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Preface

This work uses a modified version of the Advanced Beam Experiment

which was originally developed by the Vibrations Branch of the Flight

Dynamics Lab at Wright-Patterson AFB. The modified version of the

Advanced Beam Experiment was performed by Capt Jacques in the AFIT labs.

The goal of this work is to create a finite element model of the

Advanced Beam Experiment using MSC/NASTRAN. The modal includes damping

inherent in both the structure and the actuators. The finite P',mpnt

model is used to perform a sensitivity analysis on the selection of the

weighing parameters Q and R used in Linear Quadratic Regulator theory.

Sensitivity analysis is also performed on two optimization techniques.

The first involves minimizing the performance index J and structural

mass, while the second, Onada's formtlation, involves minimizing control

mass and structural mass. Chapters II and III cover the structure

modeled. Chapter IV includes a brief review of finite elements and

describes how the model was constructed. Chapter V is a review of LQR

theory and describes the state-space formulation of the problem. For

those interested in only the results of the sensitivity analysis,

Chapter VI should provide all the necessary information.

This work would not have been possible without the help of many

people. The previous work of Capt Jacques and Capt Cristler provided

the details on which this work is based. Dr. Liebst spent many hours of

his time working with me to clarify optimal control theory. Capt Gans,

my thesis advisor, provided guidance while my conTiittee, Lt Col Bagley

and Dr. Spenny, gave valuable comments so that I could clarify the final

work. Mom and Dad were always there to listen whenever I needed

encouragement and support. And finally, I would like to thank my wife

Joan. She always looked for ways to help and tried to understand what

it was that I was doing. She sat through my defense and, when it was

over, celebrated with me.

Steven L. Story
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Abstract

There has been much interest during the past decade to develop and

launch large space structures. The high cost of launching material into

orbit will require that these structures be assembled in space using

light weight elements which are vulnerable to dynamic excitations.

Active control may be necessary to rapidly attenuate large amplitude

vibrations. The active vibration control system is usually designed

after the structure has been optimized. The integrated design of the

control system and the structure may provide additional weight savings.

This thesis presents a sensitivity analysis of the structure/control

optimization problem. The structure used is an aluminum rectangular

beam with proof mass actuators mounted on the free end and a structural

dynamics shaker attached at the midpoint. A finite element model of the

structure is developed using MSC/NASTRAN. Linear Quadratic Regulator

theory is used as the control law with velocity feedback. Constant and

variable values of Q and R for the performance index are used. The

variable values of Q and R are selected to minimize total system energy.

Optimization methods examined are; first, the minimization of the

performance index J and structural weight; second, Onada's formulation,

which minimizes control weight and structural weight.
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SENSITIVITY ANALYSIS FOR THE SELECTION OF

LINEAR QUADRATIC REGULATOR WEIGHING PARAMETERS Q AND R

FOR ACTIVE VIBRATION SUPPRESSION

OF A CANTILEVERED BEAM

I. Introduction

During this decade, the deployment of large structures in space

will become a reality. NASA is currently developing Space Station

Freedcm and the Department of Defense is interested in systems which, if

deployed, will require large stable platforms in space. Because of the

high cost uf launching material into orbit and because of launch size

restrictions, these built-up structures will be assembled in space usir-

light weight truss-like elements. The truss-like elements will provide

a framework to which mission-related functional components will be

attached. Because of their low weight, however, these structures will

be highly flexibla which will make them vulnerable to dynamic

excitations from a variety of sources.

Control Approaches To Vibration Damping

A structure's response to dynamic excitations is governed by its

mass, damping, and stiffness characteristics. The large size of space

structures coupled with their light weight results in many low

frequency, lightly damped, closely spaced vibration modes. These

vibration modes must be controlled in order to minimize their effect on

the system. Passive damping, obtained by methods such as sophisticated

shock absorbers and visco-elastic coatings, is a partial solution to the



problem, but it cannot control all of the vibration modes. Active

control may be required to rapidly attenuate large amplitude vibration

modes.

The early history of active control research for Large Space

Structures (LSS) is well documented in Ref. 1. The authors of this

paper suggest four challenges (1:515) which face researchers in the

years ahead. These challenges are:

1. Design control systems sufficiently robust so that

errors in structural modeling can be accommodated.

2. Establish reasonably accurate structural models.

3. Develop auxiliary control laws which adequately reduce
plant excitations.

4. Establish the proper choice of control law, sensors, and
actuators to maintain the shape of a large space structure.

To address these challenges, the authors divided the field of LSS

research into structural dynamics and control theory.

The structural engineer's job is to develop a simplified

mathematical abstraction (model) of a structure. Since all of the

dynamic characteristics of a structure cannot be modeled, care must be

taken to ensure that the most important dynamic characteristics are

accurately represented in the model. A fundamental question, however,

must be asked (2:4); "What is the purpose of the model?" Will an

"exact" solution be required from a continuum model or will a lumped

mass model be adequate? Once the model is developed, verification must

be done to ensure that it accurately represents the structure.

Several methods of model verification are presented in Ref. 2.

The most common method used is to compare the model dynamic

characteristics to experimental results on the actual structure. The

large size of space structures, however, makes it impossible to test the

actual structure before it is deployed in space. Scale modeling of LSS

will be necessary if actual ground tests are to be conducted. Past

1-2



experience (3:924) with finite element modeling in aircraft design

suggests that finite element modeling would be a useful tool to

dynamically model LSS. The system of linear differential equations

resulting from finite element analysis is readily expressed in state-

space form for use in designing the active control system.

The active control system for vibration damping of LSS generally

consists of sensors, controllers, and actuators. Prior to 1980, there

were very few LSS active control experiments (4:471). The first major

U.S. Government program, Active Control of Space Structures (ACOSS), was

started in 1978 and completed in 1984. In late 1989, the number of LSS

experiments (4:472) "seem to be approaching flood level." This "flood

level" is the focus of Ref. 4 which surveys the literature published on

experimental LSS work accomplished during 1985-1989.

According to Ref. 4, the experience of many researchers suggests

that the actuators play the dominant role in determining the success or

failure of a LSS experiment. The type of actuators used in LSS

experiments can be used to lump the experiments into one of two distinct

categories. The first category of experiments are based on grounded

actuators. Since it is impractical to ground an actual LSS actuator,

the second category consists of those experiments using inertial

actuators.

Previous Work on the Advanced Beam Experiment (ABE)

The original concept of the ABE developed by the Wright Research

and Development Center Flight Dynamics Lab was to use four inertial

proof mass actuators mounted in pairs to control bending in two

orthogonal planes and torsion. Cristler (5) developed the actuator

controller and then demonstrated active control using a Linear Quadratic

Gaussian (LGQ) design and modal suppression techniques. Breitfeller (6)

demonstrated active control by using a low authority controller based on

root perturbation techniques and a high authority controller based on a

1-3



frequency-shaped cost function. Both of these experiments were

partially successful.

Jacques (7) set out to resurrect the ABE in what is now known as

the modified ABE. In the modified ABE, only two of the original four

proof mass actuators were available. This limited the experiment to

controlling only XY-plane bending and torsion. To provide better

control over second and third mode bending, a structural dynamics shaker

was added. This violated the original intent of the ABE which was to

use only inertial actuators. It did, however, open the door for further

research on the ABE.

Control/Structure Optimization

The ABE represents the traditional approach to controls research.

The control engineer is given a structure and told to develop an optimal

control system to achieve some dynamic response. This approach may not

prove adequate with LSS because of the high cost of placing mass in

orbit. Since the size of LSS requires that they be constructed in

orbit, they do not have to be designed to withstand large launch forces.

An immediate cost savings can be achieved by designing very light

structures. Light structures, however, are susceptible to vibrations.

Passive damping can attenuate some of the vibrations, but active

vibration suppression will be necessary. To obtain maximum system

performance for minimum cost, an integrated approach to structural/

control optimization is necessary. Refs. 3 and 8 survey some of the

issues concerning the integrated optimization of structures and

controls. Two of the important issues in integrated design according to

(8:55-56) are, "cross-sensitivity information" and "the choice of

objective function."

1-4



Problem Statement

There are three goals for the work presented in this thesis. The

first goal is to develop an accurate finite element model of the ABE

using MSC/NASTRAN. The model will include damping for both the

structure and the actuators. The second goal is to examine the "cross-

sensitivity" of the structure and the control system to the weighing

parameters Q and R from Linear Quadratic Regulator (LQR) theory.

Finally, two different objective functions used in the integrated

structure/control optimization problem will be examined by using

sensitivity analysis.

1-5



II. Structure

The Advanced Beam Experiment (ABE) configuration was originally

developed by the Wright Research and Development Center Flight Dynamics

Lab to model the large space structure characteristics of low frequency,

lightly damped, and closely spaced vibration modes. The structure and

its properties are presented in this chapter. The beam theoretical

equations of motion for xy-plane bending and torsion are derived and

numerical solutions given.

Structural Properties

The beam is a long, solid aluminum beam of rectangular cross-

section. It is suspended in a vertical position with a circular disk

attached to the free end. The circular disk provides a surface on which

to mount the control actuators and has approximately the same mass as

the beam. The disk provides the primary component of rotary inertia

which lowers Lhe first torsion mode frequency so that it is within the

control bandwxdth of the controllers. The beam is shown in Figure 2.1.

The beam and disk physical and material properties are given in Table

2.1 and Table 2.2 respectively.

Equations of Motion

The equations of motion for the beam can be derived using

Hamilton's principle. Hamilton's principle can be stated as (9:199)

t2  t2

f 6(T-Ve)dt+f6Wncdt O (2.1)
tl ti

where

T = total kinetic energy of the system.
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1.797 m

y - - - X

U 1.925E-02 mn

Z 2.565E-02 mn

Figure 2.1 Advanced Beam Experiment Configuration
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Table 2.1 Beam Properties (7:26)

Beam Property Description J Value Units

Beam Length (L) 1.797 m

Y Cross-Section Width (a) 2.565 x 10-2  m

Z Cross-Section Width (b) 1.925 x 10-2 m

Cross-Section Area (A) 4.939 x iu-4  m2

Young's Modulus (E) 7.446 x 1010 N/m2

Shear Modulus (G) 2.827 x 1010 N/m2

Bpam Density (p) 2.766 x 103 kg/m3

Beam Mass (m) 2.455 kg

Y Moment of Inertia (IY) * 1.526 x 10-8  m4

Z Moment of Inertia (Iz) * 2.709 x 10-8  m4

Torsional Moment of Inertia (J)* 3.292 x 10-8  m4

Polar Moment of Inertia (I ) 4.235 x 10-8  m4

See Appendix A for sample calculations.

Ve = potential energy of the system, including the strain

energy and the potential energy of the conservative

external forces.

6Wnc = virtual work done by nonconservative forces, including

damping forces and external forces not accounted for

in V.
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Table 2.2 Disk Properties (7:26)

Disk Property Description Value Units

Disk Diameter (d) 3.048 x 10-1 m

Disk Thickness (t) 2.540 x 10-2 m

Disk Mass (md) 4.986 kg

X Mass Moment of Inertia (Idxx)* 5.790 x 10- 2  kg-m2

Y Mass Moment of Inertia (Idxy)* 2.895 x 10 . 2 kg-m 2

Z Mass Moment of Inertia (Idzz)* 2.895 x 10- 2  kg-m2

See Appendix A for sample calculations.

6( ) = the symbol denoting the first variation, or virtual

change, in the quantity in parentheses.

tj, t2 = times at which the configuration of the system in known.

Equations of Motion - XY-Plane Bending. For a beam in bending,

shear deformation will occur as shown in Figure 2.2. In Figure 2.2,

a(x,t) is the rotation of the cross section and v(x,t) is the total

transverse displacement of the beam neutral axis in the y direction.

The shear angle 0 is defined as

P(x,t)=a(x,t)-8v(x,t) (2.2)
dx

For a long, thin beam undergoing transverse vibration, however,

the equations of motion can be approximated by using the Bernoulli Euler

assumptions of elementary beam theory. These assumptions are (9:193):

2-4



v(x, t)

~(xCL) (X t

x

Figure 2.2 Beam Shear Deformation (9:203)

-There is an axis of the beam which undergoes no extension or

contraction. The x-axis is located along this neutral axis.

-Cross sections perpendicular to the neutral axis in the

undeformed beam remain plane and remain perpendicular to the

deformed neutral axis, that is, transverse shear deformation

is neglected.

-The material is linearly elastic and the beam is homogeneous

at any cross section.

-a and oz are negligible compared to ox .

-The xy-plane is the principal plane.
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In addition to these assumptions, rotary inertia and gravity will be

neglected in the theoretical calculations. Equation 2.2 becomes

av(xt) =a(x,t) (2.3)

For displacement in the y-direction, the beam internal strain

energy is

L

1' e a(x't) )2dx (2.4)

and the beam kinetic energy due to translation is

L

T=f p(x)A(x)( av(xt) )2dx (2.5)

where

-E(x) is Young's Modulus.

-Iz(x) is the moment of inertia about the z-axis.

-p(x) is the density.

-A(x) is the cross-sectional area.

For transverse loading, the virtual work is

L
aWnc= P(Xt)av(x,t)dx (2.6)

Substituting equations 2.4, 2.5, and 2.6 into Hamilton's equation,

integrating by parts, and applying geometric boundary conditions gives

the equation of motion

a2  _2vx _t) a2v(x,ta2_[E(X)Z(X) ~~ ) ]+p(x)A(x) =pv(x,(X t) (2.7)

ax 2  ax2  at2
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and the natural boundary conditions

E(x)Iz(x )  -2~ ' )Ix_=zt (2.8)

ax
2

E(X)Iz(X) av(x't)I=t=Vy(t) (2.9)
ax

3

For free vibration, equation 2.7 reduces to

a2  02v( x, t) a2v(x,) e)2.0
a 2 [E(X)Iz(X) a x ]+p(x)A(x) at = (2.10)ax2  ax2  (3t

2

Assume a solution of the form

v(x,t) =V(x)cos(wt-a) (2.11)

Substituting equation 2.11 into equation 2.10

d 2 [E(x) I]-(x)A(x)V(x)J=0 (2.12)
dx 2  dx2

For a uniform beam

a4 V(x)- pA V(X)-O (2.13)

ax4  EIz

Let

4 pA (2.14)
Y EI-z

then the eigenvalue problem

a4v(x) -0 4 V(x) =o (2.15)

ax4  y

has a general solution of the form

V(x) =C1sin(py X ) +C2 cos( yyx ) +Csinh(pyx) +C4cosh ( oy x ) (2.16)
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Equations of Motion - Torsion. Hamilton's principle can also be

used to derive the equations of motion for torsion. The potential

energy for torsion is given by (9:200-202)

L

Ve= G(X)J(x)[ ao(x,t) 2dx (2.17)

and the kinetic energy is

L

T=11 XI(X ao(x, t) ]2 dx (2.18)

where

-G(x) is the shear modulus.

