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PREFACE

Ibis repo as pirpired by Dr. Yurii A. Koralen-o. Insfixur ofTe miphy-sics.Sibeian Branch
of the USS . Acad-my of Scinces, and Stephen NE Flanders, Rcseardi Ciil Engineer, Cil and
Geoiemical Enginemu ng Researh Branch, Eexp mn.,a Enn Dis.ion, US. Army Cold
Regions Resm-ch and Engineering L2borxaty.

This report was originally submitted to be part of theProceedingsofthc Workshop on in-sire Heat
FlurMeasaremenns in B dngsr that was held at CRREL on 22 and 23 May 1990. Its late arrival for
the workshop and otherconsiderions madepublication as a CRRELSpecial Report appropriate. The
report is substantially the woric of Dr. Yurii Kov'alenko. Stephen Flanders reworked the text in
cooeration with Dr- Kovalenkotona ke it moreaccessibleto itsreaders in English. Dr. Yin-ChaoYen
and Dr. Virgil Lunrdini of CRREL and Dr. Omar Farouki of the Queen's University of Belfast
provided technical reviews.

The contents of this report are not to be used for advertising or promotional purposes. Citation of
brand names does not constitute an official endorsement or approval of the use of such commercial
products.
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NONOCLATURE T Teiperatieno
T6 Bouday vahle of temperaoe (o

a emalM&dfivitf(m2 s) Heafngrate(ls)
c Specific heat camity [J/(kg n Par specific volume of the idh component
C' Relative bar siz(mjg
C1  Contiguity (or coma degre) z Distancennmal to suface (m)
E Modulus of elasticity Relative contact section of molded (or sin-

K12  Ratio oaveraged temperatUe gradients in tered) makials.-lhe ratio of contact area
binay heterogeneos system, projected onto a cross section to the area of
K12 = I A<T> 1lA A<rT> 2J the cross section of the specimen

L Scale of the problemn Empirical parameter, relating to hardness. J
Le Lewis number =12 for soft materials, like aluminum, and
11, Process length (m) p = 4 for hard metals
Lsp Specimen length (m) A Scale of a subregion of the problem (i)

I Molecular scale (m) 8 Inhomogeneity sc.ale (m)

mi  Mass fraction of the ith component z Ratio of the scale of the inhomogeneity to

n Number of dimensions the scale of the problem
Nc  Number of particle contacts Oj Angle between the jth contact plane and the
Np Number of particles normal to the section plane
p Pressure of compaction (Pa) v Ratio of thermal conductivities for a binary

Pef Modulus of elasticity or pressure of compac- heterogeneous system
tion (Pa) II Porosity

Pc Contact valueof modulus of elasticity per 1io Bulk porosity
unit of contact area (Pa) p Density (kg/m 3)

q Local thermal flux density (W/m2) Area or volume fraction of the ith compo-

Coordinates (m) nent

Sc  Contact surface area of a particle (m2) X For random InX and their mean value,
Scont Contact surface area (m2) <ln>, X is InX--<lnI>, where probability (X)
Scomp I Sum of particle surface areas (M2) is a normal distribution
Snom Nominal section area of the specimen (m2) c  Contact thermal conductivity (W/m K)
Sp Surface area of a particle (M2) kf Effective thermal conductivity (Wir K)
Spr Surface contact area projected on the section Xm Maxwell's solution for effective thermal

plane (M2) conductivity (eq 24)

Time (s) < > Average
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Thermal Conductivity of Porous Media and Soils
A Review of Soviet Investigatiom

YURIJA. KOVALENKO ANDSTEPHEN N. FLANDERS

INTRODUCrION tur is non-regular and unknown (by the statistical
method in Landau and Lifshitz [1976]). The difficulty

The thermal conductivity of soils and other dis- of describing processes in this case is in obtaining
persed powus materials of natural and artificial origin averaged equation coefficients for energy, momentum
depends, first of all, on the composition and geometric and mass (analogous to obtaining closure for hydrody-
micr ncurofasysten. Besides suuctueandcon- namic equations [LifshitzandPitaevskii 1979]). Being
position, thermal conductivity is influenced by inter- random variables for S < L, these coefficients become
phase (intereomponent) interactions. Heat transfer oc- single-valued characteristics of the medium when the
curs primarily by conduction in systems with pores of conditions of eq 1 are satisfied (the so-called self-
conventional size (< 10-4 in), with temperatures rang- averaging of specific extensive quantities and kinetic
ing from -50 to 1000C and subject to ordinary tern- coefficients as 81L -+ 0 from Lifshitz et al. [1982]).
peratum gradients. Convective and radiative heat ex- Several further concepts of HM classification are
change in pores can be estimated (Chudnovskii 1962, useful. Many classifications by different indicators ex-
Dulnev and Zarichnyak 1974) and is generally negligi- ist (for example, Chudnovskii 1962, Dulnev and
ble,exceptinmaterialswithlargepores,suchasthermal Zarichnyak 1974, Dulnev 1979, Heifitz and Neimark
insulation, and some structural construction materials, 1982). The principal indicators are:
notably the large-celled concrete found in the Soviet 1. The occurrence of binary or multi-component
Union. mixtures.

