
c

C linpack. this version dated 08/14/78
c cleve moler, university of new mexico, argonne national lab.
c

c subroutines and functions
c

c blas daxpy,ddot

c
c internal variables
c

double precision ddot,t

integer k,kb,l,nml
c

frag = 0
nmIl =n- 1
if (job .ne. 0) go to 50

c
c first solve l*y = b

goto 5
entry dlsl(a,lda,n,ipvt,b,job)

frag = 1
nml =n - 1

5 continue

A-6



if (nml .lt. 1) go to 30
do 20 k = 1, nml

1 = ipvt(k)

t = b(l)

if (1 .eq. k) go to 10
b(l) = b(k)
b(k) = t

10 continue
call daxpy(n-k,t,a(k+l,k),1,b(k+l),1)

20 continue
30 continue

C -- Return from DLSL entry:

if (frag.eq.1) return

entry dusl(a,lda,n,ipvt,b,job)

c
c now solve u*x = y
c

do 40 kb = 1, n

k = n + 1 - kb
b(k) = b(k)/a(k,k)

t = -b(k)

call daxpy(k-1,t,a(1,k),1,b(1),1)
40 continue

go to 100

entry duslt(a,lda,n,ipvt,b,job)

frag = 1

50 continue
c job = nonzero, solve trans(a) * x = b
c first solve trans(u)*y = b
c

do 60 k = 1, n
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t = ddot(k-1,a(1,k),1,b(1),1)
b(k) = (b(k) - t)/a(k,k)

60 continue

C -- Return from DUSLT entry:

if (frag.eq.1) return

goto 65

entry dlslt(a,lda,n,ipvt,b,job)

f rag =1
nml =n - 1

65 continue

c now solve transO.)*x= y

if (nml Alt. 1) go t,-, 90

do 80 kb =1, nml

k = n -kb

b(k) =b(k) + ddot(n-k,a(k+1,k),1,b(k+l),1)
1 = ipvt(k)

if (1 .eq. k) go to 70
t =b(1)
b(l) = b(k)
b(k) = t

70 continue

80 continue
90 continue

100 continue
return
end
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Ap1pendix B. LU Factorization Update and Solution Routines

B.1 Update LU Factorization

%*****************CSWP.FOR *****************

C To support multiplying strings of elementary matrices in sweeps:
integer currpv ,fullpv,overpv, strtswp,
* currmu ~nxtuswp ,fullmu, overmu

common /cswp/

* currpv ,fullpv, overpv, strtswp,
* currmu ,nxtuswp ,fullmu ,overmu

/******************URANKIN **************

subroutine urankn(m,n,a,u,lu,ib,piv ,iwk,p,
mu, swp ,changes ,enters, leaves)

C This routine updates an m by m LU factorization to
C reflect a rank-n update. "A" contains the column
C vectors from which the original factorization and
C update vectors are taken. "U" is a workspace where
C intermediate...

implicit none

include 'cswp .for/list'

integer m,n,h,kept,i,kk

double precision a(m,*),lu(m,*),u(m,*)

integer enters(*) ,leaves(*) ,changes(*)

double precision mu(*)

integer swp(1:2,*)
integer ib(*) ,piv(*) ,iwk(*) ,p(*)

C Update U without reference to L:
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C check if full: then do reinversion...
C******** add code for triggering reinversions:

C

C Determine entering vectors:

do 10 i = I,n

C )copy vector to U:'
call dcopy(m,a(l,enters~i)),l,u(1,i),l)

C 'vector difference:'
call daxpy(m,-1.dO,a(1,leaves(i)),l,u(1,i),1)

C 'Solution ::dlsl'
call dlsl(lu,m,m,piv,u(1,i),kk)

call daxpy(changes(i),1.dO,lu(1,changes(i)),1,u(1,i),1)

10 continue

strtswp = currpv + 1

nxtuswp = currmu + 1

C Save links to changes to be made in the basis:
call markupd(m,ib,n,iwk,changes,kept)

C Sweep matrix into permuted triangle form:

call permu(m,lu,mu,swp,p,kept,n,iwk)

C Establish the new index:

call permidx(m,p,ib)

C Update matrix and ib:

call updmu(m,n,lu,mu,swp,ib,kept,u,enters)

C Update of U complete.

end
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subroutine updmu(m,n,lu,mu,indices,ib,kept,u,enters)

implicit none

include 'cswp.for/list'

integer m,n,i,kept,last

double precision lu(m,*),u(m,*)

integer enters(*),ib(*)

