DISTRIBUTIOR, STETSMENT & .
g Approved tor publbic Yeloasey
Distnounon Unbimated

S ——

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

RN B

e F(’L)RCE INSTITUTE OF TECHNOLOGY

Wright- Patterson A Fovee Bose, Qlio

¥4 g 4

AFIT/GNE/ENP/91M-3

HARDWARE UPGRADE OF A SEGMENTED
DRUM ASSAY SYSTEM

THESIS
Claude A. Irvine, Captain, USAF
AFIT/GNE/ENP/91M-3

Approved for public release; distribution unlimited

1-05728 L
\\\l\\l\l\l\\‘l‘\l\i\‘l I 91 7 19

Lo
) Yo
A
Qo

AFIv/GNE/ENP/91M-3

HARDWARE UPGRADE OF A SEGMENTED DRUM ASSAY SYSTEM

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Nuclear Engineering

AL e \
poe- Rt S
T B Rt i}
' o el 20
Claude A. Irvine, B.S. Froes e = WL LI T
. r‘;y
Captaln' USAF !-\1 . .. T et
92 ol i

!.

.
- Do
- -
T N Y
o

March 1991 Uioe

Approved for public release; distribution unlimited

J Preface
y
This thesis describes the conversion of a drum assay
measurement computer system (Digital Computer System PDP-
11/05), at EG&G Mound Applied Technologies, with an IBM PC.
The conversion of the computer system was primarily a team
effort. For this, I am indebted to Mr. Allen Campbell and
Steve Rowe of the Safeguards Applications Development and
Nuclear Material Control Group at Mound, and to Ernie Tyra
of the Electrical Engineering Group. Also, many thanks to
Major Beller, my thesis advisor at the Engineering Physics

Department, who made this all possible.

~

Claude A. Irvine

Table of Conterts

PIEface ® & & & & 5 5 % 2 8 0 b B & 0 E e e e e s e e o & & & b & 2% e b ¥ B s d W ii
Table of Piguresc.c.cv... Crtteseteerenenens ceteera VW
Table o0f Tables . .iiiieiiiteeeetoneseesnssnecocasnanns vi
Abstract‘ ® O 0 & & & & 2 F PSS P E TP S SN RSB e vii
Y. Introduction S £ |
II. Principal Method of Drum Examination cieeees 2-1
Drum Assay Measuring Equipmentccec0veeeeee. 2-1
Drum Assay Procedurececeeeccoacenceanes ceeeen . 2-2
I11. Hardware Upgrade at Mound ceersenmrnsswies 5-1
Problem Definitioncccitiiniceeceecesceess 3-1
Electrical Mapping of Hardwarecccceeeveeees 3=2
“stablishing PC to MCA Software Communications 2-8
DrumSYS-ASH. R EEEEEEEEEE N EEEEREE TR 3"10
DrumSYS.BAS. 8 5 5 8 6 8 6 & 8 B 6 % 68 0 6 e s & 8 8 6P s 8BS E LS EE BN 3-13
E ‘tablishing PC to STC Software Communications 3-15
TableSYS.ASM. ...ttt viennencnnan ceeteatensenanenn 3-8
The Central Menu Program, DrumTAB.BASc00... 3-22
Compiling and Linking Codes Using MakeDRUM 3-27
Iv. Future Effotts * = 5 6 6 5 & 3 b b w 6 P b B E e eSS B e e s 4-1
V. Summary et eeenane Ceeeenn e vecieass 5-1
2ppendix A: Sample Print-out of a Typical Control Drum
Measurementciiitrtreecscceccocssncccccnonncnna A-1

Appendix B: Listing of CONFIG.SYSc0vceennessssase. B-1
Appendix C: Listing of AUTOEXEC.BAT cer e c-1

Avopeudix L: Listing of DrumSYS.ASMccvvceeve... D-1

Appendix E: Listing of DrumSYS.BAS e... E-1
Appendin F: Listing of TableSYS.ASMccieenennnss F-1
Appendix &: Iisting of DrumbaB.BREt ieetenennns G-1
Appendix K: Listing of CXLiB.BASnnenn. Ceeeas H-1
Appendix I: Listing o Makeorumcccivteennannn I-1
Appendix J: Electrical lapeing of P1I0-24 and STC J-1

1i1

Apperdix K: Drum Measurement Run Using DrumTAB K-1
Appendix L: Derivation of Correction Factors L-1

vita * & 5 5 b+ PO S e v e o ® & ¥ 8 ¥ B 0 & T & 3PS ST A e s M-l

iv

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

LWWWWWWH

LY

(500 S SRVER S

Table of Figures

Original Drum Assay System Configuration ..
Present Drum Assay System Ccenfiguration ...
PC to MCA/STC Wiring Diagramo
PIO-24 to STC Schematiccveveecvenns
F'ow Chart of ‘fableSYS.ASM c et secean
Flow Chart of DrumTAB.EXEccttiiveveess
Continued cveereens Gttt ettt
Program Layout ce et eeannesoass

Table of Tables

Table 3.1 STC Control and Sense Linescceveeuun 3-17

vi

Abstract

"lThis paper describes the conversion of a DEC PDP-11/05
computer system, previously used in Canberra's Model 2220B
segmented gamma scanner, with an IBM PC. Two tasks neces-
sary for completion of the project involved reestablishing
communications with a Canberra Series 35+ multi-channel
analyzer and a scan table controller. An additional seri-
al/parallel card was installed in the PC to reinstate commu-
nications with the multi-channel analygzer. For computer
control of scan table controller operations a digital
input/output card was used along with an external electrome-
chanical relay board; when implemented together this hard-
ware setup replaces functions that were normally processed
through 2 motion control interface card housed within the
DEC. Software consisted of Canberra‘’s PC Toolkit while
neweé programs were written in Microsoft's QuickBASIC 4.5
and Macro Assembler 5.1. Five codes were written--two of
these are device drivers written in assembly language and
the other three are menu and control programs written in
QuickBASIC. The modification enables simplified programmer

enhancements.

vii

HARDWARE UPGRADE OF AR SEGMENTED DRUM ASSAY SYSTEM

I. Introduction

During the past several years EG&G Mound Applied Tech-
nologies has been using a Canberra Model 2220B segmented
gamma scanner for measuring the amount of °Pu in waste
drums. This system has worked well, however the computer, a
DEC PDP-11/05, was difficult to program and implementing
additional enhancements proved even more formidable. Thus a
decision was made tc replace the outmoded DEC with a small
personal computer, an IBM PC.

However, the up-to-date computer system would still have
to manage control over the existing equipment. Especially
important was initiating operation of a Canberra Series 35+
multi-channel analyzer (MCA) and a scan table controller
(STC). In the DEC system, a motion control interface (MCI)
card controlled the STC by acting as a switch closure
device; so as a substitute in the PC, a digital input/output
card #as used in conjunction with an external electromechan-
ical relay board. For reconnection of bi-directional commu-
nication circuits between tt« I'"C and the MCA a
serial/parallel card was installed. Finally software was

developed to run the modifi«n :fum assay system.

v
i
[

Next, the development of the DEC to PC conversion is
explained by subdividing the following report into two
parts. For the reader unfamiliar with drum assay measiure-
ments, the first part is a short discussion of the equipment
used and how a drum assay procedure is performed. The
second part (Chapter 3) is a detailed discussion of the DEC
to PC conversion. Most of the drum assay equipment is shown
in Figures 1.1 and 1.2, with Figure 1.2 showing the present

system at Mound as a result of the computer upgrade.

1-2

rd
”~
—7 Bias HY //
ot 1 A } opitioamp 7
s i)mpewst/f
P
Pl OATEC Arp
”~
g !
P Unipoker outpas
-~ \
_” i ADC 1 of WCA
-~ H
i DEC tos &
———————— POP11/05 CANBERRA Sertes 55 pls MCA
To koyboard =———— 71 cormpider interiscs (1107}
Moty Cariecs rimis
»
Scan Tabie Cordiolier
back A NIMBIN oy pol o) drum tabie relay box

Fig. 1.1 Original Drum Assay System Configuration

-~

g < Amp
I—._—r.—uv

 ADCho MCA

Tokeybowrd «————— oM DO m*eams-maspugcré

..__.F..f F1 compater intertacs (1107}

i
H
i
H

back of NIMBIN -————p; - i drurn table relay box

Fig. 1.2 Present Drum Assay System onfiguration

I
Totd

II. Principal Metr..... of Drum Examination

The simplest, non-invasive method for assaying radionu-
clides in sealed drums is by spectroscopy of gamma rays that
are sufficiently energetic and intense to penetrate the
walls of the drums. In most instances, spectra obtained by
a high-resolution detector, such as an intrinsic germaniur
coaxial detector used at Mound, will be characteristic of
specific radionuclides. However, the success of an assay
depends on the activity of the source, the mode of decay of
the radionuclides and whether they emit gamma rays of suffi-
cient energy to penetrate the walls of the drum. Complica-
tions are further introduced by the shielding factor of the
drums and drum contents. Yet in most cases the
determination of the radionuclide identities are readily

obtained by examination of the gamma peaks in a spectrum.

Drum Assay Measuring Equipment

A complete drum assay system usually consists of a num-
ber of distinct, separately-bought nuclear instrumentation
modules, or instead, a complete system can be purchased.
There are several companies that build integrated drum assay
measurement systems, only one in particular is discussed in
this report, the system used by Mound which is manufactured
by Canberra Industries, Inc.

The following is a list of equipment of the drum assay

measurement system:

2-1

1. A gamma-ray detector, to determine the energy of
the absorbed gamma rays.

2. Pre-amplifier and spectroscopy amplifier, for
amplifying and shaping the signal.

3. Multi-channel analyzer, for determining the
gamma-ray peaks.

4. Computer, for analyzing the data.

5. A drum table platform, for manipulating waste
barrels.

The above listing does not include ancillary items such as
power supplies, drivers, cables, etc., nor does it account
f software that is crai*ical for controlling an entire

Sy> em.

Drum Assay Procedure

To begin the procedure a sealed drum of known radioac-
tive waste, called the calibration standard, is placed on a
rotating platform and elevated to expose its lower side to a
collimated, gamma-ray detector. Next, the drum is scanned
by the detector for a preset duration. Then the drum is
lowered to another position and another scan is completed.
Note: each successive step of the moving stage is controlled
through the use of computer software. Finally, once the
entire length of the drum has been scanned, the computer
generates a report of the contents based on the radionu-
clides identified from the gamma-ray spectra observed (see

Appendix A for a sample print-out).

One purpose of the calibration standard is to determine
the absolute efficiency of the detection system. This
information is then used as input data for future drum assay
measurements. In addition, the data serves as a benchmark
for subsequent measurement control runs. For this purpose
the Mound Technical Manual! specifies that calibration data
be taken both before and after each session of drum assays
to confirm that the detection efficiency of the system
hasn't changed. After completing a calibration run, succes-
sive assays following the same routine can be repeated for

one or more drums.

2-3

IIl. Hardware Upgrade at Mound

The scanning system modified at Mound Nuclear Safeguards
and Development Group was a Canberra Model 2220B. Since the
purpose of replacing the DEC with a PC was to attain a more
efficient and reliable scanning system, a spin-off would be
simplification of code enhancements. However, modernizing
the hardware necessitated installation of three boards--a
serial/parallel card, a parallel input/output card and an
electromechanical relay board--to replace functions formerly
controlled by the DEC. This chapter discusses installation
of those items and of software developed to enable PC-to-STC
hardware handshaking and to link Canberra-supplied communi-
cation programs to the MCA.

Microsoft QuickBASIC was the primary language for soft-
ware development. Hence all software programs would run
inside, or in conjunction with, the QuickBASIC Interpreter.
Hardware drivers were written in Microsoft MACRO and then
compiled and linked as a QuickBASIC library. As a conse-
quence, the library module has to be loaded when QuickBASIC

is started.

Problem Definition
To complete the changeover, the PC needed to interface
with existing equipment by performing three main functions:
1. Communicate bi-directional data transfers with
an external MCA, via serial interface for ccm-

mand/control functions and parallel interface
for data transfers.

‘

N 4 ok G U G &R G 3N & G &G &G 4 D S e

[

2. Function as the control panel by supplying
driver signals and sensing feedback signals to
and from the STC (the STC drives trolley motors
and lifts the drum turntable up and down, and
perfcrms other various functions).

3. Analyze spectral data taken by the MCA.

Furthermore, development of new software would be needed
to replace existing codes. Originally the DEC PDP-11/05
controlled input and output functions by using BASIC/RT-11
language programs provided by Canberra. This software con-
sisted of 3 main modules:

1. A BASIC language interpreter, with callable
machine language functions for system control
and data acquisition.

2. A calibration program.

3. A general purpose program that included several
BASIC subroutines for allowing the computer to
control MCA functions, like setting up a region-
of-interest (ROI), doing a spectral peak search,
or presetting counting time, etc. (a more
universal set of subroutines that parcels con-
trol and data transfers between the DEC and MCA
is given by Larry V. East2?),.

Because all of the other drum assay equipment was retained,
newly uritten programs for the PC would have t» execute
identical tasks to the above BASIC/RT-11 language programs.
Thus the modified drum =aszsay system would still operate

similarly to that of the original DEC system.