-J(x) is a geometric property of the cross section.

-Ip (x) is the polar moment of inertia.

-O(x,t) is the rotation at x.

The virtual work of the external forces is

LaWnc= T (x, t) o (x, t) dX+TL (L, t) O (L, t )  (2.19)

where

-T(x,t) is a distributed moment.

-TL(t) is a concentrated end moment.

Substituting equations 2.17, 2.1, and 2.19 into Hamilton's equation,

integrating by parts, and applying the geometric boundary conditions,

the equation of motion is found to be

p(X)Ip(X) 20(x,t) - a [G3x)J(x) 80(xt)]=T(x,t) (2.20)
t2 x '
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and the natural boundary condition is

[x)x)ao(x, t) ]I.L=.(,t) (2.21)

For free torsional vibration T(X,t) = 0, thus

a [GxJx o(x,t) ],( a2o(x,t) (2.22)
GT xJx)X]=Ix at 2

For a uniform bar

p at 2  aX2  
(.3

Assume a solution of the form

O(x,tp=O(x)cos(wt-a) (2.24)

Substitute equation 2.24 into equation 2.23

Gd 1 x) . .(x) =0(2.25)

and let

2= PIp(02 (2.26)

The torsional equation of motion can then be written as

dx 2  x 2.7

The general solution is of the form

0 (x) =C, sin (P~x) +C2 cOs (P~x) (2.28)
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Numerical Solutions

The position dependent equations of motion for x-y plane bending

and torsion are again

d4V(x) - 4V(x)=O (2.29)

dx
4  Y

d2o(x) 0 (x)=O (2.30)
dx

2

with general solutions

V(x)=Alsin(Pyx)+A 2cos (yX)+A 3sinh(PyX)+A 4cosh(P yx) (2.31)

0 (x)=Csin(Pxx)+C2cos(OxX) (2.32)

The boundary conditions at the clamped end are

v(O,t)=0 (2.33)

8(0,t)=0 (2.34)

aV(0,t)=0 (2.35)
at

At x = L, the boundary conditions are

__ a2v(L,t) (2.36)
at

2

Mx =/dxx (2.37)

at 2

tz=dzz a2 (av(xt) (2.38)

where the shear force and moments are

After applying the above boundary conditions the equation of

motion for x-y plane bending reduces to 2 equations and 3 unknowns while
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Vy=Eiz a 3 v(x, t) (2.39)
ax

3

M,=:-CJ a0 (ax, t) (2.40)

MZ =Eiz a2v (X, t) (2.41)L3x
2

the equation of motion for torsion reduces to 1 equation and 2 unknowns.

The x-y bending plane equation of motion can be represented in matrix

form as

F(PyTL)[A 1 A4]T=[o] (2.42)

with

A1 =-A3  (2.43)
A4=-A2

F(P L) is defined as

F f(F) =F 11 F12  (2.44)
LF21 F2 2

where

F,1=(Py) 2mp(sin (Py)-sinh (Py)) +LpA (Py)(cos (P)+-cosh (Py)) (2-45)

F1 2P(T) 2 n (cos (Py)-cosh (Py)) +LpA(Py) (sin (Py)-sinh (Py)) (2.46)

F21=( ) 3 zz(cOs( PL)cOsh( PyL) )-L3pA(sin(PyL)+sinh(PyL)) (2.47)

F22=(l ) 3Izz (Sin(Py) sinh(Py) ) L3 pA(cos(Ay)+cosh(pY) ) (2.48)

For equation 2.42 to have a non-trivial solution, the determinant must

be zero. The natural frequencies for bending are found by setting
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detF( PyL) =0 (2.49)

solving for yL, then using

(yL2[ E.T (2.50)L pA

to solve for the natural frequencies.

After applying the boundary conditions for torsion we find C2 = 0.

The equation of motion can be written as a transcendental function

PIpL =0 (2.51)tan(I3xL)- (x ) x

of PxL .

The natural frequencies are found from

_ = xL[ GJ (2.52)

Once P and PxL are found, the constants Al, A4, and C1 can be found

from equations 2.31 and 2.32.

Equations 2.49 and 2.51 were solved numerically. The natural

frequencies of the beam without the end mass were also determined.

Table 2.3 contains the numerical solutions to the theoretical equations

of motion.
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Table 2.3 Numerical Results

Beam without End Mass Beam with End Mass

XY Bending

M-1 6.65 2.17

M-2 41.72 28.01

M-3 116.81 76.36

M-4 228.91 138.35

M-5 378.40 240.29

Torsion

T-I 391.89 15.07

T-2 1176.00 784.25
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III. Actuators, Sensors, Measurement Channel, and Configuration

The original Advanced Beam Experiment conducted by Cristler used

two pairs of linear proof mass actuators mounted on a circular disk

attached to the beam. The actuators, mounted in orthogonal axis,

theoretically allowed for simultaneous con-rol of the beam in both

bending planes and torsion. The weight of the actuators, however,

created second and third bending modes close to the free end of the

beam. In addition, the actuators could not achieve full force output

below 9 Hz. Since the first bending mode in both the x-y plane and the

x-z plane was below 5 Hz, effective control was achieved with only the

first torsion mode.

The modified ABE conducted by Jacques used only 1 pair of linear

proof mass actuators to control first mode bending in the x-y plane and

the first torsion mode. To control second and third mode bending, a

structural dynamics shaker was added. In addition, improved accel-

erometers and integration circuits were used. This chapter covers the

changes implemented in the modified ABE which was used as the model for

this work.

Actuators

In the original ABE, AFWAL chose linear proof mass actuators based

(7:2.1) on a design by TRW. The actuators are linear dC motors which

use momentum exchange between the base plate and the moving mass to

provide a control force. The actuators consist of a linear motor coil

mounted on two support brackets connected to the base disk. The motor

coil is driven by a power amplifier circuit which transforms a voltage

command into a drive current. The drive current is limited to 2 amps by

a current limiter to prevent burning out the motor coils. The motor

coils drive the motor magnets which are contained in the 0.9258 kg
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cylindrical proof mass. The proof mass travels on linear bearings which

allow for ±1.067E-02 meters of travel. Below 5 Hz the maximum force

output is limited by the distance the proof mass can travel. For low

frequencies, the peak force can be predicted by

F t md(.Jd (3.1)

where md is the mass of the proof mass and attached accelerometer, w is

the frequency in rad/sec of the signal driving the motor, and d is the

peak displacement. Figure 3.1 is a graph of the theoretical force

output for each actuator. Above 5 Hz the maximum force output of an

actuator is limited to about 8.9 N by the motor coil capability of 2

amps. Jacques (7:18) measured the actual control force available from

the actuators to control mode 1 bending. Table 3.1 gives Jacques'

measured results versus predicted results. The total force available at

100.00
- Actuator A & B Force Output

-Maximum Force Output Due To Current Limit

80.00

60.00

0

40.00

20.00

0.00 . ., , . . ..
000 2. 00 o,00 6.00...00 10O 120. 14.0 1600

Frequency (Hz)

Figure 3.1 Actuator Theoretical Force Ouput
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2 Hz is found to be ± 2.625 N which is the sum of maximum output for

both actuators.

Table 3.1 Actuator Maximum Force Outputs at 2 Hz (7:18)

Actuator Fn_4irtPA (N) F_.... (N) Efficiency (%)

A 1.606 1.326 82.5

B 1.606 1.299 80.9

The actuators are instrumented with Linear Variable Differential

Transformers (LVDT) which provide feedback of the relative position

between the proof mass and the motor base. The proof mass is

instrumented with an Endevco piezoresistive accelerometer. Figure 3.2

is a schematic of the linear proof mass actuators from Christler

(5:C.1 - C.4). Table 3.2 gives a description of each component, its

mass, and its dimensions. Taibe6 3.3 and 3.4 list the center of gravity

Table 3.2 Actuator Mass Model Components (5:C.1)

Part Figure Mass Dimensions (10-2m)
Description (kg) Length [Width I Height Diameter

I Rectangular j 2.49E-2 2.79 0.76 4.32
Plate

2 Circular 3.49E-2 11.43 - - 0.64
Cylinder

3 Rectangular 8.48E-2 2.79 0.76 4.32 -
Plate

4 Rectangular 3.49E-2 2.79 0.76 5.40 -
Plate

5 Circular 9.47E-2 13.97 - - 1.91
Cylinder

6 Hollow 51.36E-2 5.72 Inside Diameter = 0.64
Circular Outside Diameter 5.40
Cylinder i
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Top View

1~ 2 4 5

Side View

I4

Figure 3.2 Proof Mass Actuator (5:C.2)
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and mass moments of inertia for each component of actuators A and B.

The specifications for the linear motors, the LVDT's, and the Endevco

accelerometers are listed in Appendix B. The power amplifier circuit is

also given.

Table 3.3 Actuator A Mass Model (5:C.3)

1 Center of Gravity (10-2 m) Mass Moment of 2Inertia
Part (i0__ kg-m )

Ix  ly Iz

1 177.55 -5.72 -10.16 0.17 0.55 0.40

2 176.78 0.00 -10.16 3.81 0.018 3.81

3 177.55 5.72 -10.16 0.59 1.87 1.36

4 172.70 5.72 -10.16 0.24 1.07 0.86

5 171.32 6.20 -10.16 15.62 0.43 15.62

6 176.7R 0.00 -10.16 40.99 33.13 40.99

Table 3.4 Actuator B Mass Model (5:C.4)

Center of Gravity (10-2 m) Mass Monent ok InertiaPart (0"n kg-mr)

1 177.55 5.72 10.16 0.17 0.55 0.40

2 176.78 0.00 10.16 3.81 0.018 3.81

3 177.55 -5.72 10.16 0.59 1.87 1.36

4 172.70 -5.72 10.16 0.24 1.07 0.86

5 171.32 -6.20 10.16 15.62 0.43 15.62

6 176.78 0.00 10.16 40.99 33.13 40.99
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Initial open loop testing of the actuators by Cristler found them

to have several undesirable characteristics. These characteristics

(5:8-9) are

1. The low frequency behavior was non-linear due to several

factors. The bearing friction and associated hysteresis caused

drift of the center position. Also, the limited stroke length

would not allow for maximum force output below about 5 Hz. For

very low frequencies ( < 1 Hz), the bearing friction often

overcame the commanded force output of the actuator.

2. The zero adjustment of the power amplifier circuit

required continual adjustment, as the zero position would shift as

a function of both frequency and amplitude.

3. The open loop frequency response has a roll off and

associated phase shift in the vicinity of one of the fundamental

bending mode frequencies.

4. Non-linear bracket dynamics appeared in the region of

120-150 Hz.

A closed loop feedback system was designed to overcome these open loop

characteristics. The details of this design are completely described in

Reference 7. The overall goals (7:2-4) of the design were:

1. Actuator frequency response should be "flat" over the

structure control bandwidth. While the original ABE limited the

control bandwidth to 0 to 50 Hz, the modified experiment uses an

expanded control bandwidth of 0 to 100 Hz.

2. The actuator proof mass should maintain an inertia". position

when the actuator is not being commanded.

3. The proof mass should maintain its centering when commanded at

different frequencies and amplitudes.

4. The actuator proof mass should remain within the ±0.5 inch

actuator stroke limits.
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The actuator compensator circuit used in the modified ABE was

identical to the circuit used in the original experiment except for

modifications in resistance values. These modifications (7:10) were

necessary for the following reasons:

1. The characterization of the open loop actuator changed

slightly. The low frequency pole shifted higher, the bearing

friction deteriorated further, and the actuators were sensitive to

environmental changes.

2. The modified ABE required a bandwidth of 0-100 Hz because the

third mode bending frequency of 60-70 Hz was included.

3. Different feedback accelerometers were used, and the

difference in the sensitivities had to be compensated for.

The details of these modifications are covered in detail in Reference 7.

The final control configuration is shown in Figure 3.3.

Pre-Filters Power Amplifier Plant

E~) 0.1(s+10) _F454.5 E5 0 0 aX
(S+1) (s+27772) (s+2500) (s+10)

Current Feedback
Filter

0.;303)

Gain LVDT

I . . __-

Feedback AccelerometerCq pensa t ion

4545.6 0.0925

L(5+606)

Figure 3.3 Actuator Compensation Block Diagram (7:12)
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Structural Dynamics Shaker

The third actuator was added to control second and third mode

bending. The actuator used was an Acoustic Power Systems (APS) Model

113-LA Structural Dynamics Shaker driven by an APS Model 114 dual mode

power amplifier. This shaker was chosen because of its long stroke

limit and excellent response in the control bandwidth. The

exceptionally flat response allowed "open loop" operation, thereby

eliminating the feedback problems encountered with the proof mass

actuators. Since the structural dynamics shaker was physically mounted

in the laboratory, the original intent of the ABE to use inertial

controllers mounted to the beam was violated. In future experiments,

Jacques suggested (7:22) that the structural dynamics shaker should be

freely suspended. Since the goal here is to mode, the results of

Jacques' work, the structural dynamics shaker will be modeled as a non-

inertial controller. Details of the open loop testing are in Reference

7. Specification sheets for the shaker and the amplifier are in

Appendix B.

