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Abstract
i

During Phase I Netrologic and Dr. Nygard's team at NDT2J developed routing and scheduling
algorithms which advanced the state of the art in efficient heuristic route development for
computationally NP hard problems. Four seperate genetic-algorithm route development techniques were
designed with very fast evaluation functions. These route development techniques used the multiple
evaluation functions to perform parallel searches which competed for the best solution. Current best

* solutions found by one method were shared with all methods to enanble them to explore promising new
areas in the search hyperspace. After convergence on a "best" solution a genetic algorithm post processor,
XCHANGE, swapped stops among adjacent routes to obtain further route efficiencies by exploring local
optimizations. The result of the multistage search was an efficient search which in every case tested
achieved better results than the best known technique previously tried. Typical improvements in
efficiency over other techniques was about 3 percent.

When these techniques were applied to the Air Force LOGAIR problem an iterative approach
was used. First, good solutions were found for trunk routes between the six major depots. Next clusters
of bases were assigned to each depot and then a Traveling Salesman Problem was developed which
assigned stops in a depot's cluster to a specific sequence for that route. The problem was iterated by
going back and adjusting the route structure between depots and then repeating the depot clustering and

*stop scheduling process.

These techrl-ques augment a cargo allocation system which was previously implemented to
maximize cargo loaded onto aircraft at a depot. With the cargo loading expert system and the scheduling
assistant LOGAIR could theoretically achieve a 13 percent improvement in cargo handling at no increase
in cost. This translates into millions of dollars saved on an annual basis.

A graphical user interface prototype model was developed for LOGAIR use. It showed route
structures and enabled users to manually edit routes and quickly observe results. Animation enabled the
user to see proposed cargo allocation solutions in action.

In Phase II we will extend the vehicle routing capability developed under Phase I to the multi-
* depot problem. We will address routing problems with time constraints, and we will develop a dynamic

rescheduling capability.

V

S

I

* vii



FINAL REPORT

Microcomputer-based Vehicle Routing and Scheduling
SBIR AF90-190

1.0 Introduction

We have designed and implemented a system that uses alternative ways of employing methods
of artificial intelligence in conjunction with heuristic mathematical models for solving vehicle routing
problems and applied them to the Air Force LOGAIR cargo handling system. The artificial intelligence
problem-solving techniques involve genetic algorithms and set partitioning algorithms as applied to the
LOGAIR vehicle routing problem. 9

It is well known that many problems in Operations Research are NP complete and therefore
cannot be solved to optimality in realistic computer time. For such problems, researchers have developed
many heuristic strategies. A major problem with many of these heuristics is an inability to deduce the
kind of strategy to adopt, given the characteristics of the problem at hand. The need to deduce the
parameters to use in a heuristic for a given problem led to the identification and use of certain Al problem 0
solving techniques in order to supply answers to what values of parameters were required.

1.1 The Problem Solving Techniques

We have applied tbe following problem solving techniques:

Genetic algorithms are search techniques which belong to the "generate and test" Al paradigm.
Genetic algorithms (GA) (Holland, 1975) base their search for better solutions on principles of survival of
the fittest genes, where the genes represent possible solutions to the problem and the fitness is the
designer-specified objective function value.

* Heuristic Mathematical models are instruments which transform data into information which can aid
in the inferencing mechanism. In addition, many real world situations can be modeled with sets of
equations. Thus, good mathematical models are fundamentally important pieces of knowledge in the
system.

1.2 The Problem Domain: The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a highly combinatorial problem (NP-Hard) that has been
extensively studied by Operations Researchers (Bodin et al., 1983). In the VRP there is a known collection
of stop points that have demands for service, and a fixed fleet of limited capacity vehicles to serve the
stops. The problem is to find the minimum-distance way to assign the stops to vehicles and specify the
orders in which each of the vehicles visits its stop. All the vehicles begin and end their tours at a fixed
location depot.

In essence, the Al tools operate as an intelligent controller, first devising an advanced set of
candidate solutions, then adaptively guiding the solution procedure used by a mathematical algorithm.
The resultant solution methods dynamically specify local details and are adaptive to a wide variety of
problem instances. In many cases, the methods discussed produce superior solutions to routing and
scheduling problems in relatively modest CPU time.

Genetic Algorithms are generally compute-intensive procedures that require the evaluation of
many candidate solutions to a given problem. To reduce The computational overhead of this approach, a

1 0



mechanism for improving the performance of the genetic search has been developed that iiscz multiple
evaluation functions, permitting the parallel investigation of multiple peaks in the search space.

The purpose of the XVRP-GA system is to assist researchers and decision makers in applying
mathematical models to a specific problem instance 1v "tuning" the mathematical models to the problem
description, and adaptively "steering" the mathematical model as a solution evolves. The structural
system overview of XVRPGA is discussed in sectio, 2. Sections 3 and 4 provide the genetic algorithm
based system module. Section 5 describes the results and comparisons of the XVRP-GA system with
alternative methods in computer aided vehicle roufing.

2.0 Genetic Algorithm Methods Application to the Air Force LOGAIR Syf!tem

In our development of routing and scheduling algorithms under this program we have been
interested in more than a theoretical development. We have continually kept in mind the practical
applications of the technology and, indeed, developed a practical prototype system for use with the Air
Force's LOGAIR system. During Phase II this, will be developed into a complete workable system for
operational use with the LOGAIR system. The theoretical and practical achievcments of Phase I routing
and schdeuling effort are described in the following sections.

2.1 Problem Description

LOGAIR is a domestic airline system tLat facilitates the movement of c,-rgo between Air Force
bases and depots in the United States. There are 6 of these depots or Air Logistics Centers (ALCs) and 46
other bases in the U.S. which constitute the LOGAIR system. The 6 ALCs are major repair and upply
facilities that service the other Air Force bases. These facilities are responsible for the supply and
maintenance of serviceable spares for all aircraft, missiles and ground radar systems. This results in the
need to annually ship thousands of tons of cargo between the various ALCs and bases. In 19XX, over
132,000 tons of cargo was moved between pairs of bases. The Air Force contracts with commercial cargo
airline companies to fly fixed routes among the ALCs and Air Force bases.

From year to year the shipping requirements between the bases may change. Consequently, each
fiscal year, the routes flown in the LOGAIR system are modified to reflect these forecasted chinges.
Route changes are not permitted during the fiscal year due to the contracting process. Cargo .-. :line
companies base their bids on the routes specified by LOGAIR personnel. Any modifications made
during the year would require renegotiation of contracts as well as budget changes resulting from this
renegotiation.

There are several factors that are considered in the annual route design process. The main
objective is to move as much of the highest priority cargo as possible while keeping costs at a minimum.
The goal for cargo movement is within 36 hours. The various costs associated with the shipping of cargo
include mileage rates and fuel consumption for the different types of aircraft, transportation taxes and
landing fees. Table 1 shows the mileage rates and the fuel consumption of the available types 3f aircraft.
The transportation tax is 6.25% of the mileage cost per year, excluding fuel. The L100 is the only aircraft
has a landing fee, which is $250 per landing. There are certain restrictions on the routes that may be
flown. The amount of cargo on an aircraft at any point in time cannot exceed the capacity of the aircraft.
Also, there are limits on the amount of time a crew can fly and work in a single day. Consequently, the
speed of the available types of aircraft also becomes an important issue as longer routes ,w ould need
faster aircraft.

* 2



AIRCRAFT CHARACTERISTICS

0
AIItCRAFT TYPE MILEAGE RATE FUEL (gals / mile)

LIO0 S 7.6940 2.6000

L188 S 6.4344 2.5910

DC-9 $ 5.7449 2.1470

CV 640 S 5.9741 1.8750

Table 1. Aircraft Characteristics For Determining A4ircraft Assignments To Routes

2.1.1 Present LOGAIR Operation

Currently, there are two distinct areas in the decision making processes of the LOGAIR
operation. The first is the aforemevtioned annual route design. The second is the daily allocation of
cargo to be moved given the fixed routes. At present, LOGAIR personnel have computerized decision
support systems in both of these areas.

2.1.1.1 Annual Routc, Design

The decision sipport system for the route design process has two separate components. The first
component is the routL , enerator. It relies on a continuous multicommodity network formulation of the 0
problem to generate candidate routes. This model requires as input, a forecast matrix and a distance
matrix. The forecast matrix gives the total pounds of cargo which must be moved from each base to each
other base each day. The distance matrix gives the flight distance between all pairs of bases. The route
generator produces a nominal set of cargo routes which minimizes pound-miles. This set of routes may
violate various constraint. -.OGAIR personnel then modify these routes ar needed to form a set of
feasible routes. This set of potential routes is then the input for the second component. The second
component is the route selector. It relies on a fixed charge multicommodity nF.twork formulation to select
a subset of the potential routes. This subset of the input feasible routes is th, optinu',i set of routes
which will guarantee that the daily demand is met subject to aircraft capacity constraints.

2.1.1.2 The LOGAIR ALLOCATE System

The LOGAIR flight system moves cargo among 56 Air Force Bases in the continental United
States each day. There are 16 flights, and each day the-e is always considerably more air-eligible cargo
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than can be transported by LOGAIR. This section describes ALLOCATE, a comprehensive computer-
based system for allocating cargo pallets to aircraft.

ALLOCATE has several specialized reports and features designed to closely involve the user
with the process of developing an allocation. However, the heart of the system is an automatic allocator
which combines a generalized assignment model named ASSIGN and an expert system named REVISE.
ASSIGN handles the allocation fundamentals, including ensuring that pallets are allocated to only one
flight, reach the proper destinations, and do not exceed aircraft capabilities. REVISE handles a host of
complications, including restrictions on the ways that pallets can be arranged on aircraft types, and
limitations on transporting hazardous cargo.

2.1.1.2.1 The LOGAIR Problem

The LOGAIR system is illustrated in Figure 1. The 9 large nodes represent major maintenance
and repair facilities called Air Logistic Centers (ALCs) and points of embarkation for overseas flights.
Interconnecting these large stations are 6 trunk routes providing numerous pallet movement options, The
other 10 flights are petal routes, loops which originate and terminate at an ALC. The routes flown on a
given day are fixed, but four different route systems are used each week. The routes are redesigned once
each year.

In advance of the flight departures on a given day, each station uses a computer communications

network to send a message called a Cargo Requirements Report (CRR) to Wright-Patterson Air Force
Base in Ohio. A CRR indicates the number and types of pallets which the station anticipates having
ready to send to various other stations that day. LOGAIR controllers at Wright-Patterson allocate the
pallets to flights and send the allocations (called load reports) over the network to the stations.

The cargo allocation process is characterized by the following factors:

1. Pallets are categorized into high, medium and low priority classes.

2. Often there are several alternative flights to which particular pallets can be assigned.
3. Pallets are of 2 basic sizes, with one large pallet being equal in length to a small pallet but
having twice the width.

4. Pallets of the same size are often clamped together to form in-line pallets used to transport
long items.

5. Three aircraft types are currently in use (Lockheed L-100 and L-188 and McDonnellDouglas
DC-9), and capacities differ among the types.

6. There are always many more pallets available than can possibly be allocated. As a result, low
priority pallets are often diverted to surface transportation, and some pallets must wait and be
allocated on a later data.

7. Each aircraft type has geometric layout and loading limitations. For example, the DC-9 aircraft
(illustrated in Figure 2), has side loading doors which cannot accommodate in-line pallets longer
than 3 units (large or small), and a tapered cargo compartment which allows only small pallets at
the ends. In additional many combinations of pallet sizes (especially in-line pallets), cannot be
accommodated.

8. Pallets may hold hazardous cargo which is categorized into 29 possible types. Incompatible
types cannot be allocated to the same aircraft, some types are allowed to land only at authorized
stations, and there are weight limits by hazardous type which apply to both aircraft and to certain
stations.

4
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9. There are circumstances under which cargo is allowed to be shipped to an intermediate station
rather than a final station.
The goal is to maximize the number of high priority pallets allocated, followed in turn by the
medium and finally the low priority pallets. If there are alternative ways to allocate the same
number of pallets in a priority class, a secondary criteria of minimizing total pallet-miles is
appropriate.

This goal together with factors 1-6 led to the ASSIGN model, which captures much of what
constitutes a good allocation. The REVISE expert system modifies the allocation produced by ASSIGN
and renders the allocation feasible with respect to factors 7-9.