C "pivot-strings" ...

double precision mu(*)
integer indices(1:2,*)

integer ibi,kk,zz

C For update i: (i indexes the update event and is associated with U)

C enters(i) is the index of A that enters

C changes(-') is the index of LU vector that is updated and temporarily

C stored in the index set, ib(m).

last = kept + n

do 10 i = kept+1, last

C (For the changed U vectors).

ibi = ib(i)

call vecswp(indices,mu,u(1,ibi))

C -------- Eliminate last h elements to fit triangular form:

if (i.lt.m)

call annih(

: m - i

u(I,ibi),
indices,
mu

C -------- Place U vector into original LU:

call dcopy(i,u(1,ibi),1,lu(1,i),1)
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C -------- Record 'enters' index over 'changes' index in index vector, ib:
ib(i) = enters(ibi)

10 continue
if ( m.gt.last) then

call vecswp(
: indices,
: mu,
: lu(1,m) )
end if

end

subroutine permidx(n,ip,ib)

C This routine reorders an index set matrix, ib, by a permutation
C matrix, ip:
C It computes the product (ip*ib).
C (Permutation matrix packed into the vector ip.)

implicit none

integer n, ip(n), ib(n), i, k, index,kk

if (n.lt.2) return

C--Do until all items in ib are mapped by ip:
i=n

10 continue
k = ip(i)
if (k .ne. i) then

index = ib(k)
ib(k) = ib(i)
ib(i) = index

end if
i = i- 1

if (i.gt.1) go to 10

end
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subroutine markupd(m,ib,r,iwk,changes,kept)

C This routine marks changes in basic indices:
C Must be called only after the update vectors have
C been formed (But not yet reduced).

implicit none

integer m,n,ib(*),changes(*),iwk(*),kept,i,j,kk

logical ibubswp

do 5 i = 1, n
C ------ Put indices into work vector for sorting and working with...

j = changes(i)
iwk(i) = j

C ------ These indices are to the change matrix outside of LU:
ib(j) = i

5 continue

C
C Ensure ascending order for iwk:

i =n
10 if (ibubswp(i,iwk)) then

goto 10

end if

C Identify the right most-vector column vector of U,
C (For after permutation!) that goes unchanged.

kept = m - n - 1
if (iwk(n).eq.m) kept = kept + 1

end

subroutine permu(m,lu,mu,indices,p,kept,n,iwk)

implicit none
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integer m,n,p(*),iwk(*),kk,zz,cnt

integer left,i,k,h,j,kept,kpl

integer indices(1:2,*)

double precision lu(m,*),mu(*)

C Reduce and reorder the 'kept' basic vectors into a triangular form:

C Also, track permutations of the columns in packed-permutation matrix, p.

cnt = 0

h= 0

j = iwk(1)
do 20 i = 1,m

if (i.eq.j) then

h = h+1

if (h.lt.n) j = iwk(h)

else

C (For the kept U vectors).

cnt = cnt + 1

C-------- Eliminate last h elements to fit left-shifted triangular form:

if (h.gt.1) then

call vecswp(indices,mu,lu(1,i))

end if

call annih(
: i,

* h,

: lu(i,i),

: indices,

* mun )

C -------- Shift U vector left to crowd into original U:

left = cnt

call dcopy(left,lu(1,i),1,lu(l,left),l)

C -------- Record column permutation of kept U in P:

p(cnt) = cnt + h
end if

if (cnt.eq.kept) goto 25

20 continue

25 continue
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C Done with permuting unchanged, basic column vectors...

C
C Now, finish p:
C
C Initialize p:

do 30 i = kept+1,k pt+n
p(i) = 0

30 continue

C ---- Av-id permuting columns originally right of the last kept vector:

C Put non-permuted change columns where before the permutations started.

do 40 i = h+l,n
k = iwk(i)
p(k) = k

40 continue
p(m) = m

C ---- Fill-in rest of p with remaining permuted, update columns:
i = kept
do 60 j = 1,h

C -- Find a free column to accept iwk(j):

50 continue
i=i+1

if (p(i).ne.0) goto 50
p(i) = iwk(j)

60 continue

end

logical function ibubswn(n,p)

C Tests for bubble swaps ... used in a bubble sorts.

