R ies e i faeen - E a2 :‘_‘,’;i "
~ AD-A238 737 | ,, <A
i J A%

il

T

-

b

4

N

[

|

i

]

¥

H

£

{

}

s B b PR DT Y -

 t——————

.

) AR

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

" AIR FORCE INSTITUTE OF TECHNOLOGY

t

f ,

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/91M-01

An Automated Red Player
for the Theater Warfare Exercise

THESIS

Karl W. Kabanek
Captain, USAF

AFIT/GCS/ENG/91M-01

Approved for public release; distribution unlimited

L

=

-) orm Aoproved i
v SM3 o 0752 5
~E2epraTian vy nyt mated ST 10T 4G L m - Sar PA ST m SIS TENE T e e, s - mGUL T e [-_ . 3
B e T ey T I S L I R T I i AL i
RHNL L (T TTaDLgET o Natmr 3T o —eadQul TS S b, Tyt ST e T T 1 £
oA 222324362 e s P Magr ctermect 3 dE T el PRIyt mts oy 3D 3F v, 0 S
2. REFORT DATE 3. REFORT T¥2F AND DATES COVERED
March 1991 Master’s Thesis i
4. TITLE AND SUBT) {5, FUNL'EG NUMBERS ;
An Automated Red Player for the Theaver Warfrre Exercise ' ’
i :
- ! :
& AUTHOR(S] : ’
Karl W. Kabanek, Capt USAF { :
i .
7. PERFORMTIG ORCANIZATION ZAME(S) AND ADDRESS(ES) L& PERFCLVANG DRGARIZAT:ON :
i ' REPQRT HUTAZER !
Air Force Institute of Technology, WPAFB OH 45433-6583 ; ;
&Y ! AFIT/GCS/ENG/91M-01
!
5. SPCNSORIG. MONITCANG ACENCY RANELS) AND ADDRESSES) " ' S

Col

m.Yax_

“AU/CADRE/WG =~
* . Maxwell AFB, AL 36112-5532

~.—

. - _— ek a—— _
T TITHE TGN AVALABYITYY STATIMERT 120 MSTRIBUTITM LGDE

Approved for Public Release; Distribution Unlimited.

/

3/ARZrA T omur oo

._/;vThe Theater Warfare Exercise (TWX) is a two-sided, theater-level, decision-making exercise created, maintained
and used by the personnel at the Air Force Wargaming Center. It is used to allow r.i'itarv officers to practice
the decision-making process need :d for the wartime employment of air power.
An automated player was designed and a prototype implemented for the red (enemy) player using an expert
system shell. The automated red player uses the TWX database that contains the dzta on the different units
vred in the exercise. From the data the automated red player builds mission packages for the various types of
missions required in each day’s activities by matching the day’s requirements, given as prioritized target lists,
and the characteristics of the aircraft available. The mission packages are not optimal but they are realistic and
comply with the limitations placed on the red player. The output from the automated red player is in the same
format as that currently used by the red players.
The automated red player reduces the amount of time needed to build the red mission packages by several hours.
It also provides a standardized and realistic red player to allow comparisons of the success of different blue,
friendly, teams. s

L e mees e . i e e e
Expert System, Wargame, Automated Wargaming, Artificial Intelligence, 159
TWX Application

Sy e T.o T, T T N:‘ TV RS L T o T

. UNCLASSIFIED (M)

UNCLASSIFIED f UNCLASSIF‘IEQ

YT
< ie

b GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging re is i
2PO r z | orts. It is important
that this information be consistent with the rest of the repo?t, particularlg t(ﬁ;e r?over and titleppage.

Instructions for filling in each block of the form follow.

optical scanning requirements.

It is important to stay within the lines to meet

‘Block 1. Agency Use Qnly (Leave Blank)

Block 2. Report Date. Full publication date
including d,a/, month, and year, if available (e.g.
1 Jan 88). Must cite at least the year.

Block 3. T fR n ver
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle, A title is taken from

the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On
classified documents enter the title
classification in parentheses.

Block 5. Funding Numbers, To include contract

and grant numbers; may include program
element number(s), project number(sb task
number(s?, and work unit number(s). Use the

following labels:

C - Contract PR - Project

G - Grant TA - Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s), Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. r izati
Address(es), Self-explanatory.

Block 8. Performing Qrganization Report
Number, Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. sasmsmngLMmLtmnﬁ;_Aqm
Names(s) and Address(es), Self-explanatory.

Block 10. S.gmsmmLMmﬂmmg_Ag&m
Report Number. (If known)

Block 11. Supplementary Notes, Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans. of ..., To
be published in When a report is revised,
include a statement whether the new report
supersedes or supplements the older report.

Block 12a. Distributi i

Denote public availability or limitation. Cite
any availability to the public. Enter additional
limitations or special markings in all capitals
(e.g. NOFORN, REL, ITAR)

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

DOE - See authorities

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports

NASA - NASA - Leave blank

NTIS - NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms, Keywords or phrases

identifying major subjects in the report.

Block 15. Number of Pages, Enter the total

number of pages.

Block 16. Price Code, Enter appropriate price
code (NTIS only).

Blocks 17.-19. i ificati
Self-explanatory. Enter U.S. Security
Classification in accordance with U.S. Security
Regulations (i.e., UNCLASSIFIED). If form
contains classified information, stamp
classification on the top and bottom of the page.

Block 20. Limitation of Abstract, This block

must be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR
(same as report). An entry in this block is
necessary if the abstract is to be limited. If
blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

AFIT/GCS/ENG/91M-01

An Automated Red Player
for the Theater Warfare Exercise

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology

Air University

E.ﬁ P artial Fulﬁ“ment of the Accegféﬁ For ‘X -
Requirements for the Degree of | NTIS Cnsz 6
LViL Tan i

Master of Science (Computer Systems) U e oed 1

g Bog o mmal
ju-.h!:‘ﬁ-’ﬂoﬁ

.......

Dist.ib.iio../

Karl W. Kabanek, B.S.
Capiain, USAF

Avallanviy Joyes

=

I Aven a dgor
N 2O
Dist Spucai
Al
A ! |

March, 1991

Approved for public release; distribution unlimited

Preface

The goal of this thesis was to design an automated red player for the ATAF
portion of the Theater Warfare Exercise and implement a prototype of the automated
red player. The design was developed which is flexible and efficient. The prototype
was implemented with an expert system shell using the rapid prototyping process.

This thesis lays the foundation for the complete automation of the red player for
TWX.

I want to thank my advisor Maj Mark Roth for allowing me to do my own
work and fight my own battles. [learned and accomplished much more with the
independence he gave me than I would have if I had been led. I want to thank Dr
Frank Brown for introducing me to the world of Al and the Brown Bravery Principal
which allowed to boldly go where I had never gone before and usually didn’t know
how I got there or why I wanted to be there. Also, I appreciate the efforts of Maj
Gregg Gunsch to help me organize my thoughts and put them on paper the way I
meant them; his humorous comments on ny drafts got the point across and made it

intercsting to read my thesis again and again.

The world would never have seen this thesis in its present form if it hadn’t
been for my three children, Anthony, Anna and Andrew. I couldn’t have done it
witt.out them. They helped me and each other n countless ways. They understood
when Dad was in a bad mosd Lecause the rules didn’t work like I told them to.
They made it a pleasure to come home after a hard day or night. We became more

tnan family; we became friends. Thanks guys!

And finally thanks to Lt Col Messer for helping get to AFIT in the first place.

He went ovi on a limb for me and made a big difference in my life.

Karl W, Kabanek

Table of Contents

Page

Preface e il
Tableof Contents iii
Listof Figures v
Listof Tables vii
Abstract viii
L Introduction 1
11 Background 1

1.2 Problem Statement 2

1.3 Proposedsolution. 3

14 Assumptions. i, 4

1.5 Approach/Methodology 5

1.6 Mazterials and Equipment 5

1.7 Sequence of Presentation 6

II. Literature Review 7
21 Introduction 7

2.2 Automated Wargaming 7

2.2.1 A Generic Wargame Modei. 7

2.2.2 Automating the Combat Resolution System. . . . 8

2.23 Automated Players. 9

2.24 Secondary Players. 10

2.25 Analytic Wargames., 10

il

III. Evaluation and Selection of the Programming Methodology
31 Imtroduction
3.2 Selection of an Appropriate Programming Methodology . .

3.2.1 Object-oriented Programming Methodology. .

3.22 Rule-Based Programming Methodology..

323 Conclusion.

3.3 Rule-based Methodology
3.3.1 ProblemCriteria.

332 ExpertCriteria.

3.3.3 The Management Environment Criteria.

3.4 Rapid Prototyping. e e e e
35 Conclusion.
IV. Automation of he ATAF Portion
41 ‘atroduction e
4.2 Expert System Fundamentals
4.3 General Design Information, ...
4.4 Generation of Targeted Missions
441 lInckgroumd. L.l .-

442 Solution. e e e e .
Genera‘ion of Non-Targeted Missions
451 dackgiound.

452 Solution.
Generation of R-connaissance Missions
461 Br »ground. oLl

462 Soluwon. . .. oL L
Summary L. f e e e e e

V. Conclusion and Recommendations 45
51 Conclusion. 45
5.2 Recommendations for Further Work 45
Appendix A. User'sManual 47
Al Introduction 47
A2 TableFormat 47
A.3 Running the KnowledgeBase, 48
Appendix B. Rule-base Structure Overview 50
Appendix C. Rules, 55
C.d Introduction 55
C.2 The Automated Red Player Rule-base 55
Appendix D. Objects 81
Dl Introduction 81
D2 TheObjects 81
Appendix E. Classes 124
E.l1 Introduction 124
E2 TheClasses e e e e e e e 124
Bibliography Fore e e.... 150
Vita . . e 151

Figure

o

R

-}

10.
11.

List of Figures

Page
GencricWargame Model 8
Rapid Prototype Process 18
ATAF Toplevel Design 21
Crganizationof the OCAProcess 27
Design of OCA Aircraft Selection 33
Design of ECM Aircraft Selection_.... 38
Reconnaissance Mission Design _.... 43
ATAF Top Level Structure . . - 51
Long Range OCA Structure 52
Defense Suppression Task Structure 53
Reconnaissance Tasks Structure 54

vi

Table

an
L]

List of Tables

Page
BAITargetTable 29
Blue Aircraft Characteristic Table 30
Blue Aircrafton Target Table _ 30
Prioritized Target Table _ .. _ 31
OCAAircraftTable_. 32
ECMAircraft Table 32
Damage Calculation Table _ - |
Expected Target Status, i00% Survival Rate 35
Expected Target Status, 75% Survival Rate 36
Expected Target Status, 50% Survival Rat= 36
Required Effective Sorties _ 36
Possible Accrmpanying Aircraft, OCA Missions 39
Possible Accompanying Aircraft, BAI Missions 39
Long Range OCA Mission Table _.. 40

DCAMissionTable e e e e 42

AFIT/GCS/ENG/91M-01

Abstract

The Theater Warfare Exercise (TWX] is 2 two-sided, theater-level, decision-

making exercise created, maintained and used by the personnel at the Air Force
Wargaming Center. It is used to allow military officers to practice the decision-
making process needed for the wartime employment of air power.

An zulomated piaver was designed and a protolype implemented for the red

{enemy} player using an expert system shell. The auntomated red plaver uses the

TWX database that contains the data or the different unils used in the exercise.
From the data the automated red plaver builds mission packages for the various types

in each day’s aclivities by matching the day’s requirements, given

tke aircraft avaiiable. The mission

packages are not cotimal but they are realistic and comply with the Emitations placed

on the red player. Tue output from the automated red plaver is in the same format

v
an w
s

An Automated Red Player
for the Theater Warfare Exercise

1. Introduction

1.1 Background

In 1976, the USAF Chief of Staff called for development of “...rigorous
courses of study instructing operators and planners in the threat and application
of force” (Air87:1) (original from USAF CoS CONSTANT READINESS TASKING,
Item 6, 4 Aug 1976) to provide senior USAF officers the opportunity to practice the
decision making skills needed in wartime. The senior officers needed a way to make
wartime decisions and to evaluate the effect of those decisions in peacetime. This

led to the creation of the Theater Warfare Exercise, TWX, in 1977.

TWX was designed in 1977 as “a four day, two sided, theater level, computer
assisted, airpower employment decision making exercise” (Air87:1). The theater
selected for TWX was NATO’s central region in Europe since that was considered to
be the most likely theater for our next major conflict. However, the lessons learned
and the experience gained from the exercise would be applicable to any theater

worldwide.

During the exercise, the participants make decisions characteristic of those an
air component commander and his staff would be required to make during an actual
war, including logistics and mission planning. The participants must decide how to
allocate limited resources in order to accomplish the assigned missions. Real-world

factors such as weather and facilities lost through enemy actions must be taken into

consideration while making those decisions.

TWX has been an integral part of the Air War College curriculum since 1977.
Each year it is played more than 80 times in numerous military courses such as
the Contingency/Wartime Planning Course, the Combined Air Warfare Course and
the Guard/Reserve Air Warfare Courge. It is also used as part of the curriculum
of the Royal Air Force Staff College and the Canadian Forces Command and Staff
College (Har89:2).

1.2 Problem Stater ent

TWX keeps track of and manipulates thousands of variables and possibilities
pertaining to aircraft characteristics, munitions characteristics, aircraft and troop
movement, as well as the complex combat resolution functions. This has caused the
management of the different aspects of the exercise to become very time consuming
and difficult. During the exercise, an average red player, 2 member of the faculty
representing enemy forces, will spend between five and eight hours per day imple-
menting the red strategy and entering the required actions for the next day’s play
in the computer. This extensive effort prevents the red players from completely as-
similating and analyzing all the information about the blue team’s actions, decisions
made by the student seminar representing the US or friendly forces, and providing

the feedback the blue team needs to evaluate its decisions.

Personnel at the Air Force Wargaming Center participate in exercises for up
to 20 different seminars or blue teams at a time. This necessitates the employment
of 20 or more red players. Since each of the red players will respond differently to
the scenarios presented, there is no standard by which the various blue teams can

be compared.

The problem the Air Force Wargaming Center currently faces is the lack of

manpower to adequately conduct the exercises. The Center needs a system which

will meet the following goals:

1. Free Wargaming Center personnel from the computer interface tasks which

currently consume the majority of the time spent conducting the exercise.

2. Develop a standardized, consistent and realistic red opponent for the blue

teams to be evaluated against.

The first goal, that of freeing the red players from the computer interface tasks,
needs to be accomplished since TWX is still a paper-driven exercise. For each day’s
actions a typical red player must request up to 32 reports, analyze their contents,
complete 28 different worksheets and then transfer the data from the worksheets to
the computer. Red players spend fifty to eighty percent of their time analyzing the
data in the reports, filling out the worksheets and entering the data via a computer
terminal (Har89:3) in the course of one < ’= turn. This massive amount of paper-
work is the direct result of the organiza 1 of the exercise. Each red player acts
as the air commander of the two red fro.. ATAFs, the northern and southern
fronts. The red player must make all decisions concerning all aspects of the red air

war. Each category or decision area has its own worksheet and report.

The second goal, that of providing a standardized, realistic and consistent
opponent for the blue teams, comes from the fact that each blue team plays against
a different red player. This is necessary since each day’s actions for a player consume
so much time. Since each blue team plays against a different red player, each of whom
has a different strategy, there is no reliable way to compare the results of the blue

teams’ actions.

1.8 Proposed solution

In order to meet these goals the Air Force Wargaming Center has requested
that an automated red player be developed. An automated red player would reduce
the amount of time the red players spend filling out the worksheets and free them to

use that time to analyze the blue teams’ actions and prepare an evaluation of those

actions. It would also allow the same red player to play against all the blue teams

since it could be copied and used simultanecusly by all the seminars.

An automated red player could take either of two forms: an object-oriented
system or a system designed using artificial intelligence technology via an expert
system shell. The latter was chosen based upon the nature of the problem. The
major points which led to the selection of the expert system solution over an object-

oriented approach are as follows, and are discussed in detail in section 3.2.

e The red player’s decisions are based upon heuristics and rules of thumb rather

than an algorithm.

o The solutions that may be found are not pre-enumerated. There are many

different possible solutions to any given scenario.
e Experts are available who can solve the problem. This allows for consultation.
¢ The basic rules of reasoning for the system are stable.

o The system uses a large database which is easily accessible by an expert system

shell.

A portion of this solution has been implemented by a previous thesis (Har89).
The problems which remain were reduced to a single domain: automate the Allied

Tactical Air Forces (ATAF) portion of TWX.

The ATAF portion of the exercise consists of two general actions, target selec-
tion and mission packaging. Each of these two areas can be further decomposed into

the actions for each of the different mission types discussed in detail in Chapter IV.
1.4 Assumptions
This effort is based on the following assumptions:

o The previous work done toward building an automated red player is acceptable

to the Air Force Wargaming Center.

o The Air Force Wargaming Center wants a system that allcws targets to be

entered which take precedence over those generated by the system itself.

e The solution should not be theater dependent, that is, it should be general

enough to allow its use in different scenarios in different theaters worldwide.

¢ The system should allow the adding rules as needed.

1.5 Approach/Methodology

The approach used to developing the automated red player is both simple and
straightforward: learn the manual system, design and implement the automated

system. In the thesis proposal the following objectives were identified:

o Learn to play TWX using the manual method. Understand the reasoning
behind the decisions made by red players by watching them play TWX and

interviewing them.

¢ Design and implement the automated red player. The size of this effort depends
upon the number and complexity of the rules needed to implement it. This
should be done using the method known as rapid prototyping, explained in

Section 3.4.

¢ Document the system. This inclides the user’s manual and the programmer’s

manual, included as appendices.

1.6 Materials and Equipment

The equipment used in this thesis was:

¢ One Sun 3861 workstation.
¢ The experi system shell, Nexpert Object from Neuron Data.

s T'he Oracle Relational Database Management Systern.

et

This equipment was provided by the Air Force Wargaming Syster., Maxwell
AFB, AL. Various manuals outlining the techniques and rules used in TWX were

also provided.

1.7 Sequence of Presentation

Chapter Il is a literature review of work and research currently being done in
the area of automated wargaming. It provides an understanding of the current level
of the technology related to this thesis and the background necessary to understand

the research effort.

Chapter I1I explains the rationale behind the decision to use an expert system
and the rapid prototyping methodology. Chapter IV describes the design of the
automated red player. Chapter V presents a summary of the work accomplished

and the recommendations for further research and work.

II. Literature Review

2.1 Introduction

Military warganiung is used worldwide to allow military commanders to practice
strategies, maneuvers, tactics and decision-making skills under conditions which give
them time to consider all options. This practice is also beneficial in that no actual
materials are used and no lives are lost. Another advantage is the same scenario
can be tried repeatedly using different approaches to answer “what if” questions.
This allows military strategists to practice and evaluate their war skills at any time
in preparation for the day when the; are needed. Wargaming is the only practical
method to allow the large number of fficers in today’s military to learn about

strategy ard tactics without actually going to war.

2.2 Automated Wargaming

Wargames are time consuming, calculation inteasive exercises (Dav84:7). The
ctility of the wargame is quite frequently reduced because of the work involved in
moving markere, calculating the results of battles, updating tables and perform-
ing many other bookkeeping functions. To combat this problem computers were
introduced in 1954 whken the Maximum Complexity Computer *- - i . u» devel-
oped (Al87:133). Since then computers have become an important wargaming tool.
The use of computers in wargaming can be divided into threc general categories:
an automated combat resolution function, an automated player and an analytic
wargaming systems. Each of the thyee categories will be explained separately after a

high level description of a generic wargame is presented.

2.2.1 A Generic Wargame Model. A wargame consists essentially of threc
components: the combat resolution system aid two players, as shown in figure 1.

The combat resolution system is the part of the wargame which determines the

Comkat

Resolution -
Blue . l Red
Tunction
Player Zlayer

Figure 1. Generi. Wargarmne Model

results of the actions of the players. If two opposing units attempt to occupy the
same section of air or land in the scenario, for example, the combat resolution system
determines the outcome of the ensuing dogfight or battle. The system may take into
account such esoteric factors as morale and loyalty as well as the more concrete

factors, such as relative unit sizes and armament.

2.2.2 Automating the Combat Resolution System. Traditionally, in the non-
computerized, wargame the combat resolution system consisted of a set of tables
used to compare the relative strengths and weaknesses of the unit< involved and
dice to determine which row and/or column should be used in this particular en-
counter or battle. This was and is a slow and tedious process. In addition, inexact
results quite frequently occurred because wezpsn capabilities and other factors were
rounded because of the limited rescurces available and the need to simplify the man-

ual calculaiian process.

In order to correct seme of the shortcomings of the traditional combat res-
olution ssstem breught on by the enormous number of variables involved, it was
automated {Dav84:8). The automation of the combat resolution system involved
converting the tables to a form usable by a computer program and caused the re-

sui.s to be much more exact and realistic. To further increase the correctness of the

combat resolution system, studies were conducted on the capabilities of weapons,
weapon systems and troops under myriads of different situations. The results were
then analyzed and reduced to equations and formulas which were then programmed
and used in the appropriate wargames. This decreased the time needed to calculate

the results of each player’s actions 2na made the playing of the game easier.

In addition, the bookkeeping functions were handled automatically and the
players no longer had to concern themselves with keeping track of the thousands of
details necessary to make the wargame practical as a learning tool. This in turn
allowed more detailed data to be used since the use of the computer m ade the
corresponding increase in calculation time negligible. The end result was that the

wargames were easier to use, faster and more realistic.

2.2.3 Automated Players. The motivation behind the automation of the play-
ers in a wargame is totally different from that v :d to justify the automation of the
combat resolution system. One of the principal reasons for automating a player
is the scarcity of qualified specialists available to play the role of the red (enemy)
leadership. As Davis and Schwabe stated in (DS85:1)

Red Agents can embody knowledge and concepts gathered from various
sources over time. By contrast, it is usually difficult to put together a
competent human Red Team because there are few specialists nationwide,
and different specialists are needed to represent different levels of ~cision
making.

By automating the red player the exercise no longer depends on the presence of
a red player. The automated red player can be reproduced as many times as needed

and used simultaneously for many different exercises (DBK86:2).

Another reason to automatc the players in a war game is to better control

the exercise. As people vary so do their responses to different situations which

arise during a war game. This makes the analysis of the responses to the vari-
ous situations extremely difficult if not impossible. An automated player will react
within a given range providing a more stable environment for the training being
conducted (DBK86:2-3). This provides the human participants the opportunity to
evaluate the effectiveness different strategies and decisions under controlled condi-

tions.

2.2.4 Secondary Players. The automation of the players in a wargame pro-
vides the opportunity to add considerations and players which had not been consid-
ered previously. The introduction of secondary automated players acting as third
world countries as well as other global powers has provided a new level of realism.
The wargame is no longer a closed system involving orly the two sides of the conflict;
it can reasonably include automated players representing factions which might be
dragged into the conflict and other parties which, while not directly involved in the

conflict, might influence the outcome or conduct of the conflict (Dav84:9).

Adding secondary players allows the exercise to include considerations of how
noncombatant parties might respond to the combatant’s actions, e.g., the use of
biological, chemical or nuclear weapons. This brings the exercise another step closer
to accurately modelling the real world situation. It also serves to broaden the outlook
of the human players. Instead of only considering what is happening between the
combatants they must now consider what response their actions will cause among

the noncombatants.

2.2.5 Analytic Wargames. When the combat resolution system and all the
players involved in the exercise are automated in a wargame, it becomes an analytic
wargame. It is called an analytic wargame because it can be used to analyze different

scenarios involving the various players. Since the analytic wargame also simulates

wartime conditions and actions it is sometimes referred to as a simulation (Dav88).

These analytic wargames are used to analyze many different possible scenarios
which might arise during an actual conflict. Although a particular scenario might
never occur during a war, the insights gained by observing the results of the simula-
tions can provide military and political leaders the confidence to proceed with plans
as they exist or to strengthen any weaknesses found. One of the major strengths of

the analytic wargame is the ability ‘o create various automated players for any side

which reflect “its personality, grand strategy, and ‘temperament’ ” (Dav88:17).

IIT. Evaluation and Selection of the Programming Methodology

3.1 Introduction

The automation of the ATAF portion of the Theater Warfare Exercise involved
two distinct phases. The first phase was to determine what type of programming
methodology should be used for the automation. This involved analyzing the require-
ments for the automated red player, comparing them with the various programming
methodologies available and selecting the best methodology. The second phase was

the actual design and development of the automated red player.

3.2 Selection of an Appropriate Programming Methodology

There are various programming methodologies available for any given problem.
The choice of *hich methodology to use can and usually will have a great impact
upon the develuimuent and the ease of maintenance of the implementation of the
solution. The !+ methodologies considered for implementation of the automated
red player were.. -":ct-oriented prograinming using Ada and rule-based programming

using an expeit o. “nowledge-based system.

3.2.i Ubjeci-oriented Programming Methodology. The object-oriented pro-
gramming raethodology is a well-known and accepted programming methodology.
In this methodology the problem space is divided into objects and operations which
act upon the objects and cause them to change their states. Each object has its own

set of operations; an object influences other objects by sending messages to them.

The object-oriented methodology is best used when the main emphasis of the
solution is the manipulation of numbers and data which can be represented as ob-
jects. This emphasis is best understood as being concerned with a specific set of
objects and their states. The functions or operations used ‘o change the states of

the objects are contained within the description of the objects.

12

An object-oriented approach to the solution of the automated red player would
be beneficial in t! : sense that it would eliminate the need for shared data areas. Also,
each of the objects would be treated as an individual entity with its own operators
which would virtually eliminate the possibility of incorrectly modifying the objects

or tables.

However, the use of the object-oriented methodology has several very serious
drawbacks. The first of these is that the decisions which will be made by the au-
tomated red player are not always straightforward “yes” or “no” decisions. These
decisions would be difficult to model and implement using the methodology. Second,
TWX is currently designed so that all the data about the numerous items involved
in the exercise, such as air bases, aircraft, ground units and weather zones, are stored
in a large database which is accessed and used by all the different programs support-
ing TWX. The database is an extremely efficient method of storing and accessing
the data. Although the use of the object-oriented methodology does not preclude
the use of the database, use of the methodology would unnecessarily complicate
the work of designing and implementing the automated red player and necessitate

reprogramming certain other functions already in use to ensure compatibility.

3.2.2 Rule-Based Programming Methodology. The rule-based methodology
is a part of the artificial intelligence domain. In it the emphasis is placed on the
rules which specify and bound the behavior of the system. The rules specify which
actions are allowed and when they are allowed. After the set of conditions in a rule is
evaluated, if all the conditions are satisficd, the corresponding goal is met and set to
TRUE. If one or more of the conditions is not true, the goal is not met and the rule
is set to FALSE. If the rule is set to TRUE, a set of actions associated with the rule
are executed modifying data items and creating new ones as needed. This, in turn,
can cause other rules to be put on the agenda or list of rules to be eviluaied. This
is a very flexible system which allows changes to occur based upon the evaluation

of rules. Since many different conditions may exist which may cause a goal to be

13

evaluated to TRUE, there may he many different ways to meet a particular goal.
This means that if a particular set of conditions does not meet a goal, the system
will try a different set of conditions 10 see if the goal, as defined in the rule-base, can
be met.

