|
ol
Ll
| X
e
<
Q.
LL]

sP

.\
.

Thermal Conductivity of
Porous Media and Soils

A Review of Soviet Investigations
Yurii A. Kovalenko and Stephen N. Honders - May 1991




For convexzion of Simetnic unis fo U.S./Brilish cusfomaony unils of
measirernerns consull ASTM Siandard E380. Mekic Proclice
Guide. published by the Amencon Sociely for Testing and
Molexiok, 1916 Roce SI.. Phiodelphio. Pa. 19103.

This report is prinfed on paper thot contains a miimum of
S0% recycied mofenol




Special Report 91-6

Thermal Conductivity of
Porous Media and Soils

A Review of Soviet Invesligations
Yuri A. Kovalenko and Stephen N. Flanders May 1991

e - —
Lrueszion Tor

—
" o
Poa¥sx]

2oz
ETID Ts3
VRS

" ('."llg\{

e ed

32
.- '3
S:5L4f

Sattoee
Ll

" %
" Pdsitribution/

i Av2ilaviiity Codes

Bvail &nd/or

Dist § Spunaial

O\ |
]

o
.:u(' %

91-059
I/Il//l/Iﬂ/l/lilllfl/lf?/l!lﬁllf’llﬂ//%/;f

0i ¥ 2% 117

Approved for public releose; distribution is unlimited.




PREFACE
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the workshop and other considerations made publication asa CRREL Special Peport appropriate. The
report is substantially the work of Dr. Yusii Kovalenko. Siephen Flanders reworked the text in
cooperation with Di. Kovalenko to make it more accessibletoits readers in English. Dr. Yin-Chao Yen
and Dr. Virgil Lunerdini of CRREL and Dr. Omar Farouki of the Queen’s University of Belfast
provided technical reviews.
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NOMENCLATURE

a Thermal diffusivity (m?fs)

c Specific heat capacity [J/(kg K)]

C Relative bar size

C;  Contiguity (or contact degree)

E Modulus of elasticity

K;;  Ratioof averaged temperature gradients in
binary heterogencous
Kjp=la<r>Aa<r>)

Scale of the problem (m)

Lewis number

Process length (m)

Specimen length (m)

Molecular scale (m)

Mass fraction of the ith component
Number of dimensions

Number of particle contacts

N, Number of particles

P Pressure of compaction (Pa)

Modulus of elasticity or pressure of compac-
tion (Pa)

Contact value of modulus of elasticity per
unit of contact area (Pa)

Local thermal flux density (W/m?)
Coordinates (m)

Contact surface area of a particle (m?)
Contact surface area (m?)

Sum of particle surface areas (m?)
Nominal section area of the specimen (m?)
Surface area of a particle (m?)

Surface contact area projected on the section
plane (m?)

t Time (s)
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Temperature (K)

Boundary value of temperature (K)
Heating rate (K/s)

Partial specific volume of the ith component
(mAg)

Distance normal to surface (m)

Relative contact section of molded (or sin-
tered) materials_-The ratio of contact area
projected onto a cross section to the area of
the cross section of the specimen

Empirical parameter, relating to hardness.
= 1.2 for soft materials, like aluminum, and
B =4 for hard metals

Scale of a subregion of the problem (m)
Inhomogeneity scale (m)

Ratio of the scale of the inhomogeneity to
the scale of the problem

Angle between the jth contact plane and the
normal to the section plane

Ratio of thermal conductivities for a binary
heterogeneous system

Porosity

Bulk porosity

Density (kg/m3)

Area or volume fraction of the ith compo-
nent

For random inA and their mean value,
<InA>, % is InA—<InA>, where probability (%)
is a normal distribution

Contact thermal conductivity (W/m K)
Effective thermal conductivity (W/m K)
Maxwell’s solution for effective thermal
conductivity (eq 24)

Average




Thermal Conductivity of Porous Media and Soils
A Review of Soviet Investigations

YURIIA. KOVALENKO AND STEPHEN N.FLANDERS

INTRODUCTION

The thermal conductivity of soils and other dis-
persed porous materials of natural and artificial origin
depends, first of all, on the composition and geometric
microstructure of a system. Besides structure and com-
position, thermal conductivity is influenced by inter-
phase (intercomponent) interactions. Heat transfer oc-
curs primarily by conduction in systems with pores of
conventional size (< 104 m), with temperatures rang-
ing from ~50 to 100°C and subject to ordinary tem-
perature gradients. Convective and radiative heat ex-
change in pores can be estimated (Chudnovskii 1962,
Dulnev and Zarichnyak 1974) and is generally negligi-
ble, exceptinmaterials withlarge pores, such as thermal
insulation, and some structural construction materials,
notably the large-celled concrete found in the Soviet
Union.