2.1.1.2.2 Overview of ALLOCATE S

ALLOCATE is a comprehensive decision support system for the cargo allocation process. Figure
3 below illustrates that ALLOCATE has a top level Command Processor from which the user issues
commands to carry out various Support Functions or invokes the automatic Pallet Allocator.

1Command ProcessorI •

Support Functions [Pallet Allocator
EdRof IRpOe VftwsPa FuPCOSI I ASSIGN IREV1SE

Figure 3. High Level Functional Diagram Of ALLOCATE Cargo Handling System 0

The Support Functions are tools which facilitate human control of the allocation process. The
primary Support Functions and brief description of typical usage follow:

1. An Editor, from which the user can allocate pallets manually change characteristics of pallets
and flights, and enter new pallets into the ALLOCATE system. A typical user, at least when first
learning the system, may elect to allocate some or all pallets directly from the editor essentially
using ALLOCATE as an automated version of the old system.

2. Report writers, including both printed and screen versions of official forms (the load report
and a report of unallocated pallets), and a worksheet form which was used for allocating in the
old system. All the forms are available upon command at any point in the allocation process,
making it easy for the user to monitor progress.

3. Disk Functions. which allow the user to save and retrieve allocations to and from disk at any
point in the process. Any number of allocations can be saved by name, allowing the user to
develop and retain a collection of tentative allocations before committing to a final decision.

The Pallet Allocator uses a Generalized assignment mathematical model called ASSIGN and an
expert system called REVISE to automatically produce an allocation of pallets to aircraft The work is
carried out in 2 major steps. FRrst, ASSIGN produces an allocation which considers factors 1-6 above, but
ignores factors 5, 6 and 7. ASSIGN uses a sophisticated generalized assignment model which maximizes
the number of pallets allocated as a primary criteria and minimizes total pallet miles as a secondary
criteria. The solution algorithm is an advanced branch and bound method which uses a specialized
Lagrangian relaxation with multiplier adjustment. Second, the expert system REVISE begins with the
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allocation produced by ASSIGN, and applies production system rules involving factors 7-9 to generate a
final allocation. Details of ASSIGN and REVISE are provided in the next 2 sections.

The user has options of requesting: i) an optimal allocation or ii) a quick allocation. Both options
also allow allocation of all priority classes in turn, or sequential allocation of all priority classes. The
quick allocation is provided much faster by a heuristic solution of the underlying generalized assignment
problem.

After the allocation is produced, control returns to the Command Processor. The user can elect to
use Support Functions to evaluate, store, revise, or finalize an allocation at any time. For example, under
unusual circumstances (e.g., closed runways adverse weather, disabled aircraft, emergency shipments.
etc.) the user may wish to use the editor to manually allocate or deallocate pallets either before or after
running the automatic Pallet Allocator. Allocation decisions are ultimately finalized by, and are the
responsibility of, a human, but are substantially aided by a sophisticated model, expert system, and the
Support Functions.

2.2 Alternative Systems for Route Design

To assist the LOGAIR planners in their annual route replanning task Netrologic and North
Dakota State University (NDSU) designed two different systems for optimizing route design that employ
alternative search strategies. These will be described in detail along with a description of the supporting
graphics user interface environment.

2.2.1 Genetic Search Approach

The first alternative system to be explored is based on genetic search techniques. The basic idea
of the genetic search technique is to mimic the process of reproduction of fittest members as is observed
in real biological systems in hopes of generating high performance solutions for a particular problem.
The second alternative system to be explored is based on a set partitioning formulation. Like the current
manual system, our techniques generate a set of feasible routes from which a subset is chosen to provide
a high performance solution.

2.2.1.1 The Genetic Search Idea

The genetic search technique involves simulating a biological process of reproductive
permutation of the gene pool and survival of the fittest where route solutions are represented as a genetic
pattern. This technique is an iterative procedure which maintains a population of solutions to the
objective function of interest. Each member of the population is a binary string of some fixed length.
This implies that there is some function which maps from the set of all binary strings of this fixed length
to the set of all solutions in the search space. This function must be chosen very carefully so that
substrings in the binary string represent substructures that carry pertinent information about the
solution. These substructures are analogous to the genetic material found in biology. At each iteration or
generation some members of the population are selected to reproduce. Preference is given to members
which exhibit high performance as measured by the objective function. In keeping with the technology of
genetics this is often referred to as the "fitness" function. This reproduction is accomplished by cutting
the binary strings at certain points, exchanging the resulting substrings with another member of the
population, and recombining to form new population members. The idea in genetic search is that after
simulating many generations the superior substructures will occur with great frequency in the members
of the population because of their contribution to the overall performance of the solutions. Evcentually
various superior substructures will combine to form high performance solutions.

Genetic algorithms (GA) are heuristic solvers of combinatorial problems that proceed in a
manner inspired by biological genetics (Goldberg, 1989). Basically, candidate solutions to the problem are
represented as bit strings (chromosomes), and populations of these solutions are simulated over some
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number of generations, seeking a high quality solution to the problem of interest. Criteria that involve
"survival of the fittest" concepts provide the pressure for populations to develop increasingly fit
individuals. The GA exploits the accumulating knowledge of the Vehicle Routing Problem (VRP) 0
solution being explored. Each point in the control parameter space is a genetic string represented as a
binary number. Each string has a field allocated for the performance function, Fe, which is returned by
the evaluation function. For each generation the GA maintains a population of these control parameter
strings. Each individual population member is evaluated as a set of control parameters and the
associated performance measure is saved. Finally, using selection probabilities these control parameter
strings undergo reproduction via the crossover and mutation genetic operators. Although there are 0
many variants, the basic structure of the genetic algorithm is shown in Figure 4.

Initialize P
P = population •

Evaluate P(t)

0. \ Yes

TSTOP

SReproduction
I

I •-[ E ua, P7(t)
Figure 4: The basic structure of the genetic algorithm. Genetic algorithms are heuristic solvers of

combinatorial problems that proceed in a manner inspired by biological genetics. 0

2.2.1.2 Genetic Algorithm Operators

Genetic Algorithms are generally compute-intensive procedures that require the evaluation of
many candidate solutions to a given problem. In the past few years many researchers have investigated
ways of improving the performance of GAs through the development of more efficient genetic alteration •
techniques. Since the primary parameters of a standard GA are population size, crossover, mutation
rates, and number of crossover points, significant attention has been paid to these parameters to improve
performance and efficiency. New techniques to improve selection of these parameters have had a
considerable impact on performance (Schaffer, 1989; Goldberg, 1989; Jog, 1989). Adaptive selection
methods (Baker, 1985) and reproductive evaluation techniques (Whitley, 1987) have also been shown to
speed up GA searches. In the application area of routing and scheduling, genetic algorithms set 0
parameters for a mathematical heuristic. To reduce the computational overhead of this approach, a
mechanism for improving the performance of the genetic search is detailed in this section. A method of
using multiple sharing evaluation functions is employed, permitting the parallel investigation of multiple
peaks in the search space.
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2.2.2 System Overview of XVRP

The XVRP system improves the ability of heuristic procedures to design routing plans by
intelligently setting their parameters. The overall system starts with problem data consisting of
stop-point locations, depot location, number of vehicles and their capacities. The structural description of
each of the basic functional components is described in this section. Figure 5 provides a detailed view of
the basic components of XVRP system.

HeuristicI
Mathematical XVRP-GA Data Base
Model Base System

XCHANGE FAA1 FAA2

F~r FGAA COMBO
MethodMethods

Figure 5: The overall XVRP system. The system improves the ability of heuristic procedures to design

routing plans by intelligently setting their parameters.

We use a "duster first / route second" heuristic technique as a VRP solver. There are two
fundamental decisions that must be made before using this heuristic. F'rst, we need to determine the
clusters by some method. Second, we need to sequence the stop locations in a cost effective way. The
objective is to find the order in which the stops are visited so that the total distance traveled is as small as
possible. Four methods of determining the clusters have been developed. The first two methods, Fast
Assignment Approaches FAA1 and FAA2, are new algorithms that are relatively fast and well suited for
the genetic search. The third method, FGAA, is a modified version of the generalized assignment method
developed by Fisher and Jaikumar (1981). The fourth method, COMBO, is a combination method, which
uses the same GA recommended seed points for the three methods mentioned above (FAAI, FAA2 and
FGAA), but selects best solutions from the currently best performing method during the route
development process. A local optimization process is then used on the "good" dusters recommended by
the COMBO method to explore the possibility of better solutions in the vicinity of the "good" solution.

After the GA methods have selected a good candidate route structure a postprocessor is run on
the candidate solution. The postporcessor, XCHANGE, is a simple postprocessor, but achieves excellent
power from the use of genetic algorithms. The XCHANGE method uses the genetic string to interpret the
stop assignments of a particular route. The effect of the genetic recombinations is to make simple
alterations to the existing system of routes.

2.2.3 A Genetic Search Strategy for LOGAIR

In the LOGAIR problem, there are 6 ALCs and 48 other airforce bases. Any routes that are flown
between the ALCs are referred to as "trunk" routes and the the remaining routes are referred to as
"feeder" routes. A solution to the routing problem will be obtained in two phases. In the first phase, the
feeder routes are fixed while a genetic search is conducted to find the best set of trunk routes for the
given feeder routes. Once this phase is complete, the trunk routes obtained in the first phase are fixed
while a genetic search is conducted to obtain the best set of feeder routes for the given trunk routes. A
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population member or routing solution is evaluated according to the total amount of cargo moved. Thus
the algorithm proceeds to search for a routing solution that maximizes the amount of cargo moved. The
input to the algorithm includes a forecast matrix, a distance matrix, characteristics of available aircraft for
trunk and feeder routes, and an initial set of feeder routes.

2.2.3.1 The Trunk Routing Procedure

The problem addressed in the trunk routing procedure is to find a set of routes to fly between the
ALCs. The six ALCs are MCC, WRB, FFO, TIK, HIF and SKF (McClellan AFB, Warner Robins AFB,
Wright Patterson AFB, Tinker AFB, Hill AFB and Kelly AFB, respectively). For the purposes of the
genetic search, the number of aircraft which are used for the trunk routes is assumed to be fixed at some
number N. Each of the N routes is represented in the chromosome by an 18 bit string. Thus, each
chromosome is of length 18 * N and represents an entire trunk routing plan. In the chromosome
representation the integer values that are used to represent the ALCs are I = MCC, 2 = WRB, 3 = FFO, 4 =
TIK, 5 = HIF, and 6 = SKF. Each consecutive 3 bit string is interpreted as the binary representation of an •
integer in the range of 0-7. Thus each 3 bit string represents an ALC except for the the strings "000" = 0
and" 111 "= 7 which do not correspond to any of the ALCs. These strings are interpreted as null bases.
Each 18 bit string (3 bits per base times 6 bases) is interpreted as a sequence of ALCs which form a trunk
route. As an example, suppose the integer sequence derived from an 18 bit string is 2-1-4-5-6-7. The
route flown by this aircraft would be WRB-MCC-TIK-HIF-SKF. Notice that there are only 5 ALCs visited
by this aircraft. This is because the integer value of 7 is interpreted as a null base. If there are a number
of consecutive 3 bit strings that are identical, they are interpreted as just one 3 bit string. For example,
suppose the integer sequence derived from an 18 bit string is 4-4-1-4-5-7. This string would be
interpreted as 4-1-4-5-7, which translates into the route TIK-MCC-TIK-HIF.

Each population member determines a sequence of trunk routes, which together with the given
Feeder routes form a network for a Multi-commodity Capacitated Transshipment Problem (MCTP). The
information on available aircraft is read in from the feeder aircraft file and the trunk aircraft file. The ith
trunk route in the sequence is matched with the ith aircraft listed in the trunk aircraft file. The aircraft
types assigned to the routes determine the capacity of the arcs. Each of the 54 bases is associated with a
different commodity, which represents cargo that originates from that particular base. The forecast
matrix represents the demand of each base for cargo originating at each other base. This MCTP is solved
with the objective being to maximize the amount of cargo moved. The amount of cargo moved is then
the fitness value for a particular population member. Each population member is evaluated in this way
for every generation.