Sensors/Measurement Channels

One of the goals of the modified ABE was to improve the sensors

and integrator circuit. The original ABE used piezoelectric accel-

erometers which provided relatively poor low frequency responses and the

original integration circuit was susceptible to drift :aused by

integrating dC offsets or very low frequency signals. The modifi.d ABE

used Endevco Model 2262 piezoresistive accelerometers which have a good

low frequency response. The integrator circuit used in the modified ABE

was designed by WRDC/FIBG to have negligible phase shift and a

straight -20 dB/decade magnitude slope above 1 Hz. Specifications for

the accelerometers and the integration circuit diagram are contained in

Appendix B.



I KHz I Kliz

Signal Amplifier I Integrator Amplifier II PC-130J

Conditioner GI-5 GII-20 Input
G-50 Channels

Beam
Accelerometer

Figure 3.4 Measurement Channel Block Diagram (7:48)

A side effect of signal integration was attenuation of the signal.

Amplification was necessary to boost the analog-to-digital input signal

up to the minimum range. Two amplification stages were necessary. The

first stage was placed before the integrator while the second stage was

placed after the integrator. Gain had to be kept low in the first stage

to avoid clipping the signals in the integrator. The remainder of the

required gain was provided in the second stage. The low pass filter on

both amplifiers was set to 1 KHz. While this thesis will use velocity

feedback as shown in Figure 3.4 to examine the integration or

structure/control optimization, the control law will be implemented

using perfect sensors.
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Accelerometers Signal Amplifier I Integrator Amplifier II PC-1000
Cond.

y5

G-50 GI-5 GII-20 In

S1la V i la

Sl lb ~'1bi

Compensation

Circuits

Ua

Out

- Actuators Power Amps

Figure 3.5 Final ABE Block Diagram (7:54)

Final Configuration

Figure 3.5 shows the modified ABE final hardware configuration.

The hardware consisted of an inverted cantilevered beam with base plate,

two linear proof mass actuators, two linear proof mass actuator

compensation circuits, a structural dynamics shaker, four

accelerometers, four signal conditioning/integrator circuits, a PC-1000

Array processor and its host computer. Figure 3.6 shows the system

configuration for the beam with base plate, the actuators, and the

structural dynamics shaker. There are 11 positions located 7 inches

apart. The shaker is located at position 4 (28 inches from the fixed

end) and provides good control over second and third mode bending. The

proof mass actuators, shown in Figure 3.7, are mounted parallel to the
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y-axis. When they are operated symmetrically they provide control over

x-y plane bending modes and when they are operated asymmetrically the

provide control of the torsion mode. The arrows indicate positive

direction for measurement of force input.
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Position

#4 Accelerometer 3

#5

#6/ 7 . "

Actuator C

#7

#8 Accelerometer 4

#9

#10

Actuators A and B

#11 Accelerometers 1 and 2

Figure 3.6 ABE Final configuration (7:52)
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Sensor F*i0____________

N. N 5.08E-2m

Actuator A 11.02E-lm

Y

-1E.i925E-02 m T- 3.05E-Im

H 2.565E-02 m

Actuator B 1.O2Ei-ft

5.089-2m

Sensor #2 jZ

Figure 3.7 ABE Base Plate Configuration (7:53)
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IV. Finite Element Modeling of the ABE

The finite element method can be thought of as a version of the

assumed-mode method. Instead of defining a function which describes the

deflected shape of an entire structure, the finite element method

defines a shape function * over a small region in such a way so as to

maintain the inter-element continuity of the *'s for the entire

structure. A brief review of the theory from Ref. 9 for beams in

bending and torsion is presented in this Chapter. Ref. 10 contains a

more detailed discussion of finite element theory. Also included in

this Chapter is the development of the ABE finite element model using

MSC/NASTRAN.

Theory

If we assume Bernoulli-Euler beam theory, the transverse

displacements for a beam in bending can be approximated by (9:385-387)

4
v(x, t)= (x)v(t) (4.1)

i =1

where the shape functions * satisfy the boundary conditions

*1(0) = 1, / 1(0) = *i(L) = 4 1 (L) = 0 (4.2)

2(0) = 1 12(0) * 2 (L) = V 2 (L) = 0 (4.3)

*3 (L) = 1, % (0) = 13(0) = 4/ 3 (L) = 0 (4.4)

V4 (L) = 1, *4(0) = 4/4(0) = * 4 (L) = 0 (4.5)

For a beam in bending the general solution for static deflection v(x) is

the cubic polynomial

4-1



v(x) = c1 + c2(.) + c3()2 + C4  (4.6)

After substituting the given boundary conditions into equation 4.6, the

beam element shape functions are found to be

1 - + 2( x)3 (4.7)
*2 x -2L(x)

2 + L( x)3  (4.8)

413 3 (x)2 - 2( x)3 (4.9)

*4 -L(. )2 + L (4.10)

By applying equation 4.6 to the kinetic and potential energy

expressions, terms for the stiffness and mass are

L

kij =I* jdx (4.11)

L

mi j =fPA*i *j dx (4.12)

0

Substituting the shape functions into the expressions for the stiffness

and mass results in the element stiffness and mass matrix

12 6L -12 6L

[k] = E! 6L 4L2 -6L 2L2  (4.13)
(L3J -12 -6L 12 -6L

6L 2L2 -6L 4L
2
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156 22L 54 -13L

(MI = 1 pAL
1 22L 4L2 13L -3L2  (4.14)

V., 54 13L 136 -22L

{-13L -3L
2 -22L 4L2

The torsional stiffness and mass matrix for a beam element can be

found in a similar manner (9:388-389). The rotation along the element

is given by

0(x,t) = 1 (x)01(t) + *2 (x)02(t) (4.15)

subject to boundary conditions

*1(0) =1, (L) =0 (4.16)

i2(0)=O, # 2 (L)=1 (4.17)

The shape functions are given by

*1(x) =- (4.18)

and

*2(x) =x (4.19)

Substituting equation 4.15 into the torsional expressions for potential

and kinetic energy, the expressions for stiffness and mass become

L

ki j = Gj~i jdx (4.20)

L

mij =IpIpi jdx (4.21)
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Inserting the shape functions from equatione 4.18 and 4.19 into

equations 4.20 and 4.21 gives the stiffness and mass matrix for a beam

elepmnt in torsion.

[k] =()? ](4.22)

[in] =(I±)[ 2 ] (4.23)

T- )[1 21

For an undamped system, the element matrices can be formed into

partitioned system mass and stiffness matrices (9:406-407). The

matrices are partitioned into active and constrained degrees-of-freedom

giving the equation of motion

[ a: M cl ifaI [":a 'KaclUalr al (4.24)
[MC 1: MccI~c [.a KCCJ UC .Ic

for the system. For UC = 0, equation 4.24 can be reduced to

Maada +KaaUa =Pa (4.25)

plus an additional equation of reaction constraints. Since Maa and Kaa

are sufficient to solve for the active displacement vector Uat the

second equation is not required.

Assume a solution of the form

(U) = (*) cosc(t (4.26)

where (*) is a vector of real numbers and cos(wt) is a scalar

multiplier. Substituting equation 4.26 into equation 4.25 gives

[ K-.2M ](*) coswt =0 (4.27)

For this equation to be valid for all time,
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[K-2M] (*)=0 (4.28)

The solution to this equation gives the eigenvalues w, and their

associated eigenvectors.

MSC/NASTRAN 66A Solution Solver

MSC/NASTRAN solution sequence "Real Eigenvalue Analysis" (SOL 3)

was used for the preliminary modeling of the ABE. "Modal Transient

Response" (SOL 112) was used in the optimization sequence so that

initial conditions could be obtained. In all cases, the eigenvalue

extraction method used was the Modified Givens Method with mass

normalization. Unlike the Givens method, the Modified Givens Method

does not require that the mass matrix be nonsingular. Instead of

performing Cholesky decomposition on the mass matrix, a positive

definite matrix [K + IM] is formed where I is selected by the program to

optimize the reliability and accuracy of the eigenvalue extraction. The

Givens transformation method is used to convert the program defined [J]

matrix to tridiagonal form. A modified Q-R algorithm is used to extract

the eigenvalues from the tridiagonal matrix. The complete eigenvalue

extraction procedure is contained in Reference (11:4.2-4 - 4.2-8).

Initial Beam Model

SDRC-IDEAS was used (12) as the pre/post-processor for the

MSC/NASTRAN data file. The ABE finite element model consists of 11 grid

points, or nodes, which are connected by NASTRAN CBAR elements. The

CBAR element specifies the beam connecting nodes and references a

physical and a material property table for the element. The SPC entry

is used to specify the physical degrees of freedom for each grid point.

For the ABE model in this thesis, the fixed end has no degrees of

freedom. All other nodes are free to translate in the y-direction and

rotate about the "x" and "y" axis.
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The first run model consisted of a 10 element beam without the end

disk or actuators. Results were computed in both SDRC-IDEAS and

MSC/NASTRAN and compared to the numerical calculations performed in

Chapter II. Table 4.1 gives the natural frequencies calculated by using

both programs. For the simple beam without the end disk, MSC/NASTRAN

quickly losses acc-uracy. This loss of accuracy for a simple

cantilevered beam using MSC/NWTRAN is also shown in Reference (13:7.9).

No reason is given in the reference for such a large error in the third

and higher bending modes. The error is reduced considerably once

the base disk is attached.

labic 4.1 Beam Without End Disk

Mode Numerical MSC/NASTRAN Error SDRC-IDEAS Error

Hz Hz % Hz %

XY-1 6.65 6.61 - 0.60 6.65 0.00

XY-2 41.72 40.88 - 2.01 41.65 - 0.17

XY-3 116.81 112.81 - 3.42 116.44 - 0.32

T-1 391.89 353.59 - 9.77 392.40 + 0.13

The second step in the model construction was to construct a rigid

body disk in SDRC-IDEAS and attach it to the beam. A concentrated mass

model was also constructed using the inertia properties of the disk and

as expected the dynamic results were identical. As a result, the

concentrated mass model was used. Table 4.2 gives the natural

frequencies of the beam with the end disk attached using both SDRC-IDEAS

and MSC/NASTRAN and compares their results to the numerical results

obtained in Chapter II.
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Table 4.2 Beam With End Disk

Mode Numerical MSC/NASTRAN Error SDRC/IDEAS Error

Az Hz Hz %

XY-1 2.17 2.17 0.00 2.17 0.00

XY-2 28.01 27.92 0.32 27.99 - 0.07

XY-3 76.36 76.17 - 0.25 76.25 - 0.14

T-1 15.07 15.05 - 0.13 15.05 - 0.13

As mentioned earlier, the disk provides the primary component of

rotatory inertia. From Table 4.2, it is apparent that the torsion mode

is now well within the 0-100 Hz bandwidth of the modified ABE. Figures

4.1 - 4.4 show the mode shape comparisons for the first three bending

modes an! torsion. The top figure on each page is the mode shape of the

beam without the end disk. The bottom figure is the mode shape for the

beam with the end disk. Notice the mode shape fzr mode 2 and 3. The

weight of the disk is causing the beam to act almost like a -inned beam

at the free end. This was noticed in earlier work (7:4) on the ABE and

was one of the reasons for poor control results for these modes. The

modified ABE uses the structural dynamics shaker to overcome this

problem.

The third step was to add the actuator non-moving mass components

to the beam. Tables 3.2, 3.3, and 3.4 contain the mass and inertia

properties of the actuator components. Once again, these were added to

the finite element model as concentrated masses with inertial

properties. The results of this step are listed in Table 4.4. This

step is referred to by Jacques as the "clean configuration."

The final configuration includes the actuator mass. This

configuration was not developed in SDRC-IDEAS. The natural frequencies

for this configuration are presented in a later section in Table 4.4.
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DATABASE: 10 ELEMENT BEAM MODEL WITHOUT END MASS

DATABASE: 10 CLEMENT SEAM MODEL WITH CHD MASS

moDE I
2.11 NZD

Figure 4.1 Mode 1 Bending For Beam and Beam With Disk
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DATABASE: 11 ELEMENT BEARM PODEL WITHOUT END MASS

M D 41.6 0,1

DATABASE: 10 ELEMENT SCAM MODEL! WITH END MASS
M0DE 128.0 (HZ)

Figure 4.2 Mode 2 bending For Beam And Beam With Disk
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XTARASE 10 ELEMENT? SEAM 40DEL. WITHOUT ENYD MASS

DATABASE: 10 ELEMENT BEAR MODEL. WITH END MASS
MODE 4

'6.3 tHI

Figure 4.3 Mode 3 Bending For Beam And Beam With Disk
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DATABASE: 10 ELEMENT BEAM MODEL WITHOUT END MASS
4OSE 6

DATABASE: 10 ELEMENT SEAM MODEL WITHI END MASS
MODE 2

15.0 fME)

Figure 4.4 Torsion Mode For Beam~ And Beam With Disk
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Table 4.3 Clean Configuration

Mode MSC/NASTRAN (Hz) SDRC/IDEAS (Hz)

XY-1 2.08 2.08

XY-2 27.74 27.81

XY-3 74.20 74.29

T-1 14.14 14.13

Model Verification

Even though the ABE is a very simple structure, the finite element

model created in MSC/NASTRAN still contains modeling errors. The

equations of motion from the finite element model only represent a

mathematical model of the real structure. The goal in modeling is to

match as closely as possible the behavior of the physical structure in

the realm of interest. The realm of interest for the ABE is the dynamic

behavior of the first three bending modes and the first torsion mode.

Convergence. To determine if 10 elements were sufficient, 10 beam

models were created with different numbers of elements to test for

convergence of the natural frequencies. Table 4.4 contains the results

of this test.

Table 4.4 Convergence Test Results

Beam - XY-1 XY-2 XY-3 T-1
Number ot
Elements I I

B-2 2.174 28.182 79.088 15.045

B-3 2.174 28.029 76.848 15.045

B-4 2.174 28.000 76.447 15.045

B-5 2.174 27.992 76.333 15.045

B-6 2.174 27.989 76.290 15.045

B-7 2.174 27.988 76.271 15.045

B-8 2.174 27.987 76.262 15.045
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Beam - XY-1 XY-2 XY-3 T-1
Number of
Elements 1 __

B-9 2.174 27.987 76.256 15.045

B-10 2.174 27.986 76.253 15.045

B-35 2.174 27.986 76.246 15.045

Numerical 2.174 28.010 76.360 15.072

Error B-10 0.00 -0.09 -0.14 -0.18

The finite element model converges from above to a solution below

the numerical results. For the 10-element beam, the accuracy is quite

good for the first three bending modes and the first torsion mode.

