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Introduction

AlInAs/GalnAs on InP HEMT technology is an extremely attractive means to realize high
speed integrated circuits. In fact, this technology has provided the fastest three-terminal
devices to date for room temperature operation with fT > 200 GHz and fmax > 300GHz [1].
AlInAs/GaInAs HEMTs offer distinct advantages over their AIGaAs/GaAs counterparts:
(1) The lower electron mass in GaInAs provides a mobility of about 11400 cm2/vs in
contrast to the value of 8000 cm 2/vs in GaAs. (2) The peak velocity also is about 1.2 times
higher than in GaAs. (3) The conduction band discontinuity in the AlnAs/GalnAs system
is 0.5 ev compared to 0.28 ev in the AlGaAs/GaAs system. This results in larger sheet
carrier density, better carrier confinement and also larger current density. (4) This system
also exhibits reduced DX centers and hence, is good for 77* k operation. (5) The low sheet
resistance of the system results in low thermal noise and large intervalley separation results
in small intervalley noise.

For the above reasons, AlInAs/GaInAs HEMTs have been investigated widely for low
noise, high speed operation. This system, however, has some limitations and efforts are
currently underway to overcome the limi'ations. For instance, the doped GanAs layer has
a very small Schottky barrier height. This can be disadvantageous in several ways: devices
become highly temperature sensitive, high gate leakage currents, poor pinch-off. To reduce
some of these effects, Schottky contacts are made on undoped (or non-intentionally doped)
AllnAs. This layer thickness can be optimized. In addition, the high background doping of
GalnAs is also not desirable. High output conductance, backgating, high gate leakage
current and low breakdown voltage are the current tech nical problems in this technology
[1]. Of these, the low break-down voltage is not a major issue for low noise applications.

As the technology and materials issues continue to progress, many of the above problems
can be addressed and AlInAs/GalnAs on InP technology is certainly the most viable
candidate for high speed circuits. With this in mind, Scientific Research Associates, Inc.
(SRA) proposed a SBIR program to both design and to fabricate AlInAs/GaInAs HEMTs.
The fabrication was undertaken by GE Syracuse under subcontract to SRA.

The goal of the SRA program was to demonstrate that the costs of fabricating low noise
transistors could be significantly reduced through the introduction of numerical simulations
during the early design stages. Accomplishing these goals requires several key tasks:

(1) implementation of a physics based simulation code to represent transport in the device;

(2) optimization studies based upon physics based simulations that incorporate variations in
device dimensions, doping, barrier heights, etc.;

(3) incorporation of circuit contributions;

(4) fabrication and testing;

(5) comparison with the simulations.

Success in the program, a combined Phase I and Phase II program, would be demonstrated
by the deliverable. The deliverable, transistors fabricated on the basis of the algorithm.
Additionally, to provide the design tool to the transistor community, SRA would include as

-I-



a deliverable, a user-friendly transportable algorithm for the design of low noise
transistors.

Phase III would involve the manufacturing of low noise transistors as well as the sale of the
numerical procedures developed under this study.

The Phase I study, which this document summarizes, was limited in its goals. The
objectives of the Phase I program were to demonstrate the feasibility of using simulation in
the design and optimization of AlInAs/GalnAs HEMTs. Specifically SRA was to perform
simulations of a preliminary device structure, supplied under subcontract by General
Electric, to obtain the I-V and small signal characteristics of the device. General Electric
was to provide experimenta!l reidts frr comparison. The ability to sinrulat,. "C 'aicc
performance would thus be established and the feasibility of the proposed development
program thus demonstrated.

The Phase I study involved implementing its nonequilibrium transport model to examine
AlInAs/GaInAs HEMTs, to compare the output of the results to data provided by GE
Syracuse, and to modify the input to the algorithm to achieve agreement with experiment.
Success in this study was achieved as judged by the degree to which the simulations
replicated experiment, both dc-wise and small signal-wise.

Analysis

The initial device design aspect of the Phase I program was based on the numerical
simulation of the device structure shown in Fig. 1. The details of the structure were
supplied by General Electric and were taken from the actual device tested under the
experimental portion of the program. The governing equations employed in the study are
the first three moments of the Boltzmann transport equation (MBTE) expressing
conservation of mass, momentum and energy. These are semiclassical equations, and have
not been modified to deal with tunneling aspects of the structure. The incorporation of the
quantum potential is one possible approach to treat tunneling. In the simulations transport
across regions incorporating heterostructures requires carriers of sufficient energy to be
thermionically transported over barriers.

The limitations imposed by use of transport equations that do not incorporate tunneling
was assessed through a program whose development has advanced sufficiently far to be
used in the present study. This program involved use of a quantum Liouville equation
algorithm for examining transport perpendicular to the conducting channel. Indeed this
study incorporates the first use of the Liouville equation in the study uo transport in
heterostructure FETs.

The implementation of the Liouville equation was undertaken to provide a foundation for
several assertions made during the course of the study. The Liouville equation algorithm is
not developed to the point where it can be used to study the full two dimensional transport
within the FET. For example, as revealed by the semi-classical equations, it was found that
when contacts were placed on heavily doped narrow band gap material, as indicated by the
GE structure, only thermionic carriers would be transported over he wide band gap
material into the quantum well. This led to numerically computed values of the source to
drain current that were significantly below the measured values. To ,Lal with these

-2-



differences two issues were raised: (1) will numerical simulations that included the
metalization of the region underneath the source and drain contacts permit sufficient
current to flow, if it assumed that the metalization does not destroy the heterostructure
interface; and (2) is the integrity of the heterostructure intact, even after metalization.
Clearly the former question can only be addressed quantum mechanically, while a negative
answer to the second would indicate that the heterostructure is irrelevant under the source
and drain regions.

The supplementary Liouville equations address the more complicated problem of transport
through the heavily doped alloyed region and determined that for sufficiently high doping
in the narrow and wide band gap materials the tunnel barrier is reduced in height and
becomes thin enough for a significant number of carriers to tunnel towards the quantum
well. Thus a sufficient number of carriers can now get through the heterostructure and
higher levels of current are possible. (It is noted that virtually all previous simulations of
heterostructure FETs ignore the narrow band gap region associated with the source and
drain contacts and instead assert that contact is made directly to the wide band gap material.
While this is satisfactory from a numerical point of view it is completely unsatisfactory from
the point of view of developing an algorithm for designing HEMT structures.) Once it was
established that the current could be transported from the narrow to the wide band gap
material and then into the quantum well simulations using the moments of the Boltzmann
transport equation were undertaken. Since these simulations do not permit the presence of
tunneling, unless such concepts as the quantum potential are introduced, which was not
done in this study, it was necessary to remove the conduction band discontinuity associated
with the heterojunction in the vicinity of the source and drain contacts. This approximation
is one that is within the spirit of the Phase I study, but will not be a limitation of the
proposed Phase II study.

