
OF

"JUL2,21991.

DLrBRMtTLa 'TAdNT X
Approvod foi pttblc Y41es

* 11;PANTMENT Or- T'HE AIR FORCE

AIR UNIVPRSITY

F~mCH1STITUTE OF TECHNOLOGY
* ~F O C NaL & - _ _ _ -~ ~ -- .

W rl~~iliv Pifcw 4iiq 1.~ e l s ,O l

AFIT/GNE/ENP/91M-3

DTIC
JUL 2 2 1991

D

HARDWARE UPGRADE OF A SEGMENTED
DRUM ASSAY SYSTEM

THESIS

Claude A. Irvine, Captain, USAF

AFIT/GNE/ENP/91M-3

Approved for public release; distribution unlimited

91-05728

AFI'x/GNE/ENP/91M-3

HARDWARE UPGRADE OF A SEGMENTED DRUM ASSAY SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial F'ulfillment of the

Requirements for the Degree of

Master of Science in Nuclear Engineering

I • .. : ' . ,

Claude A. Irvine, B.S. --

Captain, USAF

I ,March 1991 ;,

Apv .

Approved for public release; distribution unlimited

h
Preface

This thesis describes the conversion of a drum assay

measurement computer system (Digital Computer System PDP-

11/05), at EG&G Mound Applied Technologies, with an IBM PC.

The conversion of the computer system was primarily a team

effort. For this, I am indebted to Mr. Allen Campbell and

Steve Rowe of the Safeguards Applications Development and

Nuclear Material Control Group at Mound, and to Ernie Tyra

of the Electrical Engineering Group. Also, many thanks to

Major Beller, my thesis advisor at the Engineering Physics

Department, who made this all possible.

Claude A. Irvine

ii

Table of Contents

Preface .. ii

Table of Figures v

Table of Tables vi

Abstract ... vii

I. Introduction 1-1

!I. Principal Method of Drum Examination 2-1
Drum Assay Measuring Equipment 2-1
Drum Assay Procedure 2-2

III. Hardware Upgrade at Mound 3-1
Problem Definition 3-1
Electrical Mapping of Hardware 3-2
.stablishing PC to MCA Software Communications 3-8
DrumSYS.ASM 3-10
DrumSYS.BAS 3-13

E-tablishing PC to STC Software Communications 3-15
TableSYS.ASM 3-1.8

The Central Menu Program, DrumTAB.BAS 3-22
Compiling and Linking Codes Using MakeDRUM 3-27

IV. Future Efforts 4-1

V. Summary ... 5-1

?ppendix A: Sample Print-out of a Typical Control Drum
Measurement .. A-i

Appendix B: Listing of CONFIG.SYS B-1

Appendix C: Listing of AUTOEXEC.BAT C-i

Appe:dix L: Listing of DrumSYS.ASM D-1

Appendix E: Liating of DrumSYS.BAS E-1

Appendix F: Listirzg of TableSYS.ASM F-I

Appendix G: listing aI Drurar-sAB.BA. G-1

Appendix H: Listing of CLIIB.BAS H-I

Appendix I: Listing o', Makerum I-i

Appendix J: Electrical Mapping of PTO-24 and STC J-1

Ii

Appendix K: Drum Measurement Run Using DrumTAB,.........K-1

3Appendix L: Derivation of Correction Factors L-1

Vita............................. M-1.

UBibliography ... N-i

Ii

Table of Figures

Figure 1.1 Original Drum Assay System Configuration .. 1-3
Figure 1.2 Present Drum Assay System Configuration .. 1-3
Figure 3.1 PC to MCA/STC Wiring Diagram.................3-4
Figure 3.2 PIO-24 to STC Schematic......................3-6
Figure 3.3 Flow Chart of T±ableSYS.ASM...................3-19
Figure 3.4 Flow Chart of DrumTAB.EXE....................3-24
Figure 3.4 Continued....................................3-25
Figure 3.5 Program Layout...............................3-26

V

Table of Tables

Table 3.1 STC Control and Sense Lines...................3-17

vi

Abstract

;,This paper describes the conversion of a DEC PDP-11/05

computer system, previously used in Canberra's Model 2220B

segmented gamma scanner, with an IBM PC. Two tasks neces-

sary for completion of the project involved reestablishing

communications with a Canberra Series 35+ multi-channel

analyzer and a scan table controller. An additional seri-

al/parallel card was installed in the PC to reinstate comu-

nications with the multi-channel analyzer. For computer

control of scan table controller operations a digital

input/output card was used along with an external electrome-

chanical relay board; when implemented together this hard-

ware setup replaces functions that were normally processed

through a motion control interface card housed within the

DEC. Software consisted of Canberra's PC Toolkit while

newer programs were written in Microsoft's QuickBASIC 4.5

and Macro Assembler 5.1. Five codes were written--two of

these are device drivers written in assembly language and

the other three are menu and control programs written in

QuickBASIC. The modification enables simplified programmer

enhancements.

vii

HARDWARE UPGRADE OF A SEGAENTED DRUM ASSAY SYSTEM

U
I. Introduction

During the past several years EG&G Mound Applied Tech-

U nologies has been using a Canberra Model 2220B segmented

3 gamma scanner for measuring the amount of 'Pu in waste

drums. This system has worked well, however the computer, a

3 DEC PDP-11/05, was difficult to program and implementing

additional enhancements proved even more formidable. Thus a

U decision was made tc replace the outmoded DEC with a small

personal computer, an IBM PC.

However, the up-to-date computer system would still have

to manage control over the existing equipment. Especially

important was initiating operation of a Canberra Series 35+

multi-channel analyzer (MCA) and a scan table controller

(STC). In the DEC system, a motion control interface (MCI)

card controlled the STC by acting as a switch closure

3 device; so as a 3ubstitute in the PC, a digital input/output

card was used in conjunction with an external electromechan-

3 ical relay board. For reconnection of bi-directional commu-

nication circuits between t* Tr. and the MCA a

serial/parallel card was istalled. Finally software was

developed to run the modifi -, -.um assay system.

1 -!

Next, the development of the DEC to PC conversion is

explained by subdividing the following report into two

parts. For the reader unfamiliar with drum assay measure-

ments, the first part is a short discussion of the equipment

used and how a drum assay procedure is performed. The

second part (Chapter 3) is a detailed discussion of the DEC

3 to PC conversion. Most of the drum assay equipment is shown

in Figures 1.1 and 1.2, with Figure 1.2 showing the present

3 system at kound as a result of the computer upgrade.

Ii
I
I
I

I
I
I

I
1-2

i3

Iin

IDilECcu

bako IIN - DE &uIt~w k o

3To kevbowd Se----- 35 71i corum~UlnC17

I IB P

1Fig. 11 Qregin Drum Assay System C-onfiguration

I I. Principal Met)k of Drum Examination

I The simplest, non-invasive method for assaying radionu-

3 clides in sealed drums is by spectroscopy of gamma rays that

are sufficiently energetic and intense to penetrate the

3 walls of the drums. In most instances, spectra obtained by

a high-resolution detector, such as an intrinsic germaniun,

I coaxial detector used at Mound, will be characteristic of

specific radionuclides. However, the success of an assay

depends on the activity of the source, the mode of decay of

3 the radionuclides and whether they emit gamma rays of suffi-

cient energy to penetrate the walls of the drum. Complica-

3 tions are further introduced by the shielding factor of the

drums and drum contents. Yet in most cases the

determination of the radionuclide identities are readily

obtained by examination of the gamma peaks in a spectrum.

Drum Assay Measuring Equipment

A complete drum assay system usually consists of a num-

3 ber of distinct, separately-bought nuclear instrumentation

modules, or instead, a complete system can be purchased.

I There are several companies that build integrated drum assay

measurement systems, only one in particular is discussed in

this report, the system used by Mound which is manufactured

3 by Canberra Industries, Inc.

The following is a list of equipment of the drum assay

3 measurement system:

2
2-1

I

U

U 1. A gamma-ray detector, to determine the energy of
the absorbed gamma rays.

2. Pre-amplifier and spectroscopy amplifier, for
amplifying and shaping the signal.

U 3. Multi-channel analyzer, for determining the
gamma-ray peaks.

3 4. Computer, for analyzing the data.

5. A drum table platform, for manipulating waste
* barrels.

The above listing does not include ancillary items such as

power supplies, drivers, cables, etc., nor does it account

f oftware that is r Lical for controlling an entire

syL em.

I Drum Assay Procedure

To begin the procedure a sealed drum of known radioac-

tive waste, called the calibration standard, is placed on a

3 rotating platform and elevated to expose its lower side to a

collimated, gamma-ray detector. Next, the drum is scanned

I by the detector for a preset duration. Then the drum is

lowered to another position and another scan is completed.

Note: each successive step of the moving stage is controlled

3 through the use of computer software. Finally, once the

entire length of the drum has been scanned, the computer

3 generates a report of the contents based on the radionu-

clides identified from the gamma-ray spectra observed (see

I Appendix A for a sample print-out).

2
I

2-2

I

I

U One purpose of the calibration standard is to determiiie

the absolute efficiency of the detection system. This

information is then used as input data for future drum assay

measurements. In addition, the data serves as a benchmark

for subsequent measurement control runs. For this purpose

I the Mound Technical Manual' specifies that calibration data

be taken both before and after each session of drum assays

to confirm that the detection efficiency of the system

hasn't changed. After completing a calibration run, succes-

sive assays following the same routine can be repeated for

U one or more drums.

I
I
I
I
I
I
I
I
I
I 2-3

I

)

I'. Hardware Upgrade at Mound

The scanning system modified at Mound Nuclear Safeguards

and Development Group was a Canberra Model 2220B. Since the

purpose of replacing the DEC with a PC was to attain a more

efficient and reliable scanning system, a spin-off would be

simplification of code enhancements. However, modernizing

the hardware necessitated installation of three boards--a

serial/parallel card, a parallel input/output card and an

electromechanical relay board--to replace functions formerly

controlled by the DEC. This chapter discusses installation

of those items and of software developed to enable PC-to-STC

hardware handshaking and to link Canberra-supplied communi-

cation programs to the MCA.

Microsoft QuickBASIC was the primary language for soft-

ware development. Hence all software programs would run

inside, or in conjunction with, the QuickBASIC Interpreter.

Hardware drivers were written in Microsoft MACRO and then

compiled and linked as a QuickBASIC library. As a conse-

quence, the library module has to be loaded when QuickBASIC

is started.

Problem Definition

To complete the changeover, the PC needed to interface

with existing equipment by performing three main functions:

1. Communicate bi-directional data transfers with
an external MCA, via serial interface for ccm-
mand/control functions and parallel interface
for data transfers.

3-1

2. Function as the control panel by supplying
driver signals and sensing feedback signals to
and from the STC (the STC drives trolley motors
and lifts the drum turntable up and down, and
performs other various functions).

3. Analyze spectral data taken by the MCA.

Furthermore, development of new software would be needed

I to replace existing codes. Originally the DEC PDP-11/05

controlled input and output functions by using BASIC/RT-11

language programs provided by Canberra. This software con-

sisted of 3 main modules:

1. A BASIC language interpreter, with callable
machine language functions for system control
and data acquisition.

2. A calibration program.

3. A general purpose program that included several
BASIC subroutines for allowing the computer to
control MCA functions, like setting up a region-
of-interest (ROI), doing a spectral peak search,
or presetting counting time, etc. (a more
universal set of subroutines that parcels con-
trol and data transfers between the DEC and MCA
is given by Larry V. East 2).

Because all of the other drum assay equipment was retained,

newly uritten programs for the PC would have ti execute

identical ta5ks to the above BASIC/RT-11 language programs.

Thus the modified drum assay system would still operate

similarly to that of the original DEO system.

Ele.-trica Mapping of Hardware

This section di3cusses installation of new hardware nec-

essary to connect the PC with the MCA and STC. MCA communi-

cation hardware consisted of a parallel driver card

3-2

(commonly called the Fast IBM Interface or 3576) and a

serial communication card (just referred to as the PC Inter-

face or 3575). PC to MCA electrical connections were estab-

I lisLed by installing a serial/parallel (S/P) adapter board

in slot #2 of the PC, and coupling both serial ports by way

of a 9-pin null modem cable, 9-pin to 25-pin adapter, and

25-pin ribbon cable. Similarly, the parallel ports were

connected with a shielded 25-pin cable. Figure 3.1 shows

the wiring diagram and cable connections.

Additionally, since there was a limited number of serial

ports on the PC, a Clear Signal T-Switch Box was spliced

into the serial line so other applications could utilize the

same serial port. Serial hardware handshaking is enabled

when the switch on the box is in the "A" position.

