ECURITY	CLASS	FICATION	OF THIS	PAGE

r

REPORT DO

.

ΔD-	A238	791

.

Form Approved OMB No. 0704-0188

1a. REPORT SI Unclas	ECURITY CLASS sified	FICATION		NARIS (RIA)INAR (NIN) (NIN) (NIN)	9t (10) (00)		
28. SECURITY CLASSIFICATION AUTHORITY			3. DISTRIBUTION / AVAILABILITY OF REPORT				
	ICATION / DOW	NGRADING SCHEDU	F	Distribut	ion unlimit	release;	
			÷ 1	DISCLIDE			
4. PERFORMIN	G ORGANIZAT	REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RI	EPORT NUMBER	(5)
		Ball.		AFOST	R 91	0 : 3 ?	
6a. NAME OF	PERFORMING	ORGANIZATION	65. OFFICE SYMBOL	7a. NAME OF ME	NITORING ORGA	NIZATION	
Universit	y of Calif	., San Diego	(If applicable)	AFOSR/NC			
6c. ADDRESS (City, State, and	d ZIP Code)		7b. ADDRESS (City, State, and ZIP Code)			
Department of Chemistry, 0506 La Jolla, CA 92093-0506				Bldg. 410 Bolling AFB, D.C. 20332-6448			
8a. NAME OF	FUNDING / SPO	NSORING	86. OFFICE SYMBOL	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
ORGANIZA	AFOS	R		AFOSR-89-0174			
Sc. ADDRESS (City, State, and	ZIP Code)		10. SOURCE OF FUNDING NUMBERS			
Bldg.	41C			PROGRAM	PROJECT	TASK	WORK UNIT
Bollin	g AFB, D.C	20332-6448		61102F	3484	Δ2	ACCESSION NO.
	ude Security Cl	assification			3404		
(U) DURIP	Synthesis	and Study of	Preceramic Poly	mers/Ceramic	Precursors	. Metal Sil	icides, and
Polyme-	with Uniqu	e Optical and	Electronic Prop	erties			
12. PERL JNAL	AUTHOR(S)	T. Don Tilley	•				
13a. TYPE OF	REPORT	136. TIME CO	VERED 11/30/90	14. DATE OF REPO	RT (Year, Month,	Day) 15. PAGE	COUNT
FINAL	Technical	FROM 12/	1/03 10 11/30/30	5/23/9	1	1	5
16. SUPPLEME	NTARY NOTAI	ION					
17.	COSATI	CODES	18. SUBJECT TERMS (C	Continue on revers	e if necessary and	l identify by blo	ck number)
FIELD	GROUP	SUB-GROUP					
19. ABSTRACT	(Continue on	reverse if necessary	and identify by block no	(mber)			
		-					
The th	ermal anal	lvsis svstem a	nd tube furnace	purchased or	n this grant	have been	used
to con	duct initi	al studies on	the conversion	of alkoxysi	loxy derivat	ives to met	tal
silica	te solid s	state material	s. These resul	ts, pertaini	ng to titani	um, zircon	, תני ו
and ha	fnium, are	e described.					
			(1 050	25		
91-05935							
Ω T	f-y 6	9.01					
91	(6	\mathbf{v} \mathbf{v}	t in	INNE SONON NEOTO DONDA KINA ANADA MA	10 1 10 11 10 10		
						م الداري الرزي الي من ال	
20. DISTRIBUT	ION / AVAILABI	LITY OF ABSTRACT		21. ABSTRACT SE	CURITY CLASSIFIC	ATION	t i i i i i i i i i i i i i i i i i i i
LUNCLASS	PECONSINI F		DTIC USERS	226. TELEPHONE	nclude Area Code) 22c. OFFICE S	YMBOL
Dr. Fi	ed Hedber	9		202-767-4	960	NC	
D Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE							

DURIP Synthesis and Study of Preceramic Polymers/Ceramic Precursors, Metal Silicides, and Polymers with Unique Optical and Electronic Properties

Final Technical Report

1......