22.3.2 The Feeder Routing Procedure

As was mentioned above, in the feeder route phase, the trunk routes are fixed while a genetic
search is made for the feeder routes. The chromosomes or population members in this phase will
represent various clusterings of the feeder bases to form feeder routes. This representation is described in
[Thangiah et al, 19901. Each chromosome divides the feeder bases into a sequence of clusters, using a
process called genetic sectoring. The number of dusters is equal to the number of aircraft that are
available in the feeder aircraft route. This file contains a list of aircraft, each of which has attributes of
capacity and its home base or ALC. Once the sequence of clusters has been calculated for a particular
chromosome, each of the clusters is matched with an aircraft from the feeder aircraft file. The ith cluster
is matched with the ith aircraft listed in the file. In this way, each cluster of feeder bases is assigned a
depot or ALC. For each cluster and associated ALC, a selection/insertion algorithm is used to construct a
tour or feeder route. The cheapest insertion rule is used with the objective being to minimize route
distance. Once the feeder routes have been calculated for a particular population member, the resulting
MCTP can be solved as in the trunk phase to obtain a fitness value. Again, this fitness value is a measure
of how effective the route structure is relative to the goal of maximizing cargo movement.
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As in all genetic algorithms, a key issue is the representation of information and how it is
embedded in the chromosomes. In the feeder route phase of the genetic search, information describing a
sequence of clusters is embedded in each chromosome. We now describe the way in which this
information is represented. The idea for dividing the feeder routes into clusters is to establish a polar
coordinate system for the feeder bases and partition the set of feeder bases using a set of angles. In this
application, the pole or origin is taken to be Tinker Air Force Base and the zero angle is defined by a ray
that originates from the origin and points due east. Angles increase in the counter-clockwise direction.
The list of feeder bases is then ordered in terms of increasing polar angle. If there are K aircraft in the
feeder aircraft file, then the Length of each chromosome will be (K-1) * 3 bits. Each consecutive 3 bit
string represents an angle. Thus each chromosome can be decoded into a set of K-1 angles, which
together with the zero angle partition the feeder bases into K sectors, one for each aircraft. The ith 3 bit
sequence in the chromosome, given by B(i), is converted to an angle S(i+) using the following formula:

S(i+l) = (i * MaxAngle / K) + INT(B(i)) * C.

Maxangle is the maximum polar angle among the feeder bases. INT is a function that converts a binary
string into an integer value. The initial seed angle S(1) is assumed to be 0. As 3 bits give an integer value
between 0 and 7, the value C is used to provide an increase in its range. If the second term of the sum
were ignored, the feeder bases would be partitioned into sectors of equal size. The second term allows
the boundaries between the sectors to deviate from this equal partition. It is these deviations that are
encoded into the chromosomes. Once the sectors are formed for a given chromosome, the algorithm
assigns every feeder base, f(i), to a cluster A(j), using the following criterion:

f(i) is assigned to A(j) if S(j) < PolarAngle(f(i)) <= S(j+I),

where i = Ito N (N = the number of feeder bases),

= 1 to K - 1 and

PolarAngle is a function that returns the polar angle of the given feeder base.

As the reader can see from the description above, each chromosome determines a clustering of
bases into feeder routes which is evaluated by its corresponding fitness function. After many
generations, feeder routes emerge which exhibit high performance relative to the goal of maximizing
cargo movement.

2.2.4 Functional Description of the Multiple Evaluation Functions for the GA

One of the major problems with genetic algorithms is to prevent the search from converging
prematurely on less than global optimal solutions. Our contribution to solving this problem is to
maintain competing solutions distributed through various "good" hyperplanes which maintain parallel
competing processes throughout the genetic search. New "best" solutions are shared with all competing
processes to enable them to find new good places to look. This section will detail the process of using
multiple evaluation functions and the problem of representation.

2.2.4.1 Representation

The representation of a problem as an artificial chromosome is the key that characterizes an
optimization problem as "GA easy" or "GA hard" (Liepins, GE., Vose M.D., 1990). In the parameter
discovery task we seek a set of parameters under the guidance of a evaluation function. GAs use bit
strings as chromosomal encodings of parameters of the problem they are trying to solve. The control
parameters in our case are seed-point locations (Nygard, Juell and Kadaba 1989). We model each vehicle
tour with a location called a seed, with the vehicle conceptually traveling from the depot to the seed and
back. The seed-points represent an average location around which the aircraft serves. We use binary bit
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strings to encode the seed-points as shown in Figure 3. The number of seed-points recommended by the
GA is equal to the number of vehicles available. The example string shown below represents three
seed-points, each with an x and y coordinate, shown in both binary and decimal. The control parameters 0
SxI, Syl, Sx2, Sy2,..,SxN, SyN represent the N seed-points. The parameters are constrained to an interval
of the form ai < SN < bi where ai is 0 and bi is 1023. Each seed-point is identified by an x-coordinate and
a y-coordinate which consist of a 10 bit binary string to represent the numbers 0 to 1023 inclusive. The
delivery locations are scaled to a 1024 X 1024 grid.

The length of the GA string is LGA = EN Lj
j=l

where Lj is the length of one parameter string.

An example string and the decoded parameters are shown below:

String: 0000101100 1010110010 1000110110 110010010 0111110010 00101101100
Parameter: Sxl Syl Sx2 Sy2 Sx3 Sy3
Decoded Value: 55 803 987 739 348 200

80 bit binary stringu:. .. . ... . . .
X1 Y1 Y4

I seed-vatus )I

Figure 6: Each seed-point is identified by an x-coordinate and a y-coordinate which is represented by a 10

bit binary string to represent the numbers 0 to 1023 inclusive.

2.2.4.2 The Evaluation Functions

Several "cluster first, route second" heuristic techniques are available for use as VRP solvers,
serving as fitness evaluation functions for the GA. There are two fundamental decisions that must be
made by these heuristics. First, they must determine the dusters by some method. Second, they need to
sequence the stop locations in a cost effective way. To utilize these hueristics a Traveling Salesman
Problem (TSP) is constructed and used for sequencing the stops. In the TSP, a tour begins at a home
location, visits each stop on a list exactly once, then returns to the location of origin. The objective is to
find the order in which the stops are visited so that the total distance traveled is as small as possible. In
the Euclidean TSP, each stop is identified by a coordinate location, and distances between stops are
calculated by the Euclidean (or as the crow flies) metric. Tour construction algorithms are a prominent
and successful class of heuristic procedures for quickly solving these types of large-scale instances of the
TSP (Golden and Stewart, 1985). These methods construct tours incrementally starting with an initial
subtour which is then expanded by repeatedly applying rules that select unvisited stops and which insert
them into the tour until a solution is formed that visits all stops. The steps shown in Figure 7 indicate the
method of using the GA to set the parameters for the heuristic mathematical models in the XVRP-GA
module. We experimented with four methods of determining the clusters. The first two methods, Fast

13 •



Assignment Approaches FAA1 and FAA2, are new algorithms that are relatively fast and well suited for
the genetic search. The third method, FGAA, is a modified version of the generalized assignment method
developed by Fisher and Jaikumar (1981). The fourth method is a combination method, which uses the
same GA recommended seed-points for the three methods mentioned above. Each of the methods is
described below.

Stage 1: Accept the seed-points recommended by the Genetic Algorithm.
Stage 2: Use FAA1, FAA2 or the FGAA method shown below to determine the clusters.
Stage 3: Use a TSP heuristic to sequence the stop points in each cluster, and calculate the

total tour length for each duster.
Stage 4: Return the smallest total tour length to the Genetic Algorithm.

Inializ ene Ago

Population GeeiAloth

Set Seeds Decode
Seed Values

Assign Stops Fast Fast Generalized
to Seeds Assignment Assignment Assignment

Approach FAA1 Approach FAA2 Approach FAA

Sequence CCAO

Calculates
Total Cost Fitness

Value

Figure 7: Fast Assignment Approaches FAA1, FAA2 and FGAA, are clustering algorithms. The same
genetic material is shared between the three methods. The best solution is returned to the GA.

2.24.2.1 Clustering Method 1 [FAAI: In this method, only one seed-point is active at a time. The
nearest stop is assigned to the active seed-point, if doing so does not violate the corresponding constraint
on vehicle capacity. For each stop assigned, a weighted distance factor is added to the active seed-point.
The seed-point with the minimum weighted distance is made active for the next assignment This
process continues until all the stop points are assigned to some seed-point The first method FAA1 uses
the demand of a stop point (demandj) as a penalty. The seed-point with the minimum penalty is chosen
for the next assignment. This process goes on until all the stop points are assigned to the seed-point, in
effect, until the clustering of the stop points is complete. Now a TSP heuristic, CCAO, is used to sequence
the stop points. The algorithm checks for the capacity constraint of each of the vehicles in set K for the set
of stops J. Each vehicle k in set K has an available capadty bk, and the assignment of a stop j in set J to
vehicle k consumes r units of this capacity. A cost coefficient ckj is a measure of the desirability of
assigning stop j to vehide k where 0 :5 a > 1.0 is the load factor (the portion of vehicle capacity to be
filled). The following steps are used to assign the stops to a vehide.

Step 1: Choose any seed-point Sk as the active seed-point.
Step 2: Assign stop j with the smallest cost coeffident ckj to the active seed-point Sk.

ckj = DISTANCE(stop , seed k).
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Step 3: Assign a weighted distance factor W. to the active seed-point Sk-
Ws = min (Ckj) + ( %* demandj ) 0

k

Step 4: If Sk has reached its full capacity, stop any further assignments to Sk.
Step 5: Activate the seed-point with the smallest Ws value.

k

Step 6: Repeat Step 2 through Step 5 until all stop points are assigned to one of the
seed-points Sk.

2.2.4.2.2 Clustering Method 2 [FAA2]: The second method FAA2 uses a simple heuristic to do the
clustering. Here all the seed-points are actively in the contest for receiving the next stop point
assignment. The stop point with the minimum distance to any of the seed-points is selected and assigned
to that seed-point. Clusters produced in the clustering step are fundamentally dependent on the locations
of the seed-points. The role of GA in FAA2 is to use the fitness value to search for seed-points which the
FAA2 can use to produce an assignment. The Fast Assignment Approach (FAA2) is a new algorithm,
that is relatively fast and well suited for the genetic search because it uses a simple heuristic to do the
clustering. To begin, each stop point j is given a weighted distance ranking. The stop point with the
minimum distance to any of the seed points is selected and assigned to that seed point. The process is
continued until the clustering of the stop points is complete. Now the CCAO TSP heuristic (Golden and
Stewart, 1985) is used to sequence the stop points and the FAA2 algorithm checks for the capacity 0
constraint of each of the vehicles. For each set of vehicles K and set of stops J each vehicle k in set K has
an available capacity bk, and the assignment of a stop j in set J to vehicle k consumes rkj units of this
capacity. A cost coefficient ckj is a measure of the desirability of assigning stop j to vehicle k.

The following steps are used to assign the stops to specific vehicles.

Step 1: Choose any seed-point as the active seed-point
Step 2: Assign the stop point j with the smallest cost-coefficient cki to the active seed-point Sk.

ckj = Distance (stop j, seed k).
Step 3: If Sk has reached its full capacity, stop any further assignments to Sk.
Step 4: Repeat Step 2 and Step 3 until all stop points are assigned to one of the seed points Sk.

2.2.4.2.3 Clustering Method 3 [FGAA]: A generalized assignment problem is solved to assign the stops to
the seedpoints (Fisher and Jaikumar, 1981). A genetic search approach is used to extend the generalized
assignment approach to routing problems with multiple vehicles constrained by capacity and stops with
known demands for service. The general description of the three rudimentary steps of the algorithms
follows:

Step 1. Calculate a "seed" location for each vehicle. The seeds provide nominal models of the
directions and distances from a depot that the vehicles will travel.

Step 2. Using the seeds to set parameters, solve a generalized assignment mathematical model to
obtain assignments of stops to vehicles.

Step 3. For each set of stops assigned to a vehicle, use an algorithm to calculate a traveling
salesman tour, thus yielding a final solution to the problem.

A methodology has been developed that uses genetic search to find seed locations that tend to
provide the generalized assignment model with parameters that consistently yield stop assignments that
produce extremely efficient tours. For each set of vehicles K and a set of stops J each vehicle k in set K
has an available capacity bk and the assignment of a stop j in set J to vehicle k consumes rkj units of this
capacity. A cost coefficient ckj is a measure of the desirability of assigning stop j to vehicle k. Given
these parameters, the following generalized assignment problem (GAP) is solved to assign stops to
vehicles.
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minmize X X xkj
ke K jreJ

subject to:

(1) , rkjxkj 5bk for all kE K

(2) XXk.= 1 for all j E J
kek

xkjj=0or 1 forall ke K, je J.