The discussion that follows is in two parts with respect to the simulations. First the
principle discussion is connected with the simulations that were performed using the
moments of the Boltzmann transport equation. The supplementary discussions involving
solutions of the Liouville equation follow the discussion of the moment equations. A
detailed discussion of the Liouville equations is not part of this text. It is incorporated as an
appendix to this document. The appendix is a copy of a final report submitted to ARO
during September 1990.

Under the present analysis two species of electrons, central (low effective mass) and
satellite (high effective mass) valley carriers are considered. The governing equations are

Continuity

(1) anl/at = -v. (nlvl) - nlf 1 + n2 f2

(2) a n2Ia t = -v. (n2 v2 ) + n1f1 - n2 f2

where n1 and n2 are the central valley and satellite valley carrier number densities
respectively and V1 and V2 are the corresponding velocities. f1 and f2 are the scattering
integrals for particle conservation.
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Momentum

a (nlP1)/a t = -v. (nlVlP 1) - Vp 1 - nleFn - nlPlf3
(3)

+ (n1 V1 . V1 vml)/2 + (nlTlvml)/ml

where the momentum, P1, and the field, F., axe defined by

(4) P1  mlV1

(5) Fn =-(vO + Vx/e)

m1 is the mass of the central valley carrier, e is the electron charge, ,& is the elecu ic
potential and x is the electron affinity. F is the field due to potential differences and
conduction band discontinuity arising from material variations. The partial pressure, P 1, is
related to the central valley carrier temperature, T1, and number density by the perfect gas
relationship, which results from the assumption of Boltzmann statistics,

(6) P = nlkT1

where k is Boltzmann's constant. f3 is the scattering integral for the central valley cb rier
momentum. Contributions to f3 include impurity, acoustic phonon, polar phonon, honpolar
intervalley scattering. The effects of electron-hole scattering is accounted for through an
enhancement of the impurity scattering. These quantities are computed from scattering
integral expressions.

It is noted that the satellite valley electrons, due to their heavy mass, are extremely slow.
Compared to the speed of the central valley electrons, the velocity of the satellite valley
carriers is negligible for a wide range of bias conditions. For this reason, to first order, it is
possible to ignore the contribution of the satellite valley carrier to the total current. Their
velocity may be assumed to be zero and the satellite valley momentum equations need not
be solved. This approximation is valid provided that relative local population of satellite
valley carriers is, for example, less than an order of magnitude greater than that of the
central valley carriers. If the population were approximate equal, the typical error in total
current would only approach 5 to 10 percent.

On the basis of a broad range of calculations involving the solutions of the energy and
momentum balance equation for the central and satellite valley carriers it has been our
experience that for a wide range of conditions an accurate representation of device
behavior can be obtained with this approach. Under this assumption, equation (2) for
carrier continuity becomes simply a rate equation.

Energy

Next we write an energy equation for the central valley electrons. There are various forms
in which the central and satellite valley carrier energy equations can be described. We
choose to cast the energy equations in terms of the central and satellite valley temperature:

-4-



a (nlT1 )/a t = -v. (nlVlT 1) -(213) nlT1v . V1 + (23k) V. (KVT 1)
(7)

+ 3Vj. Vlm1 [nl(2f3-fl) + n2 f2]

-nlTlf5 + n2T2f6 -(n l T l v l
• vml)/ml

In equation (7) f5 denotes energy relaxation within the central valley plus energy exchange
with the satellite valley; f6 denotes energy exchange between the satellite and central valley.
Satellite valley carriers, due to their heavy mass, exchange very efficiently with the
substrate, and hence their temperature is assumed to be equal to the background
temperature. Again this has been verified in a wide number of simulations employing a
satellite valley energy equation.

Finally, the potential is related to the total number density through Poisson's equation.

(8) v.E vo = e(n 1 + n2 -no)

In two dimensions, the complete problem description requires 2 continuity equations (1),
and (2), two components of the vector momentum equation (3), an energy equation (7) and
Poisson's equation (8), a total of six equations. The boundary conditions are as follows:
The carrier densities at the Ohmic contacts are fixed at the value of local doping whereas
for Schottky Contact, assumed to be zero. The temperature of the carriers at the contacts is
assumed to be 300* k. For velocities, the normal gradient is assumed to be zero. The
boundary condition for potential is the applied voltage plus an appropriate built-in
potential.

The governing equations are solved numerically using a procedure similar to that developed
by Kreskovsky and Grubin [2] for the drift and diffusion equations. The procedure is highly
efficient and is based on the Linearized Block Implicit (LBI) method of Briley and
McDonald [3].

Results

Preliminary Calculations: The results discussed below are presented in a manner that best
emphasizes its didactic value. The discussion does not follow the chronological order in
which they were obtained.

The preliminary device structure presented to SRA by GE is schematically represented in
Fig. 1. The structure includes, successively:

(1) a narrow gap InGaAs cap layer 100A thick, doped to 2x10 18 /cm 3 , providing a means

of making ohmic source and drain contacts;

(2) a 200A thick, nominally undoped AlInAs wide bandgap region;

(3) a Si planar-doped layer, 10A thick, doped to yield an expected surface charge
density of 5x1012/cnm2 ,

(4) a 30A AlInAs undoped spacer layer;
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(5) ail 800A InGaAs undoped quantum well;

(6) an undoped 0.25 p AlInAs buffer layer;

(7) an InP substrate (not shown) which was not considered in the simulation.

The AlInAs barrier, including the planar-doped region and the 30A barrier is 240A thick.
For the gate region, this AlhnAs barrier is recessed, with the gate metalization resting 140A
from the AlInAs/InGaAs interface.

For the structure shown in figure 1, the principle issue is the one discussed above,
namely, how do which carriers reach the quantum well? Typical simulations of HEMT
structures ignore the narrow band gap cap regions associated with the source and drain
contacts, and instead assume that contact is made directly to the wide band gap material. In
that case the issue of carriers going from the source to the quantum well is not an issue-they
are not required to climb the potential hill provided by the wide band gap material. For the
structure considered here in which accurate device modeling is undertaken, climbing the
potential hill is an issue. As discussed above the two approaches to dealing with this
problem include ignoring the wideband gap material and assuming that the metalization
destroys the integrity of the heterostructure region; or assuming that the metallization does
not destroy the integrity of the heterostructure region, but that heavy doping results in a
significant alteration of the self-consistent potential seen by the carriers, thereby permitting
significant charge to enter the quantum well. The consequences of assuming that the
metalization destroys the integrity of heterostructure are self-evident. The consequences of
assuming that the metalization alters the potential is less clear; and to study this SRA's
density matrix algorithm was invoked for solving the Liouville equation. A discussion of this
algorithm and the relevant equations is contained in a report recently submitted to ARO
and is incorporated here in the appendix.

