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Preface

This work uses a modified version of the Advanced Beam Experiment
which was originally developed by the Vibrations Branch of the Flight
Dynamics Lab at Wright-Patterson AFB. The modified version of the
Advanced Beam Experiment was performed by Capt Jacques in the AFIT labs.

The goal of this work is to create a finite element model of the
Advanced Beam Experiment using MSC/NASTRAN. The modal includes damping
inherent in both the structure and the actuators. The finite element
model is used to perform a sensitivity analysis on the selection of the
weighing parameters Q and R used in Linear Quadratic Regulator theory.
Sensitivity analysis is also performed on two optimization techniques.
The first invo.ves minimizing the performance index J and structural
mass, while the second, Onada's fornulation, involves minimizing control
mass and structural mass. Chapters II and III cover the structure
modeled. Chapter IV includes a brief review of finite elements and
describes how the model was constructed. Chapter V is a review of LQR
theory and describes the state-space formulation of the problem. For
those interested in only the results of the sensitivity analysis,
Chapter VI should provide all the necessary information.

This work would not have been possible without the help of many
people. The previous work of Capt Jacques and Capt Cristler provided
the details on which this work is based. Dr. Liebst spent many hours of
his time working with me to clarify optimal control theory. Capt Gans,
my thesis advisor, provided guidance while my committee, Lt Col Bagley
and Dr. Spenny, gave valuable comments so that I could clarify the final
work. Mom and Dad were always there to listen whenever I needed
encouragement and support. And finally, I would like to thank my wife
Joan. She always loocked for ways to help and tried to understand what
it was that I was doing. She sat through my defense and, when it was
over, celebrated with me.

Steven L. Story
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Absgtract

There has been much interest during the past decade to develop and
launch large space structures. The high cost of launching material into
orbit will require that these structures be assembled in space using
light weight elements which are vulnerable to dynamic excitations.
Active control may be necessary to rapidly attenuate large amplitude
vibrations. The active vibration control system is usually designed
after the structure has been optimized. The integrated design of the
control system and the structure may provide additional weight savings.
This thesis presents a sensitivity analysis of the structure/control
optimization problem. The structure used is an aluminum rectangular
beam with proof mass actuators mounted on the free end and a structural
dynamics shaker attached at the midpoint. A finite element model of the
structure is developed using MSC/NASTRAN. Linear Quadratic Regulator
theory is used as the control law with velocity feedback. Constant and
variable values of Q and R for the performance index are used. The
variable values of Q and R are selected to minimize total system energy.
Optimization methods examined are; first, the minimization of the
performance index J and structural weight; second, Onada's formulation,

which minimizes control weight and structural weight.
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SENSITIVITY ANALYSIS FOR THE SELECTION OF
LINEAR QUADRATIC REGULATOR WEIGHING PARAMETERS Q AND R
FOR ACTIVE VIBRATION SUPPRESSION

OF A CANTILEVERED BEAM

I. Introduction

During this decade, the deployment of large structures in space
will become a reality. NASA is currently developing Space Station
Freedom and the Department of Defense is interested in systems which, if
deployed, will require large stable platforms in space. Because of the
high cost uf launching material into orbit and because of launch size
restrictions, these built-up structures will be assembled in space usir -
light weight truss-like elements. The truss-like elements will provide
a framework to which mission-related functional components will be
attached. Because of their low weight, however, these structures will
be highly flexibl=2 which will make them vulnerable to dynamic

excitations from a variety of sources.

Control Approaches To Vibration Damping

A structure's response to dynamic excitations is governed by its
mass, damping, and stiffness characteristics. The large size of space
structures coupled with their light weight results in many low
frequency, lightly damped, closely spaced vibration modes. These
vibration modes must be controlled in order to minimize their effect on
the system. Passive damping, obtained by methods such as sophisticated

shock absorbers and visco-elastic coatings, is a partial solution to the




problem, but it cannot control all of the vibration modes. Active
control may be required to rapidly attenuate large amplitude vibration
modes.

The early history of active control research for Large Space
Structures (LSS) is well documented in Ref. 1. The authors of this
paper suggest four challenges (1:515) which face researchers in the

years ahead. These challenges are:

1. Design control systems sufficiently robust so that
errors in structural modeling can be accommodated.

2. Establish reasonably accurate structural models.

3. Develop auxiliary control laws which adequately reduce
plant excitations.

4. Establish the proper choice of control law, sensors, and
actuators to maintain the shape of a large space structure.

To address these challenges, the authors divided the field of LSS
research into structural dynamics and control theory.

The structural engineer's job is to develop a simplified
mathematical abstraction (model) of a structure. Since all of the
dynamic characteristics of a structure cannot be modeled, care must be
taken to ensure that the most important dynamic characteristics are
accurately represented in the model. A fundamental question, however,
must be asked (2:4); "What is the purpose of the model?" Will an
"exact" solution be required from a continuum model or will a lumped
mass model be adequate? Once the model is developed, verification must
be done to ensure that it accurately represents the structure.

Several methods of model verification are presented in Ref. 2.

The most common method used is to compare the model dynamic
characteristics to experimental results on the actual structure. The
large size of space structures, however, makes it impossible to test the
actual structure before it is deployed in space. Scale modeling of LSS

will be necessary if actual ground tests are to be conducted. Past
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experience (3:924) with finite element modeling in aircraft design
suggests that finite element modeling would be a useful tool to
dynamically model LSS. The system of linear differential equations
resulting from finite element analysis is readily expressed in state-
space form for use in designing the active control system.

The active control system for vibration damping of LSS generally
consists of sensors, controllers, and actuators. Prior to 1980, there
were very few LSS active control experiments (4:471). The first major
U.S. Government program, Active Control of Space Structures (ACOSS), was
started in 1978 and completed in 1984. 1In late 1989, the number of LSS
experiments (4:472) "seem to be approaching flood level."” Thig "flood
level” is the focus of Ref. 4 which surveys the literature published on
experimental LSS work accomplished during 1985-1989.

According to Ref. 4, the experience of many researchers suggests
that the actuators play the dominant role in determining the success or
failure of a LSS experiment. The type of actuators used in LSS
experiments can be used to lump the experiments into one of two distinct
categories. The first category of experiments are based on grounded
actuators. Since it is impractical to ground an actual LSS actuator,
the second category consists of those experiments using inertial

actuators.

Previous Work on the Advanced Beam Experiment (ABE)

The original concept of the ABE developed by the Wright Research
and Development Center Flight Dynamics Lab was to use four inertial
proof mass actuators mounted in pairs to control bending in two
orthogonal planes and torsion. Cristler (5) developed the actuator
controller and then demonstrated active control using a Linear Quadratic
Gaussian (LGQ) design and modal suppression techniques. Breitfeller (6)
demonstrated active control by using a low authority controller based on

root perturbation techniques and a high authority controller based on a
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frequency-shaped cost function. Both of these experiments were
partially successful.

Jacques (7) set out to resurrect the ABE in what is now known as
the modified ABE. In the modified ABE, only two of the original four
proof mass actuators were available. This limited the experiment to
controlling only XY-plane bending and torsion. To provide better
control over second and third mode bending, a structural dynamics shaker
was added. This violated the original intent of the ABE which was to
use only inertial actuators. It did, however, open the door for further

research on the ABE.

Control/Structure Optimization

The ABE represents the traditional approach to controls research.
The control engineer is given a structure and told to develop an optimal
control system to achieve some dynamic response. This approach may not
prove adequate with LSS because of the high cost of placing mass in
orbit. Since the size of LSS requires that they be constructed in
orbit, they do not have to be designed to withstand large launch forces.
An immediate cost savings can be achieved by designing very light
structures. Light structures, however, are susceptible to vibrations.
Passive damping can attenuate some of the vibrations, but active
vibration suppression will be necessary. To obtain maximum system
performance for minimum cost, an integrated approach to structural/
control optimization is necessary. Refs. 3 and 8 survey some of the
issues concerning the integrated optimization of structures and
controls. Two of the important issues in integrated design according to
(8:55-56) are, "crogs-sensitivity information” and "the choice of

objective function."




Problem Statement

There are three goals for the work presented in this thesis. The
first goal is to develop an accurate finite element model of the ABE
using MSC/NASTRAN. The model will include damping for both the
structure and the actuators. The second goal is to examine the "cross-
sensitivity" of the structure and the control system to the weighing
parameters Q and R from Linear Quadratic Regulator (LQR) theory.
Finally, two different objective functions used in the integrated
structure/control optimization problem will be examined by using

sensitivity analysis.




II. Structure

The Advanced Beam Experiment (ABE) configuration was originally
developed by the Wright Research and Development Center Flight Dynamics
Lab to model the large space structure characteristics of low frequency,
lightly damped, and closely spaced vibration modes. The structure and
its properties are presented in this chapter. The beam theoretical
equations of motion for xy-plane bending and torsion are derived and

numerical solutions given.

Structural Properties

The beam is a long, solid aluminum beam of rectangular cross-
section. It is suspended in a vertical position with a circular disk
attached to the free end. The circular disk provides a surface on which
to mount the control actuators and has approximately the same mass as
the beam. The disk provides the primary component of rotary inertia
which lowers tue first torsion mode frequency so that it is within the
control bandw.dth of the controllers. The beam is shown in Figure 2.1.
The beam and disk physical and material properties are given in Table

2.1 and Table 2.2 respectively.

Equations of Motion

The equations of motion for the beam can be derived using

Hamilton's principle. Hamilton's principle can be stated as (9:199)

t2 t2
fé(T-Ve)dt+f5Wncdt=O (2.1)
Y 4

where

T = total kinetic energy of the system.




1.797 m
{
< L

Y

s

Y e\l/ | 1.925E-02 m
-+ F
z 2.565E-02 m

Figure 2.1 Advanced Beam Experiment Configuration
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Table 2.1 Beam Properties (7:26)

Beam Property Description Value Units
Beam Length (L) 1.797 m

Y Cross-Section Width (a) 2.565 x 1072 m

Z Cross-Section Width (b) 1.925 x 1072 m
Cross—-Section Area (A) 4.539 x 1074 me
Young's Modulus (E) 7.446 x 1010 N/m2
Shear Modulus (G) 2.827 x 100 N/m?
Beam Density (p) 2.766 x 103 kg/m3
Beam Mass (m) 2.455 kg

Y Moment of Inertia (IY)* 1.526 x 1078 m?

Z Moment of Inertia (Iz)* 2.709 x 1078 m*
Torsional Moment of Inertia (J)' 3.292 x 1078 m®
Polar Moment of Inertia (Ip)* 4.235 x 1078 m?

* see Appendix A for sample calculations.

V., = potential energy of the system, including the strain
energy and the potential energy of the conservative
external forces.

éwnc = virtual work done by nonconservative forces, including

damping forces and external forces not accounted for

in V.




Table 2.2 Disk Properties (7:26)

Disk Property Description Value Units
Disk Diameter (d) 3.048 x 107! m
Disk Thickness (t) 2.540 x 107° m
Disk Mass (my) 4.986 kg
X Mass Moment of Inertia (IdnJ' 5.790 x 1072 kg-m2
Y Mass Moment of Inertia (Iﬁw)* 2.895 x 1072 kg-m2
Z Mass Moment of Inertia (Idu)* 2.895 x 1072 kg—m2

* see Appendix A for sample calculations.

5( ) = the symbol denoting the first variation, or virtual
change, in the quantity in parentheses.

ty, t2 = times at which the configuration of the system in known.

Equations of Motion - XY-Plane Bending. For a beam in bending,

shear deformation will occur as shown in Figure 2.2. 1In Figure 2.2,
a(x,t) is the rotation of the cross section and v(x,t) is the total
transverse displacement of the beam neutral axis in the y direction.

The shear angle P is defined as

B(x,t)=a(x,t)-

dv(x,t)
AL (2.2)

X
For a long, thin beam undergoing transverse vibration, however,
the equations of motion can be approximated by using the Bernoulli Euler

assumptions of elementary beam theory. These asgumptions are (9:193):




Bx,e) ~ T

< e

TN @ (x,t))

MA

P, - >

Figure 2.2 Beam Shear Deformation (9:203)

~-There is an axis of the beam which undergoes no extension or
contraction. The x-axis is located along this neutral axis.

-Cross sections perpendicular to the neutral axis in the
undeformed beam remain plane and remain perpendicular to the
deformed neutral axis, that is, transverse shear deformation
is neglected.

-The material is linearly elastic and the beam is homogeneous
at any cross section.

-0, and o, are negligible compared to o,.

-The xy-plane is the principal plane.




In addition to these assumptions, rotary inertia and gravity will be

neglected in the theoretical calculations. Equation 2.2 becomes

dv(x,t) _
g Talx, t) (2.3)

For displacement in the y-direction, the beam internal strain

energy is

ve=71£E(x)Iz(x) (a_a(a"x'_t))zdx (2.4)

and the beam kinetic energy due to translation is

L
_1 dv(x,t) 2 2.5
T ,zgp(x)A(x)(_at_) dx (2.5)

where
-E(x) is Young's Modulus.
-I,(x) is the moment of inertia about the z-axis.
-p(x) is the density.

-A(x) is the cross-sectional area.

