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On Singular Semilinear Elliptic Equations

Aihua W, Shaker
Department of Mathematics
Naval Postgraduate School

Monterey, CA93943

May 8, 1991

Abstract: - For the semilinear elliptic équation Au+p(z)u™" =0, z € R",
n 2 3, ¥ > 0, we show via the barrier method the existence of a positive
entire solution behaving like |z|*~" near oo.

1 Introduction

We study the singular semilinear elliptic equation

(1) Au+p(z)u™ =0

in *. This type of equation arises in the boundary layer theory of viscous
fluids [3,4]. From the results of Fulks and Maybee (8], Crandall, Rabinowith,
and Tartar [5], Gomes [9], and recently Lazer and McKenna [14], it follows
that (1) has a unique classical solution within a bounded domain f), where
p(z) is a sufficiently regular function which is positive on . Kusano and
Swanson [12] gave the existence proof on exterior domains. As for the ex-
istence of entire golutions, not much is known. Edelson (7], Kusano and
Swanson [13] have been able to show the existence of entire solutions of (1)
with v € (0,1), and p(z) sufficiently regular. In this paper we show via the
upper and lower solution method, which is also referred to as the barrier
method, that (1) has a bounded positive entire solution vanishing at oo in
R"forn 2 3 and all ¥ > 0.

The author learned after this paper was finished that a similar result was:
given earlier by R. Dalmasso (6], but by a different approach,
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2 Preliminaries

We first state the theorem by Kusano and Swanson [13] for the case 0 < 4 <
1.

Lemma 1. Equation (1) has an entire bounded positive solution u(z) in R"
forn > 3 Jand |z|""%u(z) is bounded and bounded away from zero near co if
p(z) satisfies ihe joilowing conditions:

(H1) p(z) € CE(R™), n >3, p(z) >0, z € R*\ {0},

(H2) 3C >0, such that C¢(|z|) < p(z) < ¢(|z]), é(z) = maz=p(z), 0 <
t < oo,

(H3) [ tr-1110=2g(1)dt < oo.

The term "entire” has often been used for solutions of equation (1) iu
R™. To avoid confusion with the traditional definition for entire functions,
we use the term ”C?**%-entire”. A C***-entire solution of (1) is defined to
be a function u(z) € CE*(R"™) that satisfies (1) pointwise in R™.

The method that we shall be using heavily in our proof is the so-called
barrier method, or upper-lower solution method.

We consider the elliptic boundary value problem

) { Lu+ f(2,u) =0 in D
Bu = a0u/0v+bu=g ondD
where D is a smoothly bounded domain in R® and v = (v, --.v,) is a
smoothly varying outward normal vector field on D which is of class C?+2,
while a and b are positive constants. We also assume that f € C* and that
¢ has an extension § to the interior of D such that g € C*t°,
An upper solution to the above problem is a function ¢ satisfying

L+ f(z,6)<0 inD
Bo>g on dD.

A lower solution to the above problem is a function y satisfying

L+ f(2.4) 20 inD
By <yg on dD.

We assume that 0D, f, g, and the coefficients of L are smooth in what
follows




Lemma 2. (Theorem 2.3.1 of [16]) Let ¢ be an upper solution and ¢ a
lower solution with v» < ¢ on D. Then there exists a solution u to the above
boundary value problem with ¢ < u < ¢.

We consider the following example:

W+ du—-u=0 z€(0,r)
u=1_0 r=0,7

By the above theorem, if A > 1, then the problem has at least three solutions.

Actually, u = esin z with € small is a lower solution, and & = Rz!'/? with
R large is an upper solution. Therefore there exists a solution u such that
u<u<uin (0,7). Clearly —u and 0 are also solutions to this problem.

The following lemma on the barrier method for D = R" is due to Ni
[15] in 1982. A special case was proved earlier by Ako and Kusano [1] in
1964. The proof is standard. Using the well known result on the upper-iower
solution approach in bounded regions (see Sattinger [16]}, we first solve the
equation

Lu+ F(z,u)=0

on Br. Then by letting, R — oc, we obtain a solution on R" by a diagonal
process.

Lemma 3. Let u; > uy in R™ be such that

LU] T+ f(l',ul) S 0
(3) { Lu2+f(;1?,u2)20

where f is locally Holder continuous in (x,u) and locally Lipschitz in u, and
L is an elliptic operator of second order. Then there erists a solution u of
Lu+ f(z,u) =0 withu; 2 u > u,.

3 Main Result

Theorem 1. Under the same conditions as given in Lemma 1, ihe equation
(1) has a C**@-entire positive solution in RN, N > 3, vanishing at oo at the
rate of at least |29V~ with some g € (0,1) for any v > 0.
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""ie difficulty in constructing the proof is to find an appropriate upper
coluticn #  equation (1). In order to use the barrier method we first study
the nons:. jular equation

Au+ p(z)[é +u]™ = 0.

For each fixed 4 there corresponds a solution u,(z). Letting v — oc, we
show that the limiting function is the desired solution.

Proof: By Lemma 1, for ¥ = v, € (0,1), equation (1) has a C?***-entire
positive solution u;(z) in R®, n > 3, vanishing at oo at the rate r?=". We
claim that @ = cuj is an upper solution of the equation (1) for ¥ > 1, where

MPn—9(+y)
c> (—'—"q—“‘)”’, M = maz epn|u(z)].
In fact:
p(z)

u”

Au +
= cg{g — Du?™?|Vu)? — cqu?™p(z)u™ + p(a)cu™"

< —cquiTip(a)u™™ + p(x)cTuT

_ pla) c't7g
- C’Yu’ﬂl( - u1+'ﬂ—9(1+7))
. M+tm—q(1+47)
< B8 Vi)
C'\/u"l q ’ul+71_9(1+7)
I
< p( )(1 “1)=0
cru”

Let 6 be a fixed positive number. We then observe that @ is an upper
solution of the equation

(4) Au(z) + p(z)u(z)+ 87" =0, 2 € R".