The value of the decision variable, xk-, is interpreted as follows:

1 if stop j is assigned to vehicle k
xkj { otherwise

Constraint set (2) forces each stop to be assigned to exactly one vehicle. Constraint set (1) limits the
assignments by vehicle capacity.

A basic way to model a vehicle tour is to identify a single location called a seed, with the vehicle
conceptually traveling from the depot to the seed and back. With this model, the extra distance incurred
by adding stop j to the tour of vehicle k is given by

ci = DISTANCE(depot, stop j) + DISTANCE(stop j, seed k) - DISTANCE(seed k, deput).

Given this definition of ck, the dusters produced in the Clustering Step are fundamentally dependent on
the locations of the seed points.

2.2.4.2.4 Clustering Method 4 [COMBO method]: Many optimization problems require the investigation
of multiple local optima. Here the concept of sharing functions (Goldberg 1987) is used to investigate the
formation of stable subpopulations of different strings in the GA, thereby permitting the parallel search of
many peaks. This method uses the string recommended by the GA on all three methods (FAA1, FAA2,
FGAA) and the function with the best performance value is selected to return the fitness value for that
particular string to the GA as shown in the Figure 7. The three methods (FAA1, FAA2, FGAA) all use the
same string, and due to the competition between widely disparate points in the search space, help
maintain a diverse population which searches many peaks in parallel. This muitimodal optimization
method also helps in avoiding premature convergence due to local optima

The following steps are involved in running the Combined method.

Step 1: Receive the string recommended by the GA.
Step 2: Evaluate function FAAI using these strings.
Step 3: Evaluate function FAA2 using these strings.
Step 4: Evaluate function FGAA using these strings.
Step 5: Return the minimum of the three fitness values to the GA.

2.2.5 The Mechanics of the Adaptive Search

Let the complex process of multiple vehicle routing optimization be working in an ,.nvironment E
with a set of control parameters C which are available for the adaptive search strategy. Within each
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envir ,nment there is a fitness measure for the performance of the VRP proces being developed using the
presently chosen control parameters. In the routing problem, this fitness valhe is simply the agreed upon
performance measure of the set of tours. It may be, for example, the total distance traveled for the whole
fleet. Each environment e in E to which the controlled \ RP process is subjected defines a performance
response surface over the control parameter space C, defined by a fitness function Fe. It is the response
surface defined by Fe that is explored by the adaptive search strategy in order to generate a good
performance of the VRP process. In our problems, the function Fe is extremely complex, high-
dimensional, multimodal and discontinuous.

As the genetic algorithm generate and test procedure generates better routing solutions, the GA
exploits the accumulating knowledge of the VRP process being controlled. This is done by representing
each point in the control parameter space as a binary string which encodes the performance character of a
seed-point. In XVRP-GA, the control parameter is the location of the seed-point in 2 dimensional space.
Each string has a field allocated for the performance function, Fe, which is returned after the string is
evaluated by the evaluation function. The GA maintains a population of these control parameter strings
as parent material for combining in a directed reproductive search to obtain more efficient tours. Each
individual string is submitted for evaluation as a control parameter for the VRP process, and receives an
associated performance measure from the evaluation function. Finally, using selection probabilities,
these control parameter strings undergo reproduction with crossover and mutation genetic operators.

The population available for submission to GA operators is a collection of candidate control
parameters C. Fixing one of the control parameters and leaving the other parameters free defines a
hyperplane. Since each parameter has (1023 X 1023) possible locations we can have this many
hyperplanes for each control parameter and there is a seperate control parameter for eaca available
vehicle. When you consider all possible combinations of hyperplanes for all vehicles, it is obvious that
the search space is complex and rnultimodal. We observe from our experiments that GA rapidly exploits •
accumulating information about Fe to restrict sampling to those hyperplanes which have a high
expectation of good performance.

The search space defined by Fe is multimodal with relatively flat surfaces interspersed with
spikes of good solutions. Because the search space is not a single gradient slope to a global minima, it is
easy to become trapped in a local minima. GA avoids the penalty of local entrapment without the severe 0
expense of simulated annealing by maintaining competing solutions employing different evaluation
functions dispersed througout the search space. Because there are widely disparate points in the search
space using multiple sharing evaluation functions, the tendency to prematurely converge on a less than
best solution is mittmized. FAA1, FAA2 and FGAA are all controlled by the same set of control
parameters C, available form the adaptive GA. As the adaptive search progresses, each of the methods is
likely to be sampling different hyperplanes looking for peaks in parallel. As good solutions are found 0
and shared among the various competing methods the new "best" solutions will occasionally use the
'best" control parameters discovered by the other functions to start searc. ag a new hyperplane which
has been shown by a competitor to provide good performance (just like a "me too" computer business
which copies a successful one but puts its own twist on marketing).

Selection is the process of identifying the number of offspring each population member will bear. 0
In nature, weak individuals tend to be less likely to survive to bear offspring. An analogous procedure is
used in our population of candidate tours. In particular, 50 trials are carried out in each generation, and a
population member is selected for parenting at each trial. The probability of any particular population
member being selected in a trial is proportional to its relative fitness within the population as whole.
Thus, poor performance tours are less likely to be selected to parent in the next -t-neration than high
performance tours. The first few generations start with seed-point location values uniformly distributed •
over the search space.
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Figure 8(a) shows the seed-points produced by the COMBO method. Table 2 illustrates the method of
encoding seed-point locations and generating offspring via the COMBO method. Two offspring strings
are shown graphically in Figure 8(b) and (c). Table 2 illustrates the mechanics of a crossover genetic

Table 2. The Table Illustrates the Mechanics Of a Crossover Genetic Operator. The Seed String Shown In
the Table Is the Actual Value That the COMBO Method Uses. The Encoded Version Of the Seed String Is
Used by the GA in the COMBO Method. C11 and C12 are the Crossover Points In Parent 1 and C21 and
C22 are the Crossover Points in Parent 2

The Mechanics o the Crossover Operator

Ke-oa U IOU .7U Y 9

•Genetic Encoding 001100100 0001100100 1110000100 0001100100 1110000100 1110000100
Parent 1 0001100100 0001100100 c¢111 0000100  00011 C21 00100 1110000100 1110000100
Parent 2 0001100100 C21 0001100100 11100 C72 00100 0001100100 111000100 1110000100

Orrsprlng 1 0001100100 0001100100 0001100100 1110000100 1110000100 1110000100
Decode 1 100 100 100 900 900 900

offspring 2 1100100 1110000100 00('1100100 0001100100 1110000100 1110000100
2 100 900 100 100 900 900

1023 -"1023 1023

o 0 0 0
S3 S2 S3 S3

00

* 0

S

I0 02 • I •: sn S

0 W0

: 0 0M3 0 1023

(a) (b) (C)

Figure 8(a), (b), (c). The Figure (a) Shows the Seed-Point Produced By the COMBO Method. The Two
Offspring Strings Are Shown Graphically in Figures (b) and (c)
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operator with the decoded version shown for clarity. The encoded version of the string is used by the
GA. To illustrate the effect of crossover, let us assume we are using the standard 2-point crossover
method. ClI and C12 are the crossover points in Parent I and C21 and C22 are the crossover points in 0
Parent 2. Now, if the genetic material between Cl and C12, C21 and C22 are exchanged, two offspring
strings are generated. The use of the crossover has resulted in two candidate seed-point locations, with
seed-point 3 not being effected by the crossover operation, but seed-point I and 2 are moved to a new
location. These new locations of the seed-points results in different clusters, which in turn results in a
different fitness measure (total distance). The stop locations are sequenced in each of the candidate
clusters in a cost effective way (TSP) and the resuit returned to the GA. As generations progress,
seed-points tend to be concentrated in tight geographical areas due to the survival of the fittest
mechanism of the GA. This is illustrated in Figure 9(a) where the total run of 1000 trials is shown and in
Figure 9(b) where only the last 50 trials are plotted. A trial is a single execution of the evaluation function
on a candidate control parameter, and a generation consists of exhaustive trials on all candidate offspring.
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The three performance curves on the graph shown in Figure 10 illustrate the survival of the fittest
nature of the GA search. The performance measure is total distance traveled by the fleet, so small values
are desirable. In Figure 10, the top curve indicates tne worst performnc of the evaluation function as
function of generations. The bottom curve indicates the best performance in each geneation. The middle
curve is the plot of the average performnc of the evaluatioii function. The deaa.n trend in the
curves illustrates the survival of the fittest candidates in the population, and indicates that the GA is
doing much better than a random walk in the control parametr" search space.
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Table 3 presents empirical work that illustrates the parallel nature of the search on a four vehicle
problem. The values shown in Table 3 are generated when each evaluation function (FAAI, FAA2,
FGAA) finds a seedpoint parameter which produces a performance value better than the best found up to
that point in time. The FAA1 method produces the first best solution (example 1). FAA2 then identifies a
sequence of seven improving solutions, as shown in examples 2 through 8. The seed-points that produce
these solutions are the result of searches centered around a few "good" spots. At generation 14, the GA
produces a seed-point location that FAA1 adopts and improves. The coordinate values reveal that this
seed-point location is essentially the one FAA2 was using to improve the solution performance, as shown
in example 9. The FGAA method which had not generated a best solution in earlier generations,
produces one at generation 17 using seed-points from generation 2. Also note that the seed-points in
example 11 are in a completely different area of the search space. This illustrates the parallel search of a
multimodal response surface occurring in the algorithm.
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Figure 10: The top curve indicates the worst performance of the evaluation function as function of
generations. The bottom curve indicates the best performance in each generation. The middle curve is
the plot of the average performance of the evaluation function.

2.2.6 Functional Description of the Local Optimization Post-Processor XCHANGE

Although the results of the COMBO method were satisfactory, there were some questions as to
local improvements which might be achieved in the solutions produced. To explore the possibility of
improving the solutions by making small, intelligent swaps around the "good" solution and XCHANGE
algorithm was developed. The "good" clusters are first determined using the COMBO method then the
XCHANGE method is used as a simple postprocessor which derives its power from the use of a genetic
algorithm. The XCHANGE method uses the genetic string to interpret the stop assignments of a
particular route. The effect of the genetic recombinations is to make simple alterations to the existing
system of routes. The method chooses outlying stops and investigates the effect of swapping the stop to
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make it a member of an adjacent route. The stop is offloaded onto another route only if it does not violate
the capacity constraint for the vehicle serving that route. The procedure continues for a set number of
trials. 0

Table 3: Parallel nature of the adaptive search. Each of the three methods is able to exploit promising
seed-points locales discovered by the other methods.

Ex Sxi Syl Sx2 Sv2 Sx3 S3 Sx4 Sy4 Perf Method Generation 0
1 572 61 959 623 742 43 125 463 12373 FAA1 1
2 812 824 316 528 981 405 181 816 12082 FAA2 2
3 759 851 85 371 49 136 968 279 11880 FAA2 2
4 580 928 105 396 963 818 82 275 116b5 FAA2 2
5 466 716 805 75 114 769 494 873 11518 FAA2 2
6 279 488 865 65 51 747 044 660 11132 FAA2 2 •
7 232 791 865 79 901 672 197 720 10958 FAA2 2
8 757 329 110 833 55 136 968 663 10761 FAA2 7
9 714 182 90 841 52 141 976 652 10732 FAA1 14
10 714 342 105 833 55 128 1006 648 10606 FAA2 16
11 232 151 873 185 53 795 958 464 10490 FGAA 17
12 232 150 873 185 54 868 958 464 10450 FGAA 30
13 773 181 150 185 55 868 945 431 10394 FGAA 32
14 688 197 118 185 55 868 977 524 10373 FGAA 35
15 693 169 83 838 72 151 943 908 10299 FAA2 38

400bitbiamayw

EI rII t " III
Al A2 A3 A4 200 Sop-locadcm A200

Figure 11: Each stop-point is identified by a duster number which is represented by a 2 bit binary string.

