
' AD-A238 728 -H1111111111 11 hilh II I I .
ARI Research Note 91-63

Developing a General Contingency
Planner, Phase II

Paul Young
PAR Government Systems Corporation

for

Contracting Officer's Representative
Michael Drillings

Office of Basic Research
Michael Kaplan, Director

June 1991

91-06068

United States Army
Research Institute for the Behavioral and Social Sciences

Approved for public release; distribution is unlimited

91 4,



DISCLAIMI NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. TILECOPY
FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE FMPo. A74oe

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified --

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION IDOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
ARI Research Note 91-63

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZI,;: N

PAR Government Systems (If applicable) U.L-. Army Research InstitLte
Corporation -- Office of Basic Research

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS(City, State, and ZIP Code)
PAR Technology Park 5001 Eisenhower Avenue

220 Seneca Turnpike Alexandria, VA 22333-5600
New Hartford, NY 13413

8a. NAME OF FUNDIPG SPQNSORI&G , 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMST IDENTIFICATION NUMBER
ORGANIZATION U.. rmy Kesearch (if applicable)

In ttu~e f gr.the Behavioral MDA903-85-C-0106
an- ocial 9 cences PERI-BR

8c. ADDRESS (City, State, and ZIP Code) 10. SOL'PE OF FUNDING NUMBERS
Office of Basic Research PR)GRAM PROJECT TASK WORK UNIT
5001 Eisenhower Avenue ELEMENT NO. NO. NO. ACCESSION NO.

Aluxandria, VA 22333-5600 61102B 74F N/A N/A

1. TITLE (Include Security Classification)

[eveloping a General Contingency Planner, Phase II

12. PERSONAL AUTHOR(S)
Young, Paul

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final FROM 8-5/04 TO 87_0 1991, June 121
16. SUPPLEMENTARY NOTATION

Michael Drillings, Contracting Officer's Representative

17. COSATI CODES I8. S'IBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Artificial intelligence

Problem solving
I Ariw7 maneuvers

19. ABSTRACT (Continue on -everse if necessary and identify by block number)
-- ,This report sarimarizes the work performed in the final phase of a 3-year effort to
investigate basic mechanisms for solving planning problems in domains characterized by
adversity. In the first phase of the effort, a general purpose planning mechanisa was
developed. This planner represented plans in a manner consistent with the goal tree
formalism characteristic of Artificial Intelligence action planning research and used

plan generation/s~arch techniques derived from both Al action planning and knowledge-basea
game-playing theory. In the second phase of the effort, advanced planning mechanism was
also extended from its initial domain (the two-player boardgame of Othello) to an Army
maneuver planning doin.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. ] DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c OFFICE SYMBOL

Michael Drillings (703) 274-872 PERI-BR
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



U.S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON JON W. BLADES
Technical Director COL, !N

Commanding

Research accomplished under contract
for the Department of the Army

PAR Government Systems Corporation ,.

Technical review by

Michael Drillings .

3 ' SpSO ltt

NOTICES

DISTRIBUTION: This report has been cleared for release to the Defense Technical Informauun
Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution
other than to DTIC and will be available only through DTIC or the National Technical
Information Service (NTIS).

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not
return it to the U.S. Army Research Institute for the Behavioral asid Social Sciences

NOTE: The views, opinions, and findings in this report are those of the author(s) and should not
be construed as an official Department of the Army position, policy, or derision, unless so
designated by other authorized documents.



DEVELOPING A GENERAL CONTINGENCY PLANNER, PHASE II

CONTENTS

Page

INTRODUCTION ...................................................... 1-1

THE STRUCTURE OF CONTINGENCY GOAL TREES .......................... 2-1

GOAL-COUNTERGOAL PAIRING: CGT GENERATION ............................ 3-1

KNOWLEDGE REPRESENTATION IN PLANNING ................................ 4-1

OTHELLO EXAMPLE .................................................. 5-1

MANEUVER EXAMPLE . .............................................. 6-1

SUMM,,RY .......................................................... 7-4

REFERENCES ................. ..................... ....... R-1

APPENDIX A. PROGRAM 1. DEMONSTRATION INSTRUCTION ................. A-1

,°.;



DEVELOPING A GENERAL CONTINGENCY PLANNER, PHASE II

1. INTRODUCTION

A good deal of the research conducted in Artificial Intelligence (AI) over the last

thirty years has focused on the development of systains ior generating plans o! action
for agents faced with numerous, complex, and conflicting goals. Because planning is

such a vital part of the military function, the promise of these systems is of great interest
to the military community. Foremost among the contributions that could be made by
reliable Al-based planning systems would be 1) the ability to monitor complex
situations where large quartities of data need to be assimilated quickly, and 2) the

ability to project outcomes of possible courses of maneuver in dynamically evolving

battlefield environments.

This report discusses the problem of extending the action-planning techniques

developed in Artificial Intelligence research to problems involving the need to plan

against an intelligent adversary. The focus of the report is work completed by PAR
Government System Corporation (PGSC) during the final phase of a three-year basic
research effort. The remainder of this section of the report presents a general
discussion of the nature of adversity and the special consideratons which must be
taken into account by any automated planning systam which is to operate in a domain
characterized by adversity. Section 2 explains the basic representational structure at
the heart of the plann, er developed on this effort: Contingency Goal Trees. Section 3
explains the generation of these trees. Section 4 focuses on the representation of
planning knowledge in the form of goal elements and how these are structured
syntactically. Sections 5 and 6 provide two illustrative examples .f how the planning

system functions. Section 5 is an example of the planner's operation in the two-player
board game of Othello, which was the domain of interest during the first phase of work.
Section 6 preserts a planning scenario which is orienteo toward army maneuver
planning. This was the domain of interest during the second phase. A summary of the
entire effort, along with assessments of the degree of success of the work, is given in
Section 7, and a complete listing of the source code for the planning system is
provided in the Appendix.

The ability to act for an end has long been used to characterize the special

nature of human beings. Aristotle was among the first to recognize this fact, which has
served as a definit;on of intelligent activity ever sincp. If computerized agent are to be

1-1



successful and truly useful in a complex world, ways must be found that will allow them
to copy, or closely approximate, the planning skills of men.

The attainment of a goal does not happen automatically. It is not enough for an
agent to simply have a goal in mind: an effort is required to accomplish the goal. To
understand this we need only attend to the fact that the world or environment that
confronts any agent, either human or not, is one that is full of obdurate and self-
insistent things that oppose the agent. Among these are other agents with their own
goals, objects like rocks and trees that can get in the way, and roads with forks in them.
Each of these can oppose the agent in the attainment of its ends. The collection of
stubborn realities which can impede an agent can be seen as forming a general
condition of adversity which permeates every environment or domain where an agent
would attain a goal. Adversity arises in all domains no matter how simple or comptex,
and it is this condition of adversity that separates every agent from its goal. The central
issue in automated planning is then the problem of dealing with adversity -- adversity
created by the stubbornness of whatever is the non-agent.

In a sense, adversity has always been recognized as the impediment to action
planning by researchers in this field. in every case, however, the general problem of
adversity has remained hidden from view and unattended to as a result of the attention
given to the special form of adversity in a given domain. Examples of this kind of
oversight can be seen in the kinds of problems usually dealt with in automatic
problem-solving research and the way in which these problems are approached.

Usua!,, a problem-solving program will be centered around the solution of a
single problem (e.g., the familiar blocks world) or a family of related problems. In most
of these treatments, the result has been, at best, a problem solver which is successful
only in the realm of the class of problems under consideration. This limitedness arises
from taking a particular problem or proolem set as representative of problem solving in
general and then building a solution for that particular instance. Created are a
multitude of problems solvers, each of which may be fairly successful in its own
restricted domain, but is of little value in a general sense. In each of these
approaches, there are special devices for constraining search among alternatives,
resolving conflicts among alternatives, and resolving conflicts among competing
subgoals. What has been missed by a good deal of the previous research in
automatic problem solving is that all action planning shares a common feature -- it is

1-2



oniy necessary because of the general condition cf adversity which confronts any
agent acting for an end. If the other features of the world (the non-agent) were
incapable of resisting and opposing the agent, there would be no need for planning,

subgoals, or any other effort: all ends would be achieved instantaneously by the
power of the agent's will. However, because the real world has an integrity and status
apart from the agent, the agent is rigorously opposed, and the collection of oppositions
with which the agent is confronted can be seen as a condition of adversity. Once this
commonality has been discovered, it becomes possible to propose a model or
paradigm for problem solving in general and thereby arrive at a truly domain-

independent problem solver.

A simple example will serve to demonstrate that adversity is a common

condition for all problem solving activity. Consider the planning problem depicted in
Figure 1-1. Here, the goal is to capture the city with the given units which are initially

on the wrong side of the river. The objective can be expressed in the form of a single-

node plan (utilizing Sacerdoti's procedural network formalism) as shown in Figure 1-2.

Level One

R (Achieve (and (Attack City)(Cross River)(Buid Bridge)), I

Figure 1-1 Figure 1-2

This single node can be expanded into a more detailed plan by breaking the
conjunction into its components. The resulting decomposition is shown in Figure 1-3.
The three subproblems are shown in pitrallel in order to indicate that ihere is no a

priori commitment to a temporal sequence. Obviously, however, for the goal to be
achieved, the subproblems must be sclved in a particular order. In this case, the city
cannot be attacked until the units are ac ss t'e river, and the units cannot get across
the river until the bridge has been built. Such an interaction between subproblems
has been termed a "conflict" by Sacerdot Conflicts are resolved by the applicatior, 3f

a device known as a "critic," wnich looks for spt.ciai kinds of interaction in a developing

1-3



Level Two = Split

! =Join

City

Cross
s River

BuildI Brid e

Figure 1-3

plan and adjusts the plan accordingly. Critics, because they are intended to be
applicable to multiple planning situations. are necessarily pre-defined.

The conflicts in the simple plan developed so far would be resolved by a critic
(or critics) that knew that a precondition for being near something on the other side of a
river would be the use/construction of a bridge to get across. After resolution of the
conflicts, the CAPTURE-CITY plan would look as shown in Figure 1-4.

Level Two (After Criticism) ' split

I~ Cit Join

riI a

Figure 1-4

A close look at the initial problem (Figure 1-1) and the current plan (Figure 1-4)
shows that there is still some ambiguity in that there are three distinct units to be
moved across the river. Therefore, the plan can be further decomposed into a new set
of subproblems. Each of these new subproblems would represent a step for moving
each of the three units across the river. The new, more-complete plan is shown in
Figure 1-5.

1-4



Level Three

" Crss MoveBA

' Moveo ]

7S- Split

] =Join

Figure 1-5

Once again, the subproblems are shown in parallel, and, as long ts the three
units represent the same or similar resources, this plan is fine. In a real military-

planning situation, however, unit A may be artillery, unit B infantry, and unit C armor.
In this case, the order of sending the units across may make a great deal of difference
to the success of the operation. If the infantry crosses first, it will be subjected to the full
fury of the enemy's resistance, while the armor (unit C) will be following uselessly

behind. There is, therefore, a new conflict among subproblems in the plan, and this
conflict will have to be resolved by yet another critic. One possible criticism might~be
represented by a rule which holds that armor always precedes infantry and that the

artillery follows the infantry. Another possibility might be a critic which knows that,
:. within a certain range, the artillery cou;d be left on the far side of the river and fire on

the city from there. A simple resolution to the conflict is shown by the new plan in
Figure 1-6.

Conflict resolution forms another primary problem in the development of
automatid-planning systems from the standpoint of Command and Control problems.
Notice that both resolutions in the river-crossing example were achieved by the

addition of new knowledge into the planning process: specifically, knowledge about

the sequencing of actions with respect to time for attacking the city and how to use

different kinds of resources In that attack. The way this knowledge is usually handled
is in the form of special general-purpose rules. These rules, by virtue of the fact that

they must be pre-defined, can be described as static, that is, they cannot take any

account of factors or conditions external to the explicit ones embodied In their own

~1-5



logic. The rule, or critic, looks for particular interdependencies and resolves these

conflicts in some prescribed manner. As such, it has no capability to reason about the

particular situaiion at hand and what the implications of the application of the general

criticism are for that special circumstance.

The following three sections discuss in depth PGSC's approach to meeting the

challenges presented by planning in adversarial domains. First. Section 2 discusses

a framework, known as Contingency Trees, for representing adversarial plans of
action. Section 3 discusses in detail the planning mechanism which is utilized to

generate these trees, and Section 4 presents the knowledge-representational scheme

for representing the ac.ual goal knowledge.

Level Three (After Criticism)
...... J M o v e A|

[ = SPI.'

1111

Figure 1-6

1.6



2. THE STRUCTURE OF CONTINGENCY GOAL TREES

The planning system which PAR Government Systems Corporation (PGSC)
developed represents pldfns as contingency goal trees (CGTs). Contingency goal

trees are a hybrid plan-representation structure embodying aspects of traditional
hierarchical plan representations and of move traes from computer game playing-
Figure 2-1 is a sample CGT with 19 nodes. The 19 rtodes of the CGT are organized
into six levels of a1raQ1ion. Abstraction refers to the need in planning systems to
represent problems in different degrees of resolution or generality. What is intended
by the concept of abstraction can be seen in terms of the frequenty used "pasta-
,naking"example. One might want to create a plan for making pasta, which can be
represented as the goal: (MAKE-PASTA). This goa! can be tought of as having two

iuk-goals: (BOILWATER) and (PLACEJPASTAINWATER). These two subgoals
are said to be at a lower level of abstraction because, while they represent an
equivalent notion to the initial goal, the problem is nonethess represented in a more-
detailed, specific, and therefore less-abstract way. Similarly, the MAKEPASTA goal
may be less abstract than an even-higher level-goal: HAVEDINNER. for example.

Abstraction is a key idea in planning because it. allows for multiple views of the

same problem, each of which is at a different level of detail. Details are usually
numerous, hard to keep track of. and not always important. Therefore, the abiily to
represent plans at more thnn one level of detail or abstraction allows for the

convenient collection of specific parts of planning knowledge under broader concepts

which may be more easily manipulated and traced.

The lowest level of abstraction in any compc!er plan represents what may be
called 'acts' in the world of the planning system. The purpose of an automated
planner is to develop plans for achieving some goai- Regardless of how many levels

of abstraction the planning problem may be de,-omposed into. the plan must terminate
in nodes which are not subgoals requiring further development, but rather actions for

implementing the plan in the pre-oefined world of the planning system. Thus. a robot
planner may have numerous goat nodes ranging across multiple levels of problem
abstraction (e.g., (OPENDOOR DOORI)). In the end, however, the plan must be
made a icable to the world in which the planner is to operate. Applicability is

achieved through the generation of bottom-level nodes which correspond to acts in the

planners world.

2.1



A planner for developing a sequence iz , piling or unpiling a set of blocks would

hi ve acts corresponding to the movement of particular blocks, while a planner

designed to maneuver a fighter jet in a dog fight would have acts corresponding to

aileron adjustment and so on. Above each act is a network of goals which are the

ancestors of the act and, in a sense, explain why the act is being recommended.

LEGEND

Q GOAL:COUNTERGOAL PAIR A TARGET

(AND CONJUNCTION P1 PATH

(OR DISJUNCTION P2 PATH

M.VE .

ENC ENCLOSURE K POINT ON DEFENSIVE LINE

ESC ESCAPE

(03168)

Sample CGT with 19 Nodes
Figure 2-1

2-2



To illustrate, consider the representation depicted in Figure 2-2. This figure

shows a hierarchically decomposed solution to the high-level problem "Engage
Target X at Time Y." In this extremely simplified example, there are three levels of
abstraction. TI - first, or top level, states the initial problem. This is, in turn, resolved
into a three-step plan at a lower level of abstraction. At this more concrete level, an
explicit strategy ("SHOOTLOOK_SHOOT") for achieving the higher-level goal is
instantiated. Finally, at the lowest level of abstraction are the acts or discrete steps
required to perform the three steps shown in Level 2.

ENGAGE TARGET
X AT TIME Y

SHOOT TARGET LOOK AT TARGETCODTNA
XATTIMEY X AT TIME SHOOTTARGET

Y+tl XATTIME
Y+tl +t2

DETERMINE IF
TARGET VIABLE

SEND COMMIT REQUEST TARGET SEND COMMIT
MESSAGE TO BATTLE DAMAGE MESSAGE TO

WEAPON A ASSESSMENT WEAPON B
FROM SENSOR A

(03169)

Example of Hierarchical Decomposition
Figure 2-2

2-3



It is important to recognize that the question "to what level of decomposition or
abstraction a problem should be reduced" will vary with the aims of the particular
planning system. That is, there is no pre-defined lowest (or highest) target level.
Instead, these will be defined within the context of the given system. It would have
been possible, for example, to build a planner which immediately instantiates the goal
"Engage Target X at Time Y" into some solution. In that case, the "Engage Target"
goal would also " 'onsidered an act. As one pushes the level of acts further and
further away from the level of the initial problem state, thereby creating more levels of
abstraction, the planner is made more flexible and more able to apply to general
situations. Thus, the initial representation (Figure 2-2) has four acts, each of which is
related to a procedure for instantiating that act. This is in contrast to the situation that
would hold if there were only a single procedure for achieving "Engage Target X at
Time Y." The former is more flexible, because the four acts with their associated four
procedures can be combined in numerous ways to solve the problem differently or
even to solve completely different problems.

To address planning problems that involve an intelligent adversary, this
research effort has taken the approach of generali; - the goal-tree/procedural-
network formalisms to represent plans in a manner tha ,mits incorporating the type
of planning that is done in knowledge-based game-pl research. To this basic
framework has been added explicit consideration of adve: dI countergoals.

The basic premise of the research effort was that most of the previous work in Al
planning, such as that derived from robot problem solving, cannot be readily applied to
military-planning problems. Specifically, these planners lack a satisfactory capability
to explicitly incorporate an adversary's goals and actions into the planning process.
Consequently, they cannot effectively plan against an adversary that is simultaneously
planning against them. As an example, consider the case of planning under
conditions of uncertainty. One aczepted technique is to include information-seeking
goals in the plan wh~iiever information necessary tb complete a plan is not initially
available to the planner (e.g., FINDLOCATION (X), if the location of X is not known).
When an adversary is present, however, that adversary is likely to have a countergoal
of preventing the collection of the required information. Consequently, this adversary
will use various tactics, perhaps including deception, to prevent information collection.
Unless the adversary's countergoals and actions are explicitly taken into account and
planned against, the original information goa! is not likely to be achieved.

2-4



The planner which this research developed, ARES (Adversarial REasoning
System), represents plans in a structure called a Contingency Goal Tree (CGT).
Figure 2-1 is a sample CGT showing a plan for some hypothetical battle situation. At
each node in a CGT is a Goal Pair (GP) which includes a proposed friendly goal and a
possible countergoal for the adversary. Sub-nodes of GPs are Sub-Goal Pairs
(SGPs). Reading the left-most branch of the example CGT, a sub-goal of CAPTURE
(A) is SURROUND (A), while the corresponding sub-goal of DEFEND (A) is RETREAT
(A). Consequently, the GP CAPTURE (A) : DEFEND (A) has as its first SGP
SURROUND (A): RETREAT (A).

Simultaneous multiple tasks are treated as conjunctive (AND) or disjunctive
(OR) goals. Thus, (AND ENC(P1) ENC(P2)) is a single goal of enclosing both escape
path 1 and escape path 2, while (OR ESC(P1) ESC(P2)) is a goal of escaping through
either path 1 or path 2. Other "generic" goals, such as AND IN SEQUENCE, are
possible.

In many instances, GPs will include a goal or countergoal of NIL. This occurs
when there is no projected opposing goal, such as when ARES is explnring an option
where one side pursues an independent course of action while ignoring the
adversary's goals. It also happens to occur in example CGT because this example
depicts a linear sequence of moves and countermoves, as would be found in
alternating-move games such as Chess.

When a CGT contains a NIL element in every GP, it is isomorphic to a standard
goal tree. Also, CGTs can have parallel branches and, if desired, pre-conditions and
post-conditions attached to nodes. Consequently, CGTs represent a straightforward
extension of the goal-tree/procedural-network representation.

2-5



3. GOAL-COUNTERGOAL PAIRING: CGT GENERATION

Section 2 described the means of representing plans in the planner PAR

Government Systems Corporation (PGSC) developed. This section deals with the
process used to generate contingency goal trees.

Given that plans of action are to be represented in the form of hierarchically
decomposed networks where higher-level abstract goals are resolved into more

detailed, less-abstract component parts, the next question pertains to what mechanism
is to be used to accomplish the actual reduction of one level of goal into its more
detailed components. Given some initial problem, an automated planner requires

some means of generating the network of goals and subgoals that represent the

solution.

The plan-network-generation problem is in a class known as state-graph search
problems, where, given an initial state, an exploration of possible sequences of future

states is performed in the hope of isolating a path that will lead to a goal state. Figure
3-1 shows a state graph for some imaginary problem. In this example, Node A
represents the initial state and Node H the desired goal state. The problem is to find a

path that leads from A to H.

Another related form of this representation is the commonly known move tree
from computer game playing. In a move tree, a particular node represents some legal

arrangement of playing pieces on the board. The "children" of that given node will be
the complete set of possible legal moves for the side on the movj. Each of these
nodes becomes, in turn, the starting point for proposing a set of subsequent moves for

the opposite side. Figure 3-2 st..ws a sample move tree for a very simple Chess
game where there are nine squares, a White Bishop, and a Black Rook. Reading this
tree from th9 top down, first all the possible moves are found for the Black Rook. At the
next level, each of the possible White responses to the Black moves is postulated.

In procedural networks, state graphs, and move trees, the basic problem is how

to faid a path that will lead to the desired state. Numerous alternatives are possible.
The first and most obvious means is to exhaustively enumerate all the possibilities.

Inevitably this results in a great deal of wasted effort because usually only a relatively

3-1



few paths will lead to success. The expansion also falls victim to a combinatorial
explosion where the search space grows exponentially.

Initial

A State

B C

., Goal
State

Sample State Graph

Figure 3-1

3-2



mm
0

0 a:

LI

(V) 0

~~Ii~ I-

Ci) 0

Imp-

_ I ._. _ _ 1.

>-

mn



There are numerous possible ways to cut down the amount of computational
effort required to navigate through the network. Breadth-first Search examines all the
elements at each level (horizontally) before proceeding depth wise to the next level.
Depth-first Search expands the state graph vertically until a path either leads to a
success or a dead end. If a dead end is reached, the search backs up to the
immediate prior node and seeks an alternative at that level, and so on.

In a recent article, deKleer (1985) identifies three principal ways of exploring a
search space. The first, and most common, brute-force enumeration of all possibilities,
was described above. An alternative approach is chronological backtracking (a
variant of depth-first search). However, the discovery of a failure in the developing
plan may result in a large amount of wasted work because the real reason for the
contradiction in the plan may be some choice further back in the plan, not necessarily
the immediately prior one. As deKleer writes: "When a contradiction is discovered the
search should backtrack to a choice which contributed to the contradiction, not to the
most recent choice." A second alternative to brute-force enumeration is known as
dependency-directed backtracking (another variant of depth-first search). In
dependency-directed backtracking, records are kept about the dependency
relationship that each choice in a plan has with regard to prior choices. When a failure
in the plan occurs, dependency records are examined to determine which prior
choices (not necessarily the last one) set up this situation.