0 is a lower solution of (4). Since 4 = cuf > 0, 4 > u in R*. By Lemma
)

g =
2, (4) has a solution u such that y < u < 4.




For § < 6, u is a lower solution of (4) with é = 6. Lemma 2 then implies
that (4) has a solution 4 for 6 = é such that u <4 < a.

Let {6,}{° be a sequence of strictly decreasing positive numbers, and let
un(z) be a smooth positive solution of (4) when § = é,. From the construc-
tion of our lower solutions, it is clear that u,(z) > u,-1{z) for all n. So
limy, oo un(z) = u(x) exists for all z € R* and

(5) u<u<i

for r € R™.
We can now assert that u € C***(R") and that

(6) Au+p(z)u™ =0

for z € R™. This follows from more or less standard arguments.

Let z, € R* and » > 0. We consider the ball of radius r centered at z,,
B(z,,7) in R*. Let ¥ be a C* function which is equal to 1 on B(z,,r/2)
and equal to 0 off B(z,,7). We have

A(Vu,) = 2V - Vu, + py

for n > 1, where p, is a term whose L° norm is bounded independently of
n. Therefore for n > 1 we have

O(Yuy,) N
6I] q71,

N
Vu, A(Vu,) = Z by;
J=1

where b,;,7 = 1,---,n and ¢, are terms bounded independently of n for
n > 1. Integrating the above equation, we have that there exist constants
¢; > 0 and ¢; > 0 independent of n such that

/ |Vu, [*dz < c,(/ |V, [2dr)? + c,.
B{zo,7) B(zo.r)

From this, it follows that the L?*(B(z,.7))-norm of [VWu,| is bounded inde-
pendently of n. Hence, the L*(B(z,,7/2))-norm of |Vu,| is bounded inde-
pendently of n. Let ¥; be a €' function which is equal to 1 on B(z,.r/4)
and equal to 0 iff B(z,,r/2). We have for n > 1,

A(‘l’lu,.‘) = QVQ] ' Vun + Pin-

S




where p,, is a term whose L*(B(z,.7/2))- norm is bounded independently
of n. From standard elliptic theory, the W2?(B(z,,7/2))-norm of ¥ u, is
also bounded independently of n and hence, the W?2(B(z,,r/4))-norm of
u, is bounded independently of n. Since the W'?(B(z,,7/4))-norm of the
components of Vu, are bounded independently of n, it follows from the
Sobolev embedding theorem that if ¢ = 2n/(n —2) > 2 for n > 2 and in
addition if ¢ > 2 is arbitrary for n < 2, then the LI(B(z,,r/4))-norm of |uy|
is bounded independently of n. Let ¥y be a C* function which is equal to 1
on B(z,,7/8) and equal to 0 iff B(z,,r/4). We have for n > 1,

A(\pﬂln) = QV\IIQ . vun + D2n,

where p,, is a term whose L*°(B(z,,7r/4))- norm is bounded independently of
n. Since the right hand side of the above equation is bounded in LY(B(z,,r/4))
independently of n, the W29(B(z,,r/4))-norm of ¥,u, is also bounded inde-
pendently ot n. Iicnce, the W29(B(z,,r/8))-norm of u, is bounded indepen-
dently of n. Continuing this line of reasoning, after a finite number of steps,
we find a number 7; > 0 and q; > n/(1 — ) such that the W29 (B(z,,r;))-
norm of u, is bounded independently of n. Hence, there is a subsequence
of {u,}{°, which we may assume is the sequence itself, which converges in
C1te(B(z,,r1)). If 6 is a C* function which is equal to 1 on (B(z,,71/2))
and 0 off B(z,,r), then

A(buy) =2V - Vu, + p,, where p,, = Au, + u, Ad.

The right-hand side of the above equation converges in C*(B(z..7;)). Hence
by Schauder theory, {8u,}$° converges in C***(B(z,,71)) and thus {u,}{
converges in C?**(B(z,,r;/2)). Since z, was arbitrary, this shows that u €

C*e(R"). Clearly (6) holds.

4 Some remarks

Remark 1:

For n = 1, the properties of positive solutions of equation (1) have been
studied by Taliaferro [17], and Gatica [10]. For n = 2, no entire positive
solution of equation (1) exists regardless of its asymptotic behavior at oc
(see [13]).

Remark 2:




—~1

It is observed by Callegari, Friedman and Nachman [2], [3.4] that if the
partizl differential equations describing the boundary layer behind a rarefac-
tion or shock wave (with viscosity proportional to the temperature) traveling
down, and perpendicular to, a flat plate are written in terms of a stream func-
tion and a similarity variable the fo'lowirg Blasius-type equation emerges
(18]

f )+ fm) () =0,
where

f(0)=0, f(0) =K, f'(oc)=1.

Here, 0 < K < 1, for rarefaction waves and, 1 < K < 6, for shock waves.
(K = 0 corresponds to the classical Blasius problem.) Adopting the Crocco
variables

z=f(m), 9=1"()
results in the system
99" +a =0,

g'(K) =0, g(1) =0,

which falls into the class of equation discussed in this paper.
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