For transverse loading, the virtual work is

L
aWnc=£p(X,t)av(x,t)dx (2.6)

Substituting equations 2.4, 2.5, and 2.6 into Hamilton's equation,
integrating by parts, and applying geometric boundary conditions gives
the equation of motion

2 2 2
E?ilE(xLH(x>f—59%fl1+p(x>A<x)9-192£l=p<x,t) (2.7)

x ax atl




and the natural boundary conditions

2,
E(x)I,(x) 37 (X t) (Xz't) | =My (E)
ox

Bv(x,t
_‘i"_l|x=,_

x>

E(x)I,(x) =Vy(t)

For free vibration, equation 2.7 reduces to

2 2
9% (E(x)I,(x) Mﬂ‘z;t_) ] +p(x)A(x)
dx® dx

Assume a solution of the form

v(x,t)=V(x)cos{wt-a)

Substituting equation 2.11 into equation 2.10

dZ
dx® dx

For a uniform beam

4
9°V(x) _ pA V(x)=0
Jx’ EI,
Let
p= pAuf
Yy "EI,
then the eigenvalue problem
4
vix) -p';V(x)=o
ax*

has a general solution of the form

V(x)=C1sin(ﬂyx)+C2cos(BYx)+C3sinh(BYx)+C4cosh(BYx)

2
4 (B(x)I,(x) iﬂ_z’il]-p(x)A(x)V(x)c.?:o

(2.8)

(2.9)

(2.

(2.

(2.

(2.

(2.

(2.

(2.

10)

11)

12)

13)

14)

15)

16)




Equationg of Motion - Torsion. Hamilton's principle can also be

used to derive the equations of motion for torsion. The potential

energy for torsion is given by (9:200-202)

L
K;%!G(x)J(x)[ﬂa’;’_t.).]zdx (2.17)

and the kinetic energy is

L
_1 a0 (x,t) .2 .
T _Ztgp(x)rp(x)[TJ dx (2.18)

where
~G(x) is the shear modulus.
-J(x) 1is a geometric property of the cross section.
—Ip(x) is the polar moment of inertia.

-B8(x,t) is the rotation at x.

The virtual work of the external forces is

L
awnc=£r(x,t)ae(x,t)dx+TL(L,t)89(L,t) (2.19)

where
-7(x,t) is a distributed moment.

-T (t) is a concentrated end moment.

Substituting equations 2.17, 2.1R8. and 2.19 into Hamilton's equation,
integrating by parts, and applying the geometric boundary conditions,
the equation of motion is found to be

3% (x,t) _ 3
3,2  Ox

% x[G(x)J(x)ﬂa"x;F_)]vr(x,c) (2.20)
t

P (%) Ip(x)




and the natural boundary condition is

E) ) | xa =My (L, E)

[G(x)J(x)ﬂ(g_‘;"_

For free torsional vibration 7(x,t) = 0, thus

F} a0 (x,t) ,_ 3% (x, t)
75 (6007 (0 DG o100 2200

For a uniform bar

oI, 2%0(x,t) _5;0%0(x,t)
at? ax?°
Assume a solution of the form
0(x,t)=0(x)cos(wt-a)

Substitute equation 2.24 into equation 2.23

2
crAe(x) +afpI ®(x)=0
dxz

and let
2 _ pIp (1)2
o
The torsional equation of motion can then be written as

2
d 0(:) +Bi¢(x) =0

dx

The general solution is of the form

®(x) =Cysin(P,x) +Cocos (B, x)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)




Numerical Solutions

The position dependent equations of motion for x-y plane bending

and torsion are again

dl.v(x) _BI‘V -

-7 (x)=0
dx* Y

de 2 _

___(2"1+px¢>(x) =0
dx

with general solutions

V(x)=A1sin(BYx)+A2cos(ﬂyx)+A3sinh(BYx)+A4cosh(ﬁyx)

& (x)=Cysin(Pyx) +Cocos (B,x)
The boundary conditions at the clamped end are
v(0,t)=0
6(0,t)=0

av(0,t) _4
— 3t

At x = L, the boundary conditions are

3%v(L, t)
V=mh_______.
Y at?
3% (L, t)
M =Id ——
X XX atz
3% [dv(x,t)

"z=Idzzs't—2[—-3x—-]

where the shear force and moments are

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

After applying the above boundary conditions the equation of

motion for x-y plane bending reduces to 2 equations and 3 unknowns while
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3
v, =51, 9V Xst) (2.39)
3
dx

ux=—GJﬂa’.‘§'_t_) (2.40)

2
=g, 3V(x, ) (2.41)

ax®

the equation of motion for torsion reduces to 1 equation and 2 unknowns.

The x-y bending plane equation of motion can be represented in matrix

form as
F(ByL)[Ar A]'=(0] (2.42)
with
A1=—A3
A2y (2.43)
F(BYL) is defined as
F11 Fq2 2.44
F ): ( - )
(ByE Fa1 Fa2

where

F11=-(ByL)%my(sin(P,L) -sinh (B L)) +LpA(B,L) (cos(B,L) +cosh(B,L)) (2-45)
F12=(ByL)?my(cos (ByL) -cosh(ByL) ) +LpA(B,L) (sin(ByL)-sinh(B,L)) (2-46)
F21=(ByL)>I; (cos (B,L) ~cosh(ByL)) -L>pA(sin(B,L) +sinh(ByL))  (2-47)

F22=(ByL)*I,;(sin(P,L) +sinh(B,L)) +L3pA(cos (ByL) +cosh(BL))  (2-48)

For equation 2.42 to have a non-trivial solution, the determinant must

be zero. The natural frequencies for bending are found by setting

2-11




detF(B,L)=0 (2.49)

solving for BYL, then using
BYL]Z[EII]E (2.50)

to solve for the natural frequencies.
After applying the boundary conditions for torsion we find c, = 0.
The equation of motion can be written as a transcendental function

. PIok
an(BxL)—TBxL)—IXX—O (2.51)

of BXL.

The natural frequencies are found from

=E[ﬂ‘; (2.52)
L pIp
Once BYL and BXL are found, the constants A;, A,, and C, can be found
from equations 2.31 and 2.32.

Equations 2.49 and 2.51 were solved numerically. The natural
frequencies of the beam without the end mass were also determined.
Table 2.3 contains the numerical solutions to the theoretical equations

of motion.
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Table 2.3 Numerical Results

Beam without End Mass

Beam with End Mass

XY Bending
M-1 6.65 2.17
M-2 41.72 28.01
M-3 116.81 76.36
M-4 228.91 138.35
M-5 378.40 240.29
Torsion
T-1 391.89 15.07
T-2 1176.00 784.25




III. Actuators, Sensors, Measurement Channel, and Configuration

The original Advanced Beam Experiment conducted by Cristler used
two pairs of linear proof mass actuators mounted on a circular disk
attached to the beam. The actuators, mounted in orthogonal axis,
theoretically allowed for simultaneous control of the beam in both
bending planes and torsion. The weight of the actuators, however,
created second and third bending modes close to the free end of the
beam. In addition, the actuators could not achieve full force output
below 5 Hz. Since the first bending mode in both the x-y plane and the
x-z plane was below 5 Hz, effective control was achieved with only the
first torsion mode.

The modified ABE conducted by Jacques used only 1 pair of linear
proof mass actuators to control first mode bending in the x-y plane and
the first torsion mode. To control second and third mode bending, a
structural dynamics shaker was added. 1In addition, improved accel-
erometers and integration circuits were used. This chapter covers the
changes implemented in the modified ABE which was used as the model for

this work.

Actuators

In the original ABE, AFWAL chose linear proof mass actuators based
(7:2.1) on a design by TRW. The actuators are linear dC motors which
use momentum exchange between the base plate and the moving mass to
provide a control force. The actuators consist of a linear motor coil
mounted on two support brackets connected to the base disk. The motor
coil is driven by a power amplifier circuit which transforms a voltage
command into a drive current. The drive current is limited to 2 amps by
a current limiter to prevent burning out the motor coils. The motor

coils drive the motor magnets which are contained in the 0.9258 kg




cylindrical proof mass. The proof mass travels on linear bearings which
allow for *1.067E-02 meters of travel. Below 5 Hz the maximum force
output is limited by the distance the proof mass can travel. For low

frequencies, the peak force can be predicted by
Fout = mgPd (3.1)

where m, is the mass of the proof mass and attached accelerometer, o is
the frequency in rad/sec of the signal driving the motor, and d is the
peak displacement., Figure 3.1 is a graph of the theoretical force
output for each actuator. BAbove 5 Hz the maximum force output of an
actuator is limited to about 8.9 N by the motor coil capability of 2
amps. Jacques (7:18) measured the actual control force available from
the actuators to control mode 1 bending. Table 3.1 gives Jacques'

measured results versus predicted results. The total force available at

100.00 —
b seaee Actuator A & B Force OQutput o
] seeee Maximum Force Qutput Due To Current Limit
80.00
60.00
g N
° ]
0 -
5 ]
[T -
40.00
b
2000
0.00 4
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00
Frequency (MHz)

Figure 3.1 Actuator Theoretical Force Ouput
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2 Hz is found to be * 2.625 N which is the sum of maximum output for

both actuators.

Table 3.1 Actuator Maximum Force Outputs at 2 Hz (7:18)

Actuator : Efficiency (%)

" B 1.606 1.299 80.9 "

The actuators are instrumented with Linear Variable Differential
Transformers (LVDT) which provide feedback of the relative position
between the proof mass and the motor base. The proof mass is
instrumented with an Endevco piezoresistive accelerometer. Figure 3.2
is a schematic of the linear proof mass actuators from Christler
(5:C.1 - C.4). Table 3.2 gives a description of each component, its

mass, and its dimensions. Tauies 3.3 and 3.4 list the center of gravity

Table 3.2 Actuator Mass Model Components (5:C.1)

Part Figure Mass Dimensions (107°m) "
Description (kg)
Length Width Height Diameter

1 Rectangular 2.49E-2 2.79 0.76 4.32 -
Plate

2 Circular 3.49E-2 11.43 - - 0.64
Cylinder

3 Rectangular 8.48E-2 2.79 0.76 4.32 -
Plate

4 Rectangular 3.49E-2 2.79 0.76 5.40 -
Plate

5 Circular 9.47E-2 13.97 - - 1.91
Cylinder

6 Hollow 51.36E-2 5.72 Inside Diameter = 0.64
Circular Outside Diameter = 5.40
Cylinder




Top View

Side View

Figure 3.2 Proof Mass Actuator (5:C.2)
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and mass moments of inertia for each component of actuators A and B.

The specifications for the linear motors, the LVDT's, and the Endevco

accelerometers are listed in Appendix B.

also given.

The power amplifier circuit is

Table 3.3 Actuator A Mass Model (5:C.3)

Part

Center of Gravity (10'2 m)

Mass Mom%?t of Inertia
kg-mz)

(10°

X

L]

=
(o]
[
~
o
.

%]
()]
(=)
o>
(=]

X

y

2

X

Y

|
177.55 5.72 10.16 0.17 0.55 0.40

177.55 -5.72 -10.16
2 176.78 0.00 -10.16 3.81 0.018 3.81 _
3 177.55 5.72 -10.16 0.59 1.87 1.36
4 172.70 5.72 -10.16 0.24 1.07 0.86
5 171.32 6.20 -10.16 15.62 0.43 15.62
6 176.78 0.00 ~10.16 40.99 33.13 40.99

Table 3.4 Actuator B Mass Model (5:C.4)
Center of Gravity (10'2 m) Mass Moment of Inertia
Part (10 ° kg-m%)
- - - I 1 I

z

1

2 176.78 0.00 10.16 3.81 0.018 3.81
3 177.55 -5.72 10.16 0.59 1.87 1.36
4 172.70 -5.72 10.16 0.24 1.07 0.86
5 171.32 -6.20 10.16 15.62 0.43 15.62
6 176.78 0.00 10.16 40.99 33.13 40.99




Initial open loop testing of the actuators by Cristler found them
to have several undesirable characteristics. These characteristics
(5:8-9) are

1. The low frequency behavior was non-linear due to several
factors. The bearing friction and associated hysteresis caused
drift of the center position. Also, the limited stroke length
would not allow for maximum force output below about 5 Hz. For
very low frequencies ( < 1 Hz), the bearing friction often
overcame the commanded force output of the actuator.

2. The zero adjustment of the power amplifier circuit
required continual adjustment, as the zero position would shift as
a function of both frequency and amplitude.

3. The open loop frequency response has a roll off and
associated phase shift in the vicinity of one of the fundamental
bending mode frequencies.

4. Non-linear bracket dynamics appeared in the region of
120-150 Hz.

A closed loop feedback system was designed to overcome these open loop
characteristics. The details of this design are completely described in
Reference 7. The overall goals (7:2-4) of the design were:

1. Actuator frequency response should be "flat" over the

structure control bandwidth. While the original ABE limited the

control bandwidth to 0 to 50 Hz, the modified experiment uses an
expanded control bandwidth of 0 to 100 Hz.

2. The actuator proof mass should maintain an inertial position

when the actuator is not being commanded.

3. The proof mass should maintain its centering when commanded at

different frequencies and amplitudes.

4. The actuator proof mass should remain within the *0.5 inch

actuator stroke limits.




The actuator compensator circuit used in the modified ABE was
identical to the circuit used in the original experiment except for
modifications in resistance values. These modifications (7:10) were
necessary for the following reasons:

1. The characterization of the open loop actuator changed

slightly. The low frequency pole shifted higher, the bearing

friction deteriorated further, and the actuators were sensitive to
environmental changes.

2. The modified ABE required a bandwidth of 0-100 Hz because the

third mode bending frequency of 60-70 Hz was included.

3. Different feedback accelerometers were used, and the

difference in the sensitivities had to be compensated for.

The details of these modifications are covered in detail in Reference 7.

The final control configuration is shown in Figure 3.3.