In actuality, most planners employ a hybrid approach for developing plans of

action: neither pure breadth first nor pure depth first. A popular hybrid is known as
best-first, where the most promising alternative at each level is explored first.

Figure 3-3 is an example of a best-first expansion. At each level, some
procedure is used to select the "best" node for expansion. Once a node is selected
within a level, the planner proceeds to evaluate the children of that node seekirg to
idantify the best possible one to expand, in turn. This continues in the same manner
as a depth-first search, except that some discrimination is performed at each level
among the possible nodes to expand. The expansion results in the location of either a
successful path or a dead end. If the path has led to a dead end (a failure),
backtracking is undertaken to some prior node, where the expansion begins anew.

3-4



B D

> 30 50

mM 0

O's
UJ
U

> KI

(03172)

Best-Fit Example With Sample Scores
Figure 3-3

The approach taken to planning in ARES is a hybrid of these other techniques.

By reading the terminal nodes of a CGT from left to rigt , a specific sequence of

actions is defined. Consequently, each CGT specifies a contingency plan if the
adversary pursues the goals indicat3d in the tree. In an adversarial world, "good
planning" means generating contingency plans for each reasonable course of action

that either the adversary or the agent may pursue. To this end, ARES attempts to
generate a set of CGTs that povides contingency plans for the full scope of
reasonable options available to th.. agent and the adversary.

For a given level of abstraction, ARES proceeds through CGT
generation/expansion in a depth-first manner. Beginning with the most recent GP

added to the CGT, ARES recursively adds SGPs until a terminal GP is reached. A

terminal GP includes a procedure for making an action in the world, which means that
it is the lowest level in the expansion. Processing a GP involves accessing a

knowledge base of goal definitions in order to determine possible reasonable options

to instantiate tor either the agent or the adversary. In alternating-move games, these

accesses are for the goal for the side that is currently on the move. In more

3-5



complicated domains, like maneuver planning, where actions can occur
simultaneously, both parts of the GP are processed at the same time.

In the example CGT, the solid line identifies those SGPs that were generated by
processing the parent goal of side A, on the left, while dotted lines indicate SGPs that
are descended from the parent goal of side B, on the right.

The general procedure employed by ARES ir the generation of plans may be
characterized as an iterative process of proposing possible courses of action and,
based on the outcome of those actions, proposing better action options. ARES, in
effect, plays out a series of hypothetical games in order to "learn" about the way
objects in the domain interact. The knowledge that is gvined is further used in the
construction of the network of goals and countergoals.

Table 3-1 presents a high-level, English-language description of the actual
procedure used by ARES to generate CGTs. The procedure "RESOLVE" is recursively
called until goal decomposition ends with either a failure or an act in the world state.

TABLE 3-1

Procedure RESOLVE

1.0 Given an initial input goal pair, designated gpair, determine whether it will result in
success for either agent or counter agent. Contingency Goal Trees created in this
process, taken together, form a plan.

2.0 IF a word update action can be performed, THEN perform it and RETURN T

3.0 Generate a new sub-goal pair (sub-gpai) for gpairand add to sublist

4.0 CASE:
sub-gpair go to 7.0
(RESOLVE (sub-gpair side))*NIL: go to 3.0

END(case}.

5.0 Replace most recent sub-gpair.

6.0 IF[AND( sub-gpairT) (RESOLVE(sub-gpair side))], THEN go to 3.0

7.0 CASE:
sublist > 0 AND (side effects) go to 5.0
sublist > 1 Remove one sub and go to 5.0
sublist= 1 RETURN T
sublist= I RETURN NIL

END {case).

3-6



4. KNOWLEDGE REPRESENTATION IN PLANNING

Computer game playing and robot problem solving are generally considered to
represent distinct classes of planning problems. The normal model for examining two-

player, perfect-information game problems starts with a game tree which maps the
various possible situational evolutions that can occur, given different action options for

the two sides. As pointed out in Section 2, for even the simplest games, such trees

can develop to unmanageable size after only a few levels, introducing the need for

clever techniques for isolating the best move based on only a partial look-ahead.

Several possible methods, including minimax and alpha-beta (see Nilsson,
1980 for a review) exist for constraining the search problem. Other researchers have

coupled these techniques with the use of heuristics and the incorporation of domain-
specific techniques to limit searching in a given game problem (Ballard, 1982).

Two issues appear to be most important for the creation of a successful planner
in any domain: 1) a knowledge-representation strategy and 2) a mechanism for

applying knowledge in an attempt to constrain the search space. This report section
details the major results of PGSC's investigations with respect to this important aspect

of automated planning.

PGSC contends that the classes of problems described generally as computer
game playing and automatic problem solving do not represent unrelated domains
within Al but are rather special cases of a broader problem set which can be best

categorized as dynamic plan generation.

A major impetus behind PGSC research in this area has been the state of two-
player, perfect-information games over the last 20 years. This sad situaticn has been

summarized by Berliner (1973) with his criticism that one of the most serious
deficiencies in game-playing programs, like those being developed for Chess, was the
absence of long-range or global plans for winning the game. Wilkins (1979), with his
PARADISE system, provided further guidance by restating the game-playing problem

in terms of planning issues. The essence of Wilkins' approach is to develop move

sequences based upon the goal-directed development of a plan, instead of picking the

"best" move from a tree expanded to some arbitrary depth according to some arbitrary

method. The result is that the emphasis in developing successful game-playing

4-1



programs is shifted from questions of computational complexity to the construction of

effective goal-based knowledge-representation schemes.

The use of long-range planning and goal-based knowledge has been

successfully employed in a number of planning mechanisms (see Berliner, 1975;
Reitman and Cox, 1979; and Wilkins, 1979). In all of these systems, knowledge is

employed in order to constrain a space of available options. Once candidate
strategies are identified, thereby eliminating many branches of the move tree, action
alternatives can be investigated to considerable depth without suffering from the
effects of a combinatorial explosion.

Controlling the generation and/or search of a set of action alternatives
represents one of the primary problems facing development of successful computer
planners in all domains, not simply game playing. The crux of the problem, as it is
commonly presented, is that finding solutions to planning problems requires either an
epistemologically intensive, or a time-intensive approach. The former requires that
sufficient knowledge (e.g., about strategies, good skeletal planning sequences, etc.)
be included in the' planner to guide the decision making required to select among
competing courses of action. The latter approach, on the other hand, foregoes this
kind of goal directedness, developing all branches to a certain level and then picking
the best move by applying some criteria to the family of alternatives.

Several researchers have recognized this dilemma and suggested that these

two-solution strategies are arrayed along a kind of continuum and that other methods
that attempt to combine the two lie between the two extremes. McCarthy and Hayes
(1969) and Berliner (1973) are examples.

As Berliner pointed out, approaches to planning action sequences which
depend either entirely on knowledge or search are essentially uninteresting from the
standpoint of Artificial Intelligence. The question then becomes one of creating a
model which is both epistemologically and heuristically adequate (following McCarthy
and Hayes). In other words, the aim is to use just enough knowledge and just enough
search to obtain successful and interesting results.

4-2



Important innovations in representing planning knowledge which emerged from
PGSC's second-phase effort center upon 1) the use of search as a form of knowledge
and 2) a framework for representing this explicitly.

The phase-two planner, ARES, builds plans by engaging a given world
situation or environment in a planning dialectic. The plans are constructed out of
generic goal structures repreanting generalized planning knowledge about the
domain. Based on the system's analysis of the current world situation, these general
pieces of knowledge are informed and related into a network of specified goals. In the
current implementation, uninformed goals are s-expressions in the LISP Language.
Each goal has a number of properties which are slots in the atom's property list. The
goal name identifies the atom or s-expression. The property slots include the
following:

(1) COUNTERGOAL -- an assumed adversarial countergoal,
(2) SUBGOAL -- a list of possible subgoals for when the agent is the curren.

actor in the environment,
(3) SUBNOTONMOVE -- a list of possible subgoals for when agent is not

the current actor in the environment,
(4) FEASIBLE -- a list of feasibility conditions,

(5) SUCCESS -- a list of success conditions, and
(6) FAILURE -- a list of failure conditions.

While a value or list is initially attached to each uninformed goal, these values
are used only as a starting point for producing specified or filled-in attachments as the
goal is developed during the course of a planning sequence.

PGSC distinguishes between informed and uninformed goals on the basis of a
specification which is necessary in order to instantiate a particular goal. An informed
goal is defined as a goal which has been developed in a context-sensitive fashion by
transforming its initial attachments or properties into specified attachments. The
difference between an uninformed goal and an informed goal is illustrated as follows.
Imagine a human planner operating in a tactical combat situation. The planner has a
number of general-purpose maneuvers or "goals" which he can use, given varying
circumstances -- an example would be "march to contact." As such, this operation
would be similar to what we are calling an uninformed goal -- it is devoid of ary

4-3



contextualizing circumstances and lacks "filing-in." Once the planner chooses to

pursue the goal, however, he decides to march some paticular set of forces to contact,

with some adversary at a given point and time. In this way the goal becomes specified

or informed.

The actual filling-in of an uninformed goal occurs when, in the development of a

Contingency Goal Tree (CGT), ARES expands an existing node. In planning, not only

must an agent's plan be consistent be%,ween levels of abstraction (see Section 2), but

also the agent's model of its adversaries' countergals and the success/failure tests for

the goal must reflect this same consistency. Thus, while an agent's goal of 'CAPTURE

(X)" might be generally paired with and adversarial countergoal of "DEFEND (X).' it is

not necessary that in a specific situation the adversary have that countergoal. It might

be the case that in the parent node the adversary's countergoal was NIL (indicating

that ARES expects the adversary to ignore its goal), and therefore, it makes no sense

for there to be a countergoal of any child of that node.

ARES specifies the countergoal attachment by conjoining the set of generic

countergoal attachments for the goal with the specified or informed set of counter-

subgoals from the parent, thereby making sure that each step in the adversary's

counterplan is consistent with its predecessor. Similarly, it is also necessary to make

sure that the success or failure tests of any ,"de in a network include consideration of

the parent nodes. This is because, for ARES, the planning of a move/countermove

sequence is dependent upon the ability to recognize success or failure across levels

of hierarchical abstraction- As an example, consider the case depicted by the move

tree in Figure 4-1. This example is taken from the game of Othello (see the detailed

description of ARES' behavior in this domain that follows). The planner's goal is to

occupy comer X, and the assumed coune.'oal is also to occupy X. To occupy comer

X, ARES has identified CTRL(AX) as a subgoa! which is paired with CTRL(AX) as a

counter. Since AX is already occupied by an adversariai p4ece. the only way it can be

occupied by ARES is to flip or turn the p-ece over. TURN OVER(AX), then, becomes

ARES' next subgoal with a countergoal of TURNOVER(AX).

The knowledge base assures that. if the agent's obtecvive is to turn over a

piece, the adversary will want to turn the piece back over again. ARES first makes

move 1, which flips AX over. Next. playing for the adversary. ARES finds move 2,

which will flip AX over again ibacdk to its Ciginai confguraionl). Move 2 just happens

4-4



to be a play into ccrner X, however, and, by making this move, the adversary would be
able to thwart ARES' level-1 goal of controlling that corner. It therefore n,akes no
sense for ARES to consider this sequence any further -- it is a bad plan. ARES can
only realize this based on a failure-conditions analysis which it would make before
processing the next goal (a potential move 3).

The specified failure lists, used to determine when some sequence represents a
bad plan, results from the conjunction of the generic goal attachments of the goal as it
is in its uninformed state with the set of all specified failure conditions from parent
goals in the same path. Thus, ARES has encountered a failure if the white side has
turned over (AX) and white occupies (X).

OCCUPY CORNER: OCCUPY CORNER

CTRL(AX):CTRL(AX)

TURNOVER (AX): TURN-OVER (AX)

(03173)

OTHELLO Move 'ree

Figure 4-1

4-5



5. OTHELLO EXAMPLE

This section presents a detailed example of an "RES planning sequence from
the popular two-player, perfect-information game Othei Othello is played on a board
of 64 squares (8 x 8). Two colors of stones (white and black) are used for the
respective players. The object of the game is for a player to occupy more squares with
his color of stones than the opponent. A square is captured by outflanking an
opponents stone (or a row of stones). Outflanking is accomplished by being able to
make a play such than an opponent's stone(s) is(are) enclosed by two friendly stones,
one at each end. The following is an illustration:

A BCDE

White has Stone 1 at Position A, and Position E is open. By playing a stone at Position
E, white is able to outflank the three black stones located at B, C, and D. A player
(either white or black) is able to make a valid play any time a stone can be placed in
such a fashion so as to outflank one or more of the opponent's stones. Once such a
play is made, the opponent's stones in the intervening spaces are "flipped," that is tiley
are changed to stones of the color of the player making the outflanking play. For
instance, in the example shown above, once white played Stone 2 at Position E, the
black stones at Positions B, C, and D would be changed to white stones. If 0 p!:,yer
cannot make an outflanking play, he must "pass" on that turn and wait for anoth&r
opportunity. The game ends when all of the spaces on the board are occupied by
stones. The player whose color stones occupy the majority of spaces wins. In the
computer implementation of Othello which has been built for demonstrating the
planner, the computer plays for one side against a person (or itself). The planner
plays for the white side and the opponent plays for black. The initial configuration of
the sixty-four (8 x 8) square game board is as shown in Figure 5-1. Two black stones
and two white stones are initially placed in the center of the board. Black (the
opponent) is allowed to move first. In the example, which is taken from an actual
game, the moves of the planner (white) will be explained in terms of the contingency-
goal trees used to arrive at those moves. To make the planning sequence more

5-1



0CD

LL

w 04

C))
Q "~

00

• - r m

0,, C,

0

*- ao

0 0

5-

oo

5-25



interesting, a number of moves already played b, b-th the black and white sides have
resulted in the configuration of the playing board shown in Figure 5-2.

Figure 4-1 chow9d the current contingency-go&' ireb that the r'..,,ner is
considering In the bottom left cornet of the board, white, which in irtis case is ARE,,
has a. play which wid a!:ow !t to occupy Square (C6), whi -h is two squares away from
the Corner (A8), tnus satisfyir-g the Subgoal "ctri _. 2 -away". Having found th!s move,
ARES plays it cn a hyaothetical-move board (, e Figure 5-3) and then switcher, sides
tu play for black to s~e if there is an adversarial cuuntergoal which will be achievable
as a result of ARES' .,ove. Black's assumed countergoal oi white's "play" is "NIL,"
and so ARES (playing ;ur black) backs up the tree one level tu the parent to check the
countergoal there. The parent goal to ARES "play" is "playsafe_(C6)," and the
assumed adversaria! countergoal is also "paysafe_(C6)." "Pliy__safe" is a goal
object defined such that a play will be r iade on a given square an, the opponent will
not be able to turn the stone over. t3lack now has the countergcal of trying to occupy
(6). It can accomplish this in cne o, two ways: 1) play on the space if it is not
occupied and represent3 a valid move, or 2) attempt to turn over an opponent's piece
occupying the position. Since white is (in the hypothetical-move environment)
occupying (06), black's only hope is to attempt to turn over tiat piece. Since a black
play at @C7) will a'ic, it to do so, ARES makes this play for black on a new
hypotiietical-mov6 board (see Figure 5-4). ARES now switches back to its side again
and considers the most rp1 ently added node to the CGT (the black play at (C7)).
Since the countergoal of the black play is "NIL,' ARES backs up to the black parent
goal of "turn over_(06)," the countergoal of which is also "turnover (C6)." ARES
now attempts to find a new white play which will result in the turnover of (06). A play at
(B6) is such a move and so, as before, a new hypothetical board iL1 created and ARES'
new move is played on it (see Figure 5-5). APES switches sides back to black ancd
backs up as before to white's goal of "turnover (06)," which is paired witi'
"turn over_(C6)" as a countergoal. Since black has a play at (A6) which will tu!rn (C6)
over again, this move is played on a 1'ypothetical-move board at yet another level
(F.gure 5-6). Switching back to white, ARES locates another move, at (B7), which will
flip the target p':e (C6) back, and this play is made on the next-level hypotheticAl-
move board (Figure 5-7). Another switch is made to the black side,with ARES backing
up as before the the "turn_oer_(C6)" goal. Black now has a play at (A8), which will
flip (Ce) over again, and this move is, in turn, played on a hypothetical-move boara
(Figure 5-8). At this point, ARES does not yet realize that implicit in black's pla,/ at (A8)

5-3



U-

a)z

LLL

5-



(0
C,)

0

0

IL (a
B

I0w
w

o
0

C)

C,)

(9

I0
S

I',
0
1~o
U.

C)

03

1~ CiJ C~) 't U) (C) N. CX)

5-5



co
0

LL

w c
Il

EL

m

<

U-

w .

- CV) i O I (D P- N co

5-6



is the automatic failure of its upper-level goal of "improve_corner_(A8)," ard so it
switches sides back to white and backs up the tree to the turnover goal. Examining the
success/failure conditions for this node, ARES finds that, since black has occupied the
corner at (A8), the opponent has succeeded in defeating white's objective. It does no
good to continue to attempt to turn over (C6), since the whole point of this play was to
set up the corner at (A8) and this present contingency has resulted in the loss of the

target corner.

It is important to notice that, without the success/failure tests, ARES would have
gone ahead looking for move sequences that would allow it to occupy (C6) and would
not have known that any move sequence that allows black to occupy the corner, even
if it results in the success of the subgoal, is a greater success for the opponent. Having

realized this implicit failure, however, ARES begins to replan. The first Ctep is to pop
back up two levels in hypothetical worlds, returning to the situation before it made the
play at (B7) which led to the situation of black occupying the corner at (A8) (Soe
Figure 5-6). Now ARES proceeds to plan for white with a new goal of turning over
(C6) AND NOT playing at (B7). As is evident from an inspection of Board 5 (Figure 5-
6), there are no white moves other than (B7) that will flip C6 over. Thus, ARES must
search back even further, popping up another two levels in boards to where it was
before it played at (B6) (see Figure 5-4). At this point its goal is to turn over (C6) AND
NOT play (B6). Here, ARES has another alternative: it can achieve this goal by
playing at (B7). It may seem peculiar that such a move would be considered since it
was a similar play at (B7) which allowed black to occupy the corner in an earlier
contingency, but there is no necessary reason to assume that by introducing it now, a
similar failure will occur (even though that is exactly what happens). Having
discovered this new move, ARES proceeds to create a new level of hypothetical-move
board (see Figure 5-9) and places this move on it. Switching sides as before and
backing up the goal tree for white, ARES is now looking for a move which will turn (C6)
back over. It discovers, as before, that by playing at (A8) it can turn the piece in
question (C6) over once again (see Figure 5-10). As before, after switching sides and
checking its success/failure tests AREAS finds that its upper level goal has failed and
so it must once agan attempt to replan. Levels of hypothetical-mne boards are
backed up to the situat;on as it was before ARES played at (B7) (see Figure 5-4). Now
the goal is to turn over (C6) AND NOT play (B6) AND NOT play (B7). As is obvious
from the game-board diagram, there are no available moves which will allow this goal

to be achieved. ARES, therefore, pops up two more levels in hypothetical-move

5-7



CV)

LL

w

UL)

w0

Q 5--



boards to the situation as it was before it played at (C6). As there are no other moves
that will allow ARES to occupy this square (C6), it abandons this target and will instead
try to see if there is another way in which it can improve its position in this corner.
ARES will continue to consider move-countermove sequences until it finds a winning
combination for itself which black cannot counter. The move/countermove tree that is
finally developed becomes ARES current strategic plan. The other contingency trees
are maintained along with their corresponding hypothetical-move boards. When black
next moves, ARES will compare the adversarial action with its current strategic plan to
see if the adversary is behaving as anticipated. If black's move corresponds to ARES'
calculated best move for black, the current tactical plan is still valid and ARES can
automatically make its next move as indicated in the plan. If black's move does not
correspond to what ARES expected black to do, it is possible that one of the following
conditions exists:

1. The adversary is unaware of ARES tactical plan or has abandoned the
target and will not react to ARES' offensive, or

2. The adversary is aware of ARES' tactical objective but has failed to identify
the best move sequence to thwart the plan, or

3. ARES has made an error in the assumption of adversarial countergoals.

ARES first considers that Case 2 is indeed what has happened and it searches
through its collection of stored CGTs and hypothetical-move boards to see if black may
have blundered and selected a poor countermove. If the given scenario is located
among the stored CGTs, the located CGT is used to update the current tactical plan
according to the new move sequence contained in the tree. Because ARES has
already thoroughly examined this tree, beginning with black's countermove, it is just as
certain that black will fail in this sequence as it was in the original tactical plan.

If, on the other hand, ARES is unable to locate the black counter among its
stored CGTs, it immediately begins to develop a new tactical plan, taking into
consideration the new situation resulting from black's unexpected countermove. By
proceeding in this way, ARES is able to deal effectively with the possibility that the
adversary may have abandoned ARES' tactical target, or may be embarking on some
offensive of its own. In this case it is necessary for ARES to rethink a tactical plan
given the possibility that its opponent may have changed the environment in such a
way so as to be posing a serious challenge in some other part of the game board.

5-9



Such a reconsideration does not automatically mean that the original tactical plan will

be abandoned, only that other alternatives will be considered in light of the
adversary's new action, and, if the original tactical plan is no longer the most
advantageous for realizing higher-level statistic goals, a new tactical plan will be

developed.

5-10



6. MANEUVER EXAMPLE

In addition to refining and formalizing the work conducted in Phase I, the Phase
II effort extended the adversarial-planning mechanism from the two-player, perfect-

information, sequential-movement domains examined (primarily Othello) to a more
robust and realistic environment. Since the ultimate goal was a planner that can

effectively operate in battlefield environments, the researchers decided to create a

simple corps-maneuver-planning scenario as the target domain.

The school scenario used at the U.S. Army Command and General Staff

College, Ft. Leavenworth, KS, was selected as a basis for the new planning domain.
A wargame consisting of seven distinct maneuver units was abstracted from the

detailed scenario. This generalized scenario is depicted in Figure 6-1. The following

extract from the Corps operations text (lesson 3) describes the scenario the research

effort attempted to plan.