The quantum mechanical algorithm was implemented to examine the equilibrium
distribution of charge and potential along a line perpendicular to the quantum well. In
examining the possibility of transport from the source to the quantum well two types of
calculations were performed, as illustrated in figure 2. In this calculation, the InGaAs cap
layer was somewhat thicker, 300A, than that of figure 1. The structure labeled nominal.
incorporated doping only within the InGaAs cap layer and in the silicon doped spike layer.
The structure labeled metalization extended the indicated doping into the channel. It is
important to note that if the fabrication process results in doping to the quantum well, then
in addition to transport arising from the two dimensional electron gas, there will also be a
contribution from charge injected from the source region. Thus both space charge injected
transport as well as two dimensional electron transport occur. The space charge injection
transport may be an issue in a structure of the type shown in figure 1, where the source to
drain spacing is only 1.8 microns. This is an important design and device physics issue to be
addressed during a Phase II portion of the study. These questions arise because results
reported in the literature [4] indicate that both surface doped as well as surface undoped
HEMTs have very similar characteristics. It was suggested in [4] that, since the cap layer on
InGaAs was very thin, the metalization of the ohmic contacts could penetrate the 2 DEG
region.
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The distribution of charge in the nominal structure is shown in figure 3. There is an
accumulation of charge on the InGaAs side of the barrier, as is expected at the narrow-band
gap wide-band gap interface. There is very lEttle spill over into the AlInAs region. The
2-DEG region in the channel to the right of the AlInAs/InGaAs interface is very evident as
is an absence of charge in the region of the planar doped region. Thus, the planar doped
region acts as expected, providing seeding for the 2-DEG. Note that the sheet charge
density in the quantum well is approximately 3x10 12 /cm 2 , which is close to the value
expected. But, the most significant effect observed here is the absence of carriers in the
AlInAs region. Thus this region, in the absence of metalization, is highly resistive and
would not allow significant current flow. The potential energy distribution for this structure
is shown in Fig. 4. Here the effects of accumulation on both sides of the AlInAs layer are
apparent, the downward bending of the band structure, and the depletion of the planar
doped layer is evident as the deep notch at -100A. Of significance is the remaining wide
barrier on the source side of the structure. While tunneling currents are anticipated the
magnitude is expected to be small. The results of figures 3 and 4 suggest that the absence of
any device processing to accommodate the wide barrier is likely to lead to low current levels
in the structure.

The distribution of charge in the metallized structure is shown in figure 5. Several key
features are apparent. (1) There is increased charge in the InGaAs cap region, particularly
at the source-side interface region. (2) There is increased density of carriers within the
wide band gap region, (3) The quantum well charge density has more than doubled. (4)
Due to the presence of dopants in the AlInAs region, a secondary peak appears in the area
of the planar doped layer and the carrier density remains within an order of magnitude of
the doping in spite of the effects of the barriers. As can be seen, in comparison to the
results of figure 3, the wide band-gap region is now, relatively, highly conductive. The self
consistent potential energy distribution is shown in figure 6. The key point of this
calculation is that the heavy doping reduces the energy of the barriers seen by those
electrons entering from the source, and that the barriers are considerably reduced in
thickness, permitting the presence of a larger tunneling contribution. The broad conclusion
of the results of figures 5 and 6, is that doping the heterostructure region sufficiently high
is likely to permit all of the necessary current to flow from the source contact.

The Liouville equation was also implemented to examine the structure of the 2-DEG in the
region under the gate. In this simulation the gate is on the wide band gap AlInAs with the
planar doped, 5x10 18 /cm 3 , layer 200A from the surface. The AlInAs/InGaAs quantum well
interface is at 140A. The density distribution in figure 7 shows that the peak concentration
of the electron gas is reduced substantially below the nominal value under the source
contact (with or without the metalization). The band structure for this result, shown in
figure 8 reflects the depletion of the wide band gap region. The Schottky barrier height for
this calculations was approximately 0.5 eV.

Transistor Calculations. Initial Structure:

The transistor calculations were preformed for the structure shown in figure 1. The
parameters used in the calculations are shown in Tables I and II. The steady state, uniform
field velocity field relation arising from these tabulated values is displayed in figure 9. Note
that the steady state values were not used in the study but are included here for
completeness in the discussion.
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The initial transistor calculations included the presence of the undoped AlInAs barriers,
and a planar-doped layer of 5xl01 8/cm 3 , as in the quantum mechanical calculations.
(Calculations with planar-doped layers of 5xl01 9/cm 3 did not converge). The grid structure
used in these initial efforts is shown in figure 10. As shown, the grid is unequally spaced
and consists of 94 grid points normal to the gate and 102 grid points in the source-drain
direction. At a planar doped layer of 5x10 18/cm3 a surface charge density of 5x10 1 /cm2

was obtained; this value is below that obtained with the quantum mechanical treatment.
Two bias points were computed for this case, VDS = 1.0 volts for V = 0 and 0.5 volts.
While converged solutions were obtained, the source-drain currentlevei was very small and
approached the limit of the accuracy of the simulation code. The explanation for this low
current is consistent with the discussion associated with Aigures 3 and 4, and rests entirely
with the lack of carriers tunneling through the wide band gap material. However, the
simulation did show qualitatively the correct behavior, consistent with these low current
levels. A high density 2-D electron gas was generated at the AlInAs/InGaAs interface in the
channel, and a high degree of confinement was observed. This is shown in Fig. 11, where
contours of carrier density are presented for VDS = 1, Vgs = 0.

Transistor Calculations. Initial Structure without AlInAs Buffer:

For the bias levels chosen the initial calculations demonstrated that the charge in the
channel was confined to the interface between the spacer layer and the channel; very little
charge was present at the substrate side of the quantum well. To eliminate the possibility
that the small source to drain current levels did not arise from computational limitations,
additional simulations were performed that excluded the AlInAs buffer region. Thus only
two heterostructure contributions were considered. Quantum mechanical quasi-bound state
contributions, which can only be treated within the framework of quantum transport, and
were not treated in the initial calculation, are less of a feature in this semi-classical
calculations. From a physics point of view, the present calculations are relevant only for
situations in which the charge distribution is low enough throughout the quantum well.
From a computational viewpoint eliminating the buffer layer permitted increased
resolution in the active region of the device, to improve accuracy without increasing the
total number of grid points. The new grid structure is shown on the same scale as that of
figure 10 in figure 12. The same grid is shown with 3x magnification in the diict.i.on normal
to the gate in figure 13. The VDS = 1.0, Vgs = 0 solution was computed on this reduce
domain with increased resolution and the results were found to be qualitative similar to
those obtained for the complete device. Again, the predicted current was extremely low.
The conclusion: the low current levels are not grid dependent but were physics dependent.

