\ AD-A238 728 - - 0
AR TReTS

ARI Research Note 91-63 IR L N

Developing a General Contingency
Planner, Phase Il

Paul Young
PAR Government Systems Corporation

for

Contracting Officer’s Representative
Michael Drillings

Office of Basic Research
Michael Kaplan, Director

June 1991

1-06068
\\ll\‘l\l\l\l\l‘\ll\\l\\“\ll\\llﬂ\\|h\l\

United States Army
Research Institute for the Behavioral and Social Scie.aces

Approved for public release; distribution is unhmited

91 7 24 051

DISCLAIHER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

-

‘

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE
Fi A
REPORT DOCUMENTATION PAGE e 0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified -
= S —————
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY GF REPORT
— Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited.
4. PERYORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
- ARI Research Note 91-63
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZJ.:* N
PAR Government Systems (if applicable) U.>. Army Research Institite
Corporation - Office of Basic Research
6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and 2IP Code)

PAR Technology Park
220 Seneca Turnpike
New Hartford, NY 13413
8a. NAME OF FUND{RGSI.SPRNSORI G 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMEXT IDENTIFICATION NUMBER

ORGANIZATION rmy Research (if applicable)
allg‘tyute fgr,the Behavioral MDA903-85-C~0106

5001 Eisenhower Avenue
Alexandria, VA 22333-5600

ocial Sciences PERI~BR
8c. ADDRESS (City, State, and 2iP Code) 10. SOUZ7E OF FUNDING NUMBERS
Office of Basic Research PRIGRAM PROJECT TASK WORK UNIT
5001 Eisenhower Avenue ELEMENT NO. NO. NO. ACCESSION NO.
Alexandria, VA 22333-5600 61102B 74F N/A N/A
1. TITLE (Include Security Classification)
I'eveloping a Geneval Contingency Planner, Phase 1I
12. PERSONAL AUTHOR(S}
Young, Paul
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [1S5. PAGE COUNT
Final fROM85/04 10 _87/04 1991, June 121
16. SUPPLEMENTARY NOTATION
Michael Drillings, Contracting Officer's Representative
17. COsATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Artificial intelligence

Problem solving

Ariny maneuvers

19. ABSTRACT (Continue on -everse if necessary and identify by block number)

L—~_~This report summarizes the work performed in the final phase of a 3-year effort to
investigate basic mechanisms for solving plarning problems in domains characterized by
adversity. In the first phase of the effort, a general purpose planning mechanisa was
developed. This planner represented plans in a manner consistent with the goal tree
formalism characteristic of Artificial Intelligence action planning research and used
plan generation/search techniques derived from both AI action planning and knowledge-basea
game~-playing theory. In the second phase of the effort, advanced planning mechanism was
also extended from its initial domain (the two-player boardgame of Othello) to an Army
maneuver planning dom2in, .-- —

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
X UNCLASSIFIEDAUNUMITED [SAME AS RPT. {J oTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22¢ OFFICE SYMBOL
Michael Drillings (703) 274-872: PERI-BR
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

U.S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON JON W. BLADES
Technical Director COL, IN
Commanding

Research accomplished under contract
for the Department of the Army

PAR Government Systems Corporation T "ﬁ,...i -
. ~a&) .
- . ’ T
Technical review by o seeed
MBIV B FE .-
Michael Drillings e i
a :'l
S osllsciatg o LneF

TTive ! maa /el

siey ‘ Speoiai

-'\’*\ |

|

e e

NOTICES

DISTRIBUTION: This report has been cleared for release to the Defense Technical Information
Center (DTIC) to comply with regulatory requirements, It has been given no primary distribution
other than to DTIC and will be available only through DTIC or the National Technical
Information Scrvice (NTIS).

FINAL DISPOSITION: This report may be destroyed when it is no longer nceded. Please do not
return it to the U.S. Army Rescarch Institute for the Behavioral and Social Sciences

NOTE: The views, opinions, and findings in this report are those of the author(s) and should not
be construed as an official Department of the Army position, policy, or decision, unless so
designated by other authorized documents.

DEVELOFING A GENERAL CONTINGENCY PLANNER, PHASE I

CONTENTS

Page
INTRODUCTION it es e 1-1
THE STRUCTURE OF CONTINGENCY GOALTREES, 2-1
GOAL-COUMTERGOAL PAIRING: CGT GENERATION 3-1
KNOWLEDGE REPRESENTATION IN PLANNING e e e e 4-1
OTHELLOEXAMPLE ittt e e 5-1
MANEUVER EXAMPLE e e e e e - 6-1
SUMM:, RY ... i i i et ittt i e e e 7-1
REFERENTES e e R-1
APPENDIX A. PROGRAM 1. DEMONSTRATIONINSTRUCTION A-1

DEVELOPING A GENERAL CONTINGENCY PLANNER, PHASE Il

1. INTRODUCTION

A good deal of the research conducted in Attificial Intelligence (Al) over the last
thirty years has focused on the development of systzins ior generating plans of action
for agents faced with numerous, complex, and conflicting goals. Because planning is
such a vital part of the military function, the promise of these systems is of great interest
to the military community. Foremost among the contributions that could be made by
reliable Al-based planning systems would be 1) the ability to monitor complex
situations where large quantities of data neecd to be assimilated quickly, and 2) the
ability to project outcomes of possible courses of maneuver in dynamically evolving
battiefield environments.

This report discusses the problem of extending the action-planning techniques
developed in Artificial Intelligence research to problems involving the need to plan
against an irtelligent adversary. The focus of the report is work completed by PAR
Government System Corporation (PGSC) during the final phase of a three-year basic
research effort. The remainder of this section of the report presents a general
discussion of the nature of adversity and the special considerations which must be
taken into account by any automated planning syst2m which is to operate in a domain
characterized by adversity. Section 2 explains the basic representational structure at
the heart of the planner developed on this effort: Contingency Goal Trees. Section 3
explains the generation of these trees. Section 4 focuses on the representation of
planning knowledge in the form of goal elements and how these are structured
syntactically. Sections 5 and 6 provide two illustrative examples of how the planning
system functions. Section 5 is an example of the planner's operation in the two-player
board game of Othello, which was the domain of interest during the first phase of work.
Section 6 preserts a planning scenario which is orientec toward arniy maneuver
planning. This was the domain of interest during the second phase. A summary of the
entire effort, aiong with assessments of the degree of success of the vrork, is given in
Secticn 7, and a complete listing of the source code for the planning system is
previded in the Appendix.

The ability to act for an end has long been used to characterize the special

nature of human Leings. Aristotle was among the first to recognize this fact, which has
sered as a definition of intelligent activity ever since. If computerized agents are tc be

1-1

successful and truly useful in a complex world, ways must be found thzt will allow them
to copy, or closely approximate, the planning skills of men.

The attainment of a goal does not happen automatically. it is not enough for an
agent to simply have a goal in mind: an effort is required to accomplish the goal. To
understand this we need only attend to the fact that the worid or environment that
confronts any agent, either human or not, is one that is full of obdurate and self-
insistent things that oppose the agent. Among these are other agenrts with their own
goals, objects like rocks and trees that can get in the way, and roads with forks in them.
Each of these can oppose the agent in the attainment of its ends. The collection of
stubborn realities which can impede an agent can be seen as forming a general
condition of adversity which permeates every environment or domain where an agent
would attain a goal. Adversity arises in all domains no matter how simple or compiex,
and it 1s this condition of adversity that separates every agent from its goal. The central
issue in automatad planning is then the problem of dealing with adversity -- adversity
created by the stubbornness of whatever is the non-agent.

In a sense, adversity has always been recognized as the impediment to action
planning by researchers in this field. in every case, however, the general problem of
adversity has rermained hidden from view and unattended to as a result of the attention
given to the special form of adversity in a given domain. Exarmples of this kind of
oversight can be seen in the kinds of problems usually dealt with in automatic
problem-solving research anrd the way in which these problems are approached.

Usuai'y, a problem-solving program will be centered around the solution of a
single problem (e.g., the familiar blocks world) or a family of related problems. In most
of these treatments, the result has been, at best, a problem solver which is successful
only in tie realm of the class of problen.s under consideration. This limitedness arises
from taking a particular problem or problem set as representative of problem solving in
general and then buiiding a solution for that particular instance. Created are a
multitude of proolems solvers, each of which may be fairly successful in its own
restricted domain, but is of little value in a general sense. In each of thes2
approaches, there are special devices for constraining search among alternatives,
resolving conflicts among alternatives, and resolving conflicts among competing
subgcals. What has been missed by a good deal of the previous research in
automatic problem solving is that all action planning shares a common feature -- it is

1-2

oniy necessary because of the general condition cf adversity which confronts any
agent acting for an end. if the other features of the world (the non-agent) were
incapable of resisting and opposing the agent, there would be no need for planning,
subgoals, or any other effort: all ends would be achieved instantaneously by the
power of the agent's will. However, because the real world has an integrity and status
apart from the agent, the agent is rigorously opposed, and the collection of oppositions
with which the agent is confronted can be seen as a condition of adversity. Once this
commonality has been discovered, it becomes possible to propose a model or
paradigm for problem sclving in general and thereby arrive at a truly domain-
independent problem solver.

A simple example will serve to demonstrate that adversity is a common
condition for all problem solving activity. Consider the planning problem depicted in
Figure 1-1. Here, the goal is to capture the city with the given units which are initially
on the wrong side of the river. The objective can be expressed in the form of a single-
node plan (utilizing Sacerdoti's procedural network formalism) as shown in Figure 1-2.

Level One

l (Achieve (and (Attack City)(Cross Riwer){Build Bridge;):

Figure 1-1 Figure 1-2

This single node can be expanded into a more detailed plan by breaking the
conjunction into its components. The resulting decomposition is shown in Figure 1-3.

The three subproblems are shown in parallel in order to indicate that ihere is no a
priori commitment to a temporal secuence. Obviously, however, for the geal to be
achieved, the subproblems must be sclved in a particular order. In this case, the city
cannot be attacked until the units are ac ass t:e river, and the units cannot get across
the river until the bridge has been built. Sucir an interaction between subproblems
has been termed a “conflict” by Sacerdoti Cnnflicts are resolved by the application of
& device kriown as a “critic,” which looks for speciai kinds of interaction in a developing

1-3

tLevel Two @ .
= Spht

= Join

Attack
City

Cross
River

Build
|_Bridge |

Figure 1-3

plan and adjusts the plan accordingly. Critics, because they are intended to be
applicable to multiple planning situations. are necessarily pre-defined.

The conflicts in the simple plan developed so far would be resolved by a critic
(or critics) that knew that a precondition for being near something on the other side of a
river would be the use/construction of a bridge to get across. After resolution of the
conflicts, the CAPTURE_CITY plan would look as shown in Figure 1-4.

Level Two (After Criticism)

s}l = Spiit

J Attack
City J = Join

Cross
River

Build
LBridge |

Figure 1-4

A close look at the initial problem (Figure 1-1) and the current plan (Figure 1-4)
shows that there is still some ambiguity in that there are three distinct units to be
moved across the river. Therefore, the pian can be further decomposed into a new set
of subproblems. Each of these new subproblems would represent a step for moving
each of the three units across the river. The new, more-complete plan is shown in
Figure 1-5.

1-4

Level Three

Attack

J City

~—

g s r Cross] Move B
River
Move C
Build
Bridae
J = Join

Figure 1-5

Once again, the subproblems are shown in parallel, and, as long 2¢ the three
units represent the same or similar resources, this plan is fine. In a real military-
planning situation, however, unit A may be artillery, unit B infantry, and unit C armor.
In this case, the order of sending the units across may make a great deal of difference
to the success of the operation. If the infantry crosses first, it will be subjected to the full
fury of the enemy's resistance, while the armor (unit C) will be following uselessly
behind. There is, therefore, a new conflict among subproblems in the plan, and this
conflict will have to be resolved by yet another critic. One possible criticism might:be
represented by a rule which holds that armor always precedes infantry and that the
artillery follows the infantry. Another possibility might be a critic which knows that,
within a certain range, the artillery couid be left on the far side of the river and fire on
the city from there. A simple resolution to the conflict is shown by the new plan in
Figure 1-6.

Conflict resolution forms another primary problem in the development of
automatic-planning systems from the standpoint of Command and Control problems.
Notice that both resolutions in the river-crossing example were achieved by the
addition of new knowledge into the planning process: specifically, knowledge about
the sequencing of actions with respect to time for attacking the city and how to use
different kinds of resources in that attack. The way this knowledge is usually handled
is in the form of special general-purpose rules. These rules, by virtue of the fact that
they must be pre-defined, can be described as static, that is, they cannot take any
account of factors or conditions external to the explicit ones embodied In their own

logic. The rule, or critic, looks for particular interdependencies and resolves these
conflicts in some prescribed manner. As such, it has no capability to reason about the
particular situaiion at hand and what the implications of the application of the general
criticism are for that special circumstance.

The following three sections discuss in depth PGSC's approach to meeting the
challenges presented by planning in adversarial domains. First, Section 2 discusses
a framework, known as Contingency Trees, for representing adversarial plans of
action. Section 3 discusses in detail the planning mechanism which is utilized 10
generate these trees, and Section 4 presents the knowledge-representational scheme
for representing the actual goal knowledge.

Level Three (After Criticism) <
J ALack 3 —lm A H

City
/\\

[Cross
s J River S JJG 8
B?dlre Mowve C
—
= t
L8] =

J = Join

}
I

2. THE STRUCTURE OF CONTINGENCY GOAL TREES

The planning system which PAR Govermnment Systems Corperation (PGSC)
developed represents plans as contingency geal trees (CGTs). Contingency goal
trees are a hybrid plan-representation structure embodying aspects of traditional
hierarchical plan representations and of move trees from computer game playing.
Figure 2-1 is a sample CGT with 19 nodes. The 19 rodes of the CGT are crganized
into six levels of gbstraction. Abstraction refers to the need in pianning systems to
represent probiems in different degrees of resolution or generality. What is intended
by the concept of abstraciion can be seen in terms of the freguentiy used “pasta-
mnaking”example. One might want to create a plan for making pasta, which can be
represented as the goal: (MAKE_PASTA). This goa! can be thought of as having two
sub-goals: (BOIL_WATER) and (PLACE_PASTA_IN_WATER). These two subgoals
are said to be at a lower level of abstraction because, while they represent an
equivalent notion to the initial goal, the problem is nonetheiess represented in a more-
detailed, specific, and therefore iess-abstract way. Similarly, the MAKE_PASTA goal
may be less abstract than an even-higher level-goai: HAVE_DINNER. for exampile.

Abstracticn is a key idea in pianning because it aliows for muitiple views of the
same problem, each of which is at a different level of deiail. Details are usualily
numerous, hard to keep track of, and not always important. Therefore, the abiiity to
represent plans at more than one !evel of detail or abstraction aliows for the
convenient coliection of specific nparts of planning knowledge under broader concepts
which may be more easily manipulated and traced.

The lowest level of abstraction in any computer plan represents what may be
called “acts” in the world of the planning system. The purpose of an automated
planner is to develop plans for achieving some goai. Regardiess of how many leveis
of abstraction the pianning problem mayv be decomposed into. the plan must terminate
in nodes which are not subgoals requiring fu-ther development, but rather actions for
implementing the plan in the pre-aefined world of the planning system. Thus, a robot
pianner may have numerous goal nodes ranging acress multiple levels of prcblem
abstraction (e.g., (OPEN_DCOR DOCR1}}. In the end, however, the plan must be
made applicadle tc the warld in which the planner is to operate. Applicability is
achieved through the generation of bottom-level nodes which correspond to acts in the
pianner's world.

2-1

A planner for developing a sequence iz piling or unpiling a set of blocks would
hzve acts corresponding to the movement of particular blocks, while a planner
designed to maneuver a fighter jet in a dog fight would have acts corresponding to
ai'eron adjustment and so on. Above each act i1s a network of goals which are the
uncestors of the act and, in a sense, explain why the act is being recommended.

CAPTURE(A):DEFEN@

T
~

~ -

~ -

CSURROUND(AYRETREAT(A) > ATTACK(A):DEFEND_IN_PLACE(A)

/ |
\

\

\
\
A}
—
N\
A S

(AND ECN(P1)ENC(P2)):(OR ESC(P1)ESC(P2))
it g
i ~~

-
“

\
\

<PUSH_THRU(K):HOLD(K)
- ” 1 Y
P -~ ‘\ |\
|
NIL:SHOOT_AT(K)) }
§

ENC(P1):NID

’I
@ .@

LEGEND

MOVE(...) NIL

(O | COALCOUNTERGOALPAIR | A | TARGET

(AND | CONJUNCTION P1| PATH
(OR | DISJUNCTION p2 | PATH
ENC | ENCLOSURE K | POINT ON DEFENSIVE LINE

ESC | ESCAPE

(03168)

Sample CGT with 19 Nodes
Figure 2-1

2-2

To illustrate, consider the representation depicted in Figure 2-2. This figure
shows a hierarchically decomposed solution to the high-level problem “Engage
Target X at Time Y.” In this extremely simplified example, there are three levels of
abstraction. Tk~ first, or top level, states the initial problem. This is, in turn, resolved
into a three-step plan at a lower level of abstraction. At this more concrete level, an
explicit strategy (“SHOOT_LOOK_SHOOQOT") for achieving the higher-level goal is
instantiated. Finally, at the lowest level of abstraction are the acts or discrete steps
required to perform the three steps shown in Level 2.

ENGAGE TARGET
XATTIMEY
SHOOT TARGET LOOK AT TARGET aileve
X AT TIME
XATTIMEY o X AT TIME
Y+1412
DETERMINE IF
TARGET VIABLE
SEND COMMIT REQUEST TARGET SEND COMMIT
MESSAGE TO BATTLE DAMAGE MESSAGE TO
WEAPON A ASSESSMENT WEAPCN B
FROM SENSOR A

(03169)

Example of Hierarchical Decomposition
Figure 2-2

It is important to recognize that the question “to what level of decomposition or
abstraction a problem should be reduced” will vary with the aims of the particular
planning system. That is, there is no pre-defined lowest (or highest) target level.
Instead, these will be defined within the context of the given system. It would have
been possible, for example, to build a planner which immediately instantiates the goal
“Engage Target X at Time Y” into some solution. In that case, the “Engage Target”
goal would also I onsidered an act. As one pushes the level of acts further and
further away from the level of the initial problem state, thereby creating more levels of
abstraction, the planner is made more flexible and more able to apply to general
situations. Thus, the initial representation (Figure 2-2) has four acts, each of which is
related to a procedure for instantiating that act. This is in contrast to the situation that
would hold if there were only a single procedure for achieving “Engage Target X at
Time Y.” The former is more flexible, because the four acts with their associated four
procedures can be combined in numerous ways to solve the problem differently or
even to solve completely different problems.

To address planning problems that involve an intelligent adversary, this
research effort has taken the approach of generaliz - the goal-tree/procedural-
network formalisms to represent plans in a manner tha .mits incorporating the type
of planning that is done in knowledge-based game-ple research. To this basic
framework has been added explicit consideration of adve: il countergoals.

The basic premise of the research effort was that most of the previous work in Al
planning, such as that derived from robot problem solving, cannot be readily applied to
military-planning problems. Specifically, these planners lack a satisfactory capability
to explicitly incorporate an adversary's goals and actions into the planning process.
Consequently, they cannot effectively plan against an adversary that is simultaneously
planning against them. As an example, consider the case of planning under
conditions of uncertainty. One accepted technique is to include information-seeking
goals in the plan whenever information necessary t complete a plan is not initially
available to the planner (e.g., FIND_LOCATION (X), if the location of X is not known).
When an adversary is present, however, that adversary is likely to have a countergoal
of preventing the collection of the required information. Consequently, this adversary
will use various tactics, perhaps including deception, to prevent information collection.
Unless the adversary’s countergoals and actions are explicitly taken into account and
planned against, the original information goal is not likely to be achieved.