"The corps main attack will concentrate in the south (right) to
defeat the 1 GTA by rapid penetration of its main and second defense
belts thus destroying the continuity of threat defense and rear services

systems. The corps attack will be conducted with three mechanized
divisions attacking in sequence from north to south. At D-day, H-hour,

the 54th Mech Div attacks in the north (left); at H+12, the 53rd Mech Div
attacks in the center. The 52nd Mech Div is the corps main effort and
attacks at H+1 4 in the south (right). The sequence of the corps attack is
designed to cause the TRs in the second defense belt to shift nurth from
present positions against the supporting attacks in the north, thus

reducing the strength of threat forces in the zone of the main attack (52nd

Mech Div). The 54th Mech Div will attack through the 23rd Amd Div on

the left (north) to penetrate the main defense belt, then continue the
attack to penetrate the second defense belt, fix the 55 TR in zone if it
counterattacks, and secure objective 1 (NB2940). The 53rd Mech Div

attacks through elements of the 23rd Armd Div and 208th ACR in the
center to penetrate the main defense belt, fix the 115 TR, & TD, if it is

employed in zone; then secure objective 2 (NB4127). The 52nd Mech
Div, the main attack on the right (south), attacks to penetrate the main

defense belt, then maneuvers to secure objective 3 (NB5920). In the

6-1



event that threat forces do not shift north as expected, the main effort will

be redesignated to the 54th Mech Div or the 53rd Mech Div.

"The corps flanks will be protected by the CENTAG supporting

attacks along each flank. The 54th Mech Div will prepare to protect the
corps northern flank (left) with the priority between PL HORSE and PL
SHARK; the 52nd Mech Div will prepare to protect the corps southern

flank (right) from PL ELK to PL SHARK.

"The 54th Mech )iv and 53rd Mech Div relieve friendly defending

units, in zone, of responsibility for containment of threat forces along the
LD/LC by H+1 4 and H+1 8, respectively. The attacking divisions will
prepare to assist the rapid passage of exploiting forces as soon as the
assigned objective is secure. The 208th ACR prepares to follow the 54th
Mech and 53rd Mech Divs, in zone, in order to initiate phase II of the
corps operation by a rapid passage and exploitation. The 25th Armd Div
prepares to follow the 52nd Mech Div or 53rd Mech Div, in zone, in order

to execute phase II of the corps plan."

To simulate this problem the planning mechanism was adjusted to generate
plans of attack for multiple units, each capable of a variety of independent actions at

different times. Here, the major difference from the prior implementation is that a
single "move" for either the friendly or adversary side consists of a coordinated action

of several pieces (more than one unit). Each of these coordinated actions can be
countered by multiple enemy responses. As before, an appropriate response
consisting of some combination of unit actions is postulated as a contingency plan and
tested hypothetically through CGT generation to see how that possible response will

fare against possible counters. Once an appropriate response is located the planner
posts the action and updates the simulation. Planning is then undertaken for the other
side.

In order to decide the relative advantage or disadvantage of any particular

course of action, a simple outcome simulator was employed to calculate the extent to
which a given unit either defeated or was weakened by any unit with which it came in
contact. Failed courses of action for either side arose whenever an engagement led to
such a diminishment of the friendly force that a breakthrough could not be prevented.

6-2



A prototype knowledge base of goals and countergoals for the domain was
created by knowledge-engineering activities conducted internally at PGSC. In
addition, the Leavenworth course materials for the modeled domain provided an
additional source of both friendly and adversary goals.

The remainder of this section depicts the actual planning sequence conducted
by ARES in the corps-maneuver domain. In the series of storyboards which follow,
each space is occupied by a token. The storyboarcis are numbered (1-16). and a
script for irerpreting the planning sequence follows:

(1) Starting positions. Friendly force on left, OPFOR on right. OPFOR goal is
to find an offensive plan against which the friendly force cannot defend.

(2) First contingency plan considers a single massive attack through the

central gap.

(3) Friendly attempts to counter with a shallow defense.

(4) After 12 hours, friendly force has lost one unit and others are weakened.

(5) After 24 hours, battle is still continuing in central gap, friendly forces are
further weakened.

(6) After 36 hours, OPFOR breaks through on southern edge of gap.

(7) After 48 hours, the friendly defense has clearly failed. Planner will now
back up and attempt to plan another defense against the OPFOR's single
massive attack.

(8) Alternative friendly defense will be defense in depth (using a 24-hour
decision cycle).

(9) After 24 hours, OPFOR makes initial breakthrough in northern region of
the gap.

(10) After 48 hours, friendly tank division has moved up from the southwest to
challenge advancing OPFOR divisions. Defense holds and a satisfactory
plan has been discovered that can stop single massive attack by OPFOR.
Planner now backs up and attempts to replan for OPFOR.

(11) New contingency plan for OPFOR utilizes dual avenues of approach.

(12) Friendly force counters with defense in depth.

6-3



(13) Friendly force is weakening in area of lower OPFOR thrust.

(14) Friendly tank division moves in to meet advancing OPFOR &!ong lower
prong.

(15) OPFOR breaks through in the north.

(16) OPFOR advance oontinues in the north. Friendly defense has failed.

6-4



2 - - --- Sg-

X 00 x X Xx

3-0 - ®x-x- E -0----

4 - - -0-0------- ----------

- X- (D - - 2 AD iM - X- X

6 _X- 5 --- FA D---

e X XX x X

-- 9®--0- - - -

10 X- XX0 X

11 - - X- -X

12 - - - - - - -----------------------

1 2 3 A 5 6 7 8 9 10 11 12 13

Initial Position

Storyboard #C

6-5



x x *., x
2 -x - -- --

x** 0x x x x 0x

3 -9-- -a3x -x -- Fm- -*- - --

x x x 0 x x xx
4 -cX- - .- *-- -x---

5-X--- 2AD ilM - --

Sx xXx x
6 -X- -17 - - lA - - --

cx x x x

-- 9 -** AD FM EX---

x 0x 0

8 X

x x 0exe0
9 -------- *-X-X- FZM -

Vx x x. x x
10 -x -(--a--------

x Ge. 0ex x x 0x

x x x

12 - - -

1 2 3 4 5 6 7 8 9 10 11 12 13

Single Massive Attack
Storyboard #2

6-6



x x xo. x
2 -X

x.*.0x x x x 0x

3 q (a) E - 0-- -

x x x o x x xx
4 - X-- -0-0----- ------

x *.ee@OO x x x
X-- - - 2 AD F- - -

x x xx x
- X - - - FlA -DUI) FAD 4A D - -

o x x x x
7 

rA_-X

x 0x 0.

8 (Do -- * x- x---------

x x x x@ x x
10 -X - -( -4 -xc7 EX- - --

*x 0 0 0 ox x xo0x
11 - -R -- ~i ~-------- - ---

x x x

12 - - - -----------------

1 2 3 4 5 6 7 8 9 10 11 12 13

Shallow Defense ISingle Massive Attack

Storyboard #3

6-7



x x *** x

x.. 0x x x x 0x

3 - 0- - - (D -())O--0

x x x 0 x xx x
4 -X- -0-0.-X

X~~~ 000000xx X

5 _ - AD FM- -7 - X-

ox x x x
7 - - E F__ x

9 0- "ADJ x - -X---

x x x x x x
10 X- -(F --xc ------ ----

0 X @00 ** 0 0x X 0X

11 - - - --

x x x

12 - - - *

1 2 3 4 5 6 7 8 9 10 11 12 13

Storyboard #4

6-8



x x x *. x
2 

X
x 0 0x x x x 0x

x x x o x x xx
4 - -- -0-0------- ----------

x*O O O x x x

x x xx x

*x x x x

- -

x x .x

x x xx xx
10 - OOEX-X---------

*x eeo x x xx

11 - - -F- -6 ~-----------

x x x
12 - - - 0 0- -----------------

1 2 3 4 5 6 7 8 9 10 11 12 13

Storyboard #5

6-9



x x x g e x
2 

X

x*. 0x x x x 0x

3 0-- _DaXI -0

x x x 0 x xx x

xx 000 xxx
6 X - - - - --E MDM -

x x x x

x x x x

x 0x 0 exa

x x xx. xx

*x @0. x x xx

11 - - -- -- - -- - -- - -- - -

x x x

12 - - - 0 0 -----------------

1 2 3 4 5 6 7 8 9 10 11 12 13

Storyboard #6

6-10



x x x 0.* 0 X

Xe0 0x X X XO0X

-0*- - - ®g XO§ 7MD - - -0-

- - -- -*-0.-X

X5.XO@OO X XX

6 -X- 3A-D 3-D FAD

*X X x x

xe0x 0

---------- 0-0-------------X--

9 x 0 9 x

9 - - - - AMDX-X--------------

10 -X- -OXET F2M - X-------------

e x eeo 0 00x x xe0x

1 - og - -M

x x

12 - - ----------------

1 2 3 4 5 6 7 8 9 10 11 12 13

Defense Fails I Breakthrough Succeeds
Storyboard #7

6-11



x x @00 x
2

x 0 x x x x 0x

3 *-- - g E -- 0

x x x ex xx x

4- Ox 0--- - -X-

xx 000 xxx
5 x - -D ® - -- x

x x x x x

8

x x .e0xe0

109® -Ox X X

*x eeo x x xx

11))E - - -M

x x x
12 -- -

1 2 3 4 5 6 7 8 9 10 11 12 13
Defense-In-Depth ISi'gle Massive Attack

24-hour Decision Cycle I
Storyboard #8

6-12



x X *g X
2

X.. 0X x x x 0x

- 0- - - - ~))D- -0-

4 x 0-0- X

Xe...... x x x

- -- lMD D X- 6 X- -

X x x x

-X-~( -I - lA D 4

8 - - - 3 - -X---

x x XX XXx

10 -xcgE~g- - -Xc~~2 -X-------------

* X 00 0 0 0eX x x 0x
11 

_aQ -

12 - -

1 2 3 4 5 6 7 8 9 10 11 12 13

Storyboard #9

6-13



x x @60 x
2 X

3 - - ) E 0

x..x x x x x

xx 000 x ox x
- x- 6Flx- -.-.- Fi x

x x xOS x xx

x Fi® F -A -4 Ax

0 x x x x
7 

X
x 0x 0 0

x x .xe0

-- - - -. m -x----------

x x x x@ x x
10 - - - - %D) -X---------

* x 0 00x x xe0x

11m- - x -

x x x

12 - - 0

1 2 3 4 5 6 7 8 9 10 11 12 13

Storyboard #10

6-14



x x x .* x

x 0 0x x 0x

3 -0--ax x- .0

x x x x
4 -- -0a@0 - - - -

x xx xx

6 -X- -C -- A-D - -

0 x x x x
7

B~0 A - - -- - -x - -

x 0x .ex*

010 -x-

* x 000 e x x0

11-X r- - Mx

x x x

6-15



3-o- -
-X

4~ X.

XX X OX XXX

- -X - . - - - x -

x 
X x

- 6~ 2A - ~ ~1X -

X XXX

7 _ - -
A - -*--- 

-

Xx oX

8 
XX

-~ ~ -
x -. -

x

X.X XCo MJFD

- 9 * C 0 X X - -

-6 1



x x *.* x

x.* 0x x x x 0x

x x x 0 x xx x

x*000 x Yx

x x xx x

0 x x x x

x ex so*

8 -~0-0-@

x x 0 exe0

x x x xe x x
10 - x© [; -x - - - -

* x cec 0 x x x 0 x
- -D -- ------- -- X- -

x x x

12 - - - 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 !3

Storyboard #13

6-17



x x x .g x
2 0- E_ -

3-- --- -XV - Do- -0 - - --

x.x x x x x

4 (a - 0- g - - -

xx0 x x x

X - - - aH .

x x x00 x xx

6 -X- - - -

0 x x x x

x 0x 0 0

8 
-

9 C-.

x x exex0

* x 0 0 00 0 0x x x 0x

-D9 - - -IXAIt-

x x x
1 2 - -- *-S-

1 2 3 4 5 6 7 8 9 10 11 12 13

Storyboard #14

6-18



1 - _-_- - 0---------------------

XX X *ee x X x
3 -0- - - -x. 70 e- -- --

- X- -0-1MD -- -

6X X FX 7ADF4XA

Xe7~e X X

x xX

X8 00 -

8 ~~ -- - - - -e- 0

9 - - - -f4M -X- -- - -

10 -xO---xgg M - -- - -

ex ee@ x O @

1 2 - - -- e-0-0

1 2 3 4 5 6 7 8 9 10 11 12 13

Storyboard #15

6-19



x x *** x
2 

X

x 0*0x x x x 0x

x x x 0 x x xx
4 -- X - - 4EDO-- - *-x --

X 0 0 *x x x

6 -X- - - - - - - -

x x x x x

x x .exe

x x xx x
108 c~ M -X- -

* x eec c x x0
119 -f 0 ------- -

x x x
12 - - - -*-----------------

1 2 3 4 5 6 7 8 9 10 11 12 13

Storyboard #16

6-20



7. SUMMARY

The original goals of the Phase II effort were:

1. Develop a Plan Language for Pattern-directed Planning,
2. Develop a Plan Language for Robot Planning,
3. Investigate Adversarial Planning Issues in Robot Problem Solving,
4. Extend the planning system to multi-agent domains, and
5. Investigate approaches to interactive Planning.

All of these objectives have been achieved to a certain extent. The most
significant success was the extension of the planning mechanism to the corps-
maneuver problems, which involved both multiple agents (Goal #4) and interactive
planning (Goal #5). Unfortunately, the researchers discovered that adversarial
contingency planning is not as appropriate in low-level, reactive domains such as
robotics as it is in higher-level, more-strategic environments. This is undoubtedly due
to the fact that the search space examined by the planner, although a mere fraction of
that examined by other planners, is yet sizable enough to require significant time for
computation.

The efforts to develop a planning "language" were also successful in that a
generic plan parser was defined which is capable of developing plans of action based
on input goals which can represent actions in any pre-defined domain.

Possibilities for further research can best be broken down into two areas. First,
the basic features of the planner's goal representation could easily be formalized into
a grammar which would allow for easier processing and manipulation of success and
failure tests. Currently, these tests are being added to long lists that develop as a
particular course of action develops. Such a grammar would make it possible to make
these lists more manageable and to reduce backtracking; deKleer (1985) suggests
such a grammar.

A second possibility for further research is in the area of distributed or parallel
planning. Currently, the planning process is understood in terms of a sequential linear
model. Real-life planning in such domains as Command and Control, however, is
conducted in parallel. The primary problem is the difficulty in knowing how to partition

7-1



planning bases so as to make them independent. If they are not treated as
independent, knowing how changes in the situation affect different components is
difficult. Essentially the problem is knowing what information is important to a planner
working on some sub-problem.

7-2



REFERENCES

Berliner, Hans J., {Some Necessary Conditions For a Master Chess Program," Pro
Third International Joint Conference on Artificial Intelligence. Stanford
University Press: Stanford, CA, 1973.

Berliner, Hans J., "Chess As Problem Solving," The Development of A Tactics
Analyzer, Doctoral Dissertation, Carnegie Mellon University, 1975.

deKleer, Johan, "Choices Without Backtracking." Proc Ninth Internaltional Joint
Conference on Artificial Intelligence, 1985.

Lehner, P.E., and McIntyre, James R., "Developing a General Contingency Planner for
Adversarial Planning," PAR Technology Corporation Report 84-125.

McCarthy, John, and Hayes, Patrick J., "Some Philosophical Problems from the
Standpoint of Artificial Intelligence," in Machine Intelligence 4, edited by
Bernard Melzer and Donald Michie, Edinburgh Univ. Press, Edinburgh,
Scotland, 1969.

Nilsson, Nils J., Principles of Artificial Intelligence. Tioga Publishing Company, Palo
Alto, CA, 1980.

Reitment, W. and Wilcox, B. "Modeling Tactical Analysis and Problem Solving in Go,"
Procedures of the Tenth Annual Conference on Modeling and Simulation.
2133-2144, 1979.

Sacerdoti, Earl D., "Problem Solving Tactics," Proc. Sixth International Joint
Conference on Artificial Intelligence. Tokyo, Japan, 1979.

Wilkins, D., "Using Patterns and Plans to Solve Problems and Control Search,"
Stanford Artificial Intelligence Laboratory Memo AIM-329, Stanford University,
1979.

R-1



APPENDIX A

PROGRAM 1

DEMONSTRATION INSTRUCTION

A-1



!FL(:BYTE-SIZE 8 :LENGTH-IN-BLOCI(S 4 :LENGTH-IN-BYTES 3789 : JTHOR "WARGAME" :CkEATI
3AMEO :NAME 'ADEMOINST' :TYPE "L, :VERSION 3)

jSTRUCTIONS FOR RUNNING A DEMONSTRATION OF ARES FOR THE WARGAME
--- SETTIM UP THE DEMONSTRATION

(1) in the lisp interpreter enter '(loin 'warqame)l
(2) then enter '(direr)', you should then see a listing

of the top level directory for 'wargame"
(C3) using the mouse (left button) select the file 'afinalgame.l'
(4) then enter 'E', this will load the editor, load the file

into a buffer. and oen the buffered file for eoitinq
(5) once in the editor estzr 'META-,,', this will allow you

to enter -n exterded -ommand (loo at window at bottom of
-r -creen)
t6) enter 'compile buffer' arnd return, this will compile the present

buffer into the lisp environment
(7) after compilation is cor, ole~e enter 'META-CTFL-I'. this will

return you to the directory
(8) repeat steps (3) to (7) above for the following files in order:

'afinalterrain.i'

'afinalqoaldef.1'

(9) repeat rteps (3) to ,) for the file 'afinalares.l'
(10) after step (9) al- necessary files for execution should be compiled

into the l3sp environment and you should still De in the buffer
.afinalare-s.l'

(ll) while the arrow is in the main window hit the r.i'ht button, when the
menu appears thave the option 'Vill or Save Buffers', when in
this option kill the buffers 'Bfinalgare.l', 'afinalgoals.l',
'afinalqoaldef.l'. and '3finalterrain.l'. While this step is
optional the planner has a tendency to overload virtual memory.
Doing this step will avoid this problem during a demo!

(12) while in the file 'afinalares.l' enter 'BREAK', this will open up
a window into the lisp environment

(13) enter '(display realboard t)', this will clear the screen and display the
present board Position

(14) enter '(retrieveSame 'ademogame.1)', this step is optional but will cut
your demo down from two hours to 10 minutes, in particular this file
contains the results of previous path finding problems making it unnessecar'
to wait while the system does path finding.

(15) enter '(plan f9oal egoal t)', this will start the planner going
(16) after each new board position, the planner will break, you -nay find the

followin9 commands useful:
(a) 'RESUME' -- this will exit the break and continue the planning sessior
(b) '(display orders 'hypboard S)' where S can be 'friend' or "Pnemy'

this will display the most recent orders to either sid1e
(z) '(display unit status 'hypboard U)' where U is any unit identifier

this will display the present status of any unit
(d) 6(pprint (reverse (first cgt)))' -- this will display all 'oals

the planner processed to get to the present position for side frieno
(e) '(pprint (reverse (second cqt)))' -- same -as (d) for side enemy

A-2



(f) 'CLEARSCREEN' useful to do before (d) or (e)
(9) "(cursorpos 50)' moves the cursor just under the board
(h) '(display hypboard t)' -- redisplays the Dresent hypothetical

board position
(17) note that the planner is quite fast except when it does a backup, backups

and restarts usually take 3-5 minutes (JIM we can cut this to a few seconds
when we 9et back to work)

(18) when everything is finished enter 'ABORTO, this will put you back
in the 'afinalares.l' buffer

(19) enter 'SYSTEM-L' this will put you back in the top level lisp listener
(20) in the lisp listener enter "(logout)'
(21) enter '(si:%halt)"
(22) proceed to turn of the LMABDA machine

A-3



PROGRAM 2

TERRAIN

A-4



LMFL(:BYTE-SIZE 8 :LENGTH-IN-BLOCKS 11 :LENGTH-IN-BYTES 11151 :AUTHOR "WARGAME, :CI
WARGAME, :NAME 'AFINALTERRAIN' :TYPE 'L' :VERSION 1)

; this file contains an example game
; a game includes a terrain board and a set of units
; for each side
(defvar terrain-board nil)
terrain board will be a 9lotal variable that defines

; the board
the followin9 is how the terrain board is defined

(setq terriain-board
'((5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

(5 nil I nil 1 nil 1 nil 1 nil 5 nil 1 nil 1 nil 1 ril I nil 1 nil 1 nil 1 nil 5
(5 1 2 2 1 1 1 1 2 1 5 5 5 5 5 1 2 1 1 1 1 1 1 1 1 1 5
(5 nil 1 nil 1 ril 1 ril I rai 15 nil 1 nil 5 rail 1 nil 2 nil I nil 1 nil 1 rail 5
(5 2 5 5 2 1 1 1 1 1 2 1 2 1 1 1 1 2 5 2 1 1 1 1 1 1 5
(5 nil 5 nil 1 nil 1 nil 1 nil 2 nil 2 nil 1 nil 1 nil 5 nil I nil 1 nil 1 nil 5
(5 1 2 2 1 1 1 1 1 1 2 1 1 5 2 1 1 2 2 2 1 1 1 1 1 1 5
(5 nil 1 nil 1 nil 2 nil 1 nil 5 nil 5 nil 1 nil 1 nil 1 nil 2 rail 1 nil 1 nil 5
(5 1 1 1 1 1 1 1 1 2 5 5 5 5 5 5 5 1 1 1 1 2 1 2 2 1 5
(5 nil 2 nil 1 nil 1 nil 1 nil 1 nil 1 nil 1 nil 1 nil 1 nil I nil 2 nil 1 nil 5
(5 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 2 5
(5 nil 2 nil 1 nil 1 nil 1 nil 1 nil 1 nil 1 nil 1 nil 1 nil 1 nil 1 nil 1 nil 5
(5 1 1 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 5
(5 nil 1 nil 1 nil 2 nil 1 nil 5 nil 5 nil 1 nil 1 nil I nil 2 nil 1 nil 1 nil 5
(5 1 2 5 2 1 1 1 1 1 5 5 5 1 1 1 1 1 1 2 1 2 1 1 1 1 5
(5 rill 1 nil 1 nil 1 nil 1 nil 5 rail 5 rail 1 nil 1 nil 1 nil 1 nil 2 nil 1 nil 5
(5 1 1 2 1 2 1 1 1 1 5 5 2 5 1 1 1 1 1 1 1 1 1 1 1 1 5
(5 nil 1 nil 1 nil 1 nil 1 nil 5 nil 2 nil 2 nil I nil I nil 1 nil 1 nil 1 nil 5
(5 1 1 1 2 1 1 1 1 1 2 1 2 2 5 1 1 1 1 1 1 1 2 2 1 1 5
(5 nil 2 nil 1 nil 1 nil 1 rill 2 nil 1 nil 1 nil 2 nil 1 nil 1 nil 1 nil 1 nil 5
(5! 1 1 5 1 2 1 1 1 5 5 5 5 1 5 5 2 1 1 1 2 1 2 5 2 1 5
(5 nil 1 nil 1 nil 1 nil 1 nil 2 nil 1 nil 1 ail 1 nil 1 nil 1 nil 2 nil 1 nil S
(5 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
(5 nil 1 nil 1 nil 1 nil S nil 5 nil 5 nil 1 nil 1 rll 1 nil 1 nil 1 nil 1 nil 5
(5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