Porous media and soils belong to a large class of
Heterogeneous Media (HM), for which the theory of
heat transfer allows the investigatorto take an approach
typical of continuous media: first, introduction of aver-
aged characteristics of the medium and the process
(volumecontentof components, temperature, heatflow,
heat capacitance and thermal conductivity), and sec-
ond, formulation of principal physical laws in terms of
these characteristics. Such a continuous approach, ap-
plied independently of the order or disorder of the real
heterogeneous system, rests on the assumption that the
scale of typical inhomogeneities () is miniscule com-
pared with the scale of the system (L):

d<<L. ®

This continuous approach uses the concepts of aninfin-
itesimal volume (Lifshitz and Pitaevskii 1979) and of
incorporated continua. Any such averaged description,
asanaltemative toadetailed description of processesin
HM, considerably simplifies the problem solution, pro-
vided thatthe regularmicrostructure is known. Itallows
the solution of practical problems when the inner struc-

ture: is non-regular and unknown (by the statistical
method in Landau and Lifshitz [1976]). The difficulty
of describing processes in this case is in obtaining
averaged equation coefficients for energy, momentum
and mass (analogous to obtaining closure for hydrody-
namic equations [Lifshitz and Pitaevskii 1979]). Being
random variables for & < L, these coefficients become
single-valued characteristics of the medium when the
conditions of eq 1 arc satisfied (the so-called seif-
averaging of specific extensive quantitics and kinetic
coefficients as §/L — 0 from Lifshitz et al. [1982]).

Several further concepts of HM classification are
useful. Many classifications by different indicators ex-
ist (for example, Chudnovskii 1962, Dulnev and
Zarichnyak 1974, Dulnev 1979, Heifitz and Neimark
1982). The principal indicators are:

1. The occurrence of binary or multi-component
mixtures.

2. The occurrence of inert mechanical mixtures,
alioys, solutions, HM with chemical interactions, etc.

3. The topology of the microstructure—including
the degree of surface contact and the distribution of
component sizes within the medium, ranging from
uniform to varied.

4. The degree of order or randomness in the HM.

5. Theuniformity or variety of the components with-
in the HM, ranging from weakly to strongly heteroge-
neous. This includes the physical qualities of the coin-
ponents and their arrangement within the medium,

These classifications are conventional and in prac-
tice the given types of systems are mixed, with a high
degree of disorder of components being typical. In this
respectporous media and soils are similarto othertypes
of HM.

The first investigations in which the continuous ap-
proach was extended from homogeneous gases, solu-
tions and liquids to heterogeneous media with inner
structure are in works by Maxwell (1873) and Rayleigh
(1892), which focused on calculation of the effective
electric field in amedium with spherical inclusions that
are located at the nodes of a cubic lattice. Burger*




studied the case of ellipsoidal inclusions. In 1887 Ar-
rhenius* studied the analogous groblem for the viscos-
ity of binary liquid solutions and suggested the formula
for the “logarithmic law of viscosity mixing.” Later the
same approach appeared again in Lichtenecker’s work
(1909, 1924, 1926, 1929) on conductivity. Eycken*
(1912) apparently was the first to study the equivalent
problem for heat transfer. Analogous problems con-
nected with various physical fields were also studied by
Wiener* (1912), Fricke* (1924), Voight* (1928), Re-
uss*(1929), Bruggeman (1935) and others (Odelevskii
1951, Chudnovskii 1962, Y asiliev and Tanaeva 1971,
DulnevandZarichnyak 1974, Dulnev etal. 1976, Bakh-
valoy and Panasenko 1984, Shvidler 1985). A modem
introduction to the formal study of physical character-
jstics that are analogous to conductivity (the dielectric
constant and niagnetic permeability, viscosity, electri-
cal and thermal conductivity, diffiusion and filtration
coefficients, and moduli of elasticity), is found in
Qdelevskii (1951).

Investigations conductedin the U.S.S.R. may be di-
vided into two large groups: 1) ad-hoc experiments in-
vestigating the thermal conductivity of specific materi-
alsandmedia,and 2)theoretical calculationstodetermine
general solutions foreffective thermal conductivity and
overall conductance in wide classes of HM.

CONTINUOUS DESCRIPTION OF THERMAL
PROCESSES IN HETEROGENEOUS MEDIA
AND THE CONCEPT OF EFFECTIVE
CHARACTERISTICS

The fundamental distinction between averaged de-
scriptions of HM, and macroscopic descriptions of mo-
lecular systems rests with the heterogeneity of the HM
being much larger than molecular scale (/):

§>>1. 2

The averaging technique used allows one to approxi-
mate a continuous medium with the same form of con-
servation of energy equations as for the HM and its
internal heterogeneities, each having its own local
physical coefficients.