Elestrical Mapping of Hardware
This section discusses installation of new hardware nec-
essary to connect the PC with the MCAR and STC. MCA communi-

cation nardware consisted of a parallel driver card

3~2

E
E

(rommonly called the Fast IBM Interface or 3576) and a
serial communication card (just referred to as the PC Inter-
face or 3575). PC to MCA electrical connections were estab-
list.ed by installing a serial/parallel (S/P) adapter board
in slot #2 of the PC, and coupling both serial ports by way
of a 9-pin null modem cable, 9~pin to 25-pin adapter, and
25-pin ribbon cable. Similarly, the parallel ports were
connected with a shielded 25-pin cable. Figure 3.1 shows
the wiring diagram and cable connections.

Additionally, since there was a limited number of serial
ports on the PC, a Clear Signal T-Switch Box was spliced
into the serial line so other applications could utilize the
same serial port. Serial hardware handshaking is enabled
when the switch on the box is in the "A" position.

The baud rate for the logic board in the MCA was set to
1200bps. Higher transmission speeds are also possible, how-
ever, the CANBERRA PC Toolkit Software Manual3? advises if
Microsoft Windows is to be used the baud rate of the serial
port should be less than or egual to 1200bps, thus assuring
no characters are lost in the transfer process. 1t was
decided to limit data transmission to 1200bps for now,
thinking that in the future windowing capability might be
applied.

Because a common setting of 1200bps on both PC-to-MCA
communication boards was uced, installing both serial and

parallel communications were a necessity because of the huge

-

weiBelq Bubim D1S/VOW 01 Od '€ anbid

Q g
Joyoenos ud 62 uoqqu ud 52]
2r "8 3 L0-vy3
aseze leroN 1) | m % &
Joypeunod g ud 2¢
00815
uoqqgy wwd 5,
¥
20)08LL00 «4d LE
eoepeWl} Od 'sody 81540
Lo X0G { |l HOd Bueg
+Gg [apon ; ™)
VOW - = Sl
Q
€ 1d1 _ Q
s B T T wodioped | &
i

eoBpiel) BIEQ WEI 1583

od Ngl

o

i B &N == =

M O TN T o R I N O B S =S

aE W

|

amount of data sent over the lines (the MCA could send up to
8192 cnannels of information). Transferring that amount of
data through a serial line would take up too much time, so
to minimize the transmission interval, command ar . control
functions were routed over a serial line while {.* L_ransfer
used parallel exchange. Note howaver, paralle - . Cans-
fer was not critical since all MCA functions coul be han-
dled through serial communications.

For PC-to-STC communications, a high-output cirrent,
parallel digital interface (PI0-24) was installed in PC slot
#5 (base address 304 hex), along wich an external electrome-
chanical 8 channel SPDT relay board (ERR-0l1), to route PC to
STC communications. All digital input/output lines from the
PI0O-24 are connected ts the ERA-01 via a MetraByte C1800
ribbon cable. Cabling from the ERA-01 to STC is by way of a
25-pin ribbon cable. Again, Figure 3.} shows the wiring
diagram for cable and equipment connections, 2nd Figure 3.2
shows a schematic of the electrical connections.

The PI10-24 and ERA-0U1l devices are the functional equiva-
lent of the MCI card (recall Figure 1.1). Originally, the
MCI served 7 =ontrol lines by sinking 300 ma tz common
ground of an EG&G ORTEC NIM power supply. Buil the PI0-24
could only sink 64 ma to yround, v it was used to drive the
ERR~01. Sink curr<ut is maintained for 7 control lines
through a =2t of relay contacts on the ERA-01 board. 1In

addgition, 5 scase lines from the STC enter the ERA-01.

3-5

PIO-24

PB port write latchas

bed bt] pre] prd prd brs prd ot

|| |

ERA-01 STC

" Lt " Lty ik AEATITTELH W , “‘

relay drivers relay drivers .
03 47 I J2:15
i
PB port l
relay 7 l
! 3¢ Jo-
EVa ”

PB port Jz13
reiay 6

Vs

PB port
relay 5

‘Z Jz2-11

N S - A
I
'
Cn
[
Y
n

f————
PB port Jo-
relay 4 10

kVa

- J2-8

PB port PB port PB port PB port
relay O relay 1 relay 2 relay 3

321 JEVa I Va 32_5 and

Figure 3.2 PIO-24 to STC Schematic |

3-6

:
i
i
i
i
i
i

These lihes are for sensing contact closure cnly and are
presently disconnected. For more information on control and
sense lines, see the next section, "Establishing PC to STC
Communications."”

Three of the 7 PI1I0-24 control lines drive 3 relays on
the sTC: K1, K2, and K3. Output from K1 and K2 set the
"return" and "advance" contacts of 6 small relays on the
drum turntable panel box. The panel lox has 7 large contact
relays (CR's 1-7) which drive the left and right trolley
motors and drum rotation motor; the smal. relays (CR's 8-13)
are the relay drivers for CR's 1-7. Output from K3 opens
and closes a shutter used by the transmission source. The
other 4 control lines (1-4) turn on display lamps on the STC
panel.

Appendix J shows each control line connection on the
P10~24, ERA-01 and STC. For example, control line 5 is PB
port bit 5 on the P10-24, PB port relay normally open con-
tacts on the ERA-01, and pin connection J2-13 on the STC.

In actuality a port bit does not directly join end to end a
port with its relay contacts, however, what is meant is the
port bit can energize a corresponding relay on the ERA-01.
Furthermore, the "common" contacts of all the relays are
connected to J2-25, which is common ground of the NIM power
supply. Since the contacts of the PB port relays are nor-
mally open, no connection is made to ground. However, set-

ting a PB port bit high on the PI0O-24 (through TableSYS.ASM)

will close the proper relay on the ERA-01 and short the
normally open contacts to ground--in essence, activating a
contrel line. 1In this way the PI0-24 and ERA-01 combination

can replace functions formerly managed by the MCI.

Establishing PC to MCA Software Communications

The Canberra S370 PC Toolkit is a collection of driver
and utility programs (17 total) useful for setting remote
control communications between a Canberra MCA and an IBM
compatible computer. The 3 most important programs are PCU-
TIL.BAS, MCAS.COM and SETMCA.COM (page 13 of the PC TOOLKIT
SOFTWARE manual provides an in-depth explanation of each
program). These programs establish serial communication.
Both MCAS and SETMCA are executable device drivers while
PCUTIL is a GWBASIC utility program. The essential codes
for parallel communication are BINS.COM, BINSTUFF.OBJ and
FASTRAN.EXE. Both FASTRAN and BINSTUFF are FORTRAN test
programs, while BINS is the parallel device driver. Since
all 6 programs were vital in governing MCA operations, each
one was installed.

The first prerequisite was to check the settings of the
S/P board port addresses. By default, initial factory set-
tings activate software handshaking using serial port #2 and
parallel port #3. Port allocation was verified by
CHECKCOM.COM, a program that verifies port availability and

determines whether or not the port is suitable for serial or

3-8

paraliel communications. Then the device drivers, MCAS.COM
and BINS.COM, were installed in CONFIG.SYS. Appendix B
lists a print-out of CONFIG.SYS. Since the jumper in the
S/P card was set to COM2 and LPT3, the device driver argu-
ments in CONFIG.SYS (for MCAS.COM and BINS.COM) are COM2 and
LPT3, respectively.

Finally, SETMCA was added to AUTOEXEC.BAT. Appendix C
lists a printout of AUTOEXEC.BAT. SETMCA sets the software
for serial communication to operate at 1200bps--the same as
the baud rate setting on the MCA logic board. Note: when
changing the baud rate, failure to set the logic koard and
SETMCA to the same value will disable serial handshaking.

Since Conberra specified serial communications could be
accomplished in either BASIC or FORTRAN languages, and par-
allel data transfer by using FORTRAN only, a principal lan-
guage needed to be selected. The Microsoft QuickBASIC
Interpreter becama .e primary language for code development
because of its outs‘'::ding debugging capabilities. However,
this meant FASTKXW :~1 to be rewritven in QuickBASIC with
BINSTUFF converted ov.r to a QuickBASIC library, and lastly,
PCUTIL needed %.. run inside the interpreter.

Proper operaticn of the serial communication line was
checked by running PCUTIL under GWBASIC. Several commands
were given, e.g., initialize the MCA and set regions of
interest, in verifying serial hardware setup. No problems

were encountered.

3-9

W

Gl N GOh G N R D N N N BN BN D B D % &G e

DrumSYS.ASM. The original BINSTUFF was a collection of
5 FORTRAN subroutines that passed data back and forth to the
device driver, BINS. However, BINSTUFF didn't work, at
least in the QuickBASIC environment. Replacing the object
code meant BINSTUFF had to be rewritten in assembly lan-
guage, and also had to be Microsoft compatible in order to
be linked as a QuickBASIC library. Appendix D lists the

assembly source code for DrumSYS.ASM--essentially the same 5

procedures as in BINSTUFF but condensed into one code and
data segment and rewritten with Microsoft Macro Assemblert
directives/instructions and BASIC calling/naming conven- :
tions.
Two of the five procedures are documented in-depth,
while the other three share instructions similar to those
observed in the first two procedures. BAnd all of them fos-
ter DOS interrupt functions and standard File Cortrol
Blocks.
Because documentation on BINS and BINSTUFF was nonexis-
tent, it made deciphering the original BINSTUFF difficult.
Apparently DEVICE is used as a symbol for the ASCIIZ string,
'BIN1.' This means BINl is a device (opened by BINS) for
writing data to during a parallel data transfer. 1In the
same fashion, FILEHANDLE is a symbol that contains the file

handle.

3-10

il il e L U R L L LR L

DOS interrupts open and close the file BINl. For exam-
ple, the first interrupt (INT 21/3D) in the OPENBI procedure
accesses the file private to the current prccess. On a
successful return, BINl is opened with the read/write
pointer at the keginning of the file. Thkz file handie (a
2-byte number, or word)} is used in later DOS interrupts to
reference back to BINl1. Actually, file handle is the 2-byte
offset address while DS (Data Segment register) points to
the segment address, also z bytes.

After BINl is opened, the next procedure, INBIN, per-
forms the actual data transfer. Now parameters are passed
to the procedure along with the return address. 2
requirement of BASIC is tc declarc assembly-language proce-
dures ss FAR. Hence, the return address is 4 bytes long.
This may not seem important at first, but when DrumSYS.BAS
calls these procedures it makes a difference. The reason
for this is the way BASIC calls an assembly-language pro-
gram. By default, BASIC passes parameters to a procedure by
reference as a 2-byte addressS. But as will be seen later
on in DrumSYS.BR3S, the parameters are passed as LONG, i.e.,
a 2-byte segment address in both SS and DS registers plus
another 2-byte offset address--4 bytes total. First, BP,
which serves as 2 framepointer, is pushed unto the stack.
Next BP is loaded with the last value SP (Stack Pointer)
pointed to--the cid value of BP. Since BP never changes in

the procedure, all 4-byte parameters pushed anto the stack,

and the 4-byte return address, can be referenced relative to
BP. Thus, if 2 parameters were pushed onto the stack,
[BP+12] would point to the first parameter, [BP+8] would
point to the second parameter, and finally, [BP+4] would
point to the return address. Then it is a simple matter to
access the data as required in the rest of the procedure's
body.

In summary, the original procedures from BINSTUFF were
rewritten, and the new assembly-language program is called
DrumSYS.ASM. Next, DrumSYS.ASM was made into a QuickBASIC
library. From the DOS prompt, DrumSYS.ASM is compiled into
an object code using the command:

> MASM DrumSYS.ASM /zi
The option /zi is an assemble-time option that produces an
object file in CodeView format. CodeView is a symbolic
debugger from Microsoft and is useful for troubleshooting
machine code. For now, the compiled code called DrumSYS.OBJ
is linked as a QuickBASIC library using the command:

> Link /q DrumSYS.OBJ,DrumSYS.QLB, ,BQLB45.LIB /co
Again, the /co option is used for CodeView only.

To call the procedures inside the QuickBASIC Inter-
preter, QuickBASIC has to be loaded with the command:

QB /1 DrumSYS.QLB
Now the QuickBASIC Interpreter has ali five procedures

available for accomplishing parallel data transfers. 1In the

3-12

\

followiné section, the conversion of FASTRAN into the code
DrumSYS.BAS is discussed along with how parameters have to
be defined before they can be passea :0 DrumSYS.QLB.

DrumSYS.BAS. As pointed out earlier, BINSTUFF was to
be called from a FORTRAN program called FASTRAN. FASTRAN
was a test program that could transfer data files (MCAR spec-
tra) on disk to and from the MCA. It used a serial line for
sending simple command functions while data were dispatched
over a parallel line. The new FASTRAN, rewritten in Quick-
BASIC, is called DrumSYS.BAS. BAppendix E lists the Quick-~
BASIC source code for DrumSYS.BAS--practically the same
lines as in FASTRAN but rewritten with Microsoft QuickBASIC
subroutines and BASIC calling/naming conventions.

Another addition to DrumSYS.BAS was the ability to chain
to Canberra's utility program PCUTIL.BAS. However, PCU-
TIL.BAS would not run in the QuickBASIC Interpreter, so it
was modified. Because of the length of this program
(approximately 800 lines of code), it is not listed here.
The new program (PCUTILQB.BAS) is the same as Canberra's
except with a few minor changes.

DrumSYS.BAS is adequately documented, so only a short
discussion is included here. However, there are two impor-
tant peculiarities. One has to do when DrumSYS.BAS is first
started, and the other when parameters are passed to

DrumSYS.ASM.