; in additions to the terrain itself that are a number of features of a board
that are looked at by the knowledge base
these features are defined a properties below

; corridors of attack are defined below
in the terrain board defined above there are four corridors
for each corridor the following things are identified

defend-points lists of sets of defensive points for each side
forward most defend points are listed first

; paths lists the alternative paths of attack. for
at present these paths are the same for both sides
but this should later be changed

9ererilarea is a list of all unit locations in the general area
of the corridor

(outproo 'deferd_poirts '1( (friernd ( ((5 3)) ((6 3))))
(enemy ( ((7 3)) ((6 2)))))

A-5



'corridorl)
(putprop 'paths "( ((5 3) (6 4) (7 3)) ((5 3) (6 2) (7 2))

((5 3) (6 3) (7 4)))
'corridorl)

(putprop 'general area '( (4 2) (4 3) (4 4) (5 2) (5 3) (5 4) (6 2) (6 3) (6 4)
(7 2) (7 3) (7 4) (8 2) (8 3) (8 4))
'corridorl)
(putprop 'centerpoint '(6 3) 'corridorl)
(putprop 'defend_points '( (friend ( (5 5) (5 6)) ((6 4) 5 6)) ((5 5) (6 6))

((6 5) (6 6)) ) )
(enemy ( ((7 6) (8 5)) ((7 6) (7 5)) ((7 6) (6 5)) ) )

'corridor2)
(putprop 'paths '( ((5 5) (6 5) (7 5)) ((5 6) (6 7) (7 6)) ((5 6) (6 6) (7 7)))
'corridor2)

(putprop 'general area '( (4 5) (4 6) (4 7) (5 5) (5 6) (5 7)
(6 5) (6 6) (6 7) (7 5) (7 6) (7 7)
(8 5) (8 6) (8 7) (9 5) (9 6' (9 7) )
"corridor2)

cputorop 'centerpoint 6 G) 'corridor2)
(putprop 'defend-points '. 'friend ( ((5 10)) (6 10))

(enemy ( ((7 9) (7 10)) ((6 9) (7 10)) ((6 10)) ) )'
'corridor3)
(putprop 'paths '( ((5 10) tG 9) (7 8)) ((5 9) (6 9) (7 9))

((5 10) (6 10) (7 10))
'corridor3)
(putprop 'generl_area 't (4 Sl (5 8) (6 8) (7 8) (8 8)
(4 9) (5 9) (6 9) (7 9) (8 9)
(4 10) (5 10) (6 10) (7 10) (8 IC) )
"corridor3)
(putprop 'centerpoint '(6 9) 'corridor3)
(putprop 'defendpoints '( (friend ( ((4 11)) ((5 11)) ((6 ll))

(enemy ( ((7 11)) ((6 11)) ((5 11)) )
'corridor4)

(putprop 'paths '( ,(4 l) '5 11) (6 12) (7 13)) ('4 11) (5 12) (G 11) (7 12))
"corridor4)

(putprop 'general area '( (4 1l1 (5 11) (6 11) (7 11) (8 11>
(4.12) (5 12) (6 12) (7 12) (8 12)
'corridor4)
(putprop 'centerpoint '(6 11) 'corridor4)
; for units that must backup the attack or defense of two or more corridors
; support areas are defined
; these support areas represent where these units
: should locate before movin9 into one of the supported corridors
;separate support areas are defined for the friendly and enemy side
(putprop 'support areas '((corridorl corridor2)

( (2 4) (1 3) (1 4) (1 5) (2 3) (2 4) (2 5) (3 3) 3 4) 3 5)))
((corridor2 corridor3)

( (2 7) (Q 6) (1 7) (1 8) (2 67 '2 7) (2 8) (3 6) '3 7,  3 -2, )
((corridor3 corridor4)
( (2 10) (1 9) (1 10) (1 11) (2 9)
(2 10) (2 11) (3 9) (3 10) (3 11) ))

((corridor2 corridor3 corridor4)
( (2 8) (2 9) (3 8) (3 9) ))
((corridorl corridor2 rorridor3)

( (2 5) (2 6) (3 5) (3 6)

A-6



'friend)
(putprop 'supportareas '(((corridorl corridor2)

( (11 5) (10 4) (10 5) (10 6) (11 4) (11 5) (11 6)
(12 4) (12 5) (12 6) ))

((corridor2 corridor3)
( (10 7) (9 6) (9 7) (9 8) (10 6) (10 7) (10 8)

(11 6) (11 7) (11 8) )

((corridor3 corridor4)
(411 11) (10 10) (10 11) (10 12) (11 10) (11 11) (11 12)

(12 10) (12 11) (12 12) ))
((corridorl corridor2 corridor3)
( (10 5) (10 6) (11 5) (11 6) ))
((corridor2 corridor3 corridor4)
( (10 8) (i0 9) (i 8) (i 9) ) )
)

'enemy)

; once the serrain board is specified then units can be vlaced on the board
; to defin a startin9 oosition this is done below
; in effect the following is an e-amole of an initial set uo
(setq realboard terrainboar-I)
(putprop 'time 0 "realboard)
(setq friendly_units nil)
(setq enemy units nil)
(setq all-units nil)

:in the unit defintions below
; define_unit sets up the property lists that define each unit

; putunit -on board actual puts the unit on the realboard
(define unit 'lAD 'enemy '1st 'armour 'division 12 9 8.5 4 '(8 6) t)

(put_unit_onboard "realboard 'lAD "(8 6))
(define-unit '2AD 'enemy '2rd 'armour 'division 12 9 8.5 4 '(8 5) t)
(putunit on_board "realboard '2AD '(8 5))
(define-unit '3AD 'enemy "3rd 'armour 'division 12 9 8.5 4 '3 7) t)
(putunit on board "reslboard '3AD '8 7))
(define unit '4AD 'enemy '4th 'armour 'division 12 9 8.5 4 '(9 6) t)
(put_unit onboard "realboard '4AD (9 6))
(define unit 'IMD 'enemy Ist 'infantry 'division 10 9 6 4 '(9 5) t)
(put unit on board 'realboard 'IM '(9 5))
(define-unit '2MD 'enemy '2nd 'infantry 'division 10 9 6 4 '(10 7) t)
(putiunit on board "realboard '2HD '(10 7))
(define unit '3MD 'enemy '3rd 'infantry 'division 10 9 6 4 '"9 7) t)
(put unit onboard "realboard '3MD "(9 7))
(define unit '4MD 'enemy '3rd 'infantry 'division 10 9 6 4 "(9 9) t)
(putuniton board 'realboard '4MD '(9 9))
(define-unit 'SMD 'enemy '3rd 'infantry 'divis3on 10 9 6 4 '(7 1- t)

(putunit_on board "re~lboard '5MD '(7 11))
(define unit '6MD 'enemy '3rd 'infantry 'division 10 9 6 4 "(8 3) t)
(put unit_onrboard 'realboard "GMD '(8 3))
(defire unt '7TM 'enemy '3rd 'infantry "division 10 9 6 4 '(3 2),1 t)
(putmnit on -board 'realboard '7MD -'8 2))
(define unit '1CR 'friend 'lst 'cavalry 'regiment 5 5 7 4 '(6 ' t)

(put unit on-board 'realboard '1CR '(6 6))
(define unit 'lTD 'friend 'lst 'tan 'division 10 9 7 4 '(3 6 ,
(put_unt c~nboard 'realboard "ITD 01 6))
(define unit "2TD 'friend '2nd 'tank 'division, 10 9 7 4 't4 i)) t)
(putunitGnrboard 'realboard 'ZTD '(4 10))
(define unt '3TD 'friend '3rd 'tank 'division 10 T - 4 '-3 4j t)

A-7



(putuitou. board 'realboard '3TD '(3 4))
(define-unit 121D 'friend '2nd 'infantry 'division 8 10 '7 4 '(4 7) 0)
(put unit or. board 'realboard '2ID '(4 7))
(define-un~it 'lID 'frien~d '1st 'infantry 'division 8 10 7 4 '(4 5) 0)
(put.Jniton-board 'realboard 'lID '(4 5))
(define unit '31D 'friend '3rd 'in~fantry 'division 8 10 7 4 '(4 11) t)
'putuniton -oard 'realboard '3ID '(4 11))
(define urait '41D 'friend '4th 'infantry 'division 8 10 7 4 '(5 3) 0)
(put-ursit-on-board 'realboard '41D '(5 3))
: at this point the en~tire board has beer, defi-ed
; the following is a list of top level qoals
; if you understand how the goal definstions worV you
; should be able to pick up the meanin* of these goals
(setq esgoall '(attack 7% corridors ('corridori (7.o 6.4d lad 2.d))

(corridor3 (3%d 4md .3ad 4ad)))
5))

'setq esgoal2 ''defenid corridors ((ccrridor-- (sd :!ad)) -corrz-dor4 (S~dW)

(setq egoall fl:zt '.dsia (list esqoall esqoaI2))
tsetq esaoal3 '-attack corridors C(eorridorZ" (lad Zad 3a~i 4ad lad 3mo 6.4)))
5))

(setq esqoal4 '(defeid-corridors ((corridori ("Fad)) 'corridor3 (4%-d 2ad)) (corridc
7))

(~setq egoal2 (list 'andsiat (list esgoaI3 esqoal4)
(setq esqoal5 *(attack-corridors M(corridor2 (13d 2ad 4ad))

(corridor3 (3ad 4md 3&d))) 5))
(setq esgoal6 '(defeno-corridors ((corridorl (fie8)) (corridor4 (5ad)

7))
(setq es~oal7 ''support plan ( (((corridori defend) lcorridor2 sttack)) (7.4i)),
( U(corridor2 attack) tcorridor3 attack)) 1.'d))
( ((corridors- attack) (corridor4 defend)) (2.4)))

2) ),
(setq eqoal3 (list 'andsi. (list =sqoal5 esoalG esQoalI)!
1setq esgoaI8 '(attack corridors (((corr:dorl (Gad 7m. :uo')

(corridor2 Clad lad 3ad)))

(setq esmoa19 '(defend-corridors (((orridor3- (4.4 3.8)) (coridor4 (Sod)))
7))

(setq esgoallO '(supportpla.( ((corridorl attack) icorridor2 attack)) (2.4 4-
2))

(setq egoa14 (list 'andsim (list esqoalB esgoaIl9 esmoall0))
(setq egoal (list 'or (list ogoal2 egoal3)))%
(setq fgoall '(defendcorridors ((corridorl ;41d 3td)) icorridor2 ;1id 2id lacr',
(corridor3 (ltd 2td)) (corridor4 (3id))) R))

(setq fsgoall '(defend corridors ((corridorl (4i.21Y (corridor-- (lid icr))

(corridor3 (2td)) (corridor4 (3idll) 7))
'setq fsgoal2 '"SUport plnC ( ( corridorl defend) (corridor2 .lefend)) (3td)

f((corridorZ defend) 'corridor3 defend!*; tltd)
f (corridor3 defend) (corridor4 defend)) (21d) 1)

2))

%setq fSqo~l23
,'Sv.oport-p1~rs

C ((cor-i-jorl deferid) (corridor: defersu.D fcorrxlor3 diefe-I~I .3t.14

((corridorZ defend) (corridor3 defen-d) tcorr:dor4 4ifqr.I) *.td 2%4

A-8



(seto ',o.a13 (list 'ari'sin (list fs'3o.a1 fsgoa13,)))
(setq I.a1 (list 'or (list fqoal2 fgo.al3)))

A-9



PROGRAM 3

GOAL DEFINITION PARAMETERS

A-10



LMEL(:BYTE-SIZE 8 :LENGTH-IN-BLOCKS 2 :LENGTH-IN-BYTES 1752 :AUTHOR 'WARGAMEI :CRE,
RGAME6 :NAME "AFINALGOALDEF' :TYPE 61 :VERSION 1)

; these are the parameters for all goal definition
; at present procedures used in a goal definition can use no
; other parameters -- this is bad and should be replaced with
; macros someday
(defvar gtmpgoal nil)
; this is the goal name
(defvar 9tmpargs nil)
; all ar9uements of the goal name are in this list
(defvar 9tmpbname nri)
; this specifies the board name
(defvar 9tmpside nil)
this is the side being processed

; make9oal
a simple routine that puts specifed lisp code on property
list of a 9oal

(defun makegoal (call)
(putprop 'type 'specific (car call))
(putprop 'subgoal ni. (car call))
(putprop 'countergoal 'universe (car call))
(putprop 'feasible t (car call))
(putprop 'succeeded-if nil (car call))
(putprop 'failed-if nil (car call))
(putprop 'dont continue if nil (car call))

the above putprops set default values
the proq below replaces default values with values

; specified in goal definition
(prog (gname cur lst)

.(setq gname (car call) 1st (cddr call))
(Putprop 'args (cadr call) 9name)
loopl
(setq cur (car lst) 1st (cdr Ist))
(and cur (putprop (car cur) (cadr cur) gname))
(and 1st (go loopl))
(return gname)))
y processgoal

retrieves specific property and evals it after setting up
necessary globals

; this is done by setting up the four goal definition arguement:
and processing typeprocess

(defur, processgoal (bniame goal side typeprocess)
(setq gtmpgoal (car goal) gtmpargs (cadr goal)

gtmpbname briame gtmpride side)
(eval (get type process (car goal)))

Note this approach to defirin9 goals should be replaced with
a soohisticated goal description language
ar important question is however how much such a larguace should be
domain dependent

A-1i



PROGRAM 4

GOAL DEFINITION STRUCTURE

A-12



LMEL(:BYTE-SIZE 8 :LENGTH-IN-BLOCKS 35 :LENGTH-IN-BYTES 35587 :AUTHOR "WARGAME' :CRT
WARGAME :NAME 'AFINALGOALS' :TYPE 'LI :VERSION 1)

; in finalgame.l
; the oal definition which is a frame-like representatiorn
; has the following structure
;(makegoal

"(9oalname (arguements)
(type AA*AA*A)
(subsoal AWAA9A)
(countergoal AWA*AAA)

* (feasible if A*****A*)
: (succeeded-if AA*A)

(failed if AAAAW)
(dont-continueif **A*AA)

7 these elements of the goal structure can be interpreted as follows
; 9oalname - is the name of the goal -- it must be a unique atom
; arguements - is a list of the arguements used by the oal
* when a goa1 definition is being Processed these arguements are

contained in the global variable 9tmparg,;
type - allows characterization of the goal

not used now but will be useful in future versions
default is specific

sub9oal - the eval of the contents of the subgoal slot must
evaluate to a list of subgoals -- default is nil

countergoal - the eval of the contents of the countergoal slot must
* eval to a list of acceptable countergoal

this slot is not used for the wargame because but
is very useful for sinqle move-cowntermove qames such

* as chess 3o othello -- default is 'universe
I feasible - a procedure that should eval to t or nil

to indicate wnether it is feasible to pursue the
goal in the present situation -- default is t

succeededif - a procedure that shomld eval to t or n:l
to indicate whether the goal has been achieved

7 in the present situation -- default is nil
fsiledif - a procedure that should eval to t or nil

to indicate whether the 9oal has failed
in the present situation -- default is nil

dont-continue _f - a procedure that should eval to t or W!
* to indicate whether the 9osl has become irrolevsnt

but canrnot be marked as succeeded or failed -- default is nil
GENERIC GOALS

;the following are generic goals that can be used in anv domai,,
they represent Vrowledqe about goals that is IrdeDendent of knowledge
about a domain
andsim generic
sub9oal is rndsim of sutoal of the goals in its arquement
fnxledif any one subooal is a failure
succeededif all of its sub9oals succeed
dont cortinueif not all but at least one sub9oal succeeds

A-13



(nmakeqoal
'(.3ndsirn (goals)

(type generic)
:sub9oal is a3 list tha.t equals all possible combinations of all
;sujbqo..ls of the goals in the artdSim arq~uemer,+
(sub q 0.3

(prog (tmpl triip2 tmpt~bname tmpsicle)
(setq tnmpl gtmparcqs tmpbn.3me gtmptiname tnipside gtmpside)

loopi
(setq trnp2 (cones (process _ oal tmpbnarne (ca3r teipi) traPside 'jb~c.., +hIQ2)

(setq tmp2 (remove 'rno_ lora'er relevant tmD2))
(an~d (null tmp2) (return 'no longer relevanit))

loopl : ets .a1l suticioalc for each 'Qoat
tseto tpiol (.311.combir'.tioris tmri2) tno' r~il1

tmo i s now list of s11 combiations of subqc, 1,
I o op2

(set q tmp2 (cons li11st ' a3ndsim (c ar tmoi I tni 2)
(anrd (setq tmpl (cdr tmpl)) ('so loop.'))

:now each list of subqoals is andsim sub~oal
(return tmp2)

list of arndsims is now returrneJ

;if .all of the compornent goals of the 3nadsim succeedj then the andsim has succee
(succeeded _if

(prog (tmpl tmobnanie trnpside rslt)
(setq trnpl gtrnparc4 tmpbramse :;tmpbriame tmpside *tmpsi.de)

loopl
(setq rslt (process~qoal tmpbniame (car tmol) tnioside~ 'succeeded if))

(and (setQ trnpl cdr tniol)) (qo looplhl
(return (list 'succeededi tmpside)))
:if just one sub'~oal of the compoonent goals has failed then the artdsini nas fali.
(failed if

(prog (tmpl tnmpbnr.3me tnioside rslt)
(seta tmpl gtmp..rqs tmipbnaame cqtmpbname tmoside 2tmoside)

loopl
(setq rslt (process..9oal tmpbname (car tmpl) trtpside 'failed if))
(anrd rslt (return (list 'failed tmoside (car tnipl) rsltfl)

; if .any of the component sub9oals of the .andsinb should ro-, be contin~ued then
;dont continue the sridsi ii
W'ornt continue if

(pro3 (tmpi tmobrname tmpside rslt)
(seta trnpl .3tmpar.4s tmipbri-ame qftnpbname twips-ide striipsidr!-

loop'
(setq rslt (process~ooal tmpbname (car tmpl) tnhpside 'Idont-continue if))
(.and (null rslt)

(seto rslt (process~qoal tmp~.riame (c-ar tMnl) toinside 'succeedieIif))
(arid rslt (return~ list 'don~t - c ortinueif tmciside fc-ir '..mpl1 rslt))
(arnd (setq tmpl (cdir trnol) (90o loopl)L)

:orsim generic-
o ursues multiple sim~ultaneous oals .anid fails if all -oals fai:

A-14



;succeededilf any one subgoal is a success
;failedif all of its subgoals failed
;dontcortiraue~if riot all but at least one subloal fai1l;

(makeg90a 1
'(orsim (goals)

(type generic)
;subgoal evals to a list of all combinations of all subqoals
:of the component goals of goals
(sibe oal

(orog (tmpl tmp2 tmpbraame tmpside)
(setq tmpl gtnipar'gs tmpbriame gtmpbrtame tmpside gtmpside)

loopl
(setq tmp2 (corns (processgoal tmpbrtame (car tmp.l) tUpside 'subgoal, AMp)

-lrtd (seto tmpl (cdr tmpl) ) (go loopl) )
!'setq t mp2 (remove 'rio longer relevant tMo2
:loopl gets all subgoals for each goal

(setq trnpl (all _combinations tmp2) tmp2 nil)
;tnipl is now list of all combinations of subgoals

10092
fseta tmp2 (cons (list 'orsim~ (car tmpl)) tmp2))
F(rnd (setq tmpl (cdr trnpl) ) (go loop2))

;now each list of subgoals, is andsim subgoal
(return tnip2)
;list of orsims is now returned

:succeededjif arny of the component goals have succeeded
(succeeded-if

!prog (tmpl triobname tmpside rslt)
(setq tmpl gtmpargs tmobrname 9tmp~rrame tmnisde Stmps..de)

(setq rslt I(process goal tmpbriame 'car tmol) tmpside 'succeeoed if),
(anrd rslt (return (list 'succeeded trnpside (car tmipl) rslt)Y)
(and (setq tnipl (cdr tmpl)) (go loopl))))
;failed if all of the componrent goals have failea
Q 'a iled-if

(prog (tmpl tmpbname tmpside rslt )
(setq tmpl qtmpargs tmpbname gtmpbriame tepsicie gtmpsidie)

loopl
(setq rslt (processgoal tmpbnarne (car tmpl) tmpside 'failed if))
(and (equal rslt t) (return (list 'failed Umpside (car trnol))))
(arid rslt (retu.rn rslt))
(arnd (setq tmpl (cdr tmpl)) (go loopl))
(return nil)
;dont..con;irtue~if arty of the component surngoals should~ not be corntinued
;or if arty of the comrponernt g~oals have failedi
donit-cant inrue-i

(proq (tmpl tmpbriame tmpside rslt)
(setq tmpl gtmoargs tmpbname gtmobname tmpside qtmps id.e)

loopl
(setq rslt (processgoal tmptbname (car trnpl) tmpside 'idorttcontirtte~if)I

(setq rslt (process ooal tntpbnaree (car tmal) tMoside 'failed if)))
(arnd rslt (return (list 'dornt-continue-if tmoside (car WDO rslt))'

A-i15



(nd (setq tmpl (cdr tmpl)) (go loopl))))
)

)

or
logical or of goals

(mak egosl
'(or (goals)

(type 9eneric)
(sub9oal 9tmpargs)

)
)

DOMAIN SPECIFIC GOALS
; the followin9 9oals are unique to this wargame
; NOTE that these Soals do not make use of boardval routines

(althougn some supportin9 utilities do) corsequentlv
if there is an occass:onal board conflict with two units on

; the same position (can only occur by an error in backup)
; tnen planner will still continue without error

defend-corridor s
goal that speicifies corridors to be defended and the units
to defend with

(makegoal
'(defend-corridors (list of_ c and_unit_list bv_time)

(type specific)

(subgoal
(pro9 (tmpl tmp2)

(setq tmpl (first gtmpargs))
loopl

d tmol
(setq tmp2 (cons (list 'defend_l_corridor

(list (caar tmpl) (cadar tmpl)
(second gtmpargs))) tmp2)))

(.and (setq tmpl (cdr tmpl)) (go loopl))
;above loop decomooses arguements into component goals
(cond '0 (length tmp2) ]) (return (list (list 'andsim tmp2))))

((= (length tmo2) 1) (return tmp2))))
;if more than one sub9oal mae andsim subgoal

)

(nm-ak egoal
"tdefend-l-corridor (corridor list of units bv_tlme)

(type specific)

isutoa 1
(prog (tmpl trp2 tmrp3 trap4 tm5)

(setq tmpl (oet.defend_points 9tmpbname "car Ytmoarqs) Atmpside)
tmp3 (second Stmpargs)
tmp4 (u.Jnion
(second gtmpar.s)
(unitsinarea gtmpbnanme
(get 'general_ares ffirst 9tmpargs)-

A-16



9tmpside)) )
;tmpl is list of locations to defend
;tmp3 is list of units available
;tmp4 is tmp3 plus list of units already there

(and > (length tmpl) (length tmp4)) (return nil))
;if not enough units assigned then failure
(setq tmp5 tmp3)
:tmp5 is initially set to list of all units

loopO
(and (member (unit_ status qtmpbname (car tmp5) 'location)

tmpl)
(setq tmp2

(cons
(list

'defend-location
tlist (car trpS)

(unitstatus 9tmpbname (car tmpS) 'location))>
tmp2))
(setq tmp3 (remove (caadar tmp2) tmp3)))

(ard (setq tmp5 (c. r tmp5)) (go loopO))
;loopO checks all units in list of units to determine if
;unit is already on a defendpoirt -- if yes then it stays
:and defends that location

loopl
(and tmpl tmp3

(setq tmp2
(cons (list 'defend-locatior,

(list (closest unit qtmpbname (car tmpl) trap3)
(car tmpl)))

tmp2) ) )
(setq tmpl (cdr tmrol tmp3 (remove (caadar tm.2) tmo3g-
(:and tmpl (go loooll)

(and tmp3
(setq tmpl

(9et~defend_points 9tmpbname (car qtmpargs)
9tmpside)) (go 1oopl))

;loopl goes throu9h all the units not already on a defend point

;and assigns each one to a specific
:location that it should move toward and defend
(return (cond (W. (length tmp2) 1) (list (list 'anrdsim tn,p2)))

(= (len9th tmp2) 1) tmp2)))

:failed_if cannot find defend points This only happens if"
;enemy has slready broker, through
(failed -if

(pro9 ttmpl'
(seto tmpl (9etdefendpoints qtmpbname (first qtmpar~s) 9tmoside))
(con (Wnull tmpl) (return tI

(t (return ril)))

;if get past time by_time without failing t:er, nas succeedad
( ucceeced-if ( ,Apt 'time Stmobnamei tthi;d qtmpros))

A-17



)

; defend-location
; this 9oal is to move to a specified location and the defend iti
(makegoal

'(defen, dlocation (unitname location)

(type specific)

(subgoal
(cond

((equal (unit status Qtmpbname (first 9tmparqs) 'locatiorn) (second 9tmDargs))
(list (list 'send (list (list (car qtmoargs) '(defeno ain olace)))))
(t (list (list 'send (list

(list (car qtmpar9s)
(cons 'move (9et oath 9t.obname (first Stmoar9-s.