2-4

The planner which this research developed, ARES {Adversarial REasoning
System), represents plans in a structure called a Contingency Goal Tree (CGT).
Figure 2-1 is a sample CGT showing a plan for some hypothetical battle situation. At
each node in a CGT is a Goal Pair (GP) which includes a proposed friendly goal and a
possible countergoal for the adversary. Sub-nodes of GPs are Sub-Goal Pairs
(SGPs). Reading the left-most branch of the example CGT, a sub-yoal of CAPTURE
(A) is SURROUND (A), while the corresponding sub-goal of DEFEND (A) is RETREAT
(A). Consequently, the GP CAPTURE (A) : DEFEND (A) has as its first SGP
SURROUND (A) : RETREAT (A).

Simultaneous multiple tasks are treated as conjunctive (AND) or disjunctive
(OR) goals. Thus, (AND ENC(P1) ENC(P2)) is a single goal of enclosing both escape
path 1 and escape path 2, while (OR ESC(P1) ESC(P2)) is a goal of escaping through
either path 1 or path 2. Other “generic” goals, such as AND_IN_SEQUENCE, are
possible.

In many instances, GPs will include a goal or countergoal of NIL. This occurs
when there is no projected opposing goal, such as when ARES is explnring an option
where one side pursues an independent course of action while ignoring the
adversary’s goals. It also happens to occur in example CGT because this example
depicts a linear sequence of moves and countermoves, as would be found in
alternating-move games such as Chess.

When a CGT contains a NIL element in every GP, it is isomorphic to a standard
goal tree. Also, CGTs can have parallel branches and, if desired, pre-conditions and
post-conditions attached to nodes. Consequently, CGTs represent a straightforward
extension of the goal-tree/procedural-network representation.

3. GOAL-COUNTERGOAL PAIRING: CGT GENERATION

Section 2 described the means of representing plans in the planner PAR
Government Systems Corporation (PGSC) developed. This section deals with the
process used to generate contingency goal trees.

Given that plans of action are to be represented in the form of hierarchically
decompoased networks where higher-level abstract goals are resolved into more
detailed, less-abstract component parts, the next question pertains to what mechanism
is to be used to accomplish the actual reduction of one level of goal into its more
detailed components. Given some initial problem, an automated planner requires
some means of generating the network of goals and subgoals that represent the
solution.

The plan-network-generation problem is in a class known as state-graph search
problems, where, given an initial state, an exploration of possible sequences of future
states is performed in the hope of isolating a path that will lead to a goal state. Figure
3-1 shows a state graph for some imaginary problem. In this example, Node A
represents the initial state and Node H the desired goal state. The problem is to find a
path that leads from A to H.

Another related form of this representation is the commonly known move tree
from computer game playing. In a move tree, a particular node represents some iegal
arrangement of playing pieces on the board. The “children” of that given node will be
the complete sei of possible legal moves for the side on the mov.:. Each of these
nodes becomes, in turn, the starting point for proposing a set of subsequent moves for
the opposite side. Figure 3-Z2 si:ows a sample move tree for a very simple Chess
game where thare ars nine squares, a White Bishop, and a Black Rook. Reading this
tree from th4 top down, first all the possible moves are found for the Black Rook. At the
next level, each of the possible White respcnses to the Black moves is postuiated.

in procedural networks, state graphs, and move trees, the basic problem is how
to f..d a path that will lead to the desired state. Numerous alternatives are possible.
The first and most obvious means is to exhaustively enumerate all the possibilities.
Inevitably this results in a great deal of wasted effort because usually only a relatively

31

few paths will lead to success. The expansion also falls victim to a combinatorial
explosion where the search space grows exponentially.

Initial
State

Goal
State

{03170}

Sample State Graph
Figure 3-1

2-¢ ainbi4
s$S3aYH 104 331) anop ajdwes

{121€0)

S3IAONW FLIHM

g

J

g H g g

3

§m

H

300N
a LHVIS

<o)
[\A)

There are numerous possible ways to cut down the amount of computational
effort required to navigate through the network. Breadth-first Search examines all the
elements at each level (horizontally) before proceeding depth wise to the next level.
Depth-first Search expands the state graph vertically until a path either leads to a
success or a dead end. |f a dead end is reached, the search backs up to the
immediate prior node and seeks an alternative at that level, and so on.

In a recent article, deKleer (1985) identifies three principal ways of exploring a
search space. The first, and most common, brute-force enumeration of all possibilities,
was described above. An alternative approach is chronological backtracking (a
variant of depth-first search). However, the discovery of a failure in the developing
plan may result in a large amount of wasted work because the real reason for the
contradiction in the plan may be some choice further back in the plan, not necessarily
the immediately prior one. As deKleer writes: “When a contradiction is discovered the
search should backtrack to a choice which contributed to the contradiction, not to the
most recent choice.” A second alternative to brute-force enumeration is known as
dependency-directed backtracking (another variant of depth-first search). In
dependency-directed backtracking, records are kept about the dependency
relationship that each choice in a plan has with regard to prior choices. When a failure
in the plan occurs, dependency records are examined to determine which prior
choices (not necessarily the last one) set up this situation.

~ In actuality, most planners employ a hybrid approach for developing plans of
action: neither pure breadth first nor pure depth first. A popular hybrid is known as
best-first, where the most promising alternative at each level is explored first.

Figure 3-3 is an example of a best-first expansion. At each level, some
procedure is used to select the “best” node for expansion. Once a node is selected
within a level, the planner proceeds to evaluate the children of that node seeking to
icdantify the best possible one to expand, in turn. This continues in the same manner
as a depth-first search, except that some discrimination is performed at each level
among the possible nodes to expand. The expansion results in the location of either a
successful path or a dead end. If the path has led to a dead end (a failure),
backtracking is undertaken to some prior node, whera the expansion begins anew.

3-4

LEVEL 3 LEVEL 2 LEVEL 1 LEVEL O
Sm

LEVEL 4
x

(03172)

Best-Fit Example With Sample Scores
Figure 3-3

The approach taken to planning in ARES is a hybrid of these other techniques.
By reading the terminal nodes of a CGT from left to rigl , a specific sequence of
actions is defined. Consequently, each CGT specifies a contingency plan if the
adversary pursues the goals indicat2d in the tree. In an adversarial world, “good
planning” means generating contingency plans for each reasonable course of action
that either the adversary or the agent may pursue. To this end, ARES attempts to
generate a set of CGTs that {:-ovides contingency plans for the full scope of
reasonable options avsilable to th-: agent and the adversary.

For a given level of abstraction, ARES proceeds through CGT
generation/expansion in a depth-first manner. Beginning with the most recent GP
added to the CGT, ARES recursively adds SGPs until a terminal GP is reached. A
terminal GP includes a procedure for making an action in the world, which means that
it is the lowest level in the expansion. Processing a GP involves accessing a
knowledge base of goai definitions in order to determine possible reasonable options
to instantiate for either the agent or the adversary. In alternating-move games, these
accesses are for the goal for the side that is currently on the move. In more

3-5

complicated domains, like maneuver planning, where actions can occur
simultaneously, both parts of the GP are processed at the same time.

In the example CGT, the solid line identifies those SGPs that were generated by
processing the parent goal of side A, on the left, while dotted lines indicate SGPs that
are descended from the parent goal of side B, on the right.

The general procedure employed by ARES ir the generation of plans may be
characterized as an iterative process of proposing possible courses of action and,
based on the outcome of those actions, proposing better action options. ARES, in
effect, plays out a series of hypothetical games in orcer to “learn” about the way
objects in the domain interact. The knowledge that is geined is further used in the
construction of the network of goals and countergoals.

Table 3-1 presents a high-level, English-language description of the actual
procedure used by ARES to generate CGTs. The procedure “RESOLVE” is recursively
called until goal decomposition ends with either a failure or an act in the world state.

TABLE 3-1

Procedure RESOLVE

1.0 Given an initial input goal pair, designated gpair, determine whether it will result in
success for either agent or counter agent. Contingency Goal Trees created in this
process, taken together, form a plan.

2.0 IF aword update action can be performed, THEN perform it and RETURN T.

3.0 Generate a new sub-goal pair (sub-gpair) for gpairand add to sublist

4.0 CASE:
sub-gpair :goto 7.0
{RESOLVE {sub-gpair side))#NIL: go to 3.0
END{case}.

5.0 Replace most recent sub-gpair.

6.0 IF[AND(sub-gpairT) (RESOLVE(sub-gpair side))], THEN go to 3.0

7.0 CASE:
sublist> 0 AND (side effects) :goto5.0
sublist > 1 : Remove one sub and goto 5.0
sublist = 1 :RETURN T
sublist = : RETURN NIL

END {case}.

4. KNOWLEDGE REPRESENTATION IN PLANNING

Computer game playing and robot problem solving are generally considered to
represent distinct classes of planning problems. The normal model for examining two-
player, perfect-information game problems starts with a game tree which maps the
various possible situational evolutions that can occur, given different action options for
the two sides. As pointed out in Section 2, for even the simplest games, such trees
can develop to unmanageable size after only a few levels, introducing the need for
clever technigques for isolating the best move based on only a partial look-ahead.

Several possible methods, including minimax and alpha-beta (see Nilsson,
1980 for a review) exist for constraining the search problem. Other researchers have
coupled these techniques with the use of heuristics and the incorporation of domain-
specific techniques to limit searching in a given game problem (Ballard, 1982).

Two issues appear to be most important for the creation of a successful planner
in any domain: 1) a knowledge-representation strategy and 2) a mechanism for
applying knowledge in an attempt to constrain the search space. This report section
details the major results of PGSC’s investigations with respect to this important aspect
of automated planning.

PGSC contends that the classes of problems described generally as computer
game playing and automatic problem solving do not represent unrelated domains
within Al but are rather special cases of a broader problem set which can be best
categorized as dynamic plan generation.

A major impetus behind PGSC research in this area has been the state of two-
player, perfect-information games over the last 20 years. This sad situaticn has been
summarized by Berliner (1973) with his criticism that one of the most serious
deficiencies in game-playing programs, like those being developed for Chess, was the
absence of long-range or global plans for winning the game. Wilkins (1979), with his
PARADISE system, provided further guidance by restating the game-playing problem
in terms of planning issues. The essence of Wilkins' approach is to develop move
sequences based upon the goal-directed development of a plan, instead of picking the
“best” move from a tree expanded to some arbitrary depth according to some arbitrary
method. The result is that the emphasis in developing successful game-playing

4-1

programs is shifted from questions of computational complexity to the construction of
effective goal-based knowledge-representation schemes.

| The use of long-range planning and goal-based knowledge has been

successfully employed in a number of planning mechanisms (see Berliner, 1975;
Reitman and Cox, 1979; and Wilkins, 1979). In all of these systems, knowledge is
employed in order to constrain a space of available options. Once candidate
strategies are identified, thereby eliminating many branches of the move tree, action
alternatives can be investigated to considerable depth without suffering from the
effects of a combinatorial explosion.

Controlling the generation and/or search of a set of action alternatives
represents one of the primary problems facing development of successful computer
planners in all domains, not simply game playing. The crux of the problem, as it is
commonly presented, is that finding solutions to planning problems requires either an
epistemologically intensive, or a time-intensive approach. The former requires that
sufficient knowledge (e.g., about strategies, good skeletal planning sequences, etc.)
be included ih the planner to guide the decision making required to select among
competing courses of action. The latter approach, on the other hand, foregoes this
kind of goal directedness, developing all branches to a certain level and then picking
the best move by applying some criteria to the family of alternatives.

Several researchers have recognized this dilemma and suggested that these '
two-solution strategies are arrayed along a kind of continuum and that other methods
that attempt to combine the two lie between the two extremes. McCarthy and Hayes

(1969) and Berliner (1973) are examples.

As Berliner pointed out, approaches to planning action sequences which
depend either entirely on knowledge or search are essentially uninteresting from the
standpoint of Aificial Intelligence. The question then becomes one of creating a
model which is both epistemologically and heuristically adequate (following McCarthy
and Hayes). In other words, the aim is to use just enough knowledge and just enough
search to obtain successful and interesting results.

4-2

Important innovations in representing planning knowledge which emerged from
PGSC’s second-phase effort center upon 1) the use of search as a form of knowledge
and 2) a framework for representing this explicitly.

The phase-two planner, ARES, builds plans by engaging a given world
situation or environment in a planning dialectic. The plans are constructed out of
generic goal structures repre ,enting generalized planning knowledge about the
domain. Based on the system’s analysis of the current world situation, these general
pieces of knowledge are informed and related into a network of specified goals. In the
current implementation, uninformed goals are s-expressions in the LISP Language.
Each goal has a number of properties which are slots in the atom’s property list. The
goal name identifies the atom or s-expression. The property slots include the
foilowing:

(1) COUNTERGOAL -- an assumed adversarial countergoal,

(2) SUBGOAL -- a list of possible subgoals for when the agent is the curren.
actor in the environment,

(3) SUB_NOT_ON_MOVE -- a list of possible subgoals for when agent is not
the current actor in the environment,

(4) FEASIBLE -- a list of feasibility conditions,

(5) SUCCESS -- a list of success conditions, and

(6) FAILURE -- a list of failure conditions.

While a value or list is initially attached to each uninformed goal, these values
are used only as a starting point for producing specified or filled-in attachments as the
goal is developed during the course of a planning sequence.

PGSC distinguishes between informed and uninformed goals on the basis of a
specification which is necessary in order to instantiate a particular goal. An informed
goal is defined as a goal which has been developed in a context-sensitive fashion by
transforming its initial attachments or properties into specified attachments. The
difference between an uninformed goal and an informed goal is illustrated as follows.
Imagine a human planner operating in a tactical combat situation. The planner has a
number of general-purpose maneuvers or “goals™ which he can use, given varying
circumstances -- an example would be “march to contact.” As such, this operation
would be similar to what we are calling an uninformed goal -- it is devoid of any

4-3

contextualizing circumstances and lacks “filling-in.” Once the pianner chcoses to
pursue the goal, however, he decides to march some parsticular set of forces to contact
with some adversary at a given point and time. In this way the goal becomes specified
or informed.

The actual filling-in of an uninformed goa! occurs whea, in the development of a
Contingency Goal Tree (CGT), ARES expands an existing node. In planning, not only
must an agent's pian be consistent between ievels of absiraction (see Section 2), but
also the agent's model of its adversaries’ countergoals and the success/failure tests for
the goal must reflect this same consistency. Thus, while an agent's goal of "CAPTURE
(X)" might be generally paired with and adversarial countergoal of “DEFEND (X).” it is
not necessary that in a specific situation the adversary have that courtergoal. It might
be the case that in the parent node the adversary’s countergoal was NIL (indicating
that ARES expects the adversary to ignore its goal), and. therefore, it makes no sense
for there to be a countergcal of any child of that node.

ARES specifies the countergoal attachment by conjoining the set of generic
countergoal attachments for the goal with the specified or informed set of counter-
subgoals from the parent, thereby making sure that each step in the adversary's
counterplan is consistent with its predecessor. Similarly, it is aiso necessa:y to make
sure ihat the success or failure tests of any sode in a network include consideration of
the parent nodes. This is because, for ARES, the planning of a move/courtermove
seguence is dependent upon the ability to recognize success or failure across levels
of hierarchical abstraction. As an exampie, consider the case depicted by the move
tree in Figure 4-1. This example is taken from the game of Othelio (see the detailed
description of ARES’ behavior in this domain that foilows). The plannsr's goal is to
occupy comer X, and the assumed countergoal is aiso to occupy X. To occupy ccmer
X, ARES has identified CTRL(AX) as a subgca! which is pzired with CTRL(AX) as a
counter. Since AX is already cccupied by an adversanai piece, the only way it can be
occupied by ARES is to flip or tum the piece over. TURN_OVER(AX), then, becomes
ARES’ next subgoal with a countergoat of TURN_OVER(AX).

The knowledge base assumas that, if the agent's obiective is to turn over a
piece, the adversary will want {c turn the piece back over again. ARES first makes
move 1, which flips AX over. Next. playing for the adversary, ARES finds move 2.
which will flip AX over aga:.: {back to its criginai confguration). Move 2 just nappens

4-4

to be a play into ccrner X, however, and, by making this move, the adversary would be
able to thwart ARES’ level-1 goal of controlling that corner. It therefore n.akes no
sense for ARES to consider this sequence any further -- it is a bad plan. ARES can
only realize this based on a failure-conditions analysis which it would make before
processing the next goal (a potential move 3).

The specified failure lists, used to determine when some sequence represents a
bad plan, results from the conjunction of the generic goal attachments of the goal as it
is in its uninformed state with the set of all specified failure conditions from parent
goals in the same path. Thus, ARES has encountered a failure if the white side has
turned over 4X) and white occupies (X).

OCCUPY CORNER: OCCUPY CORNER

CTRL(AX):CTRL(AX)

TURNOVER (AX): TURN_OVER (AX)

MOVE 1 ' MOVE 2 ’

OTHELLO Move .ree
Figure 4-1

(03173)

45

5. OTHELLO EXAMPLE

This section presents a detailed example of an * RES planning sequence from
the popular two-player, perfect-information game Othen Othello is played on a board
of 64 squares (8 x 8). Two colors of stones (white and black) are used for the
respective players. The object of the game is for a player to occupy more squares with
his color of stones than the opponent. A square is captured by outflanking an
opponents stone (or a row of stones). Outflanking is accomplished by being able to
make a play such than an opponent’s stone(s) is(are) enclosed by two friendly stones,
one at each end. The following is an illustration:

A B C D E
White has Stone 1 at Position A, and Position E is open. By playing a stone at Position
E, white is able to outflank the three black stones located at B, C, and D. A player
(either white or black) is able to make a valid piay any time a stone can be placed in
such a fashion so as to outflank one or more of the opponeit's stones. Once such a
play is made, the opponent’s stones in the intervening spaces are “flipped,” that is tiey
are changed to stones of the color of the player making the outflanking play. For
instance, in the example shown above, once white played Stone 2 at Position E, the
black stones at Positions B, C, and D would be changed to white stones. if ¢ player
cannot make an outflanking play, he must “pass” on that turn and wait for another
opportunity. The game ends when all of the spaces on the board are occupied by
stones. The player whose color stones occupy the majority of spaces wins. In the
computer implementation of Othello which has been built for demonstrating the
planner, the computer plays for one side against a person (or itself). The planner
plays for the white side and the opponent plays for black. The initial configuration of
the sixty-four (8 x 8) square game board is as shown in Figure 5-1. Two black stones
and two white stones are initially placed in the center of the board. Black (the
opponent) is allowed to move first. In the example, which is taken from an actual

game, the moves of the planner (white) will be explained in terms of the contingency-
goal trees used to arrive at those moves. To make the planning sequence more

L1-G ainbig

2-5 2.nBiy pieog swen OTI1IHLO 0} uoneinbyuod leniu|
(09L€0) {r£1€0)

8 8
() L L
9 9
]]
| 14 14
f) > €
i 4 4
I I

H © 4 3 @ 0 9 V H © 4 3 d O 89 V

5-2

interesting, a number of moves already played b+ bath the black and white sides have
resuited in the configuration of the playing board shown in Figure 5-2.