Effects of Shear Deformation. The theoretical model was based on

Bernoulli-Euler beam assumptions. These assumptions neglected shear

deformation and rotatory inertia. From (9:204), the theoretical

equation of motion for a short, stubby beam (Timoshenko Beam Theory)

which includes these effects is

[Elk a -_p pAif a -(PI 1

[aX4 at2  [ ax2at 2J (4.29)
EI a2 p-a~va ~K A a 2 0 t 2 1  K A cj t 0P t 2

The first term in brackets is from Bernoulli-Euler beam theory. The

principal rotatory inertia is in the second term while the principal

shear deformation is in the third term. The fourth term includes

combined rotatory inertia and shear deformation. SDRC-IDEAS accounts

for the effects of shear by the definition of a shear area ratio term.

The shear area ratios are defined in SDRC-IDEAS to be (12:2.18)
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a122

srz= A Y dcz (4.31)

z

where, the QBs, shown in figure 4.5, are

a/2 b/2

Qyj f ,zdzdy (4.32)

b/2 a/2

Qz= f ydydz (4.33)

-b/2

QY

Figure 4.5 Q Area For Shear Area Ratio Calculation
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Results from the 10-element beam model were computed with and without

the effects of shear. Table 4.5 presents the results of these

computations. The data suggests that the Bernoulli-Euler assumption was

a good assumption. For the final model, however, the effects of shear

and rotatory inertia will be included.

Table 4.5 Effects of Shear

Mode B-10 W/O Shear (Hz) B-10 With Shear (Hz) Comparison (%)

XY-I 2.174 2.174 0.00

XY-2 27.993 27.986 -0.03

XY-3 76.280 76.246 -0.04

T-1 15.045 15.045 0.00

Comparison With Modal Test Data. The final "test" of the

mathematical finite element model is to compare it to experimental data.

In structural dynamics modeling, finite element analysis and modal

analysis take different approaches to obtain a system model (14:86).

Modal analysis models are derived experimentally while finite element

models are derived mathematically. This difference makes modal analysis

a good check of the finite element model. Jacques performed modal

analysis on the ABE to determine its response to vibration. Table 4.6

gives the comparison between Jacques modal analysis model of the final

configuration (7:39) and the MSC/NASTRAN finite element model with

actuators and disk. One reason for the large difference in second and

third mode bending may be because displacements in the x-direction were

constrained in MSC/NASTRAN. Another reason for the difference is

because of the exclusion of the actuator dynamics from the finite

element model. The section on damping will address the actuator

dynamics.
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Modal Transformation

The finite element model equation of motion which includes the

mass, stiffness, and damping matrices as well as the control inputs is

Table 4.6 Final Configuration Model Comparison

Mode Jacques Modal Test (Hz) MSC/NASTRAN (Hz) Error (%)

XY-l 1.97 1.93 - 2.03

XY-2 23.43 27.74 + 18.40

XY-3 62.92 73.62 + 14.53

T-l 13.35 13.07 - 2.10

(m](4) + [c](4) + [k](q) = [bJ(u) (4.34)

where q is a vector of generalized coordinates, [b] is the control input

distribution matrix, and u is a vector of control forces. Assuming that

only the first two bending modes and the first torsion mode are present

in the response, then q is a 3xl vector and the generalized coordinates

are defined as

ql = displacement of node 11.

q2 = rotation of node 11.

q3 = displacement of node 5.

In terms of the physical coordinates, the generalized coordinates are

q,= 1(-Ya + Y11b) (4.35)

1

q2 = -(Ylla + Y11b) (4.36)

q3 = Y5 (4.37)

In terms of the generalized coordinates, the measured coordinates are

then
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Yiia =-4 + 42 (4.38)

Y11b = 41 + q2  (4.39)

h = 43  (4.40)

If we assume the modes are uncoupled and assume modal damping, equation

4.34 can be decoupled by using modal coordinates q and the modal matrix

of right eigenvectors 0 to define a transformation such that

(q] = 0 (] (4.41)

where the eigenvectors have been normalized such that

OT [m] = [M] = [I] (4.42)

Equation 4.34 can then be written as

(t) + [2o](A) + [&j](q) = OT[b](u) (4.43)

The matrix [2Cw] is a diagonal matrix where the ith element represents

damping for the ith mode. The matrix [w2] is a diagonal matrix where

the diagonal entries are the eigenvalues for equation 4.43.

Damping

Damping is inherent in any structure, but predicting how much

damping is in a structure is difficult. Modal testing provides a good

approach to help understand the effects damping has on a structure.

From modal analysis data, Jacques estimated how much damping was present

in the ABE. Table 4.6 gives the experimentally determined damping

values for both the "clean configuration" and the final configuration

with actuators attached. The viscous damping factor C is the ratio
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C/Ccr where ccr is the critical damping factor. For large space

structures, the damping factor is typically very small.

By including the actuator damping with the beam damping, the

stability effects of the actuators cannot be determined. Inman (15:508-

Table 4.6 Modal Analysis Damping Values (7:39,41)

Mode Clean Configuration (C) [ Final Configuration (C)

XY-1 0.00129 0.0640

XY-2 0.00375 0.0236

XY-3 0.00086 0.0121

T-1 Not Determined 0.00839

Actuator Mass

'Yka Lirica (fa _

kca 
f Nonmoving Mass of

the Actuator

- Structure

ka - Actuator Stiffness

ca - Actuator Damping

fa - Actuator Force

Figure 4.6 Simple Model of Actuator Dynamics (15:508)
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513) shows the effects of actuator dynamics on the overall system

stability. Figure 4.6 shows a simple model of the actuator dynamics.

If actuator dynamics are neglected, the mathematical "answer" to how

much velocity feedback gain should be added to achieve a desired

response is as much as is necessary. Inman presents examples which show

how the system can go unstable as the gain is increased. When the

actuator dynamics are introduced in the single-degree-of-freedom model

shown in Figure 4.6, the [C] and [K] matrices in the equations of motion

become coupled. If velocity feedback is used like it is in the ABE, the

(C] matrix becomes coupled and unsymmetric. This limits the amount of

gain that can be added before the actuators cause the system to

destabilize.

Since this thesis is modeling the modified ABE, actuator damping

will be treated as viscous modal damping. Proportional, or Rayleigh,

damping can be used to model the damping where

(C] = a[Z] + P[M] (4.44)

Matrix [C] is an orthogonal damping matrix (10:377) because it permits

modes to be uncoupled by the eigenvectors associated with the undamped

eigenvalue problem. The damping ratio is related to the stiffness and

mass proportional damping constants a and 0 by

w= (a + (4.45)

a and 0 can be found in terms of w and C by

2_ 2 (4.46)a = 2(C( 2 -(1")/(( -U))
2 2

2 (2 (4.47)

Using data in Table 4.6, a = 2.2072E-04 and 0 = 1.5219. The graph for

0 : w 5 400 rad/sec is shown in Figure 4.7 where the Rayleigh damping
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curve is the sum of the mass proportional damping curve and the

stiffness proportional damping curve.

0.40

0.30 - Mass Proportional Damping
SStiffness Proportional Damping

-Rayleigh Damping

E 0.20

0.00

00 . . .. .i . .. . ....... i ...... " " .... '  . .;' ' ' ' . . l...... ; '
0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

Frequency (rod/sec)

Figure 4.7 Rayleigh (Proportional) Damping Model

Initial Conditions

Structures are normally designed to withstand some given design

conditions. When the design conditions are applied, dynamical systems

will exhibit a response. This response is needed as initial conditions

for each structural iteration in the structural/control optimization.

Miller, Vipperla and Venkayya (3:928) demonstrated that it is not

adequate to specify the initial response conditions for a structure

being optimized and then hold these constant for the iteration process.

As the structural property is varied (cross-sectional area) in the
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optimization process, each iterated structure will exhibit different

initial conditions. Therefore, it is necessary to specify the design

conditions, such as the applied load, and then solve for ii tial

conditions for each iteration of the structure.

An impact load was included in the MSC/NASTRAN finite element

solution process. To obtain the initial conditions, the TLOAD data

entry is used to specify a load table TABLEDI and a scale factor entry

DAREA. The equation for the force input in MSC/NASTRAN is

P(t) = A[F(t-T)] (4.48)

where the time delay T=0. The scale factor A was selected to be 1000 N.

The load table is shown graphically in Figure 4.7. The table is shown

graphically to illustrate how MSC/NASTRAN reads input tables. If the

three points at t=0.001, t=0.002, and t=0.003 where the only points

1.20

1.(0

0.80

x 0.60

0.40

0,20

0.00 . . . . .
0.000 0002 0004 0.006 0.008 0.010

Time (secs)

Figure 4.8 MSC/NASTRAN Force Area Chart
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specified, an infinite load would be applied. This is because

MSC/NASTRAN extrapolates tables. Since no value is specified after

t=0.003, the slope from t=0.002 to t=0.003 would be continued after

t=0.003. To prevent an infinite load, values of zero must be specified

on both sides of the load. The initial conditions for the

structure/control optimization were chosen at t=0.003. This has the

effect of "turning on" the control system at t=0.003. The ABE undamped

and damped response to the initial conditions are shown in Figures 4.9

and 4.10.
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V. Control Theory

The state-space formulation is detailed in this Chapter. LQR

theory and the selection of the Q and R weighing matrices are presented.

State-Space Formulation

After normalizing the eigenvectors with respect to the mass

matrix, the linear differential equations of motion from equation 4.43

,an be written in state-space form. The standard state-space format for

the state equation is

[ i]=A[x]+B[u]+[w](51

where the state vector is

[x]T=[T1, 2,13 ,1, 2,A31 (5.2)

and the input vector is

[U]T=[FA, F, Fc] (5.3)

The plant matrix A and the input distribution matrix B are

A=[0 I] (5.4)

B={T] (5.5)

and [w] is a process noise or input disturbance vector.

The output equation can be written as

[y]=C(x]+D[u]+[v] (5.6)
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The output distribution matrix C is

C= J CPO I C] (5.7)

where the partitions Cp and Cv are the position and velocity sensor

distributions respectively. The matrix D allows the output variables to

be controlled by (u] while (v] is a measurement noise term. The

schematic of the state-space model is shown in Figure 5.1.

This thesis will assume that the plant disturbance or process

noise term (w] is negligible. In addition, the sensors are assumed to

be perfect and there is no control over the output vector. The implies

that [v]=0 and D=0. The input distribution matrix [b] is defined to be

b=1 1 (5.8)

0'

Since position feedback is not used, Cp=O. Cv is given by

= -1 1 15.9)

1 1 0(5)
001

thus, for collocated sensors and controllers, B=CT. The final state-

space formulation is

[x]=A[x]+B(u] (5.10)

[y]=Clx] (5.11)

Linear Quadratic Regulator Theory

Ref. 16 covers LQR theory (16:6.1-6.9) in detail. A brief review

of the theory is presented.

If full state feedback is used, the control input can be defined

as a linear combination of the state variables

that make the closed-loop system
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Disturbances

Actuator Sensor
Dynamics PlantDynamics

Controller Estimator/+ Fi lter +

Commands Noise

Figure 5.1 Control Schematic (1:519)

U ( t) =-Kx (t) (5.12)

ji( t) =Ax (t) +B [ -Zx(t) ]  (5.13)

(5.13)

-(t) = [A-BKc]x(t) (5.14)

asymptotically stable. The control gain KC can be found by minimizing

the performance index

Jc=f(xT(t)Qcx(t)+uT(t)Rcu(t)dt (5.15)

where Q and Rc are symmetric, real, positive definite matrices chosen

by the design engineer according to the importance of the state and of

the controls. From (16:6.1-6.2), this can be interpreted as "we wish to

find a control law u(t) such that the integral-squared-error of the
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deviation of the state trajectories from their nominal are kept small

without using a great deal of control energy." From optimal control

theory, the gain matrix Kc in equation 5.12 which minimizes equation

5.14 is given by

Kc =R 1BTS (5.16)

where S is the solution to the algebraic Riccati equation

ATS+SA-SBR 1BTs+Qc=O (5.17)

Since position feedback is not used for this work, however, the gain

matrix Kc Cis not guaranteed to be optimal. This is the basis of a

Linear Quadratic Regulator.

Generally, the state variables cannot be measured directly. An

estimator is required to reconstruct the states from the sensor outputs.

The estimator has the form

[ ] =A[ k] +B[ u] +K0 [y-] (5.18)

[M=C[*] (5.19)

where [x] and (['] are the estimated state vector and the estimated

output vector. The observer gain K0 must be chosen so that the error

defined by

(e]=[k]-[x] (5.20)

is stable. Since the state vector is not available, the control input

is also based on the estimated state vector

E u ] = -KO [ k] (5.21)

K is selected to minimize the estimator cost functiono
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J0 = (xT(t)Qox(t)+yT(t)Roy(t)]dt (5.22)

where Q0 represents the process noise covariance and Ro represents the

measurement noise covariance. This is the basis of a Kalman filter.

When a Kalman filter is added to a Linear Quadratic Regulator, the

result is a Linear Quadratic Gaussian compensator.

Force Actuators Flexible System Sensors

S BN Controlled CN

Dynamics

BR Residual CR

Dynamics

[ Active Controler

N - Controlled Modes

R - Residual Modes

Figure 5.2 Control and Observation Spillover (17:425)

If residual modes are present, they will result in spillover.

Figure 5.2 shows a schematic of spillover. If the sensor outputs are

contaminated by the residual modes through CR, the effect is known as

observation spillover. If the control actuators are excited by the

residual modes through BR, the effect is known as control spillover.