Porous media and soils belong to a large class of 2. The occurrence of inert mechanical mixtures,
Heterogeneous Media (HM), for which the theory of alloys, solutions, HM with chemical interactions, etc.
heat transferallows the investigatorto take an approach 3. The topology of the microstructure-including
typical of continuous media: first, introduction of aver- the degree of surface contact and the distribution of
aged characteristics of the medium and the process component sizes within the medium, ranging from
(volumecontentofcomponents,temperature, heatflow, uniform to varied.
heat capacitance and thermal conductivity), and see- 4. The degree of order or randomness in the HM.
ondformulation of principal physical laws in terms of 5.The uniformity or variety ofthe components with-
these characteristics. Such a continuous approach, ap- in the HM, ranging from weakly to strongly heteroge-
plied independently of the order or disorder of the real neous. This includes the physical qualities of the con-
heterogeneous system, rests on the assumption that the ponents and their arrangement within the medium.
scale of typical inhomogeneities (8) is miniscule com- These classifications are conventional and in prac-
pared with the scale of the system (L): tice the given types of systems are mixed, with a high

degree of disorder of components being typical. In this
8<<L. (1) respect porous media and soils are similar to other types

of iM.
This continuous approach uses the concepts of an infin- The first investigations in which the continuous ap-
itesimal volume (Lifshitz and Pitaevskii 1979) and of proach was extended from homogeneous gases, solu-
incorporated continua. Any such averaged description, tions and liquids to heterogeneous media with inner
as an alternative to a detailed description of processes in structure are in works by Maxwell (1873) and Rayleigh
HM, considerably simplifies the problem solution, pro- (1892), which focused on calculation of the effective
vided that the regular microstructure is known. It allows electric field in a medium with spherical inclusions that
the solution of practical problems when the innerstruc- are located at the nodes of a cubic lattice. Burger*



studied the case of ellipsoidal inclusions. In 1887 Ar- q=-X gradT (4)
rhenius* studied the analogous rd 1 'm for the viscos-
ityoflnayliquidsltuiosandsuggestedtheformula 7(t,0) = TjO A 1B = (;B,. (5)
fortlh "logaritdmiclawofbosymixing" Laterthe
sae approach appeared again inLichtenecker's work He specific hear 4{, density p() and thermal
(1909, 1924, 1926. 1929) on conductivity. Eycke,* conductivity (r) have rapidly changing coordinate
(1912) apparently was the first to study the equivalent functions (with periodical or random variables). As
problem for heat ransfer. Analogous problems con- cpr) and (r) are discontinuous in HM the solution of
nectedwith variousphysical fields werealsostudiedby the eq 3 through 5 is considered to be ageneral solution
Wiener* (1912), Fricke* (1924), Voight* (1928), Re- satisfying corresponding integral relations (Bakhvalov
uss*(1929),Bruggeman(1935) andothers(Odelevskii and Panasenko 1984). It is necess;ay to assume a
1951, Chudnovskii 1962, Vasilie i and Tanaeva 1971, temperature and heat flux continuum along interfaces
DulnevandZarichnyak 1974,DulnevetaL 1976, Bakh- between components
valoy and Panasenko 1984, Shvidler 1985). A modem
introduction to the formal study of physical character- [T] = 0, L T _
istics that are analogous to conductivity (the dielectric [ =-J

constant and magnetic permeability, viscosity, electri-

cal and thermal conductivity, difflsion and filtration where[]isthefunctionjumponthesurfaceofacontact
coefficients, and moduli of elasticity), is found in and DT az is the partial derivative of temperature nor-
Odelevskii (1951). mal to the surface..