Figure 4-1 showad the current contingency-go#’ tree tha? the p’.uner is
considering In the bottom left cornei of the boarg, white, which in ihis case is AREC,
has 2 play which wii altow 1t to occupy Square (C6), whi~h is two squares away from
the Corner (A8), tnus satisiyirg the Subgoal "ctrl_*_2_away". Having found this move,
ARES plays it cn a hynothetical-move board (. .e Figure 5-3) and then switches sides
tu play for black to see if there is an adversarial cuuntergoal whick will be achievable
as a result of ARES’ niove. Black's assumed countergoal of white's “play” is “NIL,”
and 80 ARES (playing tur black} backs up the tree one level tu the parent to check the
countergoal there. The parent goal to ARES “play” is “play_safe_(C&),” and the
assumed adversaria! countergoal is also “play_safe_(C6)." “Plwy_safe” is a goal
ebject defined such that a play will be 71ade on a given square arnv the cpponent will
not be able to turn the stone over. Jlack riow has the countergcal of trying to occupy
(C6). It can accomplish this in Cnhe o1 two ways: 1) play on the space if it is not
occupled and represent3 a valid move, or 2) attempt to turn over an opponent's piece
occupying the position. Since white is (in the hypothetical-move environment)
occupying (C6), black’s only hope is to attampt to turn over tiiat piece. Since a black
play at (C7) will a'icw it to do so, ARES makes this play for black on a new
hypotnetical-movs board (see Figure 5-4). ARES now switches back to its side again
and considers the most recently added node to the CGT (the black play at (C7)).
Since the countergoal of the black play is “NIL,’ ARES backs up to the black parent
goal of “turn_over_(C6),” the countergoal of which is also “turn_over_(C6).” ARES
now attempts to find a new white play which will result in the turnover of (C6). A play at
(B6) is such a move and so, as before, a new hypothetical board i; created and ARES’
new move is played on it (see Figure 5-5}. ARLZS switches sides back to black and
backs up as before to white’'s goal of “turn_over_(C86),” which is paired witr
“turn_over_(C6)" as a countergoal. Since black has a play at (A6) which will turn (C6)
over again, this move is piayed on a I ypothetical-move board at yet another level
(F.gure 5-6). Switching back to white, ARES locates another move, at (B7), which will
flip the target p.2ce (C6) back, and this play is made on the next-level hypothetical-
move board (Figure 5-7). Another switch is made to the black side,with ARES backing
up as before the the "turn_over_(C6)” goal. Black now has a play at (A8), which will
flip (CE) over again, and this move 1s, in turn, played on a hypothetical-move boara
(Figure 5-8). At this point, ARES does not yet realize that implicit in black’s play at (A8)

5-3

v -5 9Ny

(82 £0)

el —

I h_

N/

 weemt—— e r——

H 9 4 3 a 252 8 V

N MO < 0 © N ©

{(191e0)

-6 24nB)4

28

N

N/

O

=

3 d O 89 V

O < U ©W N~ o

(Y]

5-4

{r91€0)

9-§ IHNOIH

)

()

3

3

3 4d 9O

2

Y

O N~

N MO <

(carens

G- ainbi4

2

Y
N/

\,

H ©

=]

3 d O 8 V

N MO O O M~

5-5

{991£0)

8-§ a.nbig

N/

O

4

3 a O 9 V

N O W © N~ o

{s91€0)

-6 aunb)g

N/

H

9

E |

3 d 0 8 V

N MO T 1 O ~N ©

5-6

is the automatic failure of its upper-level goal of “improve_corner_(A8),” and so it
switches sides back to white and backs up the tree to the turnover goal. Examining the
success/failure conditions for this nods, ARES finds that, since black has occupied the
corner at (A8), the opponent has succeeded in defeating white’s objective. It does no
good to continue to attempt to turn over (C6), since the whole point of this play was to
set up the corner at (A8) and this present contingency has resulted in the loss of the
target corner.

It is important to notice that, without the success/failure tests, ARES would have
gone ahead looking for move sequences that would allow it to occupy (C6) and wouid
not have known that any move sequence that allows black to occupy the corner, even
if it results in the success of the subgoal, is a greater success for the opponent. Having
realized this implicit failure, however, ARES begins to replan. The first ctep is to pop
back up two levels in hypothetical worlds, returning to the situation before it made the
play at (B7) which led to the situation of black occupying the corner at (A8) (See
Figure 5-6). Now ARES proceeds to plan for white with a new goal of turning over
(C6) AND NOT playing at (B7). As is evident from an inspection of Board 5 (Figure 5-
6), there are no white moves other than (B7) that will flip C6 over. Thus, ARES must
search back even further, popping up another two levels in boards to where it was
before it played at (B6) (see Ficure 5-4). At this point its goal is to turn over (C6) AND
NOT play (B6). Here, ARES has another alternative: it can achieve this goal by
playing at (B7). It may seem peculiar that such a move would be considered since it
was a similar play at (B7) which allowed black to occupy the corner in an earlier
contingency, but there is no necessary reason to assume that by introducing it now, a
similar failure will occur (even though that is exactly what happens). Having
discovered this new move, ARES proceeds to create a new level of hypothetical-move
board (see Figure 5-9) and places this move on it. Switching sides as before and
backing up the goal tree for white, ARES is now looking for a move which will turn (C6)
back over. It discovers, as before, that by playing at (A8) it can turn the piece in
question (C6) over once again (see Figure 5-10). As before, after switching sides and
chezking its success/failure tests AREAS finds that its upper level goal has failed and
so it must once again atiempt to replan. Levels of hypothetical-mnve boards are
backed up to the situation as it was before ARES played at (B7) (see Figure 5-4). Now
the goal is to turn over (C6) AND NOT play (B6) AND NOT play (B7). As is obvious
from the game-board diagram, there are no availabie moves which will allow this goal
to be achieved. ARES, therefore, pops up two more levels in hypothetical-move

5-7

{651£0)

oL-g ainbid

)

N/

H

O

4

3 d O 8 V

N O < 0 O M~ o©

(291£0)

6-¢ 24nby

d

7
_/

N

)

)

N/

H

O

=]

3 d 0 8 V

N O < 0 O N~ ©

5-8

boards to the situation as it was before it played at (C6). As there are no other moves
that will allow ARES to occupy this square (C6), it abandons this target and will instead
try to see if there is another way in which it can improve its position in this corner.
ARES will continue to consider move-countermove sequences until it finds a winning
combination for itself which black cannot counter. The move/countermove tree that is
finally developed becomes ARES current strategic plan. The other contingency trees
are maintained along with their corresponding hypothetical-move boards. When black
next moves, ARES will compare the adversarial action with its current strategic plan to
see if the adversary is behaving as anticipated. If black’s move corresponds to ARES’
calculated best move for black, the current tactical plan is still valid and ARES can
automatically make its next move as indicated in the plan. If black’s move does not
correspond to what ARES expected black to do, it is possible that one of the following
conditions exists:

1. The adversary is unaware of ARES tactical plan or has abandoned the
target and will not react to ARES’ offensive, or

2. The adversary is aware of ARES’ tactical objective but has failed to identify
the best move sequence to thwart the plan, or

3. ARES has made an error in the assumpticn of adversarial countergoals.

ARES first considers that Case 2 is indeed what has happened and it searches
through its collection of stored CGTs and hypothetical-move boards to see if black may
have blundered and selected a poor countermove. If the given scenario is located
among the stored CGTs, the located CGT is used to update the current tactical plan
according to the new move sequence contained in the tree. Because ARES has
already thoroughly examined this tree, beginning with black’s countermove, it is just as
certain that black will fail in this sequence as it was in the original tactical plan.

If, on the other hand, ARES is unable to locate the black counter among its
stored CGTs, it immediately begins to develop a new tactical plan, taking into
consideration the new situation resulting from black’'s unexpected countermove. By
proceeding in this way, ARES is able to deal effectively with the possibility that the
adversary may have abandoned ARES' tactical target, or may be embarking on some
offensive of its own. In this case it is necessary for ARES to rethink a tactical plan
given the possibility that its opponent may have changed the environment in such a
way so as to be posing a serious challenge in some other part of the game board.

Such a reconsideration does not automatically mean that the original tactical plan will
be abandoned, only that other alternatives will be considered in light of the
adversary’s new action, and, if the original tactical plan is no longer the most
advantageous for realizing higher-level statistic goals, a new tactical plan will be
developed.

5-10

6. MANEUVER EXAMPLE

In addition to refining and formalizing the work conducted in Phase |, the Phase
Il effort extended the adversarial-planning mechanism from the two-player, perfect-
information, sequential-movement domains examined (primarily Othello) to a more
robust and realistic environment. Since the ultimate goal was a planner that can
effectively operate in battlefield environments, the researchers decided to create a
simple corps-maneuver-planning scenario as the target domain.

The school scenario used at the U.S. Army Command and General Staff
College, Ft. Leavenworth, KS, was selected as a basis for the new planning domain.
A wargame consisting of seven distinct maneuver units was abstracted from the
detailed scenario. This generalized scenario is depicted in Figure 6-1. The following
extract from the Corps operations text (lesson 3) describes the scenario the research
effort attempted to plan.

“The corps main attack will concentrate in the south (right) to
defeat the 1 GTA by rapid penetration of its main and second defense
belts thus destroying the continuity of threat defense and rear services
systems. The corps attack will be conducted with three mechanized
divisions attacking in sequence from north to south. At D-day, H-hour,
the 54th Mech Div attacks in the north (left); at H+12, the 53rd Mech Div
attacks in the center. The 52nd Mech Div is the corps main effort and
attacks at H+14 in the south (right). The sequence of the corps attack is
designed to cause the TRs in the second defense belt to shift nurth from
present positions against the supporting attacks in the north, thus
reducing the strength of threat forces in the zone of the main attack (52nd
Mech Div). The 54th Mech Div will attack through the 23rd Amd Div on
the left (north) to penetrate the main defense belt, then continue the
attack to penetrate the second defense belt, fix the 55 TR in zone if it
counterattacks, and secure objective 1 (NB2949). The 53rd Mech Div
attacks through elements of the 23rd Armd Div and 2@8th ACR in the
center to penetrate the main defense belt, fix the 115 TR, & TD, if it is
employed in zone; then secure objective 2 (NB4127). The 52nd Mech
Div, the main attack on the right (south), attacks to penetrate the main
defense belt, then maneuvers to secure objective 3 (NB592@). In the

6-1

event that threat forces do nct shift north as expected, the main effort will
be redesignated to the 54th Mech Div or the 53rd Mech Div.

“The corps flanks will be protected by the CENTAG supporting
attacks along each flank. The 54th Mech Div will prepare to protect the
corps northern flank (left) with the priority between PL HORSE and PL
SHARK; the 52nd Mech Div will prepare to protect the corps southern
flank (right) from PL ELK to PL SHARK.

“The 54th Mech Div and 53rd Mech Div relieve friendly defending
units, in zone, of responsibility for containment of threat forces along the
LD/LC by H+14 and H+18, respectively. The attacking divisions will
prepare to assist the rapid passage of exploiting forces as soon as the
assigned objective is secure. The 208th ACR prepares to follow the 54th
Mech and 53rd Mech Divs, in zone, in order to initiate phase Il of the
corps operation by a rapid passage and exploitation. The 25th Armd Div
prepares to follow the 52nd Mech Div or 53rd Mech Div, in zone, in order
to execute phase II of the corps plan.”

To simulate this problem the planning mechanism was adjusted to generate
plans of attack for multiple units, each capable of a variety of independent actions at
different times. Here, the major difference from the prior implementation is that a
single “move” for either the friendly or adversary side consists of a coordinated action
of several pieces (more than one unit). Each of these coordinated actions can be
countered by multiple enemy responses. As before, an appropriate response
consisting of some combination of unit actions is postulated as a contingency plan and
tested hypothetically through CGT generation to see how that possible response will
fare against possible counters. Once an appropriate response is located the planner
posts the action and updates the simulation. Planning is then undertaken for the other
side.

In order to decide the relative advantage or disadvantage of any particular
course of action, a simple outcome simulator was employed to calculate the extent to
which a given unit either defeated or was weakened by any unit with which it came in
contact. Failed courses of action for either side arose whenever an engagement led to
such a diminishment of the friendly force that a breakthrough could not be prevented.

6-2

A prototype knowledge base of goals and countergoals for the domain was
created by knowledge-engineering activities conducted internally at PGSC. In
addition, the Leavenworth course materials for the modeled domain provided an
additional source of both friendly and adversary goals.

The remainder of this section depicts the actual planning sequence conducted
by ARES in the corps-maneuver domain. In the series of storyboards which follow,
each space is occupied by a token. The storyboarus are numbered (1-16), and a
script for interpreting the planning sequence foliows:

(1} Starting positions. Friendly force on left, OPFOR on right. OPFOR goal is
to find an offensive plan against which the friendly force cannot defend.

(2) First contingency plan considers a single massive attack through the
central gap.

(3) Friendly attempts to counter with a shallow defense.
(4) After 12 hours, friendly force has lost one unit and others are weakened.

(5) After 24 hours, battle is still continuing in central gap, friendly forces are
further weakened.

(6) After 36 hours, OPFOR breaks through on southern edge of gap.

(7) After 48 hours, the friendly defense has clearly failed. Planner will now
back up and attempt to plan another defense against the OPFOR's single
massive attack.

(8) Aternative friendly defense will be defense in depth (using a 24-hour
decision cycle).

(9) After 24 hours, OPFOR makes initial breakthrough in northern region of
the gap.

(10) After 48 hours, friendly tank division has moved up from the southwest to
challenge advancing OPFOR divisions. Defense holds and a satistactory
plan has been discovered that can stop single massive attack by OPFOR.
Planner now backs up and attempts to replan for OPFOR.

(11) New contingency plan for OPFOR utilizes dual avenues of approach.

(12) Friendly force counters with defense in depth.

6-3

(13) Friendly force is weakening in area of lower OPFOR thrust.

(14) Friendly tank division moves in to meet advancing OPFOR &long lower
prong.

(15) OPFOR breaks through in the north.

(16) OPFOR advance continues in the north. Friendly defense has failed.

6-4

10

11

12

X X X eoo0o0e0e X
—_— — — — — o— — gMJ ~—X-— — — —
X o @®X X X X X
—— — -——x—-x—-—@ —— — — —
X X X ® X X X X
———-x——— —t— 00— — — —X— — -
X 0000000 X X X
e — @D — — —EE — —x—
X X X X X
- @ - - @ - EE— — —
® X X X X
e — @ —e—e— B3 BB EEx— —
X @ X 2060
————— o—eo —_— —X—
X X oo x o
—_—e— — — —— X—X— [— — —
X X XX ® X X
—%x— — (@D —xX— — —X— — — — —
e X eoeee ¢ oX X X ®X

—_— e et e @ e @ O s e . —— ——

6 7 8 9

Initial Position
Storyboard #i

6-5

10

11

12

13

——— Swms akesms et s

X

X X :
@ - — @
® X
—— — @ —e—s
X oX
n— avevam— eveamen v ve— .——.—.—
X X

X o000 o @ X X X ®oX
———® —— | — — — —x— —
X X X
—_— e,e— — e — O — O — — M — —_— — —

1 2 3 4 S 6 7 8 9 10 11 12 13

Single Massive Attack
Storyboard #2

6-6

10

11

12

X e 0Xx X X X ® X
—.— — — @ @D X . — —
X X X ® X X X X
_— — —X— ——— — —— —X— — —
X 0000 o X X X
X — — — @B W — — —x— —
X X X X X
—x— — — @@ W M E - - — —
o X X X X
— — — — —e— & x —
X ® X eoe0o0
_— — — — (M~ — — — —X— —
X X o0 X o
—_—— e e— e X X —— _—
X X XX e X X
—X— — — —x@D [BEwx —
e X o000 o o0X b X ® X
- — = — @@ — — — — —x— —
X X X
_— e e e O — O — . . — —

1 2 3 4 5 6 7 8 9 10 11 12 13
Shallow Defense Single Massive Attack
Storyboard #3

6-7

10

1

12

X X X o000 X
_—— = — — o— —Oo— —X— — — —
X ®© ®X X X X ® X
—— — — GID @D M — —eo— — — —
X X X ® X X X X
—_— e— —X—— ——— — — —X— — —
X 0 06 0000 X X X
—X— — — — @D by M3 B — —Xx— —
X X X X X
x—___..@__.___.
® X X X X
— —e—&¥) WY — —Xx— — —
X @ X oo o
_— ——— — — — —X— —
X X eeoex e
— (De—xpMjx— — — — — —_
X X XXx e X X
—_—X— — — —x@D M —x— - — — —
e X o000 o0X X X ® X
._.__..__x@ _____ X — —
X X X
—_— ,— — 0 — 00— 0 — — e — — —

Storyboard #4

6-8

10

11

12

X X X eoeoeo0oo0e X
— —y— —— — X — — —
X ®@®X X X X ® X
—e— — — D@D — —e— — — —
X X X ® X X X X
—_— = — X~ ——— — — —X— — —
x 0000 Q0OEO X X X
Y — — — ® B O — —x— —
X X X X X
Y — — — @@ - - — — —
® X X X X
- — = — = o— & F] — —x— — —
X X eeo
— t—— — — — — X— —
X X eeoex e
— DM X — X — — — — — —
x X XX ® X X
—_— X —X@D) M —X— — — — —
® X o000 o0X X X ®X
—_— — — — X — — — — —X-— —
X X X
—_— — —_ ———— — — — — — -

Storyboard #5

6-9

10

iR

12

—_ —— — —e— — x — —
X ® e X X X X ® X
—_—— — —-@xMD o _
X X X ® X X X X
— —— —X— ——— — — — X — —
xX 0000000 X X X
—Xe—— e— — — (@b) pan| jMD| M — —X— —
X X X X X
—X— — — — bug |iad [tA — — — — —
® X X X X
————— o— @A) — = —X— —
X @ X XX
—_—— e— —_— — g — — — —X— —
X X eex e
_ - — — —eMx—x— — — — — —
X X XXxX6e X X
—Xx— — — (@xp pv —X— — — — —
e X eeeoee eoo0x X X X
— — — — (@DXx M — — — — —x— —
X X X
—_— — —_ —t——— —_ —
1 2 3 4 5 6 7 8 9 10 11 12 13

Storyboard #6

6-10

10

11

12

X X X o000 X
—_— — —_— - — o— —O— —X— — — —
X ®@X X X X ® X
—e— — — (D x@D »fMD] — ° —_ —
X X X ® X X X X
_ —- —X— ——— — — —X— — —
x 0000000 X X X
_x____._@__.__x__._
X X X X X
—X~— ~— — [3AD] [3MD| [1AD] — —_— —
® X XX X
————— 2] dovn] — X— — —
X @ X eeoeo
—_— —- — = — *e—0— — — — — X — —
X X eex e
—_— —_ — — —Mx—X— — — — — —
X X XX e X X
—x— — — @x@ @ —x— — — — —
® X eoeee o0 X X @X
_ —_ — — @XM — — — — —X— —
X X X
—_— — — — 0 — 00— — — e — -

1 2 3 4 5 6 7 8 9 10 11 12 13

Defense Fails Breakthrough Succeeds
Storyboard #7

6-11

10

11

12

X X X o000 e0 X

—_—— - -) ° —_—x— — — —

X ® ® X X X X ® X

—o———-—x-—-——o————————-
X X X ® X X X X

—_ — Mx— —e—e— — — —x— — —

x 000600 00O X X X

__.x__.__........_@..__- —_— Y —
X X X X X

—— @ — — ® R - - — —
e X X X X

————— o— o] [au] X —
X o x so 0

—_— —— — - o—0— — — — — X — —
X X eex e

—_— = — — ——— X X— — = — — —
X X XX®@ X X

—x@ — — —x@ [mg [Mgx— — — — —
® X e e0ee0 @9 X X X ®&X

.__._.__._.. —_X— —
X X X

—_—e— — —,— 00— — — — — — —

1 2 3 4 s 6 7 8 9 10 11 12 13

Defense-In-Depth)]
24-hour Decision Cycle Single Massive Attack

Storyboard #8

6-12

1 —_— —_—— — e ——— —— — —_—
X X X eo0o0oe0e X
| - — — = — o —@— —X— — == —
X @ ®X X X X @ X
2| —e @D — —e— — — —
X X X ® X X X X
4 — — MDX— —e—o— — — —X— — —
X 060600000 X X X
| —x— — — — P —F — —x— —
X X X X x
o @ — —@mE - — — — —
® X X X X
= - o— & fl — —x— — —
X @ X eoe
) — o0 —_ —- —X— -~
X X eeoex e
O — ® AMD X — — — — — —
. X X XX ® X X
Y@ - — @B —x— — — — —
® X o000 o0 X X ®X
11 ___________ _____ X — —
X X X
12 | — o—eo O— — e — —— -
1 2 3 4 5 6 7 8 9 10 11 12 13

Storyboard #9

6-13

10

11

12

—_— — ® — —— — —

X X X eoeoe0eoee X
—_—— o— —o— —X— — — —
X ® @ X X X X ® X
—o— D) g — — o — — —
X X X ® x X X X
—_— — @MXx— ——— — — —X—— — —
x 00000 e X XX
e — — D — B — —x— —
X X X X X
—x— — — —EEE - - — — —
® X X X X
— —& — — —x— — —
X X eoe
—_——— — — ——— — — — — X — —
X X eeox e
—_— - M x —x— — — — — —
X X XxXXe® X X
@D — — —D B —x— — — — —
e X 00 oe0x X X ®X
————@® — — — — - — —
X X x
—_— — —_— — 0 — 00— — - —

