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On Singular Semilinear Elliptic Equations

Aihua W. Shaker
Department of Mathematics
Naval Postgraduate School

Monterey, CA93943

May 8, 1991

Abstract: - For the semilinear elliptic equation Au + p(x)u- = 0, x E Rn,
n > 3, -y > 0, we show via the barrier method the existence of a positive
entire solution behaving like IJX2-n near oo.

1 Introduction

We study the singular semilinear elliptic equation

, (1) u+p u= 0

in R'. This type of equation arises in the boundary layer theory of viscous
fluids [3,4]. From the results of Fulks and Maybee (8], Crandall, Rabinowith,
and Tartar [5], Gomes [9], and recently Lazer and McKenna [14], it follows
that (1),has a unique classical solution within a bounded domain. (1, where
p(z.) is a sufficiently regular function which is positive on fl. Kusano and
Swanson (12] gave the existence proof on exterior domains. As for the ex-
istence of entire solutions, not much is known, Edelson [7], Kusano and
Swanson [13) have been able to show the existence of entire solutions of (1)
with -f e (0, 1), and p(x) sufficiently regular. In this paper we show via the
upper and lower solution method, which is also referred to as the barrier
nmethod, that (1) has a bounded positive entire solution vanishing at oc in
Rt/" for n > 3 and all y > 0.

The author learned after this paper was finished that a similar result was,
given earlier by R. Dalmasso [6], but by a different approach.

'i1



2 Preliminaries

We first state the theorem by Kusano and Swanson [13] for the case 0 < -" <
1.

Lemma 1. Equation (1) has an entire bounded positive solution %(z) in R '

for n > 3 ,and IxIu(X) is bounded and bounded away from zero near oo if
p(x) satisfies iht J'tlowing conditions:
(H1) p(x) E C&: (Rn), n > 3, p(x) > 0, x e R n \ {0},
(H2) 3C > 0, such that CO(Ixj) < p(x) < O(Ix), O(x) = maxjxj=tp(x), 0 <
t<c,

(H3) fl tn-l+-,(n- 2)5(t)dt < 0o.

The term "entire" has often been used for solutions of equation (1) in
R". To avoid confusion with the traditional definition for entire functions,
we use the term "C 2+,-entire'. A C 2+c-entire solution of (1) is defined to
be a function u(x) E C72+"(R') that satisfies (1) pointwise in R n

The method that we shall be using heavily in our proof is the so-called
barrier method, or upper-lower solution method.

We consider the elliptic boundary value problem

(2) Lu + f(x,u) = 0 in D

( Bu = wulv + bu = g on (9D

where D is a smoothly bounded domain in R N and v = (vu,-",,) is a
smoothly varying outward normal vector field on aD which is of class C2+ ,

while a and b are positive constants. We also assume that f E Cc and that
g has an extension 4 to the interior of D such that 4 E C 2'+ .

An upper solution to the above problem is a function ¢ satisfying

L + f(x,¢) < 0 in D

BO > g on OD.

A lower solution to the above problem is a function V' satisfying

{ Lb + f(x,!) > 0 in D

BV < g on OD.

Wc aoume that 9D,f,g, and the coefficients of L are smooth in what
follows

2



Lemma 2. (Theorem 2.3.1 of [16]) Let 0 be an upper solution and 0 a
lower solution with 0 _ 0 on D. Then there exists a solution u to the abor-
boundary value problem with 0 _ u < 0.

We consider the following example:

{ u"+Au-u=O 0 XE(0,r
u =0 X = 0,7

By the above theorem, if A > 1, then the problem has at least three solutions.
Actually, u = e sin x with c small is a lower solution, and ft -= Rx 1/ 2 with

R large is an upper solution. Therefore there exists a solution u such that
2_ <_ u < fit in (0, 7r). Clearly -u and 0 are also solutions to this problem.

The following lemma on the barrier method for D = Rn is due to Ni
[15] in 1982. A special case was proved earlier by Ako and Kusano [1] in
1964. The proof is standard. Using the well known result on the upper-iower
solution approach in bounded regions (see Sattinger [16]), we first solve the

equation
Lu + F(x, u) = 0

on BR. Then by letting, R -+ oc, we obtain a solution on R" by a diagonal
process.

Lemma 3. Lt ul > U2 in Rr' be such that

(3 Lul + f(x, u1 ) < 0
Lu 2 + f(x,u 2 ) > 0

where f is locally H,5lder continuous in (x, u) and locally Lipschitz in u, and
L is an elliptic operator of second order. Then there exists a solution u of
Lu + f(x,u) = 0 with u! _ U > u 2.

3 Main Result

Theorem 1. Under the same conditions as given in Lemma 1, ihe equation For
(1) has a C'2 '-entire positive solution in RN, A > 3, vanishing at oc at the kI
rate of at least xl q(' -' 2) with some q E (0,1) for any ) > 0. 0
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".e difficulty in constricting the proof is to find an appropriate upper
.oluticn ", equation (1). In order to use the barrier method we first study
the nons. ,ular equation

A'u + p(x)[6 + ul-' = 0.

For each fixed -y there corresponds a solution u.,(x). Letting oc ---* o, we
show that the limiting function is the desired solution.
Proof: By Lemma 1, for I = -v" C (0, 1), equation (1) has a C2+O-entire
positive solution ul(x) in R ' , n > 3, vanishing at cc at the rate r2- ' . We
claim that ii = c?4 is an upper solution of the equation (I) for 7 > 1, where

1+ '
j ! 1 +t I -q( -tr ;

c > ( )iW, M= max=ER-lu(X)l.
q

In fact:

Au + PX

cq(q - 1)ut 2 j Vjl - cquq-lp(x)u - '1 + p(X)c-,u - ,,

< -cquq-lp(x)U -i + p(X)c-"u- - yq

p(X) __+__q

~ - ( - 1 -Y)______-- ~ ~ U, -Uq( - 1tlq(,+y)

_ (" q

Sp(x)( l)O

<K (X (1-1) 0.