Investigations conducted in the U.S.S.R. may be di- In principle,a detailed knowledge of the HM micro-
vided into two large groups: 1) ad-hoc experiments in- structurethatdetermines the functions c(r), p(r) and rr)
vestigating the thermal conductivity of specific materi- would allow one to solve the problem accurately. With
alsandmedia,and2)theoreicalcalculationstodetermine the assumption of eq 1 and if the structure is rather
general solutions foreffectivethermal conductivityand complicated, then such a detailed solution would be
overall conductance in wide classes of HM. difficult to model on a computer. However, such a

computation would rely on a detailed knowledge of the
microstructure of the HM, which is unknown in detail.

CONTINUOUS DESCRIPTION OF THERMAL Instead, collective general properties ofthe microstruc-
PROCESSES IN HETEROGENEOUS MEDIA ture are typically known. Thanks to this knowledge, a
AND THE CONCEPT OF EFFECTIVE detailedsolutionisnot usually requiredandanaveraged
CHARACTERISTICS description of the medium and the processes taking

place within is typically the only appropriate method. It
The fundamental distinction between averaged de- is also advisable to average the processes in simple,

scriptions of HM, and macroscopic descriptions of mo- periodic media, as was done in Bakhvalov and Panasen-
lecular systems rests with the heterogeneity of the HM ko (1984) and Dulnev et al. (1976).
being much larger than molecular scale (1): Now we'll cover isotropic and macroscopically ho-

mogeneous systems, that is, the systems in which the
>> 1. (2) scale of heterogeneity 5 and the averaged parameters

(the volumeofthecomponents andsoon) donotdepend
The averaging technique used allows one to approxi- on global coordinates. In terms of the multiple scales
mate a continuous medium with the same form of con- method that is applied to averaged processes in period-
servation of energy equations as for the HM and its ical media (Bakhvalov and Panasenko 1984), these so-
internal heterogeneities, each having its own local called"slowvariables"areonthescaleofL,unlike"quick
physical coefficients. variables," which are inside heterogeneities and are on

Even if the contact area on the interface between the scale of S.
components in a micro-heterogeneous system is large, Averaging can be carried out by several methods.
one may often neglect the interaction of components The method strongly depends on the microstructure of
withinitoveralargetemperaturespan.Insuchtemper- the HM. It may be 1) statistical averaling over an
ature intervals, HM are mechanical mixtures and heat ensemble of similar systems, where cp() and are
transfer is described by the pure conduction equations: random functions, 2) averaging over a physically small

volume A3, 8 << A << L, or 3) averaging over an ele-
div q+ cp LT 0 (3) mentary cell that is in a periodic structure. No matter

at how the averaging is done, it essentially uses the disin-
* Citation not available. tegration of the solution from Bakhvalov and Panasen-

2



ko (1984) or tie pr-abolic operator of equations from <c>= ciP i.
Kozlov(1978),Shvidler(1986)andZhikovetal.(1981),
sequentially, into a power series of the parameter F = Anotherderivationofaveraged volume heat capacity is
51L. Averaged equations of the zeroth order corre- possible by using the effective specific heat and an
sponding to eq 3 and 4 are expressed as follows averaged density of the HM. Let's first determine the

mass content of the components in their mixture
div <q>+ <c> =0 (6)

tmi = WEi/ . 0 (1)

<q> =-ef grad <T> (7) i
-and then the partial specific volume

where the operations div and grad are taken only by
global variables. In eq 6-8 the symbols < > mean Vi = niiPci.
averaging 1) over an ensemble of similar systems with
random fields, cp() and W4), 2) of a physically small By using Ii, we determine the volume content of the Pth_

volume A3, or 3) using the periodicities of regularities component in a manner analogous to eq 11
within the structure. In order to solve for <15- approxi-
mately in eq 6 and 7 to solve for T in eq 3-5 i = Vi/y Vi-

i

max I T- <T> _ COc, Then, introducing the effective specific thermal capac-
ity of the HM as

mustbesatisfied, whereCo is aquantity ofthefirst order
ofmagnitude. One must establish boundary conditions Cef= cimi (12)
so that they coincide with their averaged analogue

and the average density
<T>1 B = T(rB, t). (8) -I

We now look at the concept of effective thermal I I

conductivity 2 ef, which is discussed as a special-case from eq 10-13 it is easy to show that
ancillary problem in Bakhvalov and Panasenko (1984),
Shvidler (1985) and Shvidler (1986). Characterizing <cO> = cef <P>. (14)
Xefis not trivial and represents the main challenge in this
whole topic. Many works are devoted to the theoretical Note that the effective specific heat cef does not coin-
determination of 4f. However, experimentation is the cide with the averaged specific heat, as determined by
most reliable way for determining Aef. the mean of individual specific heats, namely ccf <c>.