The baud rate for the logic board in the MCA was set to

U 1200bps. Higher transmission speeds are also possible, how-

ever, the CANBERRA PC Toolkit Software Manual3 advises if

Microsoft Windows is to be used the baud rate of the serial

port should be less than or equal to 1200bps, thus assuring

no characters are lost in the transfer process. It was

U decided to limit data transmission to 1200bps for now,

* thinking that in the future windowing capability might be

applied.

Because a coi~rnion setting of 1200bps on both PC-to-MCA

communication boards was used, installing both serial and

I parallel communications were a necessity because of the huge

3-3

+

T()

IC I E
-t C

0-- -7CL

CLC

I I-i i7L

C D 0
P .O IS i

L _ _ 4

I

Hamount of data sent over the lines (the MCA could send up to
8192 channels of information). Transferring that amount of

data through a serial line would take up too much time, so

Ito minimize the transmission interval, command ar. control

functions were routed over a serial line whilc i. ransfer

used parallel exchange. Note howiver, parallt i,- ,rans-

3 fer was not critical since all MCA functions coul be han-

dled through serial communications.

For PC-to-STC communications, a high-output c\ trent,

parallel digital interface (PIO-24) was installed in PC slot

#5 (base address 304 hex), along wich an external electrome-

chanical 8 channel SPDT relay board (ERA-01), to route PC to

STC communications. All digital input/output lines from the

3 PIO-24 are connected te the ERA-01 via a MetraByte C1800

ribbon cable. Cabling from the ERA-01 to STC is by way of a

I 25-pin ribbon cable. Again, Figure 3.1 shows the wiring

diagram for cable and equipment connections, and Figure 3.2

shows a schematic of the electrical connections.

The PIO-24 and ERA-Ul devices are the functional equiva-

lent of the MCI card (recall Figure 1.1). originally, the

MCI served 7 iontrol lines by sinking 300 ma to common

i ground of an EG&G ORTEC NIM power supply. B"I" the PIO-24

could only sink 64 ma to ground, so it was used to drive the

ERA-01. Sink curr-nt is maintained for 7 control lines

through a et of relay contacts on the ERA-01 board. In

i adaition, 5 trise lineb -rom the STC enter the ERA-01.

3-5

i

II P10-24

PB port write latchas

I
*ERA-01 i STC

reoa dkivers relay drivers J2-1 5
0 -3

4 -7 1 P p r

PB port J-3

Siirelay 7 1 1

I I IF J2111

IPsport J2-1303 relay 4

---- ------

Fi re 3.2 PIO-24 to STC Schematc

3-6

These li~es are for sensing contact closure only and are

presently disconnected. For more information on control and

sense lines, see the next section, "Establishing PC to STC

Communications."

Three of the 7 PIO-24 control lines drive 3 relays on

the STC: KI, K2, and K3. Output from K1 and K2 set the

"return" and "advance" contacts of 6 small relays on the

drum turntable panel box. The panel kox has 7 large contact

relays (CR's 1-7) which drive the left and right trolley

motors and drum rotation motor; the small relays (CR's 8-13)

are the relay drivers for CR's 1-7. Output from K3 opens

and closes a shutter used by the transmission source. The

other 4 control lines (1-4) turn on display lamps on the STC

panel.

Appendix J shows each control line connection on the

PIO-24, ERA-01 and STC. For example, control line 5 is PB

port bit 5 on the PI0-24, PB port relay normally open con-

tacts on the ERA-01, and pin connection J2-13 on the STC.

In actuality a port bit does not directly join end to end a

port with its relay contacts, however, what is meant is the

port bit can energize a corresponding relay on the ERA-01.

Furthermore, the "common" contacts of all the relays are

connected to J2-25, which is common ground of the NIM power

supply. Since the contacts of the PB port relays are nor-

mally open, no connection is made to ground. However, set-

ting a PB port bit high on the PI0-24 (through TableSYS.ASM)

3-7

I
will close the proper relay on the ERA-01 and short the

normally open contacts to ground--in essence, activating a

control line. In this way the PIO-24 and ERA-01 combination

I can replace functions formerly managed by the MCI.

Establishing PC to MCA Software Communications

The Canberra S370 PC Toolkit is a collection of driver

I and utility programs (17 total) useful for setting remote

control communications between a Canberra MCA and an IBM

compatible computer. The 3 most important programs are PCU-

TIL.BAS, MCAS.COM and SETMCA.COM (page 13 of the PC TOOLKIT

SOFTWARE manual provides an in-depth explanation of each

I program). These programs establish serial communication.

Both MCAS and SETMCA are executable device drivers while

PCUTIL is a GWBASIC utility program. The essential codes

for parallel communication are BINS.COM, BINSTUFF.OBJ and

FASTRAN.EXE. Both FASTRAN and BINSTUFF are FORTRAN test

programs, while BIN3 is the parallel device driver. Since

all 6 programs were vital in governing MCA operations, each

I one was installed.

* The first prerequisite was to check the settings of the

S/P board port addresses. By default, initial factory set-

* tings activate software handshaking using serial port #2 and

parallel port #3. Port allocation was verified by

I CHECKCOM.COM, a program that verifies port availability and

* determines whether or not the port is suitable for serial or

3-8

parallel communications. Then the device drivers, MCAS.COM

and BINS.COM, were installed in CONFIG.SYS. Appendix B

lists a print-out of CONFIG.SYS. Since the jumper in the

S/P card was set to COM2 and LPT3, the device driver argu-

ments in CONFIG.SYS (for MCAS.COM and BINS.COM) are COM2 and

I LPT3, respectively.

Finally, SETMCA was added to AUTOEXEC.BAT. Appendix C

lists a printout of AUTOEXEC.BAT. SETM4CA sets the software

for serial communication to operate at 1200bps--the same as

the baud rate setting on the MCA logic board. Note: when

I changing the baud rate, failure to set the logic board and

SETMCA to the same value will disable serial handshaking.

Since Canberra specified serial communications could be

accomplished in either BASIC or FORTRAN languages, and par-

allel data transfer by using FORTRAN only, a principal lan-

guage needed to be selected. The Microsoft QuickBASIC

Interpreter becam ,..:e primary language for code development

because of its outs,.4:ding debugging capabilities. However,

this meant FASTR, ti :.,I to be rewritten in QuickBASIC with

BINSTUFF converted ov r to a QuickBASIC library, and lastly,

PCUTIL needed t. r'Ln inside the interpreter.

Proper operatlon of the serial communication line was

I checked by running PCUTIL under GWBASIC. Several commands

were given, e.g., initialize the MCA and set regions of

interest, in verifying serial hardware setup. No problems

were encountered.

3-9

DrumSYS.ASM. The original BINSTUFF was a collection of

5 FORTRAN subroutines that passed data back and forth to the

device driver, BINS. However, BINSTUFF didn't work, at

least in the QuickBASIC environment. Replacing the object

code meant BINSTUFF had to be rewritten in assembly lan-

guage, and also had to be Microsoft compatible in order to

be linked as a QuickBASIC library. Appendix D lists the

assembly source code for DrumSYS.ASM--essentially the same 5

procedures as in BINSTUFF but condensed into one code and

data segment and rewritten with Microsoft Macro Assembler4

I directives/instructions and BASIC calling/naming conven-

tions.

Two of the five procedures are documented in-depth,

while the other three share instructions similar to those

observed in the first two procedures. And all of them fos-

I ter DOS interrupt functions and standard File Cortrol

Blocks.

Because documentation on BINS and BINSTUFF was nonexis-

tent, it made deciphering the original BINSTUFF difficult.

Apparently DEVICE is used as a symbol for the ASCIIZ string,

'BIN1.' This means BIN1 is a device (opened by BINS) for

writing data to during a parallel data transfer. In the

Ul same fashion, FILEHANDLE is a symbol that contains the file

handle.

3-10

DOS interrupts open and close the file BIN1. For exam-

1, ple, the first interrupt (INT 21/3D) in the OPENBI procedure

accesses the file private to the current process. On a

successful return, BIN1 is opened with the read/write

pointer at the beginning of the file. Ths file handle (a

2-byte number, or word) is used -n later DOS interrupts to

reference back to BIN1. Actually, file handle is the 2--byte

offset address while DS (Data Segment register) points to

the segment address, also 2 bytes.

After BIN1 is opened, the next procedure, INBIN, per-

forms the actual data transfer. Now parameters are passed

to the procedure along with the return address. A

requirement of BASIC is to declare. assembly-language proce-

dures as FAR. Hence, the return address is 4 bytes long.

This may not seem important at first, but when DrumSYS.BAS

calls these procedures it makes a difference. The reason

for this is the way BASIC calls an assembly-language pro-

gram. By default, BASIC passes parameters to a procedure by

reference as a 2-byte addresss . But as will be seen later

on in DrumSYS.BAS, the parameters are passed as LONG, i.e.,

I a 2-byte segment address in both SS and DS registers plus

another 2-byte offset address--4 bytes total. First, BP,

which serves as a framepointer, is rushed anto the stack.

Next BP is loaded with the last value SP (Stack Pointer)

pointed to--the old value of BP. Since BP never changes in

the procedure, all 4-byte parameters pushed unto the stack,

3-11

and the 4-byte return address, can be referenced relative to

3 BP. Thus, if 2 parameters were pushed onto the stack,

[BP+12] would point to the first parameter, [BP+8] would

point to the second parameter, and finally, [BP+4] would

point to the return address. Then it is a simple matter to

access the data as required in the rest of the procedure's

3 body.

In summary, the original procedures from BINSTUFF were

3 rewritten, and the new assembly-language program is called

DrumSYS.ASM. Next, DrumSYS.ASM was made into a QuickBASIC

I library. From the DOS prompt, DrumSYS.ASM is compiled into

3 an object code using the command:

> MASM DrumSYS.ASH /zi

The option /zi is an assemble-time option that produces an

object file in CodeView format. CodeView is a symbolic

I debugger from Microsoft and is useful for troubleshooting

3 machine code. For now, the compiled code called DrumSYS.OBJ

is linked as a QuickBASIC library using the command:

3 > Link /q DrumSYS.OBJ,DrumSYS.QLB,,BQLB45.LIB /co

Again, the /co option is used for CodeView only.

I To call the procedures inside the QuickBASIC Inter-

preter, QuickBASIC has to be loaded with the command:

QB /1 DrumSYS.QLB

Now the QuickBASIC Interpreter has all five procedures

available for accomplishing parallel data transfers. In the

3-12

Il

following section, the conversion of FASTRAN into the code

DrumSYS.BAS is discussed along with how parameters have to

be defined before they can be passes :o DrumSYS.QLB.

DrumSYS.BAS. As pointed out earlier, BINSTUFF was to

be called from a FORTRAN program called FASTRAN. FASTRAN

was a test program that could transfer data files (MCA spec-

tra) on disk to and from the MCA. It used a serial line for

sending simple command functions while data were dispatched

over a parallel line. The new FASTRAN, rewritten in Quick-

BASIC, is called DrumSYS.BAS. Appendix E lists the Quick-

BASIC source code for DrumSYS.BAS--practically the same

3 lines as in FASTRAN but rewritten with Microsoft QuickBASIC

subroutines and BASIC calling/naming conventions.

3 Another addition to DrumSYS.BAS was the ability to chain

to Canberra's utility program PCUTIL.BAS. However, PCU-

TIL.BAS would not run in the QuickBASIC Interpreter, so it

3 was modified. Because of the length of this program

(approximately 800 lines of code), it is not listed here.

3 The new program (PCUTILQB.BAS) is the same as Canberra's

except with a few minor changes.

I DrumSYS.BAS is adequately documented, so only a short

discussion is included here. However, there are two impor-

tant peculiarities. One has to do when DrumSYS.BAS is first

3 started, and the other when parameters are passed to

DrumSYS.ASM.

I

3-13

The serial device driver MCAS.COM opens two devices,

denoted MCAIN and MCAOUT. These devices are used for MCA

communication; note: they are not "ordinary" files. Drum-

SYS.BAS will write information to MCAOUT and read data from

MCAIN in order to communicate with the MCA. If the MCA does

not respond and an error condition occurs when DrumSYS.BAS

opens MCAIN for input, press the INDEX and HOME keys (on the

MCA front panel) simultaneously to clear the MCA and enable

Shandshaking. In the event the above does not work, then

press the YES key (on the MCA front panel) and retry. The

I previous steps should only be needed when the MCA is firstu turned on. The reason is because on the back of the MCA

there is a switch that has three positions: Remote, Shared,

and Local. When the switch is in the Shared position both

the front panel keyboard and a remote computer can enable

I handshaking. However, during a cold start-up and when the

switch is in the Shared position, the MCA electrically pulls

one of the serial line pins low, thus disabling remote com-

munications. The above procedure reinstates remote communi-

cations.