Storyboard #10

6-14

10

11

12

X X

X o e0eX

e — @ — — —

X X
——@ - ~ @
® X
- — —® —
X @ X
—_— e e e e @ e - —
X
—_—— - — ——X—X—
x
— Y —
°
— = —® - - x
x X X

1 2 3 4 5 6 7 8 9 10 11 12

Dual Avenues of Approach
Storyboard #11

6-15

13

e

X X p 4 P X K X
——.—..—-.—-._—._—m....—- __-x._—._-—...-—-._—
x @ X X X x ® X
@ — —e— — T 7

X e X X X X

X
e — — — @) [2a0| — — [amo] ‘AAD!X-——- —
X X X X X
G-----x—-----—-—-mn--—-—---—--—-—----«-—-
® X xx X
R - R
X @ X eoe
8—-—-——-—-——-———-0——-0—-——--—-—-——-—-x—-——-—
x X eexeo
g---————-——-——-—-0--—:(-—--:(——--———--—-—-—-—-----'
_ X X XX® X X
10 --—x-—-—-—-—-x@ mo]mox—-——-—-—-———--———
e X eoee 86O6X x X ®X
11—v--—---—--—-'vswm——---—---—-—--—--x——-——
X X X

12

6 7 8 9 10 11 12 13

Defense-In-Depth \ Dual Avenues of Attack

12-hour Decision Cycle
Storyboard #1 2

6-16

1 ___ ° .
X X X eo0oo0oe0e X
2 ® ™MD |@— —Xx —
X ® ®@X X X X ®X
3 ° —x() o | — — o—
X X X ® X X X X
1 — -—@x— —_—— D: —_ — —X— — —
X 000000 X ¥ X
S X — AD| — — |oup]jeanx — —
X X X X X
6 -—x—@————mo
® X X X X
’ — &l — — —
X @ X eoe
8 _ o—eo —_— X
X X eeoex e
S — — o&—xjmOK — — —
X X XX @ X X
10 -—-x—-——————-x@ WMD| — X — — —— — -
® X o000 oo X X @ X
i (3i0) x[smp —_ —x
X X X
12 —0—0—0e —

Storyboard #13

6-17

X X X s0e00e8 X
— —g— |TMD|@g— —X — — — —
X ® @ X X X X ® X
—o— — — —x@AM| — —e— — — —
X X X ® X X X X
—_— — GDx — ..._._{suo' — e X — —
X 0000600 X X X
—X— — — — (@ [0} — — —[aOk— —
X X X X X
—X— — — — (D [— — — — — —
® X X X X
— — — — —¢—gM||MD)| — —Xx— — —
X @ X oo o
et L S S —
X X eoox o
- —f = — = — —
X X XX @ X X
—-x-———-—-x@ MD| — X — — — - —
o X o000 oo0x X X @X
— @DXsMD| ~— — — — —x e —
X X X

Storyboard #14

6-18

X X X

oo 00O X

— — — — —e—[e— —x— — — —
X ®®X X X X @ X
— 00— — — —X: XMD| ~— ° _— -
X X X ® X X X X
—_— — —Xe— —eo—@MD] — X — -
x o000 00e@ X XX
- — — DD ®E — x— —
X X X X X
—_—X—— == =— — — [a0][aaD)] — — — — —
® X X X X
—_— - o— &2a0] (2wl X -_
X @ X 3 W)
—_ — — — - o—0— — — X ——
X X eoeXx e
—_— — g x — x — —_
x X XXxe X X
—@® — — —@E —x —
e X o000 o0X X X eXx
— — — — GO — — X —
x X X
—_— e — — 00— — . — — .-
1 2 3 4 5 6 7 8 9 10 11 12 13

Storyboard #15

6-19

L [L
X X X eoeoeo0o0e0 X
2
_— = — —— —e— X _— -
X ® ®0X X X X ® X
3| — @— — —|7MD|x6MD|xX — — ° -
X X X ® X X X X
X 000000 X X X
5| —x— — — — @[] — (— —
X X X X X
6 —Xe— — == 31D [3AD] [1AD]| 4AD _—
e X X X X
7
—_— — — — —¢—¢— |2MD X —
X @ X o000
8l — — — — —e—o— X —
X X eeXx e
. X X XXxe X X
0 _x@® — — —x@ [m0] —x —
o X o000 o00X X X @X
Ml — — — — @fm] — — X— —
X X X

1 2 3 4 5 6 7 8 9 10 11 12 13
Storyboard #16

6-20

7. SUMMARY
The original goals of the Phase Il effort were:

Develop a Plan Language for Pattern-directed Planning,

Develop a Plan Language for Robot Planning,

Investigate Adversarial Planning Issues in Robot Problem Solving,
Extend the planning system to multi-agent domains, and
Investigate approaches to interactive Planning.

o s~

All of these objectives have been achieved to a certain extent. The most
significant success was the extension of the planning mechanism to the corps-
maneuver problems, which involved both multiple agents (Goal #4) and interactive
planning (Goal #5). Unfortunately, the researchers discovered that adversarial
contingency planning is not as appropriate in low-level, reactive domains such as
robotics as it is in higher-level, more-strategic environments. This is undoubtedly due
to the fact that the search space examined by the planner, although a mere fraction of
that examined by other planners, is yet sizable enough to require significant time for
computation.

The efforts to develop a planning “language” were also successful in that a
generic plan parser was defined which is capable of developing plans of action based
on input goals which can represent actions in any pre-defined domain.

Possibilities for further research can best be broken down into two areas. First,
the basic features of the planner’s goal representation could easily be formalized into
a grammar which would allow for easier processing and manipulation of success and
failure tests. Currently, these tests are being added to long lists that develop as a
particular course of action develops. Such a grammar would make it possible to make
these lists more manageable and to reduce backtracking; deKleer (1985) suggests
such a grammar.

A second possibility for further research is in the area of distributed or paraliel
planning. Currently, the planning process is understood in terms of a sequential linear
model. Real-life planning in such domains as Command and Control, however, is
conducted in parallel. The primary problem is the difficulty in knowing how to partition

7-1

planning bases so as to make them independent. If they are not treated as
independent, knowing how changes in the situation affect different components is
difficult. Essentially the problem is knowing what information is important to a planner
working on some sub-problem.

REFERENCES

Berliner, Hans J., {Some Necessary Conditions For a Master Chess Program,” Prog¢,

Third International Joint Conference on_ Artificial Intelligence, Stanford
University Press: Stanford, CA, 1973.

Berliner, Hans J., “Chess As Problem Solving,” The Development of A Tactics
Analyzer, Doctoral Dissertation, Carnegie Mellon University, 1975.

deKleer, Johan, “Choices Without Backtracking.” Proc Ninth International Joint
Conference on Adificial Intelligence, 1985.

Lehner, P.E., and Mcintyre, James R., “Developing a General Contingency Planner for
Adversarial Planning,” PAR Technology Corporation Report 84-125.

McCarthy, John, and Hayes, Patrick J., “Some Philosophical Problems from the
Standpoint of Artificial Intelligence,” in Machine Intelligence 4, edited by
Bernard Melzer and Donald Michie, Edinburgh Univ. Press, Edinburgh,
Scotland, 1969.

Nilsson, Nils J., Principles of Arificial Intelligence. Tioga Publishing Company, Palo
Alto, CA, 1980.

Reltment W. and WIICOX B. “Modehng Tactical Analysns and Problem Solvmg in Go,”

21 33 21 44 1979

Sacerdoti, Earl D., “Problem Solving Tactics,” Proc. Sixth International Joint
nference on Adificial Intelligence, Tokyo, Japan, 1979.

Wilkins, D., “Using Patterns and Plans to Solve Problems and Control Search,”

Stanford Artificial Intelligence Laboratory Memo AIM-329, Stanford University,
1979.

R-1

APPENDIX A

PROGRAM 1

DEMONSTRATION INSTRUCTION

“FL(:BYTE~-SIZE & :LENGTH-IN-BLOCKS 4

IAME* INAME ‘ADEMOINST®

+STRUCTIONS FOR RUNNING

SLENGTH-IN-RYTES
tVERSION 3)

3789 JTHOFR *WAKRGAME® :CkEATI

:TYPE "L°

A4 DEMONSTRATION OF AKES FOR THE WARGAME

-~ SETITIMi UP THE DEMONSTRATION
(1) 1n the lisp interpreter enter
(2) then enver *(dires)", you should then see 3 listing
of the top level directory for ‘usrgame”
using the mouse (left button) select the file ‘afinalgame.l’
then enter "E*, this will load the editor, load the file
into a buffer., ang open the buffered file for eaiting
once in the editor entzr *META-:', thics will allow you
io enter =n extendsd command (locok st window 3t bottom of
soreen)

(&) enter ‘compile bufier*® znd retwrn,
buffer into Lhe lisp environment
after compilstion i3 compleve enter
return you to the directory
repeat steps (3} to (7) above for the following files in order:

‘afinalterrain.i’

‘afinalqoaldef .l

‘afinalacats.l’
repeat <teps (3) 1o v} for the file ‘afinalares.l’
after step (9} all necessary files for execution should be compiled
into the lysp environment and you should still ne in the buffer
‘3finalares.l’
while the arrow is 1n the m3in window hit the riaht button, when the
mersy appezrs thare the option ‘Hi1ll or Save Buffesrs’, when in
this option kill the buffers ‘3finalgame.l’, ‘3finslqoalsz.l’,
‘afinalqoaldef.l”, snd ‘3finszlterrain.l’. Whiie this step a1s
optiomal +the planner has 3 tendency to overload virtual memory.
Boing this step will 3veoid this problem during 3 demo!
while in the file ‘3afinalares.l’ enter °"RREAK®, this will open wup
a window 1nto the lisp environment
enter *(display realbkoard t)*, thie will clear the screen 3nd display the
present board position
enter *(retrieve_game ‘ademoqgame.l)®, this step 15 optional hbut will cut
your demo Jdown from two hours to 10 minutes, in particular this file
contains the results of previous path finding problems mabking it unnessecar:
to wait while the system does path finding.
enter *(plan fg03l eqoal t)*, this will start
3after each new board position,
following commands useful:

{login ‘uarqame)

(3)
(4)

5

{(3)

P
21

this will compile the orecent

(7

-
a

*META~CTFL-1", this will

(8)

(N
(10)

(11)

(1
(13)

(14)

the planner going

the planner will break. you may find the

(15)
t16)

(3) °"RESUME" ~-- this will exit the break and continue the planning sessior
{h) *(display_orders ‘hypboard S)* where § can be "friena® or *enemy’

this wi1ll display the moet recent ordere to eithner sirle
(z) *(display_wunit_status ‘hypbtoard U)*® where U 1s any wnit identifier

this will display the present status of 3ny unit
td) *(pprint (reverse (first cgt)))® -- +this will display 211 soals

the planner processed to get to the present posation for side friena
(e) *(pprint (reverse (second cat)))® -- same 3s (d) for side ernemy

A-2

(17)

(18)

(19)
(200
(21)
(22>

(£f) *CLEARSCREEN® useful to do

(9) *(cursorpos 50)° moves the

(h) *(display hypboard t)* --
board position

note that the planner is quite

bhefore (J4) or (e)
cursor just under the board
redisplays the present hypotheticsl

fast except when it does 3 backup, backups

and restarts usually take 3-S5 minutes (JIM we can cut this to 3 few seconids

when we get back to work?

when everything is finished enter °*ARORT*®*, this will put you back

irm the ‘afinalares.l’ buffer
enter °*SYSTEM-L® this will put

you back 1n the top level lisp listener

in the lisp listener enter °*(logout)’

enter "(siiZhalt)’

proceed to turn of the LMARDA machine

PROGRAM 2

TERRAIN

LMFL(:RYTE~-SIZE 8 :LENGTH-IN-BLOCKS 11

:LENGTH-IN-BYTES 11151

WAKRGAME® :NAME °*AFINALTERRAIN®' :TYPE °"L® :VEKSION 1)

; this file contains an example game

3 3 g9ame includes 3 terrain_board and 3 set of units

y for each side

(defvar terrain_board nil)

$ terrain_board will be 3 glotal variable that defines

; the koard

s the following is how the terrain board is defined

(setq terr3in_btoard .

'4(§ S % % % % 5 % % S 5 % % 5 9 S %5
(5 nil 1 nil 1 nil 1 mil 1 nil S mil 1 il 1 il 1 nal
t¢(¢ 1 2 2 1 1 1 1 2 1 s S 5 % & 1 2
(% il 1 nil 1 nil 1 P2l 1 mil S mil 1 M3l S il 1 mil
(¢ 2 % 5 21 1 1 1 1 2 1 2 1 1 1 1 2
(5 il S ril 1 nil 1 nil 1 Ril 2 nil 2 il 1 Ril 1 mil
(¢ 1 2 211 1 111 2 11 % 2 1 1 2
(% nil 1 nil 1 nil 2 nil 1 n2l S nil S nil 1 mil 1 mal
(¢ 1 11 1 1 1 1 1 2 8§ 5 S5 S S § S 1
(5 nil 2 nil 1 nil 1 nil 1 il 1 il 1 mil 1 il 1 mil
(612 2111111 111 1 1 1 11
(5 mi1l 2 mil 1 nil 1 mil 1 nil 1 mil 1 nil 1 mil 1 nil
(¢ 1+ 1 5 2 1 1 11 1 1 1 1 1 1 1 1 1
(5 mil 3} nil 1 nil 2 nil 1 nil S mil S m21 1 nil 1 nil
(¢ 1 25 2 1 1 11 1 5 5% S 1 1 1 1 1
(5 nl lnil 1 nrill ril 1 ml S ml S naeil 1l il 1l Ail
(¢ 11 2 1 2 1 1 1 1 % 5 2 % 1 1 1 1
(S nil 1 nil 1 nil 1 n2l 1 il 5 nil 2 Ril 2 nil 1 nal
(¢ 111 2 1 1 1 1 1 2 1 2 2 S 1 1 1
(% nil 2 pil 1 nil 1 nmil 1 mil 2 nil 1 mil 1 il 2 ml
(¢ 11 %1 2 1 11 5% S & % 1 5 5 2 1
(5 il 1 nil 1 ril 1 nil 1 nil 2 nil 1 mil 1 nil 1 m1l
(¢ 11 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1
(S nil 1 m1l1 1 nil 1 nil S nil S mil 5 mil 1 nmil 1 ral
(s § 5 5 § 5§ %8 § % 5§ 5 5§ 5 § 5 9 5 §
in additions to the terrain

in

BB I3 WS N S @0 U 4 e T T gy O

paths lists the alternative paths of attack for

qeneral_area

outproo
(enemy (

are defined below
the terrain board defined above there are four corridors

for each corridor the following things are identifie.d
defend_points lists of sets of defensive points for each side

(N et bt et b ot b fed Pl ped b hed b g Bt bt b b 0 LR LD e L

n

2
—

2 2
AR X RS
[RCR

[

pm}

nil
1
nil
1
nil
2
n1l
1
nil
1
ril
1
n1l
1
nil

S

foruward most defend points are listed first

at present these paths are the same for both sides
but this showld later be chansed

(7

of the corrador
‘defend_points “(

2))

(friernd

o6 3Y»N»N

¢ ((5 3

A-5

(6 32)))

LN et b=t bt B ot bt foed bt e el B BD bt D) B b B B ped e b e b U]

IAUTHOR

nil

n1l

3
4

nil
1

nil
"

n1l
2

nil
”

nil
a3

n1l
1
nil
1
nil
1
il
1
nil

[
]

b Pt B DD o 0D 0 bt £ o et Bt bt B B M B et b b = D (T

is 3 list of a1l unit locations in the aeneral sres

*WARGAME®

S

nil
1
nil
1
nil
1
il
2

nil
1
nil

b]
-~

nil
1
nil
1
nil
2
nil
S
nil
1
nil
S

OO bt ot bt B 4t Bk bbbt e ot ot el Bl b fe? D) bt b e et b bl ()

1tself that are 3 rmumber of features of 3 board
that are looked 3t by the kriowledge base
these features are defined a3 properties below
corridors of attach

5

nil
1
ril
1
nil
1
nil
1
nil
-~

riil
1
nil
1
nil
1
nil
1
nil
1
nil
1
nil

|
7

:ClI

GEL R N L NN RN FURI AN RLBLURUNLRLRONL RURL LR

‘corridorl)
(putprop “paths 7(((5 3) (6 4) (7 3)) ((5 3) (6 2) (7 22
(<5 3) (6 3) (7 4)))
‘corridorl)
(putprop ‘general_area “((4 2) (4 3) (4 4) (5 2) (5 3) {5 4) (6 2Z) (6 3) (6 &)
(7 2) (7 2 (7 4) (8 2) (8 3) (8 4))
‘corridorl)
(putprop ‘center_point ‘(6 3) ‘corridorl)
{(putprop ‘deferd_points ' (friend ¢ ({3 3) (5 6)) (6 Sy 75 &)) (5 5y (6 6))
(6 5) (6 6))))
tenemy (({7 6) L8 5)) ({7 &) (7 3)) ({7 6) (6 5)))
‘corridor2)
{putprop ‘paths ’'(((5 S) (6 S) (7 5)) {(5 6) (6 7) (7 6)) ({5 H) 6 6) (7 7)))
‘corridor)
(putprop ‘general_area '((4 5) (4 6) (4 7) (5 T) (5 6) (5 7
(6 5) (6 6) (6 7) (7 5) (7 6) (7 7}
(8) (8 6) (87 (9 8 (967 (9 7))
‘corridor)
iputprop ‘center_point ‘{6 6) ‘corridor2)
(putprop “defend_points 7: ‘friend (({5 10)) :6 10)))
(ememy (((7 9) (7 10)) ({6 9) (7 1033 ({6 10G))))
‘corridor3)
(putprop ’“paths ‘{ ({5 10) /56 9) (7 8)) (5 9) (G %) (7 9}
((S5 10) (6 10) (7 103}
‘corridor3)
(putprop ‘gener3l_srea ‘¢ (4 &} (5 8) (b 8) (7 &) (3 8)
(4 9) (S5 9) (G 9) (7 9) (8 N
(4 10) (5 10) (6 10) (7 19) (8 1¢C)
‘corridor3)
(putprop ‘center_point ‘(6 9) ‘corrador3d>
(putprop ‘defervdi_poimts “((friemnd (((4 11)) (S 112} ((6 110}) ?
(enemy ¢ ((7 11)) ((6 113 445 11y} >))
‘corridor4)
{putprop ‘paths “(({4 11) 45 11) (6 12) (7 11)) (4 11) ¢S 12) <6 11) (7 12>
‘corridor4)
(putprop ‘seneral_area ‘((4 11 (5 113 (6 11) (27 11) (8 11:
(4.12) (5 12) (6 12) (7 12) (8 12))
‘corridorsg)
(putprop ‘center_point ‘(6 11) ‘corridord)
for units that must backup the 3attack or defense of two or more corridors
support areas are defined
thege support areas represent where these units
should locate btefore moving into one of the zupported corridors
;separate support_sreas are defimed for the friendly and eremy side
{putprop ‘support_areas ‘(((corridorl corridorl)
C (2 4) (1 3) (1 4) (1 §) (2 2) (2 4) (2 5) 12 3) «2 4) i3 % N
({corridor2 corridor3)
C (2 7)Y (1 6) (1 7) (1 2) €2 &Y ¢2 7)) (2 8y (3 6) (3 7 3 38y M
{(corridor2 corridors)
¢ (2 10) (1 9) (1 10) (1 11) (2 9
(2 10) (2 11) (2 9 (3 10) (3 11) »
((corridor2 corridor3 corridor4)
((2 8) (2 9) (3 8) (3 &) 1)
({corridorl corridorZ rorrigdor3)
((2 5 (26) (35 (3 6)
)

‘a8 9E My ey

‘friend)
(putprop ‘support_areas ‘{({((corridorl corridor2)
((11 S) (10 4) (10 35) (10 6) (11 4) (11 S) (11 &)
(12 4) (12 9) (12 6})
{(corridor2 corridor3)
¢ (10 7) (9 6) (9 7) (9 8) (10 6) (10 7) <10 8)

(11 6) (11 7) (11 8) »)
({corridor3 corridor4)
¢ (11 11) €10 10) (10 11> (10 12) (11 10) (11 11> (11 12)

(12 10 (12 11) (12 12y)
{{corridorl corridor2 corridor2)
¢ (10 S5) (10 6) (11 5) (11 6) »)
((corridor2 corridor3 corridor4)
¢ (10 &) (10 9) (11 8) (11 9))
)
‘enemy)
once the zerrain board is specified then units can ke glsced on the board
to dJefin 3 startina position this 13 done below
in effect the following 13 3n erakcle of an 1nitial set up
{setq realtoard terrsin_bosrdg)
(putprop ‘time 0 ‘realboard)
(setq friendly_units nil}
(setq enemv_units nil)
(setq all_units nil)
sin the unit defintions below
define_unit sets up the property lists that Jdefine each unit
put_unit_on_board actual puts the unit on the reslboard

)

ELI A Y

e Nt

(define_unit ‘14D ‘enemy ‘1st ‘armour ‘division 12 9 8.5 4 748 §) 1)
(put_unit_on_board ‘realboard ‘1Al (8 6))

(define_unit ‘24D ‘enemy ‘2nd ‘armour ‘division 12 9 8.5 4 ‘<8 S; to
(put_unit_or_board ‘realboard ‘2AD ‘(8 S?)