Theotherthermal coefficient derivedfrom averaged The same is true for 4f <>. In the particular case of
equations, average thermal capacitance <cp> in eq 6, is layered HM, as we'll see below, 4f = <>. These
determined simply by additivity. In fact, by dividing quantities agree only for volume-specific properties.
regions of integration into separate subregions occu- Note the following limitation on the applicability of
pied by individual components, it is easy to show that eq 6 and 7 to non-steady-state processes. Their validity

> cpd pci the medium differs only a little from the temperature of

3A the local thermal equilibrium. They are unconditionally
valid only when the medium is close to steady state, that
is, at DT/t = 0 in Rubinshtein (1948). Hence, it follows

where ci and Pci = specific heat capacity and density that they can describe only rather slow non-steady-state
= component thermal processes with typical response times much

aged over the characteristic volume longer than the time constants of the heterogeneities
A3ed owithin the medium, that is

tchar >> e (15)

By introducing partial density (the concentration of the amin
ith'component), pi = jiPci equation 9 may be expressed where amin = min (a) and can be described by averaged

as eq 6 and 7. The condition (eq 15) can also be obtained
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from the estimate of the terms of eq 6 and 7 using the Most calculation methods are based on this defini-
inequality of eq 1 (Buevich 1973). The effective ther- tion. The problem then is thedetermination ofthe fields
mal conductivity in eq7 fornon-steady-state processes, of<q>iand <T>i averagedby the components within the
tested against the condition in eq 15, coincides with the HM.
steady-state effective thermal conductivity.

If one cannot adhere to the assumptions of local Exact solutions and approximate methods
thermal equilibrium, then one has to resort to a more Exactsolutions totheproblemof thedefinitionof the
detailed description-forexample, a multi-temperature effective thermal conductivity areknown only fora few
model (Rubinshtein 1948, Schvidler 1986). In such a cases. In the first place, these are one-dimensional
model, heat transfer terms that are linear functions of layered structures for which the longitudinal conduc-
temperature are added to eq 6 for each temperature tivity is as follows
within the individual components.

Summing up, let us reformulate the conditions of the 4 = > (16)
applicability of homogenization of both steady-state
and non-steady-state thermal problemsinHM, including and transverse
mechanical mixtures and also dispersed systems with
possiblephaseandchemicalreactions(Kovalenko 1987). ,.. = <X->-. (17)

With the inequality ofeq 1 as the principal condition,
the smallest of the following two dimensions must be For more complex structures, especially for non-
chosen as the typical problem scale: I) minimal size of regular ones, it is complicated enough to calculate the
specimen Lp, or 2) the typical process length Lpr, that effective thermal conductivity on the basis of the infor-
is: L = min (L5p, Lpr). The condition L >> 8 must be mation about field structures of<q> i and <T>i, so exact
observed foranysteady-state (this usuallyallowsL=Lsp) solutions are very rare. However, one may occasionally
or non-steady-state process. In this latter case the con- avoid awkward and sometimes unsuccessful calcula-
dition of eq 1 can be rewritten by the substitution tions for systems that are not strongly heterogeneous.

This possibility relies on using variational principles for
L = ltchar' estimating the bounds of effective characteristics

as the condition of eq 15, in which the L = L, the (Dykhne 1967, Shvidler 1985). The simplest expres-
2 sion of such bounds is

characteristic time is simply equal to L.P/ ac. When L =
Lpr, the characteristic time can be expressed by other <k-'>-' < Xf <X> (18)
parameters. So, forHM undergoing.phase endothermal
change from thawing, tchar = AT/T can be introduced, which was probably determined for the first time by
whereATis the liquid characteristic temperature differ- Wienerand later was ascertained by Hill* (1964) forthe
enceinthephasediagram(meltingphase),andwhereT modulus of elasticity and pliability and by Dykhne
is the heating rate. The value tchar not only represents eq (1967) for conductivity.
15 but exceeds the diffusion time in the heterogeneity Dykhne (1970) obtained an interesting result in his
scale. The latter condition is thanks to the fact that a work, inwhichheprovedthat foraflatisotropicsystem,
Lewis number, Le < 10-3 << 1, in condensed media covered on the average by geometrically equivalent
appears sufficient for homogenized modeling of the regions with different conductivities Xi and X2, the
medium (in this case the condition of eq 15 is deliber- effective conductivity satisfies the functional equation
ately observed). With such a homogenization, we un-
derstand the description of the medium with the help of ( I)* -f ( 2) = X1 2

lumped, effective characteristics.