(second Qtmpargs! G t)> ))
:if at location stay there else move to location

( dont-continueif
(pro9 (tmpl)

(setq tmpl (boardval (eval 9tnpbname) (second atm1oarQs)))
(and tmpl (setq tmpl (ur,itstatus gtmpbname tmpl 'side)"'
(cond ((equal tmol (opposite side gtmoside))

(return t))
"t (return nil))))

)

;dont-continueif other side occupies location
)

)

attack corridors
assiQns a set of units to a set of corridors for ar, attaclk

fmakeqoal
'(attacP'corridors (lQst f _c andunit list by times

(type specific)

(sJbqoal
(pro9 (tmpl trap2)

(setq tmol (first 9tmpargs))
loopl

(and tmpl
(seto tmp2 (cons (list 'attac._lscorridor

(list (caar tmpl) (cadar tmpl)
(second qtmpargs))) tmp2)))

(and (setq tmpl (cdr tmol)! (9o loopl))
(return (list (list 'orsim tmp2))))

'makeg.os'.

"('4ttac- 1_corridor 'corridor listof units bvtiwm)
(type specific"
(sub4oa l

jr oq (taspl tmp2 tmo3 tnp4:
(seto tmpl (paths ir, cirri,,or qtmobrame

(first 9tmpars) 9tmpside)
trp2 'second 9tmpar9-))

A-18



loopl
(setq tmp3 (bestunit_for 9tmpbname (car tmpl) tmp2))
;tmp3 is the preferred unit to 9o down path
(setq tmp4 (cons (list 'attackdown_path
(list tmo3 tcar tmpl) (first 9tmpar9s))) tmp4))
;add 9oal of attack down path car tU.pl with unit tmp3
(setq tmpl (reverse (cons (car tmp!) (reverse (cdr tmpl)))))
;move path to end of path list
(setq tmp2 (remove tmp3 tmp2))
;remove unit tmp3 from list of units tmp2
(and tmp2 (9o loopl))
;as lon9 as there are units left assi9n them
(cond ((> (length tmp4) 1)

(setq tmp4 (list (list 'andsim tmp4))))
((= (length tmo4) 1)
(setq tmp4 tap4)))
:sub9oal is andsia of several attacks or just one attack vith no andsim
(return tmp4)))
(succeeded-if

(pro9 (tmpl)
(setq tmpl (9etdefend points 9tmpbname (first Qtmpargs) topposite_side stmas
(cond ((null tmpl) (return t))

(t (return nil)))
))

(failedif (Q (9et *time 9tmpbname) (third 9tmpargs)))

attack_downpath
identifies specific path of attack through corridor

(makegoal
'(attackdown_path (unit oath corridor)

(type specific)
(sutgoal

(pro9 Atmpl tmp2)
(setq tmpl (firstdefend unit 9tmpbname (third 9tmprgs)

(oppositeside 9tmpside)))
;identify first unit defendin9 corridor
(and (can-attack unit qtmpbname (first 2tmpar9s) tmpl)

(return (list (list 'send
(list (list (first ?tmpar9s)

(list 'attack tmpl)))))))
;attack any units in the way
(and (setq top2 (member 'unit_status 9tmpbname (first 9tmoar'si 'location)
(second 9tmpargs)))

(return (list (list 'send (list (list ifirst tmopargs)
(cons 'move (cdr tmp2))))))))

;if can not attack and member of path then march down osth if cin
(return (list

flist 'send (list (list (first 9tmpar's)
fcons 'move (append

(iet p th ?tmpbname (first ?tmpirgs)
(car (second Stmoargs))
6 t)

'car (second 9tmparls))))))))}
;:f nothin9 else move unit toward beginnin of path ind march
:down path

A-19



(succeeded if
(equal (unait -status qtmpbname (first 'qtmparms)I 'location)

(c-ar (reverse (second 'tmparqs)))))
;succeededif made it to the other endc

support plan
assigns units to support positions un~til corridor

:conflict is n~ear resolution then supports
(make 90a1

(support plar. (list of corridors..and units tempo)
(type specific)
cs b'3ohl

(prog (topl tmp2)
(seta tmol (first atruo.r))

..oo0l
.setq top2

(list 'support -corridors
11ist (first (first tMOD)

'second (first tmol))
+ 'second Stmoargs), (g~et 'time 'atopbrame.')) tap2))

iarnd (setq tmPl (c.,ir tmpl)) -4o loop1,)
(return. (list (list 'andsim taip2)))

: ;upoort corridors
:specific support corridor qoal
:;t *resent zakes use of .3 global variable called supported corridor thati
set to nil oan rnewturn. sorry bad form

i.make~oal
'(supportcorridors (list-corridors atl'def units wait until tiue)'

(type specific)
tsubgoal

[prog (tmpl tsp2 tasp3 tmp4 subooals in -corridor)
(setq topl. (first gtmprs) tmp2 (second Stopar,4s) to2 tmp2I tutp4 topl)
;tapl and taP4 list of corridors
;tmp2 and tmp3 list of units

loao
Icond ((an~d (null (*ember (urait status qtuebnuawe

(first tmp3) 'locution)
(support-area tmpl 9topsideM)

;if unit n~ot in. support area
!me-tber (car tmp3) (active ursits 3t~pside)'

unit is alive
(eou3I .intersect,

(first tsmp3) 'retreat -direction)
(sispoort~are3 tool gtooside)!)

unit previously was ir, suppo~rt are i
(-,eta n-carridia7

:wnicdi corridor' itapt-name (first etmoar'2s)

:the. iderntif-w whiLi corridor i.t is rfru supportirni

A-2 0



(and (equal (second ir. corridor) 'defernd)
(setq subqoals

(cons (list 'defend-licorridor
(list (first in-corridor)

(list (first topM)
100))

subgoals)))
;and defend that corridor
(arnd (equal (second ira..corridor) latt-~K)

(setq subgoals
(cons (list 'attack 1 _corridor

(list (first ir-corridor)
(list (first top3)
100))

susbc~oals)) )
:or attack~ that corridor
(setq tmp2 (remove (car tmo3) tup2))
;remove the unit from list of units to consider for new assignmen~ts

(and (setq tmp3 icdr tmo3) (go loopO).
;subgoals rnow has -a11 previous subgoals irncluoed
;tmp2 is now a list of all other units to assign.
;tnpl is still list of corridors
(arnd (null tmp2) (go 10092))
;if no supportin~g ujnits remain thern skip over rnext loop1

loopl
(cond ((and (equal (second (first WWIl 'defend)

(null Q (set 'time ?tmobname) (get 'time 'realbo-ard)ll
(null (member (list (first 'first tool)) 9taoside)

sspportedcorridors')
(needjhelp Stapcbnase ifirst tol) Itupside W)

:check if defen~se of corricor in car tap! needs nelp
(and tmp2

(seto subgoals
(cons

(list 'defendl-orridor
(list (first -first tupl))

(list (first tap!!)
100))

subgoals)))
;send help
(setq supportedccrridors

(cons (list (first (first tmpl)) ?tapside)
supported~corridors))

:record fact that h~elp is sent
tseto top4 (remove (car truQl) two4) two: icdr W~O)-

.remove corridor from list of corodrs
tand 'equal (second (frst tzopl )) ' attack*

(null t=(set 'time jt~obr..me) (qet 'time 'reilbosrd)?
(null (member (list 'first 'first topl)) ?tsupsm4:.

supported corridors))
(needhelp 'stmpbrnime -first tmpl) Itompside 30)

:check if attsfr in. car tgpl shoulid ne support.-.
(arnd top2

(setq iubgoals

A-21



(cons
(list 'attackIcorridor

(list (first (first tupi))
(list (first tmp2))
100))

sujbqoals)))
:sen~d support to attack
(setq supported corridors

(con~s (list (first (first topl)) gtmpside)
supported -corr idors))

;record fact that corridor is being9 supported1
(setq top4 (remove (car too!> tup4) tmp2 (cdr tmp2))
;remove corridor from list of corridors to be checked

;g:et rse,,t corri.lor
:asIor~a unsit to -jeferase or attack
;never more than orne unit one for s carr:.1or

looP2
(and tmp2

(Seto subgoals
(cons

(list 'Move-to-sooort-p-,s
(list (first --tmoarqs"

(first tmo2))y
svjb'oals)))

;all remaining units shoul~d mowe to suoort corrti4crs
(a3nd 'setq toP2 (cdr tzoZll 0-4a looo21)
;sen~d other airits to sujpport waitinja area

t((lenqth Ssjb~oaIiS 'A! 'return sub,.oals )

(dont-continue-if C-~ Iqt 'time *tmoonr~oey (thirej it-.r--tY

; this is old version of support corridors
; support corridors
:specific support corridor Qoal
:at present makes use of lot.al -3r&iAle callei suoportod~corri-lor that is

: set to nail on~ newturra sorr-. bad form
'(malegoal

(supportcorridors (list roir icr; alti'def units wait until t1ae
(type sopcific)
(sut.loal

(Oro?~ ttpl tzP2 tmo3 tup4-
(seto tmpl (first ,f.;oarr~si tz:~ - second Ptr; ttsP3 tuoZ ItaP4 tool)
;tmpl and tmo4 list of corrildo; -

;t#Ap2 and tmp3 list of 'snits
loop0

(.ar.-I (nulla (member fqn~tsttlis *%DZ:e 'tr. 23 .ocvioru
(s-upport-)r*3 tmpi ?tmpsxdie)))

*equalinter sect (lrnitsttus '3tx~pt-.ikz- 6first taicZ. 'retrest 4irection,

A-22



(supportarea tmpl 9tmpside))
(setq tmp2 (remove (car tmp3) trp2)))

(and (setq tmp3 (cdr tmp3)) (go loopO))
;remove any un'ts not waiting in support area but previously
;have been in support area
;tmp2 is list of remainin9 units
(and (null tmp2) (return 'no_lon9errelevant))
;if ro sudportin9 units remain then goal is irrelevant

locpl

(cond ((and (equal (second (first tmpl)) 'defend)
(null (= (get 'time 9tmpbname) (get 'time 'realboard)))
(null (member (list (first (first tmpl)) 9tmpside)

supportedcorridors))
(needjhelp gtmpbname (first tmpl) 9tmpside 3)

;chevk if defense of corridor in car tmpl needs help
(and tmp2

(setq tmp3
( cons

(list 'defend-l-corridor
(list (first (first tmpl))

(list (first tmp2))
100))

tmp3))
;send help
(setq supportedcorridors

(cons (list (first (first tmpl)) 9tmpside)
supporte._corridors) )

;record fact that help is sent
(seto tmp4 (remove (car tmpl) tmp4) tmp2 :cdr tmp2)))

;remove corrido. from list of corriodrs
((and 'equal (second (first tmpl)) 'attack)

(null (= (set 'time 9tmpbname) (get 'time 'realboard))
(null (menbrr (list (first (first tmpl)) qtmpside)

suppu tedcorridors))
-(need. belp 9tmpbnaie (Airst tmpl) 9tmpside 3))

;check if attack in car tmpl should be supported
(arid tmp2

'setq tmp3
(cons

tilsL ' ttack_l-cor-i.do r

(list (first (first tmpl))
(list (first tmp2))
300))

tmp3)))
;send support to attack
(setq supportedcorridors

(cons (list (first (first tmnpl)) gtmoside)
supportvd corridors))

;rc,'d fact that corridor is beinr9 supported
(setq tmi4 (remove (car tmpl) tmp4) tmp2 (cdr trap2)))

viemove corridor from list of corridors to be checked

,nd (setq tmpl (cdr tmpl)) (go loopl))
;get next -orridor
;assi9n a unit tc defense or attack

A-23



;never more than one unit one for a corridor

].oop 2

(and tmp2
(tetq trap3

(ccri s
(list 'move to-support pos

(]ist (first 9tmpargs)
(first tmp2)))

tmp3) ) )
;all remaining units sho.sId move to support corridort;
( nd (setq tmp2 (cdr tmp2)) (9o looP2))
;send other units to support waiting a'e..
(cond (U> (length tmp3) 1) (return (list (list 'rdslm tmp3))))

((= (length tmp3) 1) (return tmp3) )
ft (return nil)))

)

(dortcontinue if (. (set 'time gtmobname) (tinird itnioarns)

move_to_support
sends unit to position where it car, reinforce 3ry of the
corridors it is supposed to support

(makegoa]
(movetosupportpos (list of corridor s_&go.ls unit)

(type specific)
(sut,9oaJ

(pro9 (tmpl tmp2)
(setq tmol (support_ares (first 9tmQ.rqs) qtmpside))
(cond ((member (unit-status 4tmpbni me (second qtmo.rqs) 'location)

tmpl)
(return (list (list 'send (list tlist (second 9tmp.args) '(no order))))>))
(t
(setq tmp2 (getpath 9tmpbrame (second 9tmpargs)

(c.ar tipl) 6 t))
(return

(list
(list 'send

(list
(list (secnd gtmparqs)

(cons 'move tmp2 )) ) ) ) )

)

)
)

)

; sen,4 speclfjc
uses jnction send order to send orders for each unj t

(makegoal
(send (oroers)

(type specific)
A-24



(subsoal
(list (list 'send gtmpargs)))

(action
(prog (tmpl)

(setq tmpl gtmpargs)
loopl

(send-order (first (car tmpl)) (cadr (car tmpl)))
(and (setq tmpl (cdr tmpl)) (go loopl))
(return nil)))

SOME DOMAIN UTILITIES
; TEMPORARILY HERE FOR DEBUGING PURPOSES
(defun all-combinations (list of-lists)
(prog (tmpl tmp2 tmp3 tmp4)

(setq tmpl list of lists trp2 (first tmpl))
loopl

(setq tmp3 (cons (list Qirst trp2)) tmp3))
(and tsetq tmp2 (cdr tmp2)) (go icool))
;this loop sets up initial list
(setq tmpl (cdr tmpl) tmp! (car tmpl))
(and (null tmpl) (return tmp3))
; continue to nest loon only it more than one listoflists

loop2
(setq tmp4 (cons Icons (car tmp2) (car tmp3)) tmp4))
(and (setq tmp2 (cdr tmpZ)) (go loop2))
(setq tmp2 (car tmpl))
(and (setq tmp3 .cdr tmp3)) (go loop2))
(setq tmpl (cdr tmpl) tmp2 (car tmpl) tmp3 tmp4 tmp4 r,il)
(and tmpl (So loop2))
this is main loop will set tmp3 to list of lists that reflects,
ail possible combinations of the initial lists in list oflists

(return tmp3)
)

)

fiu- Tet_defend_points (bname corridor side)
(Qrn3 .tmpl tmp2 tmp3 tmp4)

(setq tmpl (get 'defend points corridor))
;gets list of friend and enemy defend points
(cond ((equal side 'friend)

(setq tmpl (cadr (first tmpl))))
((equal side 'enemy)
(setq tmpl (cadr (second tmpl)))))

;loopl goes through each set of defend points and
;looks for enemy
;last defend points before enemy is set up as thk
;defend points return
(setq tmp2 (car tmpl))

toopl
(and (setq tmo3 (boardval (eval bname) (car tmo2)))

(equal (unit status bname tmp3 'side)
(opposite_side side))
(cond ((> (length tmp4) 1)

(return (reorderbystrength brams tmp4 side)))
(t (return tmp4))))

;if multiple defend points then order them weakest firsi
(and §setq tmp2 (cdr tmp2)) (go loopl))

A-25



; if n~o enemy units in~ defend liree tmp2 get nett defend line
(setq tmp4 (car tmpl) tmpl (cdr tmpl) tmp2 (car trnpl))
;tmp4 is set to last defend mie
(arnd tmpl (go loopi))
;go check next defend line
(arnd 0> (leng9th tmp4) 1)

(setq tmp4 (reorder by strength bname tmp4 side)))
(return tmp4)
;if n~o enemy found then return farthers diefen~d point

;reorder by strength
;function will return~ a set of defend points order in terms-,
;of their need for defense

(defun reorder by strernoth Onrame defenidpoirnts side
(prog (tmpl tmp2 tmp3 vslues)

(setq trnpl defeidpoints v'alues '(10 20 30 10 50 60 70 80 90 100 1000))
loopi

(and (n~ull (boardval (eval briame) (first tmpl)))
(setq tmp2 (conms (first tmp2.) tfnp2)

defend points (remove (first tmpl) defendpoints)) )
(and (setq tmpl (cd tmpl)) (g0 loopi))

loo p2
(setq tmpl defendpoirnts)

100 p3
(and tmpl

(setq tmp3 (boardval (eval brname) (first trnpl)))
(equa& (unit~status bname tmp3 'side)

side)
W< (A (unit-.status bname tmp3 'proficiencv)

(unit-status bname tmp3 'defend strength))
(first values))

(setq tmp2 (cons (first tmpl) tmp2)
defend points (remove (first tMD1) defendpoirnts)))

(arid (setq tmpl (cdr tmpl)) (g0 loop3)
(7and (setq values (cdr values)) (go loop2))
(return (reverse tr~p2))

which corr idor?
;funrction, used only by support_-orridors goal definitiong
;it determines which corridor a unit is already supporting~

(.jefuJr which-corridor? (brame corZgoals unitname)
(prog (tmpl tmp2 maxdist tdist)

(setq tmpl cortgoals)
loopl

(cond ((Member (unit-status bname unuitnane ' locatinn,
(get 'general area (first (first tm~1))))
(return (first tmo1)))

(arnd (setq tmpl (cdr tmpl)) (go0 loopi))
;dietermirne if already in general area of one of corri.sars
(setq tmpl cortgoals manlist 20)

1oop2
(setq tdist Qc tarnce (urait status bruame urnitiame 'location)

(g3et 'ceowtrpoint (first (first tmpl)f))

A- 26



(and U tdist maxdist)
(setq tmp2 (first tmpl) maxdist tdist))

(and (setq tmpl (cdr tmpl)) (go loop2))
:if not in general area then unit chould already be goinn
;to the closest corridor
;tmp2 is the closets corlgoal.
(return tmp2)
)

;routine to find paths in corridor
(defun paths in corridor (bname corridor side)

(prog (tmpl tmp2 tmp3)
(setq tmpl (get 'paths corridor))
;paths is a property cf 3 corridor
'setq tmp2 (getdefend points bname corridor (opposite_ side side))
:defendpoints f L other side are ordered by weakest point first

loopl
(and (member (first tmp2) (first tmpl))

(setq tmp3 (cons (first tmpi) tmp3)))
(and (setq tmpl (cdr tmpl)) (go loopl))
(setq tmpl (union tmp3 f9et 'Paths corridor)))
;loopl reorders list of paths so that all paths going through
;weakest enemy defend point are first in the list
(and ual side 'enemy)

kgro9 (tmp4)

loopll
(setq tmp4 (cons (reverse (car tmol)) tmp4))
(and (setq tmpl (cdr tmpl)) (go loopll))
(setq tmpl tmpW)

;reverse direction of all paths for side enemy
(return (reverse tmpl))
1)

;routine to select a unit from a set of unit to go down path
(defun best-unit for (bname oath units)

(prog (tmpl tmp2)
-(setq tmpl units)

loopl
(and (member (unit-status bname (car tmpl) 'location) path)

(setq tmp2 (cons (car tmpl) tmp2)))
;if on path then its automatically a possible best unil
(and (setq tmpl (cdr tmpl)) (go loopl))
;collect list of units already on path
(and tmp2 (= (length tmp2) 1) (return (car tmp2)))
(and tmp2 (return (closest_unit bname (car (reverse path)) tWo2)))
;if one or more u.1its on path pick unit farthest along
(return (closest unit bname (first path) units))
;if not units on path pick unit closest to start of math

;select the most forward defending unit
(defun "irstdefend-unit (bname corridor defend -side)

(prog (tmpl tmp2 tmp3)
(setq tmpl (get 'defend points corridor))
(cond ((equal defend side 'friend

(setq tmpl (reverse 1cadr (first tmol)))))
((equal defend side 'enemy)
(setq Impl (reverse (cadr (second tmpl))))))

A-27



loopl
(setq tmp2 (car tmpl))

loop2
(and (member (boardval (eval hname) (car tmp2))

(active-units defend-side))
(setq tmp3 (cons (boardval (eval bname) (car tmp2)) tmp3)))

(and (setq tmp2 (cdr tmp2)) (9o loop2))
;tmp3 is now all units on forward most defend point
(and tmp3

(prog (tmp4 tmp5)
(setq tmp4 500)

loopll
(and (K (* (unit-status bname (car tmp3) 'defend_strength)

(unit-status bname (car tmP3) 'proficiency))
tmp4)

(setq tmp4 (* (unit_status bname (car t Wo3) "defend_strength)
(,;nit-status bname (car tmp3) 'proficiency))

tmp5 (car tmp3)))
(and (setq tmp3 (cdr tmp3)) (go loopll))
(setq tmp3 tmp5)
;select weakest of forward most units