3-13

My v b
i A i " W "y >

The serial device driver MCAS.COM opens two devices,
denoted MCAIN and MCAOUT. These devices are used for MCA
communication; note: they are not "ordinary" files. Drum-
SYS.BAS will write information to MCAOUT and read data from
MCARIN in order to communicate with the MCA. 1If the MCA does
not respond and an error condition occurs when DrumSYS.BAS
opens MCAIN for input, press the INDEX and HOME keys (on the
MCA front panel) simultaneously to clear the MCA and enable
handshaking. In the event the above does not work, then
press the YES key (on the MCA front panel) and retry. The
previous steps should only be needed when the MCA is first
turned on. The reason is because on the back of the MCA
there is a switch that has three positions: Remote, Shared,
and Local. When the switch is in the Shared position both
the front panel keyboard and a remote computer can enable
handshaking. However, during a cold start-up and when the
switch is in the Shared position, the MCA electrically pulls
one of the serial line pins low, thus disabling remote com-
munications. The above procedure reinstates remote communi-
cations.

In DrumSYS.BAS parameters are passed to DrumSYS.ASM as
LONG, i.e., a 2-byte segment address plus another 2-byte
offset address. This implies numerical data must be
declared LONG (4 bytes). In QuickBASIC an integer data type
is only 2 bytes long, so failing to pass values as 4 bytes

will eventually cause the computer to hang. The problem is

3-14

solved in DrumSYS.BAS with the "DI¥ SHARED I2AR{8194) AS
LONG" statement. BAnothex concern ig how the array IAR is
passed. BAZ.C uses =~n "“arrvay fescriptor"™ ¥ . ~ass arrays.
The array descriptor lets BASIC aceess an array by pointing
to the first eiement ok the array's address. Thnis is neces~
szry because BESIC allocates comriver memory dynamically;
thus an array may shift in memory location when the program
is run. Therefcre QuickBASIC VARPTR and VARSEG functions
must be used when passing an array. However, one exception
to this rule is if the array elements are passec by value.
For more information on FAS{C arr-av descriptors .ee Micro-

acft's Mixed-Languags Prog. .ming Guide.

Establishing PC to STC Software Communications

The STC (model #2225B) is the rack mounted control panel
for the gamna scanner®. “t is the main panel for starting
an assay measureme,t sequence. The zanel performs four cen-
tral functions: SYSTEM POWER, SEGMENT SIZE CONTROL, TABLE
ROTATION and PROGRAM CONTRCL. These functions are
summarized in the Segmented Gamma Scanner Operiting Manual
as follows:

1. SYSTEM POWER: Turans on the AC power to the drum
rotator panel and contains the emergency stop
button.

2. SEGMENT SIZE CONTROL: Limits the length of drum
segments. Use of the RETURN button moves the
dr-m table to the top position and using thLe
ADVANCE button indexes timer to advance the drum

table downwards. Note: RETURN and ADVANCE are
computer controlled relays.

3-15

3, TABLE ROTATiCI: OF position the trellies for-
ward and starty drum table rotatio:.. OFF pesi-
tien moves the troilies backwarc. snd stops drum
table cotation.

4. ¥ROGRRM CO™TROL: SHUTTER ovenz and cloges the
shutter. ABURT terininates #he dium assay mea-
surement. CALIB initiates the sszlibration pro-
cedure., INIT allows for ~--~al cziibgrtien of
drum. BASSAY starts the assay measurement
vrocedure,

Two of the functions, SEGMENT SIZE CONTRCL and PRCGRRK
CONTROL, depicy "digital" input/cutput lines to implement a
drum assay procedure.

Presently there are 12 digital lir.z, ¥ vmtrol lines
and 5 sense lines. These are - .mmarized in Takle 3.1. The
PC invokes operation of cthe control lines through 1a3ble-
8YS.ASM, the software driver for the STC. Right now all ¥
zense lines are disconnected at the ERA-01 because of
earlier troubles that were encountered when AC cross talk
would feed back into the parallel digital interface and
destroy integrated circuits; nonetheless, their functions
nave been replaced by using a time~delay procedure (in Tab-
leSYS.ASM) called Pause(x).

Most of the mechanics of the drum assay utilize control
lines 5, € and 7. For example, invoking control line 6
(relay K2 energized) will activate a drum segment size
timer; the timer is preset by rotating several thumb-wheel
switches on its front face to a desired setting. Once the

timer energizes it lowers the drum table platf~rm until time

has run out. Thus, the length of the segment dror is lim-

W
t
[
[1}

TR IR N S AR Ex W

ited by the setting on the timer and remaing constant
throughout the drum assay procedure. Program f£lr, will then
issue commands to the MCA through CALIB.BAS (see Appendix H)
to start collecting data. Issuing another control 6 again
lovers the drum, and this cycle repeats until all segments
have been analyzed. Similarly, control 7 (relay Kl ener-
gized) moves the drum table platform upwards, and control 5
(relay K3 energized) opens and closes the transmission

souree shutter.

TABLE 3.1
STC Control and Sense Lines
Burpase

Turn AEUET lamp on.
Turn CALI® :<mp on,
Turn INIT lamp n,
Tuvn ASSAY lamp on.
Open transmission sourci shutter and turn SzITTER iy on.
Move drum table downwards.,
Move drum table upwards.

Signals ABORT button has been pressed.
Signals CALIB button has been pressed.
Signals INIT button has been pressed.
signals ASSAY button has been pressed.
Siqnals drum table is advancing.

3-17

T=bles'YS.ASM. TableSY¥S.ASM is the software driver for
the PI0-24. 1t consists of 4 public assembly-language prz-
cedures (public means the procedures are accessibkle fiom
another high-level language). These are

(1) setCRconfig(): initializes PI0-24 mode, no
parameters are passed;

(2) set(x): will energize relays 1-7, pass numbers
i-7;

(3) Clr(x): will turn off relays 1-7, pass numbers
1-7;

(4) and Pause(x): will suspend program execution for
l to 59 seconds. Procedure uses DOS system time
and is independent of processor speed, pass num-
bers 1-59.
Appendix F lists the TableSYS.ASM source code, and Figure
3.3 shows a flow chart of each procedure. More important,
however, is every directive and instruction in the code has
been commented should the PI0O-24 port addvesses need to be
changed.

The "twenty-four" in PI0O-24 stands for 24 digital
input/output lines. These 24 lines are divided equally
among 3 ports: PA, PB, and PC. All ports are configured
input only when the computer is first turned on. However,
when DrumTAB.BAS (see next section) is started it ini-
tializes the control register on the PI0O-24 using the SetCR-
config() procedure. SetCRconfig() zeroes the contents of

the write latches (ail ports) and configures PB as a write

only port. Currently the PA and PC pcrts are not used.

>-18

WSV SASSIGeL JO HeUuD Moi4 €'¢ 8anDiy Relop oWy | Mﬂm
dee
req g —
o1Aq Yopel breew A2ied) - <
sisep Aeley uod 8d PLBLLIWOD
anv o} SWM L ¥
y] I
.)
esueg elAq Lot
o alig »se Aejey winjey
9 o8I0A8H HO i
!) 5 :
, e e oo eenmnnonensramnnnat o
i
ON ok ™
. | am— ON Yo yoye| -l M0} p2-Old
i8¢ — e —tn] aunByuo
0} HB.AUOD) O} HeAUOD 0
; Y
o [T e Xeu €06
_ooc..wa d pessed - POODAN |- H«am J6QUINN HOd
Jo)8! d 109 Jeleuesad 190 USlé ¥ d 199 jeg
4
esneg
el

Functionally, procedures Set(x) or Clr(x) drive the
P10-24 by retrieving a 2-byte integer parameter placed onto
the stack segment. The variable x is the parameter passed,
and ranges from one to seven. Accessing the value is the
same as described in the DrumSYS.ASM section. The parameter
has a one-to-one correspondence with control lines 1 through
7. For instance, a value = 3 means control line 3. Next,
the parameter is encoded to the relevant PB port relay.

This is accomplished by raising the number 2 to the parame-
ter power. For example, a parameter equal to 3 is changed
to 2° ~« 8 The new value is then converted to an 8-bit
number tuat corresponds to the PB port relay on the ERA-01
(see Appendix J). Since there are 8 PB port relays (0-7)
and only 7 control lines, each control line is mapped (again
a one-to-one correspondence) to one relay. Hence a parame-
ter = 3 means control line 3, PB port latch bit 3, and PB
port relay 3, with the byte number sent to the ERAR-01 equal
to 00001000 (in binary).

That's the way the process should work, however, there's
one slight problem. When examining a drum it's necessary to
set more than one control line. Changing the sanse of one
bit would turnoff the other relays (bit sense = 0), so to
solve the problem a copy of the last command sent to the
PI10-24 is saved in the data segment. The symbol LAST is a
direct mr Ory operand that represents the address (segment

and offset) of the last command byte, and is referred to as

3-20

a "relay mask". 1In general, the relay mask is formatted as
two 4-bit nibbles. The low-order nibble (bits 0 through 3)
corresponds to control lines 1-3. Likewise, the high-order
nibble (bits 4 through 7) corresponds to control lines 4-7.
In a Set(x) procedure a bitwise logical OR on the PB port
latch register (BL register) and relay mask is performed.
The new byte is placed in the AL register and sent out to
the PB port. As a result, only the relay that needs to be
activated is turned on, or in the case of a Clr(x) proce-
dure, the relay is turned off. Clr(x) works similar to
Set(x) except it uses a bitwise logical AND on the port
latch register and the relay mask.

Finally, the procedure Pause(x) is just a time delay
with x being the number of seconds (between 1 and 59) to
delay by. Since Pause(x) uses DOS interrupts, timing is
independent of processor type. Hence an AT style computer
would have the same delay as a 386 type machine. Mainly
Pause(x) serves as a substitute for the sense lines that
were previously used in the old RT-11 BASIC codes. The
purpose of the sense lines were to let the computer codes
know the STC was busy running the drum table platform. B2as
an alternative, the programmer counts the number of seconds
for the STC to perform a specific task (for example, moving

the drum down one segment might take 5 seconds) and inserts

3-21

the appropriate delay in his/her codes using Pause(x). At
first it might seem this appears like a cheap fix, however,
it works well because of the constant RPM AC motors.

Like DrumSYS.ASM, compiling TableSYS.ASM into an object
code is the same. In addition, the two object codes can be
linked together to form one QuickBASIC library; then all of
the procedures in both codes are available to DrumTAB.BAS,
the menu program. BAside, an advantage of using assembly-
language modules is that they can be interfaced from any
high-level language without requiring modification should

DrumTAB.BAS be written in another language.

The Central Menu Program, DrumTAB.BAS

DrumTAB.BAS is the main program that exploits all the
features that have been talked about earlier. It can be
started in the QuickBASIC Interpreter or compiled and linked
separately into an executable code, DrumTAB.EXE, using Make-
Drum (see next section).

Program flow starts, as seen in Figures 3.4 and 3.5, by
setting the computer environment and initializing communica-~
tions with the MCA and STC. Once successful, the code
prints a menu on the display screen and then prompts the
operator for his/her input. Depending upon which case was
selected, the next step executes appropriate subroutines to *

perform the desired task. In the particular case of a drum

assay procedure, DrumTAB executes Set(x) and/or Clr(x) pro-

T

—

cedures until it reaches the subroutine: Start Drum Assay
Procedure. Then program management is transferred to an
include file that controls MCA operations, like collecting
ROI data, setting counting time, etc. Other than the excep-
tion of the include file, all operations are performed by

DrumTAB--in conjunction with its library routines.

3-23

G me mE Ge o on oo on G G SN mE G E e E e s ees

DrumTAB.EXE

Set Display Colors

"

Figure 3.4 Flow Chart of DrumTAB.EXE

3-24

PONUUOD ¢'¢ 8anBiy

T - U — _
: L] L} -~
' * a a AVERY Wryan LNy WOW KA
P " g #3010 ! L N
i ; ! SPLNLALIOND
Py P J @ oA®] n:w”.ns g i ieel | 040D YOW
m “. - }.. Wwirv . m m ggao&
L NPEOOIg Asssy Linu(] 188 e i AN,
m } t ! , i o
T PR Yo
- %ﬁio M n. “
$001P830.d) ¥) VOW O 1 0 01 S8 .
g%b- b » -+ + @0 Ida Eg m o
ULoReId e1qe) LN LoRISOd wngoeds pues WNIoe4E YO 19D T
} {)
peucniscd e et :
SASKOL LINUD 808 G} XO04D
L , (o)
v i
01w 199 40180 19O : s |-
i | aonod
uoRdo s8R AU YON 10005 i uny

SAAA AL e

inoke] weibolid G g einbi4

\ WSV SASeIeL

\ suogeledO O18

i

17ﬁHHHNN_

aviwnug

NMHMHV ANTW AMMMMV
svaainvo

VYOWL3S
Sva'd0IlLNDd
WOD'SVOW

10U0D YOW reUEg

WOO'SNIg

sva'saswng
WSV 'SAsWwInug

Jejsuel] eRQ YON PBiRRd

3-26

Compiling and Linking Codes Using MakeDRUM

To simplify compiling and linking all codes necessary to
run DrumTAB.BAS outside the QuickBASIC Interpreter, a short
code called MakeDrum is used to construct DrumTAB.EXE.
Appendix I lists MakeDrum. It implements Microsoft's Make
Utility to re-compile and link programs that have been modi-
fied since the last time they were compiled. Hence MakeDrum
shortens the amount of time a programmer spends at the
keyboard writing assembler commands, and makes changes to

any of the programs a cinch to do.

3-27

T .