where i is the area fraction (in a two-dimensional

THEORETICAL METHODS FOR THE model) for regions with conductivity X, and 1+ 2 I.
DETERMINATION OF EFFECTIVE Hence at = = /2 it follows
THERMAL CONDUCTIVITY el/) = .  (19)

By definition the effective thermal conductivity is a
coefficient that relates the averaged values forheat flux In the above mentioned work by Dykhne and also a
and the gradient of the average temperature (eq 7) paper by Kozlov (1979), the case when, for the random

<q> =-kLf grad <7>. * Citation not available.
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variable X, the distribution of the value X = lnX -<lnX> variational principle. For the isotropic two-phase sys-
is an even function of-X, isstudiedfordifferent possibil- tern with X, < X2, the limits coincide with asymptotic
ities. The precise value ofthe effectivethermal conduc- formulae by Maxwell (1873)
tivity is obtained as X(1+20)+ 24,

Xef = exp <ln%>. (20) X___ = X7__ __ _ e .

This result with its particular case ofeq 19representsthe - +2 + 42

empirical logarithmn-mixingformulabyArrhenius (also X t
suggested later by Lichtenecker) which, thus, is accu- L (1+201)+ 22
rate for two-dimensional bicomponent systems with (2 (2+4
specialized conductivity distribution functions. Equa- X 2 "  (24)
tion 20 can be represented by (Shvidler 1985) ? 2 42+2+ 41

X2

This is not a casual coincidence. In fact, as shown in
This is a geometric mean that is between the arithmet-e Berdichevskii (1979), if the thermal conductivity of
and harmonic means for thermal conductivity, inclusions X, is less than that of the medium X2, then the

In the work in Ivanov (1967), eq 21 is generalized to accurate value of effective conductivity of a periodical-
other dimensions, n with the help of the additional ly structured medium with spherical inclusions is less
results of the perturbation method than or equal to the first term, Xm of the Rayleigh-

Berdichevskii formula in Berdichevskii (1979) that
ef= < _ < XLI >{ (22) coincides with Maxwell's solution (eq 23). If %I >- X2,ef then XLf >: Xn.

At n = 1 this formula is accurate for any distribution, at Unlike the universal bounds forf ineq 18, Hashin-

n = 2 it is accurate if the distribution of X is even and at Strikman's expression (eq 24) forthe three-dimension-
, 3 al heterogeneous system gives approximate bounds,

n = 3, according to Shvidler (1985), "one can expect the wc he ver , are ie arowe thndth
form-ula to be accurate enough for normal distributions which, however, are considerably narrower than the
fr a t" bformer (eq 18). Using such bounds it is possible, when
of lnX."

The approach made in the early works of Maxwell necessary, to construct approximate solutions, as in eq

(1873) and Rayleigh (1892), which present an approx- 24. Shvidler(1985) further recommends that ifcompo-

imation of a small concentration of inclusions dispersed nent connectivity is identical (mutually penetrative com-

eitherregularly orrandomly within thematrix,gave rise ponents), then we can take as an approximate value of

to a great number of publications in which different xef= (x-+x+)/2.
asymptotic formulae for Xef were obtained. Maxwell
(1873) derived the first term of a decomposition of For isotropic matrix HM, he recommends the assump-
effective thermal conductivity as a function of the tionkc= Xe , if thematrix thermal conductivity is more
volumetric fractions of the inclusions than the inclusion conductivity, and %Cf X= m in the

opposite case. If no single component is simply con-
f v(l+201) + 2(1--,) nected, but the components' connectivities are differ-X ef=  "% " v ' + - (23)

v(141) + 2+ Ient, then the estimate for Xef is Xcf =,,37m3.
The perturbation method for determining thermal

where the subscript I P.fers to the inclusions, 2 refers to conductivity in Landau and Lifshitz (1982) is similar to
the matrix, and v - %1/%2.Rayleigh (1892) studied the the Maxwell (1873) method for approximating small
problem of spherical inclusions at the nodes of a regular concentrations of inclusions. The perturbation method
cubic lattice. He obtained the first two terms of an gives good results for any concentration of components
expansion of kf by degrees of 1; the first and principal but only for weakly heterogeneous systems.
term of this expansion disregarded the mutual influence In addition to the perturbation method, the self-
of inclusions, and coincided with Maxwell's (1873) consistent effective field method is another important
solution (eq 23). Rayleigh's solution was rendered technique. In a number of cases it gives better results.
more precise by adding two more terms of the expan- The first self-consistent parameters were probably cal-
sion in Berdichevskii (1979). culatedby Bruggeman (1935). Later, Odelevskii (1951)