Even if the contact area on the interface between
components in a micro-heterogeneous system is large,
one may often neglect the interaction of components
within it over a large temperature span. In such temper-
ature intervals, HM are mechanical mixtures and heat
transfer is described by the pure conduction equations:

t

* Citation not available.

div g+ cp %I: 0 3)

g=-AgrdT @
1(r0)=1d3). 113 =7{r3.1)- ©)

Here specific heat 7}, density p(7) and thermal
conductivity ;) have rapidly changing coordinate
functions (with pesiodical or random variables). As
cp(r) and A{r)are discontinuous in HM, the solution of
theeq 3 through 5 is considered 10 be a general solution
satisfying corresponding integral relations (Bakhvalov
and Panasenko 1984). It is necesszry to assume a
temperature and heat flux continuum along interfaces
between components

[T]}:O. [x %ﬂ:o

where []isthe function jump on the surface of acontact
and 9770z is the partial derivative of temperature nor-
mal to the surface._

Inprinciple, adetailed knowledge of the HM micro-
structure that determines the functions c(;) p(;) andl(;)
would allow one to solve the problem accurately. With
the assumption of eq 1 and if the structure is rather
complicated, then such a detailed solution would be
difficult to model on a computer. However, such a
computation would rely on a detailed knowledge of the
microstructure of the HM, which is unknown in detail.
Instead, collective general properties of the microstruc-
ture are typically known. Thanks to this knowledge, a
detailed solutionis notusually requiredand anaveraged
description of the medium and the processes taking
place within s typically the only appropriate method. It
is also advisable to average the processes in simple,
periodicmedia, as was donein Bakhvalovand Panasen-
ko (1984) and Dulnev et al. (1976).

Now we'll cover isotropic and macroscopically ho-
mogeneous systems, that is, the systems in which the
scale of heterogeneity 6 and the averaged parameters
(the volume of the components and soon) donot depend
on global coordinates. In terms of the multiple scales
method that is applied to averaged processes in period-
ical media (Bakhvalov and Panasenko 1984), these so-
called“slow variables”are onthescale of L, unlike “quick
variables,” which are inside heterogeneities and are on
the scale of &.

Averaging can be carried out by several methods.
The method strongly depends on the microstructure of
the HM. It may be 1) statistical averaging over an
ensemble of similar systems, where cp(ﬁ and M7} are
randoin functions, 2) averaging over a physically small
volume A3, 8§ << A << L, or 3) averaging over an ele-
mentary cell that is in a periodic structure, No matter
how the averaging is done, it essentially uses the disin-
tegration of the solution from Bakhvalov and Panasen-




ko (1984) or tise pa.abolic operator of equations from
Kozlov (1978), Shvidler(1986)and Zhikovetal.(1981),
sequentially, intc a power series of the parameter € =
O/L. Averaged equaticns of the zeroth order corre-
sponding to eq 3 and 4 are expressed as follows

div<g+ <cp> a<;> =0 6)
s
<@ =-A grad<T> )

where the operations div and grad are taken only by
global variables. In eq 6-8 the symbols < > mean
averaging 1) over an ensemble of similar systems with
random fields, cp{7) and A{7), 2) of a physically small
volume A3, or 3) using the periodicities of regularities
within the structure. In order to solve for <I'> approxi-
mately in eq 6 and 7 to solve for T in eq 3-5

max|T-<T>| <Cg

mustbe satisfied, where Cpis aquantity of thefirstorder
of magnitude. One must establish boundary conditions
so that they coincide with their averaged analogue

<T:l g=T(p.1). ®)

We now look at the concept of effective thermal
conductivity A¢, which is discussed as a special-case
ancillary problemin Bakhvalov and Panasenko (1984),
Shvidler (1985) and Shvidler (1986). Characterizing
Aesisnottrivialand representsthe mainchallengeinthis
whole topic. Many works are devoted to the theoretical
determination of A;. However, experimentation is the
most reliable way for determining A.s.

The otherthermal coefficient derived fromaveraged
equations, average thermal capacitance <cp>ineq6, is
determined simply by additivity. In fact, by dividing
regions of integration into separate subregions occu-
pied by individual components, it is easy to show that

215 [[] cpar® = 2. cputh ©)
(a°)

where ¢jand p¢; = specific heat capacity and density
i = component
¢; = volume fraction i-component (aver-
a%ed over the characteristic volume
A°),

<cp>=

By introducing partial density (the concentration of the
iM-component), p;=;p¢;, equation 9 may be expressed
as

<p>= z p;-
3

Anotherderivation of averaged volume heat capacity is
possible by using the effective specific heat and an
averaged density of the HM. Let’s first determine the
mass content of the components in their mixture

m; = i3, p; (1

-and then the partial specific volume

Vi =mifpe; .