(and tmp3 (return tmp3))
;if a unit is found return it
(and (setq tmpl (cdr tmpl)) (90 loopl))
;if no unit found 9o down to next defend points

; support area
; specifies locations that could be used to support multiple corridorf:
(defun supportarea (corst9oals side)

(pro9 (tmpl tmp2 tmp3)
(setq tmp2 corst9oals)

loopl
(setq tmpl (cons (first (first tmp2)) tmro))
(and (setq tmp2 (cdr tmp2)) (90 loopl))
:get list of corridors
(setq tmp2 (get 'supportareas side))

loop2
(setq tmp3 (first (first tmp2)))
(and (equal (union tmpl tmp3) tmpll

(return (second (first tmp2))))
(and (setq tmp2 (cdr tmp2)) (9o loop2))
(return (print 'errorin supportarea))

; need help
determines if a defense is in trouble or attack succeedirng

(defun need help (bname cortgoal side trouble ratio)
(pro9 (tmpl tmp2 dfnd_strn9th atck strn3th)

;if the other side is not attackin9 then no support is needed
(and (equal (second cortgoal) 'attack)

(setq side (ooposite side side)))
;checkin9 an attack is same as checlin defense for other side
;that is i" attacking is succeedin9 send units to exploit it
(setq tmpl (length (get_defend_points bname (cr cortgoali side))'
(setq trouble-ratio (- troubleratio (A .3 isubl tmpl))))

A-28



;decrease trouble ratio threshold for corridors wider than one unit
(setq tmpl (units in_area bname (get "general area (first cor&goal)) side)

tmp2 (unitsi n_area bname (get "general ares (first cor&goal))
(oppooiteside side))

dfnd_strngth 0 atck strnth 0)
;tmpl and tmp2 are defend and attacking units in general area of corridor

loopl
(and tmpl (setq dfnd_strngth
(+ (A (unit status bname (car tmpl) "defend_strength)

(unit-status bname (car tmpl) 'proficiency))
dfnd strngth)))

(and (setq tmpl (cdr tmpl)) (go loopl))
;dfnd strngth is total strength of defending units

loop2
(and tmp2 (setq atckstrngth
(+ (A (unit-status bname tcar tmo2) 'attacKtstrength)

(unit-status bname (car tnp2) 'proficier.cyi
atck_strngth)))

(and (setq tmp2 (cdr tmp2)) (go loop2),
;atckstrngth is total stength of attacking units
(cond ((< dfnd strngth .5) (return t))

(< (quotient atckstrngth dfnd strngth) trouble rstio)
(return ril))

((and (equal (second cor9oal) 'defend)
(null (are attacking bname (first cor&goal) (opposite side side))
(<= (quotient atck_strngth dfnd strngth) 5))

(return nil))
;if not yet attacked then return nil unless about to be overwhelmed
(t (return t)))

;if attack to defend ratio is not greater than acceptable trouble ratio
;the no support should be provided

;units in area

; returns list of all units in area of specified side
(defun units-in area (bname area side)

(prog (tmpl tmp2)
(setq tmpl (active units side))

loopl
(and (member (unit-status bname (car tmpl) 'location)

area)
(setq tmp2 (cons (car tmpl) tmp2)))

(and (setq tmpl (cdr tmpl)) (90 loopl))
(return trmp2)
)

)

are attackin
determines if enemy units in corridor are 3ttackirnq

(defun areattackin (bname corridor side)
(pro9 (tmpl)

(setq tmpl (unitsin_area bname (get "enersl area corridor) side))
loopI

(and (null topl) (return, nil))
(and (memoer 'list (car tmpl) 'attack) unrit_ctioks) (return t)
(setq tmpl (cdr tmpl))
(go loopl)

A-29



)
)

;determines if twn units can fight
(defun can atiack-Liit (bname attacker defender)

(prog (tmpl)
(setq tmpl (member (unitstatus brame defender 'location)

(zone of-control bname attacker)))
(and tmpl (returr 0)
(return nil)))
(defun active uri.M (side)
(cond ((equal .id, 'friend) friendly units)

((equal side 'enemy. enemyunits)))
(defun closest-unit brame location list of units)

(prog (tmpl tmp2 lst tmpdist)
(setq dist 8 tmpl lintof units)

loopl
(and (< (setq tmpdist (distance (unitstatus bname (car tmpl) "location) location))
dist)

(setq dist tmpdist tmp2 (car tmpl)))
(and (setq tmpl (cdr tmDl)) (90 loopl))
(return tmp2)))
; equal intersection
; returis the intersection of two lists using equal rather than eq
(defun squal-intersect (listl list2)

(prog (tmpl)
(and (or (null listl) (null list2)) (return nil))

loopl
(and (member (car listl) list2)

(setq tmpl (cons (car listl) tmpl)))
(and (setq listl (cdr lst)) (go loopl):
(return tmpl)))
UNUSED GOALS
makegoals that are not presently used but embedded concept may eventually be used

"(makegoal
'(prevent

(type generic)
(countergoal (list parsl))
(subgoal nil)))

'(makegoal
"(execute-orders

(type generic)
(action (proS (tmpl)

(setq tmpl gtmpargs)
loopl

(send-order (second (car tmpl)) (third (car tmpl))
(and (setq tmpl (cdr tmpl)) (go loopl))
(e:gecute-all-orders gtmpboard)))

)
)

A-30



PROGRAM 5

CONINGENCY GOAL TREE

A-31



LMFL(QBYTE-SIZE 8 :LENGTH-IN-BLOCKS 14 :LENGTH-IN-BYTES 14073 :AUTHOR "WARGAMEI :CT
WARGAME" :NAME "AFINALARES' :TYPE L :VERSION 1)

(defvar c't nil)
t he c9t is the cortingency goal tree that the planner works with
as its core representation of a plan

(defvar friendcats nil)
(defvar enemyc9ts nil)
; friendcts and enemycgts is used to save successful sequences for
: friendly and enemy
: plart

core planner routine
fgoal is the top level friendly goal

; egoal is the top level enemy goal
debug mode = t will activate various stopping ooints

(defun plan (f9oal egoal debug mode)
(Wro9 (rslt)

(initializeboard "hypboard 'realboard)
;sets hypboard to realboard position
(setq supported corridors nil unit actions nil)
;these global variables are used by rule base -- bad form
(display hypboard t)
;displays the intial position of search
(setq cqt (list (list fjoal) flist egoal)
(list 1)
(list (list fqoal)) (list (list egoal))))
:the cgt is structured as a list with the following soblists

a list of all friendly goals most recent first
a a list of all enemy goals most recent first
a list of the depth in the contingency goal tree of

each frieno and enemy goal
; a list of friendly goals that have been or are being examined

a list of enemy goals that have been or are teir, e:amined
; loopl is for adding nodes to the cgt
loopl

(cond ((checkfor_failure (first cgt) (third cgt) 'friend)
(setq rslt '(failed friend)))

((check for-failure (second cqt) (third cqt) 'enemy)
(setq rslt '(failed enemy)))
(t (setq rslt (add_9pair))))

;check if any 9oal on any side has failed
;if not add a new goalpair to c9t usirg function add apair
;note that if new goalpair was added rsit will equal newnode
(cond ((and (equal (car rslt) "new r,odpj

(can act (first (first cqt)))
(car,_act (first (second cat))))

(update board 'hypboard (first (first cgt)) (first (second cyti) debu_Pode

:if new goal pair was added tnen check if game can be Mjpdated ard if 5o ,?a it
;note t.at (first (first cit)) is the most recent friendly ?oaj

and theat (first (second cat)) is the most recent enemy goal

A-32



(and (equal (car rslt) 'newrnode) (9o loopl))
:if new 9oal pair was added to cgt then process that new 9oal pair
; to get another new goal pair

; loop2 is used for backtrackin9 and finding alternative goals
loop2

(and (caar c9t) (playout (removejl 9oair c9t) nil nil))
;this returns to position before last 9oal pair
(and (modifyjlast_oal rslt)

(or

(and (can-act (first (first cgt))) (canact (first (second cgt)))
(updateboard 'hypboard (first (first cqt)) ffirst (second cgt))

debug_mode t))
t)

(90 loopl))
;modify_lastgoal tries to replace most recent 9oal for the side that failed
:if an alternative goal is found then the board is updated as necessary ana

return to the add noce loo
(setq c9t (removel_9pair c9 t))
(and (car c9t) (go loop2l)
; if an alternative goal is not found then remove last goal pair from c9t
; and try to find alternative for the new last goal on cot
(return rslt)
; whichever side finally failed to correct the last failure h~s
; by definition failed
; rslt will either be (failed friend) or (faile4 enemy)
)

)

; addSpair
; this routine trys to add a new 9oal pair to the present cat
(defun add 9pair ()

(prog (fgoals ego- s levels freis erejs newfqol neueloal level acte.1fla)o
(setq fqoals (first cot) *goals (second cat) levels 'third ct1

frejs (fourth cat) erels (fifth cgt))
:the cat is decomposed into its component parts

;loopl moves up the last branch of the cjt to find a goal pair that
;will generate a pair of subgoals
loopl

;the cond below tries to 9et a new friendly 9oal and a new enemy ?oal
(cond ((and (null acted flaq' (canact (car faoals)) (can-act 'car egoals)))

(setq newfgoal nil newegoal nil acted flaq ))
;9oal pairs that resulted in a board uadate may not have subqoals
:acted fla9 simply flags if this cgt has a board update in it
((and acted flaq (or (canact (car floals)) ican-act icar e'oals))))
(setq newfgoal nil newegoal nil))

:once a9ain 9oal pairs that resulted in a board update may not have subqosl-.

((or
(check-dont contzrwe fjoals levels 'friend)
(check-dontconinnue egoals ievels 'eremy)

(seto newfioal nil neweloal nil))
;if either the friendly or the enemy goal is no longer ictivp
; then it he ?o1 pair may not ?ererate v b goal tai

(to (setq r ewtow l ,yet sub 'hyoboard (car fsoals r,ij friend)
newegoal (9etsub 'hypboard (car egoalsi nil 'enem.yv)
;otherwise try to Sot new goals for botn sites

A-33



)

;the cond below processes the results of the above cond
(cond

((and newfgoal neuegoal)
(setq c9t (list (cons neufgoal (first r~t))
(cons newegoal (second cgt))
(cons (addl (car levels)) (third cqi))
(cons (list newfgoal) (fourth cgt))
(cons (list newegoal) (fifth cgt))))
(return (list 'newrnode (list newf9oal neuegoaTl)
:if new goals for both sides then add these to the cgt and return

((and (null neut9oal) (null newegoal))
(setq level (car levels))
(pro9 ()

loopil
tsetq fgoals (cdr foals) egoals (cdr egoIlsy levels tcdr levelsi

frejs eCdr fre)s) ere's (cdr ere)s!)
(and ( = level Icar levels)) (?o loopll))
(return t))

(and levels (jo loopl))
(return (print bad goals returned to too level sans resoi'tion')))
;if no new 9oals then move up one level on the cat and try to Senerate 3
; new subgoal pair from there

((and newfgoal (null newegoal))
(return (failed enemy))

((and (null newfgoal) newegoal)
(return '(failed friend)))

;if only one side can continue but not the other then the side that
Mcant continue must have failed

modify last goa)
for the side that failed this routine will try to reolace
the last goal in the c9t

(defun modify_last goal (because of)
(orog (fgoals egoals levels fre3s ereys newgoal level cot_copy)

(setq cgt copy cgt level (car (third cgt_copy)))
;make a copy of the c't and set level to deoth of last
;goal pair in the cgt

loopl
;the first part of this loop (next four lines) finds the

;parent goal pair of the goal pair that is to be replacm
isetq cgtcopy (remove I_gpir cgt_copy))
;move back to the previous ?oal
(and tnull (third cgt copyl) (return nil)
;if cgt is empty then return nil
(and -' level (car (third egt copy)))

(1o loopl))
:if after moving back level did not increase then
;the parent of the ?oil pair his not yet seen found
:at this point the parent Soal pair is the last node
:zn cqt copy
(seta fgoals (first cgt egoals (second cit) levels ,third c3t)

A-34



frejs (fourth cgt) erels (fifth cgt))
;break up present cgt into its component parts
;the cond below tries to find an alternative goal for the
:goal that failed
(cond
((equal because of (failed friend))
(setq neugoal

(get sub 'hypboard (car (first cgt_copy))
(car frets) 'friend))
(and (null neugoal) (return Ail))
(setq fgoals (cons neugoal (cdr f9oals)))
isetq frejs (cons (cons neugoal (first freis)) (cdr frels));)
;if friend failed then try replacing the friend goal

((equal becauseof "(failea enemy))
C setq newgoal

ijet sub "hypboard (car (second cgt copy))
(car erejs) 'enemy))
fa na (null newgoal) (return nil))
(setq eqoals (cons newgoal tcdr egoals)
lsetq erejs (cons tcons newgoal (first erels )

(cdr erejs))))
;if enemy failed then try replacin? the enemy goal

)

(seto cat (list fgoals egoals levels frejs ere)s))
;reconstruct the c't
(return (list 'new9oal (second because of) newgcal))
;return the result of modifyjast_9oal processing
)

get sub
this routine actually controls the execution of subloal *rocessrirn
bname is the *oardnaae
9oal is the goal for which a subgoal is desired

: rejs is the list of subgoals that have already been tried
side indicates that it is an enemy or friendly goal

(defun get sub (bname goal rels side)
(prog (tmpl)

isetq tmpl (process goal bname goal side 'subgoal))
;the above gets all subgoals of goal

loop1
(setq tmpl (remove (car rels) tmpl))
(and (setq rejs (Qdr rels)) (go loopl))
;remove previously tried goals from the list of subqoals
(return (car topi))
;return the first subgoal that has not already been trie.1
)

)

: check for failure
: determines if the most recent goal in the cit or nv of its carents have failedI
: goals is the list of ill friend or enemy *oals 1n the cyt
: levels is a list that ;rdicites the depth in tne tree of ea ch element of 3osa1
; side is frien or enexv
adef,;r checP forfjalure ,?oals levels side)

(prog A I level)
ioop!

A- 35



(-arid 'seta tmpi (processgoal 'hy~oboard (car goals) S:e 'failed if))
(return (list 'failed (car Soals))))

;check if first ooal in list of goals has failed
(Seto level (car levels))
;if Soal has nsot failed then level is depth of this goal in cg:t

loop2

(Seto ooals (edr 4oals) levels (cdr levels))
;pop last goal from list of goals
(and8 (null qoals) (return nil))
;if all goals have been poped then no failure was found
(and (< level (car levels)) (ao loop2))
:if last goal is not at a higher level in the cqt
;it is not a parent of the coal that was joist checked
0-40 locpl)

;checkellont -contin~ue
:determines if the most recen~t soal in the cat or ?nv of its parents
*sho-ile, not be continued
*sccess or failure cannot oe interred from this zrocessinq

(defur, check d-ont-continue tjoals levels side)
(oroq (topl level)

Loopl
(and (seto topl (orocess~goal 'hycoboard (car gmoals) side 'dont con~tin~ue if))

(return (list 'dont continoue (car qoals))))
:check if first goal in ;ist of ooals should be discontinued
(Seto level (car levels))
;if net then level is deoth of goal in. eqt

loop2
(setq goals (cdr %oalsi levels (cdr levels))
;po.u last qoal from list of 1oals
(and 'null goals) tret.,rn nil))
:if S1l *10oals have b~een poped then no eoa; was found to o~ot~~

far~e. level (car levels)) (0o looo2 ))
:if list g2oal is niot at a higher Level in. the cot
;it is not a3 parent of the goal that was just checke1
.,40o loopli)

i
*can-act
d etermines if the goal is sufficiently specific so as to t*e able to uodate the t

*this function is somewhast *looair deoerndent but can t-e geriertci~ed
(def'un can~act (goal)
iproa (tap'. tap2)

(setq tmpl Oal)
loop!

(and (null (member (car tmpl) '(andsim -,rsim send!!; %return nl
;fany of the componenet 2oalS embedd4 irn qoal

:Is rnot an andsim orsim Or send thern it is riot e::ecujtatie
(and tomember (car topl) '(Sndlszm orsim)

(sete tmpl (cadr tool))
(prog C

loop I
(setq top2 (cons (car tool) tao2,)l
tl;rdj isete twol (Cdr tmpl)) 114o loopll))

;the above and gets all the comporoert goals of andsxB or erti

;and puts them in tMP2

A-36



(setq tmpl (car tmp2) tmp2 (cdr tmp2))
;trp2 is list of all remaining goals and tmpl is present goal to check
(and tmpl (go loopl))
;as long as there is a goal to check keep checking
(return t)
;if all discovered componenet goals are executable then entire goal is
; xecutable

)

(defun update board (bname fgoal egoal debug mode display board)
(gettsend orders bname fgoal 'friend)
;send orders defined if friendly goal
(gettsendorders bname egoal 'enemy)
;send orders defined in enemy goal
( xecute-orders bname displayboard debugmode)
;execute orders is a routine defined in ,omain
)

; get&sendorders
; assuming goal can be acted upon will send all orders embedded in goal
idefun gettsend-orders (bname goal side)

(prog (tmpl tmp2)
(setq tmpl (list goal))
;tmpl starts as list of goals to process

loopl
(and (null tmpl) (return t)
;if no more goals then done
(cond ((equal (caar tmpl) 'send)

(process goal bname (car tmpl) side 'action)
(setq tmpl (cdr tmol))
(go loopl)))

:if goal is to send an order then send order using action slot of
;9oal definition
(and (member (caar tmpl) '(andsim orsim))

(prog ()
(setq tmp2 (cadar tmpl) tmpl (cdr tmpl)W

1.0opll
(setq tmpl (cons (car tmp2) tmpl))
(and (setq tmp2 (cdr tmp2)) (go loopll))
(return t)

(go loopl)

;if i. 'st goal is concatenation of goals then 9t
;comroiient goals put them in tmpl and process these goals

; remove l_gpair
; returns all but the last goal pair of a c9t
(defun remove_l gpair (cgtj1.ke)

(prog (cgt_toreturr,)
(or cgt_like (return nil))

;this loop gets the cdr of each element of c9t_like and puts
;it into cgt to return
loopl

(cond ((atom (car cgtlike)) (return 'error inremove_l_pair))
(t (setq cqt.to return (cons (cdr (car cqt_like)) c9,.toreturn))))

fand (setq cgt_like (cdr cgtf.ike)) (go loopl))
;:a cgt has five elements so above loop goes five times

A-37



(return (reverse cgttoreturn))
;return cqt sans last goal pair
)

)

; play-out
; steps through all the nodes of a cgt and updates the board accordingly
(defun playout (cgtcopy debugmode display board)

(prog (fgoals egoals)
(setq fgoals (reverse (first cgtcopy))

egoals (reverse (second cgt copy)))
;get friendly and enemy goals in the cgt
(initialize board 'hypboard 'realboard)
;reset board to initial position
(setq supported corridors nil unit-actions nil)
;reset q1obal lists

loopl
(and (car cgtcopy)

(can-act (first fgoals)) (canact (first egoals))
;check if goal pair is executable
(or (gettsendorders 'hypboard (first f9oalsi 'friend) t)
(or (getlsend orders 'hypboard (first egoals) 'enemy) t)
;send orders
(execute-orders 'hypboard displayboard debugmode)

;execute orders
)

(and (setq fgoals (cdr fgoals) egoals (cdr egoa's)) (go loopl))
;pop last goal and go back to loopl
)

)

A-38



PROGRAM6

WARGAME

A-39



LMEL(:BYTE-SIZE 8 :LENGTH-IN-BLOCKS 46 :LENGTH-IN-BYTES 46619 :AUTHOR "WARGAME" :CR
WARGAME' :NAME 'AFINALGAME' :TYPE "L' :VERSION 1)

; this is the file that defines the wargame
; this file plus a terrain - unit definition file would be sufficient
; for manually playing this Qame
; Note that since this is only an example 9ame and not a key element
; of the ARES project the documentation here is not as detailed as

commentin9 in the planner itself
; GLOBAL VARIABLES
(defvar qlobalarq nil)
whenever a global arQuement is needed always use this

; may be useful for instance if want to oass a single *arameter
" into a mapcar
(defvar initial nil)
(defvar realboar. nil)
(defvar hypboard nil)

the qame allows use of any of three boards referrea to as
; initial realboard and hypboard
; the game can be played on any of these three boards

this is done for the sale of the planner and not the Qame
(defvar friendly_units nil)
(defvar enemyunits nil)
(defvar all units nil)
;list of active friendly and enemy units
; must be explicitly saved for hypothetical search
(defvar orevious_get oaths nil)
;list of all qetpath results this saves much time
this varialbe is used only by getpath

(defvar enemyAorders ni)
(defvar friendorders nil)

;Qlobal list of active orders
(defvar list of unit properties nil)
(setq list of unit properties '(side id type size attack strength defend strength

movement-allowance location is-active retreat direction
location-status previous-locations))

:9lobal list of all properties that may be attached to a uni.
(defvar supported corridors r,nil)
; a variable used only by Qoal support ccrridors to identify if a corridor has
; already teen supported this is a bad cluqe to be reosired later
; newturr, sets this variable to nil
(elefvar unit actions nil)

a variable used only by goal support corridors to identifv
what is currently nappenin in a corridor

; this is also a bad cluge to be repaire.- later
: BOARD ACCESS ROUTINES
; the following routines are for the value of any boardj oositior,

or for defiring the relationship between any two oositior,s
note that a board is defined as a mtrix-lie list that
where each location is either a possible unit location or a terrain
location,

A-40



:see example of b~oard in file fzrnalterrair.1
7 oaraval
.retur.-ts value of unit location loc from board
tiefur, boardival (board c)

(setq -,(car loc) y (cadr loe))
(setq x2 1 y2 1 ted (cdr board))
1001)1
(an-' (equal y2 v) (setq bd /car bd ) (So laop2) )
(setq y2 (addi Y-2) bd (eddr bd))
(SO loopi)
io 0P2
(and (equal x2 x) (return 'cadi bd)))
(seto x2 (addi x2) bd (cddr bd))
(QO loop2)

boardset
returris a board that is sam~e as 4input board
but has value val at lasatio lac

(defur. teoardset (board loc val)
(prog (x y x2 y2 board'. board2 Isti lst2)

(setq x (car loe) y (cadr loc))
(setq x2 I v2 1 boardl board board2 nil

Isti nil lst2 nil)
.100 p1

tcond ((> v2 12)
(setq board2 (corns (car thoardl) board2))
(return (reverse hoard')))

((equal v2 y)
(setq y2 (addl y2) board2

(conms (car boardl) board2) boardi (cdr boardi)
Istl ;,car bcoardl) tooardi 'cdir boaral))

(t
(seta y2 (avdol y2)

board2 (cores (car~ boardi) hoard2) boardl (cdr board'.
board2 (cons (car boaral) boardj2; boaurdl (cdr board! ))))

qolon2

fconoi ((equal x," x)

lst2 feons (car 1stl ist2) 1st) (rdr istl)

board2 (c:rns (reverse 1st." biid'Zi)

,on loopi))

lst2 (cons (car Isls'1 ' Isil (co.r Ist!)

fqo loop2)

;cost-of-move
returnes movement cost for jjiwo in :?. prticular di:ecticon
: brname is the name of b ;-

urnitrname is the r,~me of th.e o.roi .
loc is the stjartin.-lo ~ cr

A-41



; dir is the direction of the move
; side is the side on the move
; terrainonly is a flaq which if t will iqnore extra cost for .ovinc

throuah othar ci.i4 zso'- ef csrntr.,
(defun cost of-move (bname unitname loc dir siJe terrain-only)
(prog (% y bd cst)

(setq x (car loc) y (cadr loc)
x (k x 2) y (A y 2)
x (+ x (car dir)) y (+ y (cadr dir)))

(setq bd (eval bname))
;set expanded board location and other parameters
(cond
((equal (unit status bname unitname 'type) 'helic~oter>
(setq cst 1))

(t (setz cst (anyval bd (list x- y))! ))

1,(= (+ ('abs (car dir)) (abs (cadr dir))) 27
( _eto cst (k 1.414 cs,;)).