Pre-Filters Power Amplifier Plant
H b
E(s) 0.1(s+10) 454.5 | . _s00 | s X(s)
= By }
(s+1) F{ (8+2772)] ~ ??;ﬁs\’f’(s4zsoo) | | (s+10)
|
|
Current Feedback l
Filter 1
PN ! !
T fsv303)
|
i
Gain LVDT '
0. 8425 . ! |
I 1 5 2 f )
s z
|
Feedback | Accelerometer }
Cqmgensat1on
Filter ‘
-
| 8545.6 | 0.00z5f |
(3+606) !
| E——

Figure 3.3 Actuator Compensation Block Diagram (7:12)




Structural Dynamics Shaker

The third actuator was added to control second and third mode
bending. The actuator used was an Acoustic Power Systems (APS) Model
113-LA Structural Dynamics Shaker driven by an APS Model 114 dual mode
power amplifier. This shaker was chosen because of its long stroke
limit and excellent response in the control bandwidth. The
exceptionally flat response allowed "open loop"” operation, thereby
eliminating the feedback problems encountered with the proof mass
actuators. Since the structural dynamics shaker was physically mounted
in the laboratory, the original intent of the ABE to use inertial
controllers mounted to the beam wasg violated. 1In future experiments,
Jacques suggested (7:22) that the structural dynamics shaker should be
freely suspended. Since the goal here is to model the results of
Jacques' work, the structural dynamics shaker will be modeled as a non-
inertial controller. Details of the open loop testing are in Reference
7. Specification sheets for the shaker and the amplifier are in

Appendix B.

Sensors/Measurement Channels

One of the goals of the modified ABE was to improve the sensors
and integrator circuit. The original ABE used piezoelectric accel-
erometers which provided relatively poor low frequency responses and the
original integration circuit was susceptible to drift -aused by
integrating dC offsets or very low frequency signals. The modifi¢d ABE
used Endevco Model 2262 piezoresistive accelerometers which have a good
low frequency response. The integrator circuit used in the modified ABE
was designed by WRDC/FIBG to have negligible phase shift and a
straight -20 dB/decade magnitude slope above 1 Hz. Specifications for
the accelerometers and the integration circuit diagram are contained in

Appendix B.



Signal amplifier I Integrator amplifier 11T PC-1300
Conditioner GI=5S GII=20 Input
G=50 Channels
Beam
Acrelerometer

Figure 3.4 Measurement Channel Block Diagram (7:48)

A side effect of signal

integration was attenuation of the signal.

Amplification was necessary to boost the analog-to-digital input signal

up to the minimum range. Two
first stage was placed before
placed after the integrator.

to avoid clipping the signals

required gain was provided in

amplification stages were necessary. The
the integrator while the second stage was
Gain had to be kept low in the first stage
in the integrator. The remainder of the

the second stage. The low pass filter on

both amplifiers was set to 1 KHz. While this thesis will use velocity

feedback as shown in Figure 3.

4 to examine tne integration Ot

structure/control optimization, the control law will be implemented

using perfect sensors.




Accelerometers Signal Amplifier I Integrator Amplifier II PC-1000
Cond.
¥s > yS
y8 = v8 |
G=50 GI=5 GII=20
In
911a ylla.s,
¥11b > yilb
Compensation
Circuits
PPN . Ua
573 BN
a Ub
\ . ] :
N out
~—_
— Actuators — Power Amps
r_v‘
Uc
e

Figure 3.5 Final ABE Block Diagram (7:54)

Final Confiquration

Figure 3.5 shows the modified ABE final hardware configuration.
The hardware consisted of an inverted cantilevered beam with base plate,
two linear proof mass actuators, two linear proof mass actuator
compensation circuits, a structural dynamics shaker, four
accelerometers, four signal conditioning/integrator circuits, a PC-1000
Array processor and its host computer. Figure 3.6 shows the system
configuration for the beam with base plate, the actuators, and the
structural dynamics shaker. There are 11 positions located 7 inches
apart. The shaker is located at position 4 (28 inches from the fixed
end) and provides good control over second and third mode bending. The

proof mass actuators, shown in Figure 3.7, are mounted parallel to the
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y-axis. When they are operated symmetrically they provide control over
x-y plane bending modes and when they are operated asymmetrically the
provide control of the torsion mode. The arrows indicate positive

direction for measurement of force input.




Position

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

//////
,,,,,,,,,,,

. Accelerometer 3

%//

/////

Actuator C

%% Accelerometer 4

Actuators A and B

Accelerometers 1 and 2

igure 3.6 ABE Final Configuration (7:52)
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Sensor #1
’A
- 5.08E-2m

:
Fﬁﬁ:ﬂ N —4

Actuator A 1.02E-1m

3-13

Y
< - I 1.925E-02 m —— 3.05E-1m
fe—>| 2.5658-02 m
Actuator B 1.02E-1m
—
. — —
5.08E-2m
¥
Figure 3.7 ABE Base Plate Configuration (7:53)




IV. Finite Element Modeling of the ABE

The finite element method can be thought of as a version of the
assumed-mode method. Instead of defining a function which describes the
deflected shape of an entire structure, the finite element method
defines a shape function Y over a small region in such a way so as to
maintain the inter-element continuity of the y's for the entire
structure. A brief review of the theory from Ref. 9 for beams in
bending and torsion is presented in this Chapter. Ref. 10 contains a
more detailed discussion of finite element theory. Also included in
this Chapter is the development of the ABE finite element model using

MSC/NASTRAN.

Theory

If we assume Bernoulli-Euler beam theory, the transverse

displacements for a beam in bending can be approximated by (9:385-387)

4
vix,t)=Y ¥ (x)v(t) (4.1)

i=t

where the shape functions § satisfy the boundary conditions

W) =1, ¥40) =¥z =¥ (z) =0 (4.2)
¥2(0) =1  ¥(0) = (L) = ¥p(L) = 0 (4.3)
¥5(L) =1, ¥3(0) = ¥3(0) = ¥3(L) = 0 (4.4)
V(L) =1,  %(0) = ¥4(0) = ¥, (L) =0 (4.5)

For a beam in bending the general solution for static deflection v(x) is

the cubic polynomial




v(x) = cq + CZ(%) + c-_;(%)z + c"(%)?: (4.6)

After substituting the given boundary conditions into equation 4.6, the

beam element shape functions are found to be

w35 o3
o - - 2ufgf - ofzf
- 3fg) -l
o A ofzf

By applying equation 4.6 to the kinetic and potential energy

expressions, terms for the stiffness and mass are

L
kij=£EI‘Vi¢jdx (4.11)

L
mij=pr1|lil|!jdx (4.12)
0

Substituting the shape functions into the expressions for the stiffness

and mass results in the element stiffness and mass matrix

12 6L -12 6L

(k] = (EI 6L 4L% -6L 2L? (4.13)
-12 -6L 12 -6L

6r 2r% -6L 4r?




156 22L 54 -13L

m = | £AL) 221 4r? 13r -3r2 (4.14)
( x5! ! 54 13 136 -22L
-13r -312 -22r 4r?

The torsional stiffness and mass matrix for a beam element can be
found in a similar manner (9:388-389). The rotation along the element

is given by
0(x,t) = ¥ (x)01(t) + d(x)8,(t) (4.15)
subject to boundary conditions

¥1(0)=1, Yn(L)=0 (4.16)

¥2(0)=0, ¥p(L)=1 (4.17)
The shape functions are given by
¥(x)=1-Z (4.18)
and
Yo(x)=3 (4.19)

Substituting equation 4.15 into the torsional expressions for potential

and kinetic energy, the expressions for stiffness and mass become

L
kij = !GJllli\dex (4.20)

L
m"j=£pIp¢i¢jdX (4’21)




Inserting the shape functions from equationgs 4.18 and 4.19 into
equations 4.20 and 4.21 gives the stiffness and mass matrix for a beam

element in torsion.

(k] =(GJ [_1 '1] (4.22)

(m] =["Ip"] [2 1] (4.23)

For an undamped system, the element matrices can be formed into
partitioned system mass and stiffness matrices (9:406-407). The

matrices are partitioned into active and constrained degrees-of-freedom

U,) |Kaa K
"a + aa ac Ua]= Pa (4.24)
U.) [Kea Kecf\Ue) \Pc

for the system. For U, = 0, equation 4.24 can be reduced to

giving the equation of motion

Maa M&C
Mca MCC

MaaUa+KaaUa=P, (4.25)

plus an additional equation of reaction constraints. Since M , and K_,
are sufficient to solve for the active displacement vector U, the
second equation is not required.

Assume a solution of the form

(U)=(y)coswt (4.26)

where (¥) is a vector of real numbers and cos(wt) is a scalar

multiplier. Substituting equation 4.26 into equation 4.25 gives
[K-ofM] () coswt =0 (4.27)

For this equation to be valid for all time,




[K-’H] (§) =0 (4.28)

The solution to this equation gives the eigenvalues w. and their

associated eigenvectors.

MSC/NASTRAN 66A Solution Solver

MSC/NASTRAN solution sequence "Real Eigenvalue Analysis" (SOL 3)
was used for the preliminary modeling of the ABE. "Modal Transient
Response" (SOL 112) was used in the optimization sequence so that
initial conditions could be obtained. 1In all cases, the eigenvalue
extraction method used was the Modified Givens Method with mass
normalization. Unlike the Givens method, the Modified Givens Method
does not require that the mass matrix be nonsingular. Instead of
performing Cholesky decomposition on the mass matrix, a positive
definite matrix [K + AM] is formed where A is selected by the program to
optimize the reliability and accuracy of the eigenvalue extraction. The
Givens transformation method is used to convert the program defined [J]
matrix to tridiagonal form. A modified Q-R algorithm is used to extract
the eigenvalues from the tridiagonal matrix. The complete eigenvalue

extraction procedure is contained in Reference (11:4.2-4 - 4.2-8).

Initial Beam Model

SDRC-IDEAS was used (12) as the pre/post-processor for the
MSC/NASTRAN data file. The ABE finite element model consists of 11 grid
points, or nodes, which are connected by NASTRAN CBAR elements. The
CBAR element specifies the beam connecting nodes and references a
physical and a material property table for the element. The SPC entry
is used to specify the physical degrees of freedom for each grid point.
For the ABE model in this thesis, the fixed end has no degrees of
freedom. All other nodes are free to translate in the y-direction and

rotate about the "x" and "y" axis.




The first run model consisted of a 10 element beam without the end
disk or actuators. Results were computed in both SDRC-IDEAS and
MSC/NASTRAN and compared to the numerical calculations performed in
Chapter II. Table 4.1 gives the natural frequencies calculated by using
both programs. For the simple beam without the end disk, MSC/NASTRAN
quickly losses acciracy. This loss of accuracy for a simple
cantilevered beam using MSC/NATRAN is also shown in Reference (13:7.9).
No reason is given in the reference for such a large error in the third
and higher bending modes. The error is reduced considerably once

the base disk is attached.

Tapble 1.1 Beam Without End Disk

I Mode Numerical MSC/NASTRAN Error SDRC-IDEAS Error |
Hz Hz % Hz %
Xy-1 6.65 6.61 - 0.60 6.65 0.00
Xy-2 41.72 40.88 - 2.01 41.65 - 0.17
XY-3 116.81 112.81 - 3.42 116.44 - 0.32
T-1 391.89 353.59 - 9.77 392.40 + 0.13

The second step in the model construction was to construct a rigid
body disk in SDRC-IDEAS and attach it to the beam. A concentrated mass
model was also constructed using the inertia properties of the disk and
as expected the dynamic results were identical. As a result, the
concentrated mass model was used. Table 4.2 gives the natural
frequencies of the beam with the end disk attached using both SDRC-IDEAS
and MSC/NASTRAN and compares their results to the numerical results

obtained in Chapter II.




Table 4.2 Beam With End Disk

Mode Numerical MSC/NASTRAN Error SDRC/IDEAS Error
dz Hz % Hz %
Xy-1 2.17 2.17 0.00 2.17 0.00
Xy-2 28.01 27.92 0.32 27.99 - 0.07
XYy-3 76.36 76.17 - 0.25 76.25 - 0.14
T-1 15.07 15.05 - 0.13 15.05 - 0.13

As mentioned earlier, the disk provides the primary component of
rotatory inertia. From Table 4.2, it is apparent that the torsion mode
is now well within the 0-100 Hz bandwidth of the modified ABE. Figures
4.1 - 4.4 show the mode shape comparisons for the first three bending
modes and torsion. The top figure on each page is the mode shape of the
beam without *he end disk. The bottom figure is the mode shape for the
beam with the end disk. Notice the mode shape fcr mode 2 and 3. The
weight of the disk is causing the beam to act almost like a —inned beam
at the free end. This was noticed in earlier work (7:4) on the ABE and
was one of the reasons for poor control results for these modes. The
modified ABE uses the structural dynamics shaker to overcome this
problem.

The third step was to add the actuator non-moving mass components
to the beam. Tables 3.2, 3.3, and 3.4 contain the mass and inertia
properties of the actuator components. Once again, these were added to
the finite element model as concentrated masses with inertial
properties. The results of this step are listed in Table 4.4. This
step is referred to by Jacques as the "clean configuration.”

The final configuration includes the actuator mass. This
configuration was not developed in SDRC-IDEAS. The natural frequencies

for this configuration are presented in a later section in Table 4.4.
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Figure 4.1 Mode 1 Bending For Beam and Beam With Disk
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Figure 4.2

Mode 2 Bending For Beam And Beam With Disk
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Mode 3 Bending For Beam And Beam With Disk
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Figure 4.4 Torsion Mode For Beam And Beam With Disk
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Table 4.3 Clean Configuration

Mode MSC/NASTRAN (Hz) SDRC/IDEAS (Hz) |
Xy-1 2.08 2.08
XY-2 27.74 27.81
Xy-3 74.20 74.29
T-1 14.14 14.13

Model Verification

Even though the ABE is a very simple structure, the finite element
model created in MSC/NASTRAN still contains modeling errors. The
equations of motion from the finite element model only represent a
mathematical model of the real structure. The goal in modeling is to
match as closely as possible the behavior of the physical structure in
the realm of interest. The realm of interest for the ABE is the dynamic
behavior of the first three bending modes and the first torsion mode.