The effects of spillover can be detrimental. Calico and Janiszewski

(18) showed that eliminating either observation or control spillover was
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sufficient to ensure stability of the suppressed modes. Jacques (7)

attempted to demonstrate modal suppression on the ABE by eliminating

observation spillover. The results achieved while trying to suppress

bending mode 2 were partially successful. The reason for the partial

success was attributed to the estimator model. Balas (17:421) presents

two estimator designs. The first is based on the Kalman filter. The

Kalman filter is used by Balas if the system signal-to-noise ratios are

not very high. If the system signal-to-noise ratios are sufficiently

high, the system is treated as deterministic and the estimator used is a

Luenberger observer. The reason for this is the estimator error term in

equation 5.19 will contain additive noise terms with the Kalman filter

but these terms are absent with the Luenberger observer. Since system

noise was attributed in part to poor estimator performance, additional

work on the ABE should examine the effect of estimator choice on the

control model.

For the integrated structure/control optimization procedure

implemented in this thesis, it is assumed that the state is completely

observable. LQR theory will be used as the optimal control law without

the introduction of a Kalman filter. MATLAB uses eigenvector

decomposition of an associated Hamiltonian matrix to solve the LQR

problem (19:CR-38,CR-39). For convenience, the "c" and "o" subscript

will dropped. Parameters used for the remainder of this work refer to

the controller.

Choice of Weighing Matrices 0 and R

In the past, an optimized structure was given to a control

engineer to design an optimal control system. The engineer selected Q

and R subject to the importance of the state or the control system so

that a desired dynamic response was achieved. Venkayya and Tischler

(20:433-434) have proposed that the selection of Q and R should not be

arbitrary, but that their selection should ensure that the cost function
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J provides a measure of some appropriate physical quantity, such as

total system energy.

From Chapter IV, the finite element equation of motion is

mq(t)+c4(t) kq(t)=bu(t) (5.23)

If J is defined as

J=f['O4Tm4+OkqTkq+ORuTbTk-lbu]dt (5.24)

0

for positive scaling parameters OM, 8k, and 0R' then J is the absolute

sum of the kinetic, strain, and potential energies. Total system energy

is thus minimized to satisfy the LQR control law. Considering the modal

coordinate transformation 4.41 and the mass normalization 4.42, Q and R

can be written as

2= (5.25)

R=[ORb T k-b] (5.26)

For the optimization in Chapter VI,

O= k = NQ (5.27)
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VI. Integrated Structure/Control Optimization

This Chapter introduces the structure/control optimization

procedure. The effects of Q/R selection on the control system

specifications are examined. In addition, two optimization approaches

are presented. The first approach i. based on minimizing mass and total

system energy. The second approach, Onada's method, develops a

relationship between control system energy and control system mass. The

combined mass of the structure and the control system are then

minimized. Finally, the ABE is optimized using the constraints of the

existing control system.

Optimization Algorithm

The combined optimization of a structure and its control system

can be divided into three distinct phases as shown in Figure 6.1. An

initial structure is specified to start the first phase. A finite

element program is used to solve for the eigenvalues and eigenvectors of

the structure. With the eigenvalues and eigenvectors determined, the

plant matrix [A] can be constructed for the state-space equations. The

state-space equations are used in the second phase to solve the optimal

control problem. Depending on the output from the second phase, the

third phase would use an optimization procedure to determine a

"direction" to iterate the first phase input parameters.

This thesis will not use a true optimization procedure. Instead,

a range of structural parameters will be used in a form of "sensitivity

analysis." The structural parameter which is varied is the cross-

sectional area. To maintain a proportional cross-section, the side

dimension "b" is defined in terms of "a" based on the current ABE. "a"

is then varied in 10% increments. Table 6.1 lists the cross-sectional

areas and the moment's of inertia for the 17 beam iterations. Figure
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Finite Element

Program

MSC/NASTRAN

Optimal Control

Program

MATLAB

Optimization

Program

(Sensitivity Analysis)

< Yes

Figure 6.1 Structural/Control Optimization
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6.2 shows the linear relationship between the structural mass and the

cross-sectional area.

The finite element procedure outlined in Chapter IV was used for

each of the design iterations. The output obtained from MSC/NASTRAN

included:

1. The natural frequencies.

2. The mass normalized eigenvectors.

3. The [k] matrix.

4. The initial conditions subject to a 1000 N force.

Table 6.1 Structural Iteration Properties

Number Area (M 2 (M 4 1, (m 4 j (in4 )

1 7.900E-05 3.903E-10 6.930E-10 8.426E-10

2 1.234E-04 9.53OE-10 1.692E-09 2.057E-09

3 1.778E-04 1.976E-09 3.508E-09 4.266E-09

4 2.419E-04 3.661E-09 6.500E-09 7.903E-09

5 3.160E-04 6.245E-09 1.109E-08 1.348E-08

6 3.999E-04 1.OOOE-08 1.776E-08 2.160E-08

7 4.938E-04 1.525E-08 2.707E-08 3.292E-08

8 5.975E-04 2.232E-08 3.964E-08 4.819E-08

9 7.110E-04 3.162E-08 5.614E-08 6.825E-08

10 8.345E-04 4.355E-08 7.732E-08 9.401E-08

11 9.678E-04 5.857E-08 1.040E-07 1.264E-07

12 1.111E-03 7.719E-08 1.370E-07 1.666E-07

13 1.264E-03 9.993E-08 1.774E-07 2.157E-07

14 1.427E-03 1.273E-07 2.261E-07 2.749E-07

15 1.600E-03 1.601E-07 2.842E-07 3.455E-07

16 1.782E-03 1.987E-07 3.528E-07 4.290E-07

17 1.975E-03 2.440E-07 4.331E-07 5.267E-07
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Figure 6.2 Mass versus Area

The control optimization phase was solved using MATLAB. A MATLAB

.M file (Appendix D) was written to apply Linear Quadratic Regulator

theory to the finite element output data. The MATLAB .M file produced

data files containing the following information:

1. The optimum gain matrix K.

2. The Riccati solution matrix S.

3. The cost function J.

4. The initial control force for each actuator.

5. The control energy function C.

6. The closed-loop damping ratios.

7. The closed-loop frequencies.

Each iteration was performed using Q and R values as defined is Chapter

V as well as constant Q and R values. In addition, a weighing value was

applied to the Q and R values to determine the effect weighing has on

the optimization. The basic nomenclature scheme used is
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Q ## = Variable Q as defined in Equation 5.25

R ## = Variable R as defined in Equation 5.26

QI ## = Constant Q as defined in Equation E.1

RI ## = Constant R as defined in Equation E.2

The first # in the scheme represents the weight applied to 0.. The

second # represents the weight applied to 0R* The weighing #Is used

were combinations of 1.0 and 0.3. Table E.l in Appendix E provides the

weighing used in the optimization.

The final phase of the combined optimization procedure uses data

from the second phase to select a search direction in which to vary the

input structural parameters. As mentioned earlier, a search direction

is not used. Instead, a range of structural parameters are used to

chart the effects of the various optimization methods. The data needed

from the second phase depends on the optimization method chosen. In the

following sections, the cost function J and the control energy function

C are used. Other methods contained in the literature have demonstrated

the use of the initial control force, the closed-loop damping ratios,

and the closed-loop eigenvalues to find a search direction to iterate

the structural parameters.

Relationship of 0 and R Selection To Control Response

To show the effects of Q and R selection on the optimization

process, viscous damping from the structure and actuators will be

neglected. With viscous damping neglected, only damping from the

velocity feedback control law will effect the system. Figures 6.3 and

6.4 show the simulated undamped response of beam iteration #1 and #17

to the applied impulse force. The measurements are taken from positions

lla, llb, and 5 on the beam.

From the velocity feedback control law, damping is added to the

closed loop response. The amount of damping depends on the gain K which
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is selected by LQR theory. The closed-loop plant matrix from equation

5.14 is repeated here.

ACL = [A - B*K] (6.1)

The effect of selecting Q and R by Equations 5.24 and 5.25 on control

theory is to keep the closed-loop damping ratio and the percent

overshoot constant throughout the structure/control iteration. Figures

6.5 and 6.6 show the closed loop damping ratios and the percent

overshoot for Q and R selected by Equations 5.24 and 5.25. Figures 6.7

and 6.8 show the damping ratios and the percent overshoot when Q and R

are held constant. From these figures, it is easy to see how the

weighing parameters 0 on Q and R can be selected to achieve a desired

control response. If we pc, . the dampdd closed-loop frequency versus a

,2

li A

Figure 6.3 Ream #1 Undamped Response
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C,

2 4 6

Figure 6.4 Beam #17 Undamped Response

( W we see in Figure 6.9 that when the Q and R values vary, a

negatively sloped line is produced in the s-plane which is indicative of

maintaining a constant overshoot requirement (21:61). A constant

settling time requirement, on the other hand, would produce a vertical

line in the s-plane. With Q and R held constant, Figure 6.10 shows a

slope slightly right of a vertical line.

The settling time can be found from (21:61)

-4.6
ts = 4.6

for a settling-time specification of 1%. The settling time is plotted

in Figure 6.11 for Q and R which vary and Figure 6.12 for Q and R held

constant. The settling time starts out high but then decreases for the

Q and R which vary. The settling time gradually increases for the

constant Q and R.
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Figures 6.13 - 6.16 show the initial control force required from

each actuator for each iteration. In order to maintain a constant

percent overshoot, more force is needed as the structure gets heavier.

This is shown for actuator A in Figure 6.13 and for actuator C in Figure

6.14. When a "constant" settling time is desired, more control force is

needed as the structure gets lighter. This is shown in Figure 6.15 for

actuator A and in Figure 6.16 for actuator C.

Optimization Using Cost Function J

The optimization of space structures can be formulated (8:63) as

minimize m(v)

such that gj(v) > 0, j = 1 ... ng

where [v] is a vector of structural sizes, and m is the structural

objective function, typically mass. The function gj(v) represents

constraints on the structural design. To integrate structural

optimization with the control system design, the mass objective function

can be combined with the control quadratic performance index J, so that

the optimization becomes (3:928)

minimize

m- = qlmr(v) + q 2 J(K,v) (6.3)

such that gj (v) a 0, j = 1, ... 3

h (Kv) ! 0, i = 1, ... ,n h

where h are constraints on the closed-loop control system. For

numerical optimization, the gradient of m is required. Miller and Shim
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(22:292) present a numerical optimization solution technique to solve

equation 3.

Values of J versus cross-sectional area are plotted in Figures

6.17 - 6.20 for the different weighing parameters 0 on Q and R. Figure

6.17 shows the J values plotted for Q and R selected by equations 5.24

and 5.25. These J values were computed without viscous damping (C = 0).

To show the effects of damping on the J values, Figure 6.18 uses the

same Q and R values but includes viscous dcmping. For the lighter

structures, the total minimum energy J increases significantly. Figure

6.19 is a plot of J for the undamped structure when Q and R are held

constant. Figure 6.20 is the same plot except the effects of damping

are included. When Q and R are held constant, damping inherent to the

structure does not have much effect on the minimum system energy as

shown in Figure 6.19 and Figure 6.20. The reason for this can be seen

in Figures 6.15 and 6.16. For fixed Q and R, the control system expends

more energy to quickly dampen out vibrations for the lighter structures.

Even though more control energy is expended, the total system energy is

less because the control system does not allow the structure to vibrate

long enough to dominate the total energy.

From equation 6.3, the optimal value for m* is clearly dependent

on the choice of q, and q2. How do we select ql and q2 when J(K,v)

represents total system energy and m(v) represents structural mass?

Clearly the units of energy and mass are incompatible, but the

literature avoids this question. Presumably in the design process, q,

and q2 would be design values which are adjustable. q2 ' for example,

could be a measure of mass/energy for a given control system. On the

other hand, it may not matter. Since this is multiobjective

optimization, q, and q2 are weighing parameters which may simply be

selected by decision makers to achieve some overall goal.

Figure 6.21 and Figure 6.22 show the optimization of m(v) and

J(K,v) for (q, = 1, q2 100), and (ql = 1, q2 = 385), respectively. For
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q,= q2 = 1.0, the mass dominates the optimization and the curve slopes

up to the right with no minimum. For q, = 1.0 and q2 1 1000, the

control systet, duminates and the curve slopes dow,, W the right with no

minimum. Somewhere in between the two extremes is an optimal value for

q, and q2 of whose selections are another nested optimization problem.

q2 = 385 was selected to show a trend. As q2 is increased, the minimum

m* moves to the right. The same observation can be made on Figures 6.23

and 6.24 except that a higher value of q2 is required for the system

energy to influence the curve minimum.

Optimization Using Onada's Formulation

Haftka (8:64) points out two shortcomings of the above procedure.

First, the effect of the control system on the mass of the structure and

the structural constuaints is neglected. Second, the Q and R matrices

are somewhat arbitrary and are tuned by the control engineer to achieve

the desired dynamic response. It is therefore unreasonable to select

them before the optimization procedure starts and then leave them

unchanged. Problems with the meaning of q2 in the equation for

minimizing the mass and total system energy were discussed above.

Onada's formulation provides a physical meaning in a format which can be

modeled. By selecting Q and R fro-m equations 5.25 and 5.26 which allow

them to vary, the second shortcoming that Haftka points out with the

above procedure is satisfied.

Onada's formulation assumes (8:64) that the mass of the control

system is related to the control effort as

mc = a(CE]f (6.4)

where a and 0 are constants and CE is the quadratic measure of the

control effort
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CE= uTuo (6.5)

The optimization problem is to minimize the total mass of the system

subject to a constraint on the magnitude of the response. The total

mass of the system is the sum of the control mass and the structural

mass. The response of the system is

r = XoTQXo (6.6)

The optimization problem is formulated as:

Find [v] and [K] to minimize

m = ms(v) + mc(v,K) (6.7)

subject to the constraint r[v,K] 5 a where a is the response magnitude

allowable.

For a beam structure, Onada and Haftka showed (23:1136) that as

the mass of the beam was decreased, the mass of the control system

became very large in order to control the vibration modes in the lighter

structure. This was also demonstrated for the ABE optimization when the

values of Q and R were held constant.

Figure 6.25 is a plot of the C values for the undamped structure

when Q and R vary. The eneLgy o1 the control system remains fairly

constant. In Figure 6.17 then, the sharp increase in J for the lighter

structures can be contributed to the increase of structural kinetic and

strain energy. Figure 6.26 shows the effect of damping on the C values.

When Q and R are held constant, the control energy increases as the

structural size decreases. This is shown in Figures 6.27 and 6.28.

Once again, structural viscous damping does not effect C significantly.