Let 6 be a fixed positive number. We then observe that i is an upper
solution of the equation

(4) Au(x) + p(x)[u(x) + 0] = 0, x C R".

u = 0 is a lower solution of (4). Since i = cuq > 0, ui > u in R ' . By Lemma
2, (4) has a solution u such that i < u < i.



For 6 < 6, u is a lower solution of (4) with 6 = S. Lemma 2 then implies
that (4) has a solution for 6 = 6 such that u _< < U.

Let {6,j- be a sequence of strictly decreasing positive numbers, and let
u,,(x) be a smooth positive solution of (4) when 6 =6c,. From the construc-
tion of our lower solutions, it is clear that u,(x) _ u,,_l(x) for all n. So
lim,-+ u,(x) = u(x) exists for all x e Rn and

(5) < U <

for x C R ' .
We can now assert that u E C2+°(Rr) and tihat

(6) Au + p(x)U - = 0

for x E R' . This follows from more or less standard arguments.
Let x, E R" and r > 0. We consider the ball of radius r centered at x,,

B(x,, r) in Rr. Let IV' be a C' function which is equal to 1 on B(xo, r/2)
and equal to 0 off B(xo, r). We have

A(TIu,) = 2VT • Vun + pn

for n > 1, where p, is a term whose L norm is bounded independently of
n. Therefore for n > 1 we have

1,1 (AP U ) = E b + q, ,
j=1 ax3.

where bn, ,j = 1,..,n and qn are terms bounded independently of n for
n > 1. Integrating the above equation, we have that there exist constants
cl > 0 and c2 > 0 independent of n such that

IVU,1 2dx < c, (IBo,) IV UIdx)1 /2 + C2.

From this, it follows that the L 2(B(xo. r))-norm of IVkPun! is bounded inde-
pendently of 7t. Hence, the L 2(B(xo,r/2))-norm of IVuI is bounded inde-
pendently of n. Let T, be a C' function which is equal to 1 on B(x,r/4)
and equal to 0 iff B(x0 , r/2). We have for 72 > 1,

ATu_ = 2V, - '7Un + P1711



where Pl, is a term whose L'(B(x,. r/2))- norm is bounded independently
of n. From standard elliptic theory, the W 2'(B(xor/2))-norm of Tlu is
also bounded independently of n and hence, the 1V2'(B(xo, r/4))-norm of
u, is bounded independently of n. Since the W" 2(B(xo,r/4))-norm of the
components of Vu,, are bounded independently of n, it follows from the
Sobolev embedding theorem that if q = 2n/(n - 2) > 2 for n > 2 and in
addition if q > 2 is arbitrary for n < 2, then the Lq(B(xo,r/4))-norm of ]urI
is bounded independently of n. Let T 2 be a C' function which is equal to 1
on B(xo, r/8) and equal to 0 iff B(xo, r/4). We have for n > 1,

A(1P2un) = 2V1P 2 • Vu, + P2n,

where P2, is a term whose L'(B(x,, r/4))- norm is bounded independently of
n. Since the right hand side of the above equation is bounded in LQ(B(xo, r/4))
independently of n, the W 2 ,q(B(xo, r/4))-norm of Tu, is also bounded inde-
pendently o i. tlnce, the W 2'q(B(xo, r/8))-norm of u, is bounded indepen-
dently of n. Continuing this line of reasoning, after a finite number of steps,
we find a number r, > 0 and ql > n/(1 - a) such that the WV2'Q,(B(xo, rl))-

norm of Un is bounded independently of n. Hence, there is a subsequence
of {u,}, which we may assume is the sequence itself, which converges in
C+'(B(xo,r)). If 0 is a Co function w,'hich is equal to 1 on (B(xo,r 1 /2))
and 0 off B(xo,r 1 ), then

A(Ou,.) = 2V0- VU, + p4, where 1;, = OAu, + u,AO.

The right-hand side of the above equation converges in C' (B(x 0, rl)). Hence
by Schauder theory, {Ou} converges in C 2+(B(xo,ri)) and thus {u,)-}
converges in C2+, (B(xo,rj/2)). Since x,, was arbitrary, this shows that u E
C2+,(R"'). Clearly (6) holds.

4 Some remarks

Remark 1:
For n = 1, the properties of positive solutions of equation (1) have been

studied by Taliaferro [17], and Gatica [10]. For n = 2. no entire positive
solution of equation (1) exists regardless of its asymptotic behavior at cc
(see [13]).
Remark 2:
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It is observed by Callegari, Friedman and Nachman 12], [3,4] that if the
partial differential equations describing the boundary layer behind a rarefac-
tion or shock wave (with viscosity proportional to the temperature) traveling
down, and perpendicular to, a flat plate are written in terms of a stream func-
tion and a similarity variable the followirg Blasius-type equation emerges
[181.

f'(r 1 ) + f(rj)f"(r1) = 0.

where
f(0) =0, f'() K, f'(oc) = 1.

Here, 0 < K < 1, for rarefaction waves and, 1 < K < 6, for shock waves.
(K 0 corresponds to the classical Blasius problem.) Adopting the Crocco
variables

x = f'(7), g = f"(71)

results in the system
gg + =0,

9'(K)= 0, g(1) = 0,

which falls into the class of equation discussed in this paper.
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