Convergence. To determine if 10 elements were sufficient, 10 beam
models were created with different numbers of elements to test for
convergence of the natural frequencies. Table 4.4 contains the results

of this test.

Table 4.4 Convergence Test Results

Beam - Xy-1 Xy-2 XYy-3

Number of

Elements
B-2 2.174 28.182 79.088 15.045
B-3 2.174 28.029 76.848 15.045
B-4 2.174 28.000 76.447 15.045
B-5 2.174 27.992 76.333 15.045
B-6 2.174 27.989 76.290 15.045
B-7 2.174 27.988 76.271 15.045
B-8 2.174 27.987 76.262 15.045
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Beam -
Number of
Elements

B-9 27.987 76.256 15.045
" B-10 27.986 76.253 15.045
B-35 27.986 76.246 15.045

Numerical

Error B-10
(%)

The finite element model converges from above to a solution below
the numerical results. For the 10-element beam, the accuracy is quite
good for the first three bending modes and the first torsion mode.

Effects of Shear Deformation. The theoretical model was based on

Bernoulli-Euler beam assumptions. These assumptions neglected shear
deformation and rotatory inertia. From (9:204), the theoretical
equation of motion for a short, stubby beam (Timoshenko Beam Theory)

which includes these effects is

4 2 4
grdv - [p - pAﬂ] - {pI ‘32" 5
ox at dxot (4.29)
2 2 2 2
1 e
a at at Jat

The first term in brackets is from Bernoulli-Euler beam theory. The
principal rotatory inertia is in the second term while the principal
shear deformation is in the third term. The fourth term includes
combined rotatory inertia and shear deformation. SDRC-IDEAS accounts
for the effects of shear by the definition of a shear area ratio term.

The shear area ratios are defined in SDRC-IDEAS to be (12:2.18)
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Results from the l0-element beam model were computed with and without
the effects of shear. Table 4.5 presents the results of these
computations. The data suggests that the Bernoulli-Euler assumption was
a good assumption. For the final model, however, the effects of shear

and rotatory inertia will be included.

Table 4.5 Effects of Shear

Mode B-10 W/O Shear (Hz) B-10 With Shear {(Hz) Comparison (%)
Xy-1 2.174 2.174 0.00
Xy-2 27.993 27.986 -0.03
Xy-3 76.280 76.2406 -0.04
T-1 15.045 15.045 0.00

Comparigson With Modal Tegt Data. The final "test”™ of the

mathematical finite element model is to compare it to experimental data.
In structural dynamics modeling, finite element analysis and modal
analysis take different approaches to obtain a system model (14:86).
Modal analysis mocdels are derived experimentally while finite element
models are derived mathematically. This difference makes modal analysis
a good check of the finite element model. Jacques performed modal
analysis on the ABE to determine its response to vibration. Table 4.6
gives the comparison between Jacques modal analysis model of the final
configuration (7:39) and the MSC/NASTRAN finite element model with
actuators and disk. One reason for the large difference in second and
third mode bending may be because displacements in the x-direction were
constrained in MSC/NASTRAN. Another reason for the difference is
because of the exclusion of the actuator dynamics from the finite
element model. The section on damping will address the actuator

dynamics.




Modal Transformation

The finite element model equation of motion which includes the

mass, stiffness, and damping matrices as well as the control inputs is

Table 4.6 Final Configuration Model Comparison

Mode Jacques Modal Test (Hz) MSC/NASTRAN (Hz) Error (%)
Xy-1 1.97 1.93 - 2.03
XY-2 23.43 27.74 + 18.40
XY-3 62.92 73.62 + 14.53
T-1 13.35 13.07 - 2.10
[(m1(g) + [€1(4) + [k](q) = [b}(u) (4.34)

where q is a vector of generalized coordinates, [b] is the control input
distribution matrix, and u is a vector of control forces. Assuming that
only the first two bending modes and the first torsion mode are present
in the response, then g is a 3x1 vector and the generalized coordinates

are defined as

gl = displacement of node 11.
g2 = rotation of node 11.
g3 = displacement of node 5.

In terms of the physical coordinates, the generalized coordinates are

q1 = -;-('Yﬂa + ¥Y11b) (4.35)

1
22 = 5 (Y112 * Y1) (4.36)
g3 = ¥s5 (4.37)

In terms of the generalized coordinates, the measured coordinates are

then




Y11a = ~d1 *+ 42 (4.38)

Pip = d1 * 42 (4.39)

Y5 = g3 (4.40)

If we assume the modes are uncoupled and assume modal damping, equation
4.34 can be decoupled by using modal coordinates n and the modal matrix

of right eigenvectors & to define a transformation such that

(q] =@ [n] (4.41)

where the eigenvectors have been normalized such that
o' (m)® = [M] = [I] (4.42)
Equation 4.34 can then be written as

() + [(2¢@)(H) + (F](n) = @"[b](u) (4.43)

th element represents

The matrix [2{w] is a diagonal matrix where the i
damping for the it mode. The matrix [mz] is a diagonal matrix where

the diagonal entries are the eigenvalues for equation 4.43.

Damping

Damping is inherent in any structure, but predicting how much
damping is in a structure is difficult. Modal testing provides a good
approach to help understand the effects damping has on a structure.

From modal analysis data, Jacques estimated how much damping was present
in the ABE. Table 4.6 gives the experimentally determined damping
values for both the "clean configuration" and the final configuration

with actuators attached. The viscous damping factor { is the ratio




c/ccr

where c . is the critical damping factor. For large space

structures, the damping factor is typically very small.

By including the actuator damping with the beam damping, the

stability effects of the actuators cannot be determined. Inman (15:508-

Table 4.6 Modal Analysis Damping Values (7:39,41)

Mode Clean Configuration ({) Final Configuration ({)
XY-1 0.00129 0.0640
Xy-2 0.00375 0.0236
XYy-3 0.00086 0.0121
T-1 Not Determined 0.00839

—— Actuator Mass

Nonmoving Mass of
the Actuator

Structure

ka = Actuator Stiffness
ca = Actuator Damping
fa = Actuator Force

Figure 4.6 Simple Model of Actuator Dynamics (15:508)
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513) shows the effects of actuator dynamics on the overall system
stability. Figure 4.6 shows a simple model of the actuator dynamics.
If actuator dynamics are neglected, the mathematical "answer" to how
much velocity feedback gain should be added to achieve a desired
response is as much as is necessary. Inman presents examples which show
how the system can go unstable as the gain is increased. When the
actuator dynamics are introduced in the single-degree-of-freedom model
shown in Figure 4.6, the [C] and [K] matrices in the equations of motion
become coupled. 1If velocity feedback is used like it is in the ABE, the
(C] matrix becomes coupled and unsymmetric. This limits the amount of
gain that can be added before the actuators cause the system to
destabilize.

Since this thesis is modeling the modified ABE, actuator damping
will be treated as viscous modal damping. Proportional, or Rayleigh,

damping can be used to model the damping where

(C] = a[K] + B[M] (4.44)
Matrix [C] is an orthogonal damping matrix (10:377) because it permits
modes to be uncoupled by the eigenvectors associated with the undamped
eigenvalue problem. The damping ratio is related to the stiffness and

mass proportional damping constants a and B by
¢ = %(aﬁn %) (4.45)
a and B can be found in terms of o and { by
2 2
a = 2({pwp-{ o) / (wy-ay) (4.46)

B = 20y0p(1wp-Cown) / (5-a}) (4.47)

Using data in Table 4.6, a = 2.2072E-04 and B = 1.5219. The graph for

0 < v < 400 rad/sec is shown in Figure 4.7 where the Rayleigh damping




curve is the sum of the mass proportional damping curve and the

stiffness proportional damping curve.
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Figure 4.7 Rayleigh (Proportional) Damping Model

Initial Conditions

Structures are normally designed to withstand some given design
conditions. When the design conditions are applied, dynamical systems
will exhibit a response. This response is needed as initial conditions
for each structural iteration in the structural/control optimization.
Miller, Vipperla and Venkayya (3:928) demonstrated that it is not
adequate to specify the initial response conditions for a structure
being optimized and then hold these constant for the iteration process.

Ag the structural property is varied (cross-gectional area) in the




optimization process, each iterated structure will exhibit different
initial conditions. Therefore, it is necessary to specify the design
conditions, such as the applied lcad, and then soclve for the initial
conditions for each iteration of the structure.

An impact load was included in the MSC/NASTRAN finite element
solution process. To obtain the initial conditions, the TLOAD data
entry is used to specify a load table TABLED1l and a scale factor entry

DAREA. The equation for the force input in MSC/NASTRAN is

P(t) = A[F(t-T1)] (4.48)
where the time delay 7=0. The scale factor A was selected to be 1000 N.
The load table is shown graphically in Figure 4.7. The table is shown
graphically to illustrate how MSC/NASTRAN reads input tables. 1If the

three points at t=0.001, t=0.002, and t=0.003 where the only points
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Figure 4.8 MSC/NASTRAN Force Area Chart

4-21




specified, an infinite load would be applied. This is because
MSC/NASTRAN extrapolates tables. Since no value is specified after
£=0.003, the slope from t=0.002 to t=0.003 would be continued after
t=0.003. To prevent an infinite load, values of zero must be specified
on both sides of the load. The initial conditions for the
structure/control optimization were chosen at t=0.003. This has the
effect of "turning on" the control system at t=0.003. The ABE undamped
and damped response to the initial conditions are shown in Figures 4.9

and 4.10.
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Figure 4.9 Response of Undamped ABE to Impulse Force







V. Control Theory

The state-space formulation is detailed in this Chapter. LQR

theory and the selection of the Q and R weighing matrices are presented.

State—~Space Formulation

After normalizing the eigenvectors with respect to the mass
matrix, the linear differential equations of motion from equation 4.43
~an be written in state-space form. The standard state-space format for

the state equation is

(#]=A[x]+B[u]+(w] (5-1)
where the state vector is
[%17=[n1,n20 M3, 1, M2, 3] (5.2)
and the input vector is
[u]T=[Fa, Fg, Fc) (5.3)

The plant matrix A and the input distribution matrix B are

0 I

A= (5.4)
-f 28w
B= © (5'5)
Y
and [w] is a process noise or input disturbance vector.
The output equation can be written as
[y)=C[x)+D[u]+[v] (5.6)




]

The output distribution matrix C is

c=[Cp2|Cy2] (5.7)

where the partitions C, and C, are the position and velocity sensor
distributions respectively. The matrix D allows the output variables to
be controlled by [u] while [v] is a measurement noise term. The
schematic of the state-space model is shown in Figure 5.1.

This thesis will assume that the plant disturbance or process
noise term [{w] is negligible. 1In addition, the sensors are assumed to
be perfect and there is no control over the output vector. The implies

that (v]=0 and D=0. The input distribution matrix [b] is defined to be

-110
p<{1 10 (5.8)
0 01

Since position feedback is not used, C,=0. C, is given by

110
c1 10 (5-9)
001

thus, for collocated sensors and controllers, B=Cc'. The final state-

space formulation is
[#]=A[x]+B[u) (5.10)

(y1=Clx] (5.11)

Linear Quadratic Requlator Theory

Ref. 16 covers LQR theory (16:6.1-6.9) in detail. A brief review
of the theory is presented.

If full state feedback is used, the control input can be defined

as a linear combination of the state variables

that make the closed-loop system
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Figure 5.1 Control Schematic (1:519)
u(t)=-Kx(t) (5.12)
:é(t)=Ax(t)+B[-KCX(t)] (5.13)
X(t) = [A-BK ]1x(t) (5.14)

asymptotically stable. The control gain X, can be found by minimizing
the performance index

[ 4

Jc=£[xT(t)ch(t)+uT(t)Rcu(t)]dt (5.15)

where Qc and Rc are symmetric, real, positive definite matrices chosen
by the design engineer according to the importance of the state and of
the controls. From (16:6.1-6.2), this can be interpreted as "we wish to

find a control law u(t) such that the integral-squared-error of the




deviation of the state trajectories from their nominal are kept small
without using a great deal of control energy." From optimal control
theory, the gain matrix K, in equation 5.12 which minimizes equation

5.14 is given by

KC=RC'1BTS (5.16)

where S is the solution to the algebraic Riccati equation

A"s+sa-sBR]'B"s+0 =0 (5.17)

Since position feedback is not used for this work, however, the gain
matrix K. is not guaranteed to be optimal. This is the basis of a
Linear Quadratic Regulator.

Generally, the state variables cannot be measured directly. An
estimator is required to reconstruct the states from the sensor outputs.

The estimator has the form

[R)=A[%]+B[u] +K,[y~7] (5-18)

[7]1=C(%] (5.19)
where [x] and [§] are the estimated state vector and the estimated
output vector. The observer gain K, must be chosen so that the error
defined by

(el=[x]-[x] (5.20)
is stable. Since the state vector is not available, the control input

is also bhased on the estimated state vector

[u)l=-K,[ %] (5.21)

Ko is selected to minimize the estimator cost function




@

Jo=£[xT(t>oox(t)+y‘(t)Rmt)1dt (5.22)

where Q  represents the process noise covariance and R, represents the
measurement noise covariance. This is the basis of a Kalman filter.
When a Kalman filter is added to a Linear Quadratic Regulator, the

result is a Linear Quadratic Gaussian compensator.