The thermal analysis system and tube furnace purchased on this grant have been used to conduct initial studies on the conversion of alkoxysiloxy derivatives to metal silicate solid state materials. These results, pertaining to titanium, zirconium, and hafnium, are described below.

Interest in low-temperature chemical routes to ceramic materials is based largely on the potential for generating metastable structures with unusual properties, or on development of improved processing methods. The sol-gel method in particular has attracted attention as a low-temperature route to oxide materials.¹ This method can be extended to the synthesis of mixed-metal oxides, however the formation of homogeneous materials can be complicated by differences in hydroylsis rates for the starting metal compounds.² Nonetheless, sol-gel processes have been utilized to produce (for example) TiO₂- or ZrO₂-containing silicates in the form of thin films, fibers, or monoliths.³ Materials of this type find applications that take advantage of their optical properties, chemical inertness, high melting points, insulating properties, and fracture toughness.

We are investigating use of (alkoxy)siloxy transition metal complexes as single source precursors to homogeneous metal silicate networks, and here report preliminary results regarding low-temperature conversion of the compounds $M[OSi(O^tBu)_3]_4$ [M = Ti (1), Zr (2), Hf (3)] to $MO_2.4SiO_2$ materials. As siloxide preversure to silicates, these compounds have the advantage that the transition metal and silicon as are initially bonded only to oxygen. Also, the *tert*butoxy groups undergo thermal eliminary conference of isobutylene, which cleanly remove all the carbon as volatile material. Given the chemistry model on the resulting condensation steps, silicate

Best Available Copy

networks containing a homogeneous distribution of transition metal ions are expected to form. Here we show that these reactions can be employed to cast thin films, and to generate rather unusual microstructures. Hrncir has previously shown that zirconium and hafnium siloxides of the type $M(OSiR_3)_4$ (R₃ = Et₃, Me₂^tBu, Me₂Ph, MePh₂, Ph₃) decompose over a wide temperature range (350-600°C) to give MO₂ 4SiO₂ materials.⁴

Crystalline, pentane-soluble 1-3 were prepared by reactions of the appropriate amido derivatives, $M(NEt_2)_4$, with 4 equivalents of HOSi(O^tBu)₃ in pentane. In benzene solution, 1 and 3 are monomeric whereas 2 exists as a dimer. Abe has previously reported a synthesis for 2, and has described titanium derivatives related to 1. Compounds 1-3 undergo hydrolysis to liberate HOSi(O^tBu)₃ and produce metal oxide gels.

Thermal gravimetric analysis (TGA) curves for 1-3 (Figure 1) show precipitous weight losses corresponding to elimination of isobutylene and water.⁷ Minimal dehydration continues slowly thereafter, until a constant weight corresponding to quantitative formation of MO₂·4SiO₂ is established. These thermolyses occur at remarkably low temperatures, particularly for 2 and 3 which exhibit onset temperatures of 137 and 141°C, respectively. The higher temperature required for decomposition of 1 may result from greater steric crowding about the smaller titanium center, which could restrict the molecular motion required for decomposition. The volatile products of thermolysis of 2 at 190-200°C (5 min) were collected by vacuum transfer, and identified as isobutylene (11.7 equivalents/Zr), water (5.4 equivalents/Zr), and *tert*-butanol (trace). This stoichiometry is approximately represented by equation 1.

11

14451 1. 0 mod SE ILLOGE atr Coden Avell And/or D121 Spacial

2

$$\frac{1}{2} \{ Zr[OSi(O^{t}Bu)_{3}]_{4} \}_{2} \xrightarrow{10^{-3} \text{ mm Hg}}{190-200 \ ^{\circ}C} ZrO_{2} 4SiO_{2} + 12CH_{2}=CMe_{2} \qquad (1) + 6H_{2}O_{2} + ^{t}BuOH (trace) \}$$

. .