1V. Future Efforts

The test file, CALIB.BAS, was used as an include file in
DrumTAB to check whether or not a drum assay procedure could
be accomplished with the new hardware setup. A sample out-
put from CALIB.BAS is seen in Appendix K. This is similar
to the DEC print-out in Appendix A. However, extra work is
needed to correct the number of counts under the full-energy
peak for absorption/scattering losses; also, no error analy-
sis was performed. Hence two undertakings, an error analy-
sis and addition of correction factors, must be considered
part of a drum assay measurement. Included in Appendix L
are mathematical derivations for the correction factors.
Also, enhancements in the way of mouse support, a split
screen graphics menu, and modular code design should eventu-
ally be incorporated. Nevertheless, these, and the efforts
mentioned above, are left as suggestions for yet another

project.

4-1

T, WIWWV'HWWP

P Y "

V. Summary

A DEC PDP-11/05 computer system, used in Canberra's
Model 2220B segmented gamma scanner, was replaced with an
IBM PC. Additional hardware for the computer upgrade
included installation of a serial/parallel board, a digital
input/output board (PIO-24) and an electromechanical relay
board (ERA-01). Five computer codes were written: Table-
SYS.ASM, DrumSYS.ASM, DrumSYS.BAS, DrumTAB.EXE and CAL-
IB.BAS. TableSYS.ASM is a software device driver for the
PI0O-24. DrumSYS.ASM and DrumSYS.BAS are used with
Canberra-supplied software for parallel data transfers.
DrumTAB.EXE is a main menu and control program, and CAL-
IB.BAS is an include file that interfaces with a Canberra
Series 35+ multi-channel analyzer. A drum assay measurement
was accomplished using the above codes and the hardware
setup as described in Chapter 3. A sample print-out is
listed in Appendix K. The modification enables simplified

programmer enhancements.

5-1

Appendix A: Sample Print-out of a Typical Control Drum Measurement

DIAGNOSTIC INDICATOR INFORMATION FOR 26-JUL-90 AT 15:43:39
LIVE TIME: 300 SECONDS
NEW LIVE TIME (SECONDS):

CHANNEL DATA NET DATA CHANNEL DATA NET DATA

948 219 61.1 1101 61 3.6

949 259 101.1 1102 61 3.6

950 278 120.1 1103 68 10.6

951 215 51.1 1104 48 -9.4

952 236 78.1 1105 48 <9.4

953 259 101.1 1106 75 17.6

954 27179 121.1 1107 54 -3.4

955 357 199.1 1108 67 9.6

956 516 358.1 1109 60 2.6

957 1846 1688.1 1110 83 25.6

958 8357 8199.1 1111 164 106.6

959 28009 27851.1 1112 251 193.6

960 51021 50863.1 1113 274 216.6

961 42261 42103.1 1114 180 122.6

962 14338 14180.1 1115 82 24.6

963 1974 1816.1 1116 57 -.400002

964 243 85.1 1117 4 ~10.4

965 143 -14.9 1118 51 -6.4

966 125 -32.9 1119 67 9.6

967 110 -41.9 1120 4 -10.4

968 93 -64.9 1121 42 ~15.4

969 88 -69.9 1122 39 -18.4

970 100 -57.9 1123 49 -8.4

m 99 -58.9 1124 59 1.6

972 91 ~66.9 1125 64 6.6
152328 2263 GROSS AREAS

146801 655.8 NET RRERS

BKG LOW SIDE = 241.4 BKG LOW SIDE = 57.2

BKC HIGH SIDE = 74.4 E7G HIGH SIDE = 57.6

AVERAGE BKG = 157.9 AVERAGE BKG = 57.4

LIVE TIME = 300 SECONDS
TRUE TIME = 312 SECONDS
DERD TIME = 3.84615%

CS-137 PRRAMETERS PU-238 PARAMETERS
MAX CHAN = 960 MRY CHAN = 1113
MRX DATA = 50563.1 MAX DATA = 216.6

W W W e - —m—m"

FRHM = 2,720¥7 FWHM = 3.12638
FWTH = 5.21359 FHTM = 5,2889
COUKT RATE = 489.338 COUNT RATE = 2.186

ENERGY CALIBRATION:
ENERGY (KEv) = ,684581 * CHANNEL + 4.45081

READY
RUN MC

E
]
El
E device=msmouse.sys /1
i files=25
buffers=25

DEVICE=C:\REMM,SYS
DEVICE=C:\SMRRTDRV.SYS 256 /a
break on
device=c:\dos\ansi.sys
device=c:\toolkit\bins.com /3
device=c:\toolkit\mcas.com /2

]
3

Appendix B: Listing of CONFIG.SYS

1

Appendix C: Listing of AUTOEXEC.BAT

prompt $pSg

path=c:\;c:\nc;ei\zips;ci\dos;e: \util;c: \norton;c: \windows; C: \NBACKUP;C: \TOOLKIT; C: \bixn
set NBACKUP=C:\NBACKUP

C:\TOOLKIT\SETMCA 1200,E,7,1

C:\QB45\QB.EXE C:\QB45\THESIS\drumtab.BAS /1 C:\QB45\THESIS\drumtab.QLB

LU

me Wme W wa ww

FRAME struc
SAVEDS /]
SRVEBP i]
RETADDR DD
IARRRY DD
FRAME ends

Data_Seg
Data_Seg
Code_Seg

DEVICE
FILEHANDLE

OPENBI

OPENBINdone:

ond ax) %))

Appendix D: Listing of DrumSYS.ASM

File called Drums¥S.ASM, used for parallel data transfers.
Replaces Canberra BINSTUFF.ASM

Make into an object code (DrumSYS.QBJ) by running MASM
For example, at DOS prompt type: MASM DrumSYS.ASM

Last written on 7 Oct 90 by C. Irvine

.286 286 processor directives
.SEQ ; order segments as they appear

~e

word (2 bytes) copy of DS register
word (2 bytes) copy of BP register
double word (4 bytes) return address
double word (4 bytes) address of data
black array

e s me WA wa

Segment Public 'DATA’
ends

Seqment Public 'CODE’
Assume C5:Code_Seq,DS:Data_Seg,SS:Data_Seg

db 'BIN1',0 ; ASCIIZ string for BINS.COM
dw ? ; Pile handle

public OPENBI

proc far

push bp ; save “framepointer”

push ds ; save D§

mov az, Code Seg ; initialize DS register

mev ds, ax

mov dx, OFPSET DEVICE
; load address of DEVICE into DX

mov ah, 61d : Por INT 21/3D Open File

mov al, 1284

int 334

jc OPENBINdone ; jump out of here if error

mov FILEHANDLE, ax ; save Pile handle

mov bz, ax ; get Pile handle Rem: still in ax

mov ax, 440lh ; Por INT 21/44/C1 IOCTL: Set Device
: Information

mov dx, 96d ; Bnd of file OFP, binary mode

int 33d

pop ds

D-1

OPENBI

INBIN

IRBIN

OPENBO

OPENBOUdone:

QPENBO

pop bp
ret
endp

pubiic INBIN

proc far

push bp

push ds

mov ax, Code_Seg
mov ds, ar

mov 2=, PILEHENDLE
mov bp, sp

1ds dx, [bp].IRRREY

moy si, dx

mov cx, [si]

add cx, ex

add cx, cx

rmov bx, PILEHANDLE
mov ah, 63d

int 334

pop ds
pop bp
ret 4
endp

public OPENBO
proc far

push bp

push ds

mov ax, Code_Seg
mov ds, ax

save frampointer
save DS
initialize DS register

save PILEHANDLE

set stack framepointer

store segment address in DS and
offset address in DX

point to offset address

get channel count

convert to byte count
get file handle

INT 21/3F reads handle 2nd transfers
CX bytes to buffer

remember: byte count = 4 long integer

; initialize DS register

mov dx, OFPSET DEVICE

@mov ah, 3dh

mov a!, flh

int 21k

jc OPENBOUdone
mov PILEEANDLE, ax
mov bx, ax

mov az, 4401h

mov dx, 0096d

int 334

pop ds
pop bp
ret
endp

; open file
; write access

; jump ocut of here if error
: get £ile handle

+ T10CTL set device
; EOF off, binary on

D-2

OUTBIN

CJTBIN

CLOSER

CLOSEB
Code_Sag

public OUTBIN

proc far

push bp

push ds

xov ax, Code_Seg
mov ds, ax

mov ax, FILEHANDLE
mov bp, sp

1ds dx, [bp].IARRAY
mov si, dx

mov cx, [si}

add cx, 2

add cz, ex

add cx, cx

mov bx, PILEHANDLE
mov ah, 64d

int 33d

pop ds
pop bp
ret 4
endp

public CLOSEB

proc far

push bp

pusk ds

mov ax, Code_Seg
mov ds, ax

mov bx, PILEHENELE
=ov ah, 624

it 33d

pop dz
pop bp
ret
endp
ends

EXD

; initialize DS register

; Write

; initialize DS register

: close

D-3

Appendix E: Listing of DrumSYS.BAS

OPTION BASE 1

DECLARE SUB OPENBI

DECLARE SUB INBIN (IAR AS LONG)

DECLARE SUB OUTBO

DECLARE SUB OUTBIN (BYVAL segaddr AS INTEGER, BYVAL addr AS INTEGER)
DECLARE SUB CLOSEB

DECLARE SUB DisplayTopLevelMenu (ICOM!, TotalCommands!)

DECLARE SUB DisplayMemoryRangeOptions (MEMi)

DECLARE SUB ReadOutSpectrum ()

DECLARE SUB OpenDrivers ()

DECLARE SUB CloseDrivers ()

DECLARE SUB CursorPosition (row!, col!)

DECLARE SUB PositionCursor (row!, col!)

DECLARE SUB SetDisplayColors ()

DECLARE SUB GetInputAndCheck (row!, col!, lowert, upper!, VALUES)
DECLARE SUB TimerDelay ()

DECLARE SUB SendSpectrum ()

DECLARE SUB PCutility ()

The following is a sample QuickBASIC program which will perform data
transfers using the serial PC interface for commands and the Past IBM
parallel interface for data transfer.

This program uses the MCAS.COM serial driver and BINS.COM parallel driver
for communicating with the serial and parallel interfaces of the MCA.

This program requires DrumSYS.QLB (a Quick Library containing several
subroutines which will communicate with the parallel interface using

the paralle] driver BINS.COM) be loaded while in the QuickBASIC environment.
The command to load the library from DOS is

C:\QB45\QR.EXE /1 C:\QB4S\THESIS\Drums¥S.QLB
KOTE: The use of this program reguires the following interfaces be installed:
Kodel 3575 PC Interface for serial communications

Mode] 3576 Past IBM Interface for parallel data transfers

VERY IMPORTANT: This code is a modified version of PASTRAN source code
from Canberra Industries, Ine.

b3 20320 e ettt ittt ettt ettt ettt ettt ettt tinettedeidstitiiesiiestieasetsy

L T T e . T T T T

PROGRAM DrumSYS.BRS

' Set lower subscript to 1, as in PORTRRN
* Pailure to define IAR as long (4 bytes) may cause an error

DIM SHRRED IAR(8194) AS LONG

COMMON SHRRED DATAFile AS STRING * 11
COMMON SHARED MCAIN AS STRING ¥ 5
COMMON SHARED MCAOUT ™S STRING * 6
COMMON SHARED ESCS

ESC$ = CHR$(27)

CALL SetDisplayColors
CALL OpenDrivers
BEEP
CALL DisplayTopLevelMenu(ICOM, TotalCommands)
IP {ICOM = 1) THEN
CALL PCutility
ELSEIF (ICOM = 2) THEN
CALL ReadQutSpectrum
ELSEIP {ICOM = 3) THEX
CALL SendSpectrum
END 1P
LOGP WHILE ICOM <> TetalCommands
CALL CloseDrivers
END
SUB CloseDrivers
* Close all drivers
RESET
EKD SUB
SUB CursorPosi.ion {row, col)

row = CSRLIN
col = POS(x)

END SUB
SUB DisplayMemoryRangeOptions (MEMR%)
' Display memory range options.

CALL PositionCursor{row, caol

PRINT TAB{col); "Select Memcrs Fange Opticns”
" W

PRINT

PRINT TAB{col); " 1

PRINT TAB(col); ™ 2

PRINT TAB(col); " 3
¥4
*g

Pull Mezory”
Pirst Half"
Second Half"
Pirst Cuarter”
Second Quarter”

PRINT TAR{col);
PRINT TAB{col);

"mououn oun

PRINT TAB{col}; ™ € = Third Quarter”

PRINT TAB{col); ™ T = Fourih Quarter”

PRINT " "

PRINT TAG{cecl); “Enter Memory Range> "; TAB{col % 21};

CALL CursorPositicn{row, col)
CALL GetInputAndCheck(row, col, 1, 7, VALUES)
MEMY = VAL{VALUE$): ‘Command Input.

EXD SUB
SUB DisplayToplevelMenu (ICOM, TotalCommands)
' Display the top level menu.