Transistor Calculations. Initial Structure without AlInAs Buffer and with Modification of
the Source and Drain Regions:

The next stage of the approximation rested on the quantum mechanical calculations which
suggested that the origin of the low current lies in the inabi!;ty of the semi-classical
equations to adequately represent the effects of tunneling through the barriers through,
e.g., heavy doping. Thus, the first barrier between the InGaAs and AlInAs layer was
removed to allow carriers to enc; the quantum well freely.
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The resulting simulations yield the calculated I-V characteristics shown in figure 14, along
with the experimental data obtained by General Electric. As can be observed in the
comparison some discrepancies exist, particularly at low voltages where the resistivity is
higher in the calculated curves. Part of this discrepancy lies in the reduced density (in
comparison with the quantum transport calculations) associated with the spike doping layer.
However, the overall level of agreement with experiment is excellent. At V = 0, the
current level is slightly over predicted, at Vgs = 0.2 the agreement is better and at V = 0.4
the current level is under predicted. There is also a discrepancy between the predicted and
observed current levels for VDS below about 0.5 volts. This would seem to be related to
the effective low field mobility of the mobile electrons. Here we note that the scattering
rates used in the present simulations were based on purely classical effects and no attempts
were made to account for modified scattering in the region of the 2-D electron gas.

Contour plots of potential, carrier density, the magnitude of the central valley velocity and
temperature are shown in figure 15 for VDS = 1.5, Vgs = 0 and in Fig. 16 for VDS = 1.5,
Vgs = 0.4. The results indicate:

(1) The potential contours clearly show that a significantly higher field region exists
downstream of the gate contact for Vgs = 0.Ov, than for Vgs = 0.4v. In these two
contour plots the voltage increment between contours is approximately equal. Thus,
the greater the distance between contours the lower the field.

(2) The density contours display substantially more depletion under the gate for V~5 = 0
than for V s = 0.4. In both cases, the maximum carrier density occurs in the 2-DEG
under the drain. Carriers are drawn to the drain end of the 2-DEG in the channel due
to the field distribution in this region. For Vgs = 0, with its lower current level, the
carriers are more uniformly distributed along the entire length of the 2-DEG.

(3) The contours of the magnitudes of the central valley velocity indicates, as would be
expected from the carrier distribution, that the peak velocity is higher for Vgs = 0, due
to the greater depletion under the gate and higher field in this region. This peak
.occurs in the area just downstream of the gate as does the temperature peak.
However, we note that for V s = 0.4, the peak velocity occurs much closer to the
interface between the spacerlayer and the channel. For Vgs = 0, the peak velocity
occurs at a position near the middle of the channel. This is due, in part, to the deeper
penetration of the depletion layer under the gate for Vgs = 0.

(4) The central valley temperature contours indicate that for V2 s = 0.4 the temperature
contours are more spread out than for Vgs = 0.0 due to the lower field under the drain
side of the gate. The peak temperature is also lower.

An enlargement of the density contours are presented in Fig. 17. Here, the direction
normal to the gate surface is magnified 3x. These plots clearly show the pinching off of the
2-DEG for V = 0 The depletion region is deeper and much more heavily depleted.
When these p5ots are viewed with the velocity magnitude plots in mind it becomes cven
more apparent why the peak velocity occurs deeper in the channel for Vgs = 0. Even
though the cui ient is reduced, the current path follows the carrier distribution and,
therefore, extends deeper into the channel around the gate depletion region.
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RF Device Characterization:

GE Syracuse provided small signal characterization of the structure shown in figure 1, in
particular the transconductance, cutoff frequency, S parameters, etc. To begin to determine
a correlation with these measurements as well as to begin to determine the noise
characteristics of the structure, small signal admittance calculations were performed. These
calculations involve using the algorithm for solving the moments of the Boltzmann
transport equation.

For the admittance studies, at select drain ad then gate bias points perturbations to the
steady dc results were imposed, with the subsequent transient response computed. The
current response was then Fourier analyzed to determine the 'Y' parameters which are
defined as:

(9a) Y 12 (w) = 8IgW)Skd(w)

(9b) Y22(w) = &Id(w)/&kd(w)

(9c) Yll(W) = SIg(w)/6¢g(W)

(9d) Y2 1(w) = Sld(0)/0g(W)

Here I and , are current and potential; the subscript g and d stand for gate and drain
respectively. The Y parameters are dependent on the space charge and potential
distribution, and hence are bias dependent. Usually it is assumed that about a given bias
condition, the small signal currents add linearly, permitting an equivalent circuit
representation. While the calculations arising from equations (9) admit an equivalent
circuit interpretation, during the Phase I study only the simplest zeroth order equivalent
circuit model was used for interpretation of the results. As the discussion below
indicates the equivalent circuit model requires generalization.

The zeroth order equivalent circuit model indicates:

(10a) Y11O(W)=-jw(Cgs +Cgd)

(10b) Y 12 0() = jwCgd

(10c) Y2 10(w) = gm +jwCgd

(10d) Y22 0 (w) = gds-jwCgd

where C T denotes that gate-source capacitance, Cgd, the gate-drain capacitance, gm the
transcon uctance, and gds the forward conductance. The zeroth order model does not
permit the introduction of a realistic gate impedance or the contributions from the source
metalization. Rather, it emphasizes the intrinsic circuit elements.

The admittance calculations are displayed in figures 18, for a gate perturbation and in
figure 19 for a drain pet turbation. The dc points for this calculation are Vd = 1.0v,
Vg = 0.2v. The dc points for the measurements are Vd = 0.9v, Vg = 0.25v. The results
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shown in figure 14 suggest that the transconductance comparisons at these drain bias
levels would show good agreement at values of gate voltage closer toward pinchoff. Under
forward gate bias the calculations underpredict the current levels and the transconduction
values. Indeed, the calculated transconductance at this point is 777mS/mm; the measured
transconductance is 1273mS/mm.

The gate-source capacitance is a measure of the ability of the gate region to store charge.
Masurements yield Cs = 0.0642pf, and the calculations yield an order of magnitude
smaller capacitance, 0.!)6pf. However, the gate-drain capacitance measurements and
calculations reveal order of magnitude similarities: The measurements yield 0.007pf, the
calculations 0.005pf. The discrepancies in the source-gate capacitance are attributed to the
model dependent distribution of charge that arises from eliminating the heterostructure
interface in the source region, and the lack of charge confinement under the source. This
region needs to be modeled more carefully during the Phase II aspects of the study. Along
the drain side where there is a broad Schottky barrier depletion region, there is less of Pn

issue.

The cutoff frequency is obtained from the admittance parameters. The calculated values
are anticipated to be much higher than experiment because of the underestimation of the
gate-source capacitance. The measured cutoff frequency was 196GHz, that calculated was
approximately 700GHz.

During the small signal studies, consideration was given to calculating the noise figure for
the structure. While the noise figure in principle can be calculated from a generalized
admittance parameter calculation, realistic calculations from this procedure would require
a more accurate representation of the properties of, e.g., the gate region. For example, one
of the representations of the noise figure is that given below:

(11) Fo = 1 + K, Lf(gm(Rg + R)Y

where Kj is a fitting parameter, Rg is the gate resistance and Rs is the source resistance.
In the present model the gate is represented as a boundary condition, and no resistance is
attributed to it, while the inadequacy of the modeling of the source contact region, led to an
underprediction of the current flow at the low values of drain bias. Thus it was not deemed
useful at this point to examine the details of the noise figure from the admittance
parameters at this point; but instead to pursue this during the Phase II portion of the study.