(define_urit ‘3A0 ‘enemv ‘3rd ‘armour ‘division 12 9 8.5 4 {2 7) t)
(put_unit_cn_toard ‘reslboard ‘3A1 72 7))

(define_unit ‘4AD ’‘enemy ‘4th ‘zrmour ‘division 12 9 8.5 4 ‘(2 6) {2
(put_wunit_on_board ‘resaltoard “4AD - {9 6))

(define_unit ‘1IMD ‘enemy ‘lst “infantry ‘division 10 ¢ 6 4 (9 &) t)
(put_unit_on_board ‘realboard ’1MI 7 (9 5)

(define_unit ‘28D ‘enemy ‘2nd ‘infantry ‘division 10 92 5 4 (10 7) ¢
(put_unit_on_board ‘realtioard “2MD ‘(10 7))

(define_unit ‘3MD ‘enemy ‘3rd ‘infantry ’‘division 10 9 6 4 7¢9 7 ¢
(put_unit_cn_board ‘realboard ‘3HD ‘(9 7))

(define_unit “4AMD ‘enemy ‘3rd ‘infantry ‘divizion 10 9 6 4 <9 9 1)
{put_unit_on_board ‘realboard ‘4MD ‘(9 9))

(define_unit ‘SHD ‘enemy ‘3rd ‘infantry ‘division 10 9 6 4 (7 1., %)
(put_umt_on_board ‘reslboard 'SHI 7(7 11)}

(define_unit "6MD ‘onemy ‘3rd ‘infantry ‘division 10 9 6 4 “4{8 2) t;
(put_unit_on_btoard ‘realboard ‘6GHMD “I8 2))

(define_unii ‘7ML ‘enemv ’3rd ‘inf3ntry ‘divicion 10 9 6 4 7(3 2} t)
{put_unit_on_btoard ‘realboard ‘7MD ‘(2 2):

(define_wunit “1CK ‘friend ‘lst ‘cavalry ‘reaiment S 5 7 4 7(5 50 t)
(put_unit_on_board ‘realboard “1CK (6 6))

(define_usmt “1TR ‘friend “1st ‘isnk “davision 10 9 7 4 713 &2 4
(puyt_unit_c=- _bosrd ‘realboard "ITH ‘2 &)}

tdefine_urat ‘2I0 ‘friend ‘2nd ‘tank “divizion 1D 9 7 4 ‘¢4 (1) t2
(put_unit_on_board ‘reslbosrd “2ZI0 “(4 10)

(define_uras ‘2I0 ‘fraiend ‘3rd ‘tank ‘divasion 190 ¢ 7 4 773 4) 12

A-17

tput_unit_on_board ‘realboard ‘3TD ‘(3 4))
{define_unit ‘210 ‘friend ‘2nd ‘infantry ’‘division 2@ 10
fput_unit_on_board ‘realboard ‘2ID ‘(4 7))
(define_unit ‘11D “friend ’lst ‘infantry ‘division 8 10 7 4 ‘(4 5} ¢)
{put_unit_on_board ‘realboard ‘1ID ‘(4 5))
(define_unit "3ID “friend ’'3rd ‘infantry ‘division 8 10
‘put _unit_on_board ‘realboard ‘2ID ‘(4 11))
(define_unit 41D ‘friend ‘4th ‘infantry ’‘division 8 10 7 4 ‘(5 2) t)
(put_unit_on_board ‘realboard ‘&I ‘(S 2))
at this point the entire board has been Jefined
the following is 3 list of top level qo0als
if vou understand how the 903l defintions work vou
shousld be able to pick up the meaning of these gqo3ls
(setq esqoall ‘(attack_corridors (((corridorl (7mq 6md lad Zmd))
(corridor3 (2md 4md 23d 434)))
3
fsetq esa0312 ‘‘defend_corridors ({((corridorZ (134 23d)} ‘corridord (Sad)??
713
{setq eacall (1::t ’'sndszim (list esqoall es203ilii>?
tsetq es20313 ’“atisck_corridors {ifcorridor2 (lad 233 333 334 lad 3mc 6md))?
5)))
{setq esqo03ld ‘(defend_corridors ({{corridorl (7ad)) ‘corridor3 {4sd Zad))? ‘carridc
7yn
{setq e90312 (list ‘andsims (list es590312 esg0al4)))
{setq 590313 - (attsck_corridors ({{(corradorl (iad 2ad 4s33)?}
(ecorrirdor3 (33d 4md 3md))}) 5)))
{setq esq03l6 ‘{defens_corridors (((corridorl (5sd)} (corridorq (Smd)))
7))
{setq es@03al? ‘fsupport_plan { ¢ (((corridorl defend) {corridor2 sttack)) (7sd):?
({{corridorZ attack) (corraidor3 attack)} lmd}}
(({corridor3 sttack) {(corridor4 defend)) (2md)))>
2)}:
{setq 90313 ‘list “andsim (list 2590315 e€s520316 es5903171)1
'se1q es%031l8 “(3ttsck_corridors ({(corridorl (5md 7m3 lsmal}
(corridor2 (lad 23d 33d4)))
S»
isetg esqo0al9 ‘{Jefend_corridors (((corridor2 {(4md 3ad)) icorcidord (Smd))?
7))
(setq 59023110 ‘(support_plan (((({(corridorl attack) icorridor2 sttack)) ‘2md 4-
2))}
{setq eg903l4 (list ‘andsim (list es520318 es5203l19 €52903110)))
fsetq eq0al (list ‘or (list eg90312 eg90313):)
(setq fqo0all ‘(defend_corridors ({((corridorl {414 3td)) fcorriderl 7114 214 icry:
(corridor2 (1td 2tdj) (corraidord (3id))) 7))
{setq fsqoall ’‘(Jefend_corridors (((corrigorl (4i2}) {corridorl (i1i1d icr))

\.,
>

‘(4 73 t)

~
>

‘(4 11))

IR I ENE]

(corridor3 (2t3)) (corridord4 (214233 7))}
‘setq f£5490312 ‘support_plan (¢ ¢ ({corridor]l Jdefend) (corridcrl Jefend)? (3td)
({(corridorl defend) (corridor3 Jeferd:: :1:ta)
¢ {(corridor2 defend) (corridor4 defend)) (2idg4)
2
{setg f203l2 (1:8% “andsiw 1list fsa03il 390631201
{(setq 590312
“tsugpoert_plan
t ¢ ¢ ((cor-1uorl deferd) (corridorl Jdefend) ‘corridors defendd:
{ (f(corridor2 defend) fcorridor3 defend! :corr:29rd4 scfenad: ¢

-t
-

(Y'Y
-

te
>
1Y

-

A-8

Y
(sety 'qo3l3 (list ‘andsim (list fsgoall fsgo0al3:))
(setq {a~3l (list ‘or (list f403l2 fq90a13)))

PROGRAM 3

GOAL DEFINITION PARAMETERS

A-10

LMEL(:RYTE~SIZE 8 :LENGTH-IN-ELOCKS 2 :LENGTH-IN~-BYTES 1752 :AUTHOE °*WARGAME' :CKE
KGAME®" INAME °"AFINALGOALDEF®* :TYPE °*L*® :VERSION 1)

these are the parameters for all goal definition
at present procedures used im 3 goal definition c3nm use no
other parameters ~- this is bad and should be replaced with
macros someday
(defvar gtmpgoal nil)
y this is the 703l rname
(defvar atmnpargs nil)
5 31l arguements of the ao3al name are in this list
(defvar qtimpbname na1s)
+ this specifies the hkoard name
(defvar gtmpside nil)
this is the side beirny processed
makeqgoal
a simple routine that puts specifed lisp code on property
list of 2 goal
(defun makegoal (call)
(putprop ‘type ‘specific (car call))
(putprop ‘subgozl nil (car c3ll))
(putprop ‘counterqoal ‘universe (car ¢all))
(putprop ‘feasibkle t (car call))
(putprop ‘succeeded_if rnil (car call))
(putprop "failed_if mil (car call))
(putprop “dont_continue_1f nil (car call))
the atiove putprops szt default values
the proq helow replaces default vslues with values
specified in gosl defimitionm
(progq {(gname cur lst)
.{setq grname (car c2all) 1lst (eddr call))
(putprop ‘arqs (cadr call) griame)
loopl
(setq cur (car 1lst) lst (cdr lst))
(and cur (putprop (car cur) (cadr cur) gname))
(and 1zt (90 loopl))
(return gnamel))
process_goal
retrieves specific property and evals 1t after settirng up
necessary qlobals
this 1s done by setting wp the four 903l definition arquementc
and processing type_process
(defun process_noal (bname g0al side type_process)
(setq g9tmpgoal (ca3r g5031) atmpargs (cadr qo03l)
gtmpbriame wnamne g9tmpride side)
(eval (qet type_process (c3r q03l1)))

“o wn e we

EYIT LRSTY
e 48 sy

% ws we wa ¢

Note this approach to defining g303ls should be replaced with

3 sonhisticated soal description larnquane

an important question 1s however how much such 3 lanquage should be
Jomain dependent

DT TR LT e

A-il

PROGRAM 4

GOAL DEFINITION STRUCTURE

LMFL(:BYTE-SIZE 8 :LENGTH-IN-RLOCKS 35 :LENGTH-IN-BYTES 35537 (AUTHOR °*WARGAME® :CRI

WARGAME® :NAME "AFINALGQALS" :TYPE *L* :VERSION 1)

Wl qu €9 98 BV WU G an PR T AP qo WS g FE g FS 50 TP gu AT 40 T 3z S0 g 00 4 B0 an 08 ea @0 e NS S8 W 1y 00 #5 9s ‘ou FE BE er IS el e

in finalgqame.l
the 9021 definition which 15 3 frame-like representation
has the followingq structure

(m3akeqoal

’{go03lname (arauements)
(Lype AkikkkkAkk)
feubnoal kkikkXk#)
(counterqgoal krxtkxkik)
(feasible if kikkkkkAkkk)
(succeeded_if *kiiiikik)
(farled_if Akkkkkkak)
(dont_containue_1f AxikkhAkik)
these elements of the aoal structure cszn be i1nterpreted s follouws
q903lname -~ is the name of the 5031 -- 21t must be 3 unigue stom
arquemnents - 1s a list of the arguements used bv the goal
wher 3 g031 definition 15 beirng processed these srguemernts
contzined irn the alobal variable gtwmparas
type - =3llows characterisstion of the qoal
not wsed now but will be wseful 1n future versions ---
default is specific
subgoal - the eval of the contents of the subaoal slot must
evaluate to 3 list of subqoals —-- deiault 1s nmal
couynterqoal ~ the eval of the contents of ihe counteraosl zlot must
eval to 3 list of acceptable counteéraosla
this ciot 1s not used for the warasme becauce bul
is very useful for ¢inale rove-countermnove sames such
as chess 20 othello -~ default 15 ‘universe
feasibile - a procedure that should eval to t or ral
to 1ndicate wnether 1t 15 feasitble to pursue the
903l 1n the present situation -- default 1¢ t
succeeded_if - a procecure that should eval to t or mal
to irndicate whether the 9031 has been achieved
in the present situation -- defauylt 1s nal
failed_if - 3 procedure that should eval to t or nal
to i1ndicate uhether the goal has failerl
in the present situstion -- default 15 ral
dont_continue_1f - 3 procedure thst should eval to bt or niid
to indicate whether the cosl hsz become irrelevant

[

-3

but -annot be marved 35 succeeded or fii1led -- default 13 nyd

SGENERIC GOALS

the following are aeneric ao3ls th3at can be used 1n snv dJomsin

they represent btnowledae abowut ao3ls th3t 1s i1ndependent of lnowledae
abiout 3 domain

andsim [jeneric

subgoal is =ndsim of zuteo3l of the g903ls 1n 1ts srausnents

fai1led_1f 3ny one subeosl is a3 failure

succeeded_if 311 of 1is zubgo3ls succeer

dont_continue_i:f not 311 but 23t least one subqoszl succeeds

A-13

(makeqoal
‘(andsim (g0als)

(Lype generic)
tsubgoal is 2 list that equals =all possible combinations of 3l
ssubanals of the g90als in the andsim arquement
(subgoal
(prog (tmpl tmpl tmpbname tmpside)
(setq tmpl qtmparags tmpbname gtmpbiname tmpside gtmpside)
loopl
(setqg tmp2 (coms {process_nmoal tmpbrname (car twmpl) tmpside *subgec .., *mpl))
tarnd (setq tmpl {(cdr tmpl)) {ao loopl))
(setg tmp2 (remove ‘no_lonaer_relevant tmp2))
(arpd (null tmpl) (return ‘no_lonqer_relevant))
t loopl sets all subaos’le for each go3l
setqg tmpl (3ll_combinatiors 4anl) Lmpl nil)
$ tmpl is mow list of 31l combimations of subge 1,
inopld
{setg tmpZ (coms (list ‘“sndsim ‘car tmol:) tmopl)
(and (setq tmpl (codr tmpl)) {s0 loopl):!
! now each list of subaosls 15 andsim subzoal
(return tmp2)
; list of amdsims is now returnesd
>)
sif all of the component go03ls of the andsim succeed then the sndeim has succes
(succeeded_if
(proq (tmpl tmobname tmpside relt)
(setq tmpl gtmparas tmpbrame atmpbname tmpside atmpside)
loopl
{setg rslt (process_noal tmpbrname {(car tmpl) tapside ‘succeeded if))
(and (rull rslt) creturn nald)
{and (setg tmpl t(cdr impl}) {20 loopll)
(return (list ‘succeeded tmpside))))
s1f just one subgoal of the component go0als has failed thnen the andsim nas f3il
(fai1led_if
(prog (tmpl tmpbriame tmpside rslt)d
(setg tmpl qtmparaqs tmpbname gimpbname tmpside atmpside)
loopl
(setqg rslt (process_q0a3l tmpbname (car tmpl) tmpside ‘f31led if))
(and rslt (return (list ‘failed tmpside (car tmpl) rsisd)?
(and (setq tmpl (cdr tmpl)) (g0 loopl))))
s1f any of the component subgqoals of ihe andsim should rnotr be continued then
sdont continue the sndsim
(Jont_continue _af
(proqg {(tmpl tmpbrname tmpside rclt)
(setg tmpl a9tmparqs tmpbrame gimpbnrname tmpside gimpside)
loopl
{setq rslt (process_aoal tmpbname (car tmpl) tmpside ‘dont _continue 1f):
‘(and (rusll rslt)
(setq rzlt (process_qoal tmponame (car tmol) tmnside ’‘succeeded_i1f)))
(and rslt (return 'list “domt_continue_1f tmoside 7ci3r wmpl) rsli)))
(and (setq tmpl (cdr tmpl)») (2o loopl))))
)

L

N
]
I

P orsim aeneric
; pursues multiple simultaneous qoals and f31ls 1f 3ll @oal:z fai:

3

A-14

s~ wp 0O wu

succeeded_i1f 3ny one subgoal 15 a success

failed_1f all of its subgoals failed

dont_continue_if not all but at least one sub3oal f3ils
makeqoal

‘(orsim (goals)

(type generic)

ssubgoal evals to a list of 311 combinations of all subqoals

tof tne component g9oals of goals

(subgoal

(proq (tmpl tmpl tmpbrame tmpside)

(setq tmpl g9tmparas itmpbname gtmpbname tmpside gtmpside)
loopl

{setq tmp2 (coms (process_nmcal tmpbname (car tmpl) tmpside ‘subacal, tmp2))

‘and (setag tmpl (cdr tmpl)) (g0 loopl))

fsetq tmp2 (remove ‘no_lonaer_relevant tmp2)}

+ loopl gets 3il subgoals for =ach go03l

(setqg tmpl (31l _combinations tmpl) tmp2 nild
s +mpl 13 now list of a3ll combainations of subaoal:s

loop2

fgetg tmp2 (cons (list ‘orsaim (osr tmpld) tmp2))

(amd (setg tmpl {cdr tmpl}) (g90 loop2}?}

s now esch list of subgoals is andsim subgoal

{return tmpl2)

;$ list of orsims is rnow returned

»)

:zsucceeded_if any of the component qo0s3ls have succeeded

(succeeded_if

fprog {(tmpl imopbname tmpside rsit)

{setq topl atmparas tmpbname atmptmame tmpside atmps.de?
loopl

(setq rslt (process_no0al tmpbname ‘c3r tmol) tmpszide ‘succeeasd 1£).,

(amd ralt (return (list ‘succeeded tmpside (ecar tmpl) rslt)))

. {3rnd {(setq tmpl f{cdr tmpl)) (go loopl))))

sfailed 1f all of the componmnent so0als have fsiles
{failed_a1f
(prog (tmpl tmpbname tmpside rslt)
{(setq tmpl atmpargs tmpbrame atmpbname tmpside atmpsiie?
loopl
(setq rslt (process_qoal tmpbname (car tmpl) tmpside "failed_i1f})
(arnd (equal rslit t) (return (list ‘failed tmpside (c3r tmpl))))
(and rslt (return rslt))
(ard (setg tmpl (cdr tmpl)) (90 loopl))
(return nil)))
sdont_conanmwe_if 3ny of the component sucg03ls should not be continued
sor 1f 3ny of the compornent aoals have failed
tdont _continue 1t
(proq (tmpl tmpbtname tmpsaide rslt)
(setq tmpl atmparags tmpbrname gtmobname tmpside otmpside)
loopl
(setq rslt (process_ao3l tmpbrname (car tmpl) tmpside ‘dont _continue _1£))
‘rand (null rslt)
{setq rslt (process_so0a3l tmpbriame (car tmpl) tmoside ‘fsiled_1f)})
tand rslt (return (list “dort continue 1f tmpside (car tmply rzlid)?

A-15

{and (setq tmpl (cdr tmpl)) (30 looplli))
3
)
s or
; loaical or of aoals
(makeqoal
"{or (qoals)
{type aqeneric)
{subgo3al qtnparags)

?
)

DOMAIN SPECIFIC GOALS

the following ao03ls are unique to this wsrasme

NOTE that these =03ls do mot mske use of beoardvsl routines
{althouan some supporting utilities Zo) consequentlw

if there 1s zn otcassionsl board conflict with two units on
‘tie s3me position (can only occur by sn error in bkschup)
tnen planner will still contirnue without error
dJefend_corridors

qo03l that speicifies corridors to be defended 3nd the units
to cSefend with
makeqoal

‘(defernd_corridors {(list_of_c_and_unit_list bv_time>d

P R LT LT S BT Y

{type specii:ic)

{subqoal
(prog (tmpl “mp2)
(zetg tmpl (first gtmparas))
locpl
fand tmol
{setq tmp2 {(cons {(list ‘defend_l_corridor
(ligt (caar tmpl) (cadar tmpl)
(second atmparacs))) tmp2)))
. (and (setq tmol (edr tmpl)) (20 loopl))
s3bove loop decomooses arguements into component qQoals
(comd “(: {(lenath tmp2Z) 3) (return (list (list “sndsim tmpZ)))}
((= (lenqth tmpZ) 1) (revurn tmp2))))
+1f more than one subgozl make sndsim subaqoal
)
)
)
(malkemoal
tdeferd_l_corridor (corridor list_of umitz bv_time)

(type specific)

(subaoal ,
(proa (tmpl tmpl tmp3 tmpd tmpd)
(setqg tmol (aet defend_goints atmpbrname :car atmpsras) atmpside)
tnp3 (second atmparas)
tmpd4 (union
{secornd qtmparcs)
(units_1n_are3 astnpbname
(get ‘general_s3res (first atmparas)?