Another important consideration is that the rules and the data are separate.
A rule-base can therefore operate on many different data-sets and come to different
conclusions based upon their contents. When the database is changed, it does not
affect the r:le-base and vice versa. This independence also allows the rule-base to
be modified as time goes on and new information about the system or the desired
resuits becoraes available.

3.2.3 Conclusion. Based on the emphasis of the two methodologies, sum-
marized above, the rule-based programming methodology was tentatively selected
as the methodology to be used. Once the tentative decision was made, a more in-
depth analysis of the problem as it pertained to the rule-based methodology was

accomplished.

5.3 Rule-bazed Methodology

There are several criteria which are used to determine if a particular problem
is suitable for use with the rule-based methodology or an expert system. The criteria
are divided into three categories: the type of problem to be solved, the availability
of experts to provide the logic behind the solution and the management environ-
ment. Each category has several aspects which must be considered; the response for
each category is usually given on a scale in addition te a simple ves or no answer
(LDS89:3-17}. The scale ranges from low, when the condition the criterion specifies

is essentially or totally absent. to high. when the condition the criterion specifies is

met.

3.8.1 Problem Criteria. The problem criteria area examines how well the
particular problem to be solved lends itself to a solution using an expert system.
Many problems, though they could be solved using an expert system, are better
suited to other methodologies. The subcriteria and how each is rated for the auto-

mated red player are as follows:

¢ Does the problem generally involve symbolic reasoning? There is a large
amount of math involved in the solution but it is more a bookkeeping function.
The main emphasis is on the decisions to be made under the given conditions.

Rating: moderate.

o Are test cases available? Yes, several test cases are available. Rating: moder-

ately high. '

¢ Is the problem well defined? Yes, the problem is very specific and is well

defined. Rating: high.

o How frequently will the task be performed? It is performed at over 250 times

a year. Rating: high.

o Does a written explanation of the solution exist? The conditions which bound

the solution are contained in the Red Player Handbook (Air88). Rating: high.

o Does the task require only cognitive skills and not depend on common sense?

Rating: high.

¢ Do the experts agree on the solutions to the problem? The experts at the Air

Force Wargaming Center agree on the range in which the solution should be

found. Rating: moderately high.

3.8.2 [Ezxpert Criteria. The expert citeria determine the quality of the assis-

tance of the experts as it pertains to the given problem.

¢ Does an expert exist for the problem? Yes. Rating: high.

¢ Is the expert cooperative? Is the expert willing to assist in the development of
the solution? The personnel at the Air Force Wargaming Center are available

and supportive of the effort. Rating: high.
o Can the expert convey his knowledge competently? Yes. Rating: high.

o Is the expert’s knowledge based on facts and experience? The experts have

acted as red players at least ten (10) times. Rating: high.

o Does more than one expert exist? There are at least six red players which

would be considered experts. Rating: high.

8.3.8 The Management Environment Crileria. The management environ-
ment criteria measure the support of the policy makers for the development of the

expert system.

e Is there a need for the development of the expert system? Yes, as mentioned
previously, the assignment of personne] as red players places a heavy burden
upon the personnel of the Wargaming Center and keeps them from other ben-

eficial duties. Rating: high.

e Is there sufficient financial support to see the development through to comple-
tion? The Air Force Wargaming Center has provided the equipment needed for
the effort and continues to fund the necessary travel and expenses to continue

the effort. Rating: moderately high.

o Does the top management support the development? Yes, They have provided
the necessary funds and encouraged the experts to assist the effort. Rating:

moderately high.

16

o Does management have realistic expectations about the use and usefulness of
the final system? Yes, management does not expect the system to solve all

their problems but to lighten the load of the red players. Rating: high.

o Will the users welcome the implementation and use of the system? Yes, there
are the normal doubts and the “show me” attitudes but the users want the

system to work. Rating: moderately high.

Another factor in favor of using an expert system is flexibility. During and
after development of the automated red player the use of an expert system makes
the modification of the rules and conditions much easier than would be the case in
an object-oriented programming methodology where the algorithm would have to be
rewritten. After evaluating the benefits of the flexibility offered, the answers to the
questions about the different criteria and the ratings of the answers, I determined
that the expert system solution was the better of the two alternatives and started

the design and implementation of the automated red player (ATAF segment).

3.4 Rapid Prototyping.

In order to implement the automated red player as quickly as possible, the
method called rapid prototyping was used. Rapid prototyping consists of repeating
the evaluation, design, encoding and testing steps until the final solution is reached.
In rapid prototyping, information is gathered from the expert and written sources
and incorporated, as rules, in the expert system. The new system is then evaluated,
tested and debugged. If the the system works according to the expert’s explanation,
it is accepted; if not it is refined until it matches the heuristics and knowledge the
expert uses. At this point new knowledge is acquired and the process repeats itself
until the expert system meets the specifications set for it (Ped89:182-185). This

process is shown in Figure 2.

The use of the rapid prototype method allowed the automated red player to

be built in small increments with each increment being tested and evaluated before

17

Done

e 3 7ropose or

Yes
No " Modify?
No
Yes Debug?
Deploy

madify topic

Evaluation

No

OK?

Yes

Knowledge
capiure

\
Knowledge

organization

Y

Yes

Refine
requircnents

Encode/update
prototype

Show/test
debug

Figure 2. Rapil Prototype Process (Ped89:184)

18

additional knov’ ~4=» 15 added to the system. it also allowed a partial rule-base v be
used in the system. If a rule was refined or rherwise modified, the method ensured

that extensive changes did not have to be made.

3.8 Conclusion

Although there are many methodologies which may be used to solve a given
problem, one usually stands ou ie the best. ".. the case ¢f the automated red player
the choice was the rule-based metho- .i0gy imp.>mented using an expert system
shell. The selection criteria a! provide strong support for this decizion. To further
support the decisior, .ne rapid prototyping process was examined and select=d for

use in the automation of the red player.

19

IV. Automation of the ATAF Portion

4.1 Introduction

The Allied Tactical Air Forces (ATAF) portion of the Theater Warfare Exercise
(TWX) consists of several independent tasks. These tasks must be performed in a
given order as “pecified 'n t1e Agile Eagle ‘88 Handbook (Air88:3.14-3.18) to ensure
aircraft and other 1«..urces are used in the most advantageous manner possible. In
addition the tasks must be accomplished for both day and nigii. missions for both

fronts. The tasks {in order) are given below and shown in Figure 3.

» Offensive Counter Air targeting, United Kingdom targets
o Area Defense Suppression allocavi>n

o Offensive Counter Air targeting, other tary~ts

o Interdiction and Battlefield Air Interdiction targeting

e Close Air Support allocation

Electronic Counter Measures allocation

Close Air Patrol allocation (not currently used)

Defensive Counter-Air allocation

Aviation Reconnaissance targeting

Currently TWX is organized around a conflict in the European theater. In
order to make the automated red piayer applicable to ary theater world-wide and
allow it to be used even if the theater weie changed, some parameters were made

more general than they are currently. For example, the Offei.sive Counter Air (OCA)

targeting was divided into long range OCA and regular OCA targeting instead of
UK and other OCA targeting.

ATAF

Long Range Area

OCA ECM

Arez
DSuUP DCA

Regular

OCA C'AS

BAI

Figurc 3. ATAF Top Level Design

4.2 Expert System Fundamentals

The automated red player was built using an expert system. To help the reader
understand the design of the automated red player, a brief overview of the structure

of the rules in the expert system is provided through an example.

In Nexpert Object a rule consists of three main parts; the conditions, the
actions and the hypothesis or goal. Each rule has one or more conditions; if all the
conditions of a rule are true the goal, hypothesis, of the rule is met. Whenever a
goal of a rule is met, all the actions in the rule are executled sequentially. If the one
or more of the conditions is false, the goal is not met and none of the acticns are
executed. However, several different rules may have the same goal or hypothesis.
Therefore if a hypothesis is not satisfied by one rule the expert system will try to
satisfy it by evaluating other rules. A goal or hypothesis is determined to be true
if all the conditions of any one rule are true. A goal or hypothesis is determined to
be false if at least one condition in each of the rules with that hypothesis is false.
Therefore, a goal can be met if the conditions of one rule are all met, but it can be

false only if none of the rules have all conditions met.

This example shows three rules used to determine what type of ECM aircraft
should be used. All three rules have the same hypothesis, “Get.ECM_ac.Hypo”
therefore the hypothesis or goal can be met by any of the rules having all its condi-

tions evaluate to true.

When the first ECM aircraft are needed the type of ECM aircraft is unknown
since none have been used. Therefore, the system must get the next type of ECM
aircraft and the quantity of that type aircraft from the table. This rule retrieves this

first type of ECM aircraft when the type of the ECM aircraft is unknown indicating

the table has not been accessed.

CONDITIONS ACTIONS

Is ECM.type UNKNOWN Retrieve ECM.type & ECM.quantity
from 1lrecm table

HYPOTHESIS: Get_ECM_ac.Hypo
When there are not enough of the current type of ECM aircraft available and

the principal aircraft have been selected, this rule retrieves the next type of ECM

aircraft and outputs the table entry for the old ECM type.

CONDITIONS ACTIONS
ECM.quantity = 0 ECM.index = ECM.index + 1
principal.quantity <> 0 Create table entry for old ECM type

Retrieve ECM.type & ECM.quantity
from 1lrecm table

HYPOTHESIS: Get_ECM_ac.Hypo

If there are enough ECM aircraft of the current type available, no actions are
needed since then system will get the aircraft from the type currently being used.
The last rule has no actions {none are needed) and can still meet the goal. If there
are enough ECM aircraft of the current type no actions are taken and the goal is

satisfied by this rule.

CONDITIONS ACTIONS
ZCM.quantity > 0
HYPCTHESIS: Get_ECM_ac.Hypo

Rules are the basic structure of the expert system but there is one other struc-

ture which must be explained. During the processing of the rule-base there are times

23

when a value of a specific object changes; this signifies that certain actions need to
be accomplished. These actions are not part of a rule but are executed whenever the
value of the object changes. Since the actions are not part of a rule they are located
in the if-change metaslot of the object. This allows the object to act as a flag that
is continuously monitored during the processing of the rule-base. Metaslots can be
thought of as actions associated with a condition of “Has the value of this object

changed?”

4.3 General Design Information

The various tasks involved in the ATAF portion of TWX were divided into
several groups according to the similarity of function, decisions and design. The
targeted mission group included both long range and regular OCA tasks, the CAS
task and the BAI task, since they all require very similar decisions and targeting
functions. The untargeted mission group included the area Defense Suppression
(area DSUP), area ECM, and Defensive Counter Air (DCA) tasks because they do
not have specific targets and the aircraft are assigned to fly in an undesignated
airspace. Reconnaissance missions were designed as a separate category since they
have different targeting requirements. The design for each of the three groups will
be presented separately with any differences among the tasks being noted in each

section.

Each of the different missions is affected by weather and daylight conditions.
The discussion which follows explains the design of the general, good weather, day-
light :.iission scenario. The main difference between this general case and the specific
cases is essentially the destructive index of the aircraft allocated for the mission. This
difference is accounted for by selecting the app.opriate destructive index, according

to the weather and daylight requirements of the mission, from the red aircraft table

in the database and will be explained in detail later.

Before building the mission packages for the OCA, Close Air Support (CAS),
Battlefield Air Interdiction (BAI) and Aviation Reconnaissance (RECCE) missions
can begin, the targets for each mission type must be selected based upon the criteria
developed for that type of mission. After the target selection is complete, the weather
over each target must be determined as this may affect the type of aircraft selected
for use against the targets (Air88:3.13). The specific target selection criteria for the

various types of missions is discussed under the separate mission group headings.

4.4 Generation of Targeted Missions

4.4.1 Background. The targeted missions are, as the name implies, those
types of missions generated against specific blue targets, such as airbases or ground
units, or against a corps of a designated army for CAS. These mission types include
long range and regular OCA, CAS and BAI. All these types of missions are packaged
against a specific target and use at least one type of accompanying aircraft except

CAS aircraft, which fly unaccompanied.

Long range offensive counter air missions are targeted against blue airbases
and depots which have nuclear storage facilities or third generation aircraft and are
beyond the range of regular OCA aircraft. These missions are designed to limit or
eliminate the opponent’s nuclear strike capability. This is accomplished by destroying
the nuclear weapons in storage, incapacitating the delivery aircraft and damaging

airbase runway systems. The principal strike aircraft are accompanied by long range

ECM aircraft.

Regular OCA missions are targeted against the same type of target as the long
range OCA missions with the same objective. The regular OCA packages include the
principal strike aircraft, ECM aircraft, escort aircraft and may or may not include

defense suppression aircraft depending on the strike aircraft type selected.

The BAI missions are ta geted against blue ground units and which would

hamper the advance of red ground units. These targets include “means of nuclear

attack aviation at the nearest airfields, tanks and artillery, strong points, centers of
resistance, and river crossings” (Air87:2.19) as well as control centers and reserves.
The mission packages are built of the same components as the regular OCA mission

packages.

CAS missions are assigned to support red ground units and are targeted against
enemy (blue) reserve units, artillery, mission installations and tanks. In TWX, the
actual target chosen will be the Army corps in the area of interest. The red units
receiving support from CAS missions are usually those “ground units which have
penetrated enemy defenses and are conducting pursuit and exploitation operations

deep within the enemy’s zone of operations” (Air88:2.9).

To simplify the explanation of the building of targeted mission packages, the
explanation will deal with one of the mission types; exceptions will be mentioned as
necessary. The most general mission type is the regular OCA mission, therefore it

was chosen for the explanation.

4.4.2 Solution. OCA missions are the first mission packages built and are
assigned against targets throughout the theater. The long range OCA missions are
assigned against targets out of range of standard aircraft, e.g., targets in the United

Kingdom. The process of building an OCA package involves:

¢ building the target priority table;
¢ building the OCA aircraft tables;
e allocating the proper aircraft for the package; and

e creating the OCA mission table.

The organization of the OCA package building process is shown in Figure 4. Each
of the subtasks depends upon and influences the subtasks listed before it. Although
the subtasks are processed from left to right as given in Figure 4, a later task can

cause an earlier task to be processed again under certain conditions.

26

0oCA

Task
Target Mission
Table
Table Generation
Aircraft DSUP
Aircraft
Table Selection
OCA Escort
Aircraft Aircraft
Selection Selection
ECM
Aircraft
Selection

Figure 4. Organization of the OCA Process

4.4.2.1 Target Selection. Before the OCA missions can be planned by
the automated red player all available OCA targets must be placed in a prioritized
list according their potential for damage against the red player. I developed the
following equation to calculate a target’s potential for damaging the red forces, it's

measure of merit:

msrmrt = Y., (acqnty (#)- acdi (7}-wxcp(i)-acsurvfac(i))
where the following definitions hold:

o msrmrt is the measure of merit for the speciiied target;

o n is the number of different types of nuclear capable aircraft at the base;

® acgnty is the quantity of a particular type of aircraft;

e acdi is the destructive capability of the type of aircraft under consideration;

® wzcp is set to 1.1 if the type of aircraft under consideration is not all-weather
capable, 1.2 if it is (based upon the increased utility of the aircraft); and

e acsurvfacis the survivability factor of the type of circraft or what percentage

of the aircraft can be expected to airive on target if allowed to launch.

This equation takes in consideration the factors which bear upon a targets ability to

damage red units in the exercise.

The building of the CAS target table involves finding the blue army corps
in contact with advancing red units which have penctrated enemy defenses. The
emphasis is placed on the army corps with units capable of stopping the red advance,
e.g., artillery and tank units, missile installations and reserves. Since an army covers
a wide area, targeting is done on the corps as a whole. The measure of merit of an
army is determined by how many units arc in contact with red units: this 1.flects
the success of the red unit involved in that the further it has progressed, the more

blue units will be called upon to engage and stop «

I

Table 1. BAI Target Table

nuclear delivery systems
command and contrcl
air defense site

artillery

reserve units

D O

The building of the BAI target table involves finding the rear echelon blue
units which are advancing on red units. This type of mission emphasizes air defense
sites and command and control points. Their measure of merit is based on the type

of unit under consideration as show in Table 1

After the measure of merit is calculated for each possible target, the targets
are entered into a table in descending order of the measure of merit. This places
the highest priority targets at the top of the list, ensuring that the most effective

aircraft resources will be allocated against them first.

To illustrate the target prioritizing process, consider an example where there
are three types of strike aircraft based at eight bases. The aircraft are identified as
AC1, AC2 and AC3 with the relevant characteristics sho'vn in Table 2. Each base
has different quantities of each type stationed at it. These aircraft generate a given
number of sorties each day. Applying the measure of merit equation and the data
provided the measure of merit for each base can be calculated as shown in Table 3.

These data are used to build the target table shown in Table 4.

In the prioritized target table the first column (index) is used by the expert
system to distinguish and reference the individual records (rows). The second column
(abid) is a unique identifier for the target used within TWX and the automated red
player. Column three (status) gives the condition of the airbase rounded to the
nearest 25% level to simulate the inexactness of reconnaissance data received during

wartims. Column four is the calculated measure of merit for the target.

29

Target ID AC Type AC Quantity AC msrmrt Target msrmrt

Table 2. Blue Aircraft Characteristic Table

AC Destructive Weather Survivability
Type Index Capability Factor
AC1 1.3 1.2 ! 95
| AC2 9 1.1 .85
AC3 Ni 1.2 .80

Table 3. Blue Aircraft on Target Table

40 ACl1 100 148.20 148.20
41 AC1 42 67.43

AC2 36 30.29

AC3 104 69.89 167.61
42 AC1 82 121.52

AC2 20 19.20

AC3 20 16.83 157.55
43 AC2 130 109.40 109.40
80 AC2 98 65.86 65.36
82 AC1 60 88.92 88.92
84 AC2 80 53.76

AC3 80 67.32 121.08
85 AC1 79 117.08 117.08

Table 4. Prioritized Target Table

index abid status msrmrt

1 | 41 | 1.00] 167.61
2 | 22 775 | 157.55
3 | 40 | 1.00 | 14820
4 | & 50 | 121.08
5 | 8 25 | 117.08
6 | 43 | 1.00] 109.40
7 | 82 75| 88.92
8 | 80 | 1.00| 6586

4-4.2.2 Mission Aircraft Tables. The next step is to find all the aircraft
which can be used to strike against the targets and place them in the aircraft tables.
Since ECM, escort and defense suppression aircraft may accompany the primary
OCA aircraft to help them survive the missions, four tables must be built, one
to contain the data for the OCA aircraft and the others to contain the data for
the accompanying aircraft. The aircraft are counted from all the eligible airbases
and placed in the table with the aircraft with the highest good-weather, daytime
destructive index (didg) at the top of the table. Examples of the four tables are
given in Tables 5 and 6. In these tables the first column (index) is the field used
by the expert system to access the various aircraft records. In the second column ,
(actyp) is found the type of aircraft with the aircraft role at the end. The number of
aircraft available is contained in the third column (acqnty). The rest of the columns
(didg through dinp) contain the destructive index or mission effectiveness for the
aircraft type for the particular type of mission (OCA, escort, DSUP or ECM) as
stored in the TWX aircraft data tables. The third letter in the header refers to
either day (d) or night (n) missions. The last letter refers to the weather conditions

over the target, good (g), poor (p) or bad (b).

31

Table 5. OCA Aircraft Table

index actyp acqnty didg didp didb ding dinp dinb
1 T26A 57 1.10 | .90 | .70 | .90 | .70 | .60
2 | T22A 44 85 1 65 | 45 | 65 | 45 | .35
3 T16A 39 90 | .70 | .60 | .70 | .50 | .30

Table 6. ECM Aircraft Table

index actyp acqnty didg didp didb ding dinp dinb
[1 JTieE] 22 [.50] 40] .30 | .50 | .40 | .30 |

4.4.2.8 Principal Aircraft Selection. The selection of OCA aircraft and
the number used depends on two variables: the effectiveness of the type of aircraft
under consideration and the status of the target. The first decision made by the
automated red player is to determine how many OCA aircraft are needed for the
mission being packaged. The second decision (whether the requisite number of OCA
aircraft are available) involves accessing the OCA aircraft table. Depending on the
which set of conditions are met in the automated red player’s rule-base the OCA
aircraft table may be opened, the aircraft acquired from the current record, the
aircraft acquired from a new record or the aircraft may not be acquired causing the

mission planning to halt for this task. The design is shown in Figure 5.

The selection of the aircraft type to be used is determined by the order of
the aircraft types in the aircraft table with the most effective aircraft at the top of
the table. In TWX and the automated red player, the format of the mission table
requires the targets using the same type of aircraft to be placed together. Therefore,
the first decision to be made by the automated red player is how many aircraft are

required to reduce the target to 25% effectiveness or less or, if it is already at 25%

0CA

Aircraft
Selection
Mission
Size
Aircraft Alrcraft
Needed Available

Figure 5. Design of OCA Aircraft Selection

Table 7. Damage Calculation Table

Number of Random Number
EffectiveSorties 1 2 3 4 5 6 7 8 9 10

1-5 S| 5] 5].151.75]1.7511.0{1.0{1.0]1.0
6-1) 257 5] S51.15].75].15].75].7511.0]1.0
11 - 20 0125).25{ 5| .5|.76}1.751.75{.75| 1.0
21 -30 0| 0] O} 0].251.25] 5| .5|.75/.75
31 - 40 0| of 0| 0 O] 0}.251.25| .5|.75
41 - 50 0] 0y 0 Of Of O} 0]|.25}1.25| .5
51 - 60 0, of 0f 0f O] O] O} 0;.25| .5

61-+ 0y of 0y 0y Of O} O} Of 0].25

effectiveness, how many aircraft are required to keep it at that level since the blue

forces will be attempting to repair the airbase.

In order to determine how many aircraft are needed, I analyzed the damage
calculation table from the TWX combat resolution model (Table 7). The damage
calculation table contains the multipliers used to determine the status of a target
after an attack. The status of a target after an attack is calculated by determining
which row and column are used in Table 7 and multiplying the current status by
the multiplier at the intersection of the row and column. The row is determined
by calculating the number of effective sorties (number of aircraft in Table 7) over
the target by multiplying the number of aircraft in the package by their appropriate
destructive index. A random number is generated and used to determine which

column is applicable.

I calculated the average multiplier for each level of quantity of aircraft. This
was then used to calculate the expected damage to a target when the median number
of effective sorties or breakpoint reached the target for each level of target status
(25%, 50%, 75% and 100%). I generated an expected damage table for a 100%

survival rate of the aircraft (Table 8), a 75% survival rate of the aircraft (Table 9)

Table 8. Expected Target Status, 100% Survival Rate

Number of Surviving Status Current Target Status
Aircraft Aircraft Multiplier 25% 50% 75% 100%

3 3 .78 19 | .38 [.58 | .78 ||
8 8 .68 A7 | 34 | 51 | .68
15 15 55 | .14 | 28 | 41 | 55 jq
25 25 .30 08 | .15 | .23 | .30 ||
35 35 18 04 [.09 | 13 | a8 |
45 45 10 .03 | .06 .08 .10
55 95 .08 .02 | .04 .06 | .08
66 66 .03 01| .01].02] .03

and a 50% aircraft survival rate (Table 10). After analyzing these three tables I set
the desired number of effective sorties for each level of airbase status as shown in
Table 11. These rates produce the desired damage to the targets, allowing for some

aircraft losses without wasting valuable resources.

Finally, to determine how many aircraft of a certain type were needed against
a specific target, the number of effective sorties needed for the target given its status
was determined by using Table 11. That number was divided by the destructive
index of the aircraft type as taken from the aircraft tables in the database. For
example, using T22As with a destructive index of .85 against target 42 with a status
level of 75%, the number of T22As needed is calculated by dividing the destructive
index of the T22As (.85) by 25 (the desired number of effective sorties from Table i1)
giving 29 aircraft needed. The expected status of the target after the missicn would
be between 41%, if 50% of the aircraft are lost, and 23%, if none of the aircraft are

lost. In addition, up to 8 effective sorties could be lost without any degradation

of the mission effectiveness since 21 effective sorties i the cut-off for this level (see

Table 7).

Table 9. Expected Target Status, 75% Survival Rate

Number of Surviving Status Current Target Status
Aircraft Aircraft Multiplier 25% 50% 75% 100%
3 2 .78 A9 | 38 | .58 | .78
8 6 .68 A7 1 .34 | 51 | .68
15 11 .55 g4 | 28 | 41 .55
25 19 .05 Jd4 | 28 | 41 .55
35 26 .30 08 1 .15 1 .23 | .30
45 34 .18 04 | 00| 13 | .18
55 41 .10 03| .05 | .08 | .10
66 50 .08 031 .05 | .06 | .10

Table 10. Expected Target Status, 50% Survival Rate

Number of Surviving Status Current Target Status
Aircraft Aircraft Multiplier 25% 50% 75% 100%

3 2 .78 19 | .38 | .58 | .78
8 4 .78 19 | .38 | .58 | .78
15 8 .68 71 34 | 51 | .68
25 13 .55 Jd4 {28 | 41 | 55
35 18 .55 14 | .28 | 41 .551{
45 23 .30 08 | .16 | .23 | .3C ¢}
55 28 .30 08 | .16 | .23 | .30
66 33 .18 04 1 .09 .13] .18

Table 11. Required Effective Sorties

Target Status

Effective Sorties

100% 35
75% 25
50% 15

25%

5

Even though the status of the target would in actuality be a percentage such
as 23% or 41%, and it would be stored in the database as a more accurate decimal
number, the solution presented above is only concerned with the four levels of target
status (25%, 50%, 75% and 100%) since reconnaissance cannot be totally accurate.

This reflects the wartime situation and actual reconnaissance capabilities.

4.4.2.4 ECM Aircraft Selection. The selection of the ECM aircraft to
be used for the package is not target-dependent. That is, the ECM function is
basically the same regardless of the target. The determining factors are, simply,
how many aircraft are needed and whether they are available. This is depicted in

Figure 6.

The first decision made by the automated red player is to determine how
many ECM aircraft are needed for the mission being packaged. Due to the nature
of viie ECM function and the red aircrafi being used, that number has been set at
one (Air88:3.14). This decision (one ECM ajrcraft per target) was implemented with

rules to ensure that any future modifications could be made easily.

The second decision (whether the requisite number of ECM aircraft are avail-
able) involves accessing the ECM aircraft table. Depending on the which set of
conditions is met in the automated red player’s rule-base, the table may be opened,
the aircraft acquired from the current record, the aircraft acquired from a new record,
or the aircraft may not be acquired, causing the mission planning to halt for this

task.