2.2.6.1 Representation

The genetic algorithm in XCHANGE use bit strings as chromosonal encodings of the problem
they are trying to solve. Basically, candidate solutions to the problem are represented as bit strings
(chromosomes), and populations of these solutions are simulated over some number of generations. The S
control parameters are vehide assignments. The assignments represent a good duster which the truck
serves. The number of dusters recommended by the GA is equal to the number of vehicles available.
Each stop point is identified by a cluster number which is represented by a 3 bit binary string to represent
the numbers 0 to 7 inclusive for 8 vehicles. If only four vehicles are used the duster can be represented
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by a 2 bit binary string as shown in Figure 9. The binary bits are rescaled if there is an odd number of
clusters. The length of the GA string is calculated using the formula LGA = XN Lj, where Lj is the length
of one parameter string. j=I

22.6.2 The Evaluation Functions.

The evaluation functions are applied to the stop-point dusters of an existing route produced by
the COMBO method t3 init-te the process. We then sequence the step locations in a cost effective way
using a TSP for sequencing. In the TSP, a tour begins at a home location, visits each stop on a list exactly
once, then returns to the location of origin. The objective is to find the order in which the stops are visited
so that the total distance traveled is as small as possible. The algorithm checks for the capacity constraint
of each of the vehicles. There is a set of vehicles K and a set of stops J. Each vehicle k in set K has an
available capacity bk, and the assignment of a stop j in set J to vehicle k consumes rij units of this capacity.

TCOMBO Rt Eenetic AlgorithmI XCHANGE

[Decode
Set Clusters iAssignments

Total Fast

t Ag est od eAssignments
clstrunfrrtinApproach

I

STe22

TOWa Cotootstat

Figure 12: The Figure illustrates the overall architecture of the XCHANGE method. The result derived
from the COMBO, CLRY, FISHI, FISI-I2, NYWK and LFMO methods are encoded and used as the initial
cluster information.
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Stage 1: Accept the stop assignments (clusters) recommended by the Genetic Algorithm.
Stage 2: Use a TSP heuristic to sequence the stop points in each duster, and calculate the total tour

length for each cluster.
Stage 3: Assign distance value to each cluster Ak.
Stage 4: If Ak has exceeded its full capacity (Vehicle capacity), reject this recommendation and return

a large penalty value to the genetic algorithm.
Stage 5: If it does not violate the capacity constraint return the total tour length to the Genetic

Algorithm.

Figure 12 illustrates the overall architecture of the XCHANGE method. The result derived from the
COMBO method is encoded and used as the initial cluster information. The GA uses this information
and applies the genetic recombination operators to improve the route distance. In separate experiments,
the results derived from the five models (CLRK, FISH1, FISH2, NYWK and LFMO) are used as duster
information in the initial population of the genetic algorithm. This shows one can use the XCHANGE
method as a post-processor for any of the VRP solvers.

2.2.6.3 The Mechanics of the Adaptive Search

If we let C represent the set of control parameters available for the adaptive search strategy then
we can define within each environment a fitness measure for the performance of the VRP process under
the control parameters. As "good" solutions are generated the GA uses the behavior of the search space 0
and exploits the accumulating knowledge of the VRP process being controlled to generate better
solutions. Each point in the control parameter space is represented as a binary genetic suing which is
operated on by the genetic operators, evaluated for efficiency by the evaluation function, and then
subjected to the survival of the fittest rule. A post processor, XCHANGE, then attempts to improve on
the route efficiency by swapping points among neighboring routes. Each string in a stop location has a
field allocated for the performance function Fe, which is returned after being quantified by the evaluation 0
function.

As we have previously noted, the population we are searching is a collection of candidate control
parameters C and fixing one of the control parameters leaves the other parameters free to define a
hyperplane. Each parameter has 0 to N possible locations where N is th:: number of vehicles. The main
aspect to note here is that the mutation rate is kept quite low (0.00001) and used sparingly to avoid •
disruption of the clusters and to allow for convergence to good solutions. As shown in Figure 13, the
crossover operation does not create nearly as much disruption in the clusters as mutation and is the main
method to search the solution space for good routing clusters. Due to the immense number of suboptima
and small difference in solution length between respective clusters, the GA converges very slowly and
many generations are required to find good tours. It is important to note that our efficient algorithms are
of such quality that they generate new generations of offspring and evaluate them very quickly so as to 0
suit the algorithms to run in real time applications.

Figure 13 illustrates the mechanics of a crossover genetic operator. Figure 13 (a) shows the routes
produced by the COMBO method. The assignment string shown in Table 4 is the decoded value that the
XCHANGE method uses. The encoded version of the assignment string is used by the GA in XCHANGE
method. To illustrate the effect of crossover, let us assume we are using the standard 2-point crossover
method. C1t and C12 are the crossover points in Parent 1 and C21 and C22 are the crossover points in
Parent 2. Now, if the genetic material between C11 and C12, C21 and C22 are exchanged, two offspring
strings are generated. These two offspring strings are shown graphically in Figures 13(b) and (c). The
use of the crossover has resulted in two candidate clusters, with stop 9 being transferred from duster 2 to
duster 0, as shown in Figure 13(b) and stop 11 being transferred from duster 2 to duster 3, as shown in
Figure 13(c). We then sequence the stop locations in each of the candidate clusters in a cost effective way
and return the result to the GA.
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Table 4. The Table Illustrates the Mechanics of a Crossover Genetic Operator. The Assignment String
Shown in the Table is the Actual Value That the XCHANGE Method Uses. The Encoded Version of the

I Assignment String Is Used By the GA in the XCHANGE Method. Cl and C12 Are the Crossover Points
In Parent I and C21 and C22 are the Crossover Point in Parent 2

The Mechatcs of4 t Cra r Oerator
String '1 2 3 4 6 7 9 0 11 12 13 14 [5 16

Assgnment 0a 00 0 00 1 1 1 1 2 2 2 2 3 3 3 3
enetk Enoadlng 0 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11

Parent1 00 00 00 O0 0 0 ,11 O0101 I 0 10 10 10 111 11 11
Parent2 00 00 00 0001 01 0101 1 0 10 1012 10 11 11 11 11

Offspring 1 00 0 00 0001 01 01 01 0 10 10 10 11 11 1111
Offspring 2 00 00 00 0001 01 010 0 10 10 10t I0 11 11 11 11

S3

1U

We Route 2 16 Rote 1

(a)

S"Is

Figure 13. The Figure illustrates the Mechanics of a Crossover Genetic Operator. The Routes Produced
By the XCHANGE Method is Shown in (a). The Two Ofspring Strings Are Shown Graphically in Figures
(b) and (c)
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2.3 Experimental Results

To evaluate solution quality, the problems were solved with five different VRP solvers as well as
XVRP. For each problem, each of the 5 methods that were used in the work described were available and
run in contrast with the new genetic algorithm method (XVRP). The five alternative algorithms are:

" Clarke-Wright, a venerable heuristic algorithm capable of producing fast solutions to large scale
problems with multiple vehicles and an objective of minimizing total distance (Clarke & Wright,
1964)

" FISHER1, a heuristic for the multiple vehicle problem that uses a generalized assignment model
and produces high-quality solutions to small and medium size problems (Fisher & Jaikumar,
1981)

" FISHER2, a heuristic for the multiple vehicle problem that uses a generalized assignment model
and uses a different seed setting strategy (Nelson, 1983)

" NYGARD-WALKER, a heuristic that uses space-filling curves and Lagrangian relaxation to obtain
solutions to very large-scale multiple vehicle problems (Nygard & Walker, 1988).

" LFMO, a vehicle routing solver based on Spanning Trees and Branch Exchanges (Hongjun Liu, 0
1989).

o FAA1 A FAA2
* FGAA C3 COMBO •
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COMBO Vs other Methods

Figure 14. Comparison of performance of FAA, FAA2, FGAA and COMBO methods for a single
problem. The best solution in 1000 trials is plotted.
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To evaluate the effectiveness of the XVRP system, a random problem generator was used
* (Nelson, 1983). The test problems are fully dense with 100, 200, and 1000 stop points, use vehicles with a

utilization factor of 95%, and are generated in a square, 1023 miles on each side. Performance is based on
the final quality of the total distance traveled by all the vehicles. All experiments were performed using a
modified GENESIS (Grefenstette, 1984) system. A mutation rate of .001 was set. This means that each bit
in the representation of ech population member is changed (from 0 to 1 or vice versa) with a probability
of .001. The experiments were set for 1000 trials of solutions. In all cases, a selection/insertion heuristic

* called CCAO [Golden and Stewart 19851, was used to calculate the traveling salesman tours. The best
solution found in 1000 trials was retained. A considerable number of experiments were run on a network
of SUN 3 workstations. The results demonstrate considerable improvement in the GA search by using
multiple sharing evaluation functions. When this method is used, relatively powerful genetic search can
be conducted for parameter discovery in an environment of networked desktop workstations.

* 2.3.1 Performance With Multiple Sharing Evaluation Functions Using COMBO Method.

In order to show the performance improvements of the COMBO method, each of the 25
problems were run for 2000 trials using the FAA1, FAA2 and FGAA methods. All the GA parameters
were kept constant throughout the experiments. The test problems were fully dense with 200 stop points,
4 vehicles with a utilization factor of 95%. The performance improvement of the GA by using multiple
sharing evaluation functions (COMBO method) for a single problem is illustrated in Figure 14. Note the
three

o FAA 1 A FAA2
.FGAA oCOMBO
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COMBO Vs other Methods

Figure 15: Multiple evaluation functions results. The COMBO method consistently performs better than
that achieved using any single evaluation function
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Figure 16: The best assignment achieved from the COMBO method is used as a initial starting point for
the genetic search. The performance curve of the XCHANGE method continues to drop through
subsequent trials.

individual methods do not improve the search after about 1000 trials, but the performance curve of the
COMBO method continues to drop through subsequent trials. This result is consistent over all 25
problems tested, and is indicated in Figure 15.

2.3.2 Performance Improvement With the Local Optimization Post Processor Using XCIIANGE Method

In order to show the performance improvements of the XCHANGE method, each of the 25 0
problems were run for 1000 trials using the genetic algorithm to improve the assignments. The test
problems were fully dense with 200 stop points, 4 vehicles with a utilization factor of 95%. All the GA
parameters, such as crossover rate, mutation rate, population size, and string length were kept constant
throughout the experiments. The performance improvement of the GA by using assignment evaluation
function for a single problem is illustrated in Figure 16.

Note the XCHANGE method is a post-processor module. The best assignment achieved from the
COMBO method is used as an initial starting point for the genetic search. The performance curve of the
XCHANGE method continues to drop through subsequent trials. This result is consistent over most of
the other 25 problems tested, and is indicated in Figure 17. A summary of the computational results is
shown in Table 5. It illustrates the performance measure of the various models used for benchmark
testing of the XVRP system. The values shown in the table are the total miles traveled using four
vehicles. Further, as shown, each model behaves differently with each data set, and XVRP performs
better in each case. This is due to the adaptive capability of XVRP.
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Table 5: The Table illustrates the performance measure of the various models used for benchmark testing
of the XVRP-GA system. The values shown in the table are the total miles traveled using four vehicles.
The performance improvement of the GA by using multiple sharing evaluation functions (COMBO
method) is illustrated. The XVRP-GA system did perform better than all the other Algorithms. The
values shown are the actual performance of the different algorithms in miles.

200 Node a 4 Vehicle - 95% Utilization
PROBLEMS CIRIC FISH1 FISH2 NYWK LFMO FAA1 FAA2 FGAA COMBO XCHANGE

pl.1  11501 10887 11123 11025 11340 10755 10823 10656 10670 10600
p1 .2  11522 11251 10943 11418 11003 10532 10273 10230 10215 10163
p1 .3  11345 10521 10567 11150 10834 10484 10611 10732 10252 10248
p1 .4  11174 10976 10948 12046 10636 10423 10182 10461 10212 10129
p1.5 10950 11307 10863 10552 10657 10726 10233 10553 10145 10021
p1 .6  11807 11306 12357 10756 11285 11247 10931 11121 10629 10629

* p1.7  10936 10792 10796 10643 10614 10447 10290 10731 10255 10245
p1.8 10556 10716 10758 10572 10356 10098 10108 10178 9994 9905
p1 .9  11542 10616 11234 11525 10825 10267 10301 10231 9904 9904
p1 .10  10003 10829 10879 10056 10532 9584 9472 9950 9472 9472
p1 .11  11023 10621 11014 10845 10509 10350 10176 10489 10130 10125
pl.12  11501 10841 10827 12053 10602 10513 10440 10670 10354 10313

* pl.13  11883 11211 11253 11028 11127 10697 10518 10916 10498 10498
p1 .14  11254 10961 11113 11763 11425 10501 10558 11047 10521 10519
p1.15  11187 10441 10567 10982 10950 10572 10175 10860 10100 10100
p1.16 11058 11363 11363 11187 11370 10810 10596 10902 10884 10790
p1.17 11665 11250 11250 10968 10934 10520 10375 10870 10261 10200
pl.18  11114 10189 10190 10481 10778 9986 9900 9810 9549 9475
p1.19  11448 10643 11002 10360 10649 10597 10129 10472 10207 10135
p1 .20  12538 10885 11063 11846 11686 10715 10660 10784 10755 10755
pl.2 1  11883 10938 11124 11060 10468 10408 10539 10225 10225 10225
pl.22 10963 10586 10494 10174 10174 9900 9713 9713 9765 9765
pl.23 11212 10638 10776 11237 10632 10742 10599 10619 10558 10558
pl.24 11778 10967 11216 11412 11481 10952 10818 10875 10491 10491

_ pl.25  11570 10636 10595 11186 10766 10535 10440 10585 10355 10355
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Figure 17: The performance curve of the XCHANGE method is seen to improve. This result is consistent
over most of the other 25 problems tested.
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The XCHANGE method was also run on the solutions produced by the five routing algorithms.
The results are shown in Table 6. The assignment achieved from the various algorithms is used as an
initial starting point for the genetic search. In most cases the XCHANGE post-processor improved the
routes by up to 9%.