TotalCommands = 4: ‘marimum mimher of cosmands available to user
CALL PositionCursor(row, col)

'Print menu screen

PRINT TAB{col); "MOUND MCA Cormunications Program”
PRINT TAB(col); "Todays Date: ™; DRTES

PRINT " "

PRINT TARicol); ™1 = Run P7UTIL.BAS”

PRINT ThB{co!l); *2 = Read out spectrum from MCR"
PRINT TAR{col); ™3 = Load spectrim ints MCR”
PRINT TAB{ccl); "4 = Exit Progra=”

PRINT" "

PRINT TAB(col); "CMD> ™; TAB(csl + T);

CALL CursorPosition{row, col): 'find lecation
CRLL GetInputArdCheck{row, col, 1, TotalCommar
1CC¥ = VAL{VALUES}: ‘Command Input

ZND SUB

SUB GetInputAndCheck (row, col, lower, upper, VALUES)

'Input data fro= keyboard

'Leop until a correct entry is found
'Rew and coluzn indicate cursor lecation
'Lower and Upper are range vaiues
*value$ is the keyboard imput

1 4]

LOTATE row, col: ‘Positien curser

IKPET ™", VALUES: *Pead command i
LOCATE row, col: *Pasitien curss

PRINT SPC(20); : 'Erase ¢ld informatien
*Check tc see if keyboard input is any gosd

L0

8+]

ferao iy PR P . Fersr ferireagd S -
UNTIL (VAL{VALUES}) >= Jcwer AND {¥RL{VALuSS); <= upper

r..'lllll Bl EE TN ' S I N BE I I 2 S EE Sk B B EE Ee

EXD SUB
SUB OpenDrivers

' The following lines open the drivers for the MCA interface and
' initialize MCA communications.

' Note: MCAIN and MCAOUT are devices used for MCA communication,
' they are not “ordinary" files. If the device drivers MCAS.COM
' and BINS.COM are not set in CONFIG.SYS, an error will occur.

‘Print message to operator

CALL PositionCursor(row, col)

! PRINT TAB(col); “Set MCA to REMOTE position!"
CALL TimerDelay. ' 2 second delay

OPEN “C:\QB45\THESIS\MCAOUT" FOR OUTRUT AS §2
! PRINT #2, ESCS; “INT §": ' Initialize MCA
CALL TimerDelay: ' 2 second delay

'Set MCA communications for YON,XOFP enabled, ASCII transmission,
'CR separator and terminator, no delay, keyboard enabled.

PRINT #2, ESCS; “SET 4; 0; 1; 0; 0; 1 §"

PRINT #2, BSCS; “IDM #": ' Command for MCA to send I1.D. number

OPEN "C:\QB45\THESIS\MCAIN" FOR INPUT AS %1
' 1f the MCA does not respond ana an error condition cccurs on
' the nexc command, press the INDEX and HOME keys (on the MCR)
' simutaneously to clear the MCA and enable handshaking.
INPUT 41, Host$: ' Get host identification number and display.
CALL Position .rsor(row, col)
PRINT TAB(col); “Host communications established"
PRINT TAB(col}; Host$
CALL TimerDelay: ' 2 second delay
END SUB
SUB PCutility
' Run PCUTIL,BAS
CLOSE $1
CLOSE #2
CHAIN "C:\gb45\thesis\PCUTILQB"
END SUB

SUB PositionCursor (row, col)

!!

CLS
LOCATE 8, 20, 1, €, 7: 'Moves cursor to middle of screen
row = 8
col = 20
END SUB

SUB ReadOutSpectrum
' Read spectrum from MCA and store in data file

Display Memory Range Options for M
CALL DisplayMemoryRangeOptio 'EM%)

Request data file name to send data to.
CALL PositionCursor(row, col)
PRINT TAB(col); "Read spectrum from MCR®
PRINT TAB(col); ™ "
PRINT TAB(col); "Enter Data Pile Name >"; TAB(col + 23);
LINE INPUT ", DATAFile: 'Data file name
Send MCA command to get number of channels in memory range.
PRINT §2, ESCS; "MEM "; MEM%; “§"
Read memory range channel value sent from MCA
INPUT #1, MSIZEY
Send command to MCR for parallel transfer.
PRINT #2, ESCS; "DOUL; 2; 0; ;"; MEMS; "§"

* Call subroutine to open parallel driver for input from the MCRA.

CRLLS OPE =1

The first 2 value, of the array are the number of channels
of data being transferred and the start channel. Read these
values in using the INBIN subroutine,

i=1
IAR(1) = 2
CALLS INBIN{IAR(i))

The parallel driver will transfer data in 256 channel groups.
Set up a loop to read in all of the data in 256 channel groups.

FOR i = 1 T0 IAR(1) - 255 STEP 256
IAR(L + 2) = 256
CALLS INBIN(IAR(i + 2))
NEXT i
Close parallel driver.
CALLS CLOSEB
' send signal to stop READ OUT, otherwise MCA might hang.
PRINT #2, ESCS; “RBT §"
' Rrite data to data file.
OPEN ¥C:\gb45\thesis\" + DATAFile FOR OUTPUT AS #3

LOTUS can handle a maximum of 2048 records. Store the data in
groups of 2048 channels. Thie file will hold a 8192 channel spectrum.

POR i = 3 TO 2050

PRINT #3, USING "$¥33¥333¥"; IAR(i); IAR(i + 2048); IAR(i + 4096); IAR(i + 6144)
NEXT i

' Close data file.
CLOSE #3
END SUB
SUB SendSpectrum
' gend a spectrum to MCA

' Display Memory Range Options for MCA
CALL DisplayMemoryKangeOptions(MEM%)

' Get data file name and open file,
CALL PositionCursor{row, col)
PRINT TAB(col); "Send a spectrum to MCA"
PRINT TAB(col); "
PRINT TAB(col); “Enter Data Pile Name >"; TAB(col + 23);
LINE INPUT ", DATAFile: 'Data file name
OPEN "C:\gb45\thesis\" + DATAPile FOR INPUT AS §3

' Read data into array.

POR i = 3 T0 2050
INPUT #3, IAR(i), IAF(i + 2048), IAR(i + 4096), IAR(i + 6144)
NEXT i

Y - N O GO I F N N B B EE G E e B

1

Send MCA cgmmand to get number of channels in memory range.
PRINT 2, ESCS; “MEM ™; MEM%; "
Read memory range channel value sent from MCA
INPUT §1, MSIZE%
Send command to MCA for parallel readin.
PRINT §2, ESC§; "DINL; 2;"; MEM%; “§"
Write spectrum intc MCA
Open the open parallel driver for output from the CPU to MCA.
CALLS OPENBO
The first 2 values of the array are the number of channels
of data being transferred and the start channel. Set the first
array value to the # of channels being transferred. The second
value should be 0.
IAR(1) = MSIZE%
IAR(2) = 0
CALL OUTBIN(VARSEG(IAR(1)), VARPTR(IAR(1)))
Close parallel driver.
CALLS CLOSEB
Send signal to stop READ IN, otherwise MCA might hang.
PRINT #2, ESCS; “ABT #"

Close file,

CLOSE #3

END SUB

SUB SetDisplayColors

CLs
COLOR 14, 1

END SUB

SUB TimerDelay

2 second time-delay routine

END SUB

x = TIMER
Do
21 = TIMER
LOOP UNTIL ABS(x - x1) >= 2

Appendix F: Listing of TableSYS.ASM

: File called TableSYS.ASM, used to control P10-24 card.

; Replaces CANBERRA/DEC ALR functions that controled the

: motion control interface.

: Make into an object code (TableSYS.0BJ) by running MASM.

; Created by C, Irvine, Oct 90, Last edited Nov 90 for PI0-24 upgrade.

Contains the following PUBLIC procedures:

SetCRconfig{): initializes PI0-24 mode, no parameters passed

Set(x): will energize relays 1-7, pass numbers 1-7
Clr(x): will turn off relays 1-7, pass numbers 1-7
Pause(x): will suspend program execution for 1 tc 59 seconds,

procedure uses DOS system time and is independent of
processor speed, pass numbers 1-59

NS Ne ma us Ne na we mes we wa

286 : 286 processor directives

.SEQ ; order segments as they appear
Data_Segl Segment Public 'DATA'
Last DB ? : 1 byte, last command
Data_Segl ends
Code_Seqgl Segment Public 'CODE'

Assume CS5:Code_Segl,DS:Data_Segl,SS5:Data_Segl

public SetCReonfig

:
l SetCRconfig proc far ; write mode to control register
push ds ; save DS
l push ax ; save registers
push dx
mov az,Data_Segl : initialize DS register
mov ds,ax ; use Data_Segl
l mov dz,0307h ; Control port number 307 hex
mov al,0lh ; PB output, PC0-3 input
out dg,al ; write to control register
l xor al,al ; clear lov register
mov Last,al ; set Last equal to 0
call TimeDelay ; set .5 sec delay
. pop dx : restore registers
pop ax
pop ds ; restore DS
retf ; return
' SetCRconfig erdp
F-1

Set

Set_depart:

Set

TimeDelay

delay_loop:

TD_sign:

public Set
proc far ;
push bp ;
mov bp,sp H
push ds ;
push ax :
push bx

push cx

push dx

mov bx,[bpt6] ;
mov cx,[bx] ;
mov ax,Data_Segl ;
mov ds,ax H
call Check_data ;
jnz short Set_depart

mov bx,01h
shl bx,cl

e me % wa

mov al,Last
or al,bl

mov dx,0305h
out dx,al

mov Last,al
call TimeDelay

~a me N wa we wa

pop dx ;
pop cx
pop bx
pop ax
pop ds
pop bp
retf 2
endp

s e we

proc near

-a

~a

push ax
push bx
push cx
push dx
mov ah,2Ch
int 21h
mov bl,dl

~a

-

~.

mov ah,2Ch

int 21h

cmp d1,bl

jns short TD_sign
add d1,100d

e wa we wa

; set output latch, i.e., PB port
; save "framepointer”

BP now points to old BP
save D§
save registers

get address of parameter passed
get value of 2-byte parameter
initialize DS register

use Data_Segl

see if parameter is any good

if no good, departi procedure
B =1

BX = 2 to power of CX

return value is in BX

; get last command

change only the port that needs to be
set

PB port address

write to PB port

save last command

wait 500 ms for relay to energize

restore registers

restore DS
restore "framepointer”
return, and restore 2 bytes

500 millisecond time delay
allows relays to energize
save registers

get system time

save hundredths of seconds in bl

get system time again

set sign flag

unsigned number? if so, go jump
make signed number unsigned

TimeDelay

Cl¢

Clr_depart:

Clr

sub d1,bl

cmp dl,50d

jle delay_loop
pop dx

pop cx

pop bx

pop ax

retn '
endp

~a we ws we

public Clr

proc far

push bp

mov bp,sp

push ds

push ax

push br

push cx

push dx

mov bx, i bpt6]
mov cx,[bx]

mov ax,Data_Seq!
mov ds,ax

call Check_data
jnz short Clr_depart

wa ma s wa we

e s e wa W

mov bx,01h
shi br.cl

not bx

mov dx,0305h
mov al,Last
and al,bl

call TimeDelay
out dx,al

mov Last,al
call TimeDelay

e MA WE M M N WA e WE MAE NA e wa

pop dx ;
pop cx

pop bx

pop ax

pop ds ;
pop bp ;
retf 2 ;
endp

dl =dl - bl

is new system time > .5 sec
if no, then loop again
restore registers

okay, 500 ms his passed

clear output latch, i.e., PB port
save "framepointer"

BP now points to old BP

save DS

save registers

get address of parameter passed
get value of 2-byte parameter
initialize DS register

use Data_Segl

see if parameter is any good

if no good, depart procedure

B=1

BX = 2 to power of CX

return value is in BX

reverse sense of bit mask

PB port address

get last command

change only the port that needs to be
cleared

wait 500 ms before setting relay
write to PB port

save last command

wait 500 ms for relay to deenergize

restore registers

restore DS
restore "framepointer"
return, and restore 2 bytes

Check_data

check_again:

good_data:

Check_data

Pause

Pause_check_again:!

Pause_good_data:

proc near
push ax
push cx
push dx
mov ax,cx
mov cx,07d

CRp ax,cx
jz short good_data
Toop check_again

mov d1,7d
mov ah,2h
int 21h

pop dx
pop cx
pop ax
retn
endp

public Pause
proc far
push bp

mov bp,sp
push ds

push ax

push bx

push cx

push dx

mov bx,[bpt6]
mov cx,[bx]
mov ax,Data_Segl
mov ds,ax
mov ax,cx
mov ¢x,59d

cmp ax,cx

checks input parameters against 1-7
save registers

~e wma

note: value to be verified is in CX
put parameter in AX
check pumbers 1-7

e ne we

is parameter any good?

if okay, get out of here

if not, go back and try again
bad parameter?, zero flag not set
sound bell by writing chr$(7)
display output

go beep bell

N4 wa Ne e ws Ve wa

; restore registers and
; put CX back

; return

s 1 to 59 second time delay

save "framepointer"
point to old value of BP
save registers

~e wa we

get number of delay seconds

CX holds value

switch over to different data segment
changeover complete

better put value in AX

load counter with 59 sec maximum

; okay, let's get system time

; first, check and see if value = 59

Ne we Ne Ne ma we

jt short Pause_good_data

; if good value, move on

loop Pause_check_again

mov d1,7d
mov ah,2h
int 21h

; if bad value, then decrement
; counter and check again
; beep bell if value is no good

jnz short Pause_depart

mov bl,al
mov ah,2ch
int 21k

; remember, if bad value get out of here
; save value in BL
; Go get system time (DOS)

.

}
Pause_delay_loop:

Pause_sign:

Pause_depart:

Pause

Code_Segl

mov bh,dh

mov ah,2ch
int 21h

10r cX,cX
mov cl,dh
cmp cl,bh

jns short Pause_sign
; if signed, compensate by adding 60

add cl,60d

sub cl,bh
cmp cl,bl

14
H4
r

H4

i 4

7
.
14
r
’

jle Pause_delay_loop

pop dx
pop cx
pop bx
pop ax
pop ds
pop bp
retf 2
endp

ends
end

r

’

14

; save current ¥ of seconds in BH
; let's get system time again
; now clear CX

; save present § of seconds in CL
: check the difference in sign

; rem, DH returns ¢ to 59 seconds
; if unsigned, continue with

verification

; get magnitude or difference
; well, is it greater than value?

if ne, go back and get new time

; 1f yes, get out of here
; restore registers

return the stack to nomal

.