Force Actuators Flexible System Sensors
——» BN S i Controlled [ o I S
Dynamics

> BR , Residual
Dynamics
-
o e Active Controller |

N = Controlled Modes
R = Residual Modes

Figure 5.2 Control and Observation Spillover (17:425)

If residual modes are present, they will result in spillover.
Figure 5.2 shows a schematic of spillover. If the sensor outputs are
contaminated by the residual modes through Cp, the effect is known as
observation spillover. 1If the control actuatcrs are excited by the
residual modes through B;, the effect is known as control spillover.
The effects of spillover can be detrimental. Calico and Janiszewski

(18) showed that eliminating either observation or control spillover was
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sufficient to ensure stability of the suppressc<d modes. Jacques (7)
attempted to demonstrate modal suppression on the ABE by eliminating
observation spillover. The results achieved while trying to suppress
bending mode 2 were partially successful. The reason for the partial
success was attributed to the estimator model. Balas (17:421) presents
two estimator designs. The first is based on the Kalman filter. The
Kalman filter is used by Balas if the system signal-to-noise ratios are
not very high. If the system signal-to-noise ratios are sufficiently
high, the system is treated as deterministic and the estimator used is a
Luenberger observer. The reason for this is the estimator error term in
equation 5.19 will contain additive noise terms with the Kalman filter
but these terms are absent with the Luenberger observer. Since system
noise was attributed in part to poor estimator performance, additional
work on the ABE should examine the effect of estimator choice on the
control model.

For the integrated structure/control optimization procedure
implemented in this thesis, it is assumed that the state is completely
observable. LQR theory will be used as the optimal control law without
the introduction of a Kalman filter. MATLAB uses eigenvector
decomposition of an associated Hamiltonian matrix to solve the LQR
problem (19:CR-38,CR-39). For convenience, the "c" and "o" subscript
will dropped. Parameters used for the remainder of this work refer to

the controller.

Choice of Weighing Matrices Q and R

In the past, an optimized structure was given to a control
engineer to design an optimal control system. The engineer selected Q
and R subject to the importance of the state or the control system so
that a desired dynamic response was achieved. Venkayya and Tischler
(20:433-434) have proposed that the selection of Q and R should not be

arbitrary, but that their selection should ensure that the cost function




J provides a measure of some appropriate physical quantity, such as
total system energy.

From Chapter IV, the finite element equation of motion is

mg(t)+cg(t)+kq(t)=bu(t) (5.23)
If J is defined as

J= f [8,d'mg+0,q kg +8u"b k Tbu}dt (5.24)
0

for positive scaling parameters 6, 0,, and 0,, then J is the absolute
sum of the kinetic, strain, and potential energies. Total system energy
is thus minimized to satisfy the LQR control law. Considering the modal
coordinate transformation 4.41 and the mass normalization 4.42, Q and R

can be written as

8, O
= TI ) (5.25)
Y ek[“)i]
R=[6Rb’k“b] (5.26)
For the optimization in Chapter VI,
6m=0k=60 (5-27)




Vi. 1Integrated Structure/Control Optimization

This Chapter introduces the structure/control optimization
procedure. The effects of Q/R selection on the control system
specifications are examined. In addition, two optimization approaches
are presented. The first approach i~ based on minimizing mass and total
system energy. The second approach, Onada‘'s method, develops a
relationship between control system energy and control system mass. The
combined mass of the structure and the control system are then
minimized. Finally, the RABE is optimized using the constraints of the

existing control system.

Optimization Algorithm

The combined optimization of a structure and its control system
can be divided into three distinct phases as shown in Figure 6.1. BAn
initial structure is specified to start the first phase. A finite
element program is used to solve for the eigenvalues and eigenvectors of
the structure. With the eigenvalues and eigenvectors determined, the
plant matrix [A) can be constructed for the state-space equations. The
state-space equations are used in the second phase to solve the optimal
control problem. Depending on the output from the second phase, the
third phase would use an optimization procedure to determine a
"direction" to iterate the first phase input parameters.

This thesis will not use a true optimization procedure. Instead,
a range of structural parameters will be used in a form of "sensitivity
analysis." The structural parameter which is varied is the cross-
sectional area. To maintain a proportional cross-section, the side
dimension "b" is defined in terms of "a" based on the current ABE. "a"
is then varied in 10% increments. Table 6.1 lists the cross-sectional

areas and the moment's of inertia for the 17 beam iterations. Figure
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6.2 shows the linear relationship between the structural mass and the
crogs-sectional area.
The finite element procedure outlined in Chapter IV was used for

each of the design iterations. The output obtained from MSC/NASTRAN

included:

1. The natural frequencies.

2. The mass normalized eigenvectors.

3. The [k] matrix.

4. The initial conditions subject to a 1000 N force.

Table 6.1 Structural Iteration Properties
Number | Area (m?) I, (n®) I, (m%) J (m%)

1 7.900E-05 3.903E-10 6.930E-10 8.426E-10
2 1.234E-04 9.530E-10 1.692E-09 2.057E-09
3 1.778E-04 1.976E-09 3.508E-09 4.266E-09
4 2.419E-04 3.661E-09 6.500E~-09 7.903E-09
5 3.160E-04 6.245E-09 1.109E-08 1.348E-08
6 3.999E-04 1.000E-08 1.776E-08 2.160E-08
7 4.938E-04 1.525E-08 2.707E-08 3.292E-08
8 5.975E-04 2.232E-08 3.964E-08 4.819E-08
9 7.110E-04 3.162E-08 5.614E-08 6.825E-08
10 8.345E-04 4,.355E-08 7.732E-08 9.401E-08
11 9.678E-04 5.857E-08 1.040E-07 1.264E-07
12 1.111E-03 7.719E-08 1.370E-07 1.666E-07
13 1.264E-03 9,.993E-08 1.774E-07 2.157E-07
14 1.427E-03 1.273E-07 2.261E-07 2.749E-07
15 1.600E-03 1.601E-07 2.842E-07 3.455E-07
16 1.782E-03 1.987E-07 3.528E-07 4.290E-~07
17 1.975E-03 2.440E-07 4.331E-07 5.267E-07
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Figure 6.2 Mass versus Area

The control optimization phase was solved using MATI.AB. A MATLAB

.M file (Appendix D) was written to apply Linear Quadratic Regulator

theory to the finite element output data. The MATLAB .M file produced

data files containing the following information:

1. The
2. The
3. The
4. The
5. The
6. The

7. The

optimum gain matrix K.

Riccati solution matrix S.

cost function J.

initial control force for each actuator.
control energy function C.

closed-loop damping ratios.

closed-loop frequencies.

Each iteration was performed using Q and R values as defined is Chapter

V as well as constant Q and R values. In addition, a weighing value was

applied to the Q and R values to determine the effect weighing has on

the optimization.

The basic nomenclature scheme used is




Q ## Variable Q as defined in Equation 5.25

R ## = variable R as defined in Equation 5.26
QI ## = Constant Q as defined in Equation E.1
RI ## = Constant R as defined in Equation E.2

The first # in the scheme represents the weight applied to Bq. The
second # represents the weight applied to 68,. The weighing #'s used
were combinations of 1.0 and 0.3. Table E.l1 in Appendix E provides the
weighing used in the optimization.

The final phase of the combined optimization procedure uses data
from the second phase to select a search direction in which to vary the
input structural parameters. As mentioned earlier, a search direction
is not used. Instead, a range of structural parameters are used to
chart the effects of the various optimization methods. The data needed
from the second phase depends on the optimization method chosen. 1In the
following sections, the cost function J and the control energy function
C are used. Other methods contained in the literature have demonstrated
the use of the initial control force, the closed-locp damping ratios,
and the closed-loop eigenvalues to find a search direction to iterate

the structural parameters.

Relationship of Q and R Selection To Control Response

To show the effects of Q and R selection on the optimization
process, viscous damping from the structure and actuators will be
neglected. With viscous damping neglected, only damping from the
velocity feedback control law will effect the system. Figures 6.3 and
6.4 show the simulated undamped response of beam iteration #1 and #17
to the applied impulse force. The measurements are taken from positions
lla, 11b, and 5 on the beam.

From the velocity feedback control law, damping is added to the

closed loop response. The amount of damping depends on the gain K which




is selected by LQR theory. The closed-loop plant matrix from equation

5.14 is repeated here.

Ac, = [A - B*K] (6.1)

The effect of selecting Q and R by Equations 5.24 and 5.25 on control
theory is to keep the closed-loop damping ratio and the percent
overshoot constant throughout the structure/control iteration. Figures
6.5 and 6.6 show the closed loop damping ratios and the percent
overshoot for Q and R selected by Equations 5.24 and 5.25. Figures 6.7
and 6.8 show the damping ratios and the percent overshoot when Q and R
are held constant. From these figures, it is easy to see how the
weighing parameters 0 on Q and R can be selected to achieve a desired

control response. If we pio. the damped closed-loop frequency versus g

&)
o
p

T L e L

Figure 6.3 Beam #1 Undamped Response
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Figure 6.4 Beam #17 Undamped Response

= (mn , we see in Figure 6.9 that when the Q and R values vary, a
negatively sloped line is produced in the s-plane which is indicative of
maintaining a constant overshoot requirement (21:61). A constant
settling time requirement, on the other hand, would produce a vertical
line in the s-plane. With Q and R held constant, Figure 6.10 shows a
slope slightly right of a vertical line.

The settling time can be found from (21:61)

A3

tg =
for a settling-time specification of 1%. The settling time is plottea
in Figure 6.11 for Q and R which vary and Figure 6.12 for Q and R held
constant. The settling time starts out high but then decreases for the
Q and R which vary. The settling time gradually increases for the

constant Q and R.




Figures 6.13 ~ 6.16 show the initial control force required from
each actuator for each iteration. 1In order to maintain a constant
percent overshoot, more force is needed as the structure gets heavier.
This is shown for actuator A in Figure 6.13 and for actuator C in Figure
6.14. When a "constant" settling time is desired, more control force is
needed as the structure gets lighter. This is shown in Figure 6.15 for

actuator A and in Figure 6.16 for actuator C.

Optimization Using Cost Function J

The optimization of space structures can be formulated (8:63) as

minimize m(v)

such that gj(v) =20, 3 =1, ...,n

where [(v] is a vector of structural sizes, and m is the structural
objective function, typically mass. The function gj(v) represents
constraints on the structural design. To integrate structural
optimization with the control system design, the mass objective function
can be combined with the control quadratic performance index J, so that

the optimization becomes (3:928)

minimize
m® = qum(v) + g (K,v) (6.3)
such that gj(v) > 0, j =1, «-erny
hi(K,v) > 0, i =1, RS
where h are constraints on the closed-loop control system. For

numerical optimization, the gradient of m' is required. Miller and Shim




(22:292) present a numerical optimization solution technique to solve
equation 3.
Values of J versus cross-sectional area are plotted in Figures

6.17 - 6.20 for the different weighing parameters 6 on Q and R. Figure
6.17 shows the J values plotted for Q and R selected by equations 5.24
and 5.25. These J values were computed without viscous damping ({ = 0).
To show the effects of damping on the J values, Figure 6.1i8 uses the
same Q and R values but includes viscous damping. For the lighter
structures, the total minimum energy J increases significantly. Figure
6.19 is a plot of J for the undamped structure when Q and R are held
constant. Figure 6.20 is the same plot except the effects of damping
are included. When Q and R are held constant, damping inherent to the
structure does not have much effect on the minimum system energy as
shown in Figure 6.19 and Figure 6.20. The reason for this can be seen
in Figures 6.15 and 6.16. For fixed Q and R, the control system expends
more energy to quickly dampen out vibrations for the lighter structures.
Even though more control energy is expended, the total system energy is
less because the control system does not allow the structure to vibrate
long enough to dominate the total energy.

From equation 6.3, the optimal value for m" is clearly dependent
on the choice of q; and g,. How do we select g, and g, when J(K,v)
represents total system energy and m(v) represents structural mass?
Clearly the units of energy and mass are incompatible, but the
literature avoids this question. Presumably in the design process, q,
and g, would be design values which are adjustable. q,, for example,
could be a measure of mass/energy for a given control system. On the
other hand, it may not matter. Since this is multiobjective
optimization, g, and g, are weighing parameters which may simply be
selected by decision makers to achieve some overall goal.

Figure 6.21 and Figure 6.22 show the optimization of m(v) and

J(K,v) for (g, = 1, g, 100), and (g, = 1, g, = 385), respectively. For




q; = g, = 1.0, the mass dominates the optimization and the curve slopes
up to the right with no minimum. For q; = 1.0 and g, > 1000, the
control systen dominates and the curve slopes dowu vo the right with no
minimum. Somewhere in between the two extremes is an optimal value for
q, and q, of whose selections are another nested optimization problem.
g, = 385 was selected to show a trend. As q, is increased, the minimum
m"” moves to the right. The same observation can be made on Figures 6.23
and 6.24 except that a higher value of q, is required for the system

energy to influence the curve minimum.

Optimization Using Onada's Formulation

Haftka (8:64) points out two shortcomings of the above procedure.
First, the effect of the control system on the mass of the structure and
the structural const:raints is neglected. Second, the Q and R matrices
are somewhat arbitrary and are tuned by the control engineer to achieve
the desired dynamic response. It is therefore unreasonable to select
them before the optimization procedure starts and then leave them
unchanged. Problems with the meaning of q, in the equation for
minimizing the mass and total system energy were discussed above.
Onada's formulation provides a physical meaning in a format which can be
modeled. By selecting Q and R from equations 5.25 and 5.26 which allow
them to vary, the second shortcoming that Haftka points out with the
above procedure is satisfied.