;if diagonal r:ove cost of move is 1.414 times terrain value
(cond

((and (null terrain onlv)
(within =one of control bn~aue (oppositecide side) loci)

(return (add! cst)))
(t (return cst)))

; anyval
; uses all locations unit or terrain arnd qets corresporndirn value
; this will be referred to as the extended board
; board is an actual board

loc is the location on the board
(defur, arvval (board loc)

( roQ %,; y -2 v2 bd)
(setq x tcar foc) y (cadr loc))
(seto x2 1 y, 1 bd board)
loopi
(a'nd (equal y2 y) (setq bd (car bd)) (g0 loop2))
(setq y2 addl y2) bd (cdr bd)
(so loopl)
loop2

(and (equal x2 x) (return (car bd)))
(seta ::2 (addl x2) bd (cdr bd))
(4o loop2)

; terrain betweer
; for ar,v two urit locations returns the terrair,_value betweern those two locatiors5
(defun terrain between (bname from to)

(oroa (,jir)
(setq d-ir (-list to from))
(seta front (list 1* (car from 2) (A (cadr front) 2)
(return aryv.l (eval b'name) (+list from dir)))

)

d'iplav
i.Jsplays the board ur, board
; :rscrn f1Q will clear the whole 3creer, first if t.

(defur, dispiay (board clrscrr, fl'.

A-42



proq (tmpf 1-)

(cont' (cI rscrn_fl ( send Astar:urd-outPcutA cle.ar-$creen)
(t (cursorpos 0 0) (terpri) (cursornos 0 0)))

( and ( .ton bo.ard) returnr ' bd_.aruemerit to_diJ spl ay)
i,1;Pq tnmpflg tU

(loop for j from I to 25 du
( j)r in c ' I)
(loop for i from I to 27 ,:Io

(displ.ayl board (list i j))

(cond (tmpfl9 (princ *
(I:, (princ ' '))))

.3rid ( nul tnIpt ' ) ( pri r (n c adl quot ient (su b 1 2))
(i(erpri) (terpri)

,:setq tDIflt (null tmpfl9))
i:r in c ' I )

IC oD 'c:,r ,, from 1 to 1 3 1tm
.r, c 1' (cord ( 10) (pr inc
or nc ) )) )

)r c1.rscr nfl9 (cursorpos 50))) )
,J S 1 ) v '

,:Ii s pl t. y .s sir9le board positior'
deofar displayl (bo.ard place:)

L r or.) ( t ip 3.

(setq trnpl .(ryvsl bo.ard place))
(:or,,id ( (oqu.-l tmpl 5) (prirc 'A'))

(enu'.al tnipl 2) (prirc '"')
equl. tmpl I) (princ '

((null tmpl ) (prin c
Ct (princ tmpl)))))

:M IT DEEINITION AND ACCESS ROUTINESi
: r, .f i r, (a u., r, i t s

fets up .i new unit a s atom 'n.ame' with l.arpe frooert,, I i.'t
:I fJn def i neunit (rame si±de id type size .tta.k strorqth deteni strerth

proficiency movement_.-llowarce loc.atior is..active)
,.nuJtorop / Side ( list s.,,e side side) name)
.putpron 'id (list id id id) narme)
(:utprop 'type (list type type type) rme)

Sputprop 'size (list size size size) n.me)
Soutpr op 'a.tt. ck.strenth

11 (i t a t t a ck,_s t re, npth a t t.a c k_s t r en th a t t.ac k_ s t re ri,3 th n,..m e)

pii tpr op ' deferl s r er,3th
(1 ist defend strerth defen d strenth deferd, strerngth) r,,un{',)

(putorop 'proficiency
(list proficiency proficiency proficiency) name)

( Jt prop .' movement .l low.rce
(list movemen t_.llow.rce movement .llow.nce movement _ llowarce) r,.me)
p, uJtpror 'locatiorn (list locatior location location) rime)
(putprnp 'is_,ctive (list is 'acti ,,e is ctive is active) r, m',)
(putprop 'retre.t direction
(l.st (list location) (list loc.atior')

(. ist loc,ntior,)) name)
putproP 'loca tionBt.tUS (lit 'no.or flict ri I ni 1) name

(putprop 'previous.-loc.ation (list nil nil nil ) rime)
;.-Tbovc ,ro.' .tes the required property list,
:c..ar is initi.)l status cadr is re.,l status caddr is status on. the hypbor,1

A-43



(cond ((equal side 'friend)
(setq friendly units (cons name friendly units)

all-units (cons name all-units)))
((equal side 'enemy)
(setq enemy)units (cons name enemy_units)

all-units (cons name all-units))))
; above updates list of friend and enemy units in play
)

; put unit on board
; after a unit is defined, this routine will put it on the specified board

bname is the name of the boarn
7 unitname is the name of the unit

location is the location that it will start at
(defun put uniton_board (bname unitname location)

(prog ()
(and (boardval (eval bname) location)

(return 'unxt_alreadytheret)
(set bname (boaroset (eval bname) location unitname))
(set status bname unitname 'location-status 'no-conflict)
(setstatus bname unitname

'previousjlocations (list location location))
)

)

; unit status
; 9ets the specified status value for the board specifie1
; bname is the name of the board
; unitname is the name of the unit
; property is the unit property to retrieve
(defun unit-status (bname unitname property)
(cond ((eual bname 'initisl) (car (get oroperty unitname)))

((equal bname 'realboard) (cadr (?et property u itrame)i)
((equal bname 'hypooard) (caodr (yet propertv ,untname))))

)

; displayvunitstatus
; displays status of all p-operties of 'Jnit that may be of interest to player
(defun display_unit_status bname unitname)

(print (list bname 'status 'of unitname))
(terpri)
(princ I side )

(princ (unit status bname unitname 'side))
(terpri)
(princ 8 id 2)

(princ (unit_status bname unitname 'id))

(princ 0 type ')
(princ (unit status bname unitname 'tyie))
(princ size ')

(princ (unitstatus bname uni.iame 'sizeW
(terpri)
(prirnc I attackstre, qth B)

(princ (unit_status bname uritrnme 'Bttacxstrer,gth)
(pr irc I deferdstrenth ')
(princ (unit status brame jr, itrame defend strength),
(terpri)
(princ I proficiency ")
(princ (unit_status bname uritname 'proficier,cy))
(princ movement -llowance ")

A-44



(prine (urnit-status bname *jritrname 'moveaent allowance))
(ter pri
(prine location
(orine (urait status briame urnitruame 'location))
(opine *is active 1)
(opinec (unmit-status bnase uraitriame 'is-active)>
(ter or i)

d isplay-status
displays the status for a11 units of army unit property

(.1efun~ displaystatus (briame property)
!prog (tsoi tmp2)

(setq taol friendly-.units taio2 enemy-units)
4 terori.)

orr.c * ernemy f e.1
cSool

(cored f(car top2)
(ririne (list (car t.-are)

(unit -status bename (car tmp2) property))))
(t (prirnc OMB

'pr-inc 1 )

(cond ''car tmpl)
(princ (list (car tmaJ )

(unit-status bname (car topl) property)))))
(seto taol (cdr tmpl) tmD2Z ccdr tmp2))
(arnd (or tmpl tmp-2) q3o loopl))

:set Gtat-
:ased to modify real or oothetical status of a sirqle unit pronertv
:brame is the name of tnie b.oard1

unitname is the name of tne uni~t
;property is the name of the property to be modified

-status is the new status;
(defun set status (bniame unitname property status)

(cond ((equal brame 'realboard)
(Putprop prcperty
(list (unit-stattus 'initial ursitrame property)

status
(unit status 'hypboard 'jritname property))

uni tname))
((equal brame 'hypboard)

Out prop property
clist (unit status 'initial uritame property)

(u-nit -status 7realboard jritame proper ty)
status)

linitnawe)) )

;reset status
;resets unit status and board status of of bneane to tob.nat-
:of tename is the name of the board to char.'4e

to briame is the name of the board that of _bniame shno-ild be?
equivalent to

(dez ur r eset status (of breame t-b,.ame)

A-45



(prog (tmpl tmp2)
(setq tupl list-ofunitproperties tmp2 all units)

loop1

(setstatus of bname (car tmp2) (car topl)
(unit_status to bname (car tmp2) (car tmpl)))

(and (setq tapi (Qdr tmpl)) (go loopl))
(setq tmpol i st ofunitproperties)
(and (setq tmp2 (cdr tmp2)) (g0 loopl))
; above loop set all properties of a unit to be as in to_bname
(set of-bname (eval to-bname))
'putprop 'time (get 'time to bname) ofbname)
; ofbname is now reset
(setq tmp2 allunits frendlyunits nil eneMy units nil)

loop 2

(cond ((and (equal (unit_status of bname (car tmp2) 'side) 'friend)
(null (dead unit of-bname (car tmo2))))

(setq friendly_unis (cons (car tmo2) friendlynnits);'
((and (equal (unit status of bname (car tmp2) 'side) enemy)

(null (dead unit of_bnaue (car tmp2))))
(setq enemyunits icnns (car tmo2) enemy units))))

(and (setq tmp2 (Qdr tWp)) (9o loop2))
; above loop sets up list of friendlyunits and enemy_"nits to be

at status of of-bname
; note that this routine can be used with of bname=to_tname
; to set friendly and enemy units list prooerly
(return (list 'status of-bname 'reset 'to to-bname))))
; clear orders
this routine clears the orders for all uitet

; that is sets present order to (no order)
(defun clear-orders ()
(prog Qtmpl)

(seto tmpl (union friendlyvunits enewy_units))
(and (null tmpl) (return (orint 'error in clearorders)))
loop'
(sendorder (car tmpl) tno orderi)
(And (setq tmpl (cdr tW.pl)) (g0 loopl))
)

)

initializeboard
; copys board and clears orders
(defun initializeboard (of-bname to-bname)

(resew-status of-bname to-bname)
(clear orders))

; MOVEMENT FUNCTIONS
; these functions define procedures for moving ,unit,
; move_l_space
; moves a unit one space if feas2nk.
; otherwise returns a diagnostic ?ct.
; bname is the name of the boat--
; unitname is the name of the unit '. move

to is the location to move ,-L
(defun move_l_space (bname uritnany %)

(prog (dir mcost side from tmol :nlctfl9 )
(or (stq from ( ,it_status vnamf V,1.wme 'location)) (return "no unit-there))
(setq dir (list - (car to) (car fin ' (- (cadr to) tcadr fro ,r ,
(cond i(or Q- (xv (car dir)) 1) - as (cadr dir)) 1)) (return -notone 3umnb)))

5-46



; sets uo from location and direction of move, reiects if illegal %ove
(seta topl (list (boardval (eval bname) to)
(arid (equal (+ (abs (car dir)) (abs (cadr dir))) 2)

(boardval (eval bnaue) (list (+ (car frcm) (car dir))
(Cadr from))))

(and (equal (+ (abs (car dir)) (abs (cadr air))) 2)
(boardval (ev31 bname) (list (car from)

(+ (cadr from) (cadr dir)))))

loopl

iand (car tmpl) cond ((null (equal
(unit-status bname (car tool) 'side)

(unit status bname untname "si.e)))
(return 'enemv ,nit in the way))
It (and (nul: enflctf1 9) seto cndlct Io t'L)'

tand tseto tmol (cdr topl)) 0zo loooL))
i enemy unit in way then move is rejected if er.ct fl- is sel.

(setq side (unit status tname unitnane 'side))
(setq mcost (cost of move bname unitname from dir side n;i)
(cond ( mcost (unit status bname unitname 'movement-ailowancey)

(return "to-costly))
(t
(cond ((within-one-of control briame (opposite_side side, from)

(set status bname unitname 'proficiency
(subl (unit-status Dname unitname 'oroficiency)))

(chan9elocation bname unitname from to)
(set status bname unitname 'movement allowance

(- (unit status bname unitname 'movement allowanze acost()))
; if moy is too costly then it is reiected else the move is %d
(set status bname unitname 'retreat direction

(cors to ;unit status bname unitnatle retreat-direction)%
retreat oirection is a Ai:t of each oast position

(cond ((null cnflct flg) (return t))
(t (return 'possibleprobleml))

; if to location already has a unit of same side then 3 possirle orotlem is returrned
: but move is still made
)

)

; change location
; this is the routine that actually changes all locaticn vrisble'
; bname is the name of the board
; unitname is the name of the unit
: from is the startin9 location
; to is the endinq location
: function will allow two units on too of each other but zii :ecor.:

possible conflict
(defun charqe-location (brname unitname from to)

(pro 9 (topl)
'setq topl (3rother atjlocation bname uritname)j
'set status bname unitname 'location to)
(cond ((boardval (eval Nname) to)

(set status bname unitname 'locationstatus 'ooss-le -or.-f1:ctl
(t (set-status bname unitname 'locaton status -no-onf l.ct.:

(set bnamo (boardset (eval bname) to unitrame))))

A-47



(Set brame (Doardset (eval brnafe) from tapl)l

;soperate moves
;takes a set of move sequences for multiple units urnd seperates t.:-em into a series
;of independent and time sequened sinqle move steos

(defura septrat*_moves (bname side)
(pro% (tual top2 tmp3 tmp4 ursitname moves units)

(cord ((equal side 'friend) (setq units friendly unts)-
((equal side Ponemy! (setq units enemy &rn1ts)))

loop1

(cond ((null (equal (car (prosent order (car jratsi) 'move)? (*o loop2l))
(setq 'unitrame (car units) moves (cdr ipresent order uritraame)I
(and (car moves)

(Setq tKOl (Cons (liSt '&ove I iP3Ce brluwe 91r.Itnafte Cr uOVA.S. tDD.l-
anrd (cadr moves)

Zsetq tap2 (cons (list 'mOve- Soace rCnift ;r;ntn-ae :csdr etm:)
(and (caddr moves)

Csetq tmp3 (cons tlist '=ovelspace t-naae unritnsso 4cdr ncvesz' II~3*))
(and (cadddr moves)

(setq top4 (cons (list Imovelsace bramo %itnumeab -c-i4.r bo-Jes;j top4;))
loop2
(and tsetq units tcdr units)) i~o Icopl))
(return (list topl tmp2 tmp3 top4I))
; execute-move
;takes a set of move seauecos for uult.Iple units and plays them out on,
;that Sake board
; bnane is the nane of the boar 4

displaytboard is a f'&A~ which if t will *lisplav bo.s. after moVe~-
(defun executo movos (Veame disolay -boar 4

'Drog (tmpl tmp2 rslt :rrd moves *neV .movs Tuis~s ~~ot!.
ise-to find moves -sorate moves bnrame - irion.

enemy moves *scer ate _moves bnva~e 're
:frnd moves anzd Oeaev Moves is row a set of lraoeoen.cent s;r.,e "o;4s

LOOP1
fsetq tapi (car frid moves) tmp2 I'car enemy moves)%

loop 2

(and topi (setq rslt (move Ispace *name. (caddr 1cur tiol)' %caaddr %car tooll))),
(setq tapl (cdr topl))
(and top2 (setq tilt (bovej.space bnamte (ciddr t-cir tmoZ)) (ca4r (car too2)
(Setq top-& (cdt tX02))
(and (or tvpl tmp2) igo loop2))
(setq frnd moves (cdr rrid-moves) enemy moves (Cdtr enemy movest:
(angd (or frrd -moves enemy moves) tio loooil)
:above loops evecuite all moves.
'setq usnits tupper.4 entmyunits friendly_units)i

(:an~d (equal (unit-status briame (cur units)1Cto.Si:iJ'Si.Ccr:~t

(setq tc~upr Slt (tbcuic. '.r.vve *,rit jitj

(cord ((equsl ics bacluorslt) still~'ecsf~t
(set bname

boardset levil trame)
(.raIt stats~ brmme 'car un~its! '0cationr.
Ita-Sr unitsf)

(setq units (cons icar units) 1corns .,ca-'r bacruz'jtlt l cdtun-S..

A-48



(t t))
(set bname (boardset (eval brame)

(unit-status bname tmpl 'location)
tmpl )))

(and (setq units (cdr units)) (So loop3))
;above loop will move bacit units to avoid double locatiorns
(and display board (print 'all-moves-executed))
(return t)

; aother-at location
; durin9 movir,9 of units more than one unit may be orn a single unit location

this routine determines if more than one unit is at the location of unitnrame
bname is the rame of the board
unitname is the name of the unit

(defun another at-locatior, (bname unitname)
(prog (tmpl units)

Zsetq tmol (unitstatus btname unitname 'location)
ur,its (delete unitnare (union friendly ur.Lts eremyurits)))

loopl
(and (null units) (return nil))
(and (equal tmpl (unit-status bname (car units) 'locatior)) (return (car units)))
(setq units (cdr units))
(go loopl)
(return nil)
)

)

; back.up
; this routines backs a unit up alon9 the path it just took
; by backing up the problem of having multiple units at a single location
; is resolved
(defur, backup (bname unitname)

(nrcg (tmpl tmp2 flg)
(secq tmol (cdr (ur,it status brame uritr ame 'retret direction)))
(ir,,' (null tmpl) (print 'imriossible-backupproblem))

]oopl
(cond ((null tmpl)

(set status bname tmp2 'location status 'possible corflict)
(set status bname unitr'ame 'location status 'no con flict)
(return (list 'still have conflict tmo2))))

;if can not backup further then return this fact and the r,.me of the other
;unit that is at location this unit will now have to baclup
(and (null (setq tmp2 (boardval (eval bname) (car tmpl)))) (setq f'ig t))
(cnange_location b'name unitname (unit status bname urtrinle 'location) (car tmpl))
(set status bname unitrame 'retreat direction

(cdr (unit status br.ame uritname 'retreat directior,)))
(setq tmpl (cdr tmpl))
(and (null f1g) (90 loopl))
;this loop keeps backing up one space at 3 time until unit ha ;
;moved into an empty location
(set status bname unitrnme 'locationstatus 'no conilict)
(return (list 'noproblemrbckup))))

ZONE OF CONTROL functions
these routines define 3 urits none of control
ad acent squares

; returns all squares ad)acert to a 9iver location
location is a unit loc:-ition

A-49



(defun adjacentsquares (location)
(mapcar

' (lambda k)
(list (+ (car location) (car K))

(+ (cWdr location) (cadr k)))
(iM 0) (-1 0) (0 1) to0-1) (0 1) Qi-1 (-1 1) (-i-l))

; zone of control
; returns one of contorl of unitname

the zone of control should be equal to all locations adjacent to
the unit that can be reached by that unit in one jump

bname is the name of the board
u ,nitname is the name of the unit

(defun zone-of-control (bname unitname)
(setq 9lobalar9 (list bramc ,nitname (unit_status bname urtname 'location)

(v- -- status bname unitnam -ide)))
- ilar9 was defined us:,"9 defvar
is used to pass an .r9,u-ment into the m.apcar

;this is obviously a tbad clu9e
(cons (unit status bname unitname 'location)

(remove nil
(mapcar

'(lambda (k)
(and (U (cost of move (car 9lobalar9) (cadr 9lobalar9)

(caddr 9lobalar9) k (cadddr 9lobalarg) t) 4.5)
(list (+ (car (caddr 9lotalarg)) (car ))

(+ (cadr (caddr 9lobalarg)) (cadr k)))))
(IM 0) (-I O) (0 1) to -1) Qi 1) QI -1) (-1 1) (-1 -I))))

within one of control
determinres if a location is within zone of control of side
this is equivalent to the iocation being within the zone of control
of any of the units of the soecified side

bname is the name of the board
Eide is either friend or eremy
location is a unit locatior,

(defun withinone of control (brame side location)
(pr o9 (tmpl)

(cond ((equal side 'enemy) (setq tmpl enemy units))
((equal side 'friend) (setq tmpl friendlyunits))
(t (return 'error-in-within-zone-of-control)))

loopl
(and (null tmpl) (return nil))
(cord ((member location (zoneof-control bname (car tmpl)

(return t))
(t (setq tmpl (cdr tmpl))))

(go lool)))
ATTACK AND DEEND ROUT INES3

these routines execute an attack ard update urit status ard bc r,
positions appropriately
executeall_attacks
executes enemy and friendly ittacks enemy first

brame is the name of the board
(defun execute-allattacks (bnsme)

(Pxecute-attacPs brname 'enemy)
(execute-attacks bname 'friend))

; egecuteattacPs
; gets all of the attacks for one side and executes them

A-50



bname is the name of the board
side is the side executing attacks

the actual attacks are defined by the orders for the side side
(defun execute attacks (bUae side)

(pro9 (tmpl units dfndlst)
(cond ((equal side 'friend) (setq units friendly units))

(eaual side 'enemy) (setq units enemy units))
(t (return 'errorinexecute-attack)))

loopl
(cond ((null
(equal (car (setq tmpl

(present order (car units))))
'attack))

(9o loop2)))
:if it is ar attack cord below will add it to dfndlst
(c'or d (member (cadr tmol) dfr, dlst)

(setq dfndlst
(add to dfndlst (cadr tmpl) (cr units) dfndlst)))
(t
(setq dfndlst

(cons (cadr tmpl)
(cons (list (car units)) dfndlst)))))

loop2

(.and (setq ujrits (cdr units)) (90 loopl))
above loops set up list a list of alterratir efending unit
;and list of .attackers pairs
;such as (funitl (eurtl eurit2) funt2 (euni ,it4)) where funit l
;is to be attacked by eunitl and eunit2 and fur is to attacked by
;eunit3 and eunit4

Ioop3
(and dfndlst (attack bname (cadr dfrdlst) ('car dfndlst)))
(,red (setq dfndlst (cddr afndlst)) (go loop3))
;loop3 actual egecutes each attack
(return t)

; sdd todfrdlst
; local routirne that adjusts list of attackers in dfndlst
(defun add-to-dfndlst (defender attacker dfndlst)