C Caution: Overwrites array.
C Last array elem. largest aster 1 pass.

implicit none

integer p(*),n,i,h

ibubswp = .false.
do 30 i = 1,n - 1
h = p(i+1)

if (p(i) .gt. h) then

p(i+1) = p(i)
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p(i) = h

ibubswp = .true.
end if

30 continue

end

subroutine annih(n,h,vip,mu)

C-- Description:

C-- Assunmes element V(n) is non-zero: Constructs Gaussian elimination

C-- operations to annihilate from V the last H elements, pivoting

C-- on a single element. This pivct element, at position (N - H)

C-- is the largest Gf the last ( H + 1 ) of the original elements in V.

C

C MU is an array which records the string of multipliers involved

C in tAe annihilation of V.

C

C IP is an array which records descriptions of permutations and the

C number of multipliers involved during the annihilation.

C

C-- 1. Construct a stabilized transformation (partial pivoting and

C-- gaussian elimination), ...

C-- 2. Use it to eliminate h components of v ...

C-- --- A swap adds to list ip(1:2,*) only.

C-- --- and elimination adds to mu as well.

C-- 3. Pass essentials out to join string of pivot matrices for later

C-- update sweeps.

C--

C-- Works in association with VECSWP and VECTSWP. These routines

C-- decoue any series of annihilations made with this routine

C-- and applies them to update a vector. The updated vector

C-- may then be applied to an appropriate triangular system.

C--

implicit n)ne

double precision v(*), mu(*),swap
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integer n,h,ip(1:2,*),i,k,l,idamax,inc

include 'cswp.for/list'

external idamax

C ----- h is the count of elements to elim. from v

if (h.eq.O) return

i =n -h

1 = idamax(h+1,v(i),1) + i - 1
C ---- (If singularity probable, need test for pivot tolerance here!)

if (l.gt.i) then

C ------ Pivot involves a row swap!

swap = v(i)
v(i) = v()
v(l) = swap

C ------ Signal: upper triangular form.

currpv = currpv + 1

ip(2,currpv) = i

if (h.eq.1) then

ip(1,currpv) = i

C -------- find single elimination factor and return early:

C (implicitly, n = i+1 = 1 ).

currmu = currmu + 1
mu(currmu) = v(l)/v(i)

return

else

ip(1,currpv) = 1

end if

end if

C ---- (Swap, if was necessary, is complete ...)

C Now for the elimination ...

C ---- Signal: Lower triangular form for this pivot.

currpv = currpv + 1
ip(1,currPv) = i
ip(2,currpv) = n

C ---- Compute elimination factors: Annihilates remaining v...
do 10 k = 1, h
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mu(k+currmu) = v(i+k)/v(i)
10 continue
C ---- Update ptr to last elimination multiplier computed.

currmu = currmu + h

end
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B.2 Solve Ax = b Using Updated LU Factorization

c

Cc

Cc * *

c * The following software routines have been written *

c * to support and demonstrate the LU rank-n *

c * factorization updating and solution procedures *

c * described in this Thesis. All of the routines in *

c * these appendicies were tested together and function *

c * properly to yield expected results. *

c **

c * They have not yet been fully integrated in a *

c * complete M-Simplex package. *

c * *

c
c
c Rank-n solution routine.
c This routine replaces the solve routine, DGESL, when working

c with factorizations updated by URANKIN. VECSL solves the
c updated problem: (Ax = b).

c

subroutine vecsl(m,b,p,a,piv,swp,mu)
implicit none
integer m, kk, zz

double precision b(*),a(m,*)
double precision mu(*)

integer swp(1:2,*)
integer piv(*),p(*)

include 'cswp.for/list'

call dlsl(a,m,m,piv,b,kk)
call vecswp(nwp,mu,b)
call dusl(a,m,m,piv,b,kk)

call vecperm(m,b,p)

end
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subroutine vecperm(n,vip)

C This routine reorders a vector according to a permution matrix
C (matrix packed into the vector ip):

implicit none

integer n, ip(n), i, k
double precision a, v(n)

if (n.lt.2) return
do 10 i=n,1,-1

k = ip(i)

if (k .lt. i) then

a = v(k)
v(k) = v(i)
v(i) = a

end if

10 continue

end
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subroutine vecswp(indices,mu,v)

C
C Computes the product of a string of stabilized eliminations
C (applies partial pivoting (pair-wise for Rank-$n$) and a dense vector, v.
C
C ---- To perform a complete sweep (correctly), must start at the beginning:

C--
C-- 1. The pivot counter PIVCNT must be reset to 1, and ...
C-- 2. The pointer, NXTUSWP from the COMMON /cswp/, must be
C-- reset to 1.
C--
C-- Explanation: There may be many multipliers to a pivot, and

C-- NXTUSWP points to the set of annihilators (multipliers) associated
C-- with a pivot, PVCNT. The number of multipliers can be gleaned from
C-- the information in INDICES(.,pvcnt)
C

implicit none

integer pvcnt,i,j,h

include 'cswp.for'

double precision v(*), mu(*), a
integer indices(1:2,*)

nxtuswp = 1

do 10 pvcnt = 1, currpv

i = indices(l, pvcnt)

j = indices(2, pvcnt)
h=j - i
a v(i)

C Use form of update message to determine update action:
if (h.gt.0) then

C -- lower triangle -- Avoid permutation: annihilate.
call daxpy(h,-a,mu(nxtuswp),l,v(i+l),l)
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nxtuswp = nxtuswp + h
else

C -- Upper triangle pivot element -- Complete permutation:

if (h.eq.O) then
C -- Since only one, annihilate the lower triangle element
C -- after swap. (Operations combined, here:)

h=i+ 1
v(i) = v(h)
v(h) = a - v(h)*mu(nxtuswp)
nxtuswp = nxtuswp + 1

else

C -- Just a swap: (No annihilation).

v(i) = v(j)
v(j) = a

end if
end if

10 continue
end
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B.3 Solve ATv = c Using Updated LU Factorization

Cc
C

CC * *

c * The following software routines have been written *

c * to support and demonstrate the LU rank-n *

c * factorization updating and solution procedures *

c * described in this Thesis. All of the routines in *

c * these appendicies were tested together and function *

c * properly to yield expected results. *

c * *

c * They have not yet been fully integrated in a *

c * complete M-Simplex package. *

c * *

c
c
c Rank-n solution routine. (transposed case)
c This routine replaces the solve routine, DGESL, when
c working with factorizations updated by URANKN. VECTSL
c solves the transposed problem: (transposed(A)x b)

c
c

subroutine vectsl(m,b,p,a,piv,swp,mu)

implicit none
integer m, kk, zz
double precision b(*),a(m,*)

double precision mu(*)
integer swp(1:2,*)
integer piv(*),p(*)

include 'cswp.for/list'
C Solve a transposed system

call vectperm(m,b,p)

call duslt(a,m,m,piv,b,kk)
call vectswp(swp,mu,b)
call dlslt(a,m,m,piv,b,kk)
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end

subroutine vectswp(indices,mu,v)

C

C Computes the product of a transposed string of stabilized eliminations

C pivots and a dense vector, v. The sweep begins at currpiv and is

C completed when have reached the first pivot matrix.

C

implicit none

integer pvcnt, i, j, h, bckswp

include 'cswp.for'

double precision v(*),mu(*),a,ddot

integer indices(1:2,*)

external ddot

bckswp = nxtuswp

do 10 pvcnt = currpv,1,-1

i = indices(l, pvcnt)

j = indices(2, pvcnt)

h =j - i
if (h.gt.0) then

C lower triangle -- Avoid permutation:

bckswp = bckswp - h
T(i - -(4" - ddot(h.mu(-.7),1,v(i+l), )

else

a = v(i)

C Upper triangle pivot element -- Complete permutation:

if (h.eq.0) then

C -- (Operations combined, here:)

h=i+1
v(i) = v(h)
bckswp = bckswp - 1

v(h) = a - v(h)*mu(bckswp)

else

C -- Just a swap:

v(i) = v(j)
v(j) = a
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end if

end if

10 continue

end

subroutine vectperm(n,v, ip)

C This routine reorders a vector according to a permution matrix
C (matrix packed into the vector ip):

implicit none

integer n, ip(n), i, k

double precision a, v(n)

if (n.lt.2) return
do 10 i= 1, n

k = ip(i)

if (k .gt. i) then
a = v(i)

v(i) = v(k)

v(k) = a

end if
10 continue

end
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Appendix C. Example Test Programs

C-- Enters rank-i update, solves system of equations.
C

program test
C-- try out l.a. routines and LU- update code.: see page 144 Gill et. all.