Table 6: The values shown are the actual performance of the different algorithms in miles. In most cases
XCHANGE produced the better solution than the ones produced by the various algorithms. In each case
the XCHANGE method started with routes (clusters) produced by the various algorithms. The exchange
values for each problem are derived by injecting the initial population with routps generated by each
solver. The BEST column indicates the performances improvements of XCHANGE when 'he initial
population is injected with the routes (clusters) of all five solvers.

PRBM CLRK FISH1 FISH2 NYWK LFMO BEST
p1.1  8897 8590 8742 8668 8955

xchnge 8831 8589 8742 8610 8706 8589
p1.2 8985 8824 8579 8938 8479

xchnge 8325 8824 8579 8780 8329 8325
p1.3 8897 8680 8609 8872 8593

xchnge 8548 8664 8593 8825 8593 8417
p1 .4  8826 8648 8663 9645 8392

xchnge 8348 8648 8663 9188 8392 8250
p1 .5  8739 8849 8491 8605 8373
xchnge 8503 8848 8473 8198 8148 8148
p1.6  9249 8800 9643 8510 8897

xchnge 8915 8799 9643 8510 8788 8510
p1.7  8639 8714 8624 8574 8391

xchnge 8115 8658 8568 8443 8391 8115
p1.8  8363 8251 8243 8467 8034

xchnge 8272 8250 8242 8467 7900 7796
p1.9  8937 8281 8730 9038 8574

xchnge 8481 8280 8730 9038 8401 8071
p1.10 7941 8676 8564 7987 8290

xchnge 7935 8675 8522 7885 8290 7801

2.3.3 Statistical Comparison of Routing Algorithms

The results shown in Table 7 is used to illustrate statistical techniques in choosing alternative 0
heuristic algorithms (Golden B.L., Stewart, W.R., 1985) (Yang, 1990). In order to verify if solutions from
the various heuristics solutions values are normally distributed, we computed the Kolmogorov-Smirnov
statistics. The Kolmogorov-Snmrnov method is used to test whether the distribution function is a normal
distribution when the sample size is between 20 and 30. We use the XCHANGE, COMBO, FAA2 and
FGAA methods for comparison. Since the Kolmogorov-Smirnov method indicates that the distribution of
the data is not normal, the Friedman Test is used. S

The Friedman test is used to compare three or more different heuristic algorithms at a time if the
hypothesis that the data comes from a normal population is rejected. The Friedman test is a
nonparametric counterpart of the parametric two-way analysis of variance (ANOVA) test and is used to
test whether three or more different heuristic algorithms mean costs are equal. The test may also be used
if only random data are available. The data are set in a randomized block design with n problems each •
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containing k algorithms. The measurements are ranked in each problemt over the algorithm. When this
has been done for each p-oblem, the ranks are summed for each algorithm. In the case of ties, average
ranks are used. The null hypothesis is that all the algorithms (three or more) have equal mean costs and
the alternative hypothesis is that all the algorithms (three or more) do not have equal mean costs. Using
the multiple comparison test, if the rank sums of any two algorithms are greater than 12.06 units apart,
they may be regarded as unequal. Therefore, it can bt- concluded that the XCHANGE algorithm may be
regarded as superior to the COMBO algorithm and the COMBO algorithm may be regarded as superior
to the FAA2 algorithm and the FAA2 algorithm may be regarded as superior to the FGAA algorithm. In
order to compare three or more heuristic algorithms, the expected utility approach was selected. The
following table (Table 7) illustrates the fact that the XCHANGE algorithm appears to be the most accurate
of the all heuristic algorithms.

Table 7: Comparison of the Accuracy of Three Heuristics Using Expected Utility

Sample Standard Expected
Algorithm Name Mean Deviation b value c value
XCHANGE 10.23 0.34 0.01 898.62
COMBO 10.26 0.34 0.01 920.26
FAA2 10.35 0.33 0.01 960.04
FGAA 10.55 0.37 0.01 827.17

Note:
b value = sample variance / sample mean.
c value = sample mean / b value.
A utility function where alpha = 600, beta = 100, and t = 0.05 was selected.

2.3.4 Computational Testing of the XVRP System

To illustrate the low memory requirements of XVRP for large routing problems, st problems
were generated with 1000 stop points and 4 vehicles were used with a utilization factor of 90%. The
genetic algorithm requires little memory and can achieve good solutions withii, seconds, but can require
substantial computer time (perhaps several hours) to achieve top quality solutions. However, the genetic
algorithm lends itself naturally to asynchronous parallelization on a network of workstations (Kadaba,
N., Nygard, K 1990) (Kadaba, et al. 1990).

Table 8 shows the memory requirements for Clarke-Wright model and the XVRP system solving
a 1000 node problem. The statistics were gathered separately on a SUN 3/260 with 8 Meg RAM and a
(SUN 4) Solbourne 5/802 with 48 Meg of RAM, 4 Gigabytes of disk, 2 SPARC CPU's at 33 M! z for a total
MIPS of 37 and total MFLOPS of 7. Table 9 displays information about Clarke-Wright and XVRP running
under a UNIX operating system. Table 8 compares the memory requirements of Clarke-Wright and
XVRP. The table displays the process ID under PID and the control terminal identifier under TTI. The
combined size of the data and stack segments (in kilobyte units) is shown under SIZE. The real memory
(resident set) size of the process is shown under RSS. %CPU and %MEM display the perc.nt CPU
utilization and percent of real memory used by the two processes at that particular instant.

The total memory requirements for the Clarke-Wright prrcess is around 6 Meg, whereas it is I
Meg for the XVRP process. Note, the Clarke-Wrigi~t process is getting a very small usage of the CPU on
the SUN 3/260. This is due to the fact that the Clarke-Wright process is spending all the time in disk I/O
for swapping the huge virtual memory. The low memory requirements and relative speed of XVRP sets
the stage for networks of microcomputers to be brought to use on very large routing and scheduling
problems. The good performance XVRP method is consistent over most of the other 10 problems tested,
and is indicated in Table 6.
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Table 8: The Table shows the I' lemory Requirements for Clarke-Wright model and the XVRP-GAs system
solving a 16,0 node problem. The statistics were gathered separately on a SUN 3/260 and a Dual SPARC
CPU SUN 4. The description of the Table headings is explained in the paper.

SUN 3-260 with 8 Meg Ram

PID T SIZE RSS %CPU %MEM COMMAND

14809 p0 5960 3792 0.8 52.1 Clarke-Wright
14899 p0 1158 980 46.4 5.3 xvrp-ga

SLN 4 (Sollourne) ,,'ith 48 Meg Ram and Dual SPARC CU

PID TT SIZE RSS %CPU %MEM COMIAND CPU
24536 pb 5936 5128 51.6 13.9 Clarke-Wright CPU 1
10100 pe 1160 992 80.2 2.7 xvrp-ga CPU 2

Table 9: The Table illustrates the performance measure of the Clarke-Wright model used for benchmark
testing of the XVRP-GA system. The va.,es shown in the Table are the total miles traveled using four
vehicles. The good performance XVRP-GA method is consistent over most of the 10 problems tested, and
is indicated in Table. The values shown are the actual performance of the different algorithms in miles.

1000 Node Problems

PRB CLRK TIME XVRP-GA TIME % iMPROVE

p1.1  27544 8220 24449 5037 11.9
pl.2  27386 5700 24808 8146 9.9
p13 26968 4800 24692 2383 8.8
pl.4  26785 5400 24628 1377 8.4
pl.5  26506 6720 24461 1368 8.0
pl.6  26974 6720 24716 1419 8.7
p1.7  27083 4620 24747 1854 9.0
p1.8  26935 4560 25061 1389 7.2 •
p1.9  27505 4680 25159 2192 8.9
p1.10  27003 4440 24592 2177 9.3

To evaluate solhtion quality and flexibility of the XVRP system, 15 problems were solved with
each of five different VRP solvers as well as XVRP. The test problems are fully dense with 100 stop S
points, have vehicles with a utilization factor of 95 %, and are generated in a square, 1023 miles on each
side. The problems were solved for 2,4 and 8 vehicles which were utilized up to 95% of its maximum
capacity and the results for 4 vehicles are shown in Table 10. Examination of Table 10 shows that in all
cases XVRP produces the best solution. Percentage improvement over the best of the other algorithms
ranged as high as 11.3 percent. Note that the few problems where XVRP did not perform better were
because the test was terminated after 1000 trials eich time. 0
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Table 10: The values shown are the actual performance of the different algorithms in miles. In all cases
but one XVRP-GA produced the best solution. The % of MIN column indicates how XVRPGA performed
:n comparison with the minimum of the four alternate algorithms. The % of MAX column indicates the
how XVRP-GA performed in comparison to the maximum of the four alternate algorithms. The values
shown in the table are the total miles traveled using 4 vehicles.

200 Node - 4 Vehicle - 95% Utilization

PRBM CLRK FISH1 FISH2 NYWK XVRP-GA %MAX % Min
P1 .1  15164 14526 14526 14715 13956 7.966 3.924
pl.2  16047 15137 15137 15041 14625 8.861 2.766
pl.3  15207 14345 14339 14392 14068 7.490 1.890
pl.4  15879 15038 15038 15097 14788 6.871 1.662
p15 15612 14648 14648 15057 14564 6.713 0.573
pl.6  15851 14462 14636 14318 13796 12.964 3.646
pl.7  15415 14525 14587 15312 14369 6.786 1.074
p1 .8  15544 14849 14849 14977 14484 6.819 2.458
p1 .10  15792 15615 15615 15420 13482 12.727 5.210
p1 .11  15585 14556 14556 14599 14157 9.163 2.741
p1 .12  15647 15226 15226 15289 14762 5.656 3.047
p1 .13  15757 15012 15012 14716 14591 7.400 0.849
p1 .14  14357 13861 13871 14438 13653 5.437 1.501
p1 .15  15507 14877 14877 14456 14201 8.422 1.764
p1.16  15349 15322 15322 15011 14635 4.652 2.505
p1 .17  15555 15298 15298 15205 14558 6.410 4.255
p1.18  15586 14611 14611 14373 14190 8.957 1.273
p1 .19  15936 14873 14919 15171 14547 8.716 2.192
pl.20  14914 14101 14261 14505 13583 8.925 3.673
pl.2 1  14856 14512 14512 14462 14098 5.102 2.517
pl.22  16468 15419 15419 15346 14929 9.345 2.717
pl.23  15544 14849 14849 14977 14509 6.659 2.290
pl.24  15280 14512 14512 14184 14015 8.279 1.191
pl.25 15442 14423 14423 14431 14032 9.131 2.711

Further, as shown in Figure 18, each model behaves differently with each data set, and XVRP
performs better in each case. This is due to the adaptive capability of XVRP. Table 11 contains
descriptive statistics derived from the values shown in Figure 18. The XVRP system has the lowest
average miles traveled for all the 25 problem sets, as indicated by the first row in Table 11. The relatively
small standard deviation indicates that the solutions obtained through XVRP are consistent and reliable.