A-16

atmpside)))
;tmpl is list of locations to defend
stmp3 15 list of wunits svailable
stmpd is tmp3 plus list of units already there

(and (> (lenath impl) (lenath tmp4)) (returrn nil))
s1f not encough units assianed ther failure
(setg tmpS tmp3)
simpS is imitially set to list of all units
loop¢
(and (member (unit_cstatus gtmphname (car tmpS) ‘location)
tmpl)
t (setq tmp2
(cons
(list
‘defernd_location
{l1st (car tmpS)
(unit_status gtmpbname (car tmpS) ‘location))?)
tmp2))
(setq tmp3 (remove (casdar twp2) tmp3)))
(and (setg tmpS (c3r tmpS)) (g0 loop0d))
s1loop0 checks all units inm list_of _units to determine if

sunit is szlready on 3 defend_point -— 1f ves therm it stays
sand defends that lccation
loopl

(and tmpl tmpl

(setq tmp2

(cons (list ‘defend_locstion
(iist (closest_unit atmpbrname (car tmpl) tmp3}

(car tmpl)))
tmp2)))
tsetq tmpl (cdr tmold twp3 (remove (caadar itagZ) tmo3::
{and tmpl (g0 loopl??

(3and tap3
- {setq tmpl
{qet_defend_points gtmptname (car gtmpargs)
gtmpside)) (q0 loopl))
;loopl aces through 3ll the units not 3lresdy on 3 defend point
$}3and 3ssisns each one to 3 specific
*location that 1t should move toward and defern.d
(return (cond ((; (lenath tmp2) 1) (list (liszt ‘andsim tmpl)):
((= (length tmp2) 1) tmp2)))
)
:failed _if camnot Y:ind defend points This cenly h3ppens 1 f
senemy has slready trokem throuah
tfailed _af
(progq (tmply
(seta tmpl (aet_defend_points atmpbname (firzt atmparss) atmpcsides)
{cond ((null tmpl) (returnm t3)
(t (return nili)?

))
;1f nmet past time Ly_time without failina ithen n3s succeeded
{nucceeced_1f (ast time oatmobniame:r (thitd atmpsres))?

A-17

)
+ dJefend_location
s this 5031 is to move to 3 specified location and the defend il
{makeqoal

‘{defend_location (unitname locatior)

(type specific)

(subqoal
(cond
{(equal (unit_status atmpbname (first gtmpargs) ’‘location} fsecond atmparas))
(list (list ‘send (list (list (car gtmpargs) ‘(defena_sin_plsce)’)d))
{(t (list (list ‘send (list
flist (car atmpargs)
(conc ‘move (aet _p3th sispbname (first qimo3ras)
{zecond atmparas: 6 L))>2))}))
:1f 3t location stay there =ise move to location

{dont_continue_1f
{proa {(twmpl)
{setg tmpl (boardval (evai atmpbname) {(second atmparqz))?’
(and trmpl (setc tmpl (umit_status gimpbname tmpl ‘sided i
(cond ((equal tmpl (opposite_side gtmpside)d)
treturn t))
‘t (return nil))))
)
sdont_continue_1f other si1de occupiecs location
)
)
attack_corridors
assians 3 set of units tc 3 set of corradors for sn atiack
{makeqoal
‘{3ttack_corridors (list_of_c_and_unit_list bv_time?

~ ee o

{type specific)

(subaoal
(proa (tmpl tmp2)
(setq tmpl (first qtmparas))
loopl
(and tmpl
{seta tmp2 (coms (list ‘3ttacy_l_corridor
(list (caar tmpl) (c3dar tmpl)
{gecond atmparas))) tmpl)))
{and (setq tmpl {(codr tmni)y (ao loopl))
(return (list (list ‘orsim tmp2)3))}
h Y
)
{mabkeqaosi
‘¢atiacy _1_corridor fcorridor list_of _units bv_time)
(type specafic®
(subaoal
faroa (tmpl tmp2 tmp3d tmpd’
(seta tmpl (paths_:n_csrricor atmpbname
ifirst gtmparas) gtmpside)
tmp2 f‘second atmparsgz))
A-18

loopl
(cetq tmp3 (best_urat_for gtmpbname (car tmpl) tmp2))
stmp2 is the preferred unit to 90 down path
(setq tmp4 (cons (list ‘attack_douwn_path
(list tmp3 (car tmpl) (first gtmparas))) tmpd))
s3dd 303l of attack down path car tepl with unit tmp3
(setq tmpl (reverse (cons (c3ar tmpl) (reverse (cdr tmpl)))))
smove path to end of path list
(3etg tmp2 (remove tmp3 tmpl))
;remove unit tmp3 from list of wunits tmp2
{3nd tmp2 (20 loopl’)
38 long 3s there are units left assigqn them
{cond ((> (length tmp4) 1)
(setq tmpda (list (list ‘andsim tmp4))))
{((= (lerath tmo4) 1!
{setg tmpd tmpd)))
szubgo03l is andsinm of seversal attacks or just one attack =ith no 3ndsim
(return tmp4)))
{succeeded_1f
(proq (tmpl)
{setq tmpl (get_defend_points atmptnzame (firs:i otmpargs; ‘opposite_side gstmps
(cond ((null tmpl) (return 1))
(t (return n1l1)))
)
ffailed_1f (> (aet -“time otmpbname) (third atmpargs)))

»
attack_doun_path
identifies specific path of 3ttack throwah corridor
{makeqoal
‘{attachk_down_path (unit c3th cor-idor)
(tvpe specific)
(5ut9031
(proa (tapl tapd)
(setaq twpl (first_defend_unit atmpbname {(third gtmpargs?
- {(opposite_side qtmpside)))
:identify first wurat defending corridor
(arngd (can_attack_unit cimpbname (first atmparas) tmpl)
(return (list (list ‘send
{list (list (fairst atmpsrags)
(list ‘3ttack tmpl)))))))
y3ttack any umits in the way
(and (setqg t-p2 (member ‘unii_st3tus gtmpbname {first qtmpsras; ‘location)
(second atmparasl))
(return (list (last ‘send (list (list i{firct atmparas)
(cons ‘move (cdr tmp2)))ird)
sif can not attack =nd member of p3th then march Jdouwn c3th 1f Can
treturn (list
t1ist ‘zend (list (list (first atmparas)
frons ‘move (3ppend
{get _p3th atmpbname (first otmparas)
(car (3ecorvd atmosrqs))
6 t)

-
b4
.
*

fcar (second atmparsgs))N)idlide
;:f riothina else move urit toward beainnaing 6f path 3nd march
idoun path

A-19

))
(succeeded_if
(egual funit_status gtmpbname (first atmparas) “locstior)
(car (reverse {(second 3tmparas)))))
ssucceeded_if made it to the other enul
3)
support plan
asesiqns units to support positions until corridor
conflict is near resolution then supports
makeqgoal
‘(support_plan (list_of_corridors_and_units tempo)
(type specific?
{subgoal
(prog (impl tmp2)
{setg tmpl (first oimpares))
ioopl
‘setq tmpl
‘oons
(list ‘sugport _corridors
{l13:st (first (first tmpl))
second (first tmoll)
+ ‘second 4stmparas) (get ‘time atmpbnamel))} Ltwmp2):
{3nd (setq tmpl (cdr impli)) 30 loopl))
(return (list (1liz¢ ’andsis tmpl)))
4

—~ ek e

-~ e

M

.
)
A

support corridors
specific suoport corridor 9o0al
st gresent askes use of 3 global varisble ¢slled suogorted corridor *hat i3
set to nil on newturr. sorry bad form
‘mzkeacsl
‘{support_corridors {(list_corridors_stkdef units w31t _until_tize.
(type specific}
{su;bgoal
tprog (tmpl tmp2 tmp3 tmp4 subaosls in_corridor)
(setq tmpl (first atmparas) tmp2 (second stmparas) tmol tmp2 tapd tmpl)
stmpl and tmp4 list of corridore
stmp2 and tmp3 list of units
loop0
tecond ({and (null (wmember (unit_status ataupbniase
tfirst tmp3) ‘locatiom)?
(support_area tmpl atmpside)))
+if unit ot in support area
taevber (car imp3) i{sctive_umits atupside):
H arit 15 3live
iegqusl _intersect
tynit_status atepbniame
{(first tmp3) ‘ratreat_direction)
{(suypport_sres 4impl atmpside)l?)
: urlt previously was 1o support ares
{setg in_corridor
{whnicn_corrigor® stmpbname (first stmoarss:?
tTirst tmp3)))
tthern 1dentifyv @hlun corridor it 18 nod supportinng

e ee P ew

A-20

(and (equal (second in_corridor) ‘defend)
(setq subaqoals
(cons (list ‘defend_1_corridor
(list (first in_corridor)
(list (first tmp3))
100))
subgoals)))
;3nd defend that corridor
(and (equal (second in_corridor) ‘att-z2k)
{setq subgoals
(cons (list ‘attack_1l_corridor
(list (first in_corridor)
{list (first tmp3)}
100))
subao3ls)))
sar attack that corrider
(setq tmp2 (remove {(car imp3) tap2})
sremove the unit from licst of unitz to consider for new assianments
1)
(and {(setq tmp3 icdr twp3)) (g0 loopd);
ssubg0als now h3s 311 previous subaoals incluaed
stmp2 iz now 3 lict of 31l other units to assign
stmpl is still list of corridors
(and (null imp2) (a0 loop2)?
3if no supporting units remain then skip over next loopl

loopl
(cond ({and (equal (second (first tmpl}!) ‘Zefend)

(rnull (= (get ‘i{:me atawobname) (qet "Lime ‘reslboardglls

(null (member (list {first ‘first tmpl)) atmoside)

supported_corraidors})

(need_help atmptname (firest tmpl) atupside 3))
icheck i1f defz2nse of corr:dor in c3r tmol naedz nalp
(and tmup2

(setg subqoals

- (cons
(list ’‘defend_1l_corridor
(list (first 'first tspl)?
(list (first tmpl})
100

subg9o3ls)))
ssernd help
(setq supported_ccrridore

{cons (list (farst {first tmpl)) atmpside?
supported_corridors)?
srecord fact that help is sent
tsetg tmpd (remove (Car twmpl) tupd) tmol <cdr molll -
sremove corridor fromx list of corriodrs
t(3angd ‘equsl {(zecnnd (firet txpll) “3ttack

(rull t= {(qet ‘time zimpbrn-.me) (Zel “time ‘reszlbs3ard))!

(riul]l (member (list “first ffiret tmpl)) atnpsids-

siupported_corridors):?

(need_help otapbniame first tmpl) atmpside 3¢}
tcheck 1f 3ttsck in caIr tmpl shouid oe supporias
{3nd tmpl

(setq subgoals

A-21

(cons
{list ‘attack_1_corridor
(list (first (first tspl))
(list (first tmp2)}
100))
subqoals)))
:send support to sttack
{setq supported_corridors
{cons (list (first (first i{mpl}) gtmpside)
supported_corridors)?
srecord fact that corridor is being supported
(setg tmpd (remove (c5r itmpi) itmp4) tmpl (cdr Ltapll):}
sremove corridor from list of corridors to be checied
)
(3nd (setg tmpl “odr tmpll} ‘3o loocl::
y53et next corrilor
t3ss14n 3 unit to gefense o 3ttsch
;s never more than cSne unit one for 3 Toorr:dor

loop2
(and tmp2
(setg subgoils
{cons
tlist ‘wmove_t0_support_gos
(list (first ct=mparas:
(first tmp2)))
subgoals)))
$311 remaining units should move to supocrt corridars
(and ‘setq twpl f(c3r tapl!: (33 loopl':
ssend other units %0 suppert waitins srea
(cong (> (lenath subgeals) 1! (returen sl31st rlist "3ns%1% 3.5G0313))))
t{= {(lenath subacaisi i} ‘return subsosls)}
(% wreturn nal))?
%
}
- (dont _continue_1f (1= ‘qet “time aixpbname’ (thirs atupars
)
¥

0wy
n
-
-

¥
this ie old version of support corridors
suypport corridors
specific support corrigdor aosl
at present makes use of 3 lobal variscle c3alles sucported_corridor thst is
set to nil on newturn sorrs b3d forme
{nakeqoal
“{support_corridors (list_-sasr tors_atidef uniis wirt _until_2:ue:
type sc2cific)
tesut303l
{proa timpl txpl2 tmpd tups.
{setq tmpl (first stuoaras) tu:zl. ‘seccnd atsnsras) tapl ifmcl tspd tmol)
stepl 3nd tapd list of corrazo; .
ttupl and tap3 list of units
ioopd
(ard (null (membter (unit_st3tus aisciname (first t=msll ‘ioc3tion!
{support_sres tmpl atmpside))?}
igqual_1ntersect (unit_status sgtspb-3> < 7irst tmupl. "retrest_direction?

w Ot an Ak WP ue

A-22

(cupport_area tmpl gimpside))
(setq tmp2 (remove (car tmpl3) tmpl)))

(and (setq tmp3 (cdr tmp3)) (g0 loop0))
sremove any units not waiting in support area but previously
;shave beern in support ares
$tmp2 is list of remairning umts
(and (rll tmp2) (return ’‘no_longer_relevant))
sif no supporting uniis remain then go03l 1s irrelevant

loecpl
(cond ((and (equal (second (first tmpl)) ‘defend)
(null (= (get ‘time qtmpbtrname) (get ‘time ‘resiboard)))
{(null (member (list (first (first tmpl)) gtmpside)
supported_corridors))
(need_help qgtmpbname (first tmpl) atmpside 3))
yeciheck if defense of corridor in car tmpl needs help
(and tmpld
(setq tmp3
{cons
(list ’‘deferd_1_corridor
(lList (first (first tmpl))
(list (first tmp2))
106))
tmp3)Y)
ssend help
(setq supported_corridors
{cons (list (fairst (first tmpl)) gtmpside)
zupporte.d_corridors))
trecord fact that help 15 sent
{seta tmp4 (remove (car tmpl) tmpd) tmpl ‘cdr tmp2)))
sremove corride. from list ¢f corriodre
{(and ‘equ3l (second (first tmpl)) ‘attack)
(rull (= (get ‘time qtmpbname) (get ‘time ‘realboard)))
(rigll (memter (list (first (first tmpl)) gtmpside)
suuppesr ted_corridors))
c(need_telp gtmpbrame (first tmpl) atmpside 3))
ticheck. 1f attack i1m car tmpl should be supported
(and tmp2
‘setg tmpld
(cons
ti1st ‘a3ttack_1_corsidor
(list (first (first tmpl))
(list (first tmpl))
100))
tmp3)))
ysend support to attach
{smtq suppurted corridors
(cons (list (first (first iwmpl)) atmpside)
supported_corridors))
srecucd fict that corrador 1s beins supportedd
(setq tmp4 (remove (car impl) tmp4) tmpl (ecdr tmp2)))
s1enove corrider from list of corridors to be checkesl
)
vand (setq tmpl {cdr tmpl)) (20 loopl))
tet next -orridor
sassiqgn 3 wnit tc defense or attack

A-23

;never nore thsn one unit one for 3 corridor

loopl
(and tmpd
(setgq tnp3
(coms
(list ‘move_to_support_pos
(list (first qtmparags)
(first tmp2)))
tmp3)))
721l rem3ining umits showld move to support corraidors
{and (setq tmpl2 (cdr tmp2)) (90 loop2))
ssernd other units to support waitinae arcen
(comd (o (lemath tmp3) 1) {(return (list (list ‘armdsim tmp3))))
((= (length tmp3) 1) (returm twp3))
t (return rnal)))
)
)
(dont _continue if (= (get ‘time gtmobrmame) {(taird gtmparas))
)
)
)

move_to_support

sends unit to position where 1t c3n rewinforce any of the
corridors 1t is supposed to support
makeqoal

‘{move_to_support_pos (list of corridors_%_go3ls unit)

o~ anan

(type specifie)
{sutgosal
(proa (tmpl tmp2?
{setq tmpl (support_area (first atmpargs) aqtmpside)?
(comd ((member (unit_ststus atmpbnsme (secornd aimparas) ‘location)
tapl;
{return (list (lizt “serd (list (list (secomd gtmparaqs) ‘(no order)))idi)
(t
(setq tmp2 (g9et_path atmpbname (second aimparss)
(car tampl) 6 1))
(return
(list
(list ’‘send
(list
(list (secznd gtmparas)
(comns “move tmp2)))))))

)
)
)
)

)
;y send specific
; uses netion send_order to send orderz for each umat
(m3keqosl

(send (orders)

(type specific)
A-24

(subgoal
(list (list ‘send atmparags)))
(action
(prog (tmpl)
(zsetq tmpl gimpargs)
loopl
(send_order (first (car twmpl)) (cadr (car tmpl)))
(and (setq tmpl (cdr tmpl)) (ao loopl))
{return nil)))
))
s SOME DOMAIN UTILITIES
;s TEMPORARILY HERE FOR DEBUGING PURFOSES
(defun all_combinations (list _of_lists)
{proa (tmpl tmp2 tmp2 tmp4)
{setq tmpl list_of_lists tmp2 (first tmpl)>
icopl
{(setg tmp3 (coms (list (fairst itmp2)) tmp3))
(and (setq tmp2 (cdr twmpl)) (30 loopl)?
tthis loop sets up initisl list
(setq tmpl {(cdr tmpl) tmp? (car tmpil2)
(and (null tmpl) (return tmp3))
s continue to nest loop only it more than one list_of_lists
loop2
(cetq tmp4 (cons {(cons (c3ar tmp2) f(car tmp3)) tmpd))
tarmd (setq tmp2 (edr tmpl)) (g0 loopl))
(setg tmp2 {(car tmpl))
(arnd (setq tmp3 .cdr tmp3)) (30 loopl))
(setq tmpl (cdr tmpl) tmpZ (car tmpl) tmp3 tmpd tmp4d ral>
(armd tmpl (30 loopl))
t this 15 main loop w€i1ll set tmp3 to list of lizts that reflects
: 31l possible combinations of the i1nitial lists 1m list_of_lists
(return tmp3)
)

)
(yéfu~ cet_defend_points (brame corridor side)
(proa ~itmpl tmpl tmp3 tmp4)
(setq vupl (get ‘defend_points corrador))
;5ets list of friend and enemy defend points
(cond ({(equal side ’“friend)
(setq tmpl (eca3dr (first tmpl))))
((equal side ‘eneny)
(setq tmpl (cadr (secornd tmpl)))))
sloopl noes throunh each set of defernd points and
;looks for enemy)
slast delend points before enemy 15 set up as the
;yidefend poaints return
(setq tmp2 (c3r tmpl)>
ltoopl
(and (setq tmp3 (bosrdvsl (eval bname) (car tmol)))
(2qual (unit_status brame tmp3 ‘saide)
(opposite_side side))
(comd ((> (lergth tmp4) 1)
(return (reorder_by_strengith brnime tmpd c1ded))
(t (return tmp4))))
sif multiple defernd points then order them weakest first
(and fsetq tmp2 (cdr tmp2)) (g0 loopl))