Hashin and Strikman (1962) narrowed the limits of in the U.S.S.R., Landauer (1952) and others developed
effective parameters beyond those in eq 18 using the this methodforothersystems. The efficiency of the self-

5



consistent field method is shown by direct numerical of a constant square section. To determine the conduc-
computations (Shvidler 1983) and by comparison with tivity of such a system by the method described, the
experiments (Odelevskii 1951). Shvidler (1985) gives estimates of 4f were obtained with the help of two
tables for the values of Xf/l calculated by this method different fragment thermal resistance connections with-
for different values of %2/Xl and 4i and for different in the elementary cell
dimensional ratios of spheroidal inclusions.

Note that in the strongly heterogeneous HM, perco- Xad =,L[C2+v(1.-C) 2 +2 vC(I-CXVC+I_-y]
lation causes threshold effects (Efros 1982, Shvidler
1985). One can describe conductance behavior near the I1--C 2

threshold in such systems, using power laws forscaling Xist Al +

according to percolation theory. Critical indexes and [C+v(1C) C(2-C)+v(l-CZ

values of the threshold concentration 4) for simple
problems can be obtained analytically, but more often where the subscripts ad and isot refer to adiabatic and
they are. computed by the Monte Carlo method. Self- isothermal, respectively, and C is the relative bar size,
consistent parameters at v = 0 or at v = coin some con- which is a root of the equation
centration areas get non-physical, negative values. While
this is certainly the result of approximation, it is also an 2C3 - 3C2 + I - k = 0.
indicator for the percolation effect (Shvidler 1985).
Thus, the formula for binary HM with equal compo- With the arithmetic mean of these values from Dul-
nents derived in Odelevskii (1951) by the effective nev and Zarichnyak (1974), one can determine the
media method effective value of X for any relationship of the compo-

nent thermal conductivities, the result being rather near
Xef = -- ((3 1-1) + v(30 2-1) + to the results of numerical computations. Maximum

4 calculation error is attained when v = 0 or v = o-, yet it
_]2_ _ + 8Vdoesn't exceed -15% (Dulnev and Zarichnyak 1974).

[(3?2_) + v(32_ 1) +8} (25) These methods include the averaged element tech-
nique (Dulnev and Zarichnyak 1974). This technique

where v = X2/A 1 gives the estimate of percolation introduces a set of assumptions about the HM structure
threshold 4e = 1/3 as v -- 0 and then averages the parameters of the structure. The

when 1 <  Xe f = 0 complexity and subjectivity of the procedure to define
such an averaged element substantially explains why

when $, > 4f = X,1(341-1)/2. (26) this method was not widely adopted.
In some applied problems, it is necessary to take into

In engineering practice the methods of structural account the statistical distribution of heterogeneities in
modeling (Chudnovskii 1962, Vasiliev and Tanaeva HM leading to deviations in thermal conductivity val-
1971, Dulnev andZarichnyak 1974,Dulnev et al. 1976, ues from the average value Xtf. Zhirov's work (1976)
Dulnev 1979) are often used. The real HM structure is focuses on this problem.
modeled by the most suitable ordered structure in which The success of the application of all these formulas
an elementary cell is separated, and its thermal conduc- to real HM depends on how well one has characterized
tivity is calculated precisely using a computer as in the system structure, e.g., the distribution of X for ran-
Bakhvalov and Panasenko (1984) or approximately as dommixturesorfor geometrical structures. Variational
in Dulnev and Zarichnyak (1974). Approximate calcu- estimates based on universally used principles are rela-
lations of Xef for the elementary cell are usually made tively simple and require minimal information about the
by dividing a cell into separate fragments, containing HM studied. Therefore, they apply to wide classes of
only oneof the components with surfaces that are ortho- HM. This is their advantage and at the same time a
gonal to the direction of heat flow. Then the thermal limitation on their efficiency when they lead to wide
resistance of acomplete elementary cell is made of par- bounds in estimating effective conductivity. One can
allel and serial connections of fragment resistances and obtain positive results provided that 0.2 < v < 5 for the
calculated by the rules of Kirchhoff's chain. A number Hashin-Strikman estimate and 0.5 < v < 2 for the uni-
of formulae sufficiently useful forengineering calcula- versal relationship are both true. Attempts to include in
tions are obtained by this method in Dulnev and Zarich- the analysis more detailed information about specific
ny (1974). Thus, a model was suggested for structures features of the systems studied, in order to narrow the
with interpenetrating components, in which one of the limits of estimates, instead make the variational esti-
components presents a cubic lattice or frame with bars mates method considerably more cumbersome.
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-merits. '1111S, We COMD WO tbt SeMi-23rnaC1 meizae~reio~boericde.srrvr
for estirnating effective therml camdncrivizy. whichl
allow one to take into amcount knownI specific femtues face are3 to bEe w~cd area ofrke p.mikf cs