(pro9 (tmpl)
loopi

(cond ((equal defender (ctr dfndlst))
(setq tmpl (cons defender tmpl))
(setq tmpl (cons (cons attacker (cadr dfrdlst)) tmpl)))
t (setq tmpl (cons (car dfndlst) tmpl))

(setq tmpl (cons (cadr dfndlst) tmpl))))
(anrd (setq dfndlst (cddr dfndlst)) (90 loopl))
(return (reverse tmpl))))
; attack
;this is the main routinee for determin9 the outcome of an attack
(defur attack (bname attackers defender)

(proS (actual atck strgth actualdfnd strgth attack rslt tmp I
terrain value terrair, mult defend_posmult)
(setq actualatck str9th 0 actual dfnd strQth 0)
thses two variables are used to

;determine ratio for battle outcome,;
(setq tmpl attackers)

A-51



loopl
(or (car-attack? bname (car tmpl) defender)

(print (list 'illegal attacker (car tmpl)))
(delete (car tmpl) attackers))

(and (setq tmpl (cdr tmpl)) (go loopl))
;set attackers to be sublist of attackers

;that can defend unitary defend 9roup
(setq tmpl attackers)

loop2
(setc terrain-value

(terrain between bname
(unit status bname (car tmpl) 'location)

(unit status bname defender 'location)))

(cond ((equal (unit-status bname (car tmpl) 'type) 'helicopter)
(setq terrainmult 1.0))
((equal terrain value 1) (setQ terrain mult 1.0))
((equal terrain-value 2) (setq terrain mult .75))
((equal terrain value 3) (setq terrain mult .65))
((equal terrain value 4) (setq terrainmult .4)))

(setq actual atckstrqth
(+ (A (A (unit status bname (car tmpl) 'attack strength)
(unit _ status bname (car tmpl) 'proficiency))

terrainmult)
actual-atck-strqth))
(and (setq tmpl (cdr tmpl)) (go loop2))
; set actual.ttack strength to be total of all unit attack =trenth
(setq defendposmult

(cond
((equal (car (present-order defender)) 'move) .5)
((null

(equa]
(unit status bname defender 'location)
(cadr (unit status bname

defender
'previous-loc3tions))))
.75)

(t 1.0)))
(setq actualdfndstrgth

(+ (A (A (unit status bname defender 'defend strenth)
(unit-status bname defender 'proficiency))

defendpos-mult)
actual dfndstrgth))
;total defend strength now set
(setq attack.rslt

(battle-outcome actual atck-strqth actual dfnd strqth))
(setq attack rslt

(list
(quotient (car attack rslt) (length attackers))
(cadr attack-rslt)))
;effect on each attacking unit is now defined
(setq tmpl 5ttackers)

loop4
(set status br, me (car tmol

'proficiency
(- (unit status bname (car tmpl) 'proficiency)

(car attack-rslt)))

A-52



(and (dead-unit bname (car tmpl)) (remove from_game bname (car tmpl)))
(and (setq tmpl (cdr tmpl)) (9o loop4))
;attackers status now reset
(set status bname defender

'proficiency

(- (unit status bname defender 'proficiency)
(cadr attack rslt)))

(and (dead unit bname defender)
(removefromsame bname defender))

:defender status now reset

; can-attack?
determines if attacker can legally attack defender
a unit can only attack another unit that is within the attackinq
unit zone of control

; bname is the name of the board
attacker is the name of the potential attaekinQ unit
defender is the name of the potential defendin 9 unit

(defun can attack? (bniame attacker defender)
( pro ()

(and (member (unit status bname defender 'location)

tzone of control bname attacker))
(return t))

(return nil)))
dead-unit
determines if unit is no longer active
when a units proficiency drops to 0 then it is
removed front the board

(defun dead unit (brame unitname)
(< (unit status bname unitname 'proficiency) .01))
remove, from_9ame
removes a urtit from play of game

bname is the name oL the board to remove unit from
unitriame is thp name of the unit to remove

Wsefun rmo e_from 9ame (briame untrname)
Gpro9 (tmpl.;

(setq tmp] (unit status bname unitname 'side))
(cond ((equal tmpl 'frir-noa

(seto friendly units
(remove unitname friendly units)))
((equal tmpl 'enemy)
(setq enemyunits

(remove unitname enemy-unirtitO)
:nbove cond removes unit for list of active rsits
(set status bname unitnme 'is-active nil)
:.3 property of a unit is whether or rot it is active
:tis is set to nil.
(set bname

(boardset (eval bname)
(unit status bname unitname 'location)
rl. I )

;the unit i. :emoved from the board bname

; battle ots come
4etermines the results of 5r attacK. in terms of proficiency los,

A-53



(defun battleoutcome (atckstrgth dfnd_strgth)
(prog (ratio)

(setq ratio (quotient atck_strgth dfnd strgth))
(cord (( ratio 10) (return (list 0 10)))

(W: ratio 9) (return (list 0 9)))
(> ratio 8) (return (list 0 8)))
((> ratio 7) (return (list 1 7)))
W> ratio G) (return (list 1 6)))

((> ratio 5) (return (list 2 5)))
(0) ratio 4) (return (list 2 4)))
((> ratio 3) (return (list 3 3)))
((> ratio 2) (return (list 4 2)))
((> ratio 1.5) (return (list 4 1.5)))
((W ratio 1) (return (list 4 1)))
W> ratio .5) (return (list 5 )))
(( ratio .3) treturn (list 7 1)))
(t (return (list 9 0))))))

; THESE ROUTINES DEFINE TOP LEVEL GAME AND ACTIVITIES DUPING A TURN
d displayorders
will display all orders for giver side

(defun displayorders (side)
(pro9 (tmpl trap2)

(cond ((equal side 'friend) (setq tmpl friendlyunits))
((equal side 'enemy) isetq tmol enemyunits))
(t (return (print 'errorjindisolay_orders))))

(print (list side 'ORDERS 'ARE))
loopl

(print (car tmpl))
(princ ' ')

(setq trmp2 (present order (car tnpl)))
(princ tmp2)
(aind (seto tmpl (cdr tmnpl)) (go loopl))

send order
will send an order to identifipd unit

unitname is the name of the urit
: order is the new order for that unit
(defur, send-order (unitrname order)

(pros (tmpl)
(cond

((equal (car (get "sice unitname)) 'friend)
(setq tmpl 'friendorders))
((equal (car (set 'side unitname)) 'enemy)
(setq tmpl 'enemyorders))
(t (return (print 'errorir,_send_order))))

(CSt tnpl
(cons (list uritname order)

(delete (list unitname
(present order unitn-inme))
(eval tmpl))))

(retur r
(list 'presentorder unitname

(present-order unitname)))
)

; present order

A-54



; returns the present order for specified unit
unitname is the name of the unit
friendorders is global list of present orders for side friend

; eneny_orders is global list of present orders for side enemy
(defun presentorder (unitname)

(prog (tmpl)
(and (null unitname)

(return 'no_unit inpresent)
(cond

((equal (car (get 'side unitname)) 'friend)
(setq tmpl friend orders))
((equal (car (get 'side u"itname)) 'enemy)
(setq tmpl eneiy_orders))
(t (return (print 'error_in presentorder))))

;tmpl is set to list of orders
loop1
(and (equal (caar tmpl) unitname)

(return (cadar tmpl)))
(and (setq tmpl (cdr tmpl)) (go loopi))
;loopl will retur;. an order if one is found
(return '(no order))
;if no order found the return no order
)

)

; new_turn
; initializes the units for a new turn
; resets the movement_allowance

list of previousJocations
the order to no order
golobal list of suoported corridors to nil
tiime of board to time + 1

(dfun new-turn (bname)
(prog Ompl)

(setq tmop 'union friendlyunits enemyunits))
loopl

(sdt-status bname (car tmpl) 'movement-allowance
(unit-status 'initial (car tmpl) 'movementallowance))

;movement allowance iu reset to intial value usually 4
(setstatu5

bname (car tmpl) 'previous_locations
(cons (unitstatus bname (car tmpl) ')ocition)

(unit-status bname (car tmplW
Ipreviousjlocatian%)))

;a list Af locations at previous turns is saved
(send-order (car tmpl) '(no_order))
;unit has no t-der at beginning of turn this default could be removed
;leaving unit with standinq orders
(and (setq tmpl (cdr tmpl)) (go loopl))
;loopl resets status for each unit
(setq supportedcorridors nil)
;supported corridors is global variable used by kno.±edge base
;its existence is a poor cluge
(putproo 'time (addl (get 'time bname)) bname!
;update the time
(rotain

(list 'NEW-TURN

A-55



'TIME IS (get 'time bname)))))
; executeorderi:.
executes all orders for both sides

; bname is the name of the board to execute order as..-.
; displayboard is a flag which if t will display V"A . -

(defun execute orders (bname displayboird d.bug modL
(execute-all attacks bname)
; all attack goals on both sides are executed first
(execute moves bname nil)

all moves on both sides are executed second
units may not move and attack on the same turn

(setq unitactions (updateunizactions))
; records what all the active units just did
(and display board (display (eval bname) nil))
(and displayboard

(print (list 'supported corridors sre supportaltcorr-dora)
(and display board debug mode

(break))
;this break is used for showing the planner is action should be
;removed for actual planning
(new-turn bnar.e)
;after all orders executed update the board to new time
)

; update unit actions
returns list of each actzon of each unit

; this is used by knowledge base as a global variable
; very much a cluge
(defun updateunitactions ()

(prog (tmpl tmp2>
(setq tmpl

(union friendly units enemyunits!)
loopl

( setq tmp2
(cons (list (car tmpl)

(car (presentorder (car tmpl))))
tmp2))

(and (setq tmpl (cdr tmplii (go loopl))
(return tmp2)
)

)

DOMAIN SPECIFIC UTILITIES
; some utilitit that can be used by the k.nowiedge baso
; oppositeside
;returns opposing side of side specified
(defun opposite side (side)

(cond ((equal side 'friernd) '*nemy)
((equal side 'enemy) 'fri n&Q))
; getpath
; function to fino a path from the present location of unitname

to tho locitior, in to
; bname i the r.me of the board

unitname 's fe oame of th: unit
" to is the lortionr to move to

miYXcosz boU,,ds th* depth of the
se.irch in terms of m:ovement costs

S topatenvy is a flag which if nil will not account for fact

A-56



that the enemy may be blockin9 ones path
(defun 9etpath (bname unitname to maxcost stopatenemy)
;if max_cost under 6 then may not get any path
(pro9 (tmpl unitlocs)

Zsetq unitlocs (list_unit_locs bname (union friendly_units enemy units)))
(seto tmpl previous_getpaths)

loopl

(and (equal (list unit_locs unitname to maxcost stopat enemy)
(car (first tmpl)))
(return (cadr (first tmpl))))

(and (setq tmpl (cdr tmpl)) (go loopl))
;if path has been previously calculated then just retrieve it
;if this starts to use up to much memory thvn replace eval bname with somethin
; more limited or do io
(weto tmpl (find_path sname ,nitname

(list (unt-status bname unitname 'location)) to )
4W( 1) A0 11 (1 0: 1-1 Q (0 -1) 0I -I) (-1 1) (-I -1))

maxcost stop atenemy))
(setq tmpl (cdr (reverse icadr tmpl))))
;path has ng, been found if within maxcost distance
(and (null tmpl)

(setq tmpl (movetoward bname unitname to stopat enemy)))
;if no optimal path found then simply find a movetoward path
(and tmpl (setq previous 9et_paths
(cons (list (list unit-locs unitname to maxcost stop_atenemy) tmpl)

previous_get paths)))
; save path in list of previous 9et paths
(return tmpl)

)

listunitlocs
unique board identier eaual to list of all units and their location

(defun list-untlocs ubname unitnames)
(pros (tmpl)

loopl
(setq tmpI (cons (list (car *.nitnames)

(unit-status bname (C r unitnames) 'location))
tmpl))
(and (setq unitnames (cdr unitnames)) (90 loopl))
(return (reverse tmpl))
)

)

move toward
trys to find a nonoptimal path until within max.cost distance

; this is used by 9etpath if find path cannot find a complete
path within maximum allowed movement cost
this routine reflects the inele9ance of the path findin9 algorithm
presently being used

(defun move-toward (bname unitname to stoopat enemy
(pro9 (tmpl tmp2 tmp3 tmp4 count)

(setq tmpl (unit status bname unitname 'location) count 4)
luopl

(setq tmp2 (-list to tmplb)
(cond ((and ( (car tmp2) 0) (0 (cadr tmp2) 0))

(setq tmp2 '(0 ))
((and (> (car tmp2) 0) (Q (cadr tmp2) 0))

A-57



(setq tmp2 '(1 0)))
((and (= (car tmp2) 0) ( (cadr tmp2) 0))
(s;etq tmp2 '(0 -1)))

((and (< (car tmp2) 0) ( (cadr tmp2) 0))
(setq tmp2 '(-1 0)))

((and (> (car tmp2) 0) 0. (cadr tmp2) 0))
(setq tmp2 '(1 1)))

((and (> (car tmp2) 0) (< (cadr tmp2) 0))
(setq tmp2 '(1 -1)))
((and (< (car tmp2) 0) (> (cadr tmp2) 0))
(setq tmp2 '(-1 1)))

((and (< (car tmp2) 0) (U (cadr tmp2) 0))
(setq tmp2 '(-1 -1))))

(and (enemy_in way brame unitname tmpl tmp2) (return tmp4))
(setq

tmP3
(c dr

(reverse (cadr (find-oath oname
uni tname
(list tmpl)
(+list tmpl tmp2)
0

1(0 ) (1 0) (-I 0) (0 -1)
(I I (I -1) (-I 1) (-I -1))

4 stopatenemy)))))
(and tmp3 (setq tmp4 (union tmp4 tmp3)))
(arid (> (setq count (subl count)) 0)

(setq tmpl (+list tmpl tmp2))
(9o loopl))

(return tmp4)))
; find_path
; will find a path for uritname to locatior, to
: this is a recursive search routine that returrs results

equivalent to exhaustive search
bname is the name of the board

; unitname is the name of the unit to move
; pathso far is the path taken to this point

initially it is the list of the unit location
; to is the location of the destination

cost sofar is the total movement cost of the pathso far
dirsto check is a list of allowable directions to move in

; maxcost is tha maximum allowable movement cost of a path
stopatenemy is fla9 to determine is path search should account

for enemy position
(defun find path (brname uritname path so far

to cost so-far dirs to check
maxcost stopatenemy)

(pro9 (dirs best so far next loc next loc cost tcost rslt)
(cond ((ard (cdr path.so fir)

(enemyin_way brame uritrame (cadr path. so-far)
(-list (car path so far) (cadr pathso.far))))

(r eturn I"(100 ,-# 1path) )) )

;check if enemy in, way or, last move
;this can happen dependin9 on how find_path was first called
(arid tequal (car pathsofar) to)

A-58



(return (list cost so far pathso far)))
;if destination found then a legal path has been found so it is returned
(setq tcost (+ max cost .01) dirs dirs to check)

loop1
(setq nextloc (+list (car dirs) (car path £o far))

next-loc-cost (cost-of-move bname unitname (car pathso far) (car dirs)
(unit status bname unitname 'side) nil))

(and (0 tcost (+ (+ cost so-far next loc-cost)
(distance (+list (car path so_far) (car dirs)) to)))

(> 5 next-loc-cost)
(null (member next loc pathso far))
(cond (stopat_enemy

(or (equal (+list (car path_so far) (car dirs)) to)
(null (enemyin_way bname unitname (car pathsoffar) (car dirs)))))

(t t))
(setq rslt

(find path bname unitname (cons next loc path sofar) to
i+ next-loc-cost cost so far,
dirs-to-check max cost stop at enemy)))

;recursively calls findpath if next_loc may lead to 9ood path
(and rslt (< (car rslt) tcost)

(setq best so far rslt tcost (car rslt) rslt nil))
;if new path is cheaper, then use it as the standard

(and (setq dirs (cdr dirs)) (90 Ioopl))
(cond ((null best-so-far) (return '(100 nopath)))

(t (return best so far)))
returns either no path of the best path so far

)
)

; bestdir
; sets the direction to check in the correct general direction
; makes find_path more efficient

from is the starting jnit location
; to is the endin9 unit location,
(defun best dir (from to)
(pro9 (tmpl tmp2)

(setq tmpl (-list to from) tmp2 '((0 1) (1 0) (1 1) (0 -1) (-l 01 (-1 -1) (1 -1) (-l
(cond ((and M (car tmpl) 0) (> (cadr tmol) 0))

(setq tmp2 (union ((0 1) (1 1) (-1 )) tmp2)))
((and (> (car tmpl) 0) (= (cadr tmpl) 0))
(setq tmp2 (union '((1 0) (Q 1) (1 -1)) tmp2)))

((and ( (car tmpl) 0) (< (cadr tmpl) 0))
(setq tmp2 (union '((0 -1) (-1 -1) (Q -1)) tmp2)))

((and (< (car tmpl) 0) ( (cadr tmpl) 0))
(setq tmp2 (union "U-1 0) (-1 -1) (-1 1)) tmp2)))

((Ond (> (car tmpl) 0) (> (cadr tmpl) 0))
(setq tmp2 (union Ml( 1) (1 0) 10 W) tmp2)))

((and (> (car tmpl) 0) (U (cadr tmol) 0))
(setq tmp2 (union '(( -1) (1 0) (0 -1)) tmp2)))

((and (K (car tmpl) 0) (0 (cadr tmpl) 0))
(setq tmp2 (union "((-1 1) (-1 0) (0 1)) tmp2)))

((and (< (car tmpl) 0) (Y (cadr tmpl) 0))
(setq tmp2 (union MU-1 -1) (-1 0) (0 -1)) tmp2)))

(return tmp2)
)

A-5 9



'(defua destdir (from to)

;eraemyjin.way
;this function will determine if an enemy unit blocks movement in direction dir
;if a unmit is ina the way it will return this fact otherewise it returns nil

, braame is the name of the board
;unitreame is the name of the unit
, from should be the location moving from
, dir is the direction of the proposed move

(defun enemy in way (braame unitname from dir)
(prog (tmpi)

(setq tmpl
(list

(boardval (eval bname) (+list froma dir)
(and (eoual f+ (abs (car dir)) (abs (ca3.-r dirfl) 2)

(boardval (eval bname)
(list (+ (car from) (car dir))

(cadr from))))
(and (equal (+ (abs (car dir)) (abs (cadr dir))) 2)

(boardval %eval bname)
(list (car from)

(+ (cadr from) (cadr dir)))))

loop 1

(and (car tmpl)
(naull (equal
(unit-status bnaa~m %car tmpl) 'side)
(unit-status braame "* itname 'side)))
(return 'eney-unit ).:-the-way) >

(and (setq tmp! 4cdr tmp;', (go loop1))
(return ill)))
;distance
;euclidian distance tac rt
;will be less than or cqa.' to actual tra3vel distance betweer. from and to

(defun distance ifroA. to)
(sqrt (+ (expt fcar (-1Il from to)) 2)
(expt (cadr (-list from ttr)) 2)

;GENERAL UTILITIES
;these utilies are rant necessarily tied to this game

;+list
;for two lists of numbers of equal ciza
;returns list of the respective sums of those numbers
(defun +list (lstl lst2)

(prog (sumlst)
(or (equal (lenckth lstl) (length lst2)) %return 'aunequal lists.))
(or lstl (ret rn 'no-list))
loopl
(setq sumlst (cons (+ (car lstl) (car lst2)) sumlst))
(and (setq lstl (cdr lstl) Ist2 (cdr lst2)) ('qo loopl))
(return (reverse sumlst))

;-list

A-60



;for two lists of numbers of equal size returns list of the
;respective subtraction of those numbers
tdefun -list (isti lst2)

(prog (difist)
(or (equal (length isti) (length lst2)) (return 'uneaual lists))
(or isti (return 'rno-list))
loopl.
(setq difist (cons (- (car lstl) (car lst2)) diflst))
(and (setq lstl (cdr lsti) lst2 (cdr lst2)) (go loopl))
(return (reverse diflst))

THESE FUNCTIONS ARE TO SAVE AND RETRIEVE FILES OF GAME SITUATIONS
savegame

;saves the present game in the file filename
realboard is always the name of the present active board

;note that because previousgetpaths is a long list this could be an
;extensive file

(defur, save game (filename)
(with-.open-file (*stanoard-output* filename 'out)

(Prog (tmpl tmp2)
(write realboard)
(write all-units;
(write friendly units)
(write enemyunits)
(write list of unit or operties)
(write previousget~paths)
(setq tmiol all units tmp2 list-.of..enitproperties)

loop1

(Write (get (car tmp2) (car tmpl)))
(and (seta tmp2 (cdr tmp2)) (go loop1))
(and (setq tmpl (cdr tmpl)) (setq W~2 list of~unit*~properties) (go loool))

; retrievegame
; retrieves a game saved by savegame
; n~ote that because previous get~paths is a long list this could be arn
; extensive file
(defun retrievegame (filename)

(with-open-file (*standard-input* filename 'in)
(prog (tmpl tmp2)

(setq realboard (read))
(setq a11units (read))
(setq friendly-.units (read))
(setq enemy.uneits (read))
(setq list..of.unit.properties (read))
(setq previous.getpaths (read))
(setq tmpl allunits tmp2 list_of _unxtproperties)

loopi
(putprop (car tmp2) (car tmpl) (read))
(and (setq tmp2 (cdr tmp2)) (go loopi))
(and (setq tmpl (cdr tmpl)) (setq tmp2 list~of~unit properties) (go loopi))

A-61



; saveboard
; this function will save the display of a board in a file
; this allows board to be printed later
; bname is the name of the board
; file is the name of the file to save to
(defun save board (bname file)
(with-open-file (Astandard-output* fi'e 'out)

(proi (tmpflg board)
(and (null (atom bnaae)) (return 'bad_arguement tosaveboard))
(setq board (evil bnase))
(setq tmpfl t)
(loop for j from I to 25 do

(princ )
(loop for i from 1 to 27 do

(display1 board (list j))
(cond (tmpflq (princ

(t (orinc s V))))
(and (null tmpflQ) <princ (addl (quotient (subl J) 2)il)
(terpri) (terori)
(setq tmpfl9 (null tapflq)))

(princ *
(loop for i from 1 to 13 do

(prine ) (cond ((< i 10) (princ s))

(t (princ * )

A-62



APPENDIX

PROGRAM LISTINGS

PRGA
I DEMO INSTRUCTIONS................................ A-i

2 TERRAIN . . . . . . . . . . . . . .. . . . . . . .. A-4

3 GOAL DEFINITION PARAMETERS ........ ............... A-10

4 GOAL DEFINITION STRUCTURE ........................ A-12

5 CONTINGENCY GOAL TREE............................ A-31

6 WARGAME........................................ A-39



F'* al Re ort

Al an ing 11

F30602-8 -C-0106
CLIN: 0 2ABB

23 Junel1 8

Prepared by:

PAR Government Systems Corporation (PGSC)
1840 Michael Faraday Drive, Suite 300

Reston, Virginia 22090

PGSC Report 88-44