In DrumSYS.BAS parameters are passed to DrumSYS.ASM as

LONG, i.e., a 2-byte segment address plus another 2-byte

offset address. This implies numerical data must be

declared LONG (4 bytes). In QuickBASIC an integer data type

is only 2 bytes long, so failing to pass values as 4 bytes

will eventually cause the computer to hang. The problem is

3-14

solved in DrumSYS.BAS with the "DTh' 5FLARED IA1R(8194) As

LONG" statement. Another concern is bhw the array IAR is

passed. B&AC uses)rn 'array descriptor" 4- - Rss array.

The array 6escriptor lets BASIC access an array Ly point~ing

to the firvMt element oi the array's address. Thiz is necis-

sary because~ EASIC allocate!; 'omr~iver memo?7y dynamically:

thus an array may shift in memory loccatioz when the program

is run. Ther^.Ire QuickBASIC VARPTR and VAPqEG functions

must be used when passing an array. However, one exception

to this rule i-s if the array elements are passed by value.

For mote iriformation on F'ASiC ar-'ay descriptors -ee Micro-

sof t's Mixed-Language Proq9:>-.ding Guide.

Establishing PC to STC Software Communications

The S'rC (model #2225B) is the rack mounted control panel

for the garnvia, scanner6 . It is the main panel for starting

an assay measurene,it sequeno;e. The panel performs four cen-

tral finictions: SYSTEM POWER, SEGMENT SIZE CONTROL, TABLE

ROTATION and PROGRAM CONTROL. These functions are

sumrmarized in the Segmented Gamma Scanner operLting Manual

as follows:

1. SYSTEM POWER: Turns on the AC power to the drum
rotator panel and contains the emergency stop
button.

2. SEGMENT SIZE CONTROL: Limits the length o!- drum
segments. Use of the RETURN button moves ,:he
dr--m table to the top position and using the
ADVANCE button indexes timer to advance the 'i:um
table do~wnwards. Note: RETURN and ADVANCE are
computer controlled relays.

3-15

3, TFABLE ROTATI12 ON position the trollies fpr-
ward and starts drum table rotatio%. OFF posi-
tioll Moves the trollies bac)kwarFc and stops drum

table :otation.

4. kROGRAM. CC*wqROL: SHUTTER openzT and clozes the3shutter. AnURT teruinAtes khe druiin A-ssay mea-
suremnent. CALtE initiates thir -_lUbration pro-
cedure. INIT allows for :.~lcalibrztit-On of
drum. ASSAY start5 the assay rneasuremeat
-procedure.

Two of the functions, SEGM4ENT SIZE CONTROL and PROGRAY.

CONTROL, %deploy "digital" input/rutput lines to implement a

drum assay procedure.

Presently t-he&-e are 12 digital linas, 'i _nntrol lines

and 5 sense lines. These are .wart-arized in Table 3.1. Th-e

PC invokes operation of che control lines through 1.ble-

SYS.ASM, the software driver for the STC. Right now all

zen3e lines are disconnected at the ERA-01 because of

earlier troubles that were encountered when AC cross talk

3 would feed back into the parallel digital interface and

destroy integrated circuits; nonetheless, their functions

nave been replaced by using a time-delay procedure (in Tab-

leSYS.ASH) called Pause(x).

Most of the mechanics of the drum assay utilize control

lines 5, 6 and 7. For example, invoking control line 6

(relay K(2 energized) will activate a drum segment size

timer; the timer is preset by rotating several thumb-wheel

switches on its front face to a desired setting. once the

timer energizes it lowers the drum table platf-'rm until time

has run out. Tht.s, the length of the segment drop is lim-

3-16

ited by the setting on the timer and remains constant

throughout the drum assay procedure. Program f3r4 will then

issue commands to the MCA through CALIB.BAS (see Appendix H)

to start collecting data. Issuing another control 6 again

lowers the drum, and this cycle repeats until all segments

have been analyzed. Similarly, control 7 (relay K1 ener-

gized) moves the drum table platform upwards, and control 5

(relay K3 energized) opens and closes the transmission

zour<e shutter.

I
TABLE 3.1

STC Control and Sense Lines

Control Linc E. on

1 Turn lamp on
2 Turn CALIu i-m on.
3 Turn INIT lamp *;.
4 Turn ASSAY lamp on.I 5 Open transmission sourcL shutter and turn 6YTTER in on.
6 Move drum table downwards.
7 Move drum table upwards.

Sense Line

1 Signals ABORT button has been pressed.
2 Signals CALIB button has been pressed,
3 Signals INIT button has been pressed.
4 Signals ASSAY button has been pressed.
5 Signals drum table is advancing.

3-17

U

T-ble.YS.ASM. TableSYS.ASM is the software driver for

the PIO-24. It consists of 4 public assembly-language pro-

cedures (public means the procedures are accessible fLom

I another high-level language). These are

(1) SetCRconfig(): initializes PIO-24 mode, no
parameters are passed;

(2) Set(x): will energize relays 1-7, pass numbers
1-7;

(3) Clr(x): will turn off relays 1-7, pass numbers
1-7;

(4) and Pause(x): will suspend program execution for
1 to 59 seconds. Procedure uses DOS system time
and is independent of processor speed, pass num-
bers 1-59.

Appendix F lists the TableSYS.ASM source code, and Figure

3.3 shows a flow chart of each procedure. More important,

I however, is every directive and instruction in the code has

been commented should the PIO-24 port addresses need to be

changed.

The "twenty-four" in PI0-24 stands for 24 digital

input/output lines. These 24 lines are divided equally

among 3 ports: PA, PB, and PC. All ports are configured

input only when the computer is first turned on. However,

when DrunTAB.BAS (see next section) is started it ini-

tializes the control register on the PIO-24 using the SetCR-

config() procedure. SetCRconfig() zeroes the contents of

the write latches (all ports) and configures PB as a write

only port. Currently the PA and PC pcrts are not used.

I
? -18I

U))

.5L

2 0

0

U) Z CF

10 cc

00

3-19

I

H Functionally, procedures Set(x) or Clr(x) drive the

PIO-24 by retrieving a 2-byte integer parameter placed onto

the stack segment. The variable x is the parameter passed,

and ranges from one to seven. Accessing the value is the

same as described in the DrumSYS.ASM section. The parameter

has a one-to-one correspondence with control lines 1 through

7. For instance, a value = 3 means control line 3. Next,

the parameter is encoded to the relevant PB port relay.

This is accomplished by raising the number 2 to the parame-

ter power. For example, a parameter equal to 3 is changed

I to 23 - 8. The new value is then converted to an 8-bit

number that corresponds to the PB port relay on the ERA-01

(see Appendix J). Since there are 8 PB port relays (0-7)

and only 7 control lines, each control line is mapped (again

a one-to-one correspondence) to one relay. Hence a parame-

I ter = 3 means control line 3, PB port latch bit 3, and PB

port relay 3, with the byte number sent to the ERA-01 equal

to 00001000 (in binary).

That's the way the process should work, however, there's

one slight problem. When examining a drum it's necessary to

i set more than one control line. Changing the sense of one

bit would turnoff the other relays (bit sense = 0), so to

solve the problem a copy of the last command sent to the

PIO-24 is saved in the data segment. The symbol LAST is a

direct mr iry operand that represents the address (segment

and offset) of the last command byte, and is referred to as

3-20

I
I

a "relay mask". In general, the relay mask is formatted as

two 4-bit nibbles. The low-order nibble (bits 0 through 3)

corresponds to control lines 1-3. Likewise, the high-order

U nibble (bits 4 through 7) corresponds to control lines 4-7.

In a Set(x) procedure a bitwise logical OR on the PB port

latch register (BL register) and relay mask is performed.

3 The new byte is placed in the AL register and sent out to

the PB port. As a result, only the relay that needs to be

I activated is turned on, or in the case of a Clr(x) proce-

dure, the relay is turned off. Clr(x) works similar to

Set(x) except it uses a bitwise logical AND on the port

I latch register and the relay mask.

Finally, the procedure Pause(x) is just a time delay

with x being the number of seconds (between 1 and 59) to

delay by. Since Pause(x) uses DOS interrupts, timing is

independent of processor type. Hence an AT style computer

3 would have the same delay as a 386 type machine. Mainly

Pause(x) serves as a substitute for the sense lines that

3 were previously used in the old RT-11 BASIC codes. The

purpose of the sense lines were to let the computer codes

know the STC was busy running the drum table platform. As

3 an alternative, the programmer counts the number of seconds

for the STC to perform a specific task (for example, moving

3 the drum down one segment might take 5 seconds) and inserts

i
I

3-21I

I the appropriate delay in his/her codes using Pause(x). At

first it might seem this appears like a cheap fix, however,

it works well because of the constant RPM AC motors.

Like DrumSYS.ASM, compiling TableSYS.ASM into an object

code is the same. In addition, the two object codes can be

linked together to form one QuickBASIC library; then all of

the procedures in both codes are available to DrumTAB.BAS,

the menu program. Aside, an advantage of using assembly-

language modules is that they can be interfaced from any

high-level language without requiring modification should

I DrumTAB.BAS be written in another language.

3 The Central Menu Program, DrumTAB.BAS

DrumTAB.BAS is the main program that exploits all the

features that have been talked about earlier. It can be

I started in the QuickBASIC Interpreter or compiled and linked

separately into an executable code, DrumTAB.EXE, using Make-

3 Drum (see next section).

Program flow starts, as seen in Figures 3.4 and 3.5, by

setting the computer environment and initializing communica-

3 tions with the MCA and STC. Once successful, the code

prints a menu on the display screen and then prompts the

3 operator for his/her input. Depending upon which case was

selected, the next step executes appropriate subroutines to

I perform the desired task. In the particular case of a drum

I assay procedure, DrumTAB executes Set(x) and/or Clr(x) pro-

I
I

cedures until it reaches the subroutine: Start Drum Assay

Procedure. Then program management is transferred to an

include file that controls MCA operations, like collecting

ROI data, setting counting time, etc. Other than the excep-

tion of the include file, all operations are performed by

DrumTAB--in conjunction with its library routines.

I
I
I
I
I
I
I
I
I

3-23

I

3 Set DisVW C-Olo

MCA - NoPress MCA

Estbrh OAN)X & HOW~ keys

conmummkajons Press MOA

Set RO-24 1:I
Corfdsgimdo I i T.1.,49Sys I MACoto

1 IProeee 41Jrd
O~a lldrelays

DispWa Top Level i

3ao Is 53I CaS 4! ICase.5 !Case 6 I W8

Figure 3.4 Flow Chart of DrumTAB.EXE

-2 4

F

* ,'

i

, !

[--"I i ''

-- i i ati $i
I I i1' ~ L i

.. ..i .:., E

L ii
L ___ ___ I I i ti ______

I , i II
* 11i I E*I l 1

; ' r- I' ! I !il.1l,!
i 1 - ! ! i i~ i lil i i i

I ! r "rL ! :i-

I -- 1 _ _ _ _ _ __--_ _t:_ __I_:/ 1i ;
I : : , i

<, 0

400

0)

U-

3-26

Compiling and Linking Codes Using MakeDRUM

To simplify compiling and linking all codes necessary to

run DrumTAB.BAS outside the QuickBASIC Interpreter, a short

code called MakeDrum is used to construct DrumTAB.EXE.

Appendix I lists MakeDxum. It implements Microsoft's Make

Utility to re-compile and link programs that have been modi-

fied since the last time they were compiled. Hence MakeDrum

shortens the amount of time a programmer spends at the

keyboard writing assembler commands, and makes changes to

any of the programs a cinch to do.

3-27

IV. Future Efforts

The test file, CALIB.BAS, was used as an include file in

DrumTAB to check whether or not a drum assay procedure could

be accomplished with the new hardware setup. A sample out-

put from CALIB.BAS is seen in Appendix K. This is similar

to the DEC print-out in Appendix A. However, extra work is

needed to correct the number of counts under the full-energy

peak for absorption/scattering losses; also, no error analy-

sis was performed. Hence two undertakings, an error analy-

sis and addition of correction factors, must be considered

part of a drum assay measurement. Included in Appendix L

are mathematical derivations for the correction factors.

Also, enhancements in the way of mouse support, a split

screen graphics menu, and modular code design should eventu-

ally be incorporated. Nevertheless, these, and the efforts

mentioned above, are left as suggestions for yet another

project.

4-1

V. Summary

A DEC PDP-11/05 computer system, used in Canberra's

Model 2220B segmented gamma scanner, was replaced with an

IBM PC. Additional hardware for the computer upgrade

included installation of a serial/parallel board, a digital

input/output board (PIO-24) and an electromechanical relay

board (ERA-01). Five computer codes were written: Table-

SYS.ASM, DrumSYS.ASM, DrumSYS.BAS, DrumTAB.EXE and CAL-

IB.BAS. TableSYS.ASM is a software device driver for the

PIO-24. DrumSYS.ASM and DrumSYS.BAS are used with

Canberra-supplied software for parallel data transfers.