Crystallizations and phase transformations were followed by X-ray powder diffraction (XRD), differential thermal analysis (DTA), and electron microscopy. The ZrO_2 ·4SiO₂ system has been examined in greatest detail. Surprisingly, crystals of **2** retain their shape and morphology (in going from transparent to opaque) after decomposition at 1200 °C, with very little shrinkage (\leq 10%). Samples of ZrO₂·4SiO₂ are amorphous to 1100 °C (by XRD), and an exothermic process at 1150-1400 °C (observed by DTA) corresponds to crystallization of finely dispersed t-ZrO₂. Heating ZrO₂·4SiO₂ to 1500 °C for 6 h under argon produces a mixture of m-ZrO₂, t-ZrO₂ (1:5 ratio), and cristobalite.⁸ Rapid quenching of ZrO₂·4SiO₂ from 1500 °C to 0 °C gave a material for which the ratio of m-ZrO₂ to t-ZrO₂ was maintained.

Transmission electron micrographs (TEM's) of samples of 2 decomposed at 400 °C (2 h in an O₂ flow) reveal a fibrous structure (Figure 2a), which is characterized by a surface area of 118 $m^2 g^{-1}$ (BET method). Further heating to 800 °C (4 h, O₂) produces an ordered, interpenetrating network of thin fibers (Figure 2b), and a surface area of 82 m² g⁻¹. The crystallization of zirconia at 1200 °C (4 h, O₂) is apparent in TEM photographs (Figure 2c), which show small crystallites (6-21 nm) embedded in an amorphous silica matrix. The sintering that results from the latter thermal treatment reduces the surface area to 36 m² g⁻¹.

Whereas the thermolysis chemistry of **3** and **4** appears to be quite similar, there are significant differences in the materials that are generated. The HfO₂·4SiO₂ material produced at $400 \degree C$ (2 h, O₂) is composed of 8-32 nm particles (Figure 2d). In samples heated to 1000 °C, t-HfO₂ (or c-HfO₂) is present, and samples taken to 1460 °C contain t-HfO₂ (or c-HfO₂), m-HfO₂ (in roughly equal amounts), and cristobalite.

3

Heating 1 to 400 °C results in amorphous $TiO_2 \cdot 4SiO_2$, from which finely dispersed anatase crystallizes at 1000 °C (by XRD). Samples taken to 1400 °C contain anatase, rutile, and cristobalite.

The low temperatures at which 2 and 3 thermally decompose allow for formation of the silicate networks to be conveniently be carried out in solution. Refluxing 2 in xylenes for 10 h produces viscous, nearly transparent fluids and small amounts of particulate matter. Removal of the volatiles in vacuo leaves a white, amorphous $ZrSi_4O_x(OH)_y$ powder that has a BET surface area of 520 m² g⁻¹, and looses 27% of its weight when heated to 1150°C (by TGA). This powder is composed of ca. 0.1-3 µm agglomerates (by scanning electron microscopy) made from smaller, non-spherical 30-70 nm particles (by TEM). The dehydration of $ZrSi_4O_x(OH)_y$ was monitored by ²⁹Si NMR spectroscopy of the isolated powder (dried in vacuo), which revealed a very broad peak which moved from -99 to -110 ppm as the sample was heated from 25 to 1200 °C. Annealing this material at 1200 °C (4 h, O₂) results in a significant reduction of the surface area to ca. 3 m² g⁻¹. At higher temperatures, the same crystallization behavior described above for $ZrO_2 4SiO_2$ is observed.

Hydrocarbon solutions of 2 and 3 have been used to cast thin films of $ZrO_2 \cdot 4SiO_2$ and $HfO_2 \cdot 4SiO_2$ onto quartz. For example, a 1% solution of 2 in benzene was spun onto a quartz disk, and the disk was then heated to 400 °C under O₂ for 30 min. Examination of the resulting film by SEM (Figure 3) revealed a smooth, crack-free surface. Similar $HfO_2 \cdot 4SiO_2$ films prepared from a 1% solution of 3 in cyclopentanone have thicknesses ranging from 70 to 90 nm (Dektak 3030 profilometer).