Figures 6.29 - 6.32 show the plot of equation 6.7 where mc (v,K) is

determined by equation 6.4 for a = 50 and 0 = 1. Figures 6.25 and 6.26

are for Q and R which vary. Since C remains fairly constant when Q and

R vary, the optimal choice for m is the smallest structural size which
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satisfies any given structural constraints. When Q and R remain

constant, however, C becomes large as the structural size of the beam is

decreased. The optimization formulation of equation 6.7 produces a

minimum on Figures 6.31 and 6.32 for a = 50. The total mass of the

system increases significantly for the smaller structural sizes as shown

by Onada and Haftka. This is reasonable since a larger control would be

required to provide the higher energy levels.

Comparison of Optimization Methods and O/R Selection

The direct relationship shown in Figures 6.5 - 6.14 to control

specification parameters gives an indication of how to select Q and R

and their weighing parameters. To maintain constant overshoot and

closed-loop damping requirements, Q and R are chosen by Equation 5.24

and 5.25. The weights on Q and R are varied to select the control

response desired. For a near constant settling time, () and R can be

fixed with minor adjustments to their weighing parameters.

The effect on the control system is shown in Figures 6.33 to 6.37.

Comparing beam #1 in Figures 6.33 to 6.34, more initial actuator force

is required when Q and R are held constant to achieve a constant

settling time. When Q and R vary, the initial actuator force is smaller

but the time interval over which it is applied is longer. For actuator

A, the square-root of the squared forces for both Q/R selections are

plotted in Figure 6.35 to compare the force magnitudes with their

applied time intervals. As the structure gets larger, more control

force is required to maintain a constant overshoot and closed-loop

damping ratio. Figure 6.36 shows this increase in initial force when Q

and R are varied. For the larger structure, less initial control force

is needed to achieve a constant settling time as shown in Figure 6.37.

It is interesting to examine the structural response to these

control inputs. Figures 6.38 and 6.40 compare beam #1 and beam #17 when

Q and R are varied. In Figure 6.40, the structural response is damped
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out very quickly to maintain the overshoot requirements. The response

in Figure 6.38 is allows to vibrate for some time (3+ sec) because the

overshoot requirement is not violated. Figures 6.39 and 6.41 compare

beam #1 and beam #17 when Q and R are held constant. In both cases, the

vibration is damped out in less than 1 sec. Less control input is

required to achieve this response, however, because of the increased

damping present in the larger structure.

It is also of interest to compare the J and C values for the

different Q and R selections. Figures 6.42 and 6.43 are plots of J

versus area and C versus area, respectiv3ly, for both choices of Q and

R. The total system energy starts out lower when Q and R are fixed than

when Q and R are varied. At some point on the curve, the total system

energy becomes less when Q and R are varied. The same pattern emerges

in Figure 6.43 when we compare C values except that the trend is

reversed for the Q and R selection. Notice that the cross-over point

for J and C values are not the same. At the point of cross-over on the

J curve, our eypected value for C is less for the case when Q and R are

constant.

Selection of Structure By Sensitivity Analysis

A true optimization was not performed on the ABE, but we can use

the trends presented in this Chapter to examine the current ABE

structure. Since the values of a and 0 are not known for the ABE, the

minimization of the total system energy will be used.

From Chapter III and Appendix B, the limits on the proof mass

actuators and the structural dynamics shaker can be found. These limits

are

Actuators: 8.9 N * 80% = 7.12 N each

Shaker: 45 N
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In addition, the actuators are limited to the bandwidth 0-100 Hz.

Figure 6.44 shows the initial control force required for actuator A (and

B) for the different parameters 0 when Q and R are varied. Figure 6.45

shows the initial control force required for actuator C under the same

conditions. A constraint line based on the above limits is drawn on the

diagrams.

The plot of equation 6.3 with q, = 1.0 ana q2 = 385.0 is shown in

Figure 6.46. For the top three curves, there are two minimums on the

graph. Which minimum to select depends on the limits of our control

system. From Figures 6.44 and 6.45, we see that the QO/RO and the QO/R3

curve require initial control forces beyond the limits of our actuators.

The required initial control forces for Q3/RO are within our limits.

Q3/RO is selected as the minimum. For the selection of ql = 1.0 and

q2 = 385, the minimum for happens to coincide with the existing ABE

structure. A plot of the required controller response is shown in

Figure 6.47 and a plot of the structural response is shown in Figure

6.48. Of course other 0 and q, parameters for the ABE will also produce

minimums within the limits of our controllers. These parameters can be

adjusted to determine a control law which produces the desired system

response with the limits of the control system. The control law for

Q3/RO is presented in Appendix F.
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VII. Conclusions and Recommendations

Conclusions

Our goal is to place large structures in space. Both NASA and DOD

are working on systems to be launched by the year 2000. If we are to

realize this goal, we must explore every avenue to limit the economic

costs. The cost of launching large structures into space will dominate

the overall system cost. Since lainch costs are driven by weight,

reducing the weight of our structures will help keep them within our

economic limits.

The purpose of this work was to model an existing structure and

then tj examine the structure/control optimization process. Since

weight reduction was desired, two optimization processes were selected

which minimize mass. The first method optimized the combined mass of

the structure and the total system energy of the structure and the

control system. The second method related the mass of the control

system to the required control energy, then optimized the mass of the

control system and the mass of the structure. Both methods proved

successful, but each method resulted in different optimized structures.

The reason for the difference can be linked to the selection of Q

and R. When Q and R are allowed to vary, the effect on control theory

is to maintain a constant percent overshoot. For the lighter

structures, a smaller control system can prevent the system from

exceeding the overshoot specification. However, the smaller control

system will not dampen the vibration as quickly. Since the first methoe

uses the total system energy, a higher J value will result for the

smaller structures. The goal is to then lower this system energy by

increasing the structural mass and the control system inputs to a point

where system mass and system energy are optimized. Onada's formulation

has the opposite effect. Since the control effort required is lower
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when constant ovL:jhoot requirements are needed, the optimization

implies that the smallest structure which meets the load specifications

is the optimized structure. When settling time requirements drive the

control design, more control energy is needed to quickly dampen out the

lighter structures. This results in a higher C value for Onada's

formulation but since the vibrations have been quickly attenuated, the

overall J value is small. Onada's optimization results in very heavy

control systems then for the smaller structures.

Contributions

Which optimization method do you use then and how do you select Q

and R with their appropriate weighing parameters? The answer to this

question is highly dependent on the design goals you are trying to

achieve. Trends were shown which should help other researchers select

Q/R and an appropriate optimization procedure for various control

specifications. For the ABE, this work has provided a baseline for

additional research on the structure/control optimization problem.

Recommendations For Future Work

1. Additional work is needed to characterize the actuator

dynamics. The finite element model created for this work included the

viscous damping of the actuators. The viscous damping assumption was

verified (7:19) by modal testing. Stiffness effects from the elec-ronic

centering spring, houever, were not modeled and this contributed to the

high error rate in Table 4.6.

2. One of the biggest challenges (4:472) facing LSS control

engineers is the development of inertial actuators. The ABE provides an

excellent test bed on which to design new actuators and to compare the

performance of different actuators. Cristler (5) goes to some length in

documenting the problems associated with developing the existing proof

mass ac-uators. Theoretical work charting the stability regionb of the
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structure/control system would help future engineers design new

actuatorz. This work should include the effects of damping, stiffness,

and contru.l A-r.

3. To examine the control/structure optimization process, this

w02 - assumed that all modes wt-re observable. Clear-ly this is not the

case. The initial conditions suggest that higher order modes are being

excited to a greater degree in the smaller structures than in the larger

st-r-ctures. A comparison between the results of this work and one which

inl,-drs a state estimator woul! be interesting to determine the effect

higher order modes have on th. selectioi. of the optimal structure-

control s~sr-m.

4. A "true" Cpt'mum was not determined in this work. An

opportunity exists to program the methods presented in Chapter VI

subject to the constraints ;n the ABE control system. In addition, the

selection of q, and q2 can be nested in the optimization process. If

physical meaning can be given to q, and q2 ' their inc2usion in the

optimization loop will be necessary to achieve a true optimum design.

5. Damping inhezent in the both the structure and the control

system was modeled by proportional damping. For the lighter structures,

inertia played a greater role in the damping factor. Stiffness, on the

other hand, was predominate for the larger structures. As a parallel,

different parameters were used to weight Q and R for comparison. When Q

and R were selected by equations 5.25 and 5.16, it was assumed that M=

o What effect does varying these parameters have on the structure-

control optimization?

6. Finally, Jacques pointed out in his conc'usion (7:87-88) that

the ABE was an excellent test bed for 4urther controls experiments and

research. Additional work can be done to compare the various control

laws and estimator designs. Other optimization schemes can be tested on

the ABE before their use on more complicated structures. In short, new

ideas should be tested in a known envirunment so their true merits can
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be determined. With the base line experimental and theoretical research

accomplished, the ABE is a known environment.
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Appendix A: Calculation of ABE Physical Properties

Beam Physical Properties

\ z

b ->
I y

K a4

Figure A.1 Beam Cross Section

ab3  
(A.1)

Sa 3b (A.2)

I p =I y+I z  (A.3)
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In general, if the cross-section is not circular, there will be some

warping of the cross-sectional plane. For circular cross sections

(9:2001,

J =/p (A.4)

For noncircular cross sections, however,

J*Ip (A.5)

J can be obtained from texts on advanced strength of materials. From

(24:290), the value of J for a rectangular beam is

jab 3 1 6 - 36(b)[ _ b 4  (A.6)

a - - 12a 4

Disk Physical Properties

dxx (A.7)

1d 3 r2*t 2j (A.81

2 (A.9)
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Figure A.2 Disk Dimensions
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Appendix B: Component Specifications

DEFINITIONS (Continu~d)
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Figure B.1 Linear Motor Specifications
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HPD SERIES- HERMETICALLY SEALED (PIN TERMINATION)
" HERMETICALLY SEALED BY TIG AND proucing faults that may cause leakage. For this reason.

EB WELDING HPD Series LVDT's are impervious to dirt. water, steam

" IMPERVIOUS TO HOSTILE ENVIRONMENTS spray, and most corrosives. They have been oualified at
pressures up to 1000 peig (70 bats) and are suitable for

* THROUGH-BORE CONSTRUCTION numerous high-pressure applications. HPO units empaloy
a giasssooled. pin-terminal header that allows the core

HP0 Series units are similar to the DC-D and HCD Series. and to rod to pass through the unit. HPD units have
Tungsten inert gas (TIGI and electron beam (ED) welo* aco.ble magnetic shielding triat makes them insensitive
ing Providle herrretic sealing that is free from oxidationi. to external magnetic influence&.

GENERAL SPECIFICATIONS
Inout............ :!15 V DC (nominal). ± 20 mA Temperature
Operating Temper. Coefficient of

ature Range .. *F to +160*F(-18Cto .v70*C) Scale Factor . . .. 0.04%1*F (10.08%*C)
Survival Temper. 20' Shock Survival..2509g for 11 milliseconds

ature Rlange .. .4 5*F to *o Vibraiton Tolerance . 0g up to?2 kHz
(-SS5C to -95*C) Coil Form Material .. High density. glassfilled oliymer

Null Voltage....... 0 V DC Housing Material . .. AISI 400 seanes stainless steel
Ripple........... Less thar. 25 myI rms Electrical

Linerit ....... -0.5% ullrane iermination . ... 6-vin terminal header
Stiiaity...........± 0.25% full rcane Output Impedance.. Less than1 Onmr

PERFORMANCE SPECIFICATIONS AND DIMENSIONS
LVOI NOMINAL SCALE RESPONSE INEIGKT DIMENSIONS

MODEL LINEAR FACTOR -341 6M., A likediy a icimoi P
NUMBERa RANGE

Isih V/100 I Ileg Co mab iene i.

mNI'D ±10 200 500 36 2 240 159 055
1l6 PO 20.i25 so SOD JIS 3 323I 110 06
2114 "I' 20110 do we0 17 S 410 lie0 1.3
M* P muI 0SOO 20 too 77 a 11.7 3.0 2.2J

$M ePo :I100 to 200 its is 8.OS 3-0 3.32
RUSIIPE ±2.000 So 200 199 13 1142 SAO S'DS

MOB "PC ±2100 3.3 200 221 14 16.62 6.20 7.51

im 1#PD :1A0 2.0 ZOC se 17 3045 120 ass6
I" eNP ±10M 1A o $20 24 34.57 1250 1661

ORDERING INFORMATION iNPUt OUTPUT
(Fao out pope 32 for instructions an how to uMe this chart.) .ISvDC 1i0

9A
I 14K# 13 120o

516 u MS s M 7-

5OPT I : ' .
mew' a * oi s a" W

MODELUP - -- - -
sos

1200 IN I a!- Xe __1I i. *.D

Ie 10Cgi fwoo I. II - -XarI

Figur B.3 LVDT SpecificatIonaA
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APS 113 with1
W 12 Reactionus" APS 113 Air Sow" Saer

APS 113-LU Low impedance Coil
OPTIONAL CONFIGURATIONS All features of the basic

EILECT00-S116f111 Shaker aft API 113-,..A Ligtweight Armefre
API 113-AS Air Beating Mo"e Air retained The drove coil is wound in a The body of the ELIECTRO-8918
lUbriCatild bushings replace the lileW manner whichfl slow seres or paralle Shelter is reftained out ii armature
bill busthings used in thet basic connection. offering the user the and guidance System are repllaced wth
6LECIrPO-S11,11111 armature Choice Of Standard or low impedance elements Offering Substantial welight
guidance llystem In addition A air This cption is required J the shaker is reduction The drive coil 's ightened
diStribution system. tie down and to be used with the APS 124 - with Corresponding reduction in
leveling base are oavided -- ;* Power Amplifier for maximum force - and the armature

extended frequency range Or random guidance System *:ements are reduced
The near zero friction of the air nO.&e excitation in size a we~gnt This retsults in a
bushings is an essential feature for corresponding reduction in cross axis
measuring resonance aiecay ales in Stiffness and load carrying abiliy The
-ery lightly Camped Structures APS 113-MV High Ferce Cod long stroke capability is retained anid