By using v;, we determine the volume content of the i*-
component in a manner analogoustoeq 11

;= vi/Z vi.
1

Then, introducing the effective specific thermal capac-
ity of the HM as

cef=_2cimi (12)
1

and the average density

<> =T opa= T pi=(Z vi)" (13)
from eq 10-13 it is easy to show that

<CP> = Cep<P>. (14)

Note that the effective specific heat c.f does not coin-
cide with the averaged specific heat, as determined by
the mean of individual specific heats, namely ¢ <c>.
The same is true for A¢g# <A>. In the particular case of
layered HM, as we’ll see below, Aqf = <A>. These
quantities agree only for volume-specific properties.
Note the following limitation on the applicability of
eq 6 and 7 to non-steady-state processes. Their validity
may beaccepted only whenthe local temperature within
the medium differs only a little from the temperature of
thelocal thermal equilibrium. They are unconditionally
validonly whenthe medium is close tosteady state, that
is, at 0T/0¢ = 0 in Rubinshtein (1948). Hence, it follows
that they candescribe only rather slow non-steady-state
thermal processes with typical response times much
longer than the time constants of the heterogeneities
within the medium, that is
2

Tehar >> i— (15)

n
where apjp =min(g,) and can be described by averaged
eq 6 and 7. The condition (eq 15) can also be obtained




from the estimate of the terms of eq 6 and 7 using the
inequality of eq 1 (Buevich 1973). The effective ther-
mal conductivity ineq 7 fornon-steady-state processes,
tested against the condition ineq 15, coincides with the
steady-state effective thermal conductivity.

If one cannot adhere to the assumptions of local
thermal equilibrium, then one has to resort to a more
detailed description—forexample, amuiti-temperature
model (Rubinshtein 1948, Schvidler 1986). In such a
model, heat transfer terms that are linear functions of
temperature are added to eq 6 for each temperature
within the individual components.

Summing up, let usreformulate the conditions of the
applicability of homogenization of both steady-state
andnon-steady-statethermal problemsin HM, including
mechanical mixtures and also dispersed systems with
possiblephase andchemical reactions (Kovalenko 1987).

Withtheinequality of eq 1 asthe principal condition,
the smallest of the following two dimensions must be
chosen as the typical problem scale: 1) minimal size of
specimen Lgp, or 2) the typical process length Ly, that
is: L = min (Lsp, Lyy). The condition L >> & must be
observed forany steady-state (thisusuallyallows L=Ly)
or non-steady-state process. In this latter case the con-
dition of eq 1 can be rewritten by the substitution

L=1 tcmr-a

as the condition of eq 15, in which the L = Ly, the
characteristic time is simply equal to Lszpla. WhenL =
Ly, the characteristic time can be expressed by other
parameters. So, for HM undergoing phase endothermal
change from thawing, .. = AT/T can be introduced,
where AT is the liquid characteristic temperature differ-
ence inthe phase diagram (melting phase), and where T
isthe heating rate. The value 7¢, not only represents eq
15 but exceeds the diffusion time in the heterogeneity
scale. The latter condition is thanks to the fact that a
Lewis number, Le < 1073 << 1, in condensed media
appears sufficient for homogenized modeling of the
medium (in this case the condition of eq 15 is delibar-
ately observed). With such a homogenization, we un-
derstand the description of the medium with the help of
lumped, effective characteristics.

THEORETICAL METHODS FOR THE
DETERMINATION OF EFFECTIVE
THERMAL CONDUCTIVITY

By definition the effective thermal conductivity is a
coefficient that relates the averaged values for heat flux
and the gradient of the average temperature (eq 7)

<q>=-Aepgrad <T>.

Most calculation methods are based on this defini-
tion. The problem then s the determination of the fields
of <g>;and <T>;averaged by the components withinthe
HM.

Exact solutions and approximate methods

Exactsolutionsto the problemof the definition of the
effective thermal conductivity areknown only forafew
cases. In the first place, these are one-dimensional
layered structures for which the longitudinal conduc-
tivity is as follows

N =<> (16)
and transverse
Ay =<AI>-l, a7

For more complex structures, especially for non-
regular ones, it is complicated enough to calculate the
effective thermal conductivity on the basis of the infor-
mation about field structures of <g>; and <T>;, so exact
solutions are very rare, However, one may occasionally
avoid awkward and sometimes unsuccessful calcula-
tions for systems that are not strongly heterogeneous.
This possibility relies on using variational principles for
estimating the bounds of effective characteristics
(Dykhne 1967, Shvidler 1985). The simplest expres-
sion of such bounds is

A>Tl <> (18)

which was probably determined for the first time by
Wienerand later was ascertained by Hill* (1964) forthe
modulus of elasticity and pliability and by Dykhne
(1967) for cenductivity.

Dykhne (1970) obtained an interesting result in his
work, inwhich he provedthat foraflatisotropic system,
covered on the average by geometrically equivalent
regions with different conductivities A; and A, the
effective conductivity satisfies the functional equation

Aei(d1) * Aer (02) = Aihy

where ¢; is the area fraction (in a two-dimensional
model) for regions with conductivity A;and ¢;+¢2= 1.
Hence at ) = ¢ = !/, it follows

Aed12) = YA, . (19)

In the above mentioned work by Dykhne and also a
paper by Kozlov (1979), the case when, for the random

* Citation not available.




variable A, the distribution of the value ¢ =InA —<InA>
isaneven function of ¥, is studied for different possibil-
ities. The precise value of the effective thermal conduc-
tivity is obtained as

Aes=exp <InA>. (205

This resuit withits particular case of eq 19 representsthe
empirical logarithm-mixing formulaby Arrhenius (also
suggested later by Lichtenecker) which, thus, is accu-
rate for two-dimensional bicomponent systems with
specialized conductivity distribution functions. Equa-
tion 20 can be represented by (Shvidler 1985)

Aeg= (<A> A-1>-H)12, (21

This is a geometric mean that is between the arithmetic
and harmonic means for thermal conductivity.