4-4.2.5 [Escort and Defense Suppression Aircraft Selcction. The selec-
tion of the escort and defense suppression aircraft to accompany the strike aircraft
in a mission package follows essentially the same logic as the selection of the ECM
shown in Figure 6. First, the number of aircraft needed for the mission is determined
in relation to the type and number of strike aircraft selected. In general, there are

50% as many escort aircraft and 33% as many defense suppression aircraft as there

37

ECM
Aircraft
Selection

Mission
Size

Ajrcraft
Needed

Aircraft
Available

Figure 6. Design of ECM Aircraft Selection

are strike aircraft in each mission package. However, when certain types of aircraft
are selected as the strike aircraft for a package, no defense suppression aircraft are
requiresl. Second, the type of accompanying aircraft is determined. Certain types of
accompanyiog aircraft can only escort certain types of strike aircraft due to aircraft
characteristics and capabilities. This relationship is summarized in Tables 12 and 13.

Because of the nature of the CAS missions. no escort, ECM or defense suppression

Table 12. Possible Accompanying Aircraft, OCA Missions

Mission Strike Escort DSUP ECM
Conditions Aircraft Aircraft Aircraft Aircraft
long range/day | T16A/T22A | none none TI6E |
rion |
[| Iong range/night T26A none none T16E ||
([regular/day | U24A/M27A | M23D | M23A/M27A | TI16E
7 M23A | M29D | U24A/U17A | Y28E
regular/day T16A/T22A | M25D none T16E
T26A M31D
regular/night | U24A/M27A | M23D | M23A/M27A | TI6E
[M23A M29D U24A
Hvregular/night T26A M25D none T16E
M31D

aircraft accompany the s!rike aircraft.

Table 13. Possible Accompanying Aircraft, BAI Missions

Mission Strike Escort DSUP ECM
Conditions Aircraft Aircraft Aircraft Aircraft
| day U24A/M27A M23D M23A/M27A [TI6E/Y28L
h M23A/U17A U24A/UI7A
ﬁ day T16A/T22A | M25D/M31D | M23A/M27TA | TI6E
i T26A U24A/VITA
| night U24A M23D U24A T16E
| night | T26A M25D/M31D | none TI6E

39

Table 14. Long Range OCA Mission Table

AC AC Tgt Srt Tgt Srt Tgt Srt Tgt St Tgt Srt ECM ECM
Type Qnty 1 1 2 2 3 3 4 4 5 5 Type Qnty
[T26AT 12 JT4a1J12] 0 O] 0O o] o o] 0] o0]Ti6E
' Ti6A] 108 | 42 | 28 | 40 | 39 [84 | 17 | 85 | 6 | 43 | 18 | TI6E
[T22A] 47 [82|30 [80 [17] 0] 0] 0 [0 6 | 0 |TI6E

pa| V| s

If, during the allocation of aircraft for a mission package, there are too few
ECM, DSUP or escort aircraft to complete the package either the number of aircraft
in the package must be reduced or a lower priority target, which does not require as

many aircraft, selected.

4.4.2.6 Mission Table Generation. The final task left to the OCA mis-
sion generation is the creation of the mission table, Table 14. The table format is
the same as the form currently used by the red players. It provides the aircraft type
for a line of missions with the quantity of aircraft needed for them and the type and
nurmber of ECM, escort and defense suppression aircraft needed. The rest of the
table contains the target identifiers paired with the number of aircraft designated
for that particular target. Up to five target-quantity pairs are included on a single

line or record.

4.4.2.7 Summary. The OCA, BAI and CAS mission generation tasks
are the bulk of the tasks accomplished under the ATAF portion of the automated
red player. They require the generation of target and aircraft tables that are used to
determine how many of each type of aircraft are to be assigned to cach target. The

results of these decisions are then output in a table in the same format currently

used by the red players as shown in Table 14.

4.5 Generation of Non-Targeted Missions

4.5.1 Background. The non-targeted missions are missions assigned over a
designated area without a specific target. There are two types of non-targeted mis-
sions, area Defense Suppression (area DSUP) and Defensive Counter-Air (DCA).
Each of these types of missions involves only one type of aircraft, the strike aircraft.
No other aircraft accompany the strike aircraft. These differences distinguish these

missions from the targeted missions.

The area DSUP missions are built to suppress the enemy’s air defense capa-
bility. That is, area DSUP aircraft zttack the enemy or blue player aircraft. This
allows friendly, red, aircraft to operate more freely and with fewer losses than would

otherwise occur.

The DCA missions are designed to inhibit enemy air activity against red tar-
gets. The ultimate goal of the DCA missions is to “prevent the enemy from con-
ducting reconnaissance and delivering attacks by aviation and pilotless aircraft on
troops, naval forces, and targets of the rear” (Air88:2.9). This is accomplished by

shooting down enemy aircraft during attacks.

4.5.2 Solution. Both the area DSUP and DCA missions are designed the
same way. The only differences are the type of aircraft used and the number of
aircraft used. For both types of missions an aircraft table is built in the same
manner the aircraft tables are built for the targeted missions. Then aircraft are
selected by types in multiples of ten (10). The area DSUP mission uses a total of
100 aircraft (Air88). The DCA mission, since it is the last mission package built

using strike aircraft, uses all the defensive aircraft left (Air88).

After the aircraft are assigned, the mission table is created. The table simply

contains the type of aircraft assigned and the number of that type aircraft. An

example of the DCA mission table is shown at Table 15.

Table 15. DCA Mission Table

AC Type Quantity AC Type Quantity AC Type Quantity
[M21D] 120 T M23D [700 [M2D | 320 |

4.6 Gerneration of Reconnaissance Missions

4.6.1 Background. Reconnaissance missions are conducted against opera-
tional, strategic and tactical targets including airbases and ground units. The recon-
naissance missions are extremely important because they not only locate potential
targets, but also provided information on the condition and status of the targets.
This information is used by the rule base to make decisions concerning how many of

each type of aircraft were needed to inflict the required damage on a target.

In real-life there is no such thing as perfect intelligence. To model this in
TWX, the true status of a target is not made available to the players: a range of
values was represented by the status values. For example, a status value of 50%
actually means the status of the target under consideration is greater than 37.5%

and less than 67.5%. This allows for the difficulties in obtaining intelligence data

and correctly analyzing it.

4.6.2 Solution. Before reconnaissance mission planning can begin, the tar-
gets have to be selected. The targets for reconnaissance missions were divided into
three categories: known targets, suspected targets and unknown targets. Known
targets are those conclusively identified previously, e.g., airbases. Unknown targets
are those whose predicted location was reasonably accuiate but whose capabilities
were not accurate, c.g., mobile ground units not actually moving. Suspected targets
are targets which may or may not be at the predicted location, e.g., advancing mo-

bile ground units. Each of the targets is put in an appropriate table according te its

category.

Reconnaisance
Missions

S~

Target Aircraft
Tables Selection
Suspected | Known Suspected Known
J
Unknown Unknown J

Figure 7. Reconnaissance Mission Design

The actual reconnaissance mission generation is done by target category as

shown in Figure 7. The suspected targets are assigned first. Each suspected target

has three three-ship packages flown against it as required by the written documen-

tation (Ai*88). Then, two three-ship packages are assigned against each unknown

target. Finally, one three-ship package is assigned against the targets in the known

category.

After the reconnaissance missions have been assigned, the reconnaissance mis-

sion table is creat>d. The table contains the type of aircraft, the quantiuy of aircraft

and up to five targets on each line as shown in Table 16. The suspected targets show

43

Table 16. Reconnaissance Mission Table

AC Type Quantity Target 1 Target 2 Target 3 Target 4 Target 5

M25R 15 187 196 204 202 183
M25R 15 177 197 214 211 166
M25R 15 189 199 200 215 183
M25R 15 189 199 200 215 183
U17R 12 182 198 203 206 0
U17R 12 182 198 203 206 0
U17R 12 | 182 198 203 206 0

up in the table as three identical lines and the unknown targets as two identical lines

while the known targets appear as single lines.

4.7 Summary

The design of the rule-base for the automated red player required the devel-
opment of a target selection criterion. The criterion selected was in the form of an
equation or a rating system which took into account the various resources of the
possible targets for each type of mission. The design also requires that the aircraft
data be available in a series of tables corresponding to the type of mission being
planned. After this requirement is met, the generation of the mission packages can
begin. T# primary aircraft were allocated based upon their characteristics. The
number of aircraft allocated for each target, depends on the weather conditions over
the target, the target status and the aircraft’s destructive index. Support aircraft are
then allocated according to how well they match the needs of the mission package.

After all the allocations are made the completed mission package was output in the

appropriate mission table.

44

V. Conclusion and Recommendations

5.1 Conclusion

This thesis focused on the automation of the ATAF portion of the red player.
Through the use of an expert system the goals, to reduce the time needed to plan
and execute red moves and to develop a standardized, consistent red player, were
realized. The paperwork required for planning the red player’s actions during the
ATAF portion of TWX are reduced to essentially zero. What was a four-hour, paper-
intensive effort has been changed to a fifteen minute automated process. This frees
the red players to concentrate on analyzing the blue players’ decisions and gives the
red players the time needed to prepare to help the student members of the blue

teams understand the consequences of their decisions.

The second goal, a standardized red player, was also realized. The automated
red player will handle similar situations according to the same set of rules and heuris-
tics each time and for each group of blue players. This allows the success, or failure,
of each seminar to be compared to the results obtained by other seminars separated
by either distance or time. It also opens the door to in-depth comparison of different
approaches taken by different blue teams allowing the teams to learn from others
decisions. This automated red player is also portable to any computer system run-
ning the same expert system. The complete rule base can easily be stored on one
double-sided, high-density, 5.25 inch floppy diskette. Even if a large number of rules

are added in the future the rule base would continue to be extremely portable.

5.2 Recommendations for Further Work

At this point, the automated red player has been designed and a prototype
has been implemented. The ATAF portion should be combined and used in tandem
with the previous work. The combining of the two systems would further decrease

the time needed to plan the red player’s actions.

As the automated red player is refined and the Air Force Wargaming Center
personnel become more familiar with the rule-based system, the restrictions which
are built into the rules could be relaxed. In the manual system many rules were
established to simplify the red player’s work. With the automation of the red player,
that is no longer a consideration. The restrictions on mission package composition

can be relaxed to more accurately reflect reality.

A further recommendation, now that the red player is automated, is to consider
the feasibility of using the same expert system shell to do preliminary analysis of
each day’s action by the blue player. This would provide valuable insights into the
blue players’ decisions on a daily basis. It would also capture the analysis expertise

of the experienced red players, who are currently doing the analyses of the blue

players’ decisions, for use by future red players.

Appendix A. User’s Manual

A.1 Introduction

The knowledge base developed as a result of this thesis was implemented under
the Neuron Data expert system shell Nexpert Object on a Sun 386i minicomputer.
Nexpert Object operates in the X Windows environment. This user’s manual is
divided into two parts. The first describes the tahles used as input into the knowledge
base and the tables that contain the results of the execution of the knowledge base.

The second section explains how to run the knowledge base.

A.2 Table Format

The knowledge base for the automated red player retrieves information from
flat tables in what is called the NXPDB (Nexpert database) format. Nexpert Object
requires that the tables in the NXPDB format follow very stringent rules. The tables
must be stored in files with an “NXP” extension and the file names must exactly
match the names used in the knowledge base. The output tables are in the same
format as the tables used for input and can be examined through the use of an editor,

e.g., vi or ed.

An example of a table used by the knowledge base is shown below.

index| abid| status]
ks ok ok ok Rk ok s o ok ok ok ok

1] 651 751
2| 88| 1.00]
3 40| .50]

4| 74| 0.00}
Sk AR A A AA AR AAK KK

The first line of the table contains the headers separated by vertical bars. Each
field including the headers must end with a vertical bar “|” and the second line of
the table between the headers and the data as well as the last line of the table must
consist only of asterisks with no vertical bars and end in the same column as the last
vertical bar in the header line. The number of spaces allocated to the headers or the
data field, whichever is longer, determines the number of spaces Nexpert allocates
to each field. The first field in each table must bc an index field which contains a
unique index for each record. The third though the next to the last lines contain the
data. Each field must end with a vertical bar and the vertical bars must precisely
line up with the corresponding vertical bars in the headers. No extra spaces or other
characters are permitted after the last data field in a line. The output tables will be

in the same format as the input tables.

The tables described above may either be built by a database query language,
e.g., SQL, or manually. Regardless of how they are originally constructed, they may
be manually modified at any time. The first record in a table, the first data line,
will be accessed first and the other records will be accessed sequentially afterwards.
For that reason it is important to place the higher priority targets and aircraft at
the top of the table. If changes are made after the tables are built, the position of

the new or changed record in the table will determine when it is processed.

A.3 Running the Knowledge Base

The knowledge base is run under Neuron Data’s expert system shell Nexpert
Object. It can be run on any computer system which can run Nexpert Object. The
automated red player was developed and tested on a Sun 386i minicomputer. The
knowledge base and the tables it uses must be in the same directory on the computer.

The user should move to the directory which contains the knowledge base and enter

Nexpert Object from there.

The procedure to run the automated red player are given here in a step by
step format. A basic understanding of Nexpert Object is assumed. Once Nexpert
Object is running, bring up the expert menu by clicking vn the expert icon, the
left middle icon in the Nexpert window. Load the knowledge base by selecting the
“Load Knowledge Base” command in the expert menu and selecting “autored.tkb”
when the knowledge base selection menu appears. After the knowledge base has
been loaded, the various windows involved with the loading process will disappear.
Next, select the “Restart Session” in the system menu to reinitialize all variables and
objects in the knowledge base. Then select “Suggest...” from the system menu; a
new window will open. Select “autored.tkb” in the new window; it will then appear
under the heading “Suggest Keep”. Use the mouse to click on “Ok & Knowcess”;
this will start the processing of the automated red player. At this point a new
window, the Session Window, will open and show some short comments abcut the

condition of the run. When the execution is complete, the Session Window will

display “End of Session”.

Appendix B. Rule-base Structure Overview

This appendix contains a brief overview of the structure of the prototype rule-
base for the automated red player in a scries of figures. The top level overview,
Figure 8, shows the structure of the rule-base presented in the following appendices.
The ATAF box represents the top level controller which activates the tasks in the

proper sequence. The boxes below it represent the various tasks in tke rule-base.

Figure 9 sows the structure of the long range offensive counter air rule-base in
the prototype. Tie boxes under the IrMapping box represent the various hypotheses
or goals that must he met to continue processing the packaging task. The processing
of the goals starts at the left and moves to the right but certain conditions may cause

the rule-base to backtrack and return to a goal which had been processed previously.

The defense suppression task structure is shown in Figure 10. It is a very
simple, straighiiorward process of selecting the aircraft from the tables with few

res‘rictions.

Since ali three reconnaissance tasks are structured alike only Figure 11 is pre-

sented showing the structure of all three tasks. It is essentially the same structure

as the long range OCA portion.

Long Range
Offensive
Counter Air

ATAY

Defense
Suppression

Reconnaissance
3

Reconnaissance
2

Reconnaissance
1

Figure 8. ATAF Top Level Structure

GetlrPackage

Supply
dolrMapping

T IrMapping ~—_
IrFinalCheck / \ IrAssignTarget
Get Irtarget / \ Get_IrECM_msn;z
IrMission_size GetIrECM_ac
IrACneeded éet.lrECMmeeded

Figure 9. Long Range OCA Structure

GetdsupPackage

dsup_addprop

dsupac.commit

Figure 10. Defense Suppression Task Structure

GetrecPackage

recFinalCheck

Supply
dorecMapping

recMapping

b

Gat_rectarget

recAssignTarget

recMission_size

recACneeded

Figure 11. Reconnaissance Tasks Structure

Appendix C. Rules

C.1 Introduction

This appendix contains the rule-base for the automated red player. The rules
are presented in the format Nexpert Object outputs them when requested to “Write
to File” in the rule editor.

The rules are presented in sections within the rule-base. Variable names and
hypotheses belonging to the different tasks can be identified by abbreviations con-
tained in the names. Variables and hypotheses pertaining to the long range offensive
counter air task contain “1r” or “l1roca.” Tkose used in the defense suppression task
contain “dsup.” The recconnaisance task items contain “recl,” “rec2,” “rec3,”

“reccel,” “recce2,” or “recce3,”

The conditions and actions are the same as described in Chapter 4. The
hypothesis of a rule can be considered to be the goal of the rule and several rules
may have the same hypothesis. The inference category determines the order of
execution among rules with the same hypotheses; it is set to one (1) as the default.

The name is optional as are the comments.

C.2 The Automated Red Player Rule-base

CONDITIONS :
Name GetlrPackage Hypo GetlrPackage.Hypo
Name dsup_missions dsup_missions
Name GetrecilPackage.Hypo GetreciPackage.Hypo
Name rec2GetPackage.Hypo rec2GetPackage. Hypo
Name Getrec3Package.Hypo Getrec3Package.Hypo
HYPOTHESIS : ataf.Hypo
INFEREKCE CATEGORY : 1
NAME :

Comments : ATAF automated red player prototype by Karl Kabanek

CONDITIONS :
Retrieve "dsupac.nxp”
€TYPE=NXPDB; €FILL=ADD; @NANE=""0bj_’!index!";@CREATE=|dsupac];
SPROPS=type,qnty; @FIELDS="type", "qnty";

Name <|dsupac|>.addprop <l|dsupac|>.addprop
> LEXGTH(<[msacl|>) 0

HYPOTHESIS : dsup_missions

ACTIOES :
Vrite “dsupms .nxp”

CTYPE=NXPDE; ¢FILL~-NEW; @NANE=""KS_’!index(10)!";@PROPS=type,qnty;
GFIELDS="type(10)","qnty(10)"; GATONS=<[msac|>;
Write “dsup_2.nxp”
@TYPE=NXPDB; €FILL-NEV; GNANE=""ACR_’ ! index(10) ! ; @PROPS=type, qnty;
CFIELDS="type(10)*,"qnty(10)" ;@ATONS=<lacr|>;
INFERENCE CATEGORY : 1
NAME : Top_level_dsup

CONDITIONS :
> dsupqnty 0
Name dspglobal.qnty/sortszesortsz dspglobal.sortqnty
Bame dspglobal.qnty-dspglobal.sortqnty dspglobal .redr
< dspglobal._sortqnty-dsupgnty O
HYPOTHESIS : dsupac_commit
ACTIOXS :
Do dsupqnty-dspglobal . sortqnty dsupgaty
Do |DSPUMEN] . index+1 |DSPUNEN| . index
CreateObjec ’NS_’\|DSPUNEN].index\ [msac}
Do dspglobal.type 'NS_’\|DSPWNEN|.index\.type
Do dspglobal.sortqnty ’NS_’\IDSPWMENM]|.index\.qnty
Do dspglobal.rmdr dspglobal.qnty
CreateObjec ’ACR_’\IDSPUNEN{.index\ [acr|
Do dspglobal.type ’ACR_’\|DSPUNEN!.index\.type
Do dspglobal.qnty °ACR_’\]DSPWNEM|.index\.qnty

INFERENCE CATEGORY : 50
NAME : select_dsupac_2

CONDITIONS :

>

Name

Name

o=
HYPOTHCSIS
ACTIONS :

Do

Do

CreateObjec

Do

Do

Do

CreateObjec

Do

Do

dsupgnty 0

dspglobal.qnty/sortsz*sortsz dspglobal.sortqnty
dspglobal.qnty-dspglobal.sortqnty dspglobal.rmdr
dspglobal.sortynty-dsupgnty 0

dsupac_commit

dspgich .. sortqnty-dsupgnty+dspglobal.rmdr dspglobal.gnty
|IDSPUMEM] . index+1 |DSPWMEM].index

'MS_’\IDSPWMEM| .index\ |msac|

dspglobal.type MS_’\|DSPWMEM|.index\.type

dsupqnty *MS_’\|DSPWMEM]| .index\.qgnty

v dsupgnty

'ACR_’\|DSPWMEM| .index\ lacr|

dspglobal.type ’ACR_’\|DSPWMEM!.index\.type
dspglobal.qnty ’ACR.’\|DSPWMEM|.index\.qnty

INFERENCE CATEGDRY : 100
NAME : select_dsupac_1

CONDITIONS :
= dsupqnty 0
NotEquel dspglobal.type ’ACR_’\|DSPWMEM].index\.type
HYPOTHESIS : dsupac_ccmmit
ACTIONS :
Do |DSPUMEM] . index+1 |DSPWMLH!.index
CreateObjec *ACR_’\|DSPWMEM|.index\ |acrl
Do dspglobal.type ’ACR_’\|DSPWMEHN|.index\.type
Do dspglobel.qnty *ACR_’\|DSPUMEM!|.index\.qnty
INFERENCE CATEGOUKY 200

NAME : select_dsupac_0

CONDITIONS :

HYPOTHESIS :
ACTIONS :
Do
CreateObjec
Do
Do
Retrieve

Do

Comments :

LRWMEM. ecmtot O
curlrMap.actot 0
Get_1xECM_ac.Hypo

LRWMEM. ecmindx+1 LRWMEM. ecmindx
?1rECM_’\LRWMEM. ecmindx\ |lrECHacl

LRWMEM. ecmtyp ’1xECM_’\LRWMEM.ecmindx\.ecmtyp
LRWMEM. ecmtot ’1rECM_’\LRWMEM.ecmindx\.ecmtot
"lrecm.nxp"

QTYPE=NXPDB; @SLOTS=LRWMEM. ecmtyp,LRWMEM. ecmtot ; QFIELDS="type", "qnty";
QCURSOR=LRWMEM.ecmCursor;

Do LRWMEM. ecmtyp curlxMap.ecmtyp
INFERENCE CATEGORY : 50
NAME :
Comments : Out of ECM ac and strike ac
CONDITIONS :
Is LRWMEM. ecntyp UNKNGWN
HYPOTHESIS : Get_1rECM_ac.Hype
ACTIONS :
Retrieve "lrecm.nxp"

QTYPE=NXPDB; @SLOTS=LRWMEM. ecmtyp,LRWMEM. ecmtot ; FIELDS="type", " "qnty";
QCURSOR=LRWMEM.ecmCursor;
LRWMEM. ecmtyp curlrMap.ecmtyp
INFERENCE CATEGORY : 150
NAME : Start_1rECM_table_use
Get the first entry in the ecm table

COKDITIONS :
= LRWMEM.ecmtot O

<> curlrMap.actot O
HYPOTHESIS : Get_1xrECM_ac.Hypo
ACTIONS :
Do LRWMEM. ecmindx+1 LRWMEM. ecmindx
CreateObjec *1rECM_’\LRWMEM._ecmindx\ |1rECMac|
Do LRWMEM. ecmtyp ’1rECM_’\LRWMEM.ecmindx\.ecmtyp
Do LRWMEM. ecmtot ’1rECM_’\LRWMEM.ecmindx\.ecmtot
Do TRUE curlrMap.doAssign
Retrieve "lrecm.nxp"

QTYPE=NXPDB ; QSLOTS=LRWMEM.ectyp, LRWMEM. ecmtot ; OFIELDS="type","qnty";
QCURSOR=LRWMEM. ecmCursor;
Do LRWMEM. ecmtyp curlrMap.ecmtyp
INFERENCE CATEGORY : 78
NAME : Retrieve_ecm_ac_from_table
Comments : This gets the next entry in the ecm table when the previous
sntry run out of ac.

CONDITIONS :
> LRWMEM.ecmtot O
HYPOTHESIS : Get_1rECM_ac.Hypo

INFERENCE CATEGORY : 100
NAME : Get_ecm_ac_from_sar s_entr-
Comments : This continues . * .e the same type of ecm ac as before

COKDITIONS :
Name Get_lrECM_needed.Hypo Get_lrECM_needed.Hypo
>= LRWMEM. ecmtot-LRWMEM. ecmneeded 0
HYPOTHESIS : Get_1rECM_msnsz.Hypo
ACTIONS -
Do LRWMEM. ecmneeded LRWMEM. ecmmsnsz
INFERENCE CATEGORY : 200

NAME : Sufficient_lrECM_msnsz
Comments : Sufficient ECM ac for this mission

CORDITIONS :

Name Get _1rECM_needed.Hypo Get_lrECM_needed.Hypo
< LRWMEM.ecmtot-LRWMEM. ecmneeded 0
HYPOTHESIS : Get _1rECM_msnsz.Hypo
ACTIONS :
Do 0 LRWMEM.msnsz
Do O LRWMEM.ecmmsnsz
INFERENCE CATEGORY : 150
NAME :

Comments : No more ECM ac available of this type

CONDITIONS :
> LRWMEM.msnsz 0
HYPOTHESIS : Get_1rECM_needed.Hypo
ACTIORS :
Do 1 LRWMEM. ecmneeded
INFERENCE CATEGORY : 100

NAME : Standard_lrECM_msnsz
Comments : ECM needed for regular mission

CONDITIONS :
<= LRWMEM..usnsz 0
HYPOTHES : Get_1rECM_needed.Hypo
ACTIONS
Do O LRWMEM.ecmneeded
INFERENCE CATEGORY : 50

NAME : Non_mission_lrECM_msnsz
Comments : No ecm ac for a non~mission.

CONDITIONS :

<> 1rHold.target 0

Name lrHold.target LRWMEM.curTarget

Rame 1rHold.status LRWMEM.curstatus
HYPOTHESIS : Get_lrtarget.Hypo
ACTIONS :

Reset 1rHold.target

Reset 1rHold.status

INFERENCE CATEGORY : 25

NAME :

60)

CONDITIORS :
= . 1rHold.target O
Retrieve "lrtgt.nxp"
QTYPE=NXPDB; @SLOTS=LRWMEM.curTarget,LAWMEM. curstatus;
QFfELDS=“abid","status";QCURSOR=LRWHEH.targCursor;
HYPOTHESIS : Get_lrtarget.Hypo
INFERENCE CATEGORY : 100
NAME : Find_the_target

CONDITIONS :

Retrieve “lrac.nxp"
@TQPE=NXPDB;0FILL=ADD;@KAHE="’AC_’!Indx!“;@CREATE=I1rSupp1y|;
QPROPS=actyp,actot.didg,didb,didp,ding,dinp,dinb;
QFIELDS="type","qnty","didg","didb","didp","ding","dinp","dinb";

Name <|1rSupply|>.dolrMapping <|1lrSupplyl>.dolrMapping
>) LENGTH(<|1rAssignments|>) 0

HYPOTHESIS : GetlrPackage.Hypo

ACTIDRS :
Write "lrms .nxp"

QTYPE=NXPDB; OFILL=NEW; GNAME="’Assign_’ !Indx(8)!";
OPROPS=actyp,actot,tgtl,sortl,tgt2,sort2, tgt3, sort3, tgt4,sorts,
. tgth,sorth,ecmtyp,ecmtot;

QFIELDS="actyp(10)","gnty(8)","tgt1(7)","sort1(5)","tgt2(7)","sort2(5)",
"tgt3(7)","sort3(5)","tgt4(7)","sort4(5)","tgt5(7)", "sorts(5)",
"ecmtyp(7)","ecmtot(7)"; QATONS=<|1lrAssignments|>;

Writé "lrac_2.nxp" QTYPE=NXPDB;QFILL=NEW;QNAME="’AC_’!Indx(8)!";

QPROPS=actyp,actot,didg,didp,didb,ding,dinp,dinb;

QF Ew5=a|actyp(1o H . "qnty(a) (1} , "dldg(S) n . "dldp(S) n , "dldb(S) " ,
*ding(5)","dinp(5)","dinb(5)"; CATONS=<|1xrSupply|>;

Do LRWMEM. ecmindx+1 LRWMEM. ecmindx

CreateObjec ’1rECM_’\LRWMEM.ecmindx\ |1xECMac|

Do LRWMEM.ecmtyp ’1rECM_?\LRWMEM.ecmindx\.ecmtyp

Do LRWMEM. ecmtot ’1rECM_’\LRWMEM.acmindx\.ecmtot

Do 1rECM table.Hvpo 1rECM_table.Hypo

Write “lrecm_2.nxp" QTYPE=NXPDB;QFILL-NEW;ONAME="’1rECK_’!indx!";
QPROPS=ecmtyp, ecmtot ; GFIELDS="type","qnty" ; CATOMS=<|1xECHac|>;

INFERENCE CATEGORY : 1

NAME : Top_Level_Package_Contrcl
Comments : This rule represents the top level control structure:
Build the table of planes to e assigned. Assign planes (map them on)
to available targets. If any assignments have been made, update the
database tables.