Onada‘'s formulation assumes (8:64) that the mass of the control

gsystem is related to the control effort as
me = a(cg)P (6.4)

where a and B are constants and C¢ is the quadratic measure of the

control effort
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CE = UOTRUO (6'5)

The optimization problem is to minimize the total mass of the system
subject to a constraint on the magnitude of the response. The total
mass of the system is the sum of the control mass and the structural

mass. The response of the system is
r =xoTQx0 (6.6)

The optimization problem is formulated as:

Find [v] and [K] to minimize

m = mg(v) + m(v,K) (6.7)

subject to the constraint r{v,K) < o where o is the response magnitude
allowable.

For a beam structure, Onada and Haftka showed (23:1136) that as
the mass of the beam was decreased, the mass of the control system
became very large in order to control the vibration modes in the lighter
structure. This was also demonstrated for the ABE optimization when the
values of Q and R were held ccnstant.

Figure 6.25 is a plot of the C values for the undamped structure
when Q and R vary. The ene:gy oif the control system remains fairly
constant. 1In Figure 6.17 then, the sharp increase in J for the lighter
structures can be contributed to the increase of structural kinetic and
strain energy. Figure 6.26 shows the effect of damping on the C values.
When Q and R are held constant, the control energy increases as the
structural size decreases. This is shown in Figures 6.27 and 6.28.

Once again, structural viscous damping does not effect C significantly.

Figures 6.29 - 6.32 show the plot of equation 6.7 where m.(v,K) is
determined by equation 6.4 for a = 50 and § = 1. Figures 6.25 and 6.26
are for Q and R which vary. Since C remains fairly constant when Q and

R vary, the optimal choice for m is the smallest structural size which




satisfies any given structural constraints. When Q and R remain
constant, however, C becomes large as the structural size of the beam is
decreased. The optimization formulation of equation 6.7 produces a
minimum on Figures 6.31 and 6.32 for a = 50. The total mass of the
system increases significantly for the smaller structural sizes as shown
by Onada and Haftka. This is reasonable since a larger control would be

required to provide the higher energy levels.

Comparison of Optimization Methods and Q/R Selection

The direct relationship shown in Figures 6.5 - 6.14 to control
specification parameters gives an indication of how to select Q and R
and their weighing parameters. To maintain constant overshoot and
closed-loop damping requirements, Q and R are chosen by Equation 5.24
and 5.25. The weights on Q and R are varied to select the control
response desired. For a near constant settling time, O and R can be
fixed with minor adjustments to their weighing parameters.

The effect on the control system is shown in Figures 6.33 to 6.37.
Comparing beam #1 in Figures 6.33 to 6.34, more initial actuator force
is required when Q and R are held constant to achieve a constant
settling time. When Q and R vary, the initial actuator force is smaller
but the time interval over which it is applied is longer. For actuator
A, the square-root of the squared forces for both Q/R selections are
plotted in Figure 6.35 to compare the force magnitudes with their
applied time intervals. As the structure gets larger, more control
force is required to maintain a constant overshoot and closed-loop
damping ratio. Figure 6.36 shows this increase in initial force when Q
and R are varied. For the larger structure, less initial control force
is needed to achieve a constant settling time as shown in Figure 6.37.

It is interesting to examine the structural response to these
control inputs. Figures 6.38 and 6.40 compare beam #1 and beam #17 when

Q and R are varied. 1In Figure 6.40, the structural response is damped




out very quickly to maintain the overshoot requirements. The response
in Figure 6.38 is allows to vibrate for some time (3+ sec) because the
overshoot requirement is not violated. Figures 6.39 and 6.41 compare
beam #1 and beam #17 when Q and R are held constant. In both cases, the
vibration is damped out in less than 1 sec. Less control input is
required to achieve this response, however, because of the increased
damping present in the larger structure.

It is also of interest to compare the J and C values for the
different Q and R selections. Figures 6.42 and 6.43 are plots of J
versus area and C versus area, respectiv=ly, for both choices of Q and
R. The total system energy starts out lower when Q and R are fixed than
when Q and R are varied. At some point on the curve, the total system
energy becomes less when Q and R are varied. The same pattern emerges
in Figure 6.43 when we compare C values except that the trend is
reversed for the Q and R selection. Notice that the cross-over point
for J and C values are not the same. At the point of cross-over on the
J curve, our expected value for C is less for the case when Q and R are

constant.

Selection of Structure By Sensitivity Analysis

A true optimization was not performed on the ABE, but we can use
the trends presented in this Chapter to examine the current ABE
gtructure. Since the values of a and § are not known for the ABE, the
minimization of the total system energy will be used.

From Chapter III and Appendix B, the limits on the proof mass
actuators and the structural dynamics shaker can be found. These limits
are

Actuators: 8.9 N * 80% = 7.12 N each

Shaker: 45 N




In addition, the actuators are limited to the bandwidth 0-100 Hz,.

Figure 6.44 shows the initial control force required for actuator A (and
B) for the different parameters 0 when Q and R are varied. Figure 6.45
shows the initial control force required for actuator C under the same
conditions. A constraint line based on the above limits is drawn on the
diagrams.

The plot of equation 6.3 with q; = 1.0 ana g, = 385.0 is shown in
Figure 6.46. For the top three curves, there are two minimums on the
graph. Which minimum to select depends on the limits of our control
system. From Figures 6.44 and 6.45, we see that the QO/RO and the QO0O/R3
curve require initial control forces beyond the limits of our actuators.
The required initial control forces for Q3/RO are within our limits.
Q3/RO is selected as the minimum. For the selection of g, = 1.0 and
g, = 385, the minimum for happens to coincide with the existing ABE
structure. A plot of the required controller response is shown in
Figure 6.47 and a plot of the structural response is shown in Figure
6.48. Of course other 8 and q; parameters for the ABE will also produce
minimums within the limits of our controllers. These parameters can be
adjusted to determine a control law which produces the desired system
response with the limits of the control system. The control law for

Q3/RO is presented in Appendix F.
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Percent Overshoot - Q/R Vary (Undamped Structure)

Figure 6.6.
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Figure 6.7.
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Settling-Time - Q/R Constant (Undamped Structure)

Figure 6.12
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Figure 6.19 J Values - Q/R Constant (Undamped Structure)
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Figure 6.20 J Values - Q/R Constant (Damped Structure)
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Equation 6.3 - Q/R Constant (q, = 1.0;q2 = 100.0)

Figure 6.23
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Figure 6.27 C Values - Q/R Constant (Undamped Structure)
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VII. cConclusions and Recommendations

Conclusions

Our goal is to place large structures in space. Both NASA and DOD
are working on systems to be launched by the year 2000. If we are to
realize this goal, we must explore every avenue to limit the economic
costs. The cost of launching large structures into space will dominate
the overall system cost. Since lannch costs are driven by weight,
reducing the weight of our structures will help keep them within our
economic limits.

The purpose of this work was to model an existing structure and
then to examine the structure/control optimization process. Since
weight reduction was desired, two optimization processes were selected
which minimize mass. The first method optimized the combined mass of
the structure and the total system energy of the structure and the
control system. The second method related the mass of the control
system to the required control energy, then optimized the mass of the
control system and the mass of the structure. Both methods proved
successful, but each method resulted in different optimized structures.

The reason for the difference can be linked to the selection of Q
and R. When Q and R are allowed to vary, the effect on control theory
is to maintain a constant percent overshoot. For the lighter
structures, a smaller control system can prevent the system from
exceeding the overshoot specification. However, the smaller control
system will not dampen the vibration as quickly. Since the first methocf
uses the total system energy, a higher J value will result for the
smaller structures. The goal is to then lower this system energy by
increasing the structural mass and the control system inputs to a point
where system mass and system energy are optimized. Onada's formulation

has the opposite effect. Since the control effort required is lower




when constant ove:shoot requirements are needed, the optimization
implies that the smallest structure which meets the load specifications
is the optimized structure. When settling time requirements drive the
control design, more control energy is needed to quickly dampen out the
lighter structures. This results in a higher C value for Onada's
formulation but since the vibrations have been quickly attenuated, the
overall J value is small. Onada's optimization results in very heavy

control systems then for the smaller structures.

Contributions

Which optimization method do you use then and how do you select Q
and R with their appropriate weighing parameters? The answer to this
question is highly dependent on the design goals you are trying to
achieve. Trends were shown which should help other researchers select
Q/R and an appropriate optimization procedure for various control
specifications. For the ABE, this work has provided a baseline for

additional research on the structure/control optimization problem.

Recommendations For Future Work

1. Additional work is needed to characterize the actuator
dynamics. The finite element model created for this work included the
viscous damping of the actuators. The viscous damping assumption was
verified (7:19) by modal testing. Stiffness effects from the elec.ronic
centering spring, however, were not modeled and this contributed to the
high error rate in Table 4.6.

2. One of the biggest challenges (4:472) facing LSS contiol
engineers is the development of inertial actuators. The ABE provides an
excellent test bed on which to des.ign new actuators and to compare the
performance of different actuators. Cristler (5) goes to some length in
documenting the problems associated with developing the existing proof

mass ac-uators. Theoretical work charting the stability regions of the

7-2




structure/control system would help future engineers design new
actuators. This work should include the effects of damping, stiffness,
and control ~a.r.

3. To examine the control/structure optimization process, this
wor x assumed that all modes we-re observable. Clearcly this is not the
case. The initial <nnditions sujgest that higher order modes are being
excited to a greater degree in the smaller structures than in the larger
str ictures. A comparison between the results of thls work and one which
in:l»des a state estimator woul! be interesting to determine the effect
higher order modes have on th: selectioi. of the optimal structure-
control syst->2m.

4. A "true" cptlimum was not determined in this work. Aan
opportunity exists to program the methods presented in Chapter VI
subject to the constraints :n the ABE control system. In addition, the
selection of q; and g, can be nested in the optimization process. If
physical meaning can be given to q; and q,, their inclusion in the
optimization loop will be necessary to achieve a true optimum design.

5. Damping inherent in the both the structure and the control
system was modeled by proportional damping. For the lighter structures,
inertia played a greater role in the damping factor. Stiffness, on the
other hand, was predominate for the larger structures. As a parallel,
different parameters were used to weight Q and R for comparison. When Q
and R were selected by equations 5.25 and 5.6, it was assumed that 8 =
ﬁk. What effect does varying these parameters have on the structure-
control optimization?

6. Finally., Jacques pointed out in his conc’usion (7:87-88) that
the ABE was an excellent test bed for further controls experiments and
research. Additional work can be done to compare the various control
laws and estimator designs. Other optimization schemes can be tested on
the ABE before their use on more ~omplicated structures. In short, new

ideas should be tested in a known environment so their true merits can




be determined. With the base line experimental and theoretical research

accomplished, the ABE is a known environment.




Appendix A: Calculation of ABE Physical Properties

Beam Physical Properties

/N2
A
b Lo
Y
i 1
i
i
~ a /'[
Figure A.1 Beam Cross Section
3
- ab .
1,=35 (R.1)
3
a’b
I,= (A.2)
Ip=I,+I, (A.3)




In general, if the cross-section is not c¢ircular, there will be some
warping of the cross-sectional plane. For circular cross sections

(93200)1

J=I, (A.4)

For noncircular cross sections, however,

J#I, (A.5)

J can be obtained from texts on advanced strength of materials. From

(24:290), the value of J for a rectangular beam is

3 4
ab’| 16 b b
g=3b _3_—3.36(_) 1- (A.6)
a [ 12a4]
Disk Physical Properties
2
r
Idxx”’k{—z- (R.7)
2..2
_ | 3rc+t .
Tayy= (A.8)
2,.2
| 3rc+t .
Idzz"’k:{——fz—] (A.9)




Figure A.2 Disk Dimensions




Appendix B: Component Specifications
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HPD SERIES—HERMETICALLY SEALED (PIN TERMINATION)

s HERMETICALLY SEALED BY TiG AND
EB WELDING

® IMPERVIOUS TO HOSTILE ENVIRONMENTS
® THROUGH-BORE CONSTRUCTION

HPD Series units are similar 10 the DC-D and HCD Series.
Tungsten inert gas (TIG) and electron besm (EB) weic-
ing provige hermetic sealing that is free from oxication.

GENERAL SPECIFICATIONS

fnput . .......... *15V DC (nominsl), 220 mA
Ooerating Temper-

sture Range . . . .. 0°F to +160°F (-18°C 1o +70°C)
Survival Temper-

sture Range . . ... -65°F 10 +200°F

(-55°C 10 ~95°C)

Null Voltage . ..... ovDC
Rippte . ......... Less thar. 25 mV rms
Linearity . . ... .... =0.25% fult range
Stabibity .. ... ... 0.125% full scale

producing faults that may cause lsakage. For this reason,
HPD Series LVDT's are impervious to dirt, water, steam
soray, snd most corrosives. They have been quslified at
pressures up to 1000 psig (70 bars) and are suitable for
numerous high-pressure appiicstions. HPD units empioy
8 glasssesied, pin-terminal header that aliows the core
ang core rod 10 pass through the unit. HPD units have
ooubie magnetic shieiding that makes them insensitive
10 external magnetic infiuences.

Tempersture

Coetficient of

Scate Factor . 0.04%/°F (0.08%/°C)
Shock Survival .. ... 250 ¢ for 11 milliseconds

Vibrsuion Tolersnce . 10 g up 10 2 kH2

Coil Form Materis! .. High oensity, glass-filled polymer

Housing Material . AISI 400 seres stainiess steel

Electrical
Termination

Output impedance . .