A-25

7if no enemy units in defend_line tmp2 get meut defend line
(setq tmp4 (car tmpl) tmpl (cdr tmpl) tmpd {car tmpl))
ytmp4 is set to last deferd_line
(and tmpl (g0 loopl))
1230 check. next defend line
(and (> (length tmp4) 1)
(setq tmp4 (reorder_by_strensgth briame tmp4 side)))
(return tmp4)
7if no enemy found then return farthers defend point
)
)
reorder_by_strenath
function will return a cset of defemd points order in terms
of thear need for defense
(defun reorder_by_strenath ‘bname defernd_points eide)
{(proa (tmpl tmp2 tmp3 vslues)
(setg tmpl defend_points vilues ‘710 20 30 10 50 50 70 80 20 100 1000))
loopl
(and (null (boardval (eval brname) (first tmpl)))
(setg tmp2 (cons (first tmpl) tmp2)
defend_points (remove (first tmpl) defernd_points))?
(and (setq tmpl (cdr tmpl)) (g0 loopl))
loop2
(setq tmpl defend_points)
loop3
(and tmpl
(setq tmp3 (koardval (eval bname) (fairst tmpl)))
(equ3a.s (unit_status bname tmp3 ‘side)
side)
(< (k (unit_status bname tmpo3 ‘proficiency)
(urnit_status bname tmp2 ‘defend_strenath))
(first values))
(setq tmp2 (cons (fairst tmpl) tmp2)
defend_points (remove (first tmpl) defend_points))?
(ard (setq tmpl (cdr tmpl}) (90 loop3d))
(and (setq values (cdr values)) (qo loop2))
(return {(reverse tmp2))
y
)
twhich_corridor?
+ function used only by support_rorridors go03l defimitzon
y 1t determines which corridor 3 unit 1s already supporting
{defun whach_corridor? (brname corifqoals wunitname)
(prog (tmpl tmp2 maxdist tdist)
(setq tmpl cordgoals)
loopl
(cond ((member (unit_status bname unitname ‘location?
(et ‘qgenersl_areax (first (first tmpl))))
(return (first tmpl)))
)
{(and (setq tmpl (cdr tmpl)) (90 loopl))
tdetermine 1f already in aeneral ares of one of corridors
{setq tmpl corigqoals mausist 20)
loop2
{setq tdist (7 tance (umt_status brame uniitname “leecstion:
(get ‘center_point (first (fairst tmpl))H))

P ep ee

A-26

(and (¢ tdist maxdist)
(setq tmpl (first tmpl) mamxdist tdist))
(and (setq tmpl (cdr tmpl)) (90 loop2))
:if not in general ares then unit ehould already be geoinn
;to the closest corridor
stmp2 is the closets cor&goal
(return tmpl2)
)
)
sroutine to find paths in corridor
(defun paths_in_corridor (bname corrideor s:.de)
{prog (tmpl tmp2 tmp3)
(setq tmpl (get ’‘paths corridor))
spaths 1s a property c¢f 3 corridor
‘zetq tmp2 (get_defend_points bname corridor {(opposite_side side)))
tdefend_points fur other side sre ordered by weakest point farst
loopl
{3nd (member (first imp2) (first tmpl))
(seta tmp3 (cons (first tmpli) tmp3))?
(and (setq tmpl (cdr tmpl)) ‘3o loopl))
(setq tmpl (union tmp2 fqet ‘paths corridor)))
:loopl reorders list of paths co that 31l paths going ithrouahn
sweakest enemy defernd point 3re first i1m the list
(and ual side ‘enemy)
tprog (tmpd)
loopll
(setq tmp4 (cons (reverse (car tmpl)) tmp4))
(ard (setq tmpl (ecde tmpl)} (g0 loopll):?
(setq twpl tmp4a)))
syreverse direction of 211 paths for side enemy
(return (reverse tmpl))
1)
stoutine to select a3 wunit from 3 set of unit to 2o down psth
(defun best_unit_for (brame path units)
(prog (tmpl tmp2}
{setq tnpl units)
loopl
{and (member (unit_status brame (car tmpl) “location) path?
(setg tmp2 (coms (car itmpl) tmp2)))
:if on path then its automatically a3 possible best unil
(arnd (setq tmpl (ecdr tmpl)) (50 loopl))
scollect list of units slready on psath
(and tmp2 (= (length tmpl) 1) (return (car tmp2)))
(and tmpl (return {(closest_urnit brame (car (reverse path)) itap2)))
7if one or more uaits on path pick unit farthest 3long
(return (closest_umnit brname (first path) wunits))
+if not umits on path pick umt closest to start of sath
¥)
sselect the most forward deferding urail
(defun “irst_defend_unit (bnawe corridor Jdefernd_szide’
{prog (itmpl tmp2 tmp3)
(setq tmpl (qet ‘defend_points corridor))
{cond ({equal defend_side ‘friend)
(setq tmpl (reverse tcadr ‘first tmpl))i))
((equal defend_side ‘enemy)
(setq “mpl (reverse (cadr (second tmpl))))))

A-27

loopl
(setq tmp2 (car tmpl))
loop2
(and (member (hkoardval (eval hrname) (car tmp2))
(active_units defend_side))
(setq tmp3 (cons (boardval (eval bname) (car tmp2)) tmp2)))
(and (setq tmp2 (cdr tmp2)) (90 loop2))
stmp3 is now 3l1ll units on forward most defemd point
(3nd twmp3
{prog (tmp4 tmpS)
(setq tmpds S00)
loopll
(and (< (k (unit_status btname (car tmp3) ‘defend_strenqth?
(un1t_status bname (car tmo3) ‘proficiency))
tmpa)
(setq tmp4 (x (umit_status bname (car tmo3) ‘adefend_strenath)
Ginit_status bname (car tmp2) ‘proficiency))
tmpd (ecar tmp3)))
{and (setq tmp3 (cdr tmp3)) (g0 loopll))
(s2tq tmpZ tmpd)
sselect weakest of forward most unats
)
(and tmp3 (return tmp3))
sif 3 unit 1s found return it
(and (setq tmpl {(cdr tmpl)) (g0 loopl))
+if no unit found 90 douwn to next defend points
Yi
+ support_area
; specifies loecations that could be used to support multiple corridors
(defun suppart_srea (corsiqoals side)
(prog (tmpl tmp2 tmp3)
({setq tmp2 cors&qoals)
loopl
(setq tmpl (cons (first (fairst tmpl)) tmpl))?
(arnd (setq tmp2 (cdr tmp2)) (a0 loopl)}
sget list of corradors
(setag tmp2 (get ‘supporti_areas side))
loop2
{(setq tmp3 (first (first tmp2)))
(and (equal (umion tmpl tmp3) tmpl}
(return (second (first tmp2)}))
(arnd (setq tmp2 (cdr tmp2)) (90 loop))
(return {(print ‘error_in_support_sreaj)
)
}
$ need nelp
: determines if 3 Jdefemnse is in itrouble or attack succeeding
{defun need_help (brname cor&soal =zide troublz2 ratio)
{prog (tmpl tapl dfnd_strnath stck_strnath)
s1f the other side 135 nmot attsckinma then no support 1s needed
(and (equal {second corigoal) ‘attach)
(setq side (opposite_side side)))
scheckaing an attack 1s same as checting defense for ciher side
sthat is 14 attscking i¢ succeeding send umnits to exploit it
(setq tmpl (lenath (get_defend_points bname (c-r coriqoszl) zi1de))’
{(setq trouble_ratio (- trouble_ratio (4 .32 ‘subl +mpl))))

A-28

t1decrease trouble_ratio threshold for corridors wider than one unit
(setgq tmpl (units_in_area bname (et ‘general_sarea (first corigo3l)) side)
tmp2 (units_in_3ares bname (92t ‘aenersl_sres (first coriacal))
(oppo1te_side side))
afrnd_strnath 0 atchk_strrnath 0)
stmpl and tmp2 3re defend and attacking units in general ares of corridor
loopl
(and tmpl (setq dfnd_strnath
(+ (& (unit_status bname (car tmpl) ’‘defend_strensgth)
(unit_status brname (car tmpl) ‘proficiency))
dfnd_strrqth)))
(and (setq tmpl f{cdr tmpl)) (530 loopl)?
$3dfnd_strnath is total strenath of defendina urnats
loop2
(and tmpZ (setq atck_strnath
(+ (& (unit_ststos bname tcar tmp2) “atiack_strenqgthn)
(unit_szt3tus bname (c3r tnp2) ‘aroficirency:)
atek_strrnath))?
{and (setq tmpl (cdr tmp2)) (36 loopl))
satck_strngth is total stenath of attscking unite
(cond ({(<{ dfnd_strngth .5) (return t))
((< (quotient atck_sitrngth dfnd_strmnath) irouble_rztio:
(return n1l))
({arnd (equal (second cor&qgoal) ‘defernd)
(riyll (are_sttacking bname (first coriqo3l}) (opposite_side sides))
(<= (quotient atck_strngath dfrnd_strnath) &)
(return nil))
$if not vet attacked then return nil wunless about to be overwhelmed
(t (return t)))
+1if attack to defend ratio is not arester than acceptable trouble_ratio
sthen ro support should be provided
)
)
units_in_ares
returns list of all units in asres of specified side
{dJefun units_in_are2 (bname area side)
(prog (tmpl tmp2)
(setq tmpl (active_wunits side))
loogl
(and (member (unit_status brhame (car tmpl) ‘location)
ares)
tsetq tmp2 (cons {(car tmpl) tmp2)))
(and (setq impl (cdr tmpl)) (50 loopl))
(return tmpl)
)
)
are_attackingc)
dJetermines 1f enemy units in corridor sre attacking
(defun are_attackaing (binawme corridor side)
(prog (tmpl)
(setg tmpl (units_in_area brame (get “qener3sl_sres corridor) side))
loopl
(and (null tepl) (return nal)d)
(and (member rlist {car twmpl) ‘sttack) umit_sctions) i‘return ti>
(setq tmpl (cdr tmpl))
(30 loopl)

-
14
.
b4

-
.
-
!

A-29

)
)
sdetermines if twn units can fight
(defun can_atiack _Lit (bname zltacker defender)
(prog (tmpl)
(setq tmpl (member (unit_status bname defender “locstion)
(zone_of _contro: bname attacker)))
(and twpl (returr 13)
{return nil)))
(defun active_un is (side)
(cond ((equal :12> ‘friend) friendly_units)
((egqual side ‘enemy. eneamy_units)))
(defun closest_uni: ibname location list_of_units)
(prog (tmpl tmp2 318% tmpdist)
(setq dist € tmpl l:at_of unats)
loopl
(and (< (setq tmpdist (distance (unit_status bname (car tmpl) ‘location) loeation))
dist)
(setq dist tmpdist tmp2 (car tmpl)))
(and (setq tmpl (cdr tmdl)) (90 loopl))
(return tmp2)))
sy equal _intersection
; returs the intersection of tuwo lists using equsl rather than eq
{defun »qual_intersect (listl list2)
(prog (tmpl)
tand (or (rmll listl) (null 1ist2)) (return nil?})
loopl
(and (member (car listl) 1list2)
(setg tmpl (coms (c3r listl) tmpl))}
(and (setq listl {(edr list?)) (go loopl):
(return tmpl)))
s+ UNUSED GOALS
s makeqosls that are not presently used but embedded concept mayv eventually be used
‘{mak.eqoal
‘(prevent
(type 3generic)
(countergoal (list paral))
(subgoal nil)))
‘(m3kegoal
‘(execute_orders
(type jeneric)
(action (prog (tmpl)
{setq tmpl 9tmparqgs)
loopl
(send_order (second (car tmpl)!) (thard (car tmpli),
(and (setq tmpl (cdr tmpl)) (ao loopl)?
(execute_3ll_orders gimptosard)))
)

A-30

PROGRAM 5

CONTINGENCY GOAL TREE

A-31

LMFL{:BYTE-SIZE 8 :LENGTH~IN-ELOCKS 14 :LENGTH-IN-~EYTES 14073 :ARUTHOR
WARGAME® ©NAME °®AFINALARES® :TYFE °"L® VEKSION 1)

tdefvar cat nil)

: the cat 1s the continaency 203l tree tnat the planner works with
s a5 1ts core representation of 3 plan
{defvar friendcats nil)
{Jefvar enemycats ral)
¢+ friendcats and eriemycqts is used to save zuccessful seaquences for
! friendly and enemy
: plan
: core planner routine
$ fa0a3l is the top level friendly <oal
s eqoal is the top level enemy 303l
s debug mode = t will sctivate various stopping points
(defun plan (fgoal egoal Jebua_wmode)
{prog (rsit)
{inatialize_board ‘hypboard ‘realboard’
ysets hvpboard to realboard position
(setq supported_corridors nil unit_actions nil)
ythese a3lobs]l variables 3are used Ly rule base -- bad form
(display hyptoard t)
sdisplavs the intial position of search
(setg cat (list (list fao03i) {(list esgosl)
flist 1)
(list (list fg903l3) (list (list e9631))))
sthe cat 15 structured 35 3 list with the fcilowina sublists
a list of 3ll friendly q03lc mast recent first
3 list of 311 enemy 203ls most recent first
a2 list of the deptinh in the contingency 203l tree of
each friend and enemy 2031
3 last of friendly aoals that have been or 3re beina 2xamines
3 list of enemy g03ls that have bteen or are teina euamined
: loopl 1s for adding nodes to the cat
loopl
(cond ((check_for_failure (first cat) (third cat) ‘friend)
(setg rslt ‘(failed friend)))
((check_for_failure (second cat}) (third cat) ’‘enemy)
(setg rslt “(failed ernemy))?
(t (setq rslt (add_qpairl)))
scheck if sny 2031 on sny side has failed
sif not add 3 new 20alpair to cat usina function 3344 _apanr
srote that 1f new q03alpair was 3dded rsit will eausl new_nriode
(cord ((and (equal (car rslt) ‘new_node.
(can_3ct (first (fairst cat)))
(can_3ct «first (second cat))))

e ae

*e g0 34 O

(update _btoard ‘hypboard (first (first cat)) (firet i{second cat))

*WARGAME®

suf new q03l ova3ir was 3sdded tnen check if asme can te updated 3nd 1f 50 <o 1t

snote tast (fairet (first cat)) 1s the most recent fraendly 203
; 3nd theat (first (second catl)) 1s the most recent enemy 2031

A-32

:CH

debua _mode

(and (equal (car rslt) ‘neu_rnode) (g0 loopl)}
:if new 9031 p31r was added to cat then process that new <03l paar
H to aet 3nother new 203l paar

+ loop2 is used for backtracking 3and findina altermative 20als

loop2
{and (c3ar c3t) (play_out (remove_1l_qpair cg9t) nil nil))
sthis returns to position before last qo03l pair
(and (modify_last_go0al rslt)

(or

(and (can_act (first (first cat))) {can_act (first (second cat)})
(update_btoard "hypboard (first (first cat)) ‘first (second cat})
debtug_mode t))
t2

(q0 loopl))
smodify _13st_g0al tries to replace most recent 203l for the side that failed
tif =3n alternative 2031 1s found then the toard :: uodated s necesesry 23nd
H return %o the 3dd node isoo
(setq cat (remove_i_apair cqt))
(3nd {car cat} (ao loop2})
; if an alternative 403l is not found then remove last goal pair from cat
$ and try to find 3iternative for the new last 203l on cat
(return rslt)
s whichever side finalily failed to correct the lazt failure h=s
$ by definition failed
s rslt will eather be (railed friend) or (f3ilex ensamy)
)

)
$ 3dd_spair
5 this routine trvs to 3d2 3 new 2031 pair to the sresent cat
(defun 3dd_apair ()
{(gcroa (fgcals eao0- s l=svele fre)s ereijc newfaaal newencal level zcted_flaan
{zetg faoals (first cat) 2903ls (second cst) ievels i1ihard cat)
frejs (fourth cat) ereis (fifth cat))
tthe cat is Jecomposed irnto 1ts component psrts
sloopl moves up the last branch of the cat t5 find 3 203l pair that
. swi1ll generste 3 631r of sutqoals
loopl
sthe cond below traies to aet 3 new friendly 903l 3nd 3 neuw gnemv 2303l
(cord ((3nd (null 3cted_flaq:s (can_act (car fao0als)) (can_s3ct ‘car eqoals))?
{setq newf203l nil newegoal rl z2cted_fiag 2))
;203l pairs that resulted :n 3 bLoard update may riot have subsoals
:acted _flza simply flags if this cqt nas 3 board upd3te 1n 1t
({and acted_flaq (or (can_act {(car fgq0als)) {2an_act tcar 2503ls)))?
(setg newfa03l r1l newezosl nil))
sonce 393in 2031 pairs that resulted 1n 3 toard uypdste w3y not have subadnslas

({or
{(check _dont_contirue fao3als levels "friend,
(check _dont_con’inue eaoals ievels ‘enemy);
(setg newfa03]l n1l newezo03l ni1l1)
;1if ei1ther ithe ifriendly or the enemy g03] i3 no jonaser 3ctive
M then 1% “‘he %03l p3ir may not zenerste = sub 2431 53t

(t. isetq nauwfansl r<et_sub ‘avoboard (car f463ls) n3i frisngdd
newes303l (qet_sub "hypboard {(c3r e203ls) n1l ‘enewy)id
sothervise ity to aet new 403ls for bLotn siaes

A-33

)

sthe cond below processec ihe results of the abtove conc
(cond

({and newfgo3l neweaosal)

(setg cat (list (cons newfao0al (first eqt)?

{cone neweg03l (second cai))

(cons (3ddl (car levels)) (third cat))

(cons (list newfgoal) <(fourth cg9t))

(cons (list neweaonsl) (fifth cat)r)))

{return (list ‘new_node (list newfs0al rneweqgoaid)))

tif new 203ls for both sides then 3dd these to the cat 3nd return

((and (rwll newfaosl: (rull newegoal))
{setag level (car levels))
iproa (?
loopil
tsetq fa03ls (cdr facsls) egoals (cdr eao:
freis tedr fra2is) eres (a2dr ereis’)
{and (<= level fcar lsvelis)) (a5 loopll)
(return t))
(and levels (20 loopl))
(return (praint *Lad so03ls returned to toop level sans resoi=zntion®)))
:if no new 9031s then move up one level on the cot and trv t5 cenerate
s new subgo3l pair from there

({and newfa03l (null neweacal))
(return ‘(fai1led enemy))}
((3ngd (rsll newf203l) newelosl)
(return ‘(failed friend)))
:1if only one side can continue but rnot the sther then the side that

seant continue must nive failed
3

b]

: modify last g0al
5 for the side that fsiled this routine will try to reclace
:t the last 9031 1n the cat
(defun modify_last_ao03l (because_of)
(oroq (fgoals eqoals levels frejis erers newacsl level cat_copy)
(setq cg9t_copy cat level (car (thard cat_copy)})
smake 2 copy of the cat and set level to decth of list
03l paair 1n the cat
loopl
sthe first part of this lcop (next four lines) finde the
sparent 203l p3ir of the 203l p3ir thst i1s to be replaced
{setg cat_copy {(remove_;_apair cat_copyl?
smove biack to the previsous 503l
(and <null (thaird cat_copy’d (return nildy
;3f cat 15 empty then return nil
tand ¢(<= level (c3r (Lthird cat_copy)))
{90 loopl))
tif after moving biack level d1d rot 1ncreasse then
ithe parent of the 9031 p3ir nas not vet been found
t3at this point the pirent 031 pair 15 tae lsst nodde
si1n cat_copy
(setaq faoals (first cati eacals (seccnd cat) levels 'third cat)

A-34

frejs (fourth c5t) erej)s (fifth cat))
soreak up present c¢at into its component parts
sthe cond below tries to find an alternative g031 for the
5903l that failed
(corndg
((equ3l because_of ‘(failed friend))
{setqg newg0al
(qet_sub ‘hypboard (car (first cat_copy))
{car frejs) ‘friend))
(and (null newgoal) (return nil))
(setq fgqo03ls (cons newaosl (cdr fgo3ls)))
{seta frejs (cons (cons newqoal (first freis)) (cdr freissi);:;
sif friend failed then try replacina the friend aosi
({equsl because_of ‘{(failea enemy))
{setqg newqoal
iget_sub ‘hypboard (car (second cat_copy))
{c3r erejs) ‘enemy))
{3nd {(null newgoal) (reiturn nil)d?}
(seta eg02als (cons newzosl (cdr 2g903ls)))
‘csetq erejs (cons {(cons newqoil (first erejsi)
(cdr erejs))}?
:1f ernemy failed then trv replacine the enemvy 203!l
¥

(setg cat (list f303ls €203is levels frejs ere)s))
sreconstruct the cat
(return (list ‘new3o3l (second because_of) newqcal))
sreturn the result of sodify_lsst_s03l processing
)

}
; 9et _sub
Z this routaine 3ctually controls the execution 0f subgcal zrocessinn
t brniame 15 the Loardniame
: @031 is the 903l for which 3 subacal 1¢ desircsd
: rejis is the list of subqosis that have 3lready teen tried
y side i1ndicates that 3t is an eneay or friensly 403l
(defur qet_sub (bname g02al rejs side)