DrumTAB.EXE is a main menu and control program, and CAL-

IB.BAS is an include file that interfaces with a Canberra

Series 35+ multi-channel analyzer. A drum assay measurement

was accomplished using the above codes and the hardware

setup as described in Chapter 3. A sample print-out is

listed in Appendix K. The modification enables simplified

programmer enhancements.

5-1

Appendix A: Sample Print-out of a Typical Control Drum Measurement

DIAGNOSTIC INDICATOR INFORMATION FOR 26-JUL-90 AT 15:43:39
LIVE TIME: 300 SECONDS
NEW LIVE TIME (SECONDS):

CHANNEL DATA NET DATA CHANNEL DATA NET DATA

948 219 61.1 1101 61 3.6
949 259 101.1 1102 61 3.6
950 278 120.1 1103 68 10.6
951 215 57.1 1104 48 -9.4
952 236 78.1 1105 48 -9.4
953 259 101.1 1106 75 17.6
954 27779 121.1 1107 54 -3.4
955 357 199.1 1108 67 9.6
956 516 358.1 1109 60 2.6
957 1846 1688.1 1110 83 25.6
958 8357 8199.1 1111 164 106.6
959 28009 27851.1 1112 251 193.6
960 51021 50863.1 1113 274 216.6
961 42261 42103.1 1114 180 122.6
962 14338 14180.1 1115 82 24.6
963 1974 1816.1 1116 57 -.400002
964 243 85.1 1117 47 -10.4
965 143 -14.9 1118 51 -6.4
966 125 -32.9 1119 67 9.6

967 110 -47.9 1120 47 -10.4
968 93 -64.9 1121 42 -15.4
969 88 -69.9 1122 39 -18.4
970 100 -57.9 1123 49 -8.4
971 99 -58.9 1124 59 1.6
972 91 -66.9 1125 64 6.6

152328 2263 GROSS AREAS
146801 655.8 NET AREAS

EKG LOW SIDE = 241.4 BKG LOW SIDE = 57.2
8KC .1IGH SIDE = 74.4 E[.G HIGH SIDE = 57.6
AVERAGE BKG = 157.9 AVERAGE BKG = 57.4

LIVE TIME = 300 SECONDS
TRUE TIME = 312 SECONDS
DEAD TIME = 3.84615%

CS-137 PARAMETERS PU-238 PARAMETERS
MAX CHAN = 960 MAX CHAlN = 1113
MAX DATA = 50563.1 MAX DATA = 216.6

A-I

FWHM = 2.720P FWHM = 3.12638
FWTM = 5.21359 FWTM = 5,2889
COUNT RATE = 489.338 COUT RATE = 2.186

ENERGY CALIBRATION:
ENERGY (KEy) = .684581 * CHANNEL 4 4.45081

READY
RUN MC

A-2

Appendix B: Listing of CONFIG.SYS

I devicemrsmouse.sys /I

buf fers=25I DEVICE=C:\REML.SYS
DEVICE=C: \SMARTDRV. SYS 256 /a
break on
device~c: \dos\ansi .sys
device~c:\toolkit\bins.cam /3
de,ice~c:\toolkit\mcas~com /2

B-1

Appendix C: Listing of AUTOEXEC.BAT

prmpt $p~g
pathtc: \;c:\ric;c: \zips; c: \dos;c:\uti; ;c: \norton;c: \windows;C: \NBACKUP;C: \TOOLKIT;C: \bir,
set NBACKUP=C: \NBACKUPI C: \TOOLKIT\SETMCA 1200 ,E,7,1
C:\QB45\QB.EXE C:\Q845\THESIS\drumtab.BAS /1 C:\QB45\THESIS\drumtab.QLB

I-

Appendix D: Listing of DrumSYS.ASM

; File called DrumbYS.ASM, used for parallel data transfers.
; Replaces Canberra BINSTUFF.ASM
; Make into an object code (DrumSYS.OBJ) by running MASM
; For example, at DOS prompt type: MASM DrumSYS.ASM
; Last written on 7 Oct 90 by C. Irvine

.286 ; 286 processor directives

.SEQ ; order segments as they appear

FRAME struc
SAVEDS DR ? ; word (2 bytes) copy of DS register
SAVEBP DW ? ; word (2 bytes) copy of BP register
RETADDR DD ? ; double word (4 bytes) return address
IiRRAY DD ? ; double word (4 bytes) address of data
FRAME ends ; block array

Data Seg Segment Public 'DATA'
DataSeg ends

Code.Seg Segment Public 'CODE'
Assume CS:Code_Seg,DS:Data_Seg,SSDataSeg

DEVICE db 'BIMI',O ; ASCIIZ string for BiNS.COM
FILEHANDLE dw ? ; File handle

public OPENBI
OPENBI proc far

push bp , save "framepointer"
push ds ; save DS
mov ax, Code.Seg ; initialize DS register
mov ds, ax
mov dx, OFFSET DEVICE

; load address of DEVICE into DX
mov ah, 61d ; For INT 21/3D Open File
mov al, 128d
int 33d

jc OPENBINdone ; jump out of here if error
mov FILEHANDLE, ax save File handle
mov bt, ax get File handle Rem: still in ax
mov ax, 4401h For INT 21/44/01 IOCTL: Set Device

Information
mov dx, 96d End of file OFF, binary mode
int 33d

OPENBINdone:
pop ds

D-1

pop bp
ret

OPENBI endp

public INBIN
INBIIC proc far

push bp ; save frampointer
push ds ; save DS
inov ax, Code..Seg ;initialize DS registerI 'ov ds, ax
'nov as, FILEHINDLE ;save FILEHWJILE
'nov bp, sp ;set stack framepointerIIds di, [bp].IMRRY store segment address in DS and

; ffset address in DX
'nov si, di point to offset address
'nov cl, [si] get channel countIadd cx, cz
add cz, cx convert to byte count
'nov hi, FILEHANDLE ;get file handleI 'nov ah, 63d
int 33d ; INT 21/3F reads handle and transfern

CX bytes to buffer
pop ds
pop bp
ret 4 ;remember: byte count =4 long integer

INBIN endp

public OPEIIBOIOPENBO proc far
push bp
push ds
'nov ax, Code...Seg ; initialize DS registerI 'ov ds, ax
'nov dx, OFFSE? DEVICE
mov ah, 3db ; open file
may a'-, A.1h ;write access
int 21h
jc OPENBOUdone ;jump out of here if error
moy FILEHANDLE, ax
'nov hi, ax get file handle
'nov ax, 4401lh IOC7L set device
'nov dx, 0096d ; OF off, binary onI mt 33d

OPE~NEUdone:
pop ds

ret
OPENBO endp

D-2

H public OUTBIN
OUTBIN proc far

push bp
push ds
mov ax, CodeL.Seg ;initialize DS register
may ds, axImay ax, FILEHANiDLE
may bp, sp
Ids di, [bp].IARRAY
may si, di
may cx, [si]
add cx, 2
add cx, exIIadd cx, cx
may bx, FILEH&NDLE
may ab, 64d ;write
mnt 33d

pop ds
pop bp

COTBIN endp

public CLOSEB
CLOSEB proc far

push bp
push ds
may ax, Code-Seg ; initialize DS register
moy ds, ax
mov bx, FILEHANDLE
nov ah, 62d ; close
itt 33d

I pop dG
pop bp
ret

CLOSEB erndp

Code..S-g eiads

* END

D3-3

I

Appendix E: Listing of DrumSYS.BAS

I OPTION BASE 1
DECLARE SUB OPENBI
DECLARE SUB INBIN (IAR AS LONG)
DECLARE SUB OUTBO
DECLARE SUB OUTBIN (BYVAL segaddr AS INTEGER, BYVAL addr AS INTEGER)
DECLARE SUB CLOSEB
DECLARE SUB DisplayTopLevelMenu (ICON!, TotalCoumands!)
DECLARE SUB DisplayMemoryRangeOptions (MEM%)
DECLARE SUB ReadOutSpectrum ()
DECLARE SUB OpenDrivers ()
DECLARE SUB CloseDrivers ()
DECLARE SUB CursorPosition (row!, col!)
DECLARE SUB PositionCursor (row!, col!)
DECLARE SUB SetDisplayColors ()
DECLARE SUB GetlnputAndCheck (row!, col!, lower!, upper!, VALUE$)
DECLARE SUB TimerDelay ()
DECLARE SUB SendSpectrum ()
DECLARE SUB PCutility ()

UThe following is a sample QuickBASIC program which will perform data
transfers using the serial PC interface for courands and the Fast IBM
parallel interface for data transfer.

* This program uses the MCAS.COM serial driver and BINS.COM parallel driver
for cmunicating with the serial and parallel interfaces of the MCA.
This program requires DruSYS.QLB (a Quick Library containing several
subroutines which will communicate with the parallel interface using
the parallel driver BINS.COM) be loaded while in the QuickBASIC environment.
The comand to load the library from DOS is

I C:\QB45\QB.EXE /1 C:\QB45\THESIS\Dr-SYS.QLB

NOTE: The use of this program requires the following interfaces be installed:

Model 3575 PC Interface for serial comunications
* Model 3576 Fast IBM Interface for parallel data transfers

VERY IMPORTANT: This code is a modified version of FASTRAN source code
from Canberra Industries, Inc.

PROGPAM DrumSYS.BAS

Set lower subscript to 1, as in FORTRAN
Failure to define IAR as long (4 bytes) may cause an error

I
E-1I

1 DIM SHARED IAR(8194) AS LONG
COMMON SHARED DATAFile AS STRING * 11
COMMON SHARED UCAIN AS STRING *5

COMMON SHARED MCAOUT ' S STRING *6
COMMON SHARED ESC$
ESC$ =CHR$(27)

CALL Set~isplayColors
CALL OpenDrivers

DO BEEP

CALL DisplayTopLevelMenu(ICON, TotalCouiands)

I IF (ICONM 1) THEN
CALL PCutility

ELSEIF (ICOM =2) THEN
CALL ReadOutSpectrwnIELSEIF (O = 3)STHEN

EI I
LOOP WHILE ICOM 0> TotalCo-mands

CALL CloseDrivers

END

SUB CloseDrivers

Close all drivers

RESET

END SUB

I SUB CursorPosi.ion (row, col)

row = CSRLINI col =P05(z
END SUB

ISUB Displ ayMemoryRangeOpt ions (F11

'Display memory range options.

CALL PositionCursor(row, col)
PRINT TAB(col); "Select Xemo.rY Range Options"
PRINT
P R IN TAB(col); " 1 =Pull Hm-3ry"
PRINT TAB(col); " 2 =First Half"
PRINT TAB(col); m 3 =Second Half"IPRINTI TAB(col); " 4 =First Q-arter"

PRINT TABicol); "5 = Second Quarter"

E-2

PRINT TAB(col); " E Third Quarter"
PRIXT TAB(col); " 7 =FourtEh Quarter"
PRINT " "

PRINT TABIcoi); "Enter Memory Range> "; TAE(col 421);

CALL CursorPosition(row, col)
CALL GetlnputfindCheck(row, col, 1, 7, VALUE$)
HEF% = VAL(VALUE$)J: 'Co.mand Input.

EN SUB

SUB Displaf~apLevel~enu (ICO, TotalCoruiands)

Display the top level menu.

TotalCo=.ands =4: 'mri,- nmniber of comands available to user
CALL PositionCursor(row, col)
'Print menu screen
PR W. TAB(col); "MOUND YCA Cowmi'-ications Prograr"
PRINT TA(cl); "odays rate: "; DATE$
PRINTN"
PRINT ?AEtcol); "I1 Run UTLBS
P RINT TAB~col); "2 =Read out spectrm from- MCA"
PRINT TA~icol); "3 =Load spectrm into MCA"
PRIN hT TAB(col); N"4 Exit Prograe-
PIT " I

PRINT TAB(col); *CFlD) w; TAB(coi + 7)1;

CALL CursorPosition(row, col): 'find location -4cuso
CALL Gt1.nputAndAftek(rc~w, COIl, 1, Total--OMMAnS,VAE)
ICZ-M 'Comza -d Input

END SUB

SUB GetlInputAndCheck (row, col, lowert upper, VALUES]

4,.,.!t data from keyboard
'Loop until a correct entry is fo-und
'Row arc ca,=-n indicat-e cursor local-
'Lower and Upper are range values
'ValueS is the keytoard input

Lc-ZAE row, col: 1-O jtion cursr
INPUT ; "iALUUES: 'Read comad ivut.
LOCATE row, col: P-iincursor to original loation
PRINtT -. 20; 'Erase cid information

'Check to see if keyboard inrut is any good

LOC? UNTfill (VAL(V2E) >= icver AN VLVL~ (z upper

E-3

I

END SUB

SUB OpenDrivers

* The following lines open the drivers for the MCA interface and
initialize MCA communications.
Note: MCAIN and MCAOUT are devices used for XCA communication,

'they are not "ordinary" files. If the device drivers MCAS.COMand BINS.COM are not set in CONFIG.SYS, an error will occur.