All features of the basic the frequenicy range for mahimum
The Air %eating Configuration extends GLACtAO1111-S11EIU Shaker are force output 5a extended to low pNz
Mh apliCati.on of the basic APS 113 to retain-ed as in the APS I I3-L2 The
include the calitrration and evaluation drive Colt 5s provided to match the The Ligh4tweight Armature,$ a
of accelerometers and other motion APS 124 . .Power deitrabie feature when Using thie
transducers in thi seismic frequenrcy Amplifier for 40% inCrese in force Shiaker fr eliciting structures having
range with a 5O% duty cycle It,? fr cycle) bra modal mass

SPECIFICATIONS Moel 1113 -c 13-AS Mode 1134A *of 112-UZ NNW 113MFP

14"~ twce~ W 0 138 36 1 351 soID Oill W ' 13 10 4 ISi4iof

ks-u v~q WUkiIn 11cs Clt Dea S acm 11li ?Scns 30- 6Il ?cmis ]DC&Allems

UMa.-aie~ p&-a 0-0 n oi W W% 6,1 VIA. l ij 62. a nw^ 2% 1154111111, 2S~ o "A M

Ueaxicaii Oi~ViWv LUM 8
MAt- *AatrweiM oe 2m 9" :16 toog tose 914no i5M

x- 0esaiWeR...red i A 30oft 6* sa 4 A ma

Armaite Cod ~WeerI Chi I CN 4 SP 4 uiW 2 01"m a Opal

Us She W~uion0019 40 s Is~i aSx 1 g a&sg4 036659

Shitor~qv IS % 4 b 61 11%a Wa Quil bd asmeas al

Ovrall mWvWea
% pjo 1 no l Na s ,w 20 d S $FAR 257.525mm 207. 526...

ecin64 13On 84# W" 6a I3 t 213 Sc. 4 213m ftBe.4 213 *N
Moee 60%4 eman soej*am 440 '"wo 44~im -k*1% 4m in am

mm Pe- AWO
Iiil'ewi P daIe AnI 11e API 12 APS iti
A"" ADS %24.10 All' 124-EP

.Mm 4a cow

Figure B. 4 Acoustic Power Systems Model 113-LA Structural Dynamics

Shaker Specifications
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ACOUSTIC POWER SYSTEMS, INC.
Sisfems for Generating~ Controitc voi"aron

SPECIFICATIONS Model 114 Model 124 Model 124-EP
Aver age Outpit into Shaker ftpactive load 125 V-A rfols 250 V.A fins 2W0 V-A ,wu
Peak Ouw. nio Shiaker teactive load 250 V- A rms 500 V. A fins 750 V.A pew
Cureren't Output peak 1ranoom nosel 6 0 A peak 12 0 A peak 18 0 A peak
CurretOutoutcontinuous 4O0A ito 80OArmis 0OArng
Frequeficy Flane 0-2000HZ 0-2000 Hz2 0-2000 KZ

Input Sq'i Voka 2 V POOk 2 V Doak 2 V peak

Iiput Inpedance 100 K olvA 100 K ohm 100 K ohm

Noss* - refered to maxe output -90 do 40 do -90 do

Currem kionaor outpw 20 mnViA 125 m'V A '2S mnV A
Input4 Power 120V. 0'60 Hz. 300 W 120 V SO060 HZ 6W0W 120 V SO60 Hz. S00W

220.240 V opito"a 22 240 V omeorrai 240 V optional
Revm Pajie4 Coiwieclos

Power Outwu WK3-31S ICAnnonl VdK3-31 S Cannomt WK3-31 S Cannoni

Inpout Cujrrent Mondtor BNC Type 3 *a SNC Type. 3 @a 8NC 'type 3 ".
AC Pow* Sid 3-Pin Afeugacie Sic 3-Pr' Recepsact Sad 3-Pt. Recepiaci

Weight 2S M (113 kgI 45 e 120 kg) 45 1b(20 kg)
Size HNWNO 5 22. 17 a92S nches 522 a17 x 13 2Sinches 5 22: x1?: 13.25 inches

W a 3 x 235mm 133 a & it337 mm 133 x4z 37nmm

SPECIFICATIONS Model 11S

Iput Sqgnai Level I V peak

1"pW Iinpehance 100 K ohm

Output S9gnaLoewel t O oV peak

Output Source kmpedance SO Ohm
Frequency Rang. 0-50 H

Nos - a'edtM1111 0u~ -9046

weigh 10 14 S kqI

S'ze HRW:tO 522 x 17v625 -lei

%Ws RAck adaiMs Noe Ackided mil itpbr W &cWorio p&.Sa Wo 51Wnda'd 19-0r rack wo.tv"

SYSTEM CABLES Shaeru to Power Affoate

SyswAlem kmm~ecw Caois 006? -M0A2C SaWndwd 18ange? 20 1e" Section A 2 Ot Section C

#Aodes 113.113.AS and 113-LZ to "m ' 114.1 23 A 124

iy53em bkilinorw Cabie 0061 -20A S&wq tenge 20 1wg

Idoagi 113LA. 120S. 129, aNd 220. o Mohef 114. 123.1 24 woi Extioremn

S731 PAL.MER WAYS SUITE A. CARLSSAO. CA p 6USA * (6119 a39-Ui * FAX (611 438-Md" - TELEX 4MI13 (SKIAKEI

Figure B.5 Acoustic Power Systems Model 114 Power Amplifier
Specifications
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Appendix C: MSC/NASTRAN Input Decks

Input Deck 1: Orginal ABE with impact load; no damping.

ASSIGN OUTPUT2=RUN2.OP2,STATUS=NEW,UNIT=12,FORMAT=UNFORMATTED
TIME 30
DIAG 64
SOL 112 $MODAL TRANSIENT RESPONSE
CEND
TITLE = ABE FEM -- UNITS = SI
METHOD = 97
DLOAD = 40
SET 1 = 5 11
TSTEP = 98
SVECTOR = ALL
VELOCITY = 1
DISPLACEMENT = 1

SPC = 1
SUBCASE 1
SUBTITLE = CASE SET 1
BEGIN BULK
GRID 1 0 0. 0. 0. 0

GRID 2 01.78E-01 0. 0. 0

GRID 3 03.56E-01 0. 0. 0

GRID 4 05.34E-01 0. 0. 0

GRID 5 07.12E-01 0. 0. 0

GRID 6 0 .889 0. 0. 0

GRID 7 0 1.067 0. 0. G

GRID 8 0 1.245 0. 0. 0

GRID 9 0 1.422 0. 0. 0

GRID 10 0 1.6 0. 0. 0

GRID 11 0 1.797 0. 0. 0

CBAR 1 1 1 2 1. 1.
+EA 1
+EA 1 0

CBAR 2 1 2 3 1. 1.
+EA 2
+EA 2 0

CBAR 3 1 3 4 1. 1.
+EA 3
+EA 3 0

CBAR 4 1 4 5 1. 1.
+EA 4

C-I



+EA 4 0

CBAR 5 1 5 6 1. 1.
+EA 5
+EA 5 0

CBAR 6 1 6 7 1. 1.
+EA 6
+EA 6 0

CBAR 7 1 7 8 1. 1.
+EA 7
+EA 7 0

CBAR 8 1 8 9 1. 1.
+EA 8
+EA 8 0

CBAR 9 1 9 10 1. 1.
+EA 9
+EA 9 0

CBAR 10 1 10 11 1. 1.
+EA 10
+EA 10 0

CONM2 ,11, 11, 0,4. 986, 0., 0., 0. ,,+EA11
+EA11, 5. 79E-02, 0. ,2 .895E-2, 0., 0. ,2.895E-2
CONM2,12,11,-1,2.49E-02,1.7755,-.0572,-.1016, ,+EA12
+EA12,.17E-05,0.,.55E-05,0.,0.,.40E-05
CONM2,13,11,-1,3.49E-02,1.7678,0.,-.1016, ,+EA13
+EA13,3.81E-05,0., .018E-05,0. ,0.,3.81E-05
CONM2,14,11,-1,8.48E-02,1.7755, .0572,-.1016, ,+EA14
+EA14, .59E-05, 0. ,1. 87E-05, 0., 0. ,1. 36E-05
CONM2,15,11,-1,3.49E-02,1.727,0.0572,-.1016, ,+EA15
+EA15, .24E-05,0. ,1.07E-05,0. ,0., .86E-05
CONM2,16,11,-1,9.47E-02,1.7132, .062,-.1016,,+EA16
+EA16, 15. 62E-5, 0. ,. 43E-05, 0., 0. ,15. 62E-5
CONM2,17,11,-1,2.49E-02,1.7755,.0572,.1016,,+EA17
+EA17, .17E-05,0. ,.55E-05,0. ,O., .40E-05
CONM2,18,11,-1,3.49E-02,1.7678,0.,.1016,,+EA18
+EA18, 3. 81E-05, 0. , .18E-06, 0., 0. ,3. 81E-05
CONM2,19,11,-1,8.48E-02,1.7755,-.0572, .1016, ,+EA19
+EA19, .59E-05, 0. ,1. 87E-05, 0., 0. ,1. 36E-05
CONM2,20,11,-1,3.49E-02,1.727,-.0572, .1016,,+EA2O
+EA2O, .24E-05,0. ,1.07E-05,0. ,0., .86E-05
CONM2,21,11,-1,9.47E-02,1.7132,-.062, .1016, ,+EA21
+EA2 1, 15. 62E-5, 0..,. 43E-05, 0.,0. ,15. 62E-5
CONM2,22,11,-1,51.36E-2,1.7678,0. ,-.1016, ,+EA22
+EA22, 40. 99E-5, 0. ,33. 13E-5, 0., 0. ,40. 99E-5
CONM2,23,11,-1,51.36E-2,1.7678,0.,.1016,,+EA23
+EA23, 40. 99E-5, 0. ,33. 13E-5, 0.,0.,40. 99E-5
MATi 17.45E+102.83E+10 .317 2766.3.61E-06
+MA 1
+MA 1 1.5E+09 1.5E+09 6.8E+07

PBAR 1 14.94E-042.71E-081.53E-083.30E-08 0.
+PA 1
+PA 1 0. 0. 0. 0. 0. 0. 0.
0.+PB 1
+PB 16.68E-011.19E+00 0.
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SPC 1 1 123456 0.

SPC 1 2 135 0.

SPC 1 3 135 0.

SPC 1 4 135 0.

SPC 1 5 135 0.

SPC 1 6 135 0.

SPC 1 7 135 0.

SPC 1 8 135 0.

SPC 1 9 135 0.

SPC 1 10 135 0.

SPC 1 11 135 0.

TLOAD,40,41,,0,42
DAREA,41,11,2,1000.
TABLED1,42, ,,,, ,,,+E42
+E42,0.,O.,0.001,0.,.002,1.,.003,0.,+E43
+E43,.004,0.,ENDT
PARAM AUTOSPC YES
EIGR,97,MGIV,0.,150.,3,3,, ,ABC
+BC,MASS
TSTEP,98,10,.001,1,,,, ,+E98
+E98,,100,.01,1
PARAM,POST,-2
ENDDATA

Input Deck 2: Orginal ABE with impact load; damping included.

ASSIGN OUTPUT2=RUN2.OP2,STATUS=NEW,UNIT=12,FORMAT=UNFORMATTED
TIME 30
DIAG 64
SOL 112 $MODAL TRANSIENT RESPONSE
CEND
TITLE ABE FEM -- UNITS = SI
METHOD = 97
SDAMPING = 99
DLOAD = 40
SET 1 = 5 11
TSTEP = 98
SVECTOR = ALL
VELOCITY = 1
DISPLACEMENT = 1

SPC = 1
SUBCASE 1
SUBTITLE = CASE SET 1
BEGIN BULK
GRID 1 0 0. 0. 0. 0
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GRID 2 01.78E-01 0. 0. 0

GRID 3 03.5bE-01 0. 0. 0

GRID 4 05.34E-01 0. 0. 0

GRID 5 07.12E-01 0. 0. 0

GRID 6 0 .889 0. 0. 0

GRID 7 0 1.067 0. 0. 0

GRID 8 0 1.245 0. 0. 0

GRID 9 0 1.422 0. 0. 0

GRID 10 0 1.6 0. 0. 0

GRID 11 0 1.797 0. 0. 0

CBAR 1 1 1 2 1. 1.
+EA 1
+EA 1 0

CBAR 2 1 2 3 1. 1.
+EA 2
+EA 2 0

CBAR 3 1 3 4 1. 1.
+EA 3
+EA 3 0

CBAR 4 1 4 5 1. 1.
+EA 4
+EA 4 0

CBAR 5 1 5 6 1. 1.
+EA 5
+EA 5 0

CBAR 6 1 6 7 1. 1.
+EA 6
+EA 6 0

CEAR 7 1 7 8 1. 1.
+EA 7
+EA 7 0

CBAR 8 1 8 9 1. 1.
+EA 8
+EA 8 0

CBAR 9 1 9 10 1. 1.
+EA 9
+EA 9 0

CBAR 10 1 10 11 1. 1.
+EA 10
+EA 10 0

CONM2,11,11,0,4.986,0.,0.,0.,,4EAII
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.eEA11,5.79E-02,0. ,2.895E-2,O. ,0.,2.895E-2
CONM2,12,11,-1,2.49E-02,1.7755,-.0572,-.1016, ,+EA12
+EA12, .17E-05,0. ,.55E-05,0. ,0., .40E-05
CONM2,13,11,-1,3.49E-02,1.7678,0.,-.1016, ,+EA13
+EA13, 3. 81E-05, 0.,.018E-05, 0.,0. ,3. 81E-O5
CON1t2,14,11,-1,8.48E-02,1.7755, .0572,-.1016,,+EA14
+EA14,.59E-05,0.,1.87E-05,0.,0.,1.36E-05
CONM2,15,11,-1,3.49E-02,1.727,0.0572,-.1016, ,+EA15
+EA15,.24E-05, 0. ,1. 07E-05, 0. ,0.,.86E-05
CONM2,16,11,-1,9.47E-02,1.7132, .06'2,-.1016, ,+EA16
+E -16,15.62E-5,0.,.43E-05,0.,0.,15.62E-5
CONM2,17,11,-1,2.49E-02,1.7755,.0572,.1016,,+EA17
+EA17,.17E-05,0.,.55E-05,0.,0.,.40E-05
CONM2,18,11,-1,3.49E-02,1.7678,0.,.1016,,+EA18
+EA18,3.61E-05,O.,.18E-06,0.,O.,3.81E-05
CONM2,19,11,-1,8.48E-02,1.7755,-.0572, .1016, ,+EA19
1EA19,.59E-05,0. ,1.87E-05,0.,0.,1.36E-05
CONM2,20,11,-1,3.49E-02,1.727,-.0572, .1016,,+EA2O
+EA2O, .24E-05,0. ,1.07E-050,0., ..86E-05
CONM2,21,11,-1,9.47E-02,1.7132,-.062, .1016, ,+EA21
+EA2 1, 15. 62E-5,0.,. 43E-05, 0. ,0. ,15. 62E-5
CONM2,22,11,-1,51.36E-2,1.7678,0.,-.1016, ,+EA22
+EA22, 40. 99E-5, 0. ,33. 13E-5, 0., 0. ,40. 99E-5
CONM2,23,11,-1.51.36E-2,1.7678,0.,.*j16,,+EA23
+EA23,40.99E-5,0. ,33.-.3E-5,0. ,0.,40.99E-5
MATi 17.4SvE+102.83E+10 .317 2766.3.61E-06
+MA 1
+MA 1 1.5E+09 1.5E+09 6.8E+07

PBAR 1 14.94E-042.71E-081.53E-083.30E-08 0.
+PA 1
+PA 1 0. 0. 0. 0. 0. 0. 0.
0.+PB 1
+PB 16.68E-011.19E+00 0

SPC 1 1 123456 0.
SPC 1 2 135 0.
SPC 1 3 135 0.
SPC 1 4 135 0.
SPC 1 5 135 0.
SPC 1 6 135 0.
SPC 1 7 135 0.
SPC 1 8 135 0.
SPC 1 9 135 0.
SPC 1 10 135 0.
SPC 1 11 135 0.