Inthe work in Ivanov (1967),eq 21 is generalized to
other dimensions.» with the help of the additional
results of the perturbation method

1 -1
Aeg= as i >( d : (22)
Atn=1this formula is accurate for any distribution, at
n=2itisaccurate if the distribution of ¢ is even and at
n=3, according to Shvidler (1985), “one can expect the
formula to be accurate enough for normal distributions
of InA.” .

The approach made in the early works of Maxwell
(1873) and Rayleigh (1892), which present an approx-
imation of asmall concentration of inclusions dispersed
eitherregularly orrandomly withinthe matrix, gaverise
to a great number of publications in which different
asymptotic formulae for A¢¢ were obtained. Maxwell
(1873) derived the first term of a decomposition of
effective thermal conductivity as a function of the
volumetric fractions of the inclusions

A= 1o Y1+20,)+2(1-0)) (23)
T (1) v 2¢

where the subscript 1 r:fers tothe inclusions, 2 refers to
the matrix, and v =A;/A;. Rayleigh (1892) studied the
problem of spherical inclusions atthe nodes of aregular
cubic lattice. He obtained the first two terms of an
expansion of A¢sby degrees of ¢y; the first and principal
termof this expansion disregarded the mutual influence
of inclusions, and coincided with Maxwell’s (1873)
solution (eq 23). Rayleigh’s solution was rendered
more precise by adding two more terms of the expan-
sion in Berdichevskii (1979).

Hashin and Strikman (1962) narrowed the limits of
effective parameters beyond those in eq 18 using the

variational principle. For the isotropic two-phase sys-
tem with A; < A;, the limits coincide with asymptotic
formulae by Maxwell (1873)

%’2.(1+2¢1)+ 20,
A -;L__———=x;‘ns A< AL
26,+2+ ¢,

ll

%L(1+2¢1')+ 20,
=hye 2 . (24)

A
Mo, +24
}»2 b2 ¢,

This is not a casual coincidence. In fact, as shown in
Berdichevskii (1979), if the thermal conductivity of
inclusions A; is less than that of the medium A, then the
accurate value of effective conductivity of a periodical-
ly structured medium with spherical inclusions is less
than or equal to the first term, Ay, of the Rayleigh~
Berdichevskii formula in Berdichevskii (1979) that
coincides with Maxwell’s solution (eq 23). If A; 2 A5,
then Agr2 A

Unlike the universal bounds for Asineq 18, Hashin-
Strikman’s expression (eq24) forthe three-dimension-
al heterogeneous system gives approximate bounds,
which, however, are considerably narrower than the
former (eq 18). Using such bounds it is possible, when
necessary, to construct approximate solutions, as ineq
24, Shvidler (1985) further recommends that if compo-
nentconnectivity is identical (mutually penetrative com-
ponents), then we can take as an approximate value of

A= (A2 400) /2.

For isotropic matrix HM, he recommends the assump-
tionA.¢= A, if the matrix thermal conductivity ismore
than the inclusion conductivity, and A ¢ = A, in the
opposite case. If no single component is simply con-
nected, but the components’ connectivities are differ-
ent, then the estimate for Aeg is Aeg = A/A_ AT -

The perturbation method for determining thermal
conductivity in Landau and Lifshitz (1982)is similarto
the Maxwell (1873) method for approximating smail
concentrations of inclusions. The perturbation method
gives good results for any concentration of components
but only for weakly heterogeneous systems.

In addition to the perturbation method, the self-
consistent effective field method is another important
technique. In a number of cases it gives better results.
The first self-consistent parameters were probably cal-
culatedby Bruggeman (1935). Later, Odelevskii (1951)
inthe U.S.S.R., Landauer (1952) and others developed
this method for othersystems. The efficiency of the self-




consistent field method is shown by direct numerical
computations (Shvidler 1983) and by comparison with
experiments (Odelevskii 1951). Shvidler (1985) gives
tables for the values of A¢g/A; calculated by this method
for different values of A»/A; and ¢; and for different
dimensional ratios of spheroidal inclusions.