1 'Print message to operator
* CALL PositionCursor(row, col)

PRINT TAB(col); "Set MCA to REMOTE position!"
CALL TimerDelay. ' 2 second delay

OPEN "C:\QB45\THESIS\MCAOUT" FOR OUTPUT AS #2
PRINT #2, ESCq; "INT 1": ' Initialize MCA
CALL TimerDelay: ' 2 second delay

'Set MCA communications for XON,XOFF enabled, ASCII transmission,
'CR separator and terminator, no delay, keyboard enabled.
PRINT 12, ESC$; "SET 0; 0; 1; 0; 0; 1 #"
PRINT #2, ESC$; "IDM #": ' Command for MCA to send I.D. number

OPEN "C:\QB45\THESIS\MCAIN" FOR INPUT AS #1

If the MCA does not respond and an error condition occurs on
'the nezx command, press the INDEX and HOME keys (on the MCA)
simutaneously to clear the MCA and enable handshaking.

I INPUT 11, Host$: ' Get host identification number and display.

CALL Position rsor(row, col)
PRINT TAB(col); "Host communications established"
PRINT TAB(col); Host$

END SUB CALL TimerDelay: ' 2 second delay

SUB PCutility

Run PCUTIL.BAS

CLOSE #1
CLOSE 12
CHAIN "C:\qb45\thesis\PCUTILQB"

* END SUB

SUB PositionCursor (row, col)

E
E-4

I

ICLS
LOCATE 8, 20, 1, 6, 7: 'Moves cursor to middle of screen
row = 8
col = 20

END SUB

SUB ReadOutSpectrum

' Read spectrum from MCA and store in data file

Display Memory Range Options for M
CALL DisplayMemoryRangeOptio 'Z%)

Request data file name to send data to.

CALL PositionCursor(row, col)
PRINT TAB(col); "Read spectrum from MCA"
PRINT TAB(col); " "

PRINT TAB(col); "Enter Data File Name >"; TAB(col + 23);
LINE INPUT "", DATAFiIe: 'Data file name

' Send MCA command to get number of channels in memory range.

PRINT 12, ESC$; "HEM" ; ME%; ""

3 ' Read memory range channel value sent from MCA

INPUT #1, MSIZE%

I ' Send command to MCA for parallel transfer.

PRINT #2, ESC$; "DOUI; 2; 0; ;"; MEM%; HI"

Call subroutine to open parallel driver for input from the MCA.

CALLS OPE'1:1

The first 2 value., of the array are the number of channels
of data being transferred and the start channel. Read these
values in using the INBIN subroutine.

IAR(i) = 2
CALLS INBIN(IAR(i))

The parallel driver will transfer data in 256 channel groups.I Set up a loop to read in all of the data in 256 channel groups.

IE-5

I
FOR i = 1 TO IAR(1) - 255 STEP 256
IAR(i + 2) = 256
CALLS INBIN(IAR(i + 2))
NEXT i

Close parallel driver.

CALLS CLOSEB

Send signal to stop READ OUT, otherwise MCA might hang.

PRINT 12, ESC$; "ABT 1"

I 'Write data to data file.

OPEN "C:\qb45\thesis\" + DATAFile FOR OUTPUT AS #3

LOTUS can handle a maximum of 2048 records. Store the data in
groups of 2048 channels. Thic file will hold a 8192 channel spectrum.

I FOR i = 3 TO 2050
PRINT #3, USING "#11111111"; IAR(i); IAR(i + 2048); IAR(i + 4096); IAR(i + 6144)
NEXT i

Close data file.

* CLOSE 13

END SUB

SUB SendSpectrum

Send a spectrum to MCA

Display Memory Range Options for MCA
CALL DisplayMemoryRangeOptions(MEM%)

Get data file name and open file.

CALL PositionCursor(row, col)
PRINT TAB(col); "Send a spectrum to MCA"
PRINT TAB(col); " "

PRINT TAB(col); "Enter Data File Name >"; TAB(col + 23);
LINE INPUT "", DATAFile: 'Data file name

OPEN "C:\qb45\thesis\" + DATAFile FOR INPUT AS #3

I 'Read data into array.

FOR i = 3 TO 2050
INPUT 13, IAR(i), IAF(i + 2048), IAR(i + 4096), IAR(i + 6144)
NEXT i

E
E- 6I

II
Send MCA command to get number of channels in memory range.

PRINT 12, ESC$; "EM "; MEM%; "#"

Read memory range channel value sent from MCA

I INPUT #I, MSIZE%

' Send command to MCA for parallel readin.

PRINT 12, ESC$; "DIN1; 2;"; MEM%; "#"

1 ' Write spectrum into MCA

Open the open parallel driver f or output from the CPU to MCA.

I CALLS OPENBO

* The first 2 values of the array are the number of channels
of data being transferred and the start channel. Set the first
array value to the # of channels being transferred. The second
value should be 0.

IAR(1) = MSIZE%
IAR(2) = 0
CALL OUTBIN(VARSEG(IAR(1)), VARPTR(IAR(1)))

Close parallel driver.

CALLS CLOSEB

Send signal to stop READ IN, otherwise MCA might hang.

PRINT #2, ESC$; "ABT #"

'Close file.

CLOSE 13

END SUB

SUB SetDisplayColors

CLS
COLOR 14, 1

END SUB

SUB TimerDelay

'2 second time-delay routine

E
E-7

I

H x =TIMER

DO
il =TIMERI LOOP UNTIL ABS(x - il)):2

END SUB

E-

Appendix F: Listing of TableSYS.ASM

; File called TableSYS.ASM, used to control PIO-24 card.
Replaces CANBERRA/DEC ALR functions that controled the
motion control interface.
Make into an object code (TableSYS.OBJ) by running MASM.
Created by C. Irvine, Oct 90. Last edited Nov 90 for PIO-24 upgrade.

Contains the following PUBLIC procedures:

SetCRconfig(): initializes PI0-24 mode, no parameters passed
Set(x): will energize relays 1-7, pass numbers 1-7
Clr(x): will turn off relays 1-7, pass numbers 1-7
Pause(x): will suspend program execution for 1 to 59 seconds,

procedure uses DOS system time and is independent of
processor speed, pass numbers 1-59

3 .286 ; 286 processor directives
,SEQ ; order segments as they appear

q DataSegl Segment Public 'DATA'
Last DB ? ; 1 byte, last command
DataSegl ends

CodeSegl Segment Public 'CODE'
Assume CS:CodeSegl,DS:DataSegl,SS:DataSegl

public SetCRconfig
SetCRconfig proc far ; write mode to control register

push ds ; save DS
push ax ; save registers
push dx
mov ax,DataSegl ; initialize DS register
mov ds,ax ; use DataSegl
mov dx,0307h ; Control port number 307 hex
mov al,01h ; PB output, PCO-3 input
out dx,al ; write to control register
xor al,al ; clear low register
mov Last,al ; set Last equal to 0
call TimeDelay ; set .5 sec delay
pop dx ; restore registers
pop ax
pop ds ; restore DS
retf ; return

SetCRconfig e.dp

F-1

I

public Set
Set proc far ; set output latch, i.e., PB port

push bp ; save "framepointer"
mov bp,sp ; BP now points to old BP
push ds ; save DS
push ax ; save registers
push bi
push cx
push dx
mov bx,[bp+6] ; get address of parameter passed
mov cx,[bx] ; get value of 2-byte parameter
mov ax,DataSegl ; initialize DS register
mov ds,ax ; use DataSegl
call Check data ; see if parameter is any good
jnz short Set depart

; if no good, depart procedure
mov bx,Olh ; BX = I
shl bx,cl ; BX : 2 to power of CX

; return value is in BX
mov al,Last get last command

or al,bl ; change only the port that needs to be
set

mov dx,0305h ; PB port address
out dx,al ; write to PB port
mov Last,al ; save last coimand
call TimeDelay ; wait 500 ms for relay to energize
pop di ; restore registers
pop cl
pop bi

pop ax
pop ds ; restore DS
pop bp ; restore "framepointer"
retf 2 ; return, and restore 2 bytes

Set endp

TimeDelay proc near ; 500 millisecond time delay
; allows relays to energize

push ax ; save registers
push bi
push cz
push di
mov ah,2Ch ; get system time
int 21h
mov bl,dl ; save hundredths of seconds in bl

delay_loop: mov ah,2Ch

int 21h ; get system time again
cmp dl,bl ; set sign flag
Ins short TDsign ; unsigned number? if so, go jump
add dl ,lOOd ; make signed number unsigned

TD-sign:

F
F-2I

N sub dl,bl ; dl = dl - bl
cip dl,50d ; is new system time > .5 sec
jle delay_loop ; if no, then loop again
pop dx ; restore registers
pop ci
pop bi
pop ax
retn ; okay, 500 ms his passed

TimeDelay endp

public Clr
Cit proc far ; clear output latch, i.e., PB port

push bp ; save "framepointer"
mov bp,sp ; BP now points to old BP
push ds ; save DS
push ax ; save registers
push by
push cx
push dx
iov bx,bpf6] ; get address of parameter passed
mov cx,[bx] ; get value of 2-byte parameter
mov ax,Data.Seg! ; initialize DS register
mov ds,ax ; use DataSegl
call Check-data ; see if parameter is any good
jnz short Clr..depart

; if no good, depart procedure
may bx,Olh ; BK 1
shi bx.cI ; BX = 2 to power of CX

return value is in BX
not bi , reverse sense o bit mask
mov dx,0305h , PB port address
mov al,Last ; get last command
and al,bl ; change only the port that needs to beI cleared
call TimeDelay ; wait 500 ms before setting relay
out dx,al ; write to PB port
mov Last,al ; save last corunand
call TimeDelay ; wait 500 mis for relay to deenergize

Clr depart:
pop dx ; restore registers
pop cx
pop by
pop ax
pop ds ; restore DS
pop bp ; restore "framepointer"
retf 2 ; return, and restore 2 bytes

dCr endp

F-3

U

Checkdata proc near ; checks input parameters against 1-7
push ax ; save registers
push cx
push dx ; note: value to be verified is in CX
mov ax,cx ; put parameter in AX

c mov cx,07d ; check numbers 1-7I checkagain:
cmp ax,cx ; is parameter any good?
jz short gooddata ; if okay, get out of here
loop checkagain ; if not, go back and try again

; bad parameter?, zero flag not set
mov dl,7d ; sound bell by writing chr$(7)
mov ah,2h ; display output
int 21h ; go beep bell

good-data:
pop dx ; restore registers and
pop cz ; put CX back
pop ax
retn ; return

Checkdata endp

public Pause ; 1 to 59 second time delay
Pause proc far

push bp ; save "framepointer"
mov bp,sp ; point to old value of BP
push ds ; save registers
push ax
push bx
push cx
push dx
mov bx,[bp+6] ; get number of delay seconds
mov cx,[bx] ; CX holds value
mov ax,DataSegl ; switch over to different data segment
mov ds,ax ; changeover complete
mov ax,cx ; better put value in AX
mov cx,59d ; load counter with 59 sec maximum

Pause-checkagain: ; okay, let's get system time
cmp ax,cx ; first, check and see if value 59
jz short Pausegooddata

; if good value, move on
loop Pausecheck.again

if bad value, then decrement
counter and check again

mov dl,7d ; beep bell if value is no good
mov ah,2h

i Pusegoo~daa: int 21h

Paus _god~dta: jnz short Pause-depart
e remember, if bad value get out of here

mov bl,al ; save value in BL
mov ah,2ch ; go get system time (DOS)
int 21h

F-4I

I
I

mov bh,dh ; save current # of seconds in BH
Pausedel ay_loop:

mov ah,2ch ; let's get system time again
int 21h
zor cx,cx , now clear CX
mov cl,dh ; save present # of seconds in CL
cmp cl,bh ; check the difference in sign
ins short Pause sign

; if signed, compensate by adding 60
add cl,60d ; rem, DH returns 0 to 59 seconds

Pause sign: ; if unsigmed, continue with
verification

q sub cl ,bh ; get magnitude or difference
cmp cl,bl ; well, is it greater than value'
jle Pause-delay_loop

; if no, go back and get new time
Pause-depart: ; if yes, get out of here

pop dx ; restore registers

pop cx
pop bi
pop ax
pop ds
pop bp
retf 2 ; return the stack to normal

Pause endp

Code..Segl ends
end

I
U
I

I
I
I
I

F-5I

K Appendix G: Listing of DrumTAB.BAS

I DEFIKTX
DECLARE SUB Display~opLevel~eru (Total Comrrands!)
DECLARE SUB Star tDrumProcedure (IDECLARE SUB Enterflata~ileName (
DECLARE SUB DisplayMemoryRange~ptions (
DECLARE SUB EnterDrumID ()
DECLARE SUB Half.SegmentDrop (
DECLARE SUB CloseShutter ()
DECLARE SUB LowerDrum~able (
DECLARE SUB Print~essageTooperator (I DECLARE SUB RaiseDrum'lable (
DECLARE SUB OpenShutter (
DECLARE SUB Calibration (
DECLARE SUB Initialize (
DECLARE SUB Assay ()

DCAESUB OUThIN (BYVAL segad-dr AS INTEGER, BYVAL addr AS INTEGER)
DECLARE SUB SetCRconfig ()DELRIU e (SITGF
DECLARE SUB Set (i AS INTEGER)
DECLARE SUB Paus (i AS I TE GER)I DECLARE SUB ReadOutSpectru (
DECLARE SUB OpenDrivers (
DECLARE SUB CloseDrivers (IDECLARE SUB CursorPosition (row!, col!)
DECLARE SUB PositionCursor (row!, col!)
DECLARE SUB SetDisplayColors ()
DECLARE SUB GetlInputAndCheck (rw, col!, Lower!, upper!, VALUE$)
DECLARE SUB Message?ositioninglrumTabi e
DECLARE SUB TimerDelay ()
DECLARE SUB SendSpectrum (IDECLARE SUB PCutility (
DECLARE SUB SetPIO24 (

I The following is a sample QuickBASIC program that performs data
transfers using the serial PC interface f or cowaands and the Fast I'm
parallel interface for data transfer. Also, the program will execute
drum assay measurements while contr-Il ing operation of the CANBERRA
drum table and scan table contoller.