2.4 Conclusions Regarding Genetic Algorithm Routing Techniques

In the vehicle routing problem (VRP), many heuristic algorithms have been developed over the
last 25 years. From a purely mathematical standpoint, known methods for finding optimal solutions to
most practical routing and scheduling problems require massive computation time even on
supercomputers. The studies reported here on adaptively controlling model parameters suggest that
there is considerable potential for significantly improving many heuristic algorithms with intelligent
shells based on genetic algorithms.
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The results demonstrate considerable improvement in the GA search by using multiple
evaluation functions. The most original contribution concerns the use of multiple evaluation functions
for each population member, computing the fitness of each member to be the maximum returned by any
evaluation function. The GA searches many local peaks in parallel in the search space. This establishes a
new and promising connection between adaptive search and the relatively mature theory of multi-criteria
optimization.

Table 11: The Table contains descriptive statistics of the performance of XVRP-GA.

CLRK FISHER1 FISHER2 NYWK XVRP-GA
Mean 15509 14752 14770 14790 14296
Std. Dev. 420 434 420 391 406
Variance 176903 188602 176690 153396 165063

o CLRK . FISH1
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Figure 1& Each model behaves differently with each data set, and XVRP performs better in each case. 9

Most investigations into parameter setting within models have been empirical studies
that result in static choices for the parameters. The studies reported here on adaptively controlling model
parameters suggests that there is considerable potential for significantly improving many heuristic
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algorithms with intelligent shells based on genetic algorithms. The results are very striking, especially
since the five alternative algorithms represent the state-of-the-art from many years of research by
Operations Researchers. It is important to note that the method succeeds because it is adaptive. As the
generations are simulated, promising geographical patterns survive to subsequent generations,
ultimately producing superior parameters for the generalized as ,ig_.Cnt model. Thus, the overall
method finds initial model parameters that are promising, and refines them further even as the overall
procedure is running. Finally, since genetic algorithms use solution quality to govern the selection
process, the method is ideal for addressing problems in which there are non-standard objectives or
several objectives. The uniform superiority of the solutions when compared with the best known
mathematical algorithms working alone is most encouraging, and suggest that this type of system can be
effectively used as an intelligent shell in any system for which intelligent setting of parameters has
potential for significantly improving model performance.

3.0 Set Partitioning Methodology Applied to the Air Force LOGAIR System

Our investigation pursued possibilities of achieving better route solutions in NP hard routing
and scheduling problems using genetic algorithms and found an algorithm that was better than the best
of the set of state-of-the-art algorithms developed over the last 25 years. In addition to the genetic
algorithm approaches previously described, we also developed a unique set partitioning algorithm which
derived excellent solutions to NP hard routing and scheduling problems. The general set partitioning
problem can be stated as the following zero-one integer program:

Minimize cx subject to Ex = e and xj =0 or 1 (j = 1,..,n), where E = (eij) is an m by n matrix
whose entries eij are 0 or 1, c = (cj) (j = 1,...,n) is a cost row with positive components, x =
(xj) (j = 1,...,n) is a vector of zero-one variables, and e is an m vector of l's.

If the Ex = e constraints are replaced by Ex >= c then the above formulation is referred to as a set covering
problem. These formulations have been applied to many different problems, including vehicle routing
and scheduling. We now show how a set partitioning formulation can be used to aid in the annual
design of LOGAIR route structures.

3.1 A Set Partitioning Approach For LOGAIR

In The LOGAIR problem, there are 6 ALCs and 48 other airforce bases. Any routes that are flown
between the ALCs are referred to as "trunk" routes and the remaining routes are referred to as "feeder"
routes. As in the genetic search, preliminary solutions to the routing problem will be obtained in two
phases. There will also be a third phase in which the preliminary solutions are refined and scheduling
aspects worked out through user interaction. In the first phase, candidate feeder routes are generated
and represented as columns in the E matrix of a set partitioning formulation. As a result of solving this
set partitioning problem, a subset of the candidate routes is scheduled such that all bases belong to a
feeder route and the total mileage is a minimum. Likewise, in the second phase, candidate trunk routes
are generated and a second set partitioning problem is solved to give a trunk route structure with
minimal total distance.

The following assumptions are made in the model:

1. Each of the 48 service bases and aerial ports of embarkation belong
t' only one feeder route. None of the bases are served by multiple routes

2. Each depot or ALC originates zero or more feeder routes.
3. Each aircraft has a home base which it must return to in one flight day.
4. All feeder routes provide service 6 days per week (Mon-Sat).
5. On any given route, pickups and deliveries are mixed.
6. There is no fixed limit on the number of aircraft available.
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The input to the system is as follows:

1. A forecast matrix which gives the yearly weight of cargo that must be moved between each 0
pair of bases.

2. The speed and capacity of each type of aircraft.
3. A distance matrix which gives the flight distance between each pair of bases.

3.2 The Feeder Routing Proceedure

In the feeder route phase, a number of candidate feeder routes are generated. This leads to the
following set partitioning formulation of the problem:

Mn Z = SUM (c)(xj) j=

such that

SUM(eij)(xj) = for i = 1,...,m j=1

xj=0orl.

0
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Figure 19. Map illustrang Constrits Applied to Bases Being Selected for Route From A Specific
Depot. SUJU, Is Obviously a Bad Solution For a Route Out Of TIK
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In this formulation, n is the number of candidate feeder routes, m is the number of feeder bases,
cj is the cost in mileage of candidate route j, and the value of variable xj is 1 or 0 depending on whether
candidate route j is selected or not. Each of the candidate routes is represented as a column Ej. The ith
element of Ej is one if base i is served by route j and zero otherwise. The set partitioning problem
becomes intractable if the number of columns is too large. Therefore, some hueristics are needed for
restricting the number of candidate feeder routes. Three restrictions are imposed on the candidate feeder
routes. The first restriction is to assign a subset of the feeder bases to each depot or ALC. Any
subsequent feeder route which originates from this depot can contain only bases from this set. A feeder
base may belong to more than one set. Distance from the depot or ALC is the main criterion for
determining set membership. In this way, the number of candidate routes is reduced to a manageable
size by eliminating large numbers of obviously poor solutions. An example of this concept is illustrated
in Figure 19. Secondly, the number of possible candidate feeder routes is further restricted by setting an
upper limit on route distance. Finally, candidate routes which violate user defined limits on ?!rcraft
utilization are excluded.

Every time an aircraft flys a route, there is a point along the route in which its load reaches a
maximum. If the aircraft is to exclusively deliver cargo, this maximum occurs at the beginning of the
route. If the aircraft is to exclusively pickup cargo, this maximum occurs at the end of the route. If, as we
assume, the aircraft makes mixed pickups and deliveries, this maximum could occur at any point in the
route. Thus, given the forecasted shipping demands, an expected maximum load can be calculated for
every prospective route. It is an "expected" value since it is calculated based on daily averages derived
from forecasted cargo movements for the year. In order to maximize aircraft utility, the maximum
expected load should be close to the capacity of an available aircraft. The LOGAIR personnel decide how
close this should be by providing upper and lower tolerance levels on how much expected maximum
load may deviate from capacity. These tolerance levels are provided for each type of aircraft. They
provide a range of compatibility between routes and aircraft types. If the expected maximum load of a
potential route does not fall within the acceptable range of any available aircraft type, the route is
rejected. If it falls in the acceptable range of more than one aircraft, the user makes a choice of which
aircraft to assign before beginning the trunk route phase. Thus, in order to determine if a candidate route
is acceptable, this expected maximum load must be calculated. We introduce some notation that is used
in calculating the expected maximum load for a particular route. Let CARGO be a matrix such that
CARGO(i,j) denotes the expected daily demand, in pounds, for cargo to be moved from base i to base j.
Let B denote the set of all bases, including the ALCs. For a particular feeder route, let R denote the
sequence of bases, other than the depot, that belong to this route. Let r belong to R. Let the set P(R,r)
denote (s element of R: s precedes r in route R}. The load on the aircraft when it initially takes off from
the ALC to any feeder route R can be calculated as follows:

L(R) = SUMMATION CARGO(i,j) + SUMMATION CARGO(i,j)
i element of B - R i element of R
j element of R j element of P(R,i)

The first summation term is the total amount of cargo that is to be moved from bases not on the
route to bases on the route. AU of this cargo is first collected at the depot and then distributed on the next
feeder flight. The second summation term is due to the orientation or sequencing of the route and the fact
that pickups and deliveries are mixed. If cargo from one base is destined for a base which is visited
earlier on the route, it must be routed through the depot for the next flight The expected load when the
aircraft leaves the depot on feeder route R is then L(R). The expected load when the aircraft leaves base i
on route R is then given by

L(R,i) = L(R) + SUMMATION (S(k) - D(k)) k element of P(R,i) U {i)

where
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S(i) SUMMATION CARGO(ik) (Daily amount of cargo supplied by base i) k element of B

D(i) = SUMMATION CARGO(k,i) (Daily amount of cargo demanded by base i) k element of B

Thus, t'he aircraft starts out at the depot with expected load L(R). At each base along the way, the load is
decremented and incremented by the demand and supply respectively of that particular base. The
maximum expected load for a given feeder route R is then given by

MAXL(R) = MAXIMUM (MAXIMUM L(R,i), L(R)) i element of R.

Figure 20 illustrates the procedure for calculating the maximum expected load.

S(i) = supply of cargo at base i
D(i) = demand for cargo at base i

B = index set of all bases
EXPECTED LOADS R = feeder route sequence (21,22,23,24)

CARGO(ij) = requirement for cargo moved from i to j
H (24) SAW (23)

DL (2) O*O(R)r CARGO(ij)
I£ B-R

OSC (22) JER

+ CARGO(22,21)
+ CARGO(23)21) + CARGO(23,2)

MTC (21) + CARGO(24.2 1) + CARGO(24-2) + CARGO(24.23)
= 23,273 lbs

L(R,21) = L(R) + S(21) - D(21) = 19,072 lbs
L(R,22) = L(R,21) + S(22) - 0(22) = 12=233 lbs

FFo L(R.23) = L(R,22) + S(23) - 0(23) = 7,779 lbs
L(R,24) = L(R,23) + S(24) - 0(24) = 6,333 lbs

Figure 20. Diagram Illustrates How Expected Load Varies Over a Route

All possible candidate feeder routes that satisfy the 3 restrictions mentioned above are
enumerated. Each column contains only information on bases that belong to a feeder route and not the
sequencing of bases. Therefore, if there is more than one acceptable route serving exactly the same set of
bases, then the route with the least total mileage is chosen for inclusion in the set partitioning model. The
mileage cost for each of these routes can be calculated from the distance matrix. The resulting set
partitioning problem is solved, yielding a set of feeder routes in which total distance is minimized.

3-3 The Trunk Routing Procedure

The trunk routes are the main arteries of cargo flow in the LOGAIR network. While feeder routes
serve to collect and distribute cargo among bases local to a particular ALC, trunk routes serve to
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transport cargo between ALCs at a national Level. The trunk route phase consists of three steps. The first
step consists of obtaining a high quality trunk network. After this step is complete, only the arc capacities
of the trunk network are known. No actual routes have been formed. The second step consists of
generating candidate routes from the given arcs in the trunk network. The third step consists of solving a
set partitioning problem to select the final trunk routes from the set of candidate trunk routes.

The first stop is currently a manual process but could be automated in the future, possibly using
a genetic algorithm. Each trunk arc in the network is assigned a capacity which is a linear combination of
the capacities of the available aircraft. This is because the arcs have to be broken down into actual flight
legs of various trunk routes in the second phase. The arcs forming the feeder routes, whose capacities
have previously been determined, together with the candidate trunk arcs, form a network for the MCTP.
In the manual process, the user can obtain a high quality trunk network by repeatedly evaluating and
modifying a candidate network. The MCTP returns information on arc flows that can be used to find arcs
in which an increase or decrease in capacity would be beneficial. If an arc is found to be restricting cargo
flow because of inadequate capacity, the capacity may be increased. If the capacity of an arc is not being
used efficiently, the capacity may be decreased. The user experiments with various trunk networks until
he is satisfied with the amount of cargo moved and the total distance traveled.

In the second step, candidate trunk routes are generated from the set of arcs in the previously
determined trunk network. In this process, each trunk arc is actually viewed as a set of flight legs, each
with a capacity corresponding to an available aircraft type. The sum of the capacities of the flight legs is
crucial to the capacity of the arc. The trunk routes are formed by constructing feasible sequences of flight
legs. Each route generated will produce a column in the set partitioning problem that is to be solved in
the third step. Again, to limit the number of columns generated, three restrictions are enforced. The first
restriction is that routes which contain more than one flight leg have to begin and end at the same ALC.
In routes consisting of just one flight leg, it is assumed that the aircraft carries cargo in the direction of the
flight leg and immediately flys back empty. The second restriction is that all the flight legs which make
up the route must have the same capacity. Finally, a limit is placed on route distance. All routes that
satisfy these restrictions are incorporated into the set partitioning formulation. The cost associated with
each route is the amount of time by which the flight time deviates from a target flight time set for trunk
routes. Since the speed, determined by aircraft type, and distance are known for each route, the time
required to fly the route can be calculated.