61

CONDITIONS :
Retrieve "reciac.nxp"
OTYPE=NXPDB; QFILL=ADD; QNAME="""AC_’ ! Indx!"; QCREATE=|reciSupplyl;
OPROPS=actyp,actot; QFIELDS="actyp","qnty";

Name <lreciSupplyl>.doreciMapping <|reciSupplyl>.doreciMapping
> LENGTH(<|reciAssignments|>) O

HYPOTHESIS : GetreclPackage.Hypo

ACTIONS :
WVrite "recims.nxp"

QTYPE=NXPDB; QFILL=NEW; ONAME="’Assign_’!Indx(8)!";

OPROPS=actyp,actot,tgtl,tgt2, tgt3,tgt4,tgt5;

QFIELDS="actyp(10)","qnty(8)", "tgt1(7)", "tgt2(7)", "tgt3(7)",
"tgta(7)","tgt5(7)"; OATOMS=<|reciAssignments|>;

Write "rec2ac,nxp"
QTYPE=NXPDB;QFILL=NEW; @NAME="’AC_’ !Indx(8) ! ";0PROPS=actyp,actot;
QFIELDS="actyp(10)","qnty(8)" ;QATOMS=<|rec1Supply|>;

INFERENCE CATEGORY : 1

KAME : Top_Level_Package_Control
Comments : This rule represents the top lu .1 control structure: Build
the table of planes to be assigned. Assign planes (map them on) to
available targets. If any assignments have been made, update the
database tables.

62

CONDITIONS :
Retrieve "rec3ac.nxp"
QOTYPE=NXPDB; QFILL=ADD ; CNAME=""AC_’ t Indx!"; @CREATE=|rec3Supplyl;
OPROPS=actyp,actot ; OFIELDS="actyp", "qnty";

Name <{rec3Supply|>.dorec3Mapping <irec3Supplyl>.dorec3Mapping
> LENGTH(<|rec3Assignments|>) 0

HYPOTHESIS : Getrec3Package.Hypo

ACTIONS :
Write "rec3ms.nxp"

OTYPE=NXPDB; QFILL=NEW; ONAME="’Assign_’'Indx(8)'!";
QPROPS=actyp,actot,tgtl,tgt2,tgt3, tgt4,tgts;
QFIELDS="actyp(10)","“qnty(8)","tgt1(7)","tgt2(7) ", "tgt3(7)",
negta(7)","tgt5(7)"; OATOMS=< | rec3Assignments|>;
Write "recaclft.nxp"
OTYPE=NXPDB; QFILL=NEW;ONAME=""AC_’ {Indx(8) !" ; OPROPS=actyp,actot;
OFIELDS="actyp(10)","qnty(8)";@ATOMS=<|rec3Supply|>;
INFERENCE CATEGORY : 1
NAME : Top_Level_Package_Control

Comments : This rule represents the top level control structure: Build

the table of planes to be assigned. Assign planes (map them on) to
available targets. If any assignments have been made, update the
database tables.

63

CONDITIONS :

>= LRWMEN. curstatus .625
< LRWMEM.curstatus .875
Name FAX(LRWMEM.didg,0.7) LRWMEM.effsrt
Name CEIL(25/LRWMENM.effsrt) LRWMEM.acneeded
HYPOTHESIS : lrACneeded.Hypo
INFERENCE CATEGORY : 75
NAME : Find_AC_needed_75
Comments : This rule determines the mission size needed for a
target at 75
CONDITIONS :
>= LRWMEM.curstatus .376
< LRWMEM. curstatus .625
Name MAY.(LRWMEM.didg,0.7) LRWMEM.effsrt
Name CEIL(15/LRWMEM.effsrt) LRWMEM.acneeded
HYPOTHESIS : lrACneeded.Hypo
INFERENCE CATEGORY : 50
NAME : Find_AC_needed_50
Comments : This rule find the mission size needed for a
target with a status of 50
CONDITIONS :
> LRWMEM. curstatus 0
< LRWMEM. curstatus .375
Name MAX(LRWMEM.didg,0.7) LRWMEM.effsrt
Kame CEIL(5/LRWMEM.effsrt) LRWMEM.acneeded
HYPOTHESIS : lrACneeded.Hypo
INFERENCE CATEGORY : 25
NAME : Find_AC_needed_25
Comments : This rule determines the mission size needed for
targets with a status of 25
CONDITIONS :
>= LRWMEM. curstatus .8756
Name MAX(LRWMEM.didg,0.7) LRWMEM.effsrt
Name CEIL(35/LRWMEM.effsrt) LRWMEM.acneeded
HYPOTHESIS : 1lrACneeded.Hypo
INFERENCE CATEGORY : 100
NAME : Find_AC_needed_100

Comments : This rule determines the mission size needed for
targets with a status of 100

64

CORDITIORS :

> LRWHEM.msnsz 0
IsNot curlrMap.tgts KNOWN
Name LRWMEM. curTarget curlrMap.tgth
Name curlrMap.actot+LRWMEM.msnsz curlrMap.actot
Name LRWMEM.nsnsz curlrMap.sortS
Kame curlrMap.ecmtot+LRWMEN. ecmmsnsz curlrMap.ecmtot
Name TRUE curlrMap.doAssign
HYPOTHESIS : lrAssignTarget.Hypo
ACTIORS :
Do TRUE LRWMEM.retflag
INFERENCE CATEGORY : 60

NAME : Target_Assignment

CONDITIONS :

> LRWMEM.msnsz 0

IsNot curlrMap.tgti KNOWN

Name LRWMEM.curTarget curlrMap.tgti

Name curlrMap.actot+LRWMEM.msnsz curlrMap.actot

Name LRWMEM.msnsz curlrMap.sorti

Name curlrMap.ecmtot+LRWMEM. ecmmsnsz curlrMap.ecmtot
HYPOTHESIS : lrAssignTarget.Hypo
ACTIONS :

Do FALSE LRWMEM.retflag

INFERENCE CATEGORY : 100

HAME : Target_Assignment
Comments : If the first target is being assigned, copy the
target value and update the aircraft total.

CONDITIONS :

> LRWMEM.msnsz 0

IsNot curlrMap.tgt3 KNOWK

Name LRWMEM. curTarget curlrMap.tgt3

Name curlrMap.actot+LRWMEM.msnsz curlrMap.actot

Kane LRWMEM.msnsz curlrMap.sort3

Name curlrMap. ecmtot+LRWMEN. ecnmsnsz curlrMap.ecmtot
HYPOTHESIS : lrAssignTarget.Hypo

INFERENCE CATEGORY : 80

NAME : Target_Assignment
Comments : If a third target is being assigned, copy the target
value and update the aircraft total.

CORDITIONS :

> LRWMEM.msnsz O

Iskot curlrMap.tgt4 KNOWN

Name LRWMEM.curTarget curlrMap.tgtd

Kame curlrMap.actot+LRWMEM.msnsz curlrMap.actot

Name LRWMENM.msnsz curirMap.sort4d

Name curlrMap.ecmtot+LRWMEN. ecumsnsz curlrMap.ecmtot
HYPOTHESIS : 1lrAssignTarget.Hypo

INFERENCE CATEGORY : 70

NAME : Target_Assignment
Comments : If a fourth target is being assigned, copy the target
value and update the aircraft total.

CONDITIONS :

> LRWMEM.msnsz 0

IsNot curlrMap.tgt2 KNOWN

Name LRWMENM.curTarget curlrMap.tgt2

Name curlxMap.actot+LRWMEK.msnsz curlrMap.actot

Name LRWMEM.msnsz curlrMap.sort2

Name curlxMap.ecmtot+LRWMEN. ecmmsnsz curlrMap.ecmtot
HYPOTHESIS : 1rAssignTarget.Hypo

INFERENCE CATEGORY : 90

NAME : Target_Assignment
Comments : If a second target is being assigned, copy the target
value and update the aircraft total.

COXDITIONS :
= LRWMEM .msnsz 0
= 1rHold.target O
IsKot curlrMap.tgt5 KNOWN
Name LRWMEM. curTarget 1rHold.target
Name LRWMEM. curstatus 1rHold.status
Kame 0 curlrMap.tgts
Same 0 curlrMap.sorts
HYPOTHESIS : 1rAssignTarget.Hypo
ACTIONS :
Do TRUE LRWMEM.retflag
INFERERCE CATEGORY : 57

HAME : Target_5_assignment
Comments : This rule fills the target and sortie fields with Os when
there are no ac left.

CONDITIONS :
= LRWMEM .msnsz O

< 1rHold.target O

Islot curlrMap.tgt5s KNOWK

Name 0 curlrMap.tgt6

Name 0 curlrMap.sort5
HYPOTHESIS : 1lrAssignTarget.Hypo
ACTIONS :

Do TRUE LRWMEN.retflag

INFERENCE CATEGORY : 53

NAME : Target _5_assignment
Comments : This rule fills the sortie and target fields with Os when
there are no more ac

CORDITIONS :
= LRWMEM .msnsz O
< 1rHold.target O
Islot curlrMap.tgt4 KNOWN
Name 0 curlrMap.tgt4
Name 0 curlr¥ap.sort4
HYPOTHESIS : lrAssignTarget.Hypo
INFERENCE CATEGORY : 63

NAME : Target_4_assignment
Comments : This rule fills the sortier and target fields with 0Os
when there are no more ac.

CORDITIONS :
= LRWMEN .msnsz 0
= 1rHold.target O
IsNot curlrMap.tgt4 KNOWN
Name LRWKEEM.curTarget lrHold.target
Name LRWMEM. curstatus lrHold.status
Name 0 curlxrMap.tgt4
Name 0 curlrMap.sort4
HYPQTHESIS : I1rAssignTarget.Hypo
INFERENCE CATEGORY : 67

NAME : Target_4_assignment
Comments : This rule fills the target and sortie fields with 0s
vwhen there are no ac left

CONDITIONS :
= LRVMEM .msnsz O

<> 1rHold.target O
Iskot curlrMap.tgt3 KNOWN
Name 0 curlrMap.tgt3
Name 0 curlrMap.sort3
HYPOTHESIS : lrAssignTarget.Hypo
INFERENCE CATEGORY : 73

NAME : Target_3_assignment .
Comments : This rule fills the target and sortie fields with Os shen
there are no more ac.

CONDITIONS :
= LRWMEM.msnsz O
= 1rHold.target O

IsNot curlrMap.tgt3 KNOWN
Name LRWMEM. curTarget lrHold.taxget
Name LRWMENM.curstatus lrHold.status
Name 0 curlrMap.tgt3
Name 0 curlrMap.sort3
HYPOTHESIS : 1lrAssignTarget.Hypo
INFERENCE CATEGORY : 77

NAME : Target_3_assignment
Comments : This fills the target and sortie fields with Os when
there are no ac left

CONDITIONS :
= LRWMEM.msnsz 0
<> lrHold.target O
Iskot curlrMap.tgt2 KNOWN
Hame 0 curlrMap.tgt2
Rame 0 curlrMap.sort2
HYPOTHESIS : lrAssignTarget.Hypo
IRFERENCE CATEGORY : 83

NAME : Target_2_assignment

Comments : This rule fills the sortie and target fields with Os when
there are no more ac.

CONDITIONS :
= LRWMEM.msnsz O
= 1rHold.taxrget O

IsNot curlrMap.tgt2 KNOWK
Name LRWMEM. curTarget 1rHold.target
Name LRWMEN. curstatus 1rHold.status
Name 0 curlxMap.tgt2
Name 0 curlrxMap.sort2
HYPOTHESIS : IrAssignTarget.Hypo
INFERENCE CATEGORY : 87

NAME : Target_2_assignment
Comments : This rule fills the target abd sortie fields with Os when
there are no more ac.

CONDITIONS :

= LRWMEM.nsnsz 0

<> 1rHold.target O

IsNot curlrMap.tgtl KNOWN

Kame 0 curlrMap.tgtl

Naxe 0 curlrMap.sortt
HYPOTHRESIS : IrAssignTarget.Hypo
ACTIONS :

Do FALSE LRWMEM.retflag

INFERENCE CATEGORY : 93

NAME : Target_1_assignment
Comments : This rule fills the sortie and target fields with Os when
there are no more ac

CORDITIONS :
= LRWHMEM .msnsz O
= 1rHold.target O
IsNot curlrMap.tgti KNOWN
HYPOTHESIS : lrAssignTarget.Hypo
ACTIONS :
Do LRWMEM. curTarget 1rHold.target
Do LRWMEM. curstatus lrHold.status
Do O LRWMENM. curTarget
Do 0 curlrMap.sortil
De FALSE LRWMEM.retflag
INFERENCE CATEGORY : 97

HAME : Null_target_1

CONDITIONS :
<> LRWMEN. ecmCursox -1
Retrieve *lrecm.nxp” @TYPE=NXPDB;€SLOTS=LRVMEM.ecatyp,LR¥NEN. ecatot;
QFIELDS="type", "qnty"; @CURSOR=LRWMEN . ecmCursor;

<> LRWMEN. ecmCursor -1
HYPOTHESIS - 1rECM_table.Hypo
ACTIONS :
Do LRWMEN. ecmindx+1 LRWMEN. ecmindx
CreateObjec ’1rECM_’\LRWMEM.ecmindx\ [lrECNacl|
Do LRWMEN.ecmtyp ’1rECM_’\LRWMEN.ecmindx\.ecmtyp
Do LRUNEM . ecmtot ’1rECM_’\LRWMEM.ecmindx\.ecxtot
Do 1xECK_table.Hypo 1rECH_table.Hypo
Reset 1rECK_table.Hypo
INFERENCE CATEGORY : 1
NAME :
CONDITIONS :
Is LRWMEN. targCursor KNOWN
= LRWMEN. targCursor -1
Ko <|1rSupply]>.Processed
Name TRUE <l1rSupplyl>.dolrMapping
BYPOTHESIS : 1rFinalCheck.Hypo
IXFERENCE CATEGORY : 1

NAME : Stop_Assignment_lrMappings
Coements : If LRWMENM.targCursor is ecual to -1 then the end of the
table has been reached and there are no more targets to be assigned.

COXDITIONS :
Reset 1rFinalCheck.Hypo
Kame 1rFinalCheck.HBypo 1rFinalCheck.Hypo
> curlrMap.actot O
Rame TAUE curirHap.doissign
HYPOTHESIS : lrMapping.Eypo
INFERENCE CATEGORY : 50

NAME : Stop_Assignment_Loop
Comments : Since lxMapping.Bypo will not be reset, this rule will
alsays terminate the loop. It is only evaluated mhen all possible
assignzents from the ’AC_XX’ object kave been done. If ’curlrMap’ is
partizlly filled it triggers creation of a new assigneent ohbjec

CONDITIONS :

> LRWMEM.actot 3
Name Get_lrtarget.Hypo Get_lrtarget.Hypo
<> LRWMEM. targCursor -1
Name lrMission_size.Hypo 1lxrMission_size.Hypo
Reset Get_1rECM_ac.Hypo
Name Get_1TrECM_ac.Hypo Get_1rECM_ac.Hypo
< LRWMEM. ecmCursor -1
Name Get_1rECM_msnsz.Fypo Get_1rECM_msusz,Hypo
Name lrAssignTarget.Hypo lrAssignTarget.Hypo
Name LRWMENM. actot~LRWMEM.msnsz LRWMEM.actct
Name LRWMEM. ecmtot-LRWMEM. ecmmsnsz LRWMEM. ecmtot
HAYPOTHESIS : 1rMappang.Hypo
ACTIONS :
Reset lrMapping.Hypo
Reset 1lrMission_size.Hypo
Reset 1rACneeded.Hypo
Reset Get _1rECM_msnsz.Hypo
INFERENCE CATEGORY : 100

NAME : Define_Assignment_Loop

Comments : This rule will loop until there are no available planes

from the current ’AC_XX’ object.

CONDITIONS :
Name lrACneeded.Hypo lrACneeded.Hypo
<> LRWMEM. targCursor -1
< LRWMEM.actot-0.5*LRWMEM. acneeded 0
< LRWMI «,actot 4
HYPOTHESIS : 1rMission_size.Hypo
ACTIONS :
Do 0 LRWMEM.mensz
INFERENCE CATEGORY : 150

KAME : Determine_the_mission_size_uvhen_there_are_essentially_no_a:_left

Comments ! This rule sets the mission size to O when there are too

few uc left to use and allow the next type of ac to be used.

CONDITIONS :

Name lrACneeded.Hypo lrACneeded.Hypo
o LRWMEK. targCursor -1
< LRWMEM.actot-0,5+«LRWMEM.acneeded O
>= LRWMEM.actot 4
HYPOTHESIS : 1rMission_size.Hypo
ACTIONS
Do LRWMEM.actot LRWMEM.msnsz
INFERENCE CATEGORY : 175

NAME : Determine_mission_size_when_there_are_minimal_ac

Comments

¢ This rule determines the mission size when there are few

ac of a particular type left.

CONDITIONS :
' Name
>=
HYPOTHESIS :
ACTIONS :
no

lrACneeded.Hypo lrACneeded.Hypo
LRWMEM. actot~LRWMEM.ccneeded 0
1rMission_size.Hypo

LRWMEM.acneeded LRWMEM.msnsz

INFERENCE CATEGORY : 200
NAME : Determine_mission_size_vhen_there_are_ample_ac
Comments : This rule determines the mission size when there are more
ac available.

CONDITIONS :
Name 1lrACneeded.Hypo lrACneeded.Hypo
<> LRWMEM. targCursor -1
>= LRWMEM. actot~0.5%LRWMEM. acneeded 0
HYPOTHESIS : 1lrMission_size.Hypo
ACTIONS :
Do LRWMEM.actot LRWMEM.msnsz
INFERENCE CATEGORY : 125

NAME : Determine mission_size_for_target
Comments ¢ This rule determines the mission size for a target in the
table when the number of available ac is less than the amcunt needed.

CONDITIONS :

Name lrACneeded.Hypo 1lrACneeded.Hypo
= LRWMENM. targCursor -1
<= LRWMEM.actot~LRWMEM.acneeded 0
HYPOTHESIS : 1lrMission_size.Hypo
ACTIONS :
Do LRWMEM.actot LRWMEM.msnsz
INFERENCE CATEGORY : 100

NAME : Determine_mission_size_for_last_target
Comments : This rule determines the size of the mission for the last
target in the list when the number of ac left is < or = the
numbexr of ac needed.

CONDITIONS :
IsNot recicurMap.tgt3 KNOWN
Name REC1WMEM. curTarget recicurMap.tgt3
Name reclcurMap.actot+3 recicurMap.actot
HYPOTHESIS : reclAssignTarget.Hypo
INFERENCE CATEGORY : 80

NAME : Target_Assignment
Commenss : If a third target is being assigned, copy the target value
and update the aircraft total.

CONDITIGONS :
IsNot reclcurMap.tgt4 KNOWN
Name RECIWMEM.curTarget reclcurMap.tgt4
same reclcurMap.actot+3 recicurMap.actot
HYPOTHESIS : reciAssignTarget.Hypo
INFERENCE CATEGORY : 70

NAME : Target_Assignment
Comments : If a fourth target is being assigned, copy the target value
and update the aircraft total.

CONDITIONS :
IsNot recicuxrMap.tgtl KNOWN
Name RECIWMEM. curTarget recicurMap.tgti
Name recicurMap.actoti3 reclcurMap.actot
HYPOTHESIS : reclAssignTarget.Hypo
INFERENCE CATEGORY : 100

NAME : Target_ Assignment
Comments : If tle first target is being assigned, copy the target
value and update the aircraft total.

CONDITIONS :

IsNot recicurMap.tgt2 KNOWN
Name RECIWMEM. curTarget reclcurMap.tgt2
Name recicurMap.actot+3 recicurMap.actot
HYPOTHESIS : reclAssignTarget.Hypo
INFERENCE CATEGORY : 20

NAME : Target_Assignment
Comments : If a second target is being assigned, copy the target
value and update the aircraft total.

CONDITIONS :
IsNot reclcurMap.tgtbs KNOWN
Name RECIWMEM. curTarget recicurMap.tgth
KName recicurMap.actot+3 recicurMap.actot
Name TRUE recicurMap.doAssign
HYPOTHESIS : reclAssignTarget.Hypo
INFERENCE CATEGORY : 60

NAME : Target_Assignment

CONDITIONS :
Is RECIWMEM. targCursor KNOWN
= REC1WMEM. targCursor -1
No <}reciSupply|>.Processed
Name TRUE <|reciSupply|>.doreciMapping
HYPOTHESIS : reciFinalCheck.Hypo
INFERENCE CATEGORY : 1

NAME : Stop_Assignment_reciMappings
Comments : If RECIWMEM.targCursor is equal to —1 then the end of the
’reckn’ database has been reached and there are no more targets to be

assigned.
CONDITIORS :
Reset recliFinalCheck.Hypo
Name reciFinalCheck.Hypo reciFinalCheck.Hypo
> recicurMap.actot 0
Hame TRUE recicurMap.doAssign
HYPOTHESIS : reclMapping.Hypo
INFERENCE CATEGORY : 50

NAME : Stop_Assignment_Loop
Comments : Sin.e reciMapping.Hypo will not be reset, this rule will
always terminate the loop. It is only evaluated when all possible
assignments from the ’AC_XX’ object have been done.

CONDITIONS :
>= RECIWMEM.actot 3
Retrieve "reckn.nxp" @TYPE=NXPDB;
@SLOTS=RECiWMEM, curTarget ; OFIELDS="abid" ; CCURSOR=RECi1WMENM. targCursor;

< REC1WMENM. targCursor -1
Name reciAssignTarget.Hypo reciAssignTarget.Hypo
Name RECIWMEM.actot~3 RECIWMEM.actot
HYPOTHESIS : reciMapping.Hypo
ACTIONS
Reset reciMapping.Hypo
INFERENCE CATEGORY : 100

NAME : Define_Assignment_Loop
Comments : This rule will loop until there are less than three
available planes from the current ’AC_XX’ object. If there are more
than 3, then get the next target and assign 3 planes to it.

CONDITIONS ¢
1sNot rec2curMap.tgt5 KNOWN
Name REC2WMEHM. curTarget rec2curMap.tgts
Name rec2curMap.actot+3 rec2curMap.actot
Name TRUE rec2curMap.doAssign
HYPOTHESIS : rec2AssignTarget.Hypo
INFERENCE CATEGORY : 60

NAME : Target_Assignment
Comments : If the fifth target is being assigned, copy the target
value, update the aircraft count and trigger creation of a
new assignment object.

CONDITIONS :

IsNot rec2curMap.tgt2 KNOWN
Name REC2WMEM. curTarget rec2curMap.tgt2
Name rec2curMap.actot+3 rec2curMap.actot
HYPOTHESIS : rec2AssignTarget.Hypo
INFERENCE CATEGORY : 90

NAME : Target_Assignment
Comments : If a second target is being assigned, copy the target value
and update the aircraft total.

7!

<t

CORDITIONS :

IsNot rec2curMap.tgti KNOWN

Name REC2WMEM. curTarget rec2curMap.tgtil

Name rec2curMap.actot+3 rec2curMap.actot
HYPOTHESIS : rec2AssignTargct.Hypo

IRFERENCE CATEGORY : 100

NAME : Target_Assignment
Comments : If the first target is being assigned, copy the target
value and update the aircraft total.

CONDITIONS :
IsNot rec2curMap.tgt4 KNOWN
Name REC2WMEM. curTarget rec2curMap.tgt4
Name rec2curMap.actot+3 rec2curMap.actot
HYPOTHESIS : rec2AssignTarget.Hypo
INFERENCE CATEGORY : 70

NAME : Target_Assignment
Comments : If a fourth target is being assigned, copy the target
value and update the aircraft total.

CONDITIONS :
IsNot rec2curMap.tgt3 KNOWN
Name REC2WMENM. curTarget rec2curMap.tgt3
Name rec2curMap.actot+3 rec2curMap.actot
HYPOTHESIS : rec2AssignTarget.Hypo
INFERENCE CATEGORY : 80

NAME @ Target_Assignment
Comments : If a third target is being assigned, copy the target
value aad update the aircraft total.

CONDITIONS :

Is REC2WMEN. targCursor KNOWN

= REC2WMEM. targCursor -1

No <lrec2Supply|>.Processed

Name TRUE <|rec2Supply|>.dorec2Mapping
HYPOTHESIS : rec2FinalCheck. Hypo

INFERENCE CATEGORY : 1
NAME : Stop_Assignment_rec2Mappings
Comments : If REC2WMEM.targCursor is equal to ~1 then the end of the
’reckn’ database has been reached and there are no more targets to
be assigned. Thus we should stop evaluation of any 0S metaslots
attached to objects under ’rec2Supply’ that have not yet been
triggered.

6

CONDITIONS :
Retrieve "rec2ac.nxp" QTYPE=NXPDB;QFILL=ADD;
QNAME="’AC_’!Indx!";QCREATE=|rec2Supply|; @PROPS=actyp,actot;
OFIELDS="actyp","qnty";

Name <|rec23upply|>.dorec2Mapping <|rec2Supply|>.dorec2Mapping
> LENGTH(<|rec2Assignments|>) 0

HYPOTHESIS : rec2GetPackage.Hypo

ACTYORS :
Write "rec2ms.nxp" QTYPE=NXPDB;dFILL=NEW;

QNAME=""’Assign_’!Indx(8)!";QPROPS=actyp,actot,tgtl,tgt2,tgt3, tgt4,tgts;
QFIELDS="actyp(10)","qnty(8)", "tgti(7)", "tgt2(7)", "tgt3(7)",
"tgt4(7)","tgt5(7)"; 0ATOMS=<]rec2Assignments|>;
Write "rec3ac.nxp" CTYPE=NXPDB;QFILL=-NEW;QNAME="’AC_’!Indx(8)!";
QPROPS=actyp,actot; @FIELDS="actyp(10)","qnty(8)"; QATOMS=<|rec2Supply!>;
INFERENCZ CATEGORY : 1
NAME : Top_Level Package_Control
Comments : This rule represents the top level control structure: Build
the table of planes to be assigned. Assign planes (map them on) to
available targets. If any assignments have been made, update the
database tables.