This program uses the MCAS.COM serial driver and BINS.COM parallel driverIf or comunicating with the serial and parallel interfaces of the MCA.
This program requires DrumSYS.QLB (a Quick Library containing several
subroutines which will comunicate with the parallel interface usingI the parallel driver BINS.CON) be loaded while in the QuickBASIC environment.
In addition, this program uses assermbly-language procedures to control the
scan table controller. The procedures are located in the library called
T ableSYS.QLB.

Bothn libraries, DrumSYS.QLEB and TableSYS.QLB, have been merged into one

G-1

Quick Library called DrumTAB.QLB. DrumTAB.QLB was created with the
command

C:\QB45\LINK DrumSYS.OBJ4TableSYS.OBJ,DrumTAB,,C:\QB45\BQLB45.LIB /q /co

' The command to load the library from DOS is

C:\QB45\QB.EXE / C:\QB45\THESIS\DruTAB.QLB

To make DrumTAB.BAS into an executable file:

1. Fir-t save the file as a text file, i.e., ASCII.

I 2. Convert the file into an object code with the command

C:\QB45\BC DrumTAB,DrumTAB,DrumTAB /zi

3. Convert PCUTILQB.BAS to an executable file

C:\QB45\BC PCUTILQB.BAS /zi /v /i /w /o
LINK PCUTILQB.OBJ,PCUTILQB,,C:\QB45\BCOM45.LIB /co

4. Next make a library with the assembly-language procedures

C:\QB45\LIB DrumTAB.LIB+DrunSYS.OBJ TableSYS.OBJ /co

5. Link Dru=TAB.OBJ with the cowand

C:\QB45\LINK DrtmTAB,,,C:\QB45\BCOM45.LIB + DrumTAB.LIB /co

the /zi let's one use Code.View

the /co let's one use CodeJiew
the /v /w /x options enables event trapping and indicates the
presence of ON ERROR with RESUME or RESUME -EXT
the /o creates a stand-alone .EXE prc.gram that doesn't need

BRUN45.LIB

6. Run the program by typing

DruiTAB

Note: To use Code-View type CV DruzTab

NOTE: The use of this program requires the following interfaces and

equipment be installed:

Model 3575 PC Interface for serial ccr,'nications

Model 3576 Past IBM Interface for parallel data transfers
Pi0-24 High Output Current Parallel Digital InterfaceI * -O1 Elec tromechanical 8 Channel SPDT Relay Board.
Model 22258 Scan Table Cntoller

G-2I

I
CANBERRA Series 35 Plus MCA

I VERY IMPORTANT: This code includes a modified version of FASUUN source
code fro,. CANBERRA Industries, Inc.

* ,tttttt ttt* t tt *ttt ttt *t*t t t*ttttt tttttttttttttt

' PROGRAM DrumTAB.BAS

Set lower subscript to 1, as in FORTRAN
Failure to define IAR as long (4 bytes) may cause an error

I OPTION BASE 1
DIM SHARED IAR(8194) AS LONG
COMMON SHARED DATAFile AS STRING t 11
COMMON SHARED DrumID AS STRING t 7
COMMON SHARED MCAIN AS STRING * 5
COMK3N SHAPED MCAOUT AS STRING 6
ONMON SHARED HOW AS INTEGER: ' mraery range selection

COMMON SHARED NuberSegments: ' number of drum seg-ments
COMMON SHARED ESC$: ' escape character
COMMN SHARED ICON: ' menu selection

NumberSegments = 8
ESC$ CHR$(27)

CALL SetDisplayColors
CALL OpenDrivers
CALL SetPO24
BEEP

DO

CALL Displayiop-ev;elMen-u(T.ot~alCorrar.ds'

SELECT CASE !COK
CASE 2, 3

CALL Displ ayYeioryRangeOpions
CALL EnterDataPileName

CASE 4 TO 6
CALL Displ ayVemryRangeOptions
CALL EnterDru-mD
CALL PrintMessageToOperator
CALL MessagePositioningDr----abl e
CALL RaiseDru.Table
CALL OpenShutter

END SELECT

I
I

G-3

I

SELECT CASE ICO*
CASE 1

C1LL PCutility
CASE 2

CALL ReadOutSpectrum
CASE 3

CILL SendSpectrum
CASE 4

CALL Calibration
CASE 5

CALL Initialize
CASE 6

CALL Assay
END SELECT

SELECT CASE ICOM
CASE 4 TO 6

CALL CloseShutter

CALL LowerDrum=able
XND SELECT

LOOP WHILE IC09(0 TotalComads
CALL CloseDriversI END

101
102
103
104
DATA i,wCS 137H,950,973, 2,"Pu 238",104,1127, 0,0.0,0

U DEFSNG X

SUB Assay

Performs drum assay masurement.

Set (4): ' Turn on assay IM.

CALL StartDrumPtocedure

Cir (4). ' aT ff assay lhmp.

END SUB

SUB Calibration

Performs dr- calibration measure_-rt.

Set (: Turn--n C.LI a

CALL StartDr=uOrc-e-ure

Clr (2): * Turn off CAL!E iamp.

G-4I

END SUB

SUB CloseDrivers

Close all drivers

I RESET

END SUB

SUB CloseShutter

'Close shutter and turn off lamp.

Clr (5): ' CloE- shutter and turn off lamp.

I END SUB

SUB CursorPosition (row, col)

row :CSRLIN
Col =POSWz

I ENDl SUB

SUB ispl ay~emoryhangeOptions

Display memory range options.

CALL Positiondursor(row, Col)IPRINT TAPtcol); "Splect k-nory Range Options"
PRINT ""
PRINT TAB(coi), I 1 Fhll Memor)"IPRflhT ThB(col); I 2 First -alf"
PRINT TAB(cal); "3 =Secon4 Half"
aORINT TA"' 0I); 4 =Pirst Quattr~'
PRItIT 5A(~j " S econd juarter"
PRINT 'IAB(col); 4 6 =Third Quarter"
11If TAEBkcol); "7 tFourth Quartex,"
PRINT " '2

PRINT TV-(col); "Enter HuInory Range)"; TAD(col + 21);

CALL (~~o.irrow, col)
CALL GetlnputAndCheck(row, cal, 1, 7, VALUE$)1HEM = 11I4F VAIE$): 'Comimandinu

* END SUB

"B Bisp1ZyPepLeve1Yenu (Total Ccirmands)

1 ' Display the top level m~enu.

C-5

l

TotalConmnands 7: 'maximum number of commands available to user
CALL PositionCursor(row, col)
'Print menu screen
PRINT TAB(col); "MOUND MCA/DrumTable Communications Program"
PRINT TAB(col); "Todays Date: "; DATES
PRINT N "
PRINT TAB(col); "I = Run PCUTIL.BAS"
PRINT TAB(col); "2 = Read out spectrum from MCA"
PRINT TAB(col); "3 = Load spectrum into MCA"
PRINT TAB(col); "4 = Drum Calibration"
PRINT TAB(col); "5 = Drum Initialization"
PRINT TAB(col); "6 = Drum Assay"
PRINT TAB(col); "7 = Exit Program"
PRINT " "
PRINT TAB(col); "CMD> "; TAB(col + 6);

I CALL CursorPosition(row, col): 'find location of cursor
CALL GetlnputAndCheck(row, col, 1, TotalCommands, VALUES)

N S ICOM = VAL(VALUE$): 'Command Input

END SUB

SUB EnterDataFil eame

Request data file name.

I CALL PositionCursor(row, col)
PRINT TAB(col); "Enter Data File Name>"; TAB(col + 23);
CALL CursorPosition(row, col): 'find location of cursor
LINE INPUT "", DATAFile: 'Data file name
LOCATE row, col: 'Position cursor to original location

* END SUB

SUB EnterDrumID

I 'Request Drum ID#

CALL PositionCursor(row, col)
PRINT TAB(col); "Enter Drum ID>"; TAB(col 4 16);
CALL CursorPosition(row, col): 'find location of cursor
LINE INPUT "", DrumID: 'Drum identification I
LOCATE row, col: 'Position cursor to original location

END SUB

SUB GetInputAndCheck (row, col, Lower, upper, VALUES)

I
G-6I

I

H 'Input data from keyboard
'Loop until a correct entry is found
'Row and column indicate cursor location
'Lower and Upper are range values
'Values is the keyboard input

* DO
LOCATE row, col: 'Position cursor
INPUT ; "', VALUES: 'Read command input.
LOCATE row, col: 'Position cursor to original location
PRINT SPC(20); : 'Erase old information

'Check to see if keyboard input is any good

LOOP UNTIL (VAL(VALUE$)) >L Lower AND (VAL(VALUE$)) (= upper

LOCATE row, col + 1: 'Position cursor

END SUB

I SUB HalfSegmentDrop

' Lower drum table 1/2 segment

Set (6): 'lower drum
Clr (6): ' clear relay
Pause (5): ' %ait 5 seconds till dru -ositioned

END SUB

I SUB Initialize

' Performs drum initialization measurement.

Set (3): ' Turn on INIT lamp.

CALL StartDrumProcedure

Olr (3): ' Turn off INIT lamp.

* END SUB

SUB LowerDrumTable

' Lower Drum Table to bottom postion.

CALL PositionCursor(row, col)
PRINT ; "Lowering Drum Table';

I

G-7

H FOR i = I TO 7: ' Lower drum table to bottom position
Set (6)
Clr (6)
Pause (3)

NEXT i

* END SUB

SUB MessagePositioningDrumTable

Print message to screen

CALL PositionCursor(row, col)
PRINT ; "Positioning Drum Table";

END SUB

SUB OpenDrivers

I 'The following lines open the drivers for the MCA interface and
initialize MCA communications.
Note: MCAIN and MCAOUT are devices used for MCA communication,
they are not "ordinary" files, If the device drivers MCAS.COM
and BINS.COM are r .t set in CONFIG.SYS, an error will occur.

CHDIR "C:\QB45\THESIS": ' Set default directory

OPEN "MCAOUT" FOR OUTPUT AS 12

'Set MCA communications for XON,XOFF enabled, ASCII transmission,
'CR separator and terminator, no delay, keyboard enabled.
PRINT 12, ESC$; "SET 0; 0; 1; 0; 0; 1 #"
PRINT 12, ESCS; "IDM #": ' Command for MCA to send I.D. number

OPEN "MCAIN" FOR INPUT AS #1

If the MCA does not respond and an error condition occurs onI the next cominnd, press the INDEX and HOME keys (on the MCA)
simutaneously to clear the MCA and enable handshaking.

mif the above does not work, press the YES key on the MCA
and retry.

INPUT 11, Host$: ' Get host identVication number and display.

CALL PositionCursor(row, col)
PRINT TAB(col); "Host commiunicu cstablished"
PRINT TAB(col); Host$;
CALL TimerDelay: ' 2 second delay

* END SUB

G-8

SUB OpenShutter

Open shutter and turn on lamp.

Set (5): ' Open shutter and turn on lamp.