implicit none

integer over,lda, m, kk, i j
parameter(C
*over = 100,

* lda =5,

C Problem data:
double precision a(m,lda) /5.dO, 2.dO, I.dO,

4.dO, 1.dO, 1.d0,
3.dO, 2.dO, 1.dO,

1.dO, 1.dO, 3.dO,
1.dO, 1.dO, 1.dO/

integer enters(m) / 4, 0, 0 I
* leaves(m) / 1, 0, 0 I
* changes(m) / 1, 0, 0/

C Routine workspace:
include 'cswp.f or/list'

double precision mu(1:over),lu(m,m),u(m,2)

integer swp(1:2,1:over),n
integer piv(m),iwk(m),ib(m) / 1, 2, 3 /,p(m)

double precision invcond, b(m) /-2.dO,-5.dO,-4.dO/, s
double precision w(m)

fullpv = 75
fullmu = 75
overpv = over
overmu = over

currpv = 0
currmu = 0
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n=
C write (*,1O) ((a(i,j),i=1,m),j=1,m)

10 format (3f10.3,/)
print *

do 30 i = 1,m

call dcopy(m,a(1,i),1,lu(1,i),1)
30 continue

write (*,iO) ((lu(i,j),j=1,m),i=1,m)
call dgeco(lu,m,m,piv,invcond,w)

write (*,10) ((Jlu(i,j),j=1,m),i=I,m)
print *

print *,'update LU:'

call urankn (m,n,a,u,lu,ib,piv,iwk,p,
mu,swp,changes,enters ,leaves)

write (*,10) ((lu(i,j),j=1,m),i=1,m)

C print *

print *,(piv(i),i~l,m)
print *,(p(i),i=1,m)
print *,invcond,(ib(i),i1l,m)
print *,I swp:'

print *,((swp(j,i), j=1,2),i=1,4)
print *, 'mu: I ,(mu(i),i=1,3)

print *,'solve b:',b

call vecsl(m,b,p,lu,piv, swp ,nu)

print *,b
end
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program testr

C-- try out l.a. routines and LU- update code.: see page 144 Gill et. all.

C-- For transposed systems:

C-- Rank-i update and transposed sol'n.

C

implicit none

integer over,lda, m, kk, i ,j

parameter(
* over = 100,

l da =5,

C Problem data:
double precision aa(m,m)/

1.dO, 1.dO, 3.dO,
4.dO, 1.d0, 1.dO,
3.dO, 2.dO, 1.dO

double precision bb(m) /-2.d0,-5.dO,-4.dO/

double precision bt(m) /-2.dO,-5.dO,-4.dOI

double precision bbb(m) /-2.dO,-5.dO,-4.dO/

double precision a(m,lda) / 5.dO, 2.dO, 1.d0,
4.dO, 1.dO, 1.dO,

3.dO, 2.dO, 1.dO,

1.d0, 1.dO, 3.dO,

1.dO, 1.dO, 1.dOI

integer enters(m) / 4, 0, 0 I
* leaves(m) / 1, 0, 0 I
* changes(m) / 1, 0, 0/

C Routine workspace:
include 'cswp .for/list'

double precision mu(l:over),lu(m,m),u(m,2)

integer swp(1:2,1:over),n

integer piv(m) iwk(m),ib(m) / 1, 2, 3 /,p(m)

double precision invcond, b(m) /-2.dO,-5.dO,-4.dO/, s

double precision w(m)
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f ullpv = 75
f ullmu = 75
overpv = over
overmu = over
currpv = 0
currmu = 0
n = 1

10 format (3fl0.3,/)

do 30 i = 1,m
call dcopy~m,a(1,i),1,lu(1,i),1)

30 continue
write (*,i0) ((lu(i,j),j=1,m),i=1,m)
call dgeco(lu,m,m,piv,invcond,w)
call urankn(m,n,a,u,lu,ib,piv,iwk,p,

mu, swp,changes, enters ,leaves)
write (*,i0) ((lu(i,i),j=I,m),i=1,m)
Iprint *

print *,(piv(i),j~l,m)
print *,(p(i),i=1,i)
print *,invcond,(ib(i),i=I.,m)
print *,'solve x: b = Btransposed*x,

call vectsl (m,b,p ,lu,piv,swp,mu)
print *,'factored x = b
print *, 'verification:'

C transposed system sol::
call dgeco(aa,m,m,piv,invcond,w)

C write (*,i0) ((aa(i,j),j=1,m),i=1,m)
print *,'transposed soln:I

call duslt(aa,m,m,piv,bt,l)
call dlslt(aa,m,m,piv,bt,1)
print *,bt

print *,'Straight dgesl soln:(transposed:)
call dgesl(aa,m,m,piv,bbb,l)
print *,bbb

end
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