of the HM structure by introducing additio.l semi-
empirical parameters. km (19P-) 2nd jMesmjw (19M5)r.whirh seggei s

Somnsemi-empipicalm Ihodsulnev 1979,Mamr of stereo calo2 wzanals foT oubtag tee M&-axz
et al 1980) are based on the representation of the
definition )jfrom eq 7 in the form tin fo efzecwive thoa l er imiry d : L-a

_____ _____01-__ Lew h = OSei).h and KoesnIm (192)
-f =_ . 2 (27) de m-etheforo--ingform ulaeIV< T> I K12,0.42

wherev = 124., andKr,= VI V<T is the(
ratio of the averaged tempemure gradients in the two He Clis cedconiguizyordegreeofcotac t histhe
components of a binary heterogeneous system (after ratio ofthe c s rea to the toa areaofthe
Shvidler 1986). A number of properties of K12 can be ratio of e (lama t 0

set. Thus, using eq I8 it is easy to show that this value p surface (Fig- 1)

islimitedbytheboundsforK12°f lvandhence'when C1 = 2 SO,,.. CM)
v = 1, then K12 = 1. With the help of sucb boundary
relaonshipsfordielectricpolarizationfromOdelevskii
(1951) and Landau and Lifshitz (1982), we obtain the wNereS = X(Sj (28b)

value of the derivative when v =1

aK12  Sc = contact surface area
av 3 Nc = number of contacts

and Np
There exist generalized experimental data from Malter a I

et al. (1980) that indicate that, for a wide class of S (4 (28c)

systems, whenv =Oorv =-theboundaryvaluesofKi 2  Sp = particle surface area
(v) do not depend on the volume fraction over a wide Np = number of particles.
range and satisfy the condition

C1 is determined from the stereological analysis of a
0.4 5 K12(0) + KI2(o) 0.67 microsection specimen. This method can sometimes

simplify thermal experiments for porous granular sys-
(K12 = K2i. tems, but usually direct measurement of thermal con-

Assuming similar properties of theratio K12, Malter ductivity is simpler.
et al. (1980) suggested a four-parameter approximate In Balshin's work (1948,1972) the following formu-
equation for Ki 2 (v), considering it independent of the ]a foi the conductiv ity properties of porous materials is
concentration. Assuming that K12 is independent of 4i, suggested
it is possible to determine this constant for the given v
and from eq 27 if the value of Af has been measured for )-ef = ,ix - (29)
certain values of Oj; then for the other values of 4i the
t'ermal conductivity can be calculated by using the in which
derived value of K12 .

Alsoof interest are the works of Serykh and Kolesni. (Y - SP, S.or (29a)
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simp 0bm) The ClaAs Ca and a th bep of the l phys-

i A, is the amberaof cona 0. xis the Tnhe be- CA = - (32)

MomH e ow can m-e iec fot a for tir effTeie
of the specismen fi o 2). B hn Lsed Cho rep coer off thrmal ca h 1Kol eaik - to eq 29 from eq 28_
coear sections to describe the ph meical and (ani- ib 9, nig omaThboedappwoacbes oani & rc-
colprresoiconcapressedfoaieolsintifor Piposi- a by sm rho!o-ixtraeas..
tions. Their charactimics are expssed b ait h a Te fmulasfor IA in eq 28 and 29 are based on
simple formulap some lax assmpionts thami o nd atcon for the pls-

icm state of the contats This paobse y oveaesiniates
PWf Pji.. (30) fthehdu ciditiy nsoecasforexame.for