Note that in the strongly heterogeneous HM, perco-
lation causes threshold effects (Efros 1982, Shvidler
1985). One can describe conductance behavior nearthe
threshold in such systems, using power laws forscaling
according to percolation theory. Critical indexes and
values of the threshold concentration ¢ for simple
problems can be obtained analytically, but more often
they are computed by the Monte Carlo method. Self-
consistent parameters at v =0 or at v = in some con-
centration areas get non-physical, negative values. While
this is certainly the result of approximation, it is also an
indicator for the percolation effect (Shvidler 1985).
Thus, the formula for binary HM with equal compo-
nents derived in Odelevskii (1951) by the effective
media method

Der=2L{(30101) + V(30,1 +

V3o 1)+ V3o, 1)F +8v)  (25)

where v = Ay/A; gives the estimate of percolation
threshold §.=1/3asv — 0

Aeg=0
Aes =AM (391-1)12. (26)

In engineering practice the methods of structural
modeling (Chudnovskii 1962, Vasiliev and Tanaeva
1971, Dulnev and Zarichnyak 1974, Dulnev et al. 1976,
Dulnev 1979) are often used. The real HM structure is
modeled by the mosi suitable ordered structure in which
an elementary cell is separated, and its thermal conduc-
tivity is calculated precisely using a computer as in
Bakhvalov and Panasenko (1984) or approximately as
in Dulnev and Zarichnyak (1974). Approximate calcu-
lations of A, for the elementary cell are usually made
by dividing a cell into separate fragments, containing
only oneofthe components with surfaces that are ortho-
gonal to the direction of heat flow, Then the thermal
resistance of acomplete elementary cell is made of par-
allel and serial connections of fragment resistances and
calculated by the rules of Kirchhoff's chain. A number
of formulae sufficiently useful for engineering calcula-
tions are obtained by this method in Dulnev and Zarich-
ny (1974). Thus, a model was suggested for structures
with interpenetrating components, in which one of the
components presents a cubic lattice or frame with bars

when ¢ < ¢

when ¢ > &,

of aconstant square section. To determine the conduc-
tivity of such a system by the method described, the
estimates of A.s were obtained with the help of two
different fragment thermal resistance connections with-
in the elementary cell

Ayg =M C2V(1-C) + 2vC(1-CYvC+1-C) ]
= | 1€ c T

o Cinlic?)  co-chviic)

isot

where the subscripts ad and isot refer to adiabatic and
isothermal, respectively, and C is the relative bar size,
which is a root of the equation

2C3-3C2+1-¢,=0.

With the arithmetic mean of these values from Dul-
nev and Zarichnyak (1974), one can determine the
effective value of A for any relationship of the compo-
nent thermal conductivities, the result being rather near
to the results of numerical computations. Maximum
calculation error is attained when v =0 or v = oo, yet it
doesn’t exceed ~15% (Dulnev and Zarichnyak 1974).

These methods include the averaged element tech-
nique (Dulnev and Zarichnyak 1974). This technique
introduces a set of assumptions about the HM structure
and then averages the parameters of the structure. The
complexity and subjectivity of the procedure to define
such an averaged element substantially explains why
this method was not widely adopted.

Insome applied problems, it is necessary to take into
account the statistical distribution of heterogeneities in
HM leading to deviations in thermal conductivity val-
ues from the average value As. Zhirov's work (1976)
focuses on this problem.

The success of the application of all these formulas
to real HM depends on how well one has characterized
the system structure, e.g., the distribution of A for ran-
dom mixtures or for geometrical structures. Variational
estimates based on universally used principles are rela-
tively simple and require minimal information about the
HM studied. Therefore, they apply to wide classes of
HM. This is their advantage and at the same time a
limitation on their efficiency when they lead to wide
bounds in estimating effective conductivity. One can
obtain positive results provided that 0.2 <v < 5 for the
Hashin-Strikman estimate and 0.5 < v < 2 for the uni-
versal relationship are both true. Attempts to include in
the analysis more detailed information about specific
features of the systems studied, in order to narrow the
limits of estimates, instead make the variational esti-
mates method considerably more cumbersome.,
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Semi-empirical methods

Al the estimates of effecthe tazmmal condmrsivity
givenabove havethe form 2.40;. 2;) 290 dc oot contzin
the parameters that Gerectly refiect the real sswcexe of
factors that affect heat traasfer 2s the forrs of incle-
sions, the dispession of theirsizes, the effects of thenral
COnLACL, etC.
tures can come from direct obsesvaiions and mezsere-

_ ments. Thus, we come to the semi-easpirical meshods

for estimating effective thermal conductivizy, which
allow one to take into account known specific fezivres
of the HM structure by introducing addition2] semi-
empirical parameters.