. 6-pin terminal header
Less than 1 Onm

PERFORMANCE SPECIFICATIONS AND DIMENSIONS

tvoy NOMINAL SCALE RESPONSE WEIGHT DMENSIONS
MDDEL LINEAR FACTOR -348 L & (Bedy) 8 iCorn: ’
NUMBER RANGE
[ VY/ingh LH Saty Con sk [ (L
50 wrp 20050 00 300 % 2 240 (1°] 055
128 uPD =0.125 80 300 s 3 323 118 096
% uro 20250 @ %00 18 a0 180 (E ]

L T 20500 0 100 n o .m 300 22)
1990 #P0 21000 10 20 ns 808 30 n
900 wPp 22,000 50 200 13 na 500 505
2000 HPD £3.000 33 200 o wu 1682 20 1.58
5808 w0 25.000 20 200 n 20e (3] (X"

10908 w90 21000 10 =0 0 N ns 125 1%.6
ORDERING INFORMATION weuT ouTPUY
(Foks out page 32 for instructions on how to use this chart.) ’“Vﬂf_‘: '
D = 10vVOe
-1svoc A
T
COMMDN Io
Mmoo,
; . 1 : 80
orTION : ;'”‘ 1 808y, -
(1] l
4 il
T wootL s . L A
! N0 i o - b °
¥ w70 ~ N ’ - x| i ek A v
i 125 ##D N ] ] - X
. WD [ » [ - 1 x -—t _—1
300 WeD [ 5. 8 - | x i
1000 ¥P0 N C i X - 0 X l + 430
2000 nPC N 3 x - 1 X .
MoC ML - cC i X - | K
— 440 UNC 29 Sisedord)
':: u:g T ; tc: T x i - 1 x ]. 31 05 0n berr)
W . L] X - X . 1 . »
] ] SLEY N BT Ly .
Bt 1 Sov swthae Srowwg for Mrtrg Treed mre
Nere 2 Comutt 10c10ry ior Mum. Gumonsars. a0 Meond Wit on of som ol
Figure B.3 LVDT Specifications




OPTIONAL CONFIGURATIONS

APS 113-A8 Alr Bearing Model A
ludricated oushings reptace the near
Ball Dusthings used 10 the Dasic
ELECTRO-8EIS armature
QUICaANCe system In gadition an aw
AIstridution system, Lig GOwN and
levenng dase are provided

The near zero friction of the air
Bushings 3 an essential feature 1or
MeISuUrNng resonance aecay ‘ates n
very ightly damoped structures

The Awr Bearnng configuration extends
the a0piication of the Dasic APS 113 10
inClude the cahibration and evaiuation
ol acceierometers and other motign

APS 113 with
0112 Reaction Mses

APS 113 Al Sesring Shaker

APS 113-L2 Low Impedance Coll

All teatures of the basic

ELECTRO-SEI® Shaker are
retained The drive coil 13 wound in @
manner wiich allow senes or parailel
conngction. offenng the user the
choice of standard Or iow \mpedance
This coHON 13 18QuITed if Ihe shaker 13

10 D@ usnd with the APS 124

SUAL - B22Z Power Amplitier for
estended frequency range or random

NOrge exCitatlion

APS 113-NF Migh Force Coll

Al teatures of the Das.c

ELECTRO-BEIS Shaker are
retained as in the APS 113-L.2 The
Ative CON 13 ProvIGed 10 MAaICh the

APS 124 JUAL-2322

Power

APS 113-LA Lightweight Armature

The body of the ELECTRO-SEIS
Shaker 8 retained Dut the armature
NG gquidance system are repiaced with
slements ottering suDSIantial wenght
reduction The anve cou 1s ghtened
= wih COIrespoNang reduction
mazimum 10rCe -~ and Ihe armiture
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The Lightwergnt Armatyre '8 2
gesiradie lesture when using the
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Figure B.4 Acoustic Power Systems Model 113-LA Structural Dynamics
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ACOUSTIC POWER SYSTEMS, INC.

Systems for Generaung Controlied vi%ration

SPECIFICATIONS Mode! 114
Average Ouldut. into shaker reactive I0ad 125 V-A rms
Pean Output. nio shaker reactive icad 250 V-A rms
Currert Output, peak (rancom norsel 60 A peak
Current Outpw, continuous 40Arms
Frequency Range 0-2000 Kz
input Sgnal VoRage 2V pesk
Input impedance 100 X ohm
NOoI1S@ — referred 10 max output -90 08
Curremt Monor output 250 mv/A
InpuA Power 120 V. 50/60 Mz, 300 W
220. 240 V opnonal
Aear Panet Connectors
Power Output WK3-21S (Cannony
nput. Currem Monmor BNC Type J ea
AC Power Sid 3-Pin Receptacie
Weignt 25 (11 I kg)
Size HsWzD 52212172925 nches
1335422235 mm
SPECIFICATIONS
nput Signal Levet
nput impedance
Outout Sonal Level
Output Source impedance
Frequency Range
NOISe — referred 10 Max Ut
Weght
Size MaW20

Model 124
250 V-A rms
500 V-A rmg
120 A peak
80 A ms
0-2000 H2

2 V peak
100 X ohm
-90 08

125 mv A

120 V S0 60 W2 500 W
220 240 V optional

WKJ-31S iCannoni

BNC Type. 3 @2
Sia 3-Pin Receptacle
45 15120 kg)

§22 117 11325 nches
133 1 432 x 337 mm

Modet 11$
t V psak
100 K ohm
010 10V pesk
50 ohem
0-S000 Hx
-90 @8

0L (4Skg)

Mode! 124-EP
250 V-A rms
750 V-A peax
180 A paak
80AMy
0-2000 Mz

2V pask
100 K ohm
-30 a8

125 mV A

120 V. 5060 Hz. 600 W
243 V optional

WK3J-315 |{Cannon)

BNC Type 302
Sid 3-Pm Receplacie
4510 (20 kg)

§22 217 2 1325 nches
1231432« 37 mm

$22x 173625 nches

133 2 432 2 159 mm

Note Rack adapiers are exciv0ed wih ampiders § cONtol paneis 100 SIAN0D 19-10 13CK MOUNhNg

SYSTEM CABLES Shaner 1o Power Ampiher

System imarconnect Cadie 0081-20A-2C Slandard length 20 feet secaon A, 2Rt section C
Modeis 11, 113-AB and 113-LZ 10 Modeis 114, 123 § 124

System interconnect Cabie 0081-20A Stanaand ength 20 feet

Mogets 113.LA, 120S. 129. and 220. 10 Modeds 114, 123, 124 ang Extension

S731 PALMER WAY. SUITE A CARLSBAD, CA S2008 USA. « (619 438-4848 ~ FAX (619) 438-8845 + TELEX 4995113 (SHAKE)

v e v A

Figure B.5 Acoustic Power Systems Model 114 Power Amplifier
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Appendix C: MSC/NASTRAN Input Decks

Input Deck 1l: Orginal ABE with impact load; no damping.

ASSIGN OUTPUT2=RUN2.0P2,STATUS=NEW,UNIT=12, FORMAT=UNFORMATTED
TIME 30

DIAG 64

SOL 112 SMODAL TRANSIENT RESPONSE
CEND

TITLE = ABE FEM ~-- UNITS = SI

METHOD = 97

DLOAD 0

SET 1 11

TSTEP 8

SVECTOR ALL

VELOCITY = 1

DISPLACEMENT = 1

wonu
[[ERY= RS0 -3

SPC = 1
SUBCASE 1
SUBTITLE = CASE SET 1
BEGIN BULK
GRID 1 0 0. 0. 0. 0
GRID 2 01.78E-01 0. 0. 0
GRID 3 03.56E-01 0. 0. 0
GRID 4 05.34E-01 0. 0. (4]
GRID 5 07.12E-01 0. 0. 0
GRID 6 0 .889 0. 0. 0
GRID 7 0 1.067 0. 0. G
GRID 8 0 1.245 0. 0. 0
GRID 9 0 1.422 0. 0. 0
GRID 10 0 1.6 0. 0. 0
GRID 11 0 1.797 0. 0. 0
CBAR 1 1 1 2 1. 1.
+EA 1
+EA 1 0
CBAR 2 1 2 3 1. 1.
+EA 2
+EA 2 0
CBAR 3 1 3 4 1. 1.
+EA 3
+EA 3 0
CBAR 4 1 4 5 1. 1.
+EA 4




+EA 4 0

CBAR 5 1 5 6 1. 1.
+EA 5

+EA 5 0

CBAR 6 1 6 7 1. 1.
+EA 6

+EA 6 0

CBAR 7 1 7 8 1. 1.
+EA 7

+EA 7 0

CBAR 8 1 8 9 1. 1.
+EA 8

+EA 8 0

CBAR 9 1 9 10 1. 1.
+EA 9

+EA 9 0

CBAR 10 1 10 11 1. 1.
+EA 10

+EA 10 0

CONM2,11,11,0,4.986,0.,0.,0.,,+EAll
+EAl1,5.79E-02,0.,2.895E-2,0.,0.,2.895E-2
CONM2,12,11,-1,2.49E-02,1.7755,-.0572,~.1016, ,+EAl2
+EAl12,.17E-05,0., .55E-05,0.,0.,.40E-05
CONM2,13,11,-1,3.49E-02,1.7678,0.,-.1016, ,+EAl13
+EA13,3.81E-05,0.,.018E-05,0.,0.,3.81E-05
CONM2,14,11,-1,8.48E-02,1.7755,.0572,-.1016, ,+EAl14
+EA14, .59E-05,0.,1.87E-05,0.,0.,1.36E-05
CONM2,15,11,-1,3.49E-02,1.727,0.0572,-.1016, ,+EA15
+EA1l5, .24E-05,0.,1.07E-05,0.,0., .86E~-05
CONM2,16,11,-1,9.47E-02,1.7132,.062,-.1016, ,+EA16
+EAl16,15.62E-5,0., .43E-05,0.,0.,15.62E-5
CONM2,17,11,-1,2.49E-02,1.7755,.0572,.1016,,+EAl17
+EAl7,.17E-05,0.,.55E-05,0.,0., .40E-05
CONM2,18,11,-1,3.49E-02,1.7678,0.,.1016, ,+EA18
+EAl18,3.81E-05,0.,.18E~06,0.,0.,3.81E-05
CONM2,19,11,-1,8.48E-02,1.7755,-.0572,.1016, ,+EA19
+EAl19, .59E-05,0.,1.87E-05,0.,0.,1.36E-05
CONM2,20,11,-1,3.49E-02,1.727,-.0572,.1016, ,+EA20
+EA20, .24E-05,0.,1.07E-05,0.,0., .86E-05
CONM2,21,11,-1,9.47E-02,1.7132,~-.062,.1016,,+EA21
+EA21,15.62E-5,0.,.43E-05,0.,0.,15.62E-5
CONM2,22,11,-1,51.36E-2,1.7678,0.,-.1016, ,+EA22
+EA22,40.99E-5,0.,33.13E-5,0.,0.,40.99E-5
CONM2,23,11,-1,51.36E-2,1.7678,0.,.1016,,+EA23
+EA23,40.99E-5,0.,33.13E~-5,0.,0.,40.99E-5

MAT1 17.45E+102.83E+10 .317 2766.3.61E-06
+MA 1

+MA 1 1.5E+09 1.5E+09 6.8E+07

PBAR 1 14.94E-042.71E-N81.53E-083.30E-08
+PA 1

+PA 1 0. 0. 0. 0. 0.

0.+PB 1

+PB 16.68E-011.19E+00 0.

0.




SPC 1 1 123456 0.

SPC 1 2 135 0.
spC 1 3 135 0.
SPC 1 4 135 0.
SPC 1 5 135 0.
SPC 1 6 135 0.
SPC 1 7 135 0.
SPC 1 8 135 0.
SPC 1 9 135 0.
SPC 1 10 135 0.
SPC 1 11 135 0.

TLOAD1,40,41,,0,42
DAREA,41,11,2,1000.
TABLED1,42,,,,,,,.+E42
+E42,0.,0.,0,001,0.,.002,1.,.003,0.,+E43
+E43,.004,0.,ENDT

PARAM AUTOSPC YES
EIGR,97,MGI1IV,0.,150.,3,3,, ,ABC
+BC,MASS
TSTEP,98,10,.001,1,,,,,+ES8
+E98,,100,.01,1

PARAM, POST, -2

ENDDATA

Input Deck 2: Orginal ABE with impact load; damping included.

ASSIGN OUTPUT2=RUN2.0P2,STATUS=NEW,UNIT=12, FORMAT=UNFORMATTED
TIME 30

DIAG 64

SOL 112 SMODAL TRANSIENT RESPONSE
CEND

TITLE = ABE FEM -- UNITS = SI

METHOD = 97
SDAMPING = 99

DLOAD = 40
SET 1 = 5 11
TSTEP = 98

SVECTOR = ALL
VELOCITY = 1
DISPLACEMENT = 1

SPC = 1
SUBCASE 1
SUBTITLE = CASE SET 1
BEGIN BULK
GRID 1 0 0. 0. 0. 0




GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
CBAR
+EA 1
+EA i
CBAR
+EA 2
+EA 2
CBAR
+EA 3
+EA 3
CBAR
+EA 4
+EA 4
CBAR
+EA 5
+EA 5
CBAR
+EA 6
+EA 6
CEAR
+EA 7
+EA 7
CBAR
+EA 8
+EA 8
CBAR
+EA 9
+EA 9
CBAR
+EA 10
+EA 10

10
11

10

o

01.78E-01
03.56E-01
05.34E-01
07.12E-01
0 .889
0 .067
0 .245
0 .422
0 1.6
c -797
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10

CONM2,11,11,0,4.986,0.,0.,0.,,+EAll

Cc-4

o O O o O O o o o o

.

10

11

o O O o

o O

o © o o o O o o

=
.