conspi-essed metal pouders urith high porosity. These
HaePetmaybethemodulusofel tici E.thestren-th. systems ere studied by Aeksandroi et atl (1985).
or the pressreof compactionp. Each of these represent Gruzde% and Ko%,alenko (198., 19M8) and Gruzde% ei
ameitaldnce property h for forming the material. Pco-is the a (1989), using compressed pode of nickel. zirco-
comespondi e contact % aleufor thispropety aFore eP niLmn and their mixtures rith aluminum powder as
isthecorresponding modulusofelasticity of the frai e examples- InAlek ndo7 et al. (1985) and Gruzde eh
material. Forp. Pc isacorresponding valuebeteen the al. (l989). experimentsdetermined that agood analogy
material frame strenth and the yield point of this exists bezvueen heat transfer and mechanical stress
material (Balshin 1948. 1972).The %%eight of theexper- transfer in these system..as determined by the degree of
imentalevidence in Balshin (1972) suggests an approx- contact present. A lattice model of a poiuder body
imation of the contact beicia alue throug.h measured demonstrates the analogy theoretically in Gruzdei and
parameters either for porosity 1 l and the initial bulk Ko'valenko (1987, 1988a). The thermal versus mechan
porosity no0 or correspondin, 'values of the %.lume ical analog) bet%% ecn the molding pressure and thermal
fraction of the solid phase j conductivity is basedon the similarity ofdependence on

specimen porosity. Employing the relationship of po-
ac = (I-) 2 (i-H/Ilo)O (31) rosity tomechanical properties in eq 30. and the thermal

versus mechanical analogy for thermal conduction, we
where 13 depends empirically on the hardnesses of the can write
material species.

The stereological definition of the contact section is ,c = (x (mF.'l,. (33)
Thefrrercferstothesolid kelconofaporousmaienai.exclusne Parameter 13. which enters into the function a (nH.o)

of the voids within it. (from eq 31 ). depends on the hardnesses of the material
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a20 o ;y. de pomkosIL ft bclk 0 Fos y IT,. v1&h such sses. opral-cesmi d compoessed mete-ri

CUa-ra efizes th e acoraction sructre. and the P3- porons materials andsiw oretfc ical ink-
Ej~ Pe a ia forsirkiy w oaasez 19S6) on (1965). Skoroichod (1967Th Denuidrheiko (1912-).
betuxen the ined=a-iraI 2nd thermzl proerties of po- Andreev (1975) ALeksndrovera.(19S5)mid Gruzdev
roam comiiressed poxkred mntAs. The coai ther- et a.t (19S9).

an cond vtly 2, is determined epinticaly. Ibis Experimental investigations can be unswisfacoy
andIo and iheb flrppo in eq 33 ae limited by the v e n udsfitherwhole lsffiienlycharacter-
coat euibra ofint r-pa tiaecoarrsbenl ized. Also, the amoun of experimental daa is insuff-
inc rm fisontthesizesofspcies. Hencpor1si y ciea 3 to favor one or another calulational model for
sould be in the e of i 1025 ± a5a specific classes of porous, dispersed materials.

E XPE R B C TA LNVE ST IGAT I NS CONCLUSION

1N -s1 .teady-staremethods are generally used for AreviewofSo r ietstudiesiof erimconductliviy of
measuring effective thermal conductivity and thermal porous materials and soilsshows that theoretical ines-
difsiviy of dispersed and porous media. as in Ark- tigations are more common than experimental. any
pav (196S) and Lalov (1965), for ehapie Tiese models are not adequately validated with the ru eager
meihods can W conventionly divided into severW experimental data that exist fordifferent classes of sys-
groups: 1) methods using monotnic (Plaiunov 1973) eim. In fact . these a no systematic experimental in-
andpeniodical (Flippov 1984) heating. 2) methods us- vcestiaions of the whole classes of HM, as they are
ing equilibration at an exponential rate, eg.. the regu- modeled. Investigators give preference to calculations-
ar regime of Kondratievn (Chudnovsk i 1962) and 3) The lack of 1) thermal measurement apparatuses, 2)

probermethods (see,se.SSigalova 1965. Bakenov a l accurate methods to characterize structure, and 3) a
1972, Zairzev et 21. 1989). Steady-state methods are common data bank for individual experimental results
more laborious and inaccurate and are therefore used reinforces this syndrome.
less often- For temperature intervals in which H or Methods available for determining the effective
teirseparate components (forexample, thawing soils) thermal conductivity of HM by theoretical calculation
undergo phase transfom ations, traditional methods do probably exceed in scope the whole range of various
not work because the thermal conductivity equation is HM classes. Choosing between models for specific
nonlinear. Forsuch cases the methodsbasedoncomput- cases is therefore a major problem in predicting of HM
ersolutions of the corresponding inverse problems are thermal properties.
suggested in Pavlov et al. (1980). Kovalenko (1986)
and Gruzdev and Kovalenko (1988b).
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