Some semi-empirical methods(Dulnev 1979, aker
et al. 1980) are based on the representation of the
definition A.¢from eq 7 in the form

kel Kj9,tvé,
A= =k 27)
il 7S R vy

where v = Ay/A;, and Ky = | V<TS | A V<T> is the
ratio of the averaged temperature gradients in the two
components of a binary heterogeneous system (after
Shvidler 1986). A number of properties of Ky» can be
set. Thus, using eq 18 it is easy to show that this value
islimited by the boundsforKy; of 1, vand, hence, whea
v = 1, then K2 = 1. With the help of such boundary
relationships for dielectric polarization from Odelevskii
(1951) and Landau and Lifshitz (1982), we obiain the
value of the derivative whenv =1

aKn:l_'
av 3

There exist generalized experimenta) data from Malter
et al. (1980) that indicate that, for a wide class of
systems, whenv=0orv=cotheboundary valuesof Ky
(v) do not depend on the volume fraction over a wide
range and satisfy the condition

0.4 < K 5(0) + K;p{e0) < 0.67

-1
(k12 =k31)

Assuming similar properties of the ratio Ky, Malter
et al. (1980) suggested a four-parameter approximate
equation for K12 (v), considering it independeat of the
concentration. Assuming that K5 is independent of ¢;,
it is possible to determine this constant for the given v
and from eq 27 if the value of A.thas been measured for
certain values of ¢;; then for the other values of ¢; the
t:ermal conductivity can be calculated by using the
derived value of K.

Alsoofinterest are the works of Serykh and Kolesni-

Figure 1 Decermination of Cy, the rexo of corzact ssar-
Jace area to the rocal area of the particlz sujaces.

kov (1982) 2ad Kolzenikor (1935), witich suzgesi vse
of stereological zaalysis for obizining the adiinonzl
informezrion zboet HM serocivres. Thes, for Getermiza-
tion of eficciive ibenmal conductivity ia posous srams-
lar sysiems when v =0, Serykh 22d Kolesskov (1952)
desive the foliowing fosmula

2er= 2:6:7C; - (28)
Here C;iscalled contiguity or degree of contaci. flistbe

ratio of the contact surface area io the 1012l zrea of ihe
pernticle surface (Fig. 1)

Ci1=2 Seore/Sucent (282)
Hc

whereSeoes = 3, (S)i (28b)
~l

Sc = contact surface area
N, = number of contacts
and A,
Swowr = X, (Sp) (25¢)
Sp= 'ngrticlc surface area
Np = number of particles.

C; is determined from the stereological analysis of a
microsection specimen. This method can sometimes
simplify thermal experiments for porous granular sys-
tems, but usually direct measurement of thermal con-
ductivity is simpler.

InBalshin’s work (1948, 1972) the following formu-
1a for the conductivity properties of porous matenals 1s
suggested

)"Cf=)'l V(:)l(! . (29)
in which
o= Sp‘ :’ Sn(\m (293)
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where N is ibe munber of contzcis, 6;is the angle be-
tothe sectionpizne. and Sy s the nominel seciion asea
of the speczmen (Fig. 2). Balshin psed the conoeps of
coniaci sections to éescnbz (e phnsscal and mechens-
cal propesiies of corrpressed mazetals in vaiform posi-
tions. Their characienistics are expressed by @ with 2
simple formula

Peg=Pt (30)

Here Pgmay be the modulus of elasticity E. the streagth.
or the pressure of compaciionp. Each of these represent
aresisiance property for forming the material. P, is the
corresponding contact v alue for this properiy. For E, P,
1s the corresponding modulus of elasticity of the frame*
matenal. For p, P.1s acomresponding value beiweenthe
matenal frame strength and the yield point of this
matenal (Balshin 1948. 1972). The w eight of the exper-
mmental evidence in Balshin (1972) suggests an approx-
mmanon of the contact section v alue throngh measured
parameters either for porosity 11 and the imitial bulk
porosity I1;, or comespondin;, values of the volume
fraction of the solid phase ¢,

a = (1-TT2 (i-TYT1,)P (31
where B depends empirically on the hardnesses of the

material species.
The stereological definition of the contact section is

* The frame refers 1o the sohid skeleton of a porous matenal, exclusine
of the voids within it

descrthed by eq 292, Using this defiition, Seaykh and
Kolesafker (1632) 2nd Kolesekow (19335) comnzceed
e values Cy 2od @ with the belp of the scereological
spproach

Cy=cffy. 32)

Heaee, ot can degive the formeia for the effeciive
ihermal conducinity ideaticel 1o eg 29 from eq =S.
a by siereclozical means.

The formulas for 75 in eq 28 and 29 212 based oa
some lax assumpiions thai Go not acocunt for the phys-
ical stz1¢ of e contacts. This probebly overestimates
theihemmal conductivityinsome cases, forexample. for
compressed metal powders with high pososity. These
sysiems were stedied by Aleksandrov et al. (1985),
Gruzder 2nd Kovalenko (1987, 1988a) and Gruzdes ei
al. (1989), using compressed powders of nickel. zirco-
nivm and their mixtures with aluminum powder as
examples. In Aleksandrov et al. (1985) and Gruzdev ei
al. (1989). experiments determined that a good analogy
exists between heat transfer and mechanical stress
transfer inthese systenis. as determined by the degree of
contact present. A lattice model of a powder body
demonstrates the analogy theoretically in Gruzdev and
Kovalenho (1987, 1988a,. The thermal versus mechan
ical analogy betw ecn the molding pressure and thermal
conductivity isbased onthe similarity of dependence on
specimen porosity. Employing the relationship of po-
rosity tomechanical propertiesineq 30, and the thermal
versus mechanical analogy for thermal conduction, we
can write