Conclusions and Recommendations

The Phase I study demonstrates that a realistic numerical model based upon
nonequilibrium transport equations coupled to concepts obtained from quantum
mechanical transport equations can provide order of magnitude agreement with the dc
electrical characteristics of the high frequency low noise pseudomorphic HEMT structures.

The Phase I study exposed the requirements for obtaining a meaningful device model for
examining transport in these structure:

(1) Quantum transport must be incorporated into the study, either in the complete
simulation, or as a guide to the necessary approximations within the framework of the
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moment equations. In this regard, incorporating the quantum potential into the framework
of the algorithm should be given ver; serious consideration.

(2) The properties of the source and drain metalization are an issue that must be addressed
if predictions of the noise properties are to be made. In the case of the source
metalization, the procedures for examining transport perpendicular to the heterointerfaces
are likely to provide the key frequency dependence of the effects of the source and drain
resistance on the admittance parameters. Recently, a similar procedure involving the
quantum Liouville equation has been undertaken at SRA to examine the details of
transport through the Schottky barrier. This should also be pursue during the Phase H part
of the program.

(3) One of the goals of the SRA program is to provide a tool that will be used by design
engineers to fabricate devices. Presently design engineers are accustomed to using such
codes as Libra for examining the small signal properties of devices. The code developed at
SRA is a physics based code that while capable of providing the full admittance parameters,
will not pass the 'familiarity' test. Thus a means must be provided for interfacing the SRA
code with those commercially available. One proposed task will be to find a means of
interfacing the SRA code with the commercial codes.

(4) The test of the efficacy of the program is the ability to design a successful transistor.
ihus, it is recommended that any future program involving the design of HEMTs provide a
demonstration Jhat it can successfully design devices. The proposed Phase H program will
provide approximately one-third of the anticipated funding to the fabrication and testing of
HEMT structures.
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TABLE 1. In(. 53 )Ga(.4 7 )As Parameters Used in Calculations

Parameter r L Common

Number of equivalent valleys 1 4

Effective mass (me) .041 .0291

r-L separation (eV) .55

Polar optical scattering
Static dielectric constant 13.91
High-frequency dielectric constant 11.32
LO phonon (eV) .0327

r -L scattering
Coupling constant (eV/cm) 1.Ox109
Phonon energy (eV) .0278

L-L scattering
Coupling constant (eV/cm) 5x10 9

Phonon energy (eV) .0327

Acoustic scattering
Deformation potential (eV) 7.0 9.29

Nonpolar scattering (L)
Coupling constant (eV/cm) 3x10 8

Phonon energy (eV) .0327

Acoustic velocity (cnisec) 4.101x1O5

Density (cm/cm xx ) 5.48
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TABLE 2. Al(. 48)In(. 52)As Parameters Used in Calculations

Parameter r X Common

Number of equivalent valleys 1 3

Effective mass (me) .084 .47

r -X separation (eV) .55

Polar optical scattering
Static dielectric constant 11.25
High-frequency dielectric constant 10.25
LO phonon (eV) .038

r -X scattering
Coupling constant (eV/cm) 8x10 8

Phonon energy (eV) .03

X-X scattering
Coupling constant (eV/cm) 5x10 9

Phonon energy (eV) .038

Acoustic scattering
Deformation potential (eV) 7.0 9.27

Acoustic velocity ,cm/sec) 4.46x10 5

Density (cm/cm ) 4.774
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NOMINAL DEVICE STRUCTURE MODEL FOR ME'IALIZATON

T 2x 10 18

300 _ _ _ _ __ _ _0

InGaAsA
____ ___ ____ ___ ___DOPING+ EXTENDS

1%0 UNDOPED AiAs 2x1 010 NT
200 Si DOPED LAYER CHANNEL

5 x10 8

20 AlnAs SPACER LAYERI

60 UNDOPED

InGaAs

CHANNEL

Figure 2. Schematic of Nominal Device Structure and Structure used
to Model Metalization in Density Matrix Calculations.
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TRANSPORT VIA MOMENTS OF QUANTUM DISTRIBUTION FUNCTIONS
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ABSTRACT

This report summarizes work performed under Contract DAALO3-90-C-0005. The study
represents the first comprehensive effort to assess through (1) numerical simulations of the
equation of motion of the density matrix, and (2) approximate analytical procedures
involving an expansion of the Liouville potential, the multiplicative constant associated with
the quantum potential as used in quantum hydrodynamic transport. It was found that when
quantum effects are 'corrections' to classical calculations, as in N + N'N + structures the
factor '/3' is a satisfactory multiplicative constant. When the quantum potential is no
longer a correction, as in the case of double barrier diodes, the multiplicative constant is no
longer 'constant' but is position dependent and less than unity.
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INTRODUCTION

The development of crystal growth techniques has made it possible to fabricate devices with
very small dimensions and sharp interfaces. Consequently, a variety of device concepts
based upon small dimensions with sharp interfaces has emerged. These include such high
speed devices as the HEMT, HBT, quantum resonant tunneling devices, quantum wire
structures and quantum dots. The structure and operation of these devices is based upon a
perceived physical picture, often based upon results of quantum transport theory.

While all devices are governed and sometimes limited by quantum mechanical properties,
many devices do not require quantum mechanics for an understanding of their basic
operation, but do need quantum mechanics to provide key electrical properties. For
example, heterostructure bipolar transistors sustain low levels of current at low bias levels;
these currents are dominantly tunneling currents. Thermionic contributions to current
occur at high bias levels. Until recently, the drift and diffusion equations as well as the
moments of the Boltzmann transport equation did not include a description of tunneling
currents in any way other than through ad hoc arguments. Tunneling requires quantum
mechanical contributions.

The recent advance in the description of transport in devices with quantum contributions is
due to the discussion of Ancona and lafrate (1989), who demonstrated that the quantum
corrections to multi-p article transport, first discussed by Wigner (1932), could be
incorporated in the drift and diffusion equations by adding to the classical potential a term
proportional to a quantum mechanical based potential:

(1) 0 --- (r, 2/2m)[(P xxl/(pY '

where the subscripts denote derivatives. Within the framework of the drift and diffusion

equation the 'Q' term modifies the particle current as follows:

(2) j(xt)=npkbT[(V+aQ)/kbT + In(n)] x

The proportionality constant 'a' was evaluated [Ancona and lafrate (1989)] in the high
temperature limit from the equation of motion of the Wigner function and was found to be
equal to 1/3. The factor '1/3' is a serious issue, in that intuitively, as well as through
arguments associated with the single particle Schrodinger equation, it would be anticipated
that the constant 'a' would be unity.