TLOAD1,40,41, ,0,42
DAREA,41, 11,2, 1000.
TABLED1,42, .........+E42
+E42,0. ,(. ,0.001,0.... 002,1., .003,0. ,+E43
+E43, .004,0. ,ENDT
TABDMP1,99,CRIT,,, ..... EA99
+EA99, .1,.065,30. ,.023,100., .01,ENDT
PARAM AUTOSPC YES
EIGR,97,MGIV,0.,150.,3,3,...ABC
+ BC ,MASS
TSTEP,98,10, .001, 1,,,,...E98
+E98, ,100,.01,1
PAR , POST, -2
ENDDATA
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Appendix D: MATLAB .M File

This MATLAB .M file was written to perform the control optimization
calculations in Chapter V.

MATLAB .M File

%This program uses the MATLAB subroutine LQR to solve
%for the gain K where u = -Kx. In addition, the Riccati
%matrix is given. With the K & S matrices, the cost functions
%J and C are found. This ".m" file supports three mode shapes.

%The state-space equations are:

% x '= Ax + Bu
% y = Cx + Du

%The closed loop A matrix becomes:

% ACL = (A - B*K)

%Initial conditions can be obtained from a finite element
%program. wl, w2, w3, sl, s2, s3, qOl, q02, P, and k must be
%defined prior to running this .m file. w# are the natural
%frequencies in rad/sec; s# are the damping factors; qOl is the 3xl
%matrix of initial displacements; q02 is the 3xl matrix of
%initial velocities; P is the 3x3 matrix of e_.genvectors; and k is
%the modal stiffness matrix such that PI*K*P=k for PI*M*P=m=I.

diary on

%Equation parameters are:
wl
w2
w3
sl
s2
s3
P
k

%Calculate the inverse of P and k.
PI=inv(P)
ki=inv(k)

%Initial conditions given are.
qOl
q02
%Transformation of initial crnditions to modal coordinates.
nOl=PI*q0l
n02=PI*q02
xO=(nOl;n02]

%Define undamped A and damped AD matrix.

D-1



A=[0 0 0 1 0 0
000010
000001

-wl^2 0 0 0 0 0
0 -w2-2 0 0 0 0
0 0 -w3-2 0 0 0]

AD=[0 0 0 1 0 0
000010
000001

-wl^2 0 0 -2*wl*sl 0 0
0 -w2-2 0 0 -2*w2*s2 0
0 0 -w3^2 0 0 -2*w3ws3l

%Define the B matrix.
b=[-i 1 0;1 1 0;0 0 1]
bb=P'*b
B=[0 0 0;0 0 0;0 0 0;bb]

%Define the C matrix.
CP=[0 0 0;0 0 0;0 0 0]
CV=[-1 1 0;1 1 0;0 0 1]
CPP=CP*P
CVP=CV*P
C=[CPP(1,:) CVP(1,:);CPP(2,:) CVP(2,:);CPP(3,:) CVP(3,:)]

%Define the D matrix.
D=[0 0 0;0 0 0;0 0 0]

%The gain matrix is found from the Ricatti equation by
%minimizing the cost function

% J = int(x'*Q*x + u'*R*u)dt

%The control theory weighing matrices are defined by:

Q0=[wl^2 0 0 0 0 0
0 w2-2 0 0 0 0
0 0 w3-2 0 0 0
000 100
000 010
0 00 0 01)

Q3=0.3*QO

RO=b'*P*ki*P'*b
R3=0.3*RO

QI0=[150 0 0 0 0 0
0 6750 0 0 0 0
0 0 30375 0 0 0
0 0 0 100
0 0 0 0 1 0
0 0 0 00 01

Q13=0.3*QIO

RI0=(0.003 0 0;0 0.003 0;0 0 0.0001)
R13=0.3*RIO
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%Use MATLAB subroutine "lqr" to solve the Riccati equation
%for the Riccati matrix S and the gain matrix K.

[KOO,SQO]=lqr(A,B,QO,RO)
[K30,S301=lqr(A,B,Q3,RO)
(K03,S03 ]=lqr(A,B,Q0,R3)
[K33,S33 ]=lqr(A,B,Q3,R3)
(KDOO,SDOO]=lqr(AD,B,QO,RO)
[KD3O,SD3O]=lqr(AD,B,Q3,RO)
[KDO3,SD03 ]=lqr(AD,B,Q0,R3)
[KD33, SD33 ]=lqr(AD,B,Q3,R3)
(KIOO, SIOO]=lqr(A,B,QIO,RIO)
[K130,SI30]=lqr(A,B,QI3,RIO)
[KI03,S103 ]=lqr(A,B,QIO,R13)
(K133,S5133 ]=lqr(A,B,QI3,RI3)
[KIDOO,SIDOO]=lqr(AD,B,QIO,RIO)
[KID3O,SID3O]=lqr(AD,B,QI3,RIO)
[KIDO3, 51D03 ]=lqr(AD,B,QIQ,R13)
[KID33, SID33]=lqr(AD,B,QI3,RI3)

%Initial conditions are used to determine the minimum J
%values of the control cost function.

JOOxO' *SOO*xO
J30=x0 *S30*xQ
J03=xO' *S03*xO
J33=xO' *S33*xO
JDOOx0 *SDOO*xO
JD3OxO' *SD3O*xO
JDO3=xO *SD03*xO
JD33=xO' *SD33*xO
JIOO=xO' *SIOO*xO
J130=xO'*SI30*xO
J103=xO' *S103*xO
J133=xO'*SI33*xO
JIDOO=x0 *SIDOQ*xO
JID3OxO' *SID3O*xO
JIDO3=xO' *SIDO3*xO
JID33=xO' *S1D33*xO

%Initial control inputs are determined from the control law.

FOO=-l *KOO*xO
F3O=-l*K3O*xO
FO3=-l*KO3*xO
F33=-l*K33*xO
FDOO=-l *KDOO*xO
FD30-l*KD3O*xO
FDO3=-l*KDO3*xO
FD33=-.l*KD33*xO
FIOO=-1*KIOO*xO
F130=-l*KI30*xO
FI03=.l*KI03*xU
F133=-Il*KI33*xO
FIDOO=-l*KIDOO*xO
FID3O=-l*KID3O*xO
FIDO3=-l*KIDO3*xO
FID33=-l*KID33*xO
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%Expected values of the control cost function C -u'*R*u

%are determined.

COO=FOO *RO*FOO
C30=F30' *RO*F30
C03=F03 *R3*F03
C33=F33' *R3*F33
CDOO=FDOO' *RO*FDOO
CD3O=FD30 *RO*FD3O
CDO3=FDO3 *R3*FDO3
CD33=FD33' *R3*FD33
CIOO=FIOO **RIO*FIOO
C130=F!30' *RIO*F'30
C103=F103 '*R3F
C133=FI33'*RI3*FI33
CIDOO=FIDOO' *RIO*FIDQO
CID30=FID3O' *RIO*FID3O
CIDO3=FIDO3 '*1RJ3*FID03
C1D33=F1D33 *RI3*FID33

%open loop frequencies and damping factors are calculated.

[WA, ZA]=damp(A)
(WAD, ZAD]=damp(AD)

%Closed loop frequencies and damping factors are calculated.

[WOO, ZOO]=damp(A-B*KOO)
(W30, Z30]=damp(A-B*K30)
[W03, Z03 ]=damp(A-B*K03)
(W33, Z33]=damp(A-B*K33)
[WDOO, ZDOO]=damp(AD-B*KDOO)
[WD3O, ZD3O)=damp(AD-B*KD3O)
(WDO3, ZDO3]=damp(AD-B*KDO3)
[WD33, ZD33]=damp(AD-B*KD33)
[WIQO, ZIOO]=darnp(A-B*KIOO)
[W130, ZI30]=damp(A-B*KI30)
(WI03, ZI03 ]=damp(A-B*KIO3)
[W133, ZI33]=damp(A-.B*KI33)
[WIDOO, ZIDOO]I=damp (AD-B*KIDOO)
[WID3O, ZID3O]=damp(AD.-B*KID3O)
[WIDO3, ZID03 ]=darnp(AD-B*KIDO3)
(WID33, ZID33]=damp(AD-B*KID33)

diary off
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Appendix E: 0 and R Weights

Table E.1 Q and R Nomenclature

Weigh Factor .ZII ek 8,

QOO 1.0 1.0 1.0

Q30 0.3 0.3 1.0

Q03 1.0 1.0 0.3

Q33 0.3 0.3 0.3

R00 1.0 1.0 1.0

R30 0.3 0.3 1.0

R03 1.0 1.0 0.3

R33 0.3 0.3 0.3

QI00 1.0 1.0 1.0

Q130 0.3 0.3 1.0

QI03 1.0 1.0 0.3

Q133 0.3 0.3 0.3

RIOO 1.0 1.0 1.0

R130 0.3 0.3 1.0

RI03 1.0 1.0 0.3

R133 0.3 0.3 0.3

150 0 0 0 0 0

0 6750 0 0 0 0

QI 0 0 30375 0 0 0 (E.1)

0 0 0 10 0

0 0 0 0 10

0 0 0 00 1

0.003 0 0

RI = 0 0.003 0 (E.2)

0 0 0.0001
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Appendix F: optimized ABE Control Law

wi

12.1440

w2 =

82.1190

w3 =

174. 2800

si =

0. 0640

s2 =

0. 0084

s3 =

0. 0236

0.3759 0 0.0823
C) -3.6022 0

0.0775 0 -0.6853

k =

1.Oe+004

0.0147 0 0
0 0.6744 0
0 0 3.0374

qO. =

1.Oe-003*

0.1480
0

-0. 02 68
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q02=

0.1479
0

-0. 02 63

X0 =

0. 0004
0

0. 0001
0.3758

0
0. 0808

A =

1. Oe+004*

0 0 0 0.0001 0 0
0 0 0 0 0.0001 0
0 0 0 0 0 0.0001

-0.0147 0 0 0 0 0
0 -0.6744 0 0 0 0
0 0 -3.0374 0 0 0

AD =

1. Oe+004*

0 0 0 0.0001 0 0
0 0 0 0 0.0001 0
0 0 0 0 0 0.0001

-0.0147 0 0 -0.0002 0 0
0 -0.6744 0 0 -0.0001 0
0 0 -3.0374 0 0 -0.0008

b 1 1

1 1 0
0 0 1

0 0 0

0B

0 0 0

-0.3759 0.3759 0.0775
-3.6022 -3.6022 0
-0.0823 0.0823 -0.6853
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CV

-1 1 0
1 1 0

0 0 1

o C 035 362 002

0 0 0 -0.3759 -3.6022 -0.0823

0 0 0 0.0775 0 -0.6853

D=

0 0 0
0 0 0
0 0 0

Q3=

1.0e+003*

0.0442 0 0 0 0 0
0 2.0231 0 0 0 0
0 0 9.1121 0 0 0
0 0 0 0.0003 0 0
0 0 0 0 0.0003 0
0 0 0 0 0 0.0003

RO

0.0029 0.0010 -0.0002
0.0010 0.0029 0.0002

-0.0002 0.0002 0.0001

KD30O

1.0e+003*

-0.0268 -0.1312 -0.6254 -0.0102 -0.0085 -0.0183
0.0268 -0.1312 0.6254 0.0102 -0.0085 0.0183
0.0064 0.0000 -6.0627 0.0024 0.0000 -0.1777

SD30O

9.1418 -0.0000 -0.0000 0.1402 -0.0000 -0.0000
0.0000 69.9676 -0.0000 -0.0000 0.1402 0.0000

-0.0000 -0.0000 143.4420 -0.0000 -0.0000 0.1402
0.1402 0.0000 0.0000 0.0531 0.0000 0.0000
0.0000 0.1402 -0.0000 -0.0000 0.0091 0.0000
0.0000 -0.0000 0.1402 -0.0000 -0.0000 0.0041
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JD30 =

0.0076

FD30 =

5.3613
-5. 3613
13.9415

CD30 =

0.0626

WD30 =

12.9672
12.9672

186.0946
186.0946
87. 6858
87.6858

ZD30 =

0. 3617
0. 3617
0. 3574
0. 3574
0.3568
0. 3568
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