I END SUB

SUB PCutility

Run PCUTILQB.BAS or PCUTILQB.EXE

CLOSE #1
CLOSE #2
CHAIN "C:\qb45\thesis\PCUTILQB"

END SUB

SUB PositionCursor (row, col)

ICLS
LOCATE 8, 20, 1, 6, 7: 'Moves cursor to middle of screen
row = 8
col = 20

END SUB

SUB PrintMessageToOperator

' Print message to operator

DO
p •CALL PositionCursor(row, col)
* BEEP

INPUT ; "Are drum and trolleys positioned [Y/N] "; 7$
LOCATE row, col + 1: 'Position cursor to original location3 LOOP UNTIL Y$ = "Y" OR Y$ =y

END SUB

I SUB RaiseDrumTable

i Raise Drum Table to top postion.

Set (7): Raise drum to top position
Clr (7): Clear relay setting
Pause (50): ' Wait for drum table to reach top
Pause (27)

I END SUB

SUB ReadOutSp :trum

I
G-9

I

Read spectrum from MCA and store in data file

Send MCA command to get number of channels in memory range.

PRINT 12, ESC$; "HEM "; MEM; "#"

i ' Read memory range channel value sent from MCA

INPUT V1, MSIZE%

Send coinand to MCA for parallel transfer.

PRINT #2, ESC$; "DOU ", 2; 0; ;"; MEN; N#"

Call subroutine to open parallel driver for input from the MCA.

3 CALLS OPENBI

The first 2 values of the array are the number of channels
i 'of data being transferred and the start channel. Read these

values in using the INBIN subroutine.

IAR(i) = 2
CALLS INBIN(IAR(i))

S'The parallel driver will transfer data in 256 channel groups.
Set up a loop to read in all of the data in 256 channel groups.

FOR i I TO IAR(1) - 255 STEP 256
IAR(i + 2) = 256
CALLS INBIN(IAR(i + 2))

ClsNEXT i

Close parallel driver.

3 CALLS CLOSEB

' Send signal to stop READ OUT, otherwise MCA might hang.

i PRINT #2, ESC$; "ABT #"

S' Write data to data file.

OPEN DATAFile FOR OUTPUT AS 13

' LOTUS can handle a maximum of 2048 records. Store the data in
f groups of 2048 channels. This file will hold a 8192 channel spectrum.

FOR i = 3 TO 2050
PRINT #3, USING "#H#|#|###"; !AR(i); IAR(i f 2048); IAR(i + 4096); ILR(i + 6144)
NEXT i

G-10

I

I ' Close data file.

CLOSE #3

END SUB

SUB SendSpectrum

Send a spectrum to MCA

I OPEN DATAFile FOR INPUT AS 13

* 'Read data into array.

FOR i = 3 TO 2050
INPUT #3, IAR(i), IAR(i + 2048), IAR(i + 4096), IAR(i 1 6144)
NEXT i

Send MCA comnand to get number of channels in memory range.

I PRINT 12, ESC$; "MEM "; HEM; 'I"

Read memory range channel value sent from MCA

INPUT #1, MSIZE%

Send cormand to MCA for parallel readin.

PRINT #2, ESC$; "DIN1; 2;"; HEM; "#"

I ' Write spectrum into MCA

' Open the open parallel driver for output from the CPU to MCA.

CALLS OPENBO

* The first 2 values of the array are the number of channels
* of data being transferred and the start channel. Set the first
array value to the # of channels being transferred. The second
value should be 0.

IAR(1) = MSIZE%
IAR(2) 0
CALL OUTBIN(VARSEG(IAR(1)), VARPTR(IAR(1)))

Close parallel driver.

I CALLS CLOSEB

3 'Send signal to stop READ IN, otherwise MCA might hang.

PRINT #2, ESC$; "ABT 1"

I
G-II

I

Ui

' Close file!

CLOSE 13

END SUB

SUB SetDisplayColors

CLS
COLOR 14, 1

END SUB

SUB SetPIO24

' Initialize PIO-24 mode

' Sets PB port output and PCO-3 input

SetCRconfig

' Clear all seven PIO-24 relays

I FOR i = 1 TO 7
Cir (i)i NEXT i

END SUB

SUB StartDrumProcedure

This subroutine lowers the drum by half segments and then
'includes the appropriate MCA command file

FOR Segment 1 TO NumberSegments

IF Segment 1 THEN
CALL HalfSegmentDrop

?LSEIF Segment >= 2 OR Segment <= NumberSegments THEN
CALL Hal fSegmentDrop
CALL Hal fSegmentDrop

END IF

CALL PositionCursor(row, col)
PRINT TAB(col); "Scanning Segment:"; Segment;
LOCATE row, col f 19

IF ICOM = 4 THEN
REM $INCLUDE: 'C:\QB45\THESIS\CALIB.BAS'

ELSEIF ICOM = 5 THEN
REI $INCLUDE: 'C:\QB45\THESIS\INIT.BAS'

G-12

l

ELSEIP ICOM = 6 THEN
REM $INCLUDE: 'C:\QB45\THESIS\ASSAY.BAS'

END IF

CALL MessagePositioningDrwnTabl e

INEXT Segment
END SUB

SUB TimerDelay

' 2 second time-delay routine

x = TIMER
DO

I DxII TIMER
LOOP UNTIL ABS(x - xl) >= 2

END SUB

I
I
I
I
I
I
I
I
I
I

G-13

*1

I

Appendix H: Listing of CALIB.BAS

' Program called CALIB.BAS, this is an INCLUDE file.

' Save as a text file only!
' Subroutines and Functions are not allowed!
* Used in conjunction with DrumTAB.BAS (menu program)
CALIB issues comand to the CANBERRA MCA to perform a calibration procedure

' The information below contains the preset time and ROI data
' Edit the information below for any particular application
' No other changes need be made elsewhere in the program

ROIdata: DATA 1,"CS 137",950,973, 2,"PU 238",1104,1127, 3,"Allen",2,11,4,"Da-
ve",1200,1210,0,0,0,0
PresetTime% = 4: 'Total time in seconds for data collection of one segment

* Clear Data

PRINT 12, ESC$; "CLD "; HEM; "1"
Pause (1)

' Set Preset Time

PRINT 12, ESC$; "PST "; PresetTime%; "; "; M; "1"
Pause (1)

Start Collecting Data

mPRI I = S$ "I & % H;

Pause (1)

Wait until data collection is done

% = TIMER
DO

I x z TIMER
LOOP UNTIL ABS(xx - x) > PresetTime%

OPEN DrumID$ + ".dat" FOR APPEND AS 15

IF Segment = 1 THEN
offset = 20
PRINT #5, ************** **t********* **********************
PRINT #5, " "

PRINT #5, "CALIB measurement"
PRINT 15, "Drum IDf: "; TAB(30); DrumIDS
PRINT 15, "Date: "; TAB(30); DATES

H-1I

H PRINT 15, "Time: ";T.U(30); TIME$
PRINT 15, "Number of Segments: ";TAB(30); NumberSegments
PRINT V~, "Preset Time (sec): U;TAB(30); PresetTime%

UPRINT f5 *O Data"
RESTORE ROldata
READ ROIf, ROI$, ROlstart, ROlend
NumberOfROI%=0

DO WHILE ROI1 0 0
PRINT 15, ROI$PRNU SatCanl:" A(0;R.tr
PRINT 15, "Stad Channel: "; TAB(30); RO-tart

READ ROIl, ROIS, ROlstart, ROlendI NumberOfROI% NuinberOfROl% + 1
LOOP
PRINT 15, "

PRINT M5 TAB(offset); "Counts"; TAB(otfset + 10); "Counts Bkg"; TAB(offset 4I 25)1; "Counts Net"; TAB(offset + 40); "Segment"

DINToaous(TO, Nube R"I DIM TotalCountsB(1 TO NumberORO%)
DIM TotalCountsBet(1 TO NurnberOfROI%)

END IF

RESTORE ROldata

POP ROlindex = 1 TO NumberOfROI%

Get ROI Data

U READ ROIl, ROI$, ROlstart, ROlend

PRINT 12, ESC$; uRCD "; ROTlstart; ";;ROlend; ";;MEN; 1I Pause (1)

INPUT fl, StartChannel$
INPUT f1, LastChannel$

Start VAL(StartChannel$)
Last =VAL(LastChannel$)

Channels =ABS(Last - Start) + 1

DIM ChannelData(l TO (Channels + 1)) AS STRING

FOR j = 1 TO (Channels + 1)
INPUT fl, ChannelData(j)

H- 2

Counts = 0
FOR j = I TO Channels

Counts =Counts + VAL(ChannelData(j))

I TCountsBKG = Channels * (VAL(ChannelData(1)) + VAL(ChanneIData(Chan..els))) / 2

PRINT #5, TAB(1); ROI$;
PRINT #5, USING "111.1;TAB(offset - 4); Counts; TAB(offset + 10); CountsBKG;

TAB(offset + 25); Counts - CountsBKG;
PRINT 15, TAB(offset + 45); Segment

Pause (1)

TotalCounts(ROlindex) = Counts 4 TotalCounts(ROlindet)
TotalCountsBKG(ROlinder) =CountsBKG + TotalCountsBk.G(ROlindez)
TotalCountsNet(ROlindez) = (Counts - CountsBKG) + TotalCountsliet(ROlindez)

ERASE Channel Data

NEXT W~inder

PRINT #5, " H

IF Segment = NumerSegraents THEN

PRINT 15, It "
PRINT #1, "Total Counts"I RESTOE'ROldata
FOR index = 1 TO) NumberOfROI%
READ ROIl, ROIS, ROlstart, Rolend
PRINT #5, ROI$;
PRINT 15, USING HIIIIIII; TAB(offset - 4); TotalCounts(index); TAB(offset +

10); TotalCountsBKG(indet); TAB(offset + 25); TotalCounts~et(indez)
NEXTine
PRINT 15, H

PRINT #5, *********t******t*t***tit******tt"
PRINT 35,I PRINT 15,
CLOSE #5
OPEN Dr=nIDS + ".dat" FOR INPUT AS 15I DO UNTIL EO?(%5'

LINE INPUT 15, LineBuff er$
LPRINT Line~luffer$

LOOPIRS ra~ut
ERASE TotalCountsBK

ERASE TotaiCounts;Net

END IF

RESTORE R07idata: ' r-!4tuArn start of next read to first dlata stat--eentf
CLOSE 15

H-

H Appendix 1: Listing of MakeDrum

I M ake file calledA HlakeDrum
t ?o run, at DOS prompt type: MAKE HAKEDRUM

U Tabi eSYS.OBJ: TabI eSYS .ASH
MASH TableSYS.ASM

DrumSYS .OBJ: DrumSYS.ASM
MASH DrwaSYS.ASH

PCUTILQB .OBJ: PCU'?ILQB .BASI C:\qb45\bc PCUTILQB.BAS /z, /v 1z 1w /o

PCUTILQE.EXE: PCUTILQB .OBJI LINK PCUTILQB.OBJ,PCUTILQB, ,c:\qb45\bco!45.lib /co

DrumTAB.LIB: DrumSYS.OBJ TableSYS.OBJ
LIB DrumTAB.LIB + DrumSYS.OBJ + TableSYS ONJ

DrumTAB.OBJ: DrumTAB.BAS CALIB.BAS ASSAY.BAS INIT.BAS DrtmTAB.LIB
c:\qb45\bc DrumTAB,DrumTAB,DrumTab /zi

DrumTAB.EXE: DrumT'AE .OBJ
LINK DrumTAB .. ,c:\qb45\bcom45.lib + c:\qb45\thesis\Dr=TAB.LIB /co

Appendix J: Electrical Mapping of PIO-24 and STC

ISense Line PIO-24 ERA-01 STC

1 PA 1 pi~n36 J 32-1
2 PA 2 pin 35 J2-2
3 PA 3 pin 34 J2-3
4 PA 4 pin 33 J2-4

5 PA 5 pin 32 J2-5

Control Line PIO-24 ERA-Ol. STC

1 1 PE IBRNO J2-9
2 PE 2 PER 2NO J2-1:
3 PB 3 PER 3 N;0-1
4 PE 4 PEP 4NO J2-12
5 PB 5 PER 5 N0 J2-13
6 PB 6 PER 6NO J2-14
7 PB 7 PER 7 10 J2-1 5

Gnd NA PER 1-7 CO J2-25

I NO: Normally Open Contacts
CIO: Commo Contacts
PB: PB PortI PA: PA Port
PER: PB Port Relay

I

I Appendix : Drum Measurement Run Using DrumTAB

CALIB measurement
Drum IDI: 33416
Date: 11-27-1990
Time: 09:30:07
Number of Segments: 8
Preset Time (sec): 3

ROI DataCS II7

Start Channel: 950
End Channel: 973
PU 238
Start Channel: 1104
End Channel: 1127

Counts Cuunts Bkg Counts Net Segment

CS 137 152.00 0.00 152.00 1
PU 238 1.00 0.00 1.00 1

CS 137 122.00 0.00 122.00 2
PU 238 1.00 0.00 1.00 2

rs 137 14.00 0.00 134.00 3
PU 238 1.OP 0.00 1.00 3

CS 137 141.00 12.00 129.00 4
PU 238 3.00 12.00 -9.00 4

CS 137 139.00 0.00 139.00 5
PU 25 0.00 0.00 0.00 5

CS 137 129.00 O.UO 129.00 6
PU 238 0.00 0.00 0.00 6

U CS 137 jil.00 0.00 131.00 7
PU 238 0.00 0.00 0.00 7

CS 137 119.00 0.00 119.00 8
PU 238 1.00 0.00 1.00 8

i ! jtal CountsI: ! C137 1067.00 12.00 1055.00

PU 238 7.00 12.00 -5.00

K-1

I

Appendix L: Derivation of Correction Factors

Wall and matrix material correction factors are derived below for incorporation into CAL-
IB.BAS at a later time.