CONDITIONS :
Reset rec2FinalCheck.Hypo
Name rec2FinalCheck.Hypo rec2FinalCheck.Hypo
> rec2curMap.actot O
Name TRUE rec2curMap.doAssign
HYPOTHESIS : rec2Mapping.Hypo
INFERENCE CATEGORY : 50

NAME : Stop_Assignment_Loop
Comments : Since rec2Mappiing.Hypo will not be reset, this rule will
always terminate the loop. It is only evaluated when all possible
assignments from the ’AC_XX’ object have been done. If ’rec2curMap’
is partially filled it triggers creation of a new assignment objec

ZONGT. NS
>3 REC2WMEM.actot 6
Hasrieve "recunkn.nxp" QTYPE=NXPDB;QSLOTS=REC2WMEM. curTarget;
@FIELDS="abid" ; QCURSOR=REC2WMEM. taxrgCursor;

< REC2WMEM. targCursor -1
Name rec2AssignTarget .Hypo rec2AssignTarget.Hypo
Hdzme REC2WMEM.actot—-6 REC2WMEM.actot
dYPOTHASIS : rec2Mapping.Hypo
ACTICES
Reset rec2Mapping.Hypo

INFERENCE CATEGORY : 100
NAME . Define_Assignment_Loop
Comments : This rule will loop until there are less than three
available planes from the current ’AC_XX’ object. If there are more
than 6, then get the next target and assign 6 planes to it.

CONDITIC~S :

IsNot currec3Map.tgt5 KNOWN

Name REC3WMEM. curTarget currec3Map.tgts

Name currec3Map.actot+3 currec3Map.actot

Name TRUE currec3Map.doAssign
HYPOTHESIS : rec3AssignTarget.Hypo

IBFERENCE CATEGORY : 60
NAME : Target_Assignment
Comments : If the fifth target is being assigned, copy the target
value, update the aircraft count and trigger creation of a
new assignment object.

CONDITIONS :
IsNot currec3Map.tgt2 KNOWN
Name REC3WMEM.curTarget currec3Map.tgt2
Name currec3Map.actot+3 currec3Map.actot
HYPOTHESIS : rec3AssignTarget.Hypo
INFERENCE CATEGORY : 90

NAME : Target_Assignment
Comments : If a second target is being assigned, copy the target value
and update the aircraft total.

CONDITIONS :

IsKot currec3Map.tgti KNOWN
Name REC3WMEM. curTarget currec3Map.tgtl
Name currec3Map.actot+3 currec3Map.actot
HYPOTHESIS : rec3AssignTarget.Hypo
INFERENCE CATEGORY : 100

KAME : Target_Assignment
Comments : If the first target is being assigned, copy the target
value and update the aircraft total.

CORDITIONS :

IsKot currec3Map.tgt4 KNOWN

Name REC3WHEM. curTarget currec3Map.tgt4

Name currec3Map.actot+3 currec3Map.actot
HYPOTHESIS : rec3AssignTarget.Hypo

INFERENCE CATEGORY : 70
NAME : Target_Assignment
Comments : If a fourth target is being assigned, copy the target
value and update the aircraft total.

CONDITIONS :
IsNot currec3Map.tgt3 KNOWN
Name REC3WMEM. curTarget currec3Map.tgt3
Name currec3Map.actot+3 currec3Map.actot

HYPOTHESIS : rec3AssignTarget.Hypo
INFERENCE CATEGORY : 80

NAME : Target_Assignment
Comments : If a third target is being assigned, copy the target
value and update the aircraft total.

CONDITIONS
Is REC3WMEM. targCursoxr KNOWN
= REC3WMEM. targCursor -1
No <lrec3Supply|>.Processed
Kame TRUE <|rec3Supplyl|>.dorec3Mapping
HBYPOTHESIS : rec3FinalCheck. Hypo
INFEREKCE CATEGORY : 1

BAME : Stop_Assignment_rec3Mappings
Comments : If REC3WMEM.targCursor is equal to -1 then the end of
the ’recsusp’ database has been reached and there are no more targets
to be assigned. Thus we should stop evaluation of ¢y 0S metaslots
attached to objects under ’rec3Supply’ that have not yet
been triggered.

CORDITIONS :

Reset rec3FinalCheck.Hypo
Name rec3FinalCheck.Hypo rec3FinalCheck.Hypo
> currec3Map.actot 0
Name TRUE currec3Map.doAssign
HYPOTHESIS : rec3Mapping.Hypo
INFERENCE CATEGORY : 50

NAME : Stop_Assignment_Loop
Comments : Since rec3Mapping.Hypo will not be reset, this rule will
always terminate the loop. It is only evaluated when all possible
assignments from the ’AC_XX’ object have been done. If ’currec3Map’
is partially filled it triggers creation of a new assignment objec

CONDITIORS :
>= REC3WMEM.actot 9
Retrieve "recsusp.nxp" Q@TYPE=NXPDB;Q@SLGTS=REC3WMEM.curTarget;
QFIELDS="abid" ; QCURSOR=REC3WMEM. targCursor;

<> REC3WMENM.targCursor -1
Hame rec3AssignTarget.Hypo rec3AssignTarget.Hypo
Name REC3WMEM.actot—9 REC3WMEM.actot
HYPOTHESIS : rec3Mapping. Hypo
ACTIONS :
Reset rec3Mapping.Hypo

INFERENCE CATEGORY : 100
HAME : Define_Assignment_Loop
Comments : This rule will loop until there are less than nine
available planes from the current ’AC_XX’ object. If there
are more than 9, then get the next targe: and assign 9 planes to it.

R0

Appendix D. Objects

D.1 Introduction

The objects used in the rule-base are presented in this appendix. Object names
indicate the task they are associated with. Objects containing “1r” or “lroca’are
used in the long range offensive counter air task. Objects containing “dsup” are
used in the defense suppression task. Those containing “rec1,” “rec2,” “rec3,”

“reccel,” “recce2,” or “recce3,” pertain to the recconaisance task.

D.2 The Objects

KAME : ataf
PROPERTIES :
Hypo = (B) Unknown
Used In :
Hypothesis of Rule 72

NAME : curlrMap
PROPERTIES :
actc = (I) Unknown
NAME : curlrMap.actot
INFERENCE CATEGORY : 1
INEERITANCE CATEGORY : 1
INHERITANCE STRATEGY : Class first
INHERITANCE STRATEGY : Breadth first
ORDER OF SOURCES :
RunTimeValu O

IF CHANGE DO:

Used In :
LHS or
LHS or
LHS or
LHS or
LHS or
LHS or
LHS or
LHS or
Member

Used In :
LHS or
LHS or
LHS or
LHES or
Member
Member
Member
Member
Member

RHS in Rule 80 (Occurrences: 1)

RHES in Rule Retrieve_ecm_ac_from_tabie(#78) (Occurrences: 1)
RHS in Rule Target_Assignment(#98) (Occurrences: 2)

RHS in Rule Target_Assignment(#97) (Occurrences: 2)

RES in Rule Target_Assignment(#96) (Occurrences: 2)

RES in Rule Target_ Assignment(#95) (Occurrences: 2)

RHS in Rule T>wget_Assignment(#94) (Occurrences: 2)

RHS in Rule Stop_Assignment_Loop(#111) (Occurrences: 1)

It Change Actions of curlrMap.doAssign (Occurrences: 2)

RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 3)
RES in Rule Top_Level_Package Control(#88) (Occurrences: 3)
RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 3)
RHS in Rule Top_Level_ Package Control(#132) (Occurrences: 3)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of reclcurMap.doAssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Order of Sources of rec3Supply.dorec3Mapping

(Occurrences: 2)

Member

Order of Sources of rec2Supply.dorec2Mapping

(Occurrences: 2)

Member

Order of Sources of reciSupply.doreciMapping

(Dccurrences: 2)

Member

Order of Sourcc= of lrSupply.dolrMapping (Occurrences: 2)

actyp = (S) Unknown

Used In :
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member Order of Sources of lrSupply.dolrMapping (Occurrences: 1)
Used In :
LES or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 3)
LHES or RES in Rule Top_Level_Package_Control(#83) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 3)
LES or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Memoer If Change Action$ of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Member Order of Sources of rec3Supply.dorec3Mapping
(Occurrences: 1)
Member Order of Sources of rec2Supply.dorec2Mapping
(Occurrences: 1) .
Hember Order of Sourcesfof reciSupply.doreci¥apping
(Occurrences: 1)
Member Order of Sources of 1lrSupply.dolrMapping (Occurrences: 1)

doAssign = (B) Unknown

NAME :

curlrMap.doAssign

INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1

SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INBERITANCE STRATEGY : Default
INHERITANCE STRATEGY : <Class first

INHERITANCE STRATEGY : Breadth first

Comments : Create a new assignment object, copy values from ’curlrMap’
into it, and reset the slots of ’curlrMap’, it is not necessary to
reset ’curlrMap.actype’

ORDER OF SOURCES :

IF CHAKGE DO :

Reset curlrMap.doAssign
Do LRVMEM. targetIndex+1 LRWMEHA.zrzetIndex
CreateCbjec ’Assign_’\LRWMEM.targetIndex: !i:-Assignments|
Do curlrMap.actyp ’Assign_’\LR«#K:H..argetIndex\.actyp
Do curlrMap.actot ’Assign_’\LR¥M:¥.zargetIndex\.actot
Do curlrMap.tgtl ’Assign_’\LRWMEH.targetindex\.tgtl
Do curlrMap.soxtl ’Assign_’\LRVEEY targetIndex\. sorti
Do curlrMap.tgt2 ’Assign_’\LRWMEY. targetIndex\.tgt2
Do curlrMap.sort2 ’Assign_?\LRUNEN.targetIndex\ sort2
Do curlrMap.tgt3 ’Assign_’\LRWMEN. targetIndex\.tgt3
Do curlrMap.sort3 ’Assign_’ \LRWMEK.targetIndex\.sort3
Do curlrMap.tgté ’Assign_’\LRVMEN.targetIndex\ tgt4
Do curlrMap.sort4 ’Assign_?\LRWMEM.targetIndex\.sort4
Do curlrMap.tgt5 ’Assign_’\LRUNEN.targetindex\.tgtS
Do curlrMap.sort5 *Assign_’\LRWMEM.targetIndex\.sort$
Do curlrMap.ecatyp ’Assign_’\LRWEEN.targetindex\.ecmtyp
Do curlrMap.ecmtot ’Assign_’\LRWNEM.targetIndex\.ecatot
Reset curlrMap.ecatot
Reset curlrMap.actot
Reset curlrMap.-tgti
Reset curlrMap.tgt2
Reset curlrMap.tgt3
Reset curlrMap.tgté
Reset curlrMap.tgts
Resget curlrMap.sorti
Reset curlrMap.sort2
Reset curlxMap.sort3
Reset curlrMap.sort4
Reset curlrMap.sorts

Used In :

LES or RHS in Rule Retrieve_ecz_ac_from_ table(#78) (Occurrences: 1)
LHES or RES in Rule Target_Assignment(#98) (Occurrences: 1)

LES or RES in Rule Stop_issignment_Loop(®#111) (Occurrences: i)
Mezber If Change Actions of curir¥ap.dcAcsign (Occurrences: 1)

N

ecmtot = (I) Unknown
NAME : curlrMap.ecmtot

INFERENCE CATEGORY : i
INHERITANCE CATEGORY : 1

SLGT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INHERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first

INHERITANCE STRATEGY : Breadth first

ORDER OF SOURCES :
RunTimeValu 0
IF CHANGE DO :
Used In :
LHS or RHS in Rule Target_Assignment(#88) (Occurrences: 2)
LHS or RHS in Rule Target_Assignment(#97) (Occurrences: 2)
LHES or RHS in Rule Target_Assignment(#96) (Occurrences: 2)
LHS or RHS in Rule Target_Assignment(#95) (Occurrences: 2)
LHS or RHS in Rule Target_Assignment(#94) (Occurrences: 2)
Member If Change Actions of curlrMap.doAssign (Occurrences: 2)
Used In *
LHS or RHS in Rule 80 (Occurrences: 1)
LHS or RHS in Rule Retrieve_ecm_ac_from_table(#78) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#87) (Dccurrences: 3)
LHS or RHS in Rule 109 (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Dccurrences: 1)
ecmtyp = (S) Unknown
Used In :
LHS or RHS in Rule 80 (Occurrences: 1)
LHS or RHS in Rule Start_lrECM_table_use(#77) (Dccurrences: 1)
LHS or RHS in Rule Retrieve_ecm_ac_from_table(#78) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Used In :

LHS or RHS in Rule 80 (Occurrences: 1)

LHS or RHS in Rule Retrieve_ecm_ac_from_table(#78) (Occurrences: 1)
LHS or RHS in Rule Top_Level Package_Control(#87) (Occurrences: 3)
LHS or RHS in Rule 109 (Occurrences: 1)

Member If Change Actions of curlrMap.doAssign (Occurrences: 1)

sorti = (I) Unknown
NAME : curlrMap.sorti
INFERENCE CATEGORY :

INBERITANCE CATEGORY :
SLOT INHERITABILITY :
VALUE INBERITABILITY :
INHERITANCE STRATEGY :
INBERITANCE STRATEGY :
INHERITANCE STRATEGY :

ORDER OF SOURCES :

RunTimeValu 0
IF CHANGE DO :
Used In :

i

i

Default
Default
Default

Class first
Breadth first

LHS or RHS in Rule Target_Assignment(#97) (Dccurrences: 1)
LHS or RHS in Rule Target_1_assignment(#107) (Occurrences: 1)
LHS or RHS in Rule Null_target_1(#108) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 2)

Used In :

LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
Member If Change Actions of curlxMap.doAssign (Occurrences: 1)

soxrt2 = (I) Unknown
KAME : curlrMap.sort2
INFERENCE CATEGORY :

INHERITANCE CATEGORY :
SLOT INHERITABILITY -

VALUE IKHERITABILITY :
INHERITANCE STRATEGY :
INHERITANCE STRATEGY :
INBERITANCE STRATEGY :

ORDER OF SOURCES :

RunTimeValu O
IF CHANGE DO :
Used In :

1

i

Default
Default
Default

Class first
Breadth first

LHS or RHS in Rule Target_Assignment(#94) (Occurrences: 1)

LHS or RHS in Rule Target_2_assignment(#106) (Occurrences: 1)
LHS or RHS in Rule Target_2_assignment(#105) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 2)

Used In :

LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)

36

sort3 = (I) Unknown
NAME : curlrMap.sort3
INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1
SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INBERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first
INHERITANCE STRATEGY : Breadth first
ORDER OF SOURCES :
RunTimeValu 0
IF CHANGE DO :
Used In :
LHS or RHS in Rule Target_Assignment(#96) (Occurrences: 1)
LES or RHS in Rule Target_3_assignment(#104) (Occurrences: 1)
LHS or RHS in Rvle Target_3_assignment(#103) (Occurrences: 1)
Member If Change Actions of curlzMap.doAssign (Occurrences: 2)
Used In :
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
sort4 = (I) Unknown
HAME @ curlrMap.sort4
INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1
SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INHERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first
INHERITANCE STRATEGY : Breadth first
ORDER OF SOURCES :
RunTimeValu O
IF CHANGE DO :
Used In :
LHS or RHS in Rule Target_Assignment(#95) (Occurrences: 1)
LHS or RHS in Rule Target_4_assignment(#102) (Occurrences: 1)
LHS or RHS in Rule Target_4_assignment(#101) (Occurrences: 1)
Hember If Change Actions of curlrMap.doAssign (Occurrences: 2)
Used In :

LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Dccurrences: 1)

sorts = (I) Unknown

NAME :

curlrMap.sortb

INFERENCE CATEGORY : i

INHERITANCE CATEGORY : 1

SLOT INHERITABILITY : Default

VALUE INHERITABILITY : Default

INHERITANCE STRATEGY : Default

INHERITANCE STRATEGY : Class first

INHERITANCE STRATEGY : Breadth firxst

ORDER OF SOURCES :
RunTimeValu O

IF CHANGE DO :

Used In :
LHS or RHS in Rule Target_Assignment(#98) (Occurrences: 1)
LHS or RHS in Rule Target_5_assignment(#100) (Occurrences: 1)
LHS or RHS in Rule Target.5_assignment(#99) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 2)

Used In :
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occuxrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)

status = (F) Unknown
tgtl = (I) Unknown

NAME :

curlrMap.tgti
INFEREKCE CATEGORY : i
INHERITANCE CATEGORY : 1
SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Defaunlt
INHERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first
INHERITANCE STRATEGY : Breadth first
ORDER OF SOURCES :

RunTimeValu 0

NAME :

IF CHANGE DO :
Used In -

LHS
LES
LES

oY
or
oY

Member
Used In :

LES
LHS
LES
LHS

ox
orx
or
or

Membexr
Member
Member
Member
tgt2 = (I) Unkncwn
curlrMap.tgt2
INFERENCE CATEGORY : 1
INBERITANCE CATEGORY : 1
SLOT INHERITABILITY : Default
VALUE INHERITABIL(TY : Default
INHERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first
INBERITANCE STRATEGY : Breadth first
ORDER OF SOURCES

RunTimeValu O
IF CHAKGE DO :
Used In :

LHS
IRy
LLS

or
or
oY

Member
Used In :

LHS
LES
LHS
LES

cr
or
or
or

Yember
Member
Megber
Member

RES in Rule Target_Assignment(#97) (Occurrences: 2

RES in Rule Target_1_assignment(#107) (Occurrences: 2,
RHS in Rule Null_target_1(#108) {(Occurrences: 1)

If Change Actions of curlrMap.doAssign (Occurrences: Z)

RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
RHES in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
RHS in Rule Top_Level Package_Control(#83) (Occurrences: 1)
RES in Rule Top_Level Package Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of reclcurMap.doAssign (Occurrences: 1)

If Change A-tions of rec2curMap.doAssigr (N-currences: Z)

RHS in Rule Target_Assignment(#94) (Occurrences: 2)

RES in Rule Target_2_assignment(#106) (Occurrences: 2)
RHS in Rule Target_2_assignment(#105) (Occurrences: 2)
If Change Actions of curlrMap.doAssign (Occurrences: 2)

RES in Rule Top_Level_Package_Control(#87) (Occurrences: 1)

RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)

RHES in Rule Top_Level_Package_Control(#89) (Occurrences: 1)

RHS in Rule Top._Level_Package_Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

+f Change i:tions of currec3Map.doAssign (Occurrences: 3)

It Clange Actions of recicurMap.doAssign (Occurrences: 1)

If Chaage Actions of rec2curMap.deAssign (Occurrences: 2)

tgt3 = (I) Unknown

curlrMap.tgt3

INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1

SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INHERITANCE STRATEGY : Default
IXHERITANCE STRATEGY : Class first

NAME :

INEERITANCE STRATEGY : Breadth first

ORDER OF SOURCES :
RunTimeValu 0O
IF CHANGE DO :

Used In :
LHS or
LES or
LHS or
Member

Used In :
LHES or
LHS or
LHS or
LHS or
Member
Member
Member
Member

RES in Rule Target_Assignment{#96) (Occurrences: 2)

RHES in Rule Target_3_assignment(#104) (Occurrences: 2)
RES in Rule Target_3_assignment(#103) (Occurrences: 2)
If Change Actions of curlrMap.doAssign (Occurrences: 2)

RES in Rule Top_Level_ Package_Control(#87) (Occurrences: 1)
RHES in Rule Top_Level_Package Control(#88) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
RES in Rule Top_Level_Package Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Hap.doAssign (Dccurrences: 3)

If Change Actions of recicurMap.doAssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)

tgt4 = (I) Unknown

curlrMap.tgté

INFERENZE CATEGORY : 1
IKEERITANCE CATEGORY : 1

SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
IBHERITANCE STRATEGY : Default
IKEERITANCE STRATEGY : Class first

NAKE :

INHERITANCE STRATEGY : Breadth first

ORDER OF SOURCES :
RunTimeValu O

a0

IF CHANGE DO :

Used In :
LHS or RHS in Rule Target_Assignment(#95) (Occurrences: 2)
LHES or RHS in Rule Target_4_assignment(#102) (Occurrences: 2)
LES or RES in Rule Target_4_assignment(#101) (Occurrences: 2)
Meavexr If Change Actions of curlrMap.doAssign (Occurrences: 2)

Used In :
LES or RES in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
LHES or RES in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
LHS oxr RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of reclcurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)

tgts = (I) Unknown

NAME :

curlrMap.tgt5s

INFERENCE CATEGORY : 1

INBERITANCE CATEGORY : 1

SLOT INHERITABILITY : Default

VALUE INHERITABILITY : Default

INHERITANCE STRATEGY : Default

INHERITANCE STRATEGY Class first

INHERITANCE STRATEGY : Breadth first

ORDER OF SOURCES : ;
RunTimeValu 0

IF CHANGE DO :

Used In :
LHS or RHS in Rule Target_Assignment(#98) (Occurrences: 2)
LES or RHS in Rule Target_5_assignment(#100) (Occurrences: 2)
LHS or RHS in Rule Target_5_assignment(#99) (Occurrences: 2)
Member If Change Actions of curlrMap.doAssign (Jccurxences: 2)

Used In :
LHS or RHS in Rule Top_Level_Package_Control(#87) {Occurrences: 1)
LHS or RHS in Rule Top_Level_ Package Control(#88) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
LES or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change A.tions of currec3Map.doAssign (Occurrences: 3)
Eember If Change Actionr of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of iec2curMap.doAssign (Occurrences: 2)

NAME :

currec3fap

PROPERTIES :
actot = (I) Unknouwn

¥AME :

currec3Map.

actot

INFERENCE CATEGORY : i
INHERITANCE CATEGORY : 1

SLOT INHERITABILITY : Default
VALUE INBEKITABILITY : Default
INHERITANCE STRATEGY : Default
INRERITANCE STRATEGY : Class first

INBERITANCE STRATEGY : Breadth first

ORDER OF SQURCES :
RunTimeValu 0
IF CBANGE DO :

Used In :
LBS or
LES or
LES or
LHS or
LHES or
LES or
Hember

Used In :
LHS or
LHES or
LHS or
LHS or
“ember
Membex
Member
Member
Hember

RES in Rule Target_Assignment(#139) (Occurrences: 2)

RES in Role Target_Assignment{#i38) (Occurrences: 2)

AHS in Rule Target_kssignment(#137) (Occurrences: 2)

RES in Rule Target_Assignment(#136) (Occurrences: 2)

RES in Rule Target_Assignment(#135) (Occurrences: 2)

RHS in Rule Stop_Assignment_Loop(#141) (Occurrences: 1)
If Change Actions of currec3Map.dokssign (Occurrences: 4)

RES in Rule Top_Level_Package_ Control(#87) (Occurrences: 2
RES in Rule Top_Level_Package_Control(#88) (Occurrences: 3)
RES in Rule Top_Level_Package_Control(#89) (Occurrences: 33
RES in Rule Top_Level_Package_Control(#132) (Occurrences: 3}
If Change Act ons of curlrMap.doAssign (Occurrences: 1)

If Change Act.ons of currec3Map.doAssign (Occurrences: 3

If Change Actions of reclcurMap.doAssign (Occurrences: 1)

if Change :ctions of rac2curMap.doAssign (Occurrences: 2)
Order of Scurces of rec3Supply.dorec3Mapping

(Occurrences: 2)

Hember

Order of Sotrces of rec2Supply.dorec2Mapping

(Occurrences: 2)

Member

Order of Souvces of reciSupply.doreciMapping

(Occurrences: 2)

Member

Order of Souzces o 1rSupply.colrMapping (Occurrences: 2)

actyp = (5) Unknown

Used In :

Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member Order of Sources of rec3Supply.dorec3Mapping
(Occurrences: 1)

Used In :

LHS or RHS in Bule Top_Level_Package_Control(#87) (Occurrences: 3)
LHS or RES in Rule Top_Level_Package_Control(#88) (Occurrences: 3)
LHS or RES in Rule Top_Level_Package_Control(#89) (Occurrences: 3)
LAS or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Hember If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Member Order of Sounrces of rec3Supply.dorec3Mapping

(Occurrences: 1)
Member Order of Sources of rec2Supply.dorec2Mapping

(Occurrences: 1)
Heaber Order of Sources of reciSupply.doreciMapping

{Occurrences: i}
Mexber Order of Sources of lrSupply.dolrMapping (Occurrences: 1)

doAssign = (B) Unknown

NAME

currec3Map.dokssign

INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1

SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INBERITANCE STRATEGY : Defaunlt
IEHERITANCE STRATEGY : Class first

IL_ "RITANMCE STRATEGY : Breadth first

Comments : Create a new assignment object, copy values from
’currec3Map’ into it, and reset the slots of ‘currec3Map’, it is
not necessary to reset ’currec3Map.actype’

ORDER OF SOURCES :

a3

IF CHAKGE DO :

Reset
Do

Do
Do
Do
Do
Do
Do
Do
Do

Do
Do
Lo
Do
Do
Do
Do
Do

Do
Do
Do
Do
Do
Do
Do
Reset
Reset
Reset
Reset
Reset
Reset
Used In :

currec3Map.doAssirn
REC2WKEN. targetIndex+1 REC3WMEK. targetIndex
CreateQbjec ’Assign_’\REC3WMEM.targetIndex\ |rec3Assignmentsl|

currec3Map.actyp
currec3Map.actot
currec3Map.tgti
currec3Map.tgt2
currec3Map.tgt3
currec3Map.tgt4
currec3Map.tgts

’Assign_’ \REC3VWMEN. targetIndex\.actyp
*Assign_’\REC3WMEM. targetIndex_actot
*Assign_’\REC3WMEN.tarzetIndex\.tgtl
*Assign_’\REC3WMEN. targetIndex\.tgt2
'Assign_’\REC3WMEM.targetIndex\ tgt3
’Assign_’\REC3VMEN. targetIndex\.tgt4
’Assign_’ \REC3WMENM. targetIndex\.tgt5

REC3WMEN.targetIndex+1 REC3WMENM. targetIndex
CreateCbjec ’Assign_’\REC3WMEM.targetIndex\ Irec3Assignments|

currec3Map.actyp
currec3Map.actot
currec3Map.tgtl
currec3Map.tgt2
currec3Map.tgt3
currec3Map.tgté
currec3Map. tgts

'Assign_’\REC3WMEM.targetIndex\ actyp
'Assign_’ \REC3VWMENM. targetIndex\.actot
’Assign_’\REC3WMENM. targetIndex\.tgtl
’Assign_’\REC3WMEN.targetIndex\.tgt2
'Assign_?\REC3UMEM. targetIndex\.tgt3
’Assign_’\REC3WHEN.targetIndex\ tgt4
*Assign_’\RECIUMEN. targetIndex\.tgt5