The problem addressed in the last paragraph, namely the origin of the factor a = 1/3, as well
as the procedures under which quantum contributions to the balance equations are
obtained formed the basis of the study under Contract DAALI)3-90-C-00)5. This was
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complemented by numerical simulations, using 'characteristic' algorithms to examine the
extent to which the quantum corrected results are relevant

The means by which the problem is addressed is through an expansion of the equation of
motion of the Wigner function, and an expansion of the equation of motion of the density
matrix. The discussion of the Wigner function is in the form of a revi in that a
comprehensive treatment appears in Grubin and Kreskovsky (1989). The work on the
density matrix is new.

QUANTUM CORRECTED EQUATIONS OF MOTION FOR
THE WIGNER FUNCTION AND THE DENSITY MATRIX

The Wiener Equation of Motion: The analysis under this study was restricted to one space
and one momentum direction and includes Fokker-Planck scattering. The equation of
motion of the Wigner function with Fokker-Planck dissipation as discussed by Stroscio
(1986) is:

(3) ft + (p/m)fx + (1/ih )(1t21if ).,f +* dp'-.f +o dx'f(p',x)[V(xx',t)]exp[i(p-p')x'/t]

= 2 [pfjjp + Dfpp

where:

(4) V(x,x',t) = [V(x + x'/2,t)-V(x-x'/2,t)]

The potential energy V(x,x',t) is referred to below as the Liouville potential. As discussed
by Frensley (1990) the first term of the Fokker-Planck dissipation corresponds to a
frictional damping term, the second corresponds to thermal fluctuations. This will be
discussed in more detail below.

It is direct, but nontrivial to demonstrate that the integral in equation (3) reduces in the
classical case to Vxf ; thus equation (3) reduces to the Boltzmann transport equation with
Fokker-Planck dissipation:

(5) ft + (p/m)fx-Vxfp = 2- [pflp + Dfpp

To second order in li, the Wigner equation of motion, or equivalently, the quantum
corrected Boltzmann equation is:

(6) ft + (p/m)fxVxfp + (1* 2/24)Vxxxfppp = 2V [pflp + Dfpp

The left hand side of equation (6) has been discussed in detail by Ancona and lafrate
(1989) and Grubin and Kreskovsky (1989).

The Equation of Motion of the Density Matrix: This equation has been discussed in the
context of quantum structures by Frensley (1990). While the equation of motion is a
fundamental equation, it is equivalent to and can be obtained directly from the Wigner
equation of motion. In the latter case multiply equation (3) by dp[exp[i2( p/ 1] and
integrate over p. For this integration p varies from - to + -, and it is assumed that the
Wigner function and all necessary derivatives with respect to momentum vanish as p=*---.
Identifying the density matrix through the Weyl transformation:

(7) p (x + ( ,x-() = [1/(27iti )].f 'dpfw(px)exp[2ip /h
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the transformed equation becomes the density matrix in the coordinate representation:

(8) pt+ (f /2mi)pxC -(lfih)[V(x+ ,t)-V(x- ,t)]p +2-Yfp + [4D" 2 /i 2 ]p = 0

An expansion of the Liouville potential about the point x yields:

(9) pt+ (/2mi)px -(l/ih)[nVx+(C '/ 3 )Vxxx]p +2-yp + [4Dr 2 / 2 ]p =0

which is the transformed equivalent of equation (6).

Retaining only the terms that are linear in C yields the transformed equivalent to the
classical Boltzmann equation. As will be seen the presence of the factor '1/3' in equation (9)
is the key ingredient in obtaining the multiplicative factor in the quantum potential. It is
emphasized that quantum corre tions to O(ii 2) are contained in the term [(r -1/3)Vxxx]p.

Equations (6) and (9) are the relevant equations for the analytical part of this study.
Equations (3) and (8) are, however, the ones to deal with in a fundamental approach to
quantum transport. Results with equation (8) are introduced later into the discussion.

THE APPROXIMATE EQUILIBRIUM DISTRIBUTION FUNCTION

In the absence of dissipation the approximate Wigner distribution function to second order
in h is Wigner (1932):

(10) fw = exp-6 [p 2 t2m + U(x)]{ 1-( 2 p/4)[(V _#VX2/3)- (p 2/3m)Vx] }

Where ) 2 = A 0/2m, and 0 = 1/(kbT). The equivalent approximate density matrix solution
to order O(i 2) is:

(11) p(x+ ,x-C)= Nexp-[C 2 /, 2 +#V]{1-(), 2#/6)(1 +C 2 A 2 )VXX+) 2# 2 Vx2 /12}

where,

(12) N = 2(m/2,xfrZ 2)1/2.

Note: First, the classical density matrix equivalent to the Boltzmann distribution is:

(13) p(x+Cx-()=Nexp-[C 2/, 2 +1V];
Se~d, the brackets {e... } contain.quantum corrections to the density matrix. T the

approximate density matrix is real, indicating that the current is zero. Fourh the diagonal
components of the approximate density matrix, which are obtained for f =0, are equal to:

(14) p (xx) = N[exp-flV][ 1-(', 2 f/6)(Vxx-fVx2 /2)]

This result also emerges from an integration of the Wigner function over all values of
momentum (Ancona and Iafrate (1989).

The significance of equation (14) for device applications is that it describes the way in
which quantum corrections alter the built-in potential. For example, when it is recalled that,
classically, the potential and carrier density are related through the expression:

(15) p = Nexp-6V
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and therefore that pVx -p /p; then through incorporation of the quantum potential

(equation (1)), it is straightf6rward to show that Q -(i 2 /4m)p[Vx=pVx /2], and that:

(16) p =N[exp-#V][1-(fOQ/3)]

Several points are clear: Frt there may be an alteration of the built-in potential arising
from gradients in the carrier density, second the factor of '3' that appears in equation (16)
is seen to be a consequence of the truncation of the Taylor expansion of the potential in
both the density matrix and Wigner equations.

Quantum Corrected Energy Density Matrix: There is a characteristic energy associated with
the equilibrium system obtained from both the Wigner function and the density matrix. To
obtain it from the density matrix we define an energy density matrix through a Weyl-like
transformation:

(17) E(x +f ,x- ) = [1/(2rR )]-.f' dp(p/2m)fw(P,x)exp[2ipf/A ]

Note: for = =0, the above reduces to mean kinetic energy of the system. It is direct to
demonstrate that

(18) E(x + ,x-) =-( 2/Sm)p

The expectation value of the energy is the diagonal component of the energy density matrix,and yields:

(19) E(xx) = [pkbT/2[[1-(), /6)(nt n)xx]

= [kbT/2 + wqIP

The term w was first introduced by Wollard et al (1990). Equation (19) is valid only to
second orde-l in fi. Thus the density multiplying the term '(1 np)x' is strictly only the
classical density. The significance of equation (11) is that there is a change in energy due to
the gradients of carrier density, as first predicted by Wigner (1932).