I Activity

After selecting a signature gamma of interest, the activity, A(t) , of a sample can
I be calculated by

A(t) - XN(t) -d) (L.I)

where X decay constant and N(t)= number of atoms present at time t. Additionally, E
specific decay rate, A,.(t) or specific activity, can be defined by

atiomns

N gr m) Au/AtomicMass (L.2)

X _ [LT-n,2 (L.3)

Aaat 1n2 _r Au dis (L4)
where A,(t) - T-2 x AtomicMass (g-secJ

where

Au = Avogadros Number,
T1 ,2= half-life of the material.

Since the decay of most radioisotopes is not always followed by a sole gana emis-
sion, the specific decay rate is more appropriately defined as

A 8(t) = JXN (g -)ec (L.5)

3 where f (y/dis) is the fraction that decays by the signature gamma of interest.

To convert activity to count rate and vice versa, count rate, CR, is given by

CR - EbAm (cosnts) (L.6)

I where m is the mass of unknown sample in grams, and E, is the absolute detector effi-
ciency in counts/gamma ray.

3 Now one can measure the number of counts deposited :n a detector ane relate this to
specific dctivity:I

L-1

I

I

CR - () (L.7)

where t. is the counting time, and C is the net number of counts under the signature gamma
full-energy peak (excluding background). Furthermore, CR needs to be corrected for dead
time losses, if appreciable.

In the particular case for .3Pu, where the half-life is fairly long, i.e., if

Xt, << 1, e 1I -1 tc by a Taylor expansion. Thus,

C R1 bAm~t,(L.8)
X

I or
Am m (Bq) (L.9)

Cab t C

I At first it appears the right-hand side of Equation (L.9) contains only one unknown;
however, E.b, could easily be obtained by performing an assay with a calibration drum of
known activity. Yet theie is another factor that has been neglected, that is attenuation
of the source in the drum itself. Using Equation (L.9) alone would not account for this,
and it is derived "ext.

I Transmission

A drum consists of a matrix material, unknown source or sources, and the outer
walls. The parts of the matrix material and drum walls are of dissimilar substances so
they attenuate the source signature gamma rays differently. This attenuation causes the
observed count rate (Fquation (L.7)) to differ from the ideal case in which neither the
matrix "iterial or drum walls are present, i.e., the count rate noticed in absence of
atti7.ating materials. As a result data collecteC from the MCA will predict a wrong

rti vLy value, however, using an aoditional "transmission" source in conjunction with the
uikn(wn drum source will correct for most deviations.

First a distinction must be made between the different sources; hence the unknown
sourca is designated tue assay source. The assay source is not confined to a single area,I nd cannot be treated as a point source. Instead, it is uniformly distributed (almost
always) throughout the entire drum among the matrix material. About the only complication
present here, besides drum attenuation, is a single scan of one drum segment does not
provide sufficient data to analyze the entire drum inventory. Scanning multiple segments
(otherwise known as m? ping) and rotating the drum normally averages out any in-
homogeneities caused by source geometry7.

I Furthermore, the walls are usually considered separately, that is, not part of the
matrix material. Thus dcum attenuation is caused by two factors, One is wall attenu-
ation, and the second is matrix material attenuation. Both add to the ove:-all attenuation
of the source radiation.

L-2I

I The following derivation assumes wall and matrix material attenuation are the same,
i.e., both are indistinguishable from each other and are lumped together under the gent cal
category of drum attenuation. Drum attenuation can be determined by using a transmission
source with known activity emitting a gama ray close in energy to that of the assay
source signature gamma. Here, attenuation of the transmission source is defined by

- - - e (L.1.1)T.

I where

T. transmission source attenuation,
T., = attenuated intensity of transmission source,
T 0

= unattenuated intensity of transmission source,

()- mass attenuation coefficient of drum at transmission source gamma-ray

energy,
pd,= density of drum,
x = transmission source pathlength (or distance through the drum).

Similarly, attenuation of the assay source is

T.=e (L.1 .2)

1 where

r, = assay source attenuation,

U a = mass attenuation coefficient of drum at assay source signature gama
energy,3pd, density of drum,
x, =assay source pathlength (or distance through the drum).

3 It also follows that

Am,,s - Ac ,,,xT (L.1.3)

I such that A,,=o is the ,easured assay source intensity from Equation (L.9), and A is
the intensity of the assay source, corrected for drum attenuation.

I In a simple example where both transmission and assay sources experience the same
attenuation and their difference in pathlengths is accounted for by some geometry factor,
Fg" , for assay and transmission intensities close together'

. Fo TF x

A o A . AM 0 , T* " A ,..,X--XF 0 ° (L.1.4)

Also, for assay and transmission sources far apart in energy

LL-3
I

T e T, (L.,.S)

Thus

A A~rx 1L .6)

As has been noted, wall and matrix material attenuation were considerA inseparable.
Next, individual corrections for wall and matrix material are addressed. Expanding Equa-
tion (L.1.3) for the two contributions yields

t PonlX01

AXe Acorr x e X e (L.1 .7)

Acorr,- "A,,O1xa,×F~x × Fn (L. 1.8)

where F., is the correction factor for attenuation due to the drum walls, and Fm,, is
the correction factor for attenuation due to the matrix material inside the drum.

I ist the unattenuated activity/intensity of the assay source can be calculated by
applyii., bquations (L.9) and (L.1.8). In addition, since mass or number density is pro-
portional to activity, the assay source quantity inside the drum can be determined.

Derivation of Wall Attenuation Factor, Fwj1 . Drum wall attenuation is accounted
for by

a

F_,- T__7___ " (L.i .1.1)

where

k
T,, = drum wall transmission T,

and where T.mpt, is the transmission intensity thru an empty drum, T. is the unattenuated
transmission intensity, and k is the ratio of mass attenuation coefficients (of drum
wall) at assay and transmission energies; k = 1 if the energies are very close together.

The square root of T , is used since the transmission gamma rays pass through 2
walls of the drum whereas assay galmma rays pass through only 1 wall thickness. By
neglectih,4 air attenuation inside an empty drum, the transmission source attenuation is

L-4

I

TtLl - e (L.1.1.2)

wherr.

3 T '-= transmission source attenuation in drum wall,

0j: L mass attenuation coefficient of drum wall at transmission source

energy,
p,. = drum wall density,
x,,tt: thickness of one drum wall.

Then the assay source attenuation in the drum wall, T'", is given by

1 a
T LL" (,u ='"uT, (LA..I.3)TI'

where (_)" is the mass attenuation coefficient of the drum wall at the assay source

energy. But from Equation (L.1.1)

T5I _c- c =4 Tw '1 1 T- mt (L.1 .1 .4)
T. T

rience

T~I- (L.1 .1 .5)
T.

* And

I Lastly, from Equation (L.I.3)

I A T.a A x I -- t, 4 FllI - (.__

I
L-5I

I

U Derivation of Matrix Material Attenuation Factor, Fm". The transmission source
attenuation (assuming a homogeneous matrix material) is

T° - (L.lI.2.:)

n where

T, = transmission source attenuation in matrix material,
= mass attenuation coefficient of matrix material at transmission

source energy,3p matrix material density,
x,, = thickness through matrix material.

3 Then the assay source attenuation in the matrix material, T',, is given by

ITr' - e-

.- .2.2- ... ,

where

)Mff" = mass attenuation coefficient of matrix material at assay source

I energy,
1(= geometric correction factor9 (.823 for cylinders),

kVm : ratio of mass attenuation coefficients in the matrix material at
assay and transmission source energies.

But from Equation (L.I.1)

iT, T-' e- e : A

= TO"" - (L.I.2.3)

where " is the measured transmission intensity through a full or non-empty drum.

3 hus from Equation (L.1.2.2)

T- TOTm*" (L.1 .2.4)

L-6

I
I

And finally, from Equ>~on (L,1.3)I Am.czs

-- 4 A,~ 3 X---4F~,~ - (L.1.2.5)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L-7

I

Bibliography

1. Campbell, A.R. Et Al. "Assay of Pu2:I Contaminated Waste
In Drums"' MD-21825, Issue 1, 3, EG&G Mounds Laboratory,
Dayton OH, Apr 1985.

2. East, Larry V. "Subroutines Callable from a PDP-11 BASIC
for Control of a Multichannel Pulse-Height Analyzer," LA-
5772-MS, Los Alamos Scientific Laboratory, November 1974.

3. CANBERRA PC Toolkit Software Manual, Canberra Industries,
August, 1988.

4. Microsoft. Microsoft Macro Assembler 5.1 Programmer's
* Guide. Redmond, Wash. 1986, 1987.

5. Microsoft. Microsoft Macro Assembler 5.1 Mixed-Language
Programming Guide. Redmond, Washington. 1987.3 6. Canberra Segmented Gamma Scanner, Model 2220B (55 Gallon
Drums), Operating Manual Version 3, April, 1978.

7. Martin, E.R.,D.F. Jones, and J.L. Parker. "Gamma-ray
Measurements with the Segmented Gamma Scan," LA-7059-M, Los
Alamos Scientific Laboratory, December 1977.

8. Model 2220 Segmented Gamma Scanner, Technical Reference
Manual, Canberra Industries, Inc., Nuclear Systems Division,
Meriden, CT, Jan 1979 ,p 2-3.

9. Canberra Model 2220 Segmented Gamma Scanner Technical
Reference Manual, Canberra Industries, January, 1979.

N-1

-. O&'T N:r 1 , .166

1. AGz.NCY USE ,, -s... ;) L E 2. F ORT TYPE A -) DATES COVE; u

March 199' Master's Thesis
.. T: IE AN D SUi tF 5. FUNDI',- ,NJ!.'/L '

HARDWARE UPGRADE OF A SEGMENTED DRUM ASSAY SYSTEM

6. AUT HORS)

Claude A. Irvine, Captain, USAF

7. PERFORMING C RGA!N:ATION NAVEJS) AND ADD: . (ES' h. PERFOR,C OFGAN!.AT!ON
jREPORT NUP*.DER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GNE/ENP/91M-3

9. SPONSOiNG ..3 -. ,2 AG'NC NAY, SA; K ., :w-i.SSES) ! 0. SESONSO' , Z O.;TO NG
AGENCY F,[POn:T NUMEER

14'1.. D: .J , . . 7 SA" ; ' 12b. D!STkI1JTLOi CC:-..

Approved for public release; distribution unlimited
I

* I1

• 1 [AE$STRACT D'."- -.. , - :O crc

* This paper describes the conversion of a DEC PDP-11/05 computer system, previously
* used in Canberra's Model 2220B segmented gamma scanner, with an IBM PC. Two tasks

necessary for completion of the project involved reestablishing communications with
a Canberra Series 35+ multi-channel analyzer and a scan table controller. An
additional serial/parallel card was installed in the PC to reinstate communications
with the multi-channel analyzer. For computer control of scan table operations a
digital input/output card was used along with an external electromechanical relay
board; when implemented together this hardware setup replaces functions that were
normally processed through a motion control interface card housed within the DEC.
Software consisted of Canberra's PC Toolkit while newer programs were written in

* Microsoft's QuickBASIC 4.5 and Macro Assembler 5.1. Five codes were written--two of
* , these are device drivers written in assembly language and the other three are menu

and control programs written in QuickBASIC. The modification enables simplified
programmer enhancements.

14. SUBJECT TERAS is NJVBLR O PAGES

Gamma Ray Spectroscopy, Radiation Measuring Equipment 92
Drum Assay Equipment, DEC PDP-11/05, Radioactive Wastes, 16. PK;ZE CODE

Canberra Segmented Gamma Scanner -

17, SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19 SECURITY CLASSIFCATION 20 L41! ATION OF ABST'RACT
OF REPORT or THIS PAGE OF ACSTRACT

Unclassified Unclassified Unclassified UL

t , 5 ' 7540-0"-28'3-55.-', Sa 'ca,c "
A ', . + : t + . ": '