In conclusion, the chemical thermolyses described here represent an alternative approach to the synthesis of silicate materials. The solid state conversions produce porous ceramic materials that can have ordered microstructures. Continuing investigations are attempting to probe the 4

possibility that formation of such microstructures may be controlled via directionality imposed on the condensation process by the crystalline lattice of the precursor compound. The chemistry involved in this process can be applied to sol gel-like processes in non-polar media, and should allow the homogeneous incorporation of a wide variety of dopants (e.g., polymers or additional metal ions). We are currently investigating the use of the gel-like [MSi₄O_x(OH)_y]_z solutions for fashioning films, fibers and monoliths.

REFERENCES

- See for example: Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, edited by L. C. Klein (Noyes Publications, Park Ridge, New Jersey, 1988); D. R. Ulrich, in Transformation of Organometallics into Common and Exotic Materials: Design and Activation, NATO ASI Series E: Appl. Sci. No 141, edited by R. M. Laine (Martinus Nijhoff Publishers, Amsterdam, 1988), p. 103; H. Schmidt, J. Non-Cryst. Solids 100, 51 (1988).
- D. R. Uhlmann, B. J. J. Zelinski, and G. E. Wnek in *Better Ceramics Through Chemistry* (Materials Research Society Symposia Proceedings, Vol. 32), edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (North-Holland, New York, 1984), p. 59.
- ³ T. Gunji, Y. Nagao, T. Misono, and Y. Abe, J. Non-Cryst. Solids 107, 149 (1989); I. M. M. Salvado, C. J. Serna, J. M. F. Navarro, J. Non-Cryst. Solids 100, 330 (1988); M. Nogami and M. Tomozawa, J. Am. Ceram. Soc. 69, 99 (1986); V. S. Nagarjan and K. J. Rao, J. Mater. Sci. 24, 2140 (1989); K. Kamiya, S. Mabe, T. Yoko, and K. Tanaka, J. Ceram. Soc. Jpn. Inter. Ed. 97, 227 (1989); M. Nogami, J. Non-Cryst. Solids 69, 415 (1985); D. Kundu, P. K. Biswas, and D. Ganguli, J. Non-Cryst. Solids 110, 13 (1989).
- ⁴ D. C. Hrncir and G. D. Skiles, J. Mater. Res. 3, 410 (1988).
- ⁵ Y. Abe, K. Hayama, and I. Kijima, Bull. Chem. Soc. Japan **45**, 1258 (1972).
- ⁶ Y. Abe and I. Kijima, Bull. Chem. Soc. Japan **43**, 466 (1970).
- ⁷ Thermal analyses were obtained with a Du Pont Model 2000 system.
- ⁸ MO₂·4SiO₂ samples were quenched in air to room temperature unless otherwise noted.

Figure Captions

۰.

Figure 1. (a) TGA of 1 (2 °C min⁻¹ to 450 °C; 20 °C min⁻¹ to 900 °C). (b) TGA of 2 (2 °C min⁻¹ to 200 °C; 20 °C min⁻¹ to 1100 °C) = C + TGA of 3 (2 °C min⁻¹ to 200 °C; 20 °C min⁻¹ to 1100 °C).

Figure 2. TEM micrographs of material from decomposed 2 and 3. (a) $ZrO_2 \cdot 4SiO_2$ heated to 400 °C (2 h, O₂). (b) $ZrO_2 \cdot 4SiO_2$ heated to 800 °C (4 h, O₂). (c) $ZrO_2 \cdot 4SiO_2$ heated to 1200 °C (4 h, O₂). (d) HfO₂ \cdot 4SiO₂ heated to 400 °C (2 h, O₂).

Figure 3. SEM micrograph of $ZrO_2 + SiO_2$ thin film spun onto quartz from a 1% solution of 2 in benzene.

ו ולחור זמ

.1

.

Figure 2a

250 nm

Figure 2b

200 nm

Figure 2c

100 nm

Figure 3

<u>| 300 nm</u>|