THE APPROXIMATE NONEQUILIBRIUM DENSITY MATRIX

Classical moment balance equations are often obtained through representing the
nonequilibrium state by a displaced Maxwellian, exp-[# (P-Pd) 2/2m + V}] where, e.&., Pd,
the density and aparticle temperature, are to be determined. The Weyl transformation
indicates that a displaced Maxwellian yields a density matrix with the following
modification:

(20) p (x + " ,x- " )=,p (x + C ,x-( )exp-[2 iPd("/ A

Thus the classical density matrix corresponding to the displaced Maxwellian is (21)
p (x + C,x-" ) = Nexp-[" 2A 2 +flV+2iPd"/h1

Note that the density matrix contains an imaginary part, as required for a finite current.
The nonequilibrium quantum-corrected density matrix is given by a modification of
equation (11):
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(22) p(x+rx-{)=Nexp-[C 2/ 2 +PV+2ipdC/fJ

f 1_(), 2 16/6)(1 +r 2Ax )VXX +L 22VX2/12}

Ouantum Corrected Current (velocity flux) Density Matrix: Since the density matrix
contains imaginary components we are interested in the expectation values of the current
flux density. To obtain this we define a current density matrix as:

(23) j(x + ,x-C) = [1/(27uh )]-.f Jdp(p/m)fw(px)exp[2ipr/ ]

Note: for C = 0, the above reduces to mean velocity flux of the system. It is direct to show
that:

(24) j(x + rx- ) = (h/(2mi))p.

The expectation value of current is the diagonal component:

(25) j(xx) = (Pd/m)p

The quantum corrections to the current are obtained from the quantum corrections to the
density. Note that the form of the current density along the diagonal is the same for
classical transport as it is for quantum corrected transport. Thus of relevance are the
equations defining Pd, density and temperature. To establish these we reconsider the
equation of motion o the density matrix taking successive derivatives.

THE APPROXIMATE NONEQUILIBRIUM BALANCE EQUATIONS AS
OBTAINED FROM THE EQUATION OF MOTION OF THE DENSITY MATRIX

Particle Balance: The first balance equation is obtained by rewriting the equation of motion
of the density matrix and then dealing only with the diagonal component. Thus there is
reduced content. Using the definition of velocity flux, equation (9) becomes:

(26) ~ p(X +f ,x-f)]t +[U(x +f ,x-% )]-(1/ifl)[2X~~ ~x/]~ f,-
(26) C X+ 3VX/] X+ XC

+2-y [p(x+(,x-)]. +[4Dr 2/fj 2]p(x+C,x-)=0

The first balance equation is obtained from the diagonal component of equation (24):

(27) [P]t + [ppd/mx =O

which is the equation of continuity.

Momentum Balance: To determine the next governing equation to second order in h we
take derivatives of equation (2) with respect to '(', multiply by h/2i, and obtain:

(28) [p(x + (,x-)]t + 2[E(x + ,x-)]x + (1/2)[2Vx + ( 2 Vxxx]P (x + (,x-)

-(l/ih )[2" Vx + C 3 Vxxx/3]p(x + ,x-( )

+ 2-y p(x + ( ,x-" )-i[4D " ]p (x + (,x-")

-ih " [p (x + ",x-C")]-- +[4D" / ][p(x+",x-")]= 0



where p(x + C x-. ) =j(x + " ,x-{')m. The diagonal component of energy under finite current

conditions is required for the second balance equation. It is:

(29) E(xx) = [pd2/2m+ (kbT/2)(1-Q' 2 6)(A np)xx]P

With the diagonal components of energy given by equation (29), identifying a relaxation
time r = 2/y, the second balance equation is obtained from the diagonal components of
equation (29):

(30) (ppd)t + (ppd /m)x+ (pkT)x +p(Q3)x +pVx+pp/r =0

where we recognize that [(. np)xxp ]x = 4mp QOX/ 2. The above equation differs from its
classical analog through the presence of the quantum potential. The form of the scattering
term in the above equation also confirms Frensley's (1990) statement of the first part of the
Fokker-Planck scattering as a frictional term.

Energy Balance: If we regard the quantum corrected density matrix as a distribution
function with three undetermined parameters, the third being the temperature, then a third
equation is needed to complete the system of equations. This third equation is obtained in
a manner similar that of equation (28), namely by taking a second derivative of the density
matrix equation of motion, with respect to C. We are only interested in the diagonal
components of this equation, which with the energy given by equation (18), are:

(31) Et + (1/(2m 2 )P3 x +jVx = (Et)coll

where P3 is the diagonal component of the third moment of the off-diagonal element:

(32) [1/(21i f)]..fofdp(p3 )fw(Px)exp[2ip/ ] = (h/2i)s p C C *

Using equation (21) for the density matrix, equation (32) becomes:

(33) Et + {(pd/m)[E + (p/p)(1-t) 2/6](. np)xx)]}x + (ppd/m)Ux + 2E/r +8Dp =0

where the energy in equation (33) is given by equation (29) (Note: the equilibrium value of
P3 is zero). The above equation can be rearranged to read:

(34) Et + (PdE/m)x + (pdpkbT/m)x + (ppd/m)[Q/3 + V]x

-p () 2 kbT/6)[(-t np)xx](pd/m)x + 2E/r -8Dp =0

If we assume equilibrium values for D, namely D = mkbT/r, equation (34) becomes:

(35) Et + (PdE/m)x + (pdp kbT/m)x + (ppd/m)[Q/3 + V x

_p (, 2kbT/6)[( np)xx](Pd/m)x + (2/kr)[E-kbT/2]p = 0

And the second part of the Fokker-Planck dissipation involves a relaxation to a non-zero
thermal energy.

The equation of motion of the density matrix involves two NxN matrices (real and
imaginary parts) where N represents the numbers of grid points along a linear dimension.
The density matrix equation is the equation of interest. An approximate representation of
the equation of motion of the density matrix is provided by the ci-t three moments of the
density matrix. These moments include the continuity equation, ..omentum balance, and
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energy balance.

As in all moment equation representations, the form of the moment equation depends upon
the primary equation, in this case equation (9), and the generic form of the distribution
function, in this case equation (22). The most dramatic consequence of the approach, as
expressed in the momentum balance equations, is the appearance of the quantum potential.
The quantum potential with its associated factor of '1/3, the latter arising 5kIX as a
consequence of the expansion of the Liouvie potential, permits a quantum mechanical
correction" descriptin of classical transport and allows tunneling to be incorporated into

the latter. This result was also the initial conclusion of Ancona and Iafrate (1990).

It is important to reiterate that one key result of the present study is that through the
expansion of Liouville potential in the equation of motion of the density matrix the
quantum corrections are the same as those obtained from the equation of motion of the
Wigner distribution function. The origin of the factor of '1/3' is due solely to the expansion
of the Liouville potential, and is not limited the high temperature limit discussed by Ancona
and lafrate (1989).

The energy balance equation is also driven by the quantum potential, but additionally there
appears to be a contribution that may behave as a quantum correction to the pressure. This
is the terms p( 2 kbT/6)[(L np)xx].

In addition to the quantum mechanical contributions, the moment equations include an
incorporation of Fokker-Planck dissipation in the moment formulation, and twenty of the
relative contribution of each of the two terms. A more general treatment is provided by
Stroscio (1986).