REC3WNEN. targetIndex+1 REC3WMENM.targetIndex
CreateObjec ’Assiga_’\REC3WMEM.targetindex\ Irec3Assignmentsi|

currzc3fap.actyp
currec3Nap.actot
currec3Map.tgtl
currec3Map.tgt2
currec3Map.tgt3
currec3Map.tgté
currec3Kap.tgts

currec3Map.actot

currec3Map.tgtil
currec3Map.tgt2
currec3Map.tgt3
currec3Map.tgtd
currec3ap.tgts

*Assign_'\REC3WMEN. targetIndex\.actyp
gn -4
’Assign_’\REC3VWMEN.targetIndex\.actot
’Assign_’\REC3WKEN. targetIndex\.tgtl
’Assign_’\REC3VMEN.targetIndex\.tgt2
'Assign_’\REC3WMEN. targetIndex\.tgt3
’Assign._’\REC3WMEN. targetIndex\. tgtd
’Assign_’\REC3VNEM. targetIndex\.tgt5

LHS or RHS in Rule Target_ Assignment(#129) (Occurrences: 1)
LHS or RHS in Rule Stop_Assignment_Loop(#141) (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 1)

tgtl = (I} Unknown
NAME : currec3Map.tgtl
INFERENCE CATEGORY :
IBRERITANCE CATEGORY
SLOT INHERITABILITY :
VALUE INHERITABILITY
IBHERITANCE STRATEGY
IRHERITANCE STRATEGY

INBERITANCE STRATEGY

ORDER OF SOURCES :

RunTineValu 0
IF CHAFGF LO :
Used T :

Used In :

Kenber If Change
Mezber If Change
Member If Change
tgtz = (I) Unknown
NAME : currec3Xap.tgt2
INFERERCE CATEGORY :

SLOT INHERITABILITY :

VALUE INHERITABILITY
IZEERITARCE STRATEGY

IXBERITANCE STRATEGY

ORDER OF SOURCES :
RunTizgeValu ¢

BT ERT]

1

1

Default
Default
Default
Class first

Breadth first

LES or RHS in Rule Target_Assignment(#137} (Occurrences: 2)
Member If Change Actions of currec3Map.doAssign (Occurrences: 4)

LHS or BRHS in Rule Top_Level_Package.Control(#87) (Occurrences: 1)
LES or RES in Rule Top_Level_Package_Control(%88) (Bccurrences: 1)
LHS or RES in Rule Top_Level Package Control(#89) (Occurrences: 1)
LES or RES in Rule Top_Level_Package_Control{#i32) (Occurrences: 1)
Mesber If Change kctions of curlrMap.dohssign (Uccurrences: 1)

Actions of currec3Map.doAssign (Cccurrences: 3)
Actions of reclcurMap.doissign (Occurrences: 1)
Actions of rec2curMap.dohssign (Gccurrences: 2)

INBERITANCE CATEGORY :

IFEERITAXCE STRATEGY :

1

1

Default
Default
Default
Class first

Breadth first

BAME

IF CHiLXGE DO :

Used In :

LBS or R.S in Rule Target_ Assignment(#138) (Occurrerces: 2j
Member If Change Actioms of currec3Map.dokssign (Occuxrences: 4)

Used In :

LES or RES in Rule Top_Level_Package_Control(#87)
LES or RES iz Rule Top_Lev:l_Package Control(#88)
LES or RAS in Rule Top_Level_Package Control(#39)
LES or RAS in Rule Too_Level_Package_ Control(#132) (Occurrences:

Member Jf Change Actions of curlrMap.doAssign {Occurrences: 1)

‘Occurrances: 1)
(Cccarrences: 1)
(Bccurrences: 1)

Member If Change Actions of currec3Map.dokssigr (Occurrences: 3)
Mesmber If Change Actions of recicarMap.dodssign (Gccurrences: 1)
Nember If Change Actions of recZeurMap.dodssign (Cccurrences: 2)
tg:3 = (I) Unknoun

currec3Bap.

tge3

INFEREXCE CATEGORY : 1
INBEERITANCE CATEGGRY : 1
SLOT INEERITABILITY : Defazlt

VALUE INEERITABILITY
INEERITAKCE STRATEGY
IERERITANCE STRATEGY

INEERITAXCE STRATEGY

Defauit
Defauit

Breadth

QRDER OF SDURCES
HunTimeValu ¢
IF CEASGE DU :

Used In :
LES or
Yember

Used In -
LES cor
LHES or
LES or
LES or
Xendber
Nesber
¥egher
¥ezber

Class first

first

RES in Rule Target_ issigoment(#135) {Jccurrences: 2)
If Chonge ictions of currec3Map dokssign (Occurresces: &)

BES in Enle Top_Level Pa &_Control(#87)
BEXS in Rule Top_Level_Package Controli{#88)
RES in Rcle Top_Level Package Control{#g3)
RES in Rule Top_Level_Package Control{#132) (Gccurrences:

If Change Actions of
It Charnge ictionsz of
it Change hctions of
If Change Actions of

curir¥zp.dohssign (Occurrences: 1)

(Ge
{Gc

CRITE&RCesS:
Carrences.

{Cccurrences:

carrec3Kap.deAssign (Gccurrences:

recicurfap. dodssign
rec2curMap. doedssigma

a6

7
%
i

Geccurrences:

{Sccurrences:

3

1
-

2

LS A L

1)

1)
)
i)

1}

Used In :
LHS or
Member

Used In :
LHS or
LHS or
LHS or
LHS or
Member
Member
Member
Member

tgt4 = (I) Unknown
NAME : currec3Map.
INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1
SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INHERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first

tgte

INHERITANCE STRATEGY : Breadth first

ORDER OF SOURCES :
RunTimeValu 0
IF CHANGE DO :

RES in Rule Target_Assignment(#136) (Occurrences: 2)
If Change Actions of currec3Map.doAssign (Occurrences: 4)

RES in Rule Top_Level_Package_Control(#87) (Occurrences: 1)

RHS in Rule Top_Level Package_Control(#88) (Dccurrences: 1)

RHS in Rule Top_LeveZ_Package.Control(#89) (Occurrences: 1)

RHS in Rule Top_Lev1_Package_Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.doAssign (Occarrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of recicurMap.doAssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)

tgts = (I) Unknown
NAME : currec3Map.
INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1
SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INHERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first

tgth

INHERITANCE STRATEGY : Breadth first

ORDER OF SOURCES :
RunTimeValu O

IF CHANGE DO :

Used In :
LHS or
Member

Used In :
LHS or
LHS or
LHS or
LHS or
Member
Member
Member
Menber

NAME : dspglobal
PROPERTIES :

for

gqnty = (I) 0

RHS in Rule Target_Assignment(#139) (Occurrences: 2)
If Change Actions of currec3Map.doAssign (Occurrences: 4)

RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
RES in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Ac%ions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of recicurMap.doAssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)

dspglobal.qgnty

INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1

SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INHERITANCE STRATEGY : Defavrlt
INHERITANCE STRATEGY : Class first

INHERITANCE STRATEGY : Breadth first

ORDER OF SOURCES :

InitValue O IF CHANGE DO :
Used In :
LAS or RHS in Rule select_dsupac_2(#74) (Occurrences: 4)

LHS or
LHS or
Member
Used In :
LHS or
LHS or
LHS or
LHS or
Member

RHS in Rule select_dsupac_1(#75) (Occurrences: 4)
RHS in Rule select_dsupac_O(#76) (Occurrences: 1)
Order of Sources of dsupac.addprop (Dccurrences: 2)

RHS in Rule Top_level_dsup(#73) (Occurrences: 3)
RHS in Rule select_dsupac_2(#74) (Occurrences: 2)
RHS in Rule select_dsupac_1(#75) (Occurrences: 2)
RHES in Rule select_dsupac_0(#76) (Occurrences: 1)
Order of Sources of dsupac.addprop (Occurrences: 2)

rmdr = (I) O
NAME : dspglobal.rmdr
INFERENCE CATEGORY :

INHERITANCE CATEGORY :

1
1

SLOT INHERITABILITY : Default
VALUE INBERITABILITY : Default
INHERITANCE STRATEGY : Default

INHERITANCE STRATEGY :
INHERITANCE STRATEGY :

ORDER OF SOURCES :
InitValue O

Class first
Breadth first

IF CHANGE DO :

Used In :
LHS or RHS in Rule select_dsupac_2(#74) (Occurrences: 2)
LHS or RHS in Rule select_dsupac_1(#75) (Occurrences: 2)

sortqnty = (I) O
NAME :© dspglobal.sortqnty

INFERENCE CATEGORY : 1

INHERITANCE CATEGORY : 1

SLOT INHERITABILITY ; Default

VALUE INHERITABILITY : Default

INHERITANCE STRATEGY : Default

INHERITANCE STRATEGY : Class first

INHERITANCE STRATEGY : Breadth first

ORDER OF SOURCES :
InitValue 0 IF CHANGE DO :

Used In :
LHS or RHS in Rule select_dsupac_2(#74) wrrences: 5)
LHS or RHS in Rule select_dsupac_1(#75) .. ~ences: 4)

type = (S) Unknown
Used In :

LES or RHS ir Rule select_dsupac_2(#74) (Occurrences: 2)
LHS or RHS in Rule select_dsupac_1i(#75) (Occurrences: 2)
LHS or RHS in Rule select_dsupac_0(#76) (Dccurrences: 2)
Member Order of Sources of dsupac.addprop (Occurrences: 1)
Used In :
LHS or
LHS or
LHS or
LHS or
Member

RHS in Rule Top_level_dsup(#73) (Occurrences: 3)
RHS in Rule select_dsupac_2(#74) (Occurrences: 2)
RHS in Rule select_dsupac_1(#75) (Occurrences: 2)
RHS in Rule select_dsupac_O(#76) (Occurrences: 2)
Order of Sources of dsupac.addprop (Occurrences: 1)

99

NAME : dsup_missions

PROPERTIES :
Value = (B) Unknown
Used In :

LHS or RHS in Rule 72 (Occurrences: 2)
Hypothesis of Rule Top_level_dsup(#73)

NAME : dsupac_commit
PROPERTIES :
Hypo = (B) Unknown
Value = (B) Unknown
Used In :
Member Order of Sources of dsupac.addprop (Occurrences: 3)
Hypothesis of Rule select_dsupac_2(#74)
Hypothesis of Rule select_dsupac_1(#75)
Hypothesis of Rule select_dsupac_O(#76)

NAME : dsupgnty
PROPERTIES :
Value = (I) 100

NAME : dsupgnty
INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1
SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INBERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first

INHERITANCE STRATEGY : Breadth first

ORDER OF SOURCES :
InitValue 100 IF CHANGE DO

Used In :
LHS or RHS in Rule select_dsupac_2(#74) (Occurrences: 4)
LHS or RHS in Rule select_dsupac_1(#75) (Occurrences: 5)
LHS or RHS in Rule select_dsupac_O(#76) (Occurrences: 1)

NAME : GET_lrECM
PROPERTIES :
Hypo = (B) Unknown

NAME : Get_lrECM_ac
PROPERTIES :
Hypo = (B) Unknown
Used In :
LHS or RHS
Hypothesis
Hypothesis
Hypothesis
Hypothesis

in
of
of
of
of

NAME : Get_lrECM_msnsz
PROPERTIES :
Hypo = (B) Unknown
Used In :
LHS or RHS in
Hypothesis of
Hypothesis of

NAME : Get_1rECHM_needed
PROPERTIES :
Hypo = (B) Unknown
Used In :

LHS or RHS in
LHS or RHS in
Hypothesis of
Hypothesis of

Rule
Rule
Rule
Rule
Rule

Rule
Rule
Rule

Rule
Rule
Rule
Rule

Define_Assignment_Loop(#112) (Occurrences: 3)
80

Retrieve_ecm_ac_from_table(#78)
Get_ecm_ac_from_same_entxry(#79)
Start_1rECH_table_use(#77)

Define_Assignment_Loop(#112) (Occurrences: 3)
Sufficient_lrECM_msnsz(#82)
81

Sufficient_lrECM_msnsz(#82) (Occurrences: 2)
81 (Occurrences: 2)
Non_mission_lrECM_msnsz(#84)
Standard_1rECM_msnsz(#83)

{01

|

NAME : Get_lrECM_type
PROPERTIES :
Hypo = (B) Unknown

NAME : Get_lrtarget
PIOPERTIES :
Hypo = (B) Unknown
Used In :
LHS or RHS in Rule Define_Assignment_Loop(#112) (Occurrences: 2)
Hypothesis of Rule 86
Hypothesis of Rule Find_the_target(#85)
Value = (B) Unknown

NAME : GetlrPackage
CLASSES :
Hypos
PROPERTIES :
Hypo = (B) Unknown
Used In :
LHS or RHS in Rule 72 (Occurrences: 2)
Hypothesis of Rule Top_Level_Package_Control(#87)

NAME : GetreciPackage
CLASSES :
Hypos
PROPERTIES :
Hypo = (B) Unknown
Used In :
LHS or RHS in Rule 72 (Occurrences: 2)
Hypothesis of Rule Top.Level_Package_Control(#88)

NAME : Getrec3Package
CLASSES :
Hypos
PROPERTIES :
Hypo = (B) Unknown
Used In :
LHS or RES in Rule 72 (Occurrences: 2)
Hypothesis of Rule Top.Level_Package_Control(#89)

NAME :
PROPERTIES

Hypo =

1rACneeded

(B) Unknown

Used In :
LHS o1 RHS in Rule Define_Assignment_Loop(#112) (Occurrences: 1)
LHS oxr RHS in Rule Detexrmine_the_micsion_size_when_there_
are_essentially_no_ac_left(#113) (Occurrences: 2)
LHS or RHS in Rule Determine_mission_size_when_there_
are_minimal_ac(#114) (Occurrences: 2)
LHS or RHS in Rule Determine_mission_size_when_there_
are_ample_ac(#115) (Occurrences: 2)
LHS or RHS in Rul: vetermine mission_size_for_target(#116)
{Occurrinces: 2)
LBS or RHS in Rule Determine mission_size_for_last_target(#117)
(Gecurrences: 2)

NAME :
CLASSES :
Hypos

PROPERTIES :
(B) Unknown

Hypo =

Hypothesis
Hypothesis
Hypothesis
Hypothesis

lrAs=iguTarget

Used In :

LHS ox RHS
Hypothesis
Hypothesis
Hypothesis
Hypothesis
Hypothesis
Hypcthesis
Hypothesis
Hypothesis
dypothesis
dypothasis
Hypothesis
Hypothesis
Hypothesis

of
of
of
of

in
of
of
of
of
of
of
of
of
of
of
of
ot

Rule Find_AC_needed_75(#90)
Rule Find_AC_needed_25(#92)
Rule Find_AC_needed_50(#91)
R1le Find_AC_nceded_100(#93)

Rule Define_Assignment_Loop(#112) (Gccurrences: 2)
Rule Target_Assignment(#98)
Rule Targes _Assignment(#57)
Rule Target_Assignment(#96)
Rule Target_Assignment(#95)
Rule Target_Assignment(#94)
Rule Target_4_assignment(#101)
Rule Target_3_assignment(#103)
Rule Null_target_1(#108)

Rule Targev_1_assignment(#107)
Rule Target_ 2_assigament(#106)
Rule Target_3_assignment(#104)
Rule Target_4_assignment(#102)
Rule Target S_-czignment(#99)

g

!

NAME : 1rECM_table
PROPERTIES :
Hypo = (B) Unknown
Used In :
LHS or RHS
LES or 2HS

in Rule Top_Level_Package_Contxrol(#87) (Oc -«crences:

in Rule 109 (Occurxences: 3)

NAME :

Hypothesis of Rule 109

1rFinalCheck

CLASSES :
Hypos
PROPERTIES :

Hypo

NAME :

= (B) Unknown
Used In :

LHES or RHS in Rule Stop_Assignment_Loop(#111} (CGccurre ces: 3)
Eypothesis of Rule Stop_Assignment_lrMappings(#110)

1rHold

PROPERTIES :
curstatus = (F; Unknown

KAME :

1rHold.curstatus
INFERENTE CATEGORY :
INRERITANCE CATEGORY :
SLOT INHERITABILITY -
VALUE INHERITABILITY :
INHERITANCE STRATECY :
IKHERITARCE STRATEGY :

INHERITANCE STRATEGY :
ORDER OF SOURCES :

RunTimeValu 5.0
IF CHANGE DO :

1

1

Default
Default
Default
Class first

Breadth first

101

2)

status = (F) Unknown
NAME : 1lrHold.status

INFERENCE CATEGORY : 1
INHERITARCE CATEGORY : 1

SLOT INHERITABILITY : Default
VALUE INBERITABILITY : Default
INHERITANCE STRATEGY : Default
IRHERITANCE STRATEGY : Class first

INAERITARCE STRATEGY : Breadth first

ORDER OF SOURCES :
RunTimeValu 0.0

IF CHANGE DO :

Used In :
LHS or RHS in Rule 86 (Occurrenzes: 2)
LHS or RHS in Rule Target_5_assignment(#100) (Occurrences: i)
LHS or RES in Rule Target_4_assignment(#10i} {lccurrences: 1)
LYS or RHS in Rule Toxrget_3_assignment(#103) (Occurrences: 1)
LBS oxr RHS ir Rule Target_2_assignment(#105) (Occurrences: 1)
LHS or RHS in Rule Null_target_i/#108) (Occurrences: 1)

tarzzt « (I) Unknown
RAME : 1rHold.target

INFERENCE CATEGORY : i

INHERITANCE CATEGORY : 1

SLOT INHERITABILITY : Default

VALUE INHERITABILYITY : Default

INBERITANCE STRATEGY : Default

INHERITANCE STRATEGY : Class first

INHERITANCE STRATEGY : Breadth first

ORDER OF SCURCES :
RunTimeValu O

IF CHARGE DO :

Used In :
LHS or RHS in Rule 86 (Occurrences: 3)
LHS or RES in Rule Find_the_target(#85) (Occurrences: 1)
LHS or RHS in Rule Target_5_assignment(#100) (Occurrences: 2)
LHS or RHS in Rule Target_5_assignment(#99) (Occurrences: 1)
LHS or RHS in Rule Target_4_assignment(#102) (Occurrences: 1)
LHS or RHS in Rule Target_4_assignment(#101) (Occurrences: 2)
LHS or RHS in Rule Target_3_assignment(#104) (Occurrences: i
LHS or RHS in Rule Target_3_assignment (#103) (Occurrences: 2)
LHS or RHS in Rule Target_2_assignmen:(#106) (Occurrences: 1)
LHS or RHS in Rule Target_2_assignment{#105) (Occurrences: 2)
LHES or RHS in Rule Target_1_assignment(#107) (Occurrences: 1)
LHS or RHS in Rule Null_target_1(#108) (Cccurrences: 2}

NAME : 1lrMapping
CLASSES -
Hypos
PROPERTIES :
Hypo = (B8) Unknosn
Used In :
LHS or RHS in Rule Define_Assigmment_Loop(#112) (Occurrences: 1)
Member Order of Sources of lrSupply.dolrMapping (dccurrences: 3)
Hypothesis of Rule Define_Assignment_Loop(#112)
Hypothesis of Rule Stop_Assignment_Locp{#111)

EAME : 1rMission_size
PROPERTIES :
Hypo = (B) Unknoun
Used In :
LHS or RHS in Rule Define_Assignment_Loop(#112) (Occurrences: 3)
Hypothesis of Rule
Determine_the_mission_size_when_there_are_essentially_
ro_ac_left(#113)
Hypothesis of Rule
Determine_mission_size_when_there_are _minimal_ac(#114)
Hypothesis of Rule Determine_mission_size_for_last_target(#117)
Hypothesis of Rule Determine_mission_size_for_targzt(#116)
Hypothesis of Rule Determine_mission_size_when_
there_are_ample_ac(#115)

HAME : LRWMEM
PROPERTIES :
acneeded = (I) Unknown
Used In :
LHS or RHS in Rule Find_AC_needed_75(#90) (Occurrences: 1)
LES or RHS in Rule Find_AC_needed_S0(#91) (Occurrences: 1)
LES or RHS in Rule Find_AC_needed_25(#92) (Occurrences: 1)
LES or RHS in Rule Find_AC_needed 100(#93) (Occurrences: 1)
LHS or RHS in Rule
Determine_the_mission_size_when_there_are_essentially no_
ac_left(#113) (Occurzences: 1)
LES or RHS in Rule
Determine_mission_size_when_there_are_
minimal_ac(#114) (Occurrences: 1)
LHS or RHS ir. Rule
Determine_mission_size_when_there_are_
ample_ac(#115) (Occurrences: 2)
LES or RHS in Rule Determine_mission_size_for_target(#116)
{(Occurrences: 1)
LES or RHS in Rule Determine_nission_size_for_last_target(#117)
(Occurrences: 1)
actot = (I) Unknown
Used In :
LES or RES in Rule Define_Assignment_Loop(#112) (Occurrences: 3)
LES or RHS in Rule
Determine_the_mission_size_shen_there_are_
essentially_no_ac_left(#113) (Occurrences: 2)
LES or RHS in Rule
Determine_mission_size_when_ there_ are_
minimal_ac(#114) (Occuxrences: 3)
LHES or RHS in Rule
Determine“mission_size_when_there_axe_asple,ac(3115)
(Occurrences: 1)
LES or RES in Rule Determine_mission_size_for_target(#116)
(Occurrences: 2)
LES or RHS in Rule Determine_mission_size_for_last_target(#117)
(Occurrences: 2.
Member Order of Sources of lrSupply.dolrMapping (Occurrences: 2)

Used In :

LES or RES in Rule Top_Level_Package Control(#87) (Occurrences: 3)
LES or RES in Rule Top_Level_Package_Control(#88) (Occurrences: 3)
LS or RHS in Rule Top_Level_Package Control(#89) (Occurrences: 3)
LES or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
Member If Change Actions of curlrMzp.doAssign (Occurrences: 1)
Memter 1f Change Actions of currec3Map.doAssign (Occurrences: 3)
Mexber If Change Actions of reclcurMap.doAssign (Occuxrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Member Order of Sources of rec3Supply.dorec3Mapping

(Occurrences: 2)
Member Order of Sources of rec2Sapply.dorec2Mapping

(Occurrences: 2)
Member Order of Sources of reciSupply.doreciMapping

(Occurrences: 2)
Member Order of Sources of lrSupply.dolrMapping (Occurrences: 2)

curstatus = (F) Unknown
Used In :

LHS or RHS in Rule 86 (Dccurrences: 1)
LHS or RES in Rule Find_the_target(#85) (Occurrences: 1)
LHS or RHS in Rule Find_AC_needed_75(#90) (Occurrences: 2)
LES or RHS in Rule Find_AC_needed 50(#91) (Occurrences: 2)
LES or RHS in Rule Find_AC_needed_25(#92) (Occurrences: 2)
LES or RES in Rule Find_AC_needed_100(#93) (Occurrences: 1)
LHS or RHS in Rule Target_5_assignment(#100) (Occurrences: 1)
LHES or RHS in Rule Target_3_assignment(#103) (Occurrences: 1)
LHS or RES in Rule Kull_target_1(#108) (Occurrences: 1)

curTarget = (I) Unknoes

Used In :

LHS er REZ in ... le 86 (Occurrences: 1)
LES o. KES iia G e Find_the_target(#85) (Occurrences: 1)
LES oxr RES in .+ 2 Target_Assignment(#97) (Occurrences: 1)
LES oxr RHS in - . e Target_Assignment(#96) (Occurrences: 1)
LH: er RAN & e Target_Assignment(#95) (Occurrences: 1)
LHES oT RES in kv : Target_Assignment(#94) (Occurrences: 1,
LES or RHES n #n . Target_5_assigrnment(#100) (Occurrences: 1)
LES or RHS an 2ul. Target_4_assignment(®101) (Occurrences: 1)
LHS or .7 5- xule Target_2_assignment(#105) (Occurrences: 1)

LHS or E¥5 in Rule Null target_1(#108) (Occurrences: 2)

didg = (F) Unknown
Used In :

NAME

LHS or RHS in Rule Find_AC_needed_75(#90) (Occurrences: 1)

LHES or RHS in Rule Find_AC_needed_50(#91) (Occurrences: 1)

LHS or RHS in Rule Find_AC_needed_25(#92) (Occurrences: 1)

LHS or RHS in Rule Find_AC_needed_100(#93) (Occurrences: 1)
Member Order of Sources of 1rSupply.dolrMapping (Occurrences: 1)

Used In :

LHS or RHS in Rule Top_Level_Package_Control(#87) (Gccurrences: 2)
Member Order of Sources of lrSupply.dolrMapping (Occurrences: 1)

ecuCursor = (I) Unknown
Used In :

ecmindx

LHS or RHS in Rule 80 (Occurrences: 1)}

LHS or RHS in Rule Start_lrECM_table_use(#77) (Occurrences: 1)

LHS oxr RHS in Rule Retrieve_ecm_ac_from_table(#78) (Occurreaces: 1)
LHS or RES in Rule 109 (Occurrences: 3)

LES or RHS in Rule Define_Assignment_Loop(#112) (Occurrences: 1)
=(1) o0

LRWMEH . ecmindx

INFERENCE CATEGORY : 1
INHERITAKCE CATEGORY : 1

SLOT INBERITABILITY : Default
VALUE INBERITABILITY : Default
INBERITAKCE STRATEGY : Default
INHERITANCE STRATEGY : Class first

INBERITANCE STRATEGY : Breadth first

ORDER OF SOURCES :

InitValue O IF CHAKGE DO :

Used In :

LES or RES in Rule 80 (Occurrences: 5)

LHS or RHS in Rule Retrieve_ecm_ac_from_table(#78) (Occurrences: 5)
LHS or RHS in Rule Top_Level Package Control{#87) (Cccurrences: 5)
LES or RHS in Rule 199 (Occurrences: 5)

1019

eczmsnsz = (I) Unkaown

Used In :
LES or
LES or
LBES or
LHS or
LES or
LHS or
LES or

RES
RES
RHES
RIS
RES
RES
RES

an
in
in
in
in
in

n

Rule
Rule
Rule
fule
Rule
Rule
Rule

ecuneeded = (I) Unknowmn

Used In :
LES or
LES or
LES or
LES <.