Appendix G: Listing of DrumTAB.BAS

DEPINT X

DECLARE SUB DisplayTopLevelMenu {TotalCommands!)
DECLARE SUB StartDrumProcedure ()

DECLARE SUB EnterDataFileName ()

DECLARE SUB DisplayMemoryRangeQptions ()
DECLARE SUB EnterDrumID ()

DECLARE SUB HalfSegmentDrop ()

DECLARE SUB CloseShutter ()

DECLARE SUB LowerDrumTable ()

DECLARE SUB PrintMessageToOperator ()
DECLARE SUB RaiseDrumTable ()

DECLARE SUB OpenShutter ()

DECLARE SUB Calibration ()

DECLARE SUB Initialize ()

DECLARE SUB Assay ()

DECLARE SUB OUTBIN (BYVAL segaddr AS INTEGER, BYVAL addr AS INTEGER)
DECLARE SUB SetCRconfig ()

DECLARE SOUB Set {x AS INTEGER)

DECLARE SUB Clr (x AS INTEGER)

DECLARE SUB Pause {x AS INTEGER)

DECLAFE SUB ReadOutSpectrum ()

DECLARE SUB OpenDrivers ()

DECLARE SUB CloseDrivers ()

DECLARE SUB CursorPosition {(rowf, colt}
DECLARE SUB PositionCursor {row!, colt)
DECLARE SUB SetDisplayColors ()

DECLARE SUB GetInputAndCheck (row!, col!, Lower!, upper!, VALUES)
DECLARE SUB MessagePcsitioningDrumTable ()
DECLARE SOB TimerDelay ()

DECLARE SUB SendSpectrum ()

DECLARE SUB BCutility ()

DECLARE SUB SetPI024 ()

The following is a sample QuickBASIC program that performs data
transfers using the serial PC interface for commands and the Past 1M
parallel interface for data transfer. BAlso, the program will execute
drum assay measurements while contrelling operation of the CANBERRA
drum table and scan table contoller,

This program uses the MCAS.COM serial driver and BINS.COM parallel driver
for communicating with the serial and parallel interfaces of the MCA,

This program requires DrumSYS.QLB (a Quick Library containing several
subroutines which will communicate with the parallel interface using

the parallel driver BINS.COM) be loaded while in the QuickBASIC envirenment.
In addition, this program uses assembly-language procedures to control the
scan table controller. The procedures are located in the library called
TableSYS.QLB.

L . . . T T R S S

Both libraries, DrumSYS.QLB and TatleSYS.QLS, have been merged into cne

' Quick Library called DrumTAB.QLB. DrumTAB.QLB was created with the
comand

C:\QB4S\LINK DrumSYS.0BJ+TableSYS.0BJ,DrumTAB, ,C:\QB45\BQLB45.LIB /g /co
The command to load the library from DOS is
C:\QB45\QB.EXE /1 C:\QB45\THESIS\DrumTAB.QLB
To make DrumTAB.BAS into an executable file:
1. First save the file as a text file, i.e., ASCII.
2. Convert the file into an object code with the command
C:\@B45\BC DrumTAB,DrumTAB,DrumTAB /zi
3. Convert PCUTILQB.BAS to an executable file

C:\QR45\BC PCUTILQB.BRS [1i /v fx [w /o
LINK PCUTILQB.OBJ,PCUTILQB,,C:\QB45\BCOM45.LIB fco

4, Next make a library with the assembly-language procedures
C:\QB45\LIB DruxTAB,LIB+DrumSYS.0BY+TabjeSYS.0BY /2o
5. Link DrumTAB.0BJ with the command

C:\QB45\LINK DrumTAB,,,C:\QB45\BCOM45.L1B + DrumTAB.LIB /co

the /zi let’'s one use Code View

the /co let's one use Code_View

the /v /w /x options enables event trapping and indicates the
presence of ON ERROR with RESUME or RESUME NEXT

the /o creates a stand-alone .EXE program that doesn't need
BROUN4S.LIB

6. Run the pregram by typing
Dru=TAR

¥cte: To use Code View type CV DrueTab

NOTE: The use of this program requires the following interfaces and
equipment be installed:

Madel 3575 PC Interface for serial cumsunications

Maodel 3576 Past IBM Interface for parallel data transfers
PI0-24 Righ Qutput Current Parallel Digital Interface
ER2-61 Blectremechanical € Channel SPDT Relay Board.
Model 22258 Szan Table Centoller

]
L
¥
]
¥
4
]
]
L]
L
1
€
[}
L
1]
t
¥
]
]
t
L]
L]
¥
]
[]
]
t
L
+
1
¥
¥
¥
]
L
1
¥
1
L
¥
3
]
]
¥
1
1]
L]
¥
1
¥

CANBERRA Series 35 Plus MCA

VERY IMPORTANT: This code includes a modified version of FASTERN source
code from CANBERRA Industries, Inc.

AR KRR R R AR AR R A AR R AR KRR RRRERR R KRNI AR R AR RRR AR R AR KRR RRERARRRRRLR
'

' PROGRAM DrumTAB.BAS

' Set lower subscript to 1, as in FORTRAN
' Pailure to define IAR as long (4 bytes) may cause an error

OPTION BASE 1

DIM SHARED IAR(8194) AS LONG

COMMON SHARED DATAPRile AS STRING % 11

COMMON SHARED DrumID AS STRING * 7

COMMON SHARED MCAIN AS STRING * §

COMMON SHARED MCROUT AS STRING * 6

COMMON SHARED MEM AS INTEGER: ' memory range selection
COMMON SHARED NumberSegments: ' number of drum segzents
COMMON SHARED ESCS: ' escape character

COMMON SHARED ICOM: ' menu selection

NumberSeqments = 8
BSCS = CHRS(27)

CALL SetDisplayColors
CALL Openbrivers
CRLL SetPI024

BEEP

CALL DisplayToplevelMenu{TotalCommands)

SELECT CASE ICOM
CASE 2, 3
CALL DisplagMemoryRangelpiions
CALL BnterDataPileNaze
CRSE 4 10 6
CALL DisplayMemoryRangeOptions
CELL EnterDru=lD
CALL PrintMessageTolperator
CARLL MessagePositioningDruzTable
CALL RaiseDruxTable
CALL OpenShutter
END SELECT

G-3

SELECT CASE ICOM
CASE 1
C2LL PCutility
CASE 2
CALL ReadOutSpectrum
CASE 3
CALL SendSpectrum
CASE 4
CALL Calibraticn
CASE 5
CRLL Initialige
CASE &
CALL Assay
END SELECT

SELECT CASE ICOM
CASE £ T0 6
CRLL CloseShutter
CALL LowerDruzfable
END SELECT

LOOP WEILZ ICOM < TotalCommands
CRLL Closedrivers

4.h)

101

102

103

104

DETR 1,7CS 137",950,973, 2,"PU 238",1104,1127, 0,0,0,0
DEFSKS X

SUB Rssay

' Performs drum assay measurement.
Set (4): ' Turn on assay lasp.

CRLL StartDrumProcedure

EXD SUB
SUB Calibration

' Performs drum calibration measurement,

s, w NETTE fTam
Set (23: ° Turn ¢n CRLIE la=p,
nyy H —T% H
CRLL StartDruzProcedure

Cir {2}: * Turn off CALIE la=mp.

END SUB
SUB CloseDrivers
' Close all drivers
RESET
END SUB
SUB CloseShutter
' Close shutter and turn off lamp.
Clr (5): ' Cloc - shutter and turn off lamp.
END SUB
SUB CursorPosition {(row, col)

raw = CSRLIN
col = POS(x)

END SUB
SUB DisplayMemoryRangeOptions
' Display memory range options.
CALL PositionCursor{row, col)

PRINT TAR(co)); "Se'sct M-mory Range Options”
PRINT ™ "

PRINT TAB(coij; ™ 1 = Full Memory"

PRINT ThB{col); " 2 = Pirst ~alf"

PRINT TAB(col}; ™ 3 = Second Half"

PRINT TAT" ol); ¥ 4 = First Quarter®

PRIAT %AB(2nl); " 5 = Second Juartes”

PRINT TAB(col); “ 6 = Third Quarter”
1Y -

]

PRINT TAE(col);
PRINT " ©
PRINT T27-(col); “Enter M:mory Range>"; TAB(col ¢ 21);

Fourth Quactes”

CALL Cucin-Povition(row, col)
CALL GelInputAndCheck(row, col, 1, 7, VALUES)
MEM = VAL{VATURS): 'Command Input.

END SUB

o5 pisplavPepievelMenu (TotalCenmands)

' Display the top level menu.

G-5

R EE TE W I s Ve B I I IR OE Y IR G B e W e

/
TotalCommands = 7: 'maximum number of commands available to user

CALL PositionCursor(row, col)

'Print menu screen

PRINT TAB(col); "MOUND MCA/DrumTable Communications Program”
PRINT TAB(col); “Todays Date: "; DATES

PRINT " "
PRINT TAB(col
PRINT TAB(col

}; "1 = Run PCUTIL,BAS"

)
PRINT TAB(col)

)

)

)

; Y2 = Read out spectrum from MCA"
; "3 = Load spectrum into MCR"
PRINT TAB{col); "4 = Drum Calibration"
PRINT TAB(col); ™5 = Drum Initialization"
PRINT TAB(col); ™6 = Drum Assay”

PRINT TAB(col); ™7 = Exit Program”

PRINT " "

PRINT TAB(col); “CMD> “; TAB(col + 6);

CALL CursorPosition(row, col): 'find location of cursor
CALL GetInputAndCheck(row, col, 1, TotalCommands, VALUES)
ICOM = VAL(VALUES): 'Command Input
END SUB
SUB EnterDataFileName
' Request data file name.
CBLL PositionCursor(row, col)
PRINT TAB(col); “Enter Data Pile Name>"; TAB{(col + 23);
CALL CursorPosition{row, col): 'find location of cursor
LINE INPUT “", DATAPile: ‘Data file name
LOCATE row, col: 'Position cursor to original location
END SUB
SUB EnterDrumID
' Request Drum ID ¥
CALL PositionCurser(row, col)
PRINT TAB(col); "Enter Drum ID>"; TAB(col + 16);
CALL CursorPosition(row, col): 'find location of cursor
LINE INPUT ™", DrumID: 'Drum identification §
LOCATE row, col: 'Position cursor to original location

END SUB

SUB GetInputAndCheck (row, col, Lower, upper, VALUES)

'Input data from keyboard
'Loop until a correct entry is found

'Row and column indicate cursor location

'Lower and Upper are range values
'Value$ is the keyboard input

Do

LOCATE row, col: 'Position cursor

INPUT ; ™", VALUES: ‘Read command input.

LOCATE row, col: 'Position cursor to original location
PRINT SPC(20); : 'Erase old information

'Check to see if keyboard input is any good

LOOP UNTIL (VAL(VALUE$)) >= Lower AND (VAL(VALUES)) <= upper

LOCATE row, col + 1: 'Position cursor

END SUB
SUB Hal £SegmentDrop
' Lower drum table 1/2 segment
Set (6): ' lower drum
Clr (6): ' clear relay
Pause {5): ' wait 5§ seconds till dru
END SUB
SUB Initialize
' Performs drum initialization measurement.
Set (3): ' Turn on IKIT lamp,
CALL StartDrumProcedure
Clr (3): ' Turn off INIT lamp.
END SUB
SUB LowerDrumTable

' Lower Drum Table to bottom postion,

CALL PositionCursor{row, col)
PRINT ; "Lowering Drum Table;

G-17

. ~ositioned

PORi=17T07: " Lower drum table to bottom position
set (§)
Clr (6)
Pause (3)

NEXT i

END SUB
SUB MessagePositioningDrumTable
' Print message to screen

CALL PositionCursor{row, col)
PRINT ; "Positioning Drum Table";

END SUB
SUB OpenDrivers

' The following lines open the drivers for the MCA interface and
' initialize MCA communications.

' Note: MCAIN and MCAOUT are devices used for MCR communication,
' they are not "ordinary" files. If the device drivers MCAS.COM
' and BINS.COM are » -t set in CONPIG.SYS, an error will occur.

CHDIR “C:\QB45\THESIS": ' Set default directory
OPEX “MCAOUT" POR OUTPUT AS #2

‘Set MCR communications for XON,XOFF enabled, RSCII transmission,
'CR separator and terminator, no delay, keyboard enabled,

PRINT $2, ESCS; "SET 0; 0; 1; 0; 0; 1 §"

PRINT $2, ESCS; “IDM ¥": ' Command for MCA to send I.D. number

OPEN “MCRIN" POR INPUT AS #1

1f the MCR does not respond and an error condition occurs on
the next command, press the INDEX and HOME keys (on the MCA)
simutaneously to clear the MCR and enable handshaking.

If the above does not work, press the YES key on the MCA
and retry.

INPUT §1, Host$: ' Get host identiZication number and display.