The final step is to solve the set partitioning problem to obtain the final set of trunk routes. The

set partitioning formulation is as follows:

Min Z = SUM (cj)(xj) j=1

such that

SUM(eij)(xj) = 1 for i = 1,...,m j=1

xj =0 or 1.

In this formulation, n is the number of candidate trunk routes, m is the number of flight legs, cj is
the cost of candidate route j as described above, and the value of variable xj is 1 or 0 depending on
whether candidate route j is selected or not. Each of the candidate routes is represented as a column Ej.
The ith element of Ej is 1 if flight leg i is in route j and 0 otherwise. The solution to this problem is a set of
trunk routes such that each flight leg belongs to exactly one trunk route and the length of each route is
close to the desired target value.
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4.0 Graphical User Interface for LOGAIR Routing and Scheduling Package Mer-i Functions and
Descriptions

A graphical user interface has been designed to provide an environment which enhances the
users ability to construct good routing solutions. It is a fully menu driven system. All menu options are
selected by using a mouse to point to the desired selection. It has many features which simplify the
activities involved in the route development process. We now describe these features in a format which
reflects the hierarchical structure of the menu system. The menu titles are listed along with a functional
description of each. There are seven main menu selections, each of which is broken down into submenus
as follows:

MAIN MENU

1) BASE
2) STRUCTURE
3) MODIFY
4) VIEW
5) OPTION
6) PROCEDURE
7) QUIT

SUBMENUS

1) LOGAIR Base Graphics

1.1 Add a New Base
1.2 Remove an Old Base 0
1.3 Modify Tonnage Matrix
1.4 Modify Aircraft Characteristics

2) Route Structure Manipulation

2.1 View Load Solutions
2.2 Save Route Solution
2.3 Delete Unwanted Route Solutions
2.4 Enlarge Display
2.5 Report Generation
2.6 Print Reports

3) Modify Route Structure

3.1 Load Existing Route
3.2 New Route Generation
3.3 Link New Route With Existing Structure
3.4 Remove Existing Route Segment

4) View Route Route Segment

4.1 Route Color Assignment
4.2 Aircraft Icon Assignment
4.3 Ratio of Planned Leg Cargo Loading of Aircraft as a

Function of Total Carrying Capacity
4.4 Animation of Route Structure Cargo Handling

Capabilities
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5) User Customization Features

5.1 Background Color Selection
5.2 USA Map Color Selection
5.3 Display Base Name Switch
5.4 Select Trunk Route Color
5.5 Trunk Route Line Width Selection
5.6 Feeder Route Color Selection
5.7 Feeder Route Line Width Selection

6) Selection of Active Route Optimization Method

6.1 Genetic Algorithms
6.2 User Selection of Set Partitioning Algorithm

6.2.1 User Specified Route Constraints
6.2.2 Run Set Partitioning Problem
6.2.3 Final Feeder Route Structure
6.2.4 Trunk Route Intermediate Solution Display
6.2.5 Detailed Feeder Route Load and Stop

Information
6.2.6 Cargo Movement Between ALCs
6.2.7 Aircraft Selection For Route Segment

The next sections provide brief descriptions of the different functions of the graphical user

interaface.

4.1 LOGAIR Base Graphics

The selections under this main option provide the capability to add, delete and update all the
information which is relavent to the LOGAIR routing problem. (Note: Not yet completed at this time).

4.1.1 Add a New Base

This selection permits the user to add a new base to the system. This is accomplished by moving
the mouse to the desired location and adding the base. The system then prompts the user for the
required information for the new base.

4.1.2 Remove an Old Base

This selection permits the user to remove an existing base from the system. The desired base is
located with the mouse and subsequently deleted.

4.1.3 Modify Tonnage Matrix

This selection permits the user to modify the tonnage or demand matrix to reflect changes in
shipping requirements.

4.1.4 Modify Aircraft Characteristics

This selection permits the user to maintain information on available aircraft types and their
characteristics. Aircraft types may be added or deleted as well as updating information on existing
aircraft types. Aircraft type attributes include capacity, speed, fuel-bum rate, etc.
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4.2 Route Structure Manipulation

The selections under this main option provide the capability to store, retrieve and compare
various routing solutions.

4.2.1 View Load Solutions

This selection permits the user to view up to 3 solution structures simultaneously. This feature
enables the user to compare and contrast alternative solutions in an efficient manner. The screen is
divided into 4 equal portions, 3 for the actual graphic displays of solutions and I for the list of solutions
which are available for viewing.

4.2.2 Save Route Solution

This selection permits the user to save various routing solutions. Any solution generated on the
system may be saved, irreguardless of the method in which it was obtained. The method may be an
algorithm supported by the system, or the manual construction or modification of a routing solution. The
routing solution is displayed before being stored in the system.

4.2.3 Delete Unwanted Route Solutions

This selection permits the user to delete any existing routing solution.

4.2.4 Enlarge Display

This selection permits the user to enlarge the display of any solution that is currently displayed.
The available scaling factors are 125, 150,175 or 200 percent.

4.2.5 Report Generation

This selection provides the user with detailed information for each route of a particular solution.
This information includes the sequence of bases on each route, the expected load at each base, the 0
remaining available space, total mileage and times of arrival and departure.

4.2.6 Print Reports

This selection permits the user to obtain printed reports and maps for a particular routing
solution. (Note: Not yet completed at this time).

4.3 Modify Route Structure

The selections under this main option provide the capability to modify existing solutions or
create new ones.

0
4.3.1 Load Existing Route

This selection permits the user to load an existing solution that he or she wishes to modify. The
user is presented with a list of all stored solutions from which to choose.

4.3.2 New Route Generation

This selection permits the user to create a route structure solution from scratch. The user is
prompted for a name under which the constructed solution will be stored.
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4.3.3 Link New Route With Existing Structure

This selection permits the user to add links or flight legs to a route by using the mouse to point to
the starting base and ending base for each new link.

4.3.4 Remove Existing Route Segment

This selection permits the user to remove links or flight legs from a route. The mouse is used to
point to the link that is to be removed or disconnected.

4.4 View Route Segment

The selections under this main option provide the capability to graphically highlight various
aspects of a particular routing solution. This is zccomplished by using a color coding scheme to illustrate
the particular aspect of the routing solution that is currently of interest. An example of this concept is
shown in Figure 21.

<< UNITED STATES AIR FORCE LOGISTIC AIRLIFT >>

Ba e fStiucturel Modifjg Uiew option My - -e QuitIz

Route F FEEDER

Generat ion 0
Chronosoie 0 jen 12

Not noved 44344

Figure 21. Sample Screen OfRoute Modification Section From Graphical User Interface
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4.4.1 Route Color Assignment

This selection enables the user to easily distinguish between the individual routes flown by
displaying each route in a different color.

4.4.2 Aircraft Icon Assignment

This selection presents the user with a display which gives a good visualization of the types of
aircraft that are being used for each individual route. Each route is color coded according the aircraft
type which is used for that particular route.

4.4.3 Ratio of Planned Leg Cargo Loading of Aircraft as a Function of Total Carrying Capacity

This selection presents the user with a display in which he or she can visualize the changing
cargo load on the aircraft as it visits the bases along its route. This is accomplished by color coding the
individual flight legs of the routes in terms of the amount of cargo that is on board the aircraft for each
flight leg. Each different color represents a different load range. The different ranges occur in increments
of ten thousand pounds of load per day.

4.4.4 Animation of Route Structure Cargo Handling Capabilities

This selection presents the user with a simulation of aircraft movement. The user can step
through time in 30 minute intervals and see the location of each aircraft at each interval. This simulation
covers a 24 hour period.

4.5 User Customization Features

The selections under this main option provide the user with the capability of customizing various
display attributes to suit his or her taste.

4.5.1 Background Color Selection

This selection permits the user to select the color in which the background is displayed. One of
16 different colors may be selected.

4.5.2 USA Map Color Selection

This selection permits the user to select the color in which the USA map is displayed. One of 16
different colors may be selected.

4.5.3 Display Base Name Switch

This selection permits the user to specify if the bases are to be labled on the map display.

4.5.4 Select Trunk Route Color

This selection permits the user to select the color in which the trunk routes are to be displayed.
One of 16 different colors may be selected.

4.55 Trunk Route Line Width Selection 0

This selection permits the user to select the line width in which the trunk routes are to be
displayed. There are 2 choices for line width.
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4.5.6 Feeder Route Color Selection

This selection permits the user to select the color in which the feeder routes are to be displayed.
One of 16 different colors may be selected.

4.5.7 Feeder Route Line Width Selection

This selection permits the user to select the line width in which the feeder routes are to be
displayed. There are 2 choices for line width.

4.6 Selection of Active Route Optimization Method

The selections under this main option provide the user with algorithm support for creating
routing solutions. The types of algorithms used are genetic algorithms and set partitioning algorithms.

4.6.1 Genetic Algorithms

This selection permits the user to access the genetic algorithms that were developed for the
LOGAIR route design problem. (Note: This part is not yet user interactive).

4.6.2 User Selection of Set Partitioning Algorithm

This selection permits the user to access the set partitioning algorithms that were developed for

the LOGAIR route design problem.

4.6.2.1 User Specified Route Constrainis

This selection permits the user to specify various constraints that are to be imposed on the route
structures that are to be generated. These constraints include the available aircraft types, maximum
mileage for a single route, and restrictions on aircraft utilizati-n.

4.6.2.2 Run Set Partitioning Problem

This selection permits the user to vie' v intermediate results at various stages of the algorithm. At
each iteration, it shows a new set of feeder routes being added to the final solution.

4.6.2.3 Final Feeder Route Structure

This selection shows the final solution of feeder routes generated by the Set Partitioning
algorithm.

4.6.2.4 Trunk Route Intermediate Solution Display

This selection permits the user to view intermediate results at various stages of the algorithm. At
each iteration, an improved trunk route structure is displayed.

4.6.2.5 Detailed Feeder Route Load and Stop Information

This selection gives the user a detailed report on the feeder rouces of the final solution. The
information on each route includes the route sequence as well as the expected load at each base along the
route.
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4.6.2.6 Cargo Movement Between ALCs

This selection provides the user with information as to how much cargo must be moved between
each pair of ALCs. These required cargo movements are dependent on the previously determined feeder
route structure. This information may then be used to develop
the stnicture of the trunk routes.

4.6.2.7 Aircraft Selection for Route Segment

This selection provides the user with a list of aircraft that are compatible with each feeder route.

5.0 Future Research Directions

During Phase I, two primary methodologies specifically for LOGAIR route design were
developed, programmed and evaluated. The first is based on genetic search, and is inspired by the basic 0
research described above. The second utilizes a set partitioning method, an approach well-known to be
effective in highly constrained routing and scheduling problems. In addition, a graphical user interface
(GUI) specific to LOGAIR was prototyped and demonstrated to LOGAIR personnel.

During Phase II, Netrologic, with the participation of consultant Dr. Kendall E. Nygard at
NDSU, will extend both types of work explored and accomplished in Phase I. In particular, the multi-
paradigm approach will be extended to address three very difficult and important problems in vehicle
routing: The multi-depot problem, tl'e two-sided time window problem, and the dynamically changing
parameters routing problem. These complexities, despite many man-centuries of effort, are not fully
resolved to d ate. In addition, the Phase II effort will apply the methods to the LOGAIR problem, and
complete the software system for use by LOGAIR personnel in their route design process. We will
deliver reports, journal articles and presentations on all of the work and deliver User Manuals and 0
Programmer Reference Manuals for the completed LOGAIR software system. We have every expectation
that the Phase H effort will be highly significant in advancing the state-of-art in routing and scheduling,
and result in a software product that will provide a useful service to LOGAIR, and to extend the basic
understanding of optimal routing and scheduling.

The proposed Phase II project will be a significant advance in basic research concerning routing 0
and scheduling, and also be responsive to a clear need of the Air Force through LOGAIR route design.
There is potential for the results of this research to apply to many other military and commercial
transportation systems, including the operations of the Military Airlift Command.
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