RES
RHES
RES
RES

in
in
in
in

ecmtot = (I} Unknown

Used In :
LES or
LES or
LES or
LES or
LES or
LES or
LES or
LEsS or
LES or

Used In :
LES or
LES or
LES or
LES or

RES
RES
REE
RE™
RES
RES
RES
RES
RES

RES i
RET i

RES
RES

in
in
in
in
in
in
in
in
in

Baie
Rule
Rule
Rule

Ruie
Rzle
Rale
Rule
Rale
Rele
Rule
Relg
Rule

Rule
Rule

T
Ri.e

Sefficient 1rECHM_msnsz(#82) (QOccurrences: 1)
81 (Occurrences: 1)

Target_Assignzent(#98) (Occurrences: 1}
Target_Assignment(#97) (Cccurrences: 1)
Target_Assignment(#95) (Cocurrences: 1)
Target_Assigument(%#94) (Gccurrences: 1)
Defire_Assignwent_Loop(#112) (Occurrences: 1)

Sufficient_l1rECK_esnsz(292) (Occurrences: 2)
81 (Occurrences: 1)

Standayd_1rECK_msnsz(#83) (COccurrences: 1)
Xon_wission_lrECM_msnsz(#84) (Occurrences: i)

80 (Geeurrences: 3)

Start_1rECM_table_use(#77) (Jccurrences: i)
Retrieve_ecm_ac_frox_table(#73) (Gccurrences: 3)
Get_ccm_ac_from_saxe_entry(#73) (Occurrences: 1)
Sufficient_lrECK_msnsz{%$82) {Qccurrences: 1)
281 (Qccurrences: 1)

Top_Level _Package _Control(#37) (Occurrences: i
182 (Qccurrexces: 2)
Defize_hssignment_Loop{(#:12) {Sccnrrences: 2)

S

80 (Gecurrences: 1)
Retrieve_ecn_a~_fro=m_tab
Top_Level_Package Contre
169 (Qccurrences: §)

{#78) (Occurrences: 1)

ie 1
1(287) (Occurrences: 3}

If Change Acticns of curirMap.deissign {(Occurrences: 1}

ecmtyp = (8)

LHS
LHS
LHS
LHS
LHS

ox
or
or
ox
or

Used In :

LHS
LHS
LHS
LHS

orxr
or
or
or

Member

Unknown
Used In :

RHS in
RHS in
RHS in
RHS in
RHS in

RHS in
RHS in
RHS in
RHS in

Rule
Rule
Rule
Rule
Rule

Rule
Rule
Rule
Rule

80 (Dccurrences: 3)

Start_lrECM_table_use(#77) (Occurrences: 3)
Retrieve_ecm_ac_from_table(#78) (Occurrences: 3)
Top_Level_Package_Control(#87) (Occurrences: 1)
109 (Occurrences: 2)

80 (Occurrences: 1)
Retrieve_ecm_ac_from_table(#78) (Occurrences: 1)
Top.Level_Package_Control(#87) (Occurrences: 3)
109 (Occurrences: 1)

If Change Actions of curlrMap.doAssign (Occurrences: 1)

e.fsrt = (F) Unknown
Used In :
LHS or RHS in Rule Find_AC_needed_75(#90) (Occurrences: 2)
LHES oxr RHS in Rule Find_AC_needed_50(#91) (Occurrences: 2)
LHS or RHS in Rule Find_AC_needed_25(#92) (Occurrences: 2)
LHS or RHS in Rule Find_AC_needed_100(#93) (Occurrences: 2)

msnsz = (I)

0

NAME : LRWMEM.msnsz
INFERENCE CATEGORY :
INHERITANCE CATEGORY :
SLOT INHERITABILITY :
VALUE INHERITABILITY :
INHERITANCE STRATEGY :
INHERITANCE STRATEGY :

INHERITANCE STRATEGY :

1

1

Default
Default
Default
Class first

Breadth first

I

ORDER OF SOURCES :
InitValue O IF CHANGE DO :
Used In :
LHS or RBS in Rule 81 (Occurrences: 1)
LHS or RHS in Rule Standard_lrECM_msnsz(#83) (Occurrences: 1)
LHS or RHS in Rule Non_mission_lrECM_msnsz(#84) (Occurrences: 1)
LHS or RHS in Rule Target_Assignment(#98) (Occurrences: 3)
LHS or RHS in Rule Target_Assignment(#97) (Occurrences: 3)
LHS or RHS in Rule Target_Assignment(#96) (Occurrences: 3)
LES or RHS in Rule Target_Assignment(#95) (Occurrences: 3)
LHS or RHS in Rule Target_Assignment(#94) (Occurrences: 3)
LHS or RHS in Rule Target_6_assigmment(#100) (Occurrences: 1)
LHS or RHS in Rule Target_5_assignment(#99) (Occurrences: 1)
LHS or RHS in Rule Target_4_assignment(#102) (Occurrences: 1)
LHS or RHS in Rule Target_4_assignment(#101) (Occurrences: 1)
LES or RHS in Rule Target_3_assignment(#104) (Dccurrences: 1)
LHS or RES in Rule Target_3_assignment(#103) (Occurrences: 1)
LHS or RHS in Rule Target_2_assignment(#106) (Occurrences: 1)
LHS or RHS in Rule Target_2_assignment(#105) (Dccurrences: 1)
LHS or RHS in Rule Target_1_assignment(#107) (Dccurrences: 1)
LHS or RHS in Rule Null_target_1(#108) (Occurrences: 1)
LHS or RHS in Rule Define_Assignment_Loop(#112) (Occurrences: 1)
LHS or RHS in Rule
Determine_the_mission_size_when_there_
are_essentially_no_ac_left(#113) (Occurrences: 1)
LHS or RHS in Rule
Determine_mission_size_when_there_
are_minimal_ac(#114) (Occurrences: 1)
LHS or RHS in Rule

Determine_mission_size_when_
there_are_ample_ac(#115) (Occurrences: 1)
LHS or RHS in Rule Determine_mission_size_for_target(#116)
(Occurrences: 1)
LHS or RHS in Rule Determine_mission_size_for_last_target(#117)
(Occurrences: 1)

retflag = (B) True

NAME : LRWMEM.retflag

INFERENCE CATEGORY :
INHERITANCE CATEGORY :
SLOT INHERITABILITY :
VALUE INHERITABILITY :
INHERITANCE STRATEGY :
INHERITANCE STRATEGY :

INHERITANCE STRATEGY :

ORDER OF SOURCES :
InitValue

Used In :

LHS
LHS
LHS
LHS
LHS
LBES

or
or
or
or
or
or

RHS
RHS
RHS
RHS
RHS
RHS

TRUE

in Rule
in Rule
in Rule
in Rule
in Rule
in Rule

targCursor = (I) Unknown
Used In :
LHS or RHS in Rule
LHES or RHS in Rule
(Occurrences: 2)
LHS or RHS in Rule
LHS or RHS in Rule
Determine_the_mission_size_when_there_are_
essentially_no_ac_left(#113) (Occurrences: 1)
LHS or RHS in Rule
Determine_mission_size_when_there_are_minimal_
ac(#114) (Occurrences: 1)
LHS or RHS in Rule Determine_mission_size_for_target(#116)
(Occurrences: 1)
LHS or RHS in Rule Determine_mission_size_for_last_target(#117)
(Occurrences: 1)
target = (I) Unknown

1

1

Default
Default
Default
Class first

Breadth first

IF CHANGE DO :

Target_Assignment(#98) (Occurrences: 1)
Target_Assignment(#97) (Occurrences: 1)
Target_5_assignment (#100) (Occurrences: 1)
Target_5_assignment (#99) (Occurrences: 1)
Target_1_assignment (#107) (Occurrences: 1)
Null_target_1(#108) (Occurrences: 1)

Find_the_target(#85) (Occurrences: 1)
Stop_Assignment_lrMappings(#110)

Define_Assignment_Loop(#112) (Occurrences: 1)

113

targetIndex = (I) Unknewn
NAME : LRWMEX. tergetlrd~x

INFRRENCE TRTEGDRY i
INHERITANCE CATEGORY @ 1

SLOT IMHERITABILITY : Dexauls
VALUY INESRIPABILITY : Default
INBIR.TANCE STRATEGY : Defanlt
INHERITANCE STRATEGY : Class first

~NRERITANCE STRATECY : Breadth first

DRDER OF 30URCES :
RunTinsValu 0
TF CHANGE DO :
Used In :
Kamber If Change Actions of curlrMap.doAssign (Occu rences: 17)

NAME ¢ n
PREPERTIES ¢
Value = (I) Unknowxn
Used In :
Mraber Order of Sources of msac.index {Occurrences: 3)

RAKE : recifssignTarget
CLASSES :
Hypos
PRO-ERTIES :
Hypo = (B: Unknown
Used In :
LHS or RE® in Rule Define_Assignment_Loop(#125) (Occurrences: 2)
Hypothesis of Rule Target_Assignrent(#122)
Hypothesis of Rule Target_Assignment(#121)
Hypothesis of Rule Target_Assignment(#120)
Hypothesis of Rule Target_Assignment(#119)
fiypothesis of Rule Target_Assignment(#118)

NAME : reclcurMap

PROPERTIES :
actot = (I) Unknown

114

P

MAME : xeclicurMap.actot
TEFERENCE CATETDRY :
I&"FRITANCE CATEGDRY :
SLOT InHERITABILITY - Uelanlt
VALUE IFHERITABILTTY : Defauit
IRBERITAKCE 3TRATEGY : Default
INHERITANCE STRATEGY : (lass first

o

s I

INEERITANCE STRATEGY : Braadth first

ORDER OF SOUKCES :
RunTimeValu 0
IF CHANGE DO :
Used In :
LES or RES in Rule Target_asaipnment(#122) ! ncurrences: Z)
LES or J8S in Rule Target_As.u nment(#12*, (9-:urxences: 2)
LHS or RHS in Rule Target_Asc’ gnment(# 20) (Dccu-rences: 2)
LES or RES in Rule Taxrget Assize~ .n(#112) (Uccurz-uces: 2)
LHES or RHS in Rule Targeu_As- .goment(#138) {Occurrences: 2)
LES or RHS in Rule Stor ..ssignment_Loop(#124) (Occurrenc~s: 1)
Member If Change # .1oms of reclcurMap.doAssign (Occurren-es: 2)
Used In :
LHS or RHS in Rule Top_Level_Package_Contrcl(#87) (Occurrences: 3)
LHS or RHS in Rule Top_Level Package Control(#88; (Occurrences: 3)
LES or RHS in Rule Top_Level Package_Control(#89) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Act.ons of currec3Map.doAssign (Qccurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Hembter If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Member Order of Sources of rec3Supply.dorec3Mapping
(Occuriences: 2)
Member Order of Sources of rec2Supply.dorec2Mapping
(Occurrences: 2)
Member Ordexr of Sources of reciSupply.doreciMapping
(Dccurrences: 2)
Member Order of Sources of lrSupply.dolrMapping (Occurrences: 2)

ot

actyp = (8) Unknown

Used In :
Meuber
Member

If Chauge Actions of reclcurMap.doAssign (Occurrences: 1)
Order of Sources of reciSupply.doreciMapping

(Occurrences: 1)

Used In :
LHS or
LHS or
LES or
LHS ox
Member
Member
Member
Member
Herber

RES in Rule Top_Level_ Package Control(#87) (Occurrences: 3)
RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 3)
RHS in Rule Top_level Package_Control(#89) (Occurrcnces: 3)
RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

I? Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of reclcurMap.doAssign (Occurrences: 1)

If Change A-*+ions ¢ rec2curMap.doAssign (Occurrences: 2)
Oréer of sources of -ec3Supply.dorec3Mapping

{Oczurrences: 1}

Hember

(Occux

Eembax

Order of Sou. ... of rec2Supply.dorec2Mapping
rencss: 1)
Order of Sources of reciSupply.doreciMapping

(Cccuzcences: 2

Member

Crder of Sources of 1lrSupply.dolxMapping (Occurrences: 1)

1i6

doAssign = (B) Urknown
NAME : recicurMap.doAssign

IRFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1

SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INHERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first

INHERITARCE STRATEGY : Brezith first

Commenvs : Create a new assignment object, copy values from
’recicurMap’ into it, and reset the slots of ’recicirMap’, it is
not necessary to reset ’recicurMap.actype’

ORDER OF SOURCES :

IF CHANGE DO :

Reset reclcurMap.doAssign
Do RECIWMENM. targetIndex+1 RECI1WMEM.targetIndex
CreateObjec ’issign_’\RECIWMEM.targetIndex\ lreciAssignments|
Do reclcurMap.actyp ’Assign_’\RECIWMEM.targetIndex\.actyp
Do recicurMap.actot ’Assign_’\REC1WMEM.targetIndex\.actot
Do recicurMap.tgtl ’Assign_’\REC1WMEM.targetIndex\.tgti
Do recicurMap.tgt2 ’Assign_’\RECIWMEM.targetIndex\.tgt2
Do recicur¥ap.tgt3 ’Assign_’\RECIWMEM.targetIndex\.tgt3
Do reclcurMap.tgtd ’Assign_’\RECIWMEM.targetIndex\.tgt4
Do recicurMap.tgtbs ’Assign_’\RECIWMEM.targetIndex\.tgt5
Reset recicurMap.actot
Reset reclcurMap.tgti
Reset recicurMap.tgt2
Reset reclcurMap.tgt3
Reset reclcurMap.tgt4
Leset reclicurMap.tgts

Used In :

LHS or RHS in Rule Target_Assignm~nt(#118) (Occurrences: 1)
LHS or RH3 in Rule Stop_Assignment_Loop(#124) (Occurrences: 1)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)

tgti = (I) Unknown

NAME :

reclcurMap.tgti
INFERENCE CATEGORY :

INHERITANCE CATEGORY :
SLOT INHERITABILITY :
VALUE INHERITABILITY :
INEZRITANCE STRATEGY :
INHERITANCE STRATEGY :

IBHERITANCE STRATEGY :

ORDER OF SOURCES :

RunTimeValu O
IF CHAKGE DO :
Used In :

1

i

Default
Default
Default
Class first

Breadth first

LHS or RHS in Rule Target_Assignment(#120) (Occurrences: 2)
Member If Change Actioms of recicurMap.doAssign (Cccurrences: 2)

Used In :

LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
LHES or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Mexber If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)

tgt2 = (I) Unknown
NAME :

reclcurMap.tgt2
IRFERENCE CATEGORY :

INHERITANCE CATEGORY :
SLOT INEERITABILITY :

VALUE INHERITABILITY :
INHERITAKCE STRATEGY :
INHERITANCE STRATEGY :
INHERITANCE STRATEGY :

CRDER OF SOURCES :

RunTimeValu O
IF CHANGE DO :
Used In :

i

1

Default
Default
Default

Class first
Breadth first

LHS or RHS in fule Target_Assigmment(#119) (Occurrences: 2)
Member If Change Actions of recicurMap.doAssign (Occurrences: 2)

Used In :

LHS or RHS in Rule Top_Level Package_Control(#87) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
LHS or RHS in Rule ‘top_Level Package_Control(#89) (Occurrences: 1)
LHS or RHS in Kule Top_Level_Package_Coatrol(#132) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)

tgt3 = (I) Unknown
NAME : reclcurMap.tgt3
INFERENCE CATEGORY :
INHERITANCE CATEGORY
SLOT INEERITABILITY :

.

VALUE INHERITABILITY :

IKHERITANCE STRATEGY
INHERITANCE STRATEGY

INHERITANCE STRATEGY

ORDER OF SQOURCES :

RunTimeValu 0
IF CHANGE DO :
Used In :

1

1

Default
Default
Default
Class first

Breadth first

LES or RHS in Rule Target_Assignment(#122) (Occurrences: 2)
Member If Change Actions of reclcurMap.doAssign (Occurrences: 2)

Used In :

LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
LHS or RHS in Rule Top.Level_Package_Control(#88) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package Control(#89) (Occurrences: 1)
LHS or RAS in Rule Top_Level_Package_Control(#152) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recilcurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)

tgt4 = (I) Unknown
NAME : reclicurMap.tgt4
IKFERENCE CATEGORY :

INBERITAKCE CATEGORY :
SLOT INHERITABILITY :

VALUE INHERITABILITY :
INBERITANCE STRATEGY :
INHERITANCE STRATEGY :

IKHERITANCE STRATEGY :

1

1

Default
Default
Default
Class first

Breadth first

120

ORDER OF SOURCES :
RunTimeValu O
IF CHANGE DO :

Used In :
LHS or
Member

Used In :
LHS or
LHS or
LHS or
LES or
Member
Memberxr
Member
Member

RHS in Rule Target_Assignment(#121) (Occurrences: 2)
1f Change Actions of reclcurMap.doAssign (Occurrences: 2)

RES in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(¥#88) (Occurrences: 1)
RHS in Rule Top_Level Package_Control(#89) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

It Change Actions of currec3Map.doAssign (Gccurrences: 3)

If Change Actions of reclcurMap.doAssign (Occurrences: 1)
If Change Actions of rec2curMap.doAssign (Occurrences: 2)

tgt5 = (I) Unknown

NAME :

recicurMap.

tzts

INFERENCE CATEGORY : 1
INKHERITANCE CATEGORY : 1
SLOT INHERITABILITY : Default
VALUE INHRERITABILITY : Default

INHERITAECE STRATEGY

Default

INHERITAECE STRATEGY : Class first

IXEERITANCE STRATEGY : Breadth first

ORDER OF SOURCES :
RunTimeValu O
IF CHANGE DO :

Used In :
LHS or
Merber

Used In :
LHS or
LES or
LHS or
LHS or
Member
Member
Member
Member

RHS in Rule Target_Assignment(#118) (Occurrences: 2)
If Change Actions of recicurMap.doAssign (Occurrences: 2)

RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
RES in Rule Top.Level_Package_Control(#89) (Occurrences: 1)
RHS in Rule Top_Level_Package_Ccntrol(#132) (QOccurrences: 1)
If Change Actions of curlxrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of recicurMap.doAssign (Occurxences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)

NAME : reciFinalCheck
CLASSES :
Bypos
PROPERTIES :
Bypo = (B) Unknown
Used In :
LHS or RHS in Rule Stop_Assignment_Loop(#124) (Occurrences: 3)
Hypothesis of Rule Stop_Assignment_reciMappings(#123)

MAME : reciMapping
CLASSES :
Hypos
PROPERTIES :
Hypo = (B} Unknowen
Used In :
LHS or RES in Rule Define_Assignment_Loop(#125) (Occurrences: 1)
Member Order of Sources of reciSupply.doreciMapping
(Occurrences: 3)
Hypothesis of Rule Define_Assignment_Loop(#125)
Hypothesis of Rule Stop_Assignment Loop(#124)

NAME : RECIVMEM

PROPERTIES :
actot = (I) Unknown
Used In :

LES or RHS in Rule Define_Assignment_Loop(#125) (Occurrences: 3)
Membex Order of Sources of reciSupply.doreciMapping

(Occurrences: 2)

Used In :

LES or RES in Rule Top_Level_Package_Control(#87) (Occurrences: 3)
LES or RHS in Rule Top_Level_Package_Control(#388) (Occurrences: 3)
LHES or RES in Rule Top_Level_Package _Control(#132) (Cccurrences: 3)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Cczu>rences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Member Order of Sources of re;3Supply.dorec3Mapping

(Occurrences: 2)
Kember Order of Sources of rec2Supply.dorec2Mapping

{Occurrences: 2)
Member Order of Sources of lrSupply.dolrMapping (Occurrences: 2)

curTarget = (I) Unknoun
Used In :
LHS or RHS in Rule Target_Assignment(#122) (Occurrences: 1)
LHS or RHS in Rule Target_Assignment(#121) (Occurrences: 1)
LHS or RHS in Rule Target_Assignment(#120) (Occurrences: 1)
LHES or RES in Rule Target_Assignment(#119) (Occurrences: 1)
LHES or RHS in Rule Target_Assignment(#118) (Occurrences: 1)
LES or RES in Rule Define_Assigament_Loop(#125) (Occurrences: 1)
targCursor = (I) Unknown
Used In :
LES or RHS in Rule Stop_Assignment_reciMappings(®123)
(Occurrences: 2)
LES or RHS .n Rule Define_Assignment_Loop(#125) (Cccurrences: 2)
targetIndex = (I) Unknoun
HAME : RECIWMEM.targetIndex

-

Appendix E. Classes

E.1 Introduction

The classes of objects used in the automated red player rule-base are shown
here. They are given in the format used by Nexpert Object when the classes are

written to a file for examination by a programmer.

E.2 The Classes

EAME : acr
Used In :
LES or RES in Rule Top_level_dsup(#73) (Occurrences: 1)
LES or RHES in Rule select_dsupac_2(874) (Occurrerces: 1)
LES or RIS in Rule select_dsupac_1(#75) (Occurrences: 1)
LS or RES in Rule select_dsupac_O(#76) (Occurrences: 1)
PROPERTIES :
gnty = (I) Unknown
Used In :
LES or RES in Rule Top_level_dsup(#73) (Occurrences: 3)
LHS or RES in Rule select_dsupac_2(#74) (Occurrences: 2)
LES or RES in Rule select_dsupac_1{&75) (Uccurrences: 2)
LHS or RES in Rule select_dsupac_O(#76) (Occurrences: 1)
Member Ordexr of Sources of dsupac.addprop (Gccurrences: 2)
type = (S) Unknown
Used In :

LAS or RES in Rule Top_level_dsup(#73) (Cccurrences: 3)
LES or RES in Rule select_dsupac_2(%#74) (Occurrences: 2)
LES or RES in Rule select_dsupac_1{#75) (Occurrences: 2)
LHES or RES in Rule select_dsupac_G(#76) (Occurrences: 2)
Kxz=ber Order of Sources of dsupac.addprop (Occurrences: 1)

NAME : DSPWMEM
PROPERTIES :
index = (I) 0

NAME : DSPWMEM.index
INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1
SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INHERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first

I INHERITANCE STRATEGY : Breadth first

ORDER OF SOURCES :
InitValue O IF CHANGE DO :
Used In :
LHS or RHS in Rule select_dsupac_2(#74) (Occurrences: 8)
LHS or RHS in Rule select_dsupac_1(#7£) (Occurrences: 8)
LHS or RHS in Rule select_dsupac_O(#76) (Occurrences: 6)
Used In :
Member Order of Sources of msac.index (Occurrences: 1)

NAME : dsupac
Used In :
LHS or RHS in Rule Top_level_dsup(#73) (Occurrences: 1)
PROPERTIES :
addprop = (B) Unknown
NAME : dsupac.addprop
INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1
SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INHERITANCE STRATEGY @ Default
INHERITANCE STRATEGY : Class first

INHERITANCE STRATEGY : Breadth first

ORDER OF SOURCES :

Do SELF.qnty dspglobal.qnty
Do SELF.type dspglobal.type
Reset dsupac_commit

Do dsupac_commit dsupac_commit
Do dspglobal.qnty SELF.qnty

RunTimeValu TRUE
IF CHANGE DO :
Used In :
LHS or RHS in Rule Top_level_dsup(#73) (Occurrences: 2) in
pattern matching
gnty = (I) Unknown
Used In :
LHS or RHS in Rule Top_level_dsup(#73) (Occurrences: 2)
LHS or RHS in Rule select_dsupac_2(#74) (Dccurrences: 2)
LHS or RHS in Rule select_dsupac_1(#75) (Occurrences: 2)
LHS or RHS in Rule select_dsupac_0(#76) (Dccurrences: 1)
Member Order of Sources of dsupac.addprop (Occurrences: 2)
type = (S) Unknown
Used In :
LHS or RHS in Rule Top_level_dsup(#73) (Occurrences: 3)
LHS or RHS in Rule select_dsupac_2(#74) (Occurrences: 2)
LHS or RHS in Rule select_dsupac_1(#75) {Occurrences: 2)
LHS or RHS in Rule select_dsupac_0(#76) (Occurrences: 2)
Member Order of Sources of dsupac.addprop (Occurrences: 1)

126

NAME : Hypos
PROPERTIES :

Hypo = (B) Unknown

NAME : lrAssignments

Used In :
LHS or RHS

in Rule Top_Level_Package_Control(#87) (Occurrences: 2)

Member If Change Actions of curlrMap.doAssign (Occurrences: 1)

PROPERTIES :

actot = (I) Unknown

Used In :
LHS or
LHS or
LHS ox
Member
Membex
Member
Member

RHS in Rule Top_Level_Package_Control(#87) (Dccurrences: 3)
RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 3)
RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of reclcurMap.doAssign (Occurrences: 1)
Order of Sources of rec3Supply.dorec3Mapping

(Occurrences: 2)

Member

Order of Sources of rec2Supply.dorec2Mapping

(Occurrences: 2)

Member

Order of Sources of reciSupply.doreciMapping

(Occurrences: 2)

Member

Order of Sources of lrSupply.dolrMapping (Occurrences: 2)

actyp = (S) Unknown

Used In :
LHS or
LHS or
LHS or
LHS or
Member
Member
Member
Member
Mermber

RES in Rule Top_Level_Package_Control(#87) (Occurrences: 3)
RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 3)
RHS in Rule Top.Level_Package_Control(#89) (Occurrences: 3)
RHS in Rule Top_Level_Package_Control(#132) (Dccurrences: 3)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of reclcurMap.doAssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Order of Sources of rec3Supply.dorec3Mapping

(Occurrences: 1)

Member

Order of Sources of rec2Supply.dorec2Mapping

(Occurrenses: 1)

Member

Order of Sources of reciSupply.doreciMapping

(Occurrences: 1)
Member

Order of Sources of lrSupply.dolrMapping (Occurrences: 1)

ecmtot = (I) Unknown
Used In :
LHS or RHS in Rule 80 (Occurrences: 1)
LHS or RHS in Rule Retrieve_ecm_ac_from_table(#78) (Occurrences:
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences:
LHES or RHS in Rule 109 (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
ecmtyp = (S) Unknown
Used In :
LHS or RHS in Rule 80 (Occurrences: 1)
LHS or RHS in Rule Retrieve_ecm_ac_from_table(#78) (Occurrences:
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences:
LHS or RHS in Rule 109 (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
sortl = (I) Unknown
Used In :
LHS or RES in Rule Top_Level_Package_Control(#87) (Occurrences:
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
sort2 = (I) Unknown
Used In :
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences:
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
soxrt3 = (I) Unknown
Used In : .
LHES or RHS in Rule Top_Level_Package_Control(#87) (Occurrences:
Member If Change Actions of curlrMap.doAssign (Dccurrences: 1)
sort4 = (I) Unknown
Used In :
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences:
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
sorts = (I) Unknown
Used In :
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)

1)
3)

1)
3)

1)

1)

1)

1)

;1)

tgtl = (I) Unknown
Used In :
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
LES or RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
LHS or RHS in Rule Top.Level_Package.Control(#89) (Dccurrences: 1)
LHS or RHS in Rule Top_Level_ Package_Control(#132) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Dccurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Dccurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)
tgt2 = (I) Unknown
Used In :
LHS or RHS in Rule Top_Level_Package.Control(#87) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package._Control(#88) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
LHS or RHS in Rule Top.Level _Package_Control(#132) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of racZcurMap.doAssign (Occurrences: 2)
tgt3 = (I) Unknown
Used In :
LHS ox RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Pactage_Control(#88) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of reclcurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)
tgt4 = (I) Unknown
Used In :
LHS oxr RHS in Rule Top_Level_ Package.Control(#87) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)

tgts = (I) Unknown

Used In :
LHS or
LHS or
LHS or
LHS or
Member
Member
Member
Member

NAME : 1rECMac

RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#88) (Cccurrences: 1)
RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of reclcurMap.doAssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)

in Rule 80 (Occurrences: 1)

in Rule Retrieve_ecm_ac_from_table(#78) (Occurrences: 1)
in Rule Top_Level_Package_Control(#87) (Occurrerces: 2)
in Rule 109 (Occurrences: 1)

RES in Rule 80 (Occurrences: 1)

RHS in Rule Retrieve_ecm_ac_from_table(#78) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 3)
RHS in Rule 109 (Occurrences: 1)

If Change Actions of curlrMap.doAssign (Occurrences: 1)

RHS in Rule 80 (Occurrences: 1)

RHS in Rule Retrieve_ecm_ac_from_table(#78) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 3)
RHS in Rule 109 (Occurrences: 1)

Used In :
LHS or RHS
LHS or RHS
LHS or RHS
LHS or RHS
PROPERTIES :
ecmtot = (I) Unknown
Used In :
LHS or
LHS or
LHS or
LHS or
Member
ecmtyp = (S) Unknown
Used In :
LHS or
LHS or
LHS or
LHS or
Member

If Change Actions of curlrMap.doAssign (Occurrences: 1)
Indx = (I) Unknown

KAME : 1rSupply
Used In :
LHES or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 2)
PROPERTIES :
actot = (I) Unknown
Used In :
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of reclcurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Member Order of Sources of rec3Supply.dorec3Mapping
(Occurrences: 2)
Member Order of Sources of rec2Supply.dorec2Mapping
(Occurrences: 2)
Member Order of Sources of reciSupply.doreciMapping
(Occurrences: 2)
Member Order of Sources of lrSupply.dolrMapping (Occurrences: 2)
actyp = (S) Unknowun
Used In :
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 3)
LHES or RHS in Rule Top_Level_Package_Contxol(#88) (Occurrences: 3)
LBES or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
Membe. If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Member Order of Sources of rec3Supply.dorec3Mapping
(Occurrences: 1)
Member Order of Sources of rec2Supply.dorec2Mapping
(Occurrences: 1)
Member Order of Sources of recliSupply.doreciMapping
(Cccurrences: 1)
Member Order of Sources of lrSupply.dolrMapping (Occurrences: 1)

didb = (F) Unknown
Used In :
LHES oxr RHS in Rule Top_Lev2l_Package_Control(#87) (Occurrences: 2)
didg = (F) Unknown
Used In :
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 2)
Member Order of Sources of lrSupply.dolrMapping (Occurrences: 1)
didp = (F) Unknown
Used In :
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 2)
dinb = (F) Unknown
Used In :
LHES or RHS in Rule Top_Level_ Package_Control(#87) (Occurrences: 2)
ding = (F) Unknown
Used In :
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 2)
dinp = (F) Unknown
Used In :
LHS oxr RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 2)

dolrMapping = (B) Unknown

NAME :

1rSupply.dolrMapping

INFERENCE CATEGORY : i

IKHERITANCE CATEGORY : 1

SLOT INHERITABILITY : Default

VALUE INHERITABILITY : Default

INHERITANCE STRATEGY : Default

INBERITANCE STRATEGY : Class first

PROMPT LINE : Mark the current object as being processed,
copy aircraft type and totals to temporary objects, trigger
assignment loop, and uvpdate number of available aircraft.