CALL PositienCursor(row, col)

PRINT TAB(co:); "Host communice . . cstablished”
PRINT TAB(col); Host$;

CALL TimerDelay: ' 2 second delay

END SUB

SUB OpenShutter
' Open shutter and turn on lamp.
Set (5): ' Open shutter and turn on lamp.
END SUB
SUB PCutility
' Run PCUTILQB.BAS or PCUTILQB.EXE
CLOSE §1
CLOSE #2
CHAIN "C:\qb45\thesis\PCUTILQB"
END SUB
SUB PositionCursor {(row, col)
CLS
LOCATE 8, 20, 1, 6, 7: 'Moves cursor to middle of screen
row = 8
col = 20
END SUB
SUB PrintMessageToOperator
' Print message to operator
Do
CALL PositionCursor(row, col)
BEEP
INPUT ; “Are drum and trolleys positioned [Y/N] *; V¥§
LOCATE row, col + 1: 'Position cursor to original lecation
LOOP UNTIL Y$ = ™Y" OR Y$ = "y"
END SUB
SUB RaiseDrumTable
' Raise Drum Table to top postion.
Set (7): ' Raise drum to top position
Clr (7): ' Clear relay setting
Pause (50): ' Wait for drum table to reach top
Pause (27)

END SUB

SUB ReadOutSp :trum

G N AN AN G R D Sy aE O N T e

-

Read spectrum from MCA and store in data file
Send MCA command to get number of channels in memory range.
PRINT $2, BSCS; “MEM “; MEM; “§"
Read memory range channel value sent from MCA
INPUT §1, MSIZES
Send command to MCA for parallel transfer.
PRINT #2, ESCS; “DOUL; 2; 0; ;“; MEM; ™"
Call subroutine to open parallel driver for input from the MCA.
CALLS OPENEI
The first 2 values of the array are the number of channels
of data being transferred and the start channel. Read these
values in using the INBIN subroutine.
iz
IAR(L) = 2
CALLS INBIN{IAR(1))

The parallel driver will transfer data in 256 channel groups.
Set up a loop to read in all of the data in 256 channel groups.

FOR i = 1 70 IAR(1) - 255 STEP 256
IAR(1 + 2) = 256
CALLS INBIN(IAR(i + 2))
NEXT i
Close parallel driver.
CALLS CLOSEB
Send signal to stop READ OUT, otherwise MCA might hang.
PRINT $2, ESCS; “ABT §"
Write data to data file.
OPEN DATAFile POR OUTPUT RS #3

LOTUS can handle a maximum of 2048 records. Store the data in
groups of 2048 channels. This file will hold a 8192 channel spectrum.

POR i = 3 TO 2050

PRINT #3, USING "H¥¥HEERHE"; IAR(1); IAR(i + 2048); IAR(i + 4096); Ii(i + 6144)

NEXT i

G-10

' Close data file.

CLOSE #3

END SUB

SUB SendSpectrum

Send a spectrum to MCA
OPEN DATAPile FOR INPUT AS §3
Read data into array.
POR i = 3 T0 2050
INPUT $3, IAR(1), IAR(i + 2048), IRR(i + 4096), IAR(i + 6144)
NEXT i
Send MCA command to get number of channels in memory range.
PRINT §2, ESCS; "MEM "; MEM; “}"
Read memory range channel value sent from MCR
INPUT §1, MSIZE$
Send command to MCA for parallel readin.
PRINT $2, ESCS; "DIN1; 2;"; MEM; "§"
Rrite spectrum intoc MCA
Open the open parallel driver for output from the CPU to MCA.
CALLS OPENBO
The first 2 values of the array are the number of channels
of data being transferred and the start channel. Set the first
array value to the ¥ of channels being transferred. The second
value should be 0,
IAR(1) = MSIZE%
IAR{2) = 0
CALL QUTBIN(VARSEG(IAR(1)), VARPTR(IAR(1}))
Close parallel driver.
CALLS CLOSEB
Send signal to stop READ IN, otherwise MCA might hang.

PRINT #2, ESCS; “ABT §"

G-11

' Close file!

CLOSE 3
END SUB
SUB SetDisplayColors

CLS
COLOR 14, 1

END SUB

SUB SetPI024

' Initialize P10-24 mode

' Sets PB port output and PCG-3 input
SetCReconfig

' Clear all seven PI0-24 relays
POR1i=1T07
Clr (i)
NEXT i

ENXD SUB

SUB StartDrumProcedure

' This subroutine lowers the drum by half segments and then
' includes the appropriate MCA command file

POR Segment = 1 TO NumberSegments

IF Segment = 1 THEN
CRLL HalfSegmentDrop

SLSEIP Segment >= 2 OR Segment <= NumberSegments THEN
CALL HalfSegmentDrop
CALL HalfSegmentDrop

END IP

CALL PositionCursor(row, col)
PRINT TAB{col); “Scanning Segment:"; Segment;
LOCATE row, col + 19

IF ICOM = 4 THEN

REM SINCLUDE: 'C:\QB45\THESIS\CALIB.BAS'
ELSEIF ICOM = 5 THEN

REM SINCLUDE: 'C:\QB45\THESIS\INIT.BAS'

G-12

ELSEIF ICOM = 6 THEN
REM SINCLUDE: 'C:\QB45\THESIS\ASSAY.BAS'
END IF
CALL MessagePositioningDrunTable
NEXT Segment
END SUB
SUB TimerDelay
' 2 second time-delay routine
x = TIMER
Do
1l = TIMER
LOOP UNTIL ABS(x - x1) >z 2

EKD £UB

G-13

Appendix H: Listing of CALIB.BAS

' Program called CALIB,BAS, this is an INCLUDE file.

' Save as a text file only!

' Subroutines and Punctions are not allowed!

' Used in conjunction with DrumTAB.BAS (menu program)

' CALIB issues command to the CANBERRA MCA to perform a calibration procedure

Rk Rk AR Rk kAR R KRR KRR AR R AR KRR R KRR KA R R AR R KRR AR KRR AR KRR KRR KL%

' The information below contains the preset time and ROI data
' Edit the information below for any particular application
' No other changes need be made elsewhere in the program

ROIdata: DATA 1,"CS 137",950,973, 2,"PU 238",1104,1127, 3,"Allen”,2,11,4,"Da-
ve",1200,1210,6,0,0,0
PresetTime$ = 4: 'Total time in seconds for data collection of one segment

B 22 i et et et ettt et ettt it et sttt editidtdedisdivsseisidvsssy

* Clear Data

PRINT §2, ESCS; “CLD "; MEM; "§"
Pause (1)

' Set Preset Time

PRINT #2, BSCS; “PST “; PresetTime%; "; “; MEM; “§
Pause (1)

' start Collecting Data

PRINT §2, BSCS; "sCO ™; MEM; "§"

Pause (1)
' Hait until data collection is done

1 = TIMER
j19]
1z = TIMER
LOOP UNTIL ABS(xx - x) > PresetTime$

OPEN DrumID$ + “.dat" POR APPEND AS #5

IF Segment = 1 THEN
offset = 20
PRINT §5, MAtssssatatatiaa itk ataattake sxdRERRARELARIRRLXRALARRZARERLAKLARELARY
PRINT 45, " "
PRINT #5, “CALIB measurement"
PRINT &5, "Drum IDE: ™; TAE(30); Drumin$
PRINT #5, “Date: ™; TAB(30); DATES

l
f

PRINT §5, "Time: ™; TAB{30); TIMES

PRINT §5, “"Number of Segments: “; TAB(30); NumberSegments
ORINT 5, “Preset Time (sec): ™; TAB(30); PresetTime$
n

PRINT $5,

PRINT #5, "ROI Data"

RESTORE ROIdata

READ ROI}, ROIS, ROIstart, ROIend
NumberOfROI% = 0

DO WHILE ROI} © O

PRINT 5, ROIS

PRINT #5, "Start Channel: ™; TAB(30); RO!:tart
PRINT 5, “End Channel: ™; TAB(30); ROI:nd
RERD ROI§, ROIS, ROIstart, ROIend
NumberOfROI% = NumberOfROI% + 1

LOOP

PRINT §5, "

PRINT §5, TAB(offset); “Counts”; TAB{offset + 10); “Counts Bkg"; TAB(offset +

25); “Counts Net"; TAB(offset + 40); “Segment"”
PRINT §5, " "
DIM TotalCounts{l T0 NumberOfROI%)
DIM TotalCountsBKG(1 TO NumberOfROI%)
DIM TotalCountsNet{l 70 NumberOfROI%)
END IP

RESTCRE ROIdata
FOR ROIindex = 1 T0 NumberOfROI%
' Get ROI Data

READ ROI#, RGIS, ROIstart, ROIend

PRINT £2, ESCS; “RCD *; ROIstart; ":“; ROIend; ™;"; MEM; “}"

Pause {1)

INPUT #1, StartChannel$
INPUT 1, LastChannel$

Start = VAL(StartChannel$)
Last = VAL(LastCharnel$)
Channels = ABS(Last - Start) ¢ 1

DIM ChannelData(l TO (Channels + 1)) RS STRING
FOR j = 1 TO (Channels + 1)

INPUT 1, ChannelData(j)
NEXT j

Counts = 0
POR j = 1 70 Channels
Counts = Counts + VAL{ChannelData(j))
NEXT j§
CountsBKG = Channels * (VAL(ChannelData(l)) + VAL(ChannelData(Chan:els))) / 2

PRINT $5, TAB(1); ROIS;

PRINT 85, USING "3$$#81.#8"; TAB(offset - 4); Counts; TAB{offset + 10); CountsBKG:
TAB(offset + 25); Counts - CountsBKG;

PRINT #5, TAB(offset + 45); Seqment

Pause (1)

TotalCounts(ROlindex) = Counts 4 TotalCounts{ROIindex)
Total CountsBKG(ROIindex) = CountsBKG + TotalCountsBKG(ROIindex)
Total CountsNet (ROIindex) = (Counts - CountsBKG) + TotalCountsKet(ROIinder)

ERASE ChannelData
NEXT ROIindex
PRINT §5, " ™
1P Segment = NumberSegments THEN

PRINT #5, " "
PRINT §5, "Total Counts™
RESTORE ROldata
POR index = 1 T0 NumberOfROI%
READ ROI#, ROIS, ROIstart, ROIend
PRINT &5, ROIS;
PRINT §5, USING "JR¥#EE.11"; TAB(offset - 4); TotalCounts{index); TAB(offset +
10); TotalCountsBKG(index); TAB{offset + 25); TotalCountsNet(index)
KEXT index
PRINT 85, " *
PRINT §5, "RARRXRRREzassttt st iixtiatettatthttssstssRRkaxairxRenaerennsess”
PRINT §5, " ¥
PRINT #5, " *
CLOSE &5
QPEN DrumIDS$ + ".dat™ FOR INPUT AS §5
DO UNTIL EOF(5)
LINE INPUT ¥5, LineBuffer$
LBRINT LineSuffer$
LOCP
ERASE TotalCounts
ERASE TotalCountsBKG
ERASE TotalCountset

END IF

RESTORE ROIdzia: ' rnturn start of next read to first data staterent
CLOSE §5

i
t

TableSYS5.0BJ:

DrumSYS.QBJ:

PCUTILQB.OBJ:

PCUTILQE.EXE:

DrumTAB.LIB:

DrumTAB.0BJ:

DrumTAB.EXE:

Appendix I: Listing of MakeDrum
Make file calied MakeDrum
To run, at DOS prompt type: MAKE MAREDRUM

TableSYS.ASH
MASH TableSYS.ASM

DrumSYS.ASH
MASH DrumSYS.ASK

PCUTILQB.BAS
C:\qb45\bc PCUTILQB.BAS /1. /v /x [u [0

PCUTILQB.OBJ
LINK PCUTILQB.OBJ,PCUTILQB,,c:\qb45\bcomd5.1ib /co

DrumSYS.0BJ TableSYS.0BJ
LIB DrumTAB.LIB + DrumSYS.OBJ + TableSYS OBJ

DrumTAB,.BAS CALIB.BAS ASSAY.BRS INIT.BAS DrumTAB.LIB
c:\gb45\bc DrumTAB,DrumTAB,DrumTab /ci

DrumTAB.OBJ
LINE. DrumTAB,,,c:\qb45\bcond5.1ib + c:\gb45\thesis\Dru=TAB.LIB /co

I-1

A}

) Appendix J: Electrical Mapping of PIO-24 and STC

Sense Line PI0-24 ERA-01 S1C
1 Pr 1 pin 36 J2-1

2 PA 2 pin 35 3z2-2

3 Pk 3 pin 34 3z2-3

4 PR 4 pin 33 J2-4

5 PAS pin 32 J2-5
Contro! Line P10-24 EER-01 §1c
1 PR 1 PBR 1 KO 32-9

2 PB 2 PBR 2 KO J2-15

3 PE 3 PBR 3 Ko J2-11

4 PB 4 PBR 4 XO J2-12

5 PR S PBR 5 KO J2-13

6 PB 6 PER € NO J2-14

H PE 7 PER T KG J2-15

Gnd £ PER 1-7 €O J2-25

NO: Normally Open Contacts
C0: Common Contacts

PB: PE Port

PA: PA Port

PER: PB Port Relay

Appendix [X: Drum Measurement Run Using DrumTAB

RREKERRR AR AR KRR IR KRR KA RA KRR A KKK KT KA KK KRR AXRK AR KK LXXRL

CALIB measurement

<3 ER T E s O e

Drum ID}: 33416
Date: 11-27-1990
Time: 09:30:07
Number of Segments: 8
Preset Time (sec): 3

ROI Data

CS 147

Start Channel: 950
End Channel: 973

PU 238

Start Channel: 1104
End Channel: 1127

Counts Counts Bkg Counts Net Segment

CS 137 152.00 0.00 152,00 1
PU 238 1,00 0.00 1,00 1
¢S 137 122.00 G.00 122.00 2
PU 238 1.00 0.00 1.00 2
£5 137 154,00 0.00 134.00 3
PU 238 1.00 0.00 1.00 3
€s 137 141.00 12.00 12¢.00 4
PU 238 3.00 12.00 -9.00 4
€S 137 139.00 0.00 139.00 5
PU 25 0.00 0.00 0.00 5
€S 137 129.00 0.40 129.00 b
PU 238 0.00 0,00 0.00 6
<8 137 i*1.00 0.00 131.00)
PU 238 0.00 0.00 0.00 1
Cs 137 119.00 0.00 119,00 8
PU 238 1.00 0.06 1.00 8

mstal Counts
C. 137 1067.00 12,00 1055.00
PU 238 7.00 12.00 -5.00

LT ettt Pt it et it it tdtdett it it t2eR 333233334434 4444%]

[. . ' ~
[

Appendix L: Derivation of Correction Factors
Wall and matrix material correction factors are derived below for incorporation into CAL-
IB.BAS at a later time.
Activity

After selecting a signature gamma of interest, the activity, A(t), of a sample can
be calculated by

A(t) = AN(D) (95) (L.1)

sec

where A = decay constant and N (t) = number of atoms present at time ¢, Additionally, =
specific decay rate, A,.(t) or specific activity, can be defined by

(aioms) = Av/AtomicMass (L.2)
gram
ln2
A - L.3
[T,,z] (1-3)
ln2 Av dis
Aw() = T,,zx[dtomicMass] (g—sec) (L.4)

where

Av = Avogadros Number,
T y,2= half-life of the material,

Since the decay of most radiocisotopes is not always followed by a sole garma emis-
sion, the specific decay rate is more appropriately defined as

Al = FAN (Y) (L.5)

g — sec
where ¥ (vy/dis)is the fraction that decays by the signature gamma of interest.