The next question concerns the significance of the quantum potential.

SELF CONSISTENT NUMERICAL SOLUTIONS

This section contains a discussion of the interpretation of the distribution of charge within
the quantum well and quantum barrier device and the values obtained thereof. The
calculations involve solutions to the density matrix coupled to Poisson's equation:

(36) a /a x[E (x)a V/ax] = -e 2 [p (x,x)-p o(X)]

Classical N±+ N:N + Structures: Since most resonant tunnel structures are designed with
the heterostructures placed within the interior of a low doped region, the first
self-consistent problem discussed involves transport through a classic N + N-N + structure.
The structure is 1200A long with a nominal doping of 101 8/cms and a centrally placed
250A, 10 6/cm 3 region. The variation in background doping was over one grid point or 4A.

There are a variety of questions to be addressed here; among them is the issue of whether
there are any quantum contributions associated with an ostensibly classical structure. It is
relevant, in this matter to recall one of the conclusions of a paper by lafrate, Grubin and
Ferry (1981), where it was argued that quantum corrections are important if the density
sustained an approximate Gaussian distribution with a width at half maximum of
approximately 80A of less.

The equilibrium charge density and potential distribution as obtained from the complete
equation of motion of the density matrix, equation (8) without dissipation, for the
N + N-N + structure are shown in figures (1a) and (1b), respectively. The results appear
classical. We also show the diagonal component of energy density of the system, figure (Ic),
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as computed from equation (18) and the quantum potential, figure (1d), as computed from
equation (1). For completeness we also show the two dimensional plot of the density matrix
in figr.e 2.

Figures (la) and (ib) display charge.density and self-consistent potential distributions that
are ostensibly classical. There is an increase in potential across the N- region, which
accompanies a decrease in charge density across this same region. From the point of view
of quantum transport, we are also dealing with a tunneling problem, particularly with those
carriers whose energy is below the potential barrier, which in this case has a height of
approximately 45 mev. We note that the mean energy of the entering carriers is kbT/2 < 45
mev.

Quantum transport permits tunneling, thereby increasing the numbers of particles in the N"
region over the classical value. Continuity of the wavefunction and its derivative through
the barrier region (at the metallurgical interface the energy density is approximately
kbTp/2, and decreases into the N- region) prevents the density from approaching it's
classical value, and instead assumes a smaller value. This result which is a consequence of
wave function continuity has been referred to by others as quantum "repulsion" (Kluksdahl
et al (1989)). The "increased" value of density in the barrier region and "decreased" value of
density in the classically accessible region are represented by equation (16) if the quantum
is negative within the barrier region and positive within the region of the 'turning points' at
the boundary of the metallurgical junction. The quantum potential as evaluated from
equation (1) and depicted in figure ld displays these qualitative features. Note that the
quantum potential at the center of the structure is approximately 25% of the energy at the
boundaries. For a very wide N- region the density at the center region of the structure will
be relatively constant and Qz 0, at the center.

For the calculation of figures 1 and 2, the density, potential and quantum potential are
respectively

(37) pcal(v= 0) 1.847 x 1017 /cm3

(38a) Vcal(x =0) = 44.725 mev

(38b) Qcal(x = 0) = -3.0228 mev

Calculations p (x = 0) from equation (16) with the potential energy and quantum potential
given by equation 38 yield

(39) PEq.(38)(x=O) = 1.832x10' 7/cm 3

The energy density at the center of the structure as computed from the density matrix is

(40) Ecal(x = 0) = 2.3015 mev/cm 3

The energy as computed from equation (19) is

(41) EEq.(19)(x =0) = 2.286 mev/cm 3

The hydrodynamic moment equations appear in the case of the simple N + N-N + to yield
the same result as the density matrix for the charge distribution.
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Double Barrier Diodes: The situation for double barrier diodes is quantitatively different
than that of the N * N-N + structure. Here the quantum mechanics is not a correction to
the cla; ,q'l -nlution. However, as in the N + N'N + structure, it iq exrected that outside of
the double barrier that continuity of the wave function would again yield a density below
that of the classical value. Thus the quantum potential would be positive in this region.
Within the barrier quantum mechamcal tunneling permits a greater number of carriers than
those associated with the classical distribution; thus the quantum potential is negative.
Within the quantum well continuity of the wavefunction results in a charge distribution that
is below that obtained classically; and Q is negative. The variation of density, potential,
energy and quantum potential are displayed in figures 3 and 4.

Figure 3a displays the density distribution which shows a small residual change in the
quantum well and an insignificant amount of charge within the barriers. Potential energy is
displayed in figure 3b, where we note that the low density in the quantum well region
contributes to an elevation of the potential relative to the end points. The mean energy
density is shown in figure 3c, and displays negligible values at the center of the structure.
The quantum potential is displayed m figure 3d. For the calculations of figure 3, the density
potential energy and quantum potential are respectively

(42) Pcal(x=0) = 6.156x 101 6/cm3

(43a) Vca1 (x = 0) = 15.479 mev

(43b) Qcal (x = 0) = 92.149 mev

Calculating p (x = 0) from equation (16) within the potential energy and quantum potential
given by equation (43) requires that the quantum potential be multiplied by a constant
other than 1/3. For the present situation the constant is closer to 213. This difference is
value is not surprising in light of the fact that within the quantum well the value of the
quantum potential is not longer a correction. Indeed Q is approximately equal to the
quasi-bound state energy.

The value of p (x = 0) from equation 16, with 0/3 replaced by 2Q/3 is:

(44) P(Eq.(38)(x= 0 ) = 5.043x 101 6 /cm 3

We note that the density upstream of the emitter is satisfactorily represented by equation
(16). It would appear that our results are consistent with the discussion of Ancona and
lafrate (1989) where the quantum potential appearing in the moment equations should be

(45) Phenomenological quantum potential: aQ(x)

where a is a position dependent positive constant less than unity.

The energy calculated from equation (18) with the center of the quantum well is

(46) Ecal(x = 0) = 2.864 mev/cm 3

The energy calculated from equation (19) with Q/3 replaced by 20/3 is:

(47) EEq.(19)(x = 0) = 2.684 mev/cm 3

The low value is present, even though the quantum potential tends to push up the mean
carrier energy, and arises from the reduced charge in the quantum well.



CONCLUSION

This study represents the first comprehensive effort to assess through (1) numerical
simulations of the equation of motion of the density matrix, and (2) approximate analytical
procedures involving an expansion of the Ujouville potential, the multiplicative constants
associated with the quantum potential, as used in quantum hydrodynamic transport. It was
found that when quantum effects are 'corrections' to classical calculations, as in N + N-N +
structures the factor '113' is a satisfactory multiplicative constant. When the quantum
potential is no longer a correction, as in the case of double barrier diodes, the multiplicative
constant is no longer 'constant' but is position dependent and less than unity. Additional
work is required to narrow the range of variation of this constant before effectively
incorporating the quantum potential in detailed quantum hydrodynamic simulations of
ultrasmall devices.
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