ORDER OF SOURCES :

Do TRUE SELF.Processed

Do SELF.actot LRWMEM.actot

Do SELF.actyp curlrMap.actyp

Do SELF.didg LRWMEM.didg

Reset 1lrMapping.Hypo

Do lxMapping.Hypo lrMapping.Hypo
Do LRWMEM.actot SELF.actot

RunTimeValu TRUE
IF CHANGE DO :
Used In :
LHS or RES in Rule Top_iLevel_Package_Control(#87)
(Occurrences: 2) in pattern matching
LHS or RHS in Rule Stop_Assignment_lrMappings(#110)
(Occurrences: 1} in pattern matching

Processed = (B) Unknown

NAME :

1rSupply.Processed
INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1
SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INBERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first
INHERITANCE STRATEGY : Breadth first
Comments : If these objects Lhave not yet been visited, then they

are marked as not being processed.
ORDER OF SOURCES :

RunTimeValu FALSE

IF CHANGE DO :

Used In :
LHS or RHS in Rule Stop_Assignment_lrMappings(#110)
(Occurrences: 1) in pattern matching

NAME : msac
Used In :

LHES or RHS in Rule Top_level_dsup(#73) (Occurrences: 2)
LHS or RHS in Rule select_dsupac_2(#74) (Occurrences: 1)
LHS or RHS in Rule select_dsupac_1(#75) (Occurrences: 1)

PROPERTIES :
index = (I) Unknown
NAME : msac.iadex
IKFERENCE CATEGORY :

INHERITANCE CATEGORY :
SLOT INKHERITABILITY :
VALUE INHERITABILITY :
INHERITAKCE STRATEGY :
INHERITANCE STRATEGY :

IKHERITANCE STRATEGY :

ORDER OF SOURCES :

Do n+tli n

1

1

Default
Default
Default
Class first

Breadth first

Do n SELF.index

IF CHANGE DO :
Used In :

Member Order of Sources of msac.index (QOccurrences: 1)

qnty = (I) Unknown
Psed In :

LHS or RHS in Rule Top_level_dsup(#73) (Occurrences: 3)
LBS or RHS in Rule select_dscpac_2(#74) {Occurrences: 2)
LHS or RHS in Rule select_dsupac_1(#75) (Occurrences: 2)
LHS or RHS in Rule select_dsupac_0(#76) (Occurrences: 1)
Member Order of Sources of dsupac.addprop (Occurrences: 2;

type = (S) Unknown

Used In :

LHS or RHS in Rule Top_level_dsup(#73) (Occurrences: 3)
LHS or RHS in Rule sglezt_dsupac_2(#74) (Occurremnces: 2)
LHS or RHS in Rule select_dsupac_1(#75) (Occurrences: 2)
LHS or RHS in Rule select_dsupac_0(#76) (Occurrences: 2)
Member Order of Sources of dsupac.addprop (Occurrences: 1)

134

NAME : reclAssignments
Used In :
LES or RES in Rule Top_Level_Package_Control{(#88) (Occurrences: 2)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
PROPERTIES :
actot = (I) Unknown
Used In :
LES or RHS in Rule Top_Level_ Package_Control(#87) (Occurrences: 3)
LHS or RHS in Rule Top_Level Package_Control(#88) (Occurrences: 3)
LHES or RHS in Rule Top_Level-Package_Control(#89) (Occurrences: 3)
LHS oxr RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Member Order of Sources of rec3Supply.dcrec3Mapping
(Occurrences: 2)
Member Order of Sources of rec2Supply.dorec2Mapping
(Occurrences: 2)
Member Order of Sources of reciSupply.doreciMapping
(Occurrences: 2)
Member Order of Sources of lrSupply.dolrMapping (Occurrences: 2)
actyp = (S) Unknown
Used In :
LES or RHS in Rule Top_Level_Package_Contxol(#87) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Meaber If Change Actions of currec3Map.doAssign (Occurrences: 3)
Membe If Change Actions of reclcurMap.doAscign (Occurrences: 1)
Membes If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Member Crder of Sources of rec3Supply.dorec3Happing
(Occurrences- 1)
Member Order of Sources of rec2Supply.dorec2Mapping
{Gccurrences:)
Menber Order of Siu-ces of reciSupply.doreciMapping
{Occurrences: 1)
Member Order of Sources of lrSupply.dolrMapping (Occurrences: 1)

tgtl = (I) Unknown

Used In :
LHS or
LHS or
LHS or
LHS or
Member
Member
Member
Member

RES in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
RHES in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
RES in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of recicurMap.doAssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)

tgt2 = (I) Unknown

Used In :
LHS or
LHS or
LHS or
LHS or
Member
Member
Member
Member

RES in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
RHS in Rule Top_Level_Package Control(#88) (Occurrences: 1)
RAS in Rule Top_Level_Package_Control(#89) (Cccurrences: 1)
RHS in Rule Top_Level_Package Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of recilcurMap.dokssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)

tgt3 = (I) Unknown

Used In :
LHS or
LHS or
LHS or
LHS or
Member
Member
Member
Member

RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
RES in Rule Top_Level_Package.Control(#88) (Occurrences: 1)
RES in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of recicurMap.doAssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)

tgt4 = (I) Unknown

Used In :
LHS or
LHS or
LHS or
LHS or
Member
Member
Member
Member

RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
RES in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.docAssign (Occurrences: 1)

It Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of reclicurMap.doAssign (Occurrences: 1)

If Change Acticns of rec2ZcurMap.doAssign (Occurrences: 2)

tgts = (I) Unknown

Used In :
LHS or
LHS or
LHS or
LHS or
Member
Menmber
Member
Hember

EAME : reciSupply
Used In :

LHS or RHS
PROPERTIES :

RES in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
RES in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of reclcurMap.doAssign (Occurrences: 1)

if Change Actions of rec2curMap.doAssign (Occurrences: 2)

in Rule Top_Level_ Package_Control(#83) (Occurrences: 2)

actot = (I) Unknown

Used In :
LHES or
LHS or
LHS or
LHS or
Member
Member
Member
Member
Member

RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 3)
RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 3)
RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 3)
RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of recicurMap.doAssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Order of Sources of rec3Supply.dorec3Mapping

(Occurrences: 2)

Member

Order of Sources of rec2Supply.dorec2Mapping

(Occurrences: 2)

Member

Order of Sources of reclSupply.doreciMapping

(Occurrences: 2)
Member

Order of Sources of lrSupply.dolrMapping (Occurrences: 2)

actyp = (S) Unknoun
Used In :
LES or RHES in Rule Top_Level Package_Contrcl(#87) (Occurrences: 3)
LHES or RAS in Rule Top_Level_Package Control(#88) (Occurrences: 3)
LES or RHES in Rule Top_Level_Package_Control(#89) (Occurrences: 3)
LES or RES in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
Member If Change Actions of curlrMap.doissign (Occurrences: 1)
Member If Change Actions of currec3Map.dokssign (Occurrences: 3)
Member I1 Change Actions of reclcurMap.doAssign (Qccurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Member Order of Sources of rec3Supply.dorec3Mapping
(Occurrences: 1)
Member Order of Sources of rec2Supply.dorec2Mapping
(Occurrences: 1)
Member Order of Sources of reciSupply.doreciMapping
(Occurrences: 1)
Member Order of Sources of lrSupply.dolrMapping (Occurrences: 1)
doreciMapping = (B) Unknozn
NAME : reciSupply.doreciMapping
INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1
SLOT INHERITABILITY : Default
VALUE IRHERITABILITY : GDefault
INBERITANCE STRATEGY : Default
INBERITANCE STRATEGY : Class first
INHERITANCE STRATEGY : Breadth first
PROMPT LIKE : Mark the current object as being processed,
copy aircraft type and totals to teemporary objects, trigger
assignrent loop, and update number of available aircraft.
ORDER OF SOURCES :

Do TRUE SELF.Processed

o SELF.actot RECIWMEM.actot

Do SELF.actyp recicurMap.actyp
Reset reciMapping.Eypo

Do reciMapping.Bypo reciMapping.Eypo
Do RECI¥MEM.actot SELF.actot

RunTimeValu TRUE
IF CHAEGE DO :
Used In :

LES or RHS in Rule Top_Level_Package_Control{£38)
(Gccurrences: 2) in pattern matching

LES or iliS in Rule Stop_Assigrment_reciMappings(®i23)
{Occurrences: 1) in pattern matching

Processed = (B) Unknown
NAME : reclSupply.Processed

INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1

SLOT INEERITABILTTY : Delault
VALUE INHERITABILITY : Default
INHERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first

INBERITANCE STRATEGY : Breadth first

Comments :

If these objects have not yet been visited, then they

are marked as 0t being processed.
ORDER OF SOURCES :

RunTimeValu FALSE
IF CHANGE DO :

Used In :
LHS or

RHS in Rule Stop_Assignment_reciMappings(#123)

(Bccurrences: 1) in pattern matching

NAME : rec2Assignments

Used In :
LHS or RHS

in Rule Top_Level_Package_Control(#132) (Occurrences: 2)

Member If Change Actions of rec2curMap.dodssign (Occurrences: 2)

PROPERTIES :

actot = (I) Unknown

Used In :
LHS or
LHS or
LHS or
LHS or
Member
Member
Member
Member
Member

RHS in Rule Top_Level Package_Control(#87) (Occurences: 3)
RHS in Rule Top_Level_Package_Contxol(#88) (Occurrences: 3)
RHS in Rule Top.Level_Package_Control(#89) (Occurrences: 3)
RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
If “hange Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of recicurMap.dolssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Order of Sources of rec3Supply.dorec3Mapping

(Occurrences: 2)

Member

Order of Sources of rec2Supply.do..c2Mapping

(Occurrences: 2)

Member

Order of Sources of reciSupply.doreciMappirg

(Dccurrences: 2)

Member

Order of Sources of lrSupply.dolrMapping (Occurrences: 2)

139

actyp = (S) Unknown

Used In :
LHS or
LHS or
LBS or
LHS or
Member
Member
Member
Member

RHS in Rule Top_Level Package_Control(#87) (Occurrences: 3)
RHS in Rule Top_Level Package_Control(#88) (Dccurrences: 3)
RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 3)
RHS in Rule Top_Level Package_Control(#132) (Occurrences: 3)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of recicurMap.doAssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Dccurrences: 2)
Order of Sources of rec3Supply.dorec3Mapping

(Occurrences: 1)

Member

Order of Sourct f rec2Supply.dorec2Mapping

(Occurrences: 1)

Member

Order of Sources of reciSupply.doreciMapping

(Occurrences: 1)

Member

Order of Sources of 1rSupply.dolrMapping (Occurrences: 1)

tgtl = (I) Unknown

Used In :

LHS or
LHS or
LHS or
LES or
Menmber
Member
Member
Member

RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)

RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)

RHS in Rule Top_Level_Package_Control{(#89) (Occurrences: 1)

RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of reclicurMap.doAssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)

140

tgt2 = (I) Unknown

Used In :
LHS or
LHS or
LHS or
LHS or
Member
Member
Member
Membexr

RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
RHS in Rule Top.Level_Fackage_Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of recicurMap.doAssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)

tgt3 = (I) Unknown

Used In :
LES or
LHS or
LHS or
LHS or
Member
Member
Member
Member

RHS in Rule Top_Level Package_Control(#87) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
If Change Actions of curlrMap.doAssign (Occurrences: 1)

If Change Actions of currec3Map.doAssign (Occurrences: 3)

If Change Actions of reclcurMap.doAssign (Occurrences: 1)

If Change Actions of rec2curMap.doAssign (Occurrences: 2)

141

tgt4 = (I) Unknown
Used In :

LHS or RHS in Rule Top_LeveX_Package_Control(#87) (Gccurrences: 1)
LES or RHS in Rule Top_Levei _Package_Control(#88) (Occurrences: 1)
LHS or RHS in Rule Top_Levei_Package_Control(#89) (Occurrences: 1)
LHS or RHS in Rule Top_Level Package_Control(#132) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)

tgts = (I) Unknown

Used In :

LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#88) (Dccurrences: 1)
LES or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
LES or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)

NAME : rec2Supply
Used In :
LHS or RES in Rule Top_Level_Package_Control(#132) (Occurrences: 2)
PROPERTIES :
actot = (I) Unknown
Used In :
LHS or RHS in Rule Top_Level_Package_Conurol(#87) (Occurrences: 3)
LHS or RHS in Rule Top_lLevel_Package_Control(#88) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Member Order of Sources of rec3Supply.dorec3Mapping
(Occurrences: 2)
Member Order of Sources of rec2Supply.dorec2Mapping
(Occurrences: 2)
Member Order of Sources of reciSupply.doreciMapping
(Occurrences: 2)
Member Ordexr of Sources of lrSupply.dolrMapp:ng {Occurrences: 2)

actyp = (S) Unknown
Used In :
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of reclcurMap.doAssign (Occurrences: 1)
Member Order of Sources of rec3Supply.dorec3Mapping
(Occurrences: 1)
Member Order of Sources of rec2Supply.dorec2Mapping
(Occurrences: 1)
Member Order of Sources of reciSupply.doreciMapping
(Occurrences: 1)
Member Order of Sources of lrSupply.dolrMapping (Occurrences: 1)
dorec2Mapping = (B) Unknown
NAME : rec2Supply.dorec2Mapping
INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1
SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INHERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first
INEERITANCE STRATEGY : Breadth first
PROMPT LINE : Mark the current object as being processed,
copy aircraft type and totals to temporary objects, trigger
assignment loop, and update number of available aircraft.
ORDER OF SOURCES :

Do TRUE SELF.Processed

Do SELF.actot REC2WMEM.actot

Do SELF.actyp rec2curMap.actyp
Reset rec2Mapping.Hypo

Do rec2Mapping.Hypo rec2Mapping.Hypo
Do REC2WMEM.actot SELF.actot

RunTameValu TRUE
IF CHANGE DO :
Used In :

LHS or RHS in Rule Stop_Assignment_rec2Mappings(#131)
(Occurrences: 1) in pattern matching

LHS or RHS in Rule Top_Level_Package_Control(#132)
(Occurrences: 2) in pattern matching

Processed = (B) Unknown
NAME : rec2Supply.Processed

INFERENCE CATEGORY : 1
INHERITANCE CATEGORY : 1

SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INHERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first

INHERITANCE STRATEGY : Breadth first

Comments : If these objects have not yet been visited, then they
are marked as not being processed.
ORDER OF SOURCES :
RunTimeValu FALSE
IF CHANGE 90 :
Used In :
LES or RHS in Rule Stop_Assignment_rec2Mappings(#131)
(Occurrences: 1) in pattexrn matching

NAME : rec3Assignments
Used In :
LHS or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 2)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
PROPERTIES :
actot = (I) Unknown
Used In :
LHS or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control{#132) (Occurrences: 3)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.dodssign (Occurrences: 2)
Member Order of Sources of rec3Supply.dorec3Happing
(Occurrences: 2)
Member Order of Sources of rec2Supply.dorec2Mapping
(Occurrences: 2)
Member Order of Sources of reciSupply.doreciMapping
(Occurrences: 2)
Member Order of Sources of lrSupply.dolrMapping (Occurrences: 2)

144

actyp = (S) Unknown

Used In :
LHS oxr
LES or
LHS or
LHS or
Member
Member
Member
Member
Membex

RHS in Rule Top_Level_Package_Contrel(#87) (Occurrences: 3)
RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 3)
RHS in Rule Top_Level_Package_Contxol(#89) (Occurrences: 3)
RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)

If Change Actions of curlrMap.doAssign (Dccurrences: 1)
If Change Actions of currec3Map.doAssign (Occurrences: 3)
If Change Actions of reclcurMap.doAssign (Gccurrences: 1)
If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Order of Sources of rec3Supply.dorec3Mappiug

(Occurrences: 1)

Member

Order of Sources of rec2Supply.dorec2Mapping

(Occurrences: 1)

Member

Order of Sources of reciSupply.doreciMapping

(Occurrences: 1)

Member

Order of Sources of lrSupply.dolrMapping (Dccurrences: 1)

tgtl = (I) Unknown

Used In :
LHS or
LES or
LHS or
LHS or
Member
Member
Membex
Member

RHS in Rule Top_Level_Package_Control(#87) (Occurrences:
RHS in Rule Top_Level_Package_Control(#88) (Occurrences:
RHS in Rule Top_Level_Package_Control(#89) (Qccurrences:

RHS in Rule Top_Level_Package_Control(#132) (Occurrenmces: 1)

If Change Actions of curlrMap.doAssign (Qccurrences: 1)

If Change Actions of currec3Map.doissign (Cccurrences: 3)
If Change Actions of reclcurMap.doAssign (Occurronces: 1)
If Change Actions of rec2curMap.doAssign fOccurrences: 2)

tgt2 = (I) Unknown
Used In :

LHS or RHS in Rule Top_Level_Package_Control(#87) ({ currences: 1)
LHS or RHS in Rule Top_Level_Package_Contr»1(#88) (uccurrences: 1)
LHES or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
LES or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssizn (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Jccurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)

tgt3 = (I) Unknown

Used In :

LES or RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control{(#88) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Cocrtrol(#89) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
Member If Ci.ange Actions of curlrMap.doAssign (Occurrences: 1)
Member If Cha.ge Actions of currec3Map.doAssign (Occurrences: 3)
Member If Chenge Actions of reclcurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)

16

tgt4 = (I) Unknown
Used In :
LHS oxr RHS in Rule Top_Level Package_Control(#87) (Dccurrences: 1)
LES or RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
LHS oxr RHS in Rule Top_Level Package_Control(#89) (Dccurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)
tgts = (I) Unknown
Used In :

LHS or RHS in Rule Top_Level_ Package_Control(#87) (Gccurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 1)
LHS oxr RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 1)
LHS or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 1)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actionz of rec2curMap.doAssign (Occurrences: 2)

NAME : rec3Supply
Used In :
LHS or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 2)
PROPERTIES :
actot = (I) Unknown
Used In :
LHS or RHS in Rule Top_Level_ Package_Control(#87) (Occurrences: 3)
LHS oxr RHS in Rule Top_Level Package_Control(#88) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Contxol(#89) (Gccurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of recicurMap.doAssign (Occurrences: 1)
Member If Change Actions of rec2curMap.doAssign (Occurrences: 2)
Member Order of Sources of rec3Supply.dorec3Mapping
{Occurrences: 2)
Member Order of Sources of rec2Supply.dorec2Mapping
(Occurrences: 2)
Member Order of Sources of reciSupply.doreciMapping
(Occurrences: 2)
Member Order of Sources of lrSupply.dolrMapping (Qccurrences: 2)

LT

actyp = (S) Unknown
Used In :
LHS oxr RHS in Rule Top_Level_Package_Control(#87) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#88) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#89) (Occurrences: 3)
LHS or RHS in Rule Top_Level_Package_Control(#132) (Occurrences: 3)
Member If Change Actions of curlrMap.doAssign (Occurrences: 1)
Member If Change Actions of currec3Map.doAssign (Occurrences: 3)
Member If Change Actions of reclcurMap.doAssign (Occurrences: 1)
Member If Change Actions of 1oc2curMap.doAssign (Occurrences: 2)
Member Order of Sources of rec3Supply.dorec3Mapping
(Occurrences: 1)
Member Order of Sources of rec2Supply.dorec2Mapping
(Occurrences: 1)
Member Order of Sources of reciSupply.doreciMapping
(Occurrences: 1)
Menmber Order of Sources of lrSupply.dolrMapping (Occurrences: 1)
dorec3Mapping = (B) Unknown
HAME : rec3Supply.dorec3Mapping
INFEREKNCE CATEGORY : 1
INHERITANCE CATEGORY :@ 1
SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
IREERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first
INAERITANCE STRATEGY : Breadth first
PROMPT LINE : Mark the current object as being processed,
copy aircraft type and totals to temporary objects, trigger
assignment loop, and update number of available aircraft.
ORDER OF SOURCES :

Do TRUE SELF.Processed

Do SELF.actot REC3WMEHM.actot

Do SELF.actyp currec3Map.actyp
Reset rec3Mapping.Hypo

Bo rec3Mapping.liypo rec3Mapping.iypo
Do REC3%¥MEH.actot SELF.actot

RunTimeValu TRUE
IF CHANGE DO :
Used In ¢

LHS or RHS in Rule Top_Level_Package_Control(#89)
{Occurrerces: 2) in pattern matching

LHS or RHS 1in Rule Stop_issignment_rec3Mappings(#140)
(Occurrences: 1) in pattern matching

Processed = (B) Unknown
NAME : 1rec3Supply.Processed

INFERENCE CATEGORY : 1
INEERITAKCE CATEGORY : 1

SLOT INHERITABILITY : Default
VALUE INHERITABILITY : Default
INHERITANCE STRATEGY : Default
INHERITANCE STRATEGY : Class first

INHERITANCE STRATEGY : Breadth first

Comments : If these objects have not yet been visited, then they
are marked as not being processed.
ORDER OF SOURCES :
RunTimeValu FALSE
IF CHANGE DO :
Used In :
LES or RHS in Rule Stop_Assignment_rec3Mappings(#140)
(Occurrences: 1) in pattern matching

NAME : tempmsac

PROPERTIES :
index = (I) Unknown
Used In :

Member Order of Sources of msac.index (Occurrences: 1)
gnty = (I) Unknowmn
Used In :
LES or RHS in Rule Top_level_dsup(#73) (Occurrences: 3)
LES or RHS in Rule select_dsupac_2(#74) (Occurrences: 2)
LES or RHS in Rule select_dsupac_1(#75) (Occurrences: 2)
LHS or RHS in Rule select_dsupac_O(#76) (Occurrences: 1)
Member Order of Scurces of dsupac.addprop (Occurrences: 2)
type = (S) Unknoun
Used In :
LES or RHS in Rule Top_level_dsup(#73) (Occurrences: 3)
LHS or RHS in Rule select_dsupac_2(#74) (Occurrences: 2)
LES or RHS in Rule select_dsupac_1(#75) (Occurrences: 2)
LHS or RHS in Rule select_dsupac_0(#76) (Occurrences. 2)
Member Order of Sources of dsupac.addprop (Occurrences: 1)

Ar8T.
Air88.
All87.

Dav84.

Dav88.

DBKS6.

DS85.

Har89.

LDS89.

Ped89.

Bibliography

Air War College. Theater War Ezercise Users’ Handbook 1987, 1987.
Air War College. Agile Eagle 88, 1988.

Thomas B. Allen. War Games. McGraw-Hill Book Company, New York,
New York, 1987.

Paui K. Davis. Rand’s experience in applying artificial intelligence tech-
niques to strategic-level military-political war gaming. Technical Report
P-6977, The RAND Corporation, Santa Monica, California, 1984.

Paul K. Davis. .\pplying artificial intelligence techniques to strategic-level
gaming and simulation. Technical Report N-2752-RC, The RAND Corpo-
ration, Santa M nica, California, 1988.

Paul K. Davis, Steven C. Bankes, and James P. Kahan. A new method-
ology for modeling national command level decisionmaking in war games
and simulations. Technical Report R-3290-NA, The RAND Corporation,
Santa Monica, California, 1986.

Paul K. Davis and William L. Schwabe. Search for a red agent to be
used in war games and simulations. Technical Report P-7107, The RAND
Corporation, Santa Monica, California, 1985,

Capt Harold D. Harken. An expert system for automating nuclear strike
aircraft replacement, aircraft beddown. and logistics movement for the
theater warfare excrcise. Master’s thesis, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1989.

J. Liebowitz and D. De Salvo. Structuring Ezpert Systems: Domain, De-
stgn, and Devclopment. Prentice-Hall Inc., Englewood Cliffs, New Jersey,
1959.

K. Pederson. Erpert Systems Programming: Practical Techniques for Rule-
Based Sytems. John Wiley and Sons Inc.. New York, New York. 1989,