To convert activity to count rate and vice versa, count rate, CR, is given by

counts) (L.6)

CR = €,.A,m (one
where m is the mass of unknown sample in grams, and e.,, is the absolute detector effi-
ciency in counts/gamma ray.

Now one can measure the number of counts deposited 'n a detector ané relate this to
specific activity:

Ch
CR = m (L.7)

where ¢.is the counting time, and C is the net number of counts under the signature gamma
full-energy peak (excluding background). PFurthermore, CR needs to be corrected for dead
time losses, if appreciable.

In the particular case for 2%Pu, where the half-life is fairly long, i.s,, if
M. K1, e Mem - At. by a Taylor expansion. Thus,

AmAt,
c Sabe Lo e (L.8)
A
or
A,m ~ N (Bqg) (L.9)
abs*c

At first it appears the right-hand side of Equation (L.9) contains only one unknown;
however, €,,, could easily be obtained by performing an assay with a calibration drum of

known activity. Yet theie is another factor that has been neglected, that is actenuation
of the source in the drum itself. Using Equation (L.9) alone would not account for this,
and it is derived rext,

Transmission

A drum consists of a matrix material, unknown source or sources, and the outer
walls. The parts of the matrix material and drum walls are of dissimilar substances so
they attenuate the source signature gamma rays differently. This attenuation causes the
observed count rate (Rquation (L.7)) to differ from the ideal case in which neither the
matrix - =terial or drum walls are present, i.e., the count rate noticed in absence of
attonuating materials. As a result data collected from the MCA will predict a wrong
2ativiiy value, however, using an aaditional “transmission” source in conjunction with the
wukiown drum source will correct for most deviations.

Pirst a distinction must be made between the different sources; hence the unknown
sourc: is designated tue assay source, The assay source is not confined to a single area,
and cannot be treated as a point source. Instead, it is uniformly distributed (almost
always) throughout the entire drum among the matrix material. BAbout the only complication
present here, besides drum attenuation, is a single scan of one drum segment does not
provide sufficient data to analyze the entire drum inventory. Scanning multiple segments
(otherwise known as me ping) and rotating the drum normally averages out any in-
homogeneities caused by source geometry’.

furthermore, the walls are usually considered separately, that is, not part of the
matrix material. Thus dcum attenuation is caused by two factors, One is wall attenu-
ation, and the second is matrixz material attenuation. Roth add to the overall attenuation
of the source radiation.

The following derivation assumes wall and matrix material attenuation are the same,
i.e., both are indistinguishable from each other and are lumped together under the genccal
category of drum attenuation. Drum attenuation can be determined by using a transmission
source with known activity emitting a gamma ray close in epergy to that of the assay
source signature gamma. Here, attenuation of the transmission source is defined by

T, =

»
T;‘-‘f o o ke (L.1.1)

©

where

T .= transmission source attenuation,
T o = attenuated intensity of transmission source,
T .= unattenuated intensity of transmission source,

(E)f mass attenuation coefficient of drum at transmission source gamma-ray

energy,
pq = density of drum,

x .= transmission source pathlength (or distance through the drum).

Similarly, attenuation of the assay source is

() pexe

T, =e (1.1.2)

where

T, = assay source attsnuation,

(S)a = mass attenuation coefficient of drum at assay source signature gamma

energy,
p 4= density of drum,
x . = assay source pathlength (or distance through the drum).

1t also follows that

Ameas = AcorrXTa (L.1.3)

such that A,..,1is the easured assay source intensity from Equation (L.9), and A, is
the intensity of the assay source, corrected for drum attenuation.

In a simple example where both transmission and assay sources experience the same
attenuation and their difference in pathlengths is accounted for by some geometry factor,
F e » for assay and transmission intensities close togethert

Ama: - A Fqco °

T
—_— = X ——X .1.
A corr T a mnaas T' A meas Tut' F’.o (L l 4)

Also, for assay and transmission sources far apart in energy

T, - e_(;)"‘x' - T,{ (L.1.5)

Thus

T,
Acore = Jinu,.><[] (L.1.6)
Tan

As has been noted, wall and matrix material attenuation were considerad inseparable.
Next, individual corrections for wall and matrix material are addressed. Expanding Equa-
tion (L.1.3) for the two contributions yields

—(g).,,,"n“"uu -(;)M"m"-\n

Amuu = Acarr X e X e (L'1‘7)
Acorr = AnuasxFuallemm (L'l'8)

where F . 15 the correction factor for attenuation due to the drum walls, and F,.. is
the correction factor for attenuation due to the matrix material inside the drum,

} st the unattenuated activity/intensity of the assay source can be caiculated by
applyin, dquations (L.9) and (L.1.8). In addition, since mass or number density is pro-
portional to activity, the assay source quantity inside the drum can be determined.

Derivation of Wall Attenuation Factor, F,qu. Drum wall attepuation is accounted
for by

1 T,

P = = = (7))
“ Twull TmPY-Y

(L.1.1.1)

where
¥ s 3 Tuny
T wau = drum wall transmission = | -2,
L 3

and where T ., is the transmission intensity thru an empty drum, 7, is the unattenuated
transmission intensity, and k is the ratic of mass attenuation coefficients {of drum
vall) at assay and transmission energies; k = 1 if the energies are very close together.

The square root of 7 .., i5 used since the transmission gamma rays pass through 2
walls of the drum whereas assay gamma rays pass through only 1 wall thickness. By
neglecting air attenuation inside an empty drum, the transmission source attenuation is

» wall
() e otz wau

TS = o ' (L.1.1.2)

wherr:

T#! < transmission source atteauation ir drum wall,

wall . L Pl
(S)' = mass attenuation coefficient of drum wall at transmission source

energy,
P warn = drum wall density,

X wanr = thickness of one drum wall.

Then the assay source attenuation in the drum wall, T¥*¥ is given by

(5"

L e)T

=T‘

TS = e

(L.1.1.3)

where (f):a“ is the mass attenuation coefficient of the drum wall at the assay source

energy. But from Equation (L.1.1)

To wa T‘
T;ml(- _?f = T‘ LI _?mftl (L.l.l-‘!’)
gence
[
\’-(! o il
Teatt T ampty ' (L.1.1.5)
w .__To Jd.1.
And
i
Os
- (g)wnu '
o/
TRel Zﬂ‘ly-[—r L.1.1.6
a TO 7 3 wall (e)

Arr‘—-—_‘Amla:———"’Fw _—
« T° x JTUGU “ JTUGU

.

Derivation of Matrix Material Attenuation Factor, F m- The transmission source
attenuation (assuming a homogeneous matrix material) is

() s mmran

TP - o (L.1.2.3)

where

TT™ = transmission source attenuation in matrix material,

uiymm . . s . . v .
(;)‘ = mass attenuation coefficient of matrix material at transmission

source energy,
P mm = Matrix material density,

X mm = thickness through matrix material.

Then the assay source attenuation in the matrix material, T0™, is given by

T - e-(;):",M,M,; -
2 a3 {(:—):".}
b o L) -
¢ - T (Tr™) (L.1.2.2)

where

mm 3 o s . .
(E), = mass attenuation coefficient of matrix material at assay source

energy,

3 = geometric correction factor? (.823 for cylinders),

k™™ = ratio of mass attenuation coefficients in the matrix material at
assay and transmission source energies,

But from Equation (L.1.1)

T axe '(E):.“"nu"-ouz -(E):‘.pmxm
- e e

TOB'I
3 TM = ﬁ{%ﬁ’- (L.1.2.3)
L] t

where T .on-empry 15 the measured transmission intensity through a full or non-empty drum.

Thus from Bquation (L.1.2.2)

mm Taon-am;ty ¥
Te W = T watt (L.1.2.4)

And finally, from Equ.':on (L.1.3)

Am.a‘ l l
A, = T. il Am.-":l:‘:’; S Fopm = Tom

(L.1.2.5)

Bibliography

1. Campbell, A.R. Et Al. "Assay of Pu®® Contaminated Waste
In Drums'" MD-21825, Issue 1, 3, EG&G Mounds Laboratory,
Dayton OH, Apr 1985.

2., East, Larry V. '"Subroutines Callable from a PDP-11 BASIC
for Control of a Multichannel Pulse-Height Analyzer," LA-
5772-MS, Los Alamos Scientific Laboratory, November 1974.

3. CANBERRA PC Toolkit Software Manual, Canberra Industries,
August, 1988.

4, Microsoft. Microsoft Macro Assembler 5.1 Programmer's
Guide. Redmond, Wash. 1986, 1987.

5. Microsoft. Microsoft Macro Assembler 5.1 Mixed-Language
Programming Guide. Redmond, Washington. 1987.

6. Canberra Segmented Gamma Scanner, Model 2220B (55 Gallon
Drums), Operating Manual Version 3, April, 1978.

7. Martin, E.R.,D.F. Jones, and J.L. Parker. '"Gamma-ray
Measurements with the Segmented Gamma Scan," LA-7059-M, Los
Alamos Scientific Laboratory, December 1977.

8. Model 2220 Segmented Gamma Scanner, Technical Reference
Manual, Canberra Industries, Inc., Nuclear Systems Division,
Meriden, CT, Jan 1979 ,p 2-3.

9, Canberra Model 2220 Segmented Gamma Scanner Technical
Reference Manual, Canberra Industries, January, 1979.

7. PERFORMING GRGANIZATION NANE(S) AND ADDLLSC{ES) 6. PERFORIMNG ORGANRIZATION
REPORT NUNEER
JAir Force Institute or Technology, WPAFB OH L45433-6583 AFIT/GNE/ENP/91M-3
. 1
19, SPONSORING 1400 Gns AGENCT NANES, ARL 200IESSIES) 10. SFONSO= NG WO ORING
~I

st

N O

i ’ RerFORT DOCUMVIENTAT ON P anGE

1 AGENQY USE Udvly (oovs: O o) O RERPLTT TATE 3. REFORT TYPE AN DATES COVERLD

March 199° Master's Thesis
L. TUTLE AND SUPTIILY LS. FUNDING NUNBELRS

HARDWARE UPGRADE OF A SEGMENTED DRUM ASSAY SYSTEM

€. AUTHOR(S)
Claude A. Irvine, Captain, USAF

AGENCY REPCHET NUMEER

h
v
i
:

e

VEOSUPPLEN TN T LT Y

Yoo, DISTRZUTION A abkin Ty STAYENL IS 12b0. DISTRIBJUTION CCLL

Approved for public release; distribution unlimited

12 AZSTRACT (2 »wm M oweres

This paper describes the conversion of a DEC PDP-11/05 computer system, previously
used in Canberra's Model 2220B segmented gamma scanner, with an IBM PC. Two tasks
necessary for completion of the project involved reestablishing communications with
a Canberra Series 35+ multi-channel analyzer and a scan table controller. An
additional serial/parallel card was installed in the PC to reinstate communications
with the multi-channel analyzer. For computer control of scan table operations a
digital input/output card was used along with an external electromechanical relay
board; when implemented together this hardware setup replaces functions that were
normally processed through a motion control interface card housed within the DEC.
Software consisted of Canberra's PC Toolkit while newer programs were written in
Microsoft's QuickBASIC 4,5 and Macro Assembler 5.1. Five codes were written--two of
these 'are device drivers written in assembly language and the other three are menu
and control programs written in QuickBASIC. The modification enables simplified
programmer enhancements. ‘

14. SUBJECT TER!MS 15 NUNBLR OF PAGES

Gamma Ray Spectroscopy, Radiation Measuring Equipment 92 e
Drum Assay Equipment, DEC PDP-11/05, Radioactive Wastes, 16. PRiCE CODL

Canberra Segmented Gamma Scanner

17, SECURITY CLASSIFICATION 118, SECURITY CLASSIFICATION |19 SECURITY CLASSIFICATION . |20 LINITATION OF ABSTRACT
OF REPORT © OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

7S 75460-07-280-5500) Stamgare Foom JSn Fey (-89

R S