)» = ;‘t a(n.no?- (33)

Parameter B, which enters into the function ¢ (T.I1,)
(fromeq 31). depends on the hardnesses of the matenial
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species (Grzdey e 2l 1939). hirmges romPB=1c0P
=15 for soft emzeals, sech s abeminom, so B =4 forband
meesls. Experimeneazion confinms a chear similariy of
relasionship bezwezn PILIL,B) aad 2.4(T1.11,.8). As
follows from ehe above dzscribed thenmel-mechasical
analogy. the pososty 11, the belk pososity I, which
chazacierizes the precompaciion sisuciure, and the pa-
rameter P aze crisesia for simitariy (Kugaseladze 1986)
beiween the mecienical and thermz] properiies of po-
rows, compvessed powdered matals. The coniact ther-
mal condectivizy 2. s dzzenmined empisically. This
analozy and the formula in eq 33 are limiied by the
coadizionihathe areaofinter-pasticle contacts be small
incomparisoawithtbe sizzsof species. Hence, porosity
should bz tnthe ronge of 112025 £0.05.

EXPERIMENTALINVESTIGATIONS

Non-steady-siaie methods are generally used for
measusing effeciive thesmal conductivity and thermal
cifiusiviiy of dispersed and porous media, asin Artyk-
pacv (1968) and Lyalikov (1965), for example. These
meibods can bz coaveationally divided into several
groups: 1) methods vsing monozonic (Platunov 1973)
andpesiodical (Filippov 1984) heating, 2) methods us-
ing equiiibsation 21 an exponential rate, e.g., the “regu-
lar regime of Kondratiev™ (Chudnovskii 1962) and 3)
probe methods (see, e.¢., Sigalova 1965, Bakenov etal.
1972, Zaitzev e1 al. 1989). Steady-state methods are
more laborious and inzccurate and are therefore used
less often. For temperature intervals in which HM or
their separate components (forexample, thawing soils)
undergo phase transformations, traditional methods do
not work because the thermal conductivity equation is
nonlinear. For suchcasesthe methods based oncomput-
er solutions of the commesponding inverse problems are
suggested in Pavlov et al. (1980), Kovalenko (1986)
and Gruzdev and Kovalenko (1988b).

Experimental investigations have, as a rule, been
individual, ad-hoc efforts. Their purpose in each case
hasbeentostudy thermal conductivity of anarrow class
of materials. There are practically no experimental in-
vestigations for modeled media.

Thethermal conductivity of soils (clays, sandstones)
andvariousrock deposits is investigated in the works by
Bogomolov (1941), Sigalova (1965), Bakenov et al.
(1972), Sidorov (1979), Nikiolaev et al. (1987) and
Zaitzev et al. (1989). An attempt to summarize thermal
conductivity of three- or four-component soils (hard
frame with air, water and oil) is made in the works of
Volkov et al. (1982). The works of Franchuk (1941),
Kaufman (1955), Vasilicv and Fraiman (1967),
Zabrodskii et al. (1968), Gamnashevich (1974), Frant-

sevich (1976), Lizovskii and Puchelevact: (1932) zand
Strelov (1952) are dedicazzd to expenimenssl study of
the thermal conduciiviiies of themmal nsulation and
otherbeildine muerials. Zadchayak (1970) summanz-
s expestmenial data for the thermal conduciiviiy of
such syseems. Mzial-ceramic aad compeessed meizl-
powdermazerials aze consideradinile works of Lyalik-
ov (1965). Skosokhod (1967}, Demidchenko (1972),
Andrezv(1975), Alzksaadrov ez al. (1985) and Gruzdew
e al (1989).

Experimential investigations can be unsatisfectony
whentke marerials siedied are insufficienily character-
ized. Also, thie amount of expesimental data is insuffi-
cient 10 faves one or 2noiher calculationzl model for
specific classes of porous, dispersed materials.

CONCLUSION

AreviewofSovietstudies of tbermai conductivity of
porous maierials and soils shows that theoretical inves-
tigziicns are more common than experimental. Many
models ase not adequately validated with the 1. eager
experimental cata that exist for different classes of sys-
tems. In fact, theie are no systematic experimental in-
vestigations of the whole classes of HM, as they are
madeled. Investigators give preference fo calculations.
The lack of 1) thermal measurement apparatuses, 2)
accurate methods to characterize structure, and 3) a
common data bank for individual experimental results
reinforces this syndrome.

Methods available for determining the effective
thermal conductivity of HM by theoretical calculaiion
probably exceed in scope the whole range of various
HM classes. Choosing between models for specific
cases is therefore a major problem in predicting of HM
thermal properties.
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