+EAl11,5.79E-02,0.,2.895E-2,0.,0.,2.895E-2
CONM2,12,11,-1,2.49E-02,1.7755,-.0572,-.1016,,+EA12
+EAl12,.178-05,0., .55E-05,0.,0., .40E-05
CONM2,13,11,-1,3.49E-02,1.7078,0.,-.1016,,+ERA13
+EAl13,3.81E-05,0.,.018E-05,0.,0.,3.81E-05
CONM2,14,11,-1,8.48E-02,1.7755,.0572,-.1016, ,+EA14
+EAl4, .59E-05,0.,1.87E-05,0.,0.,1.36E-05
CONM2,15,11,-1,3.49E-02,1.727,0.0572,-.1016, ,+EA15
+EAlS5, .24E~05,0.,1.07E-05,0.,0., .86E-05
CONM2,16,11,~-1,9.47E-02,1.7132,.062,-.1016, ,+EAL6
+E16,15.62E-5,0., .43E-05,0.,0.,15.62E-5
CONM2,17,11,-1,2.49E-02,1.7755,.0572,.1016, ,+EAl17
+EAl17,.17E8-05,0., .55E-05,0.,0., .40E-05
CONM2,18,11,-1,3.49E-02,1.7678,0.,.1016,,+EA18
+EA18,3.81E-05,0.,.18E-06,0.,0.,3.81E-05
CONM2,19,11,-1,8.48E-02,1.7755,-.0572,.1016,,+EA19
+EAl19, .59E-05,0.,1.87E-05,0.,0.,1.36E-05
CONM2,20,11,~-1,3.49E-02,1.727,-.0572,.1016, ,+EA20
+EA20, .24E-05,0.,1.07E-05,0.,0., .86E-05
CONM2,21,11,-1,9.47E-02,1.7132,~.062,.1016, ,+EA21
+EA21,15.52E-5,0., .43E-05,0.,0.,15.62E-5
CONM2,22,11,-1,51.36E-2,1.7678,0.,-.1016, ,+EA22
+EA22,40.99E-5,0.,33.13E-5,0.,0.,40.9%9E-5
CONM2,23,11,-1.51.36E-2,1.7678,0.,.1J16, ,+EA23
+EA23,40.99E-5,0.,33..3E-5,0.,0.,40.99E-5

MAT1 17.438+102.83E+10 .317 2766.3.61E-06
+MA 1

+MA 1 1.5E+09 1.5E+09 6.8E+07

PBAR 1 14.94E-042.71E-081.53E-083.30E-08 0.
+PA 1

+PA 1 0. 0. 0. 0. 0. 0.
0.+PB 1

+PB 16.68E~-011.19E+00 0.

SPC 1 1 123456 0.

SPC 1 2 135 0.

SPC 1 3 135 0.

SPC 1 4 135 0.

SPC 1 5 135 0.

SPC 1 6 135 0.

SPC 1 7 135 0.

SPC 1 8 135 0.

SPC 1 9 135 0.

SPC 1 10 135 0.

SPC 1 11 135 0.

TLOAD1,40,41,,0,42
DAREA,41,11,2,1000.
TABLED1,42,,,,,,,,+E42
+£42,0.,¢.,0.001,0.,.002,1.,.003,0.,+E43
+E43,.004,0.,ENDT
TABDMP1,99,CRIT,,,,,,,+EA99

+EA99, .1, .065,30.,.023,100.,.01,ENDT
PARAM AUTOSPC YES
EIGR,97,MGIV,0.,150.,3,3,,,ABC

+BC, MASS

TSTEP,98,10,.001,1,,,,,+E98
+E98,,100,.01,1

PAR ui, POST, -2

ENDDATA




Appendix D: MATLAB .M File

This MATLAB .M file was written to perform the control optimization
calculations in Chapter V.

MATLAB .M File

$This program uses the MATLAB subroutine LQR to solve

$for the gain K where u = -Kx. In addition, the Riccati
smatrix is given. With the K & S matrices, the cost functions
$J and C are found. This ".m" file supports three mode shapes.
%

$The state-space equations are:

%

% x'= AXx + Bu

% y = Cx + Du

%

$The closed loop A matrix becomes:

%

% ACL = (A - B*K)
%

$Initial conditions can be obtained from a finite element
$program. wl, w2, w3, sl, s2, s3, q0l1, g02, P, and k must be
$defined prior to running this .m file. w# are the natural
$frequencies in rad/sec; s# are the damping factors; g0l is the 3x1
$matrix of initial displacements; g02 is the 3x1 matrix of
$initial velocities; P is the 3x3 matrix of e.genvectors; and k is
$the modal stiffness matrix such that PI*K*P=k for PI*M*P=m=I.
%

diary on

%

$Equation parameters are:

wl

w2

w3

sl

s2

83

P

k

%

$Calculate the inverse of P and k.

PI=inv(P)

ki=inv (k)

%

$Initial conditions given are.

gl1

g02

$Transformation of initial ccnditions to modal coordinates.
n01=PI*q01l

n02=PI*q02

x0=[(n01;n02]

%

%Define undamped A and damped AD matrix.




[eNeRel LioNeo)
[eNeoNeol
[eNeoNe)

0o
10
01
0 -2*wl*sl 0 O
0 0 -2*w2*82 O
2 00 -2*w3»s3]

t$Define the B matrix.

b=[~11 0;1 1 0;0 0 1]

bb=P' *b

B=(0 0 0;0 O 0;0 O 0O;bb]

%

$Define the C matrix.

CP=[0 O 0;0 O 0;0 0 0}

Cv=[(-110;1 1 0;0 0 1)

CPP=CP*P

CVP=CV*P

C=[CPP(1,:) CVP(1l,:);CPP(2,:) CVP(2,:);CPP(3,:) CVP(3,:)]
%

$Define the D matrix.

D={0 0 0;0 0 0;0 0 0]

%

$The gain matrix is found from the Ricatti equation by
$minimizing the cost function

%

% J = int(x'*Q*x + u'*R*u)dt

%

%$The control theory weighing matrices are defined by:
%

Q0=[wl"2 0 0 0 0 O
0w2*2 0000
00w3*2000
000 100
000 010
000 00 1)

%

©3=0.3*Q0

%

RO=b' *P*ki*P'*b

R3=0.3*RO

%

QI0=[150 O 0 000
0 6750 0 000
0 o0 30375 0 0 O
0 o0 0 100
0o o0 0 010
0 G 0 00 1)

%

QI3=0.3*QI0

%

RI0O={0.003 0 0;0 0.003 0;0 O 0.0001}
RI3=0.3*RIO

%

*




%Use MATLAB subroutine "lqr" to solve the Riccati equation
sfor the Riccati matrix S and the gain matrix K.
%

[K0O,S00)=1qr(A,B,Q0,R0)
[K30,S830]1=1g9r(A,B,Q3,R0)
[KO3,803]=1gr(A,B,Q0,R3)
(K33,833]=1qr(A,B,Q3,R3)

{KDOO, SD00)=1qr (AD, B,Q0,R0)
[KD30,SD30)=1qr (AD,B,Q3,R0)
[KDO3,SD03]=1qr(AD,B,Q0,R3)
[KD33,SD33]=1qr (AD,B,Q3,R3)
[KI00,S100]=1qr(A,B,QI0,RI0)
[KI30,8130)=1qr(A,B,QI3,RI0)
[KIO3,SI03]=1gr(A,B,QI0,RI3)
(K133,SI33)=1gr(A,B,QI3,RI3)
[KIDOO,SIDOO])=1qr (AD,B,QI0,RI0)
{KID30,SID30)=1qr (AD,B,QI3,RIO)
[KIDO3,SID03]=1qr(AD,B,QIO,RI3)
[KID33,SID33]=1qr(AD,B,QI3,RI3)
%

$Initial conditions are used to determine the minimum J
%$values of the control cost function.
%

JOO=x0"'*S00*x0

J30=x0'*530*x0

J03=x0"'*sS03*x0

J33=x0"'*S33*x0
JD0O0=x0"'*SDO0*x0
JD30=x0"'*SD30*x0
JD03=x0"'*SD03*x0
JD33=x0'*SD33*x0
JI00=x0'*SI00*x0
JI30=x0'*SI30*x0
JI03=x0"'*SI03*x0
JI133=x0'*SI33*x0
JID00=x0"'*SIDOO*x0
JID30=x0'*SID30*x0
JID03=x0'*SID03*x0
JID33=x0'*SID33*x0

%

$Initial control inputs are determined from the control law.
%

FO0=-1*K00*x0

F30=-1*K30*x0

FO03=-1*K03*x0

F33=-1*K33*x0

FDOO=-1*KD00*x0
FD30=-1*KD30*x0
FDO3=-1*KD03*x0
FD33=-1*KD33*x0
FIOO=-1*KIOO0*x0
FI30=-1*KI30*x0
FI03=-1*KIO03*xU
FI33=-1*KI33*x0
FID0O=-1*KIDOO*x0
FID30=-1*KID30*x0
FID03=-1*KID03*x0
FID33=-1*KID33*x0

%




tExpected values of the control cost function C = u'*R*u
tsare determined.

%

CO0=F00"' *RO*F00
C30=F30"'*RO*F30
C03=F03'*R3*F03
C33=F33'*R3*F33
CDOO=FDOOQ' *RO*FDOO
CD30=FD30'*RO*FD30
CDO3=FDO3'*R3*FDO3
CD33=FD33'*R3*FD33
CICO=FIO00'*RIO*FIQQ
CI30=FI30'*RIO*¥F730
CI03=FI03'*RI3*FI03
CI33=FI33'*RI3*FI33
CIDOO=FIDOO'*RIO*FIDOO
CID30=FID30'*RIO*FID30
CIDO3=FIDO3'*RI3*FIDO3
CID33=FID33'*RI3*FID33
%

$Open loop frequencies and damping factors are calculated.

[WA,ZA}=damp(A)
(WAD, ZAD | =damp (AD)

%

$Closed loop frequencies and damping factors are calculated.
%

[WOO, 200 )=damp(A-B*K00)
(W30,230]=damp(A-B*K30)
{WO3,203)=damp(A-B*K03)
{W33,233]=damp(A-B*K33)

{WDOO, 2ZDO0 ] =damp (AD-B*KD0O)
{WD30,ZD30)=damp (AD-B*KD30)
(WDO3, ZD03 )=damp (AD-B*KDO03)
[WD33,2D33]=damp (AD-B*KD33)
[WIO0O, ZI00]=damp(A-B*KI00)
[WI30,2I30]=damp(A-B*KI30)
(WIO03,2I03]=damp(A-B*KIO03)
{WI33,2I33]=damp(A-B*KI33)
[WIDOO, ZIDOO ]=damp (AD-B*KIDOO)
{WID30,2ID30]=damp(AD-B*KID30)
[WIDO3,21D03)=damp(AD-B*KIDO3)
(WID33,21ID33)=damp(AD-B*KID33)
%

diary off




Appendix E: O and R Weights

Table E.1 @ and R Nomenclature

L Weigh Factor " 6 I 8, I 8, I
Q00 1.0 1.0 1.0

150 0 0 000
0O 6750 0 000
or |0 © 30375000 (E.1)
0o o 0 100
o o 0 010
0o o 0 001
0.003 0 0
RI =| 0 0.003 O (E.2)
0 0 0.0001




wl =
12.1440
w2 =
82.1190
w3 =
174.2800
sl =
0.0640
s2 =
0.0084
83 =
0.0236
P =
0.3759
)
0.0775
k =
1i.0e+004
0.0147
0
4]
g0l =
1.0e~003
0.1480
0
-0.0268

Appendix F:

-3.6022
0

0
0.6744

0.0823
0
-0.6853

3.0374

Optimized ABE Control Law




go2 =

0.1479%
0
-0.0263

x0 =

0.0004
0
0.0001
0.3758
0
0.0808

A =
1.0e+004

0
0
0
-0.0147
0
o]

AD =

1.0e+004

-0.3759
-3.6022
-0.0823

O KR
—oo

0

0

0
0.3759
-3.6022
0.0823

0.077

-0.685

0 0.0001
0 0
0 0
0 0
0 0
4 0
0 0.0001
0 0
0] 0
0 -0.0002
0 0]
4 0
0
0
0
5
0
3

0.0001

[eJoNoNo]

0
0.0001
0

0
-0.0001
0

0
0
0.0001
0
0
0

0]

0
0.0001
0

0]
-0.0008




Ccv

[eNeNo

[oNeNeo)
[ Yo No]

Q3 =
1.0e+003 *

0.0442

[eXoNaoReNe

RO =

0.002%
0.0010
-0.0002

KD30 =
1.0e+003 *

~0.0268
0.0268
0.0064

Sb30 =

9.1418
0.0000
-0.0000
0.1402
0.0000
0.0000

=00
[eNeNe]

[eNeoNe]

2.0231

[eXoNoNe]

0.0010
0.0029
0.0002

-0.1312
~0.1312
0.0000

~0.0000
69.9676
~0.0000
0.0000
0.1402
~0.0000

0
0

-0.0002
0.0002
0.0001

-0.6254
0.6254
-6.0627

-0.0000
-0.0000
143.4420
0.0000
-0.0000
0.1402

-0.3759
0.3759
0.0775

0.000

OQWOOoOO

-0.0102
0.0102
0.0024

0.1402
-0.0000
-0.0000

0.0531
-0.0000
-0.0000

-3.6022
-3.6022
0

-0.0085
-0.0085
0.0000

-0.0000
0.1402
-0.0000
0.0000
0.0091
-0.0000

-0.0823
0.0823
-0.6853

-0.0183
0.0183
-0.1777

-0.0000
0.0000
0.1402
0.0000
0.0000
0.0041




JD30 =

0.0076

FD30 =

5.3613
-5.3613
13.9415

CD30 =

0.0626

WD30 =

12.9672
12.9672
186.0946
186.0946
87.6858
87.6858

ZD30 =

0.3617
0.3617
0.3574
0.3574
0.3568
0.3568
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