(proa (tmpl)
‘setq tmpl (process_go02i brame 203l side “subgosl))
ithe 3bove gets 311 subooals of go0al

loopl

{setq tmpl (remove (car reis) tmpl))
{and (setq rejs (cdr re3is)) (a0 loopl))
;remove previously tried ao03ls from the list of subacals
{return {(car tapl))
ireturn the first subacal that a3’s not aslready been trie

¥
: chect _for _failure
; dJetermines if the most recent 29031 i the cat or 3nv of 1ts cirents have fsiled
! 903ls 1s the list of 311 friend or enemy 203ls 17 the cat
: levels 1s 3 list that indicites the depth 1n the tree of 23ach element of aqcals
¢ s1de 1s frien. or enexw
vdefur check _for_farlure ¢«o263le ievele cside)

torog <t .1 level)

ioopi

A=-35

{3nd (setg tmpl (process_3031 ‘hypbosrd (car 9o0als) z:<e “farled_1f))
(return (list ‘failed (car g03ls))i)
scheck if first 203l in list of q903ls has failed
(seta level (car levelc))
sif 203)] has not fsiled then level is depth of this «o6a3l in cat
loop2
{(seta 20als (cdr q03ls) levels (cdr levels))
spop last 903l from list of 203ls
(and (null go03als) (return nil))
sif 311 9023ls have teen poped then rno failure was found
(3nd (<= level (car levels)) (ao loop2))
saf last 9031 is not 3t 3 higher level :n the cst
sit is not 3 parent of the soal that uas just checked
(2o locpl))
}
; check_dont_continus
: gdetermines 1f the most recent 203l in the cot or znv of 1ts pirents
s snouls not be continued
$ =uccess or failure cannot ve 1nferred from this csrocessing
(detfun checr_dont_continue (503%s ievels side?
torog (tmpl level}
ioopl
tand (setq tmpl (orocese_4acal “hygboard (car qoals) side “dont_continue_if))
{return (list “dont_continue (car 2031s5))})
schecr 1f first ao3l in _ist of acals should be ciscontinued
(setg level (car levels))
sif nct then level is Jdepth of 2331 1n cat
loop2
(setq 2o03ls (cdr a0als) levels ‘cdr levels))
spoe 13st 203l from list of 203ls
(3rg ‘rull ao03ls) (return n1l))
t1f 311 2o3ls have teern soped thnen nd 4031 w3s found Lo siscontinue
fard = level (car levels)y (g0 locoll!?
tif l2:t 2031 1s not at 3 hiaher level i1n the cat
71t is not 3 parent of the 303l thst was just checked
‘(g0 lo
b
¢ can_3act
; determines 1f the 303l 15 sufficiently specific so 35 to te 3ble to update the =
+ this fuynction 1s someuhst Jdom3zin dependent but can be aenericized
(defun can_sct (ao3l)
tproa (tmpl tmp2)
tsetq tmpl 203l)
loop!
{3and fnull (member {c3r tmwpl]l ‘{(andsim 2reim sendii; .return niii:
;:f 3ny of the comgonendt %oals embeddes in 303l
215 ot 30 3andsim orsim Or send then 1t 15 ot e:lecutasie
(and 'member (car tmpl) “{(3ndsim nrsim))
(seta tmpl <c3dr taopl?)
fproa ()
loopll
(setg tap2 (cons (c3r tmol) tmop2r}
tand {sete twol (cdr tmpli’) 140 looplliny

sthe 3bove 3nd aets 311 the component a203ls of andsim or oSreim
sang puts them 1n tmp2

A-36

(setq tmpl (car tmpl) tmp2 (cdr tmpl))
stmpl is list of all remaining 9o0als and tmpl is present qoal to check
(and tmpl (g0 loopl))
135 lomg as there is 2 903l to check keep checking
(return t)
;if all discovered componenet q03ls are executable then entire go0al is
jexecutable
)
)
(defun update_toard (tname fq03l eqoal debua_mode display_board?
(ngettsend_orders bname fg303l ‘friend)
t1send orders defined if friendly qoal
(netisend_orders bkname egoal ‘enemy)
ssend orders defined in enemy goal
{precute_orders biname display_btoard debuqg_mode)
sexecute_orders is 3 routine defined in domain
)
getisend_orders
assuming 903l can be acted upon will send 311 orders embedded in ao=xl
defun fetisend_orders (bname q03l side)
(prog (tmpl tmp2)
{setq tmpl (list go0al))
stepl starts 3s list of qo3als to process
loopl
(and (nuwll tmpl) (return t))
s+if no more aqoals then dorne
(cond ((equsl (casr tmpl) ‘send)
(process_9o0al brame (car twpl) side ‘action)
(setq tmpl (cdr tmol))
(30 loopl)))
»if qoal is to send 3n order them cend order using action clot of
3303l defimition
{and (member (caar tmpl) ‘(andsim orsim))
(prog ()
(setq tmp2 (cadar tmpl) tmpl (cdr tmpl))
loopll
(setg tmpl (cons (car tmp2) tmpl))
tand (setgq tmp2 (cdr tmp2)) (30 loopll))
(return t))
(30 loopl)
)

.
4
»
14
)

5if t.rst 903l is concatenstion of ao3ls then gqet
scomronent go3ls put them aim tmpl 3nd process these qo03ls
))
s remove_l_gpair
3 returns 31l but the last qo0al pair of a cat
(defun remove_1_apair (cat_laike)
(prog (cat_ito_return)
(or cat_like (return nil))
sthis loop aete the cdr of each element of cat_like and puts
$it 1nto eqt_to_return
loopl
(cond ((atom (car cqt_like)) (return ‘error_in_remove_1_p3ar)}
(1t (setg cat to_return (coms (cdr {(car cat_lite)) ca._to_return’?))
tand (setg cagt_like (cdr cat_like)) (g0 loopl))
72 cat has five elements so above loop qoes five times

A-37

(return (reverse cqgt_to_return))
sreturn cat sans last gqo0a3l pair
)
)
play_out
steps throush 3ll the nodes of 3 cqt and updates the board accordingly
(defun play_out (cqt_copy debug_mode display board)
{proq (fgo0als egqoals)
{setq f303ls (reverse (first cat_copy))
egoals (reverse (second cqt_copy)))
sRet friendly and enemy q9o0als in the cyt
(initialize_board ‘hyptoard ‘realbtoard)
sreset board to initial position
(setq supported_corridors nil unit_actions nil)
;reset aiobal lists
loopl
{and (ec3r cat_copy)
(can_3zct (first fgoalsl) (ecan_act (first eqosis))
scheck if goal pair is executable
{(or (net&serd_orders ‘hypboard (first fgoals) ‘friend) t)
{or (qetlsend_orders ‘hypboard (first eqoals) ’‘enemy) t)
;serd orders
(execute_orders ’‘hypboard display_toard detusa_mode)
sexecute orders

LR T

)
(and (setq fg9oals (cdr fgoals) egoals (cdr eqoals)) (g0 loopl))
s pop last go0al and g0 back to loopl
)
)

A-38

PROGRAM 6

WARGAME

A-39

LMEL(:EBYTE~-SIZE 8 :LENGTH-IN-ELOCKS 46 :LENGTH-IN-BYTES 46619 ZAUTHOR °*WARGAHE® :CR
WARGAME® :NAME °"AFINALGAME® (TYPE °L*® :VERSION 1)

this is the file that defines the warqame
this file plus 3 terrain - unit definition file would be sufficient
for manually playing this aame

Note that since this 1s only an example game and rnot 3 key element

of the ARES project the documentation here is not 3s detailed as
commenting in the planner itseld
SLOBAL VARIAELES
defvar qlobalara nmil)
whenever 3 global arauement 15 needed zluways use this
may be vseful for instance if want 15 pass a sinale ssrameter
into a mapcar

(defvar 1rmtial nil)

(defvar realboard nil)

(defvar hypboard nil)

the qame allows use of any of three boards referrea to ss

initial realboard snd bhypboard

the g9ame can te played on asny of these three boarac

this is done for the save of the plamner and rot the zame

(defvar friendly_ units nil)

(defvar enemy_units nil?

{defvar all_units nil)

tlist of active friendly and enemy units

;s must be explicitly saved for hypothetical search

(defvar oreviouws_get_paths nil)

slist of all aget_path results this saves much time

¢ this varialbe 13 wsed oniy by aet_path

(defvar enemy_orders nil)

t3defvar friend_orders nil?

talobal list of active orders

(defvar list_of_unit_properties nil}

(setq list_of_unit_properties ‘(side id type size attschk_strenath defend strenath j
movement_allowance location is_active retreat_dirgetion
location_status previous_locations))

t3lobal list of 3ll properties that may be attached to 3 uni’

(defvar supported_corridors nail)

3 variable used only by 203l support_ccrridors to i1dentify 1f 3 corridor has
3lready teern supported this 15 3 bad cluae to be repsired later
newturn sets this variable to nil
JdJefvar umit_actions nil)
3 varisble used only bv 903l support_corridore to i1dentifv
wnat is currentiy napperning 1m 3 corridor
this is also 3 bka2d cluge to be repaired later
EOARD ACCESS ROUTINES
the followina routines are for the value of any board cosition
or for defimning ihe relstionship between any tuwo positions
note that 3 board 15 defined 35 3 matrix-live list that
where each location 1g either 3 possible unit locstion or 3 *errain
location

ETR I RIS E L TR L T LE L 1

AART I LAY}

R TR LYY

LI %]

.
14
-
»
-
14
.
.
»
-
-
’
.
.

A-40

: see example of board 1n file finalterr3in.l
> bosraval
* returns value of unit locstionn loc from board
{defun boardval (koard lcc)
tpros (i v uZ y2 ba)
{setq » (car loc) v (cadr ioc))
{setgq %2 1 y2 1 btd (cdr board))
loopl
(an? (eaual v2 v) (seta bd ‘o3r bdr) (mo loopl))
(setqg v2 (3441 y2) bd (cddr bd))
¢n0 loopl)
ioop2
(and (egqual =2 x) (return fcadt ba)))
(seta %2 (addl x2) bd (cddr bd))
{a0 lcop2)}
)
soasrdset
returns s board that 1¢ same a3z imput board
but hzs value val a3t le-cstion l3c
(defur. boardset (board loc valj
{progq (x y %2 y2 boardl boardl lstl 1lst2)
fsetq » (car loec) y {(cadr loc)?
(setqg %2 1 y2 1 bosrdl bosrd bozral nail
1stl mal 1st2 mil)
loopl
veond ((w2 12)
(setq board2 (cons icar bLoardl) board2))
(return (reverse hosrdl))?}
((eaqual v2 y)
tsetq yz (3ddl y2) beard2
{rons (o3r boardl) Be3radl) boardl fedr boardl)
1stl ‘ecar boardl) ocosrdl (cdr Hosradld))
(ap loop2)?
{1
{seta y2 (adal v2)
ttoard2 (cons (&ar bosrdl) hosrdl) boardl (cdr boardl)
boardl (cons {(car boarsl) toard2, toardl (cdr bosardl)))}
(a0 lonol}
lconZ
fcong ((equal %72 X2
(setq %2 (3041 x7)
1st2 (coms (car lstl 1st2) 1lst) (cdr 1stl)
15t2 (cons val 1s512) 1stl cedr 1st1)))
fLr w2 13) (selg J:t3 weons (car lstl) 1stl)
boardl {coans (reverse 13t poardll)
{20 locpl))
(t (setq %2 (a3dd)l 2
1542 (coms (car Jetl' 7:=t2) 1si1 (cur
1512 (congs foar leiid 15+ 1wt] icdr
‘a0 loopd)
))

e 34 e

bt
o
b bt

N
~

~

s

or

cost_of_move

returns movement cost for 221,44 in 3.y particular direction
briame 1s the name of L1-- ho3r.
uynitname is the name of the wrod
lec 1s the startisa looac:cin

4% wE 4% we e

A-41

H dir is the direction of the move
; side 1s the cide on the move
H terrain_only is 3 flaq which if t will 19nore extra cost for sicving
H throuah other cide zore of coniral
(defun cost_of_move (bname unitnaume loc dir side terrzin_only)
(prog (x y bd cst) -
(seta % (car loc) y (cadr loc)
x (kx2)y Ay 2)
® (+ x (car dir)) y (+ y (cadr dir)))
(setq bd (eval bname))
;set expanded board location and other parsmeters
(cond
((equal (unit_status brame unitriame ‘itype) ‘nelicacpter?
(setq cst 1))
{t (setz cst (anyval bd (list x vis¥))
{¢ond
{{= (+ {(3bs (car dir)) (abs (ecsdr £irrii Z?
(zetg -3t (A 1.414 csx:))-
s5if diaconsl vove cost of move ic 1.414 times terrain value
(nond
{{and {nuil terrain_only)
(within _zone_of_control cnsue (opposite_cide side) loco:
{return (addl cst)))
(t (return cst)))

o

anyval
uses 311 locations unit or terrain and qets correspond:ing value
this wi1ll be referred to 3s the extended_toard
toard is am actusl board
loc 15 the location on the bosra
{defur 3nvval (toard loc)
{oroa ity »2 ¥v2 bd)
(setq » t(car loec) y (eadr loc))
(setq %2 1 v 1 bd board)
loopl
(and (equal y2 y) (setq bd (car bd)) (30 loopl))
{setqg y2 {3ddl v¥2) bd (cdr bd))
(90 loopl)
loop2
(and (egual %2 %) (return (car bd)))
(seta 2 (addl =2) bd (cdr bd))
(a0 loopl)

RARTIE 1 IEFE ITY re

)}

y terrain_tetueen

y for any two unit locations returns the terriain_value betueen ithose two locaticns
{defur tarrain_betuween (bname from to)

(proa {(a31r)}
tsetg Jir (-list to froms)
(seta from (list (% (car from) Z) (k (cadr from) 2)})
(return tanyvzl (eval bnawme) (+1ist from dar)))
)

]

displav

Jieplavs the koard in board

sirgern_fla will clear the whnle screen firsi af &

defun drsplay (bosrd clrscrn_fl=

.
14
.
v
{

A-42

(proa (impfla)
(corme (clrsern_flg (send istandard-outputks :clear~screern))
(t (cursorpos 0 0) (terpri) (cursorcos O 0)))
(and (atom board) (return ‘bad_arguement_to_display?)
(aetq tmpflg t)
(loop for § from 1 to 2% do
(princ ° ')
(loop for i from 1 to U7 dlo
(lisplayl hoard (list i j))
(comd (tmpfla (primc * ')
(t, {princ * "))
Card (rull tmpfla) (prine (addl f(quotient (subl) 2))))
(terpri) (terpri)
{setq tmofla (rull tmpflald):
)

(nprine

<hanp tor o from) 4o 13 do
fprame 1. feond (< 3 10) (pranc ¢ I
(o ‘sraine * ")y

(or olrsern_fla (cursorpos $0))))
v ovdisplayl
¢ dieplayz: 3 single board position
¢defun displayl (board place)
(pros (tmpl)
(setq tmpl (anyval bosrd place))
{(eond ((equal tmpl 8) (princ "4°
((equal tmpl 2) (prirmc "u'
((equal tmpl 1) (prire * *
((rimzll tmpl) (princ *=-=')
(+t (primc tmpll))))
v IJNIT DEFINITION AND ACCESS ROUTINES
Mefine arnits
s sets up @ new uwnit s atom ‘mame’ with larae pronerty lict
(lefur define_umit (name side id type size sttack strenqih deferd_strermath
proticiency novement_mnllowarnce location 13 _active)
{putorop ‘side (list si1de side si1de) name)
(putpron 74d (list 1d id 1d) nane)
(putprop “type (list type type type) name)
(putprop ‘sizce (list size sice size) rame)
(putpfop ‘attsck_strernath
(list attack_strength attack_strength attack _etrenqth) name)
{putprop ’‘deferd_strenath
(list deferd_strergth Jeferd_strernath deferd strenqgth) rame)
{(putprop ‘proficiency
({list proficiency proficierncy proficiency) riame)
(putprop ‘movement_allowsrce
(list movement_sllowance movement _asllowance movement_allowance) name)
(putprop ‘location (list loeatiorm location location) mame)
(putprop ‘ie_active (list is_active is_active is_active) rame)
(putprop ‘retreat _direction
{list (list loecatiom) (list locationm)
list location)) name)
(putprop ‘location_status (liet ‘mo_contlict ril mil) mame)
(putprop ‘previows_locatiorms (l1ist mil nil mil) rame)
sabove zreates the required property lisgty
teear is 1nitiallﬁtatus cadr 15 real status ecaddr 18 status on the hypboard

A-43

(cond ((equal side “friend)
(setgq friendly _units (cons name friendly_units)
3ll_units (cons name all_units)))
({equ3al side ‘enemy)
(setq enemy_units (cons name enemy_units)
all_units (cons name all_units))))
s 3bove updates list of friend and enemy units in play
)
put_unit_on_board
after a unit is defined, this routine will put it on the specified toard
tname is the name of the btoara
unitnamse 15 the name of the unit
location 1s the location that it will start at
(defun put_unit_on_btoard (bnase unitname location)
tprog ()
{and (boardval (evs3l btrname) location)
{return ‘unit_slready_there))
(set bname (boardset (eval bname) location unitnamel:
(set _status bname unitnsme ‘location_ststus ‘no_conflict)
(set_status bname unitname
‘previous_locations (list locstion location))

e 3L e en e

)

)

unit_status

gets the specified ststus value for the btoard specified

briame is the name of the board

unitname is the name of the unit

property is the unit property to retrieve
defun unit_status (brame uratname property)

{cond ((ejual bname “initisl) (car (aet property unitrname)))
{(equal briame ‘realtoard) (cadr (oet property unitname),)
((equal bname ‘hystoard) (cacdr (4et property unitrame))))

)
s display_unit_status
; displays status of 3ll p-operties of unit that mav be of interest to player
(defun display_unit_status {bname unitname)

{print (list bname ‘status ‘of unitname))

{(terpri)

(princ °* side °*)

(princ (unit_status bnawme unitrame ‘side))

(terpri)

(princ * 1d *)

(princ (unit_status brname unitrname ‘14d))

(princ * type *)

(princ (unit_statuc bname usnitname “tyoe))

(princ * sice ")

{(princ (unit_st3tus brame uniyiame ‘size’?

(terpri’

tprinc * attack_strenqath ")

(pranc {unit_status bname unitname ‘attact csirength)

AR a4 OF AT B

(primc °* defend_strenath ')
{princ (umt_status btname ynitname Jefend zirenath)
(terpri?

(princ * proficiency ')
(prarnc (unit_ststus bname unitnawme "“proficiency))
(princ * movement_ sllowance ")

R-44

(princ funit_status bname unitname ‘movement_zllowance))
(terpri?

{primc * location *)

(princ (unit_stiatus bname unitname ‘location?)

(princ * is_active *)
(princ (unit_status bname unitname ‘is_activer)?

(terori)
3
T display_status
5 displays the status for 311 units of any unit propertv
(defun display_status (bname prooerty)
fproq {tapl tmp2)
{setq twpl friendly units tanol enemv_units)
«Lerpri}

‘oringe * enemy friendly*®>
izcool

ftzrpra)d

torinc *® *)

{cond ({(car tmp2)
(princ (list (car tmpl)
(unit_status bname (car tmpl) propertv)i))
(t <(prirnc *)
{princ °* *)
(cong (/car tmpl)
(pranc (list (car tmol)
fun1t_status bname (car tmpl) oropertyl}}))
{setg tmpl {cdr tmpl) tmpZ tcdr tmp))
{3nd (or tmpl tmp2) {20 loopi))
hY
)
et _stat.
used to modify resl or Lvpsothetical status of 3 single unit propertwy
btname 1s the nawe of the board
unitname 1s the name of ine un:t
property is the name of the property to ke modified
- status is the new stitus
defun set_status (Lname uniiname property status)
(cond {(equal bname ‘realtoard)
(putprop prcperty
(list (unit_status “initisl onitname propertiy)?
status
(unit_etatus "hypboard wunitname property))
unitname))
((egual bname ‘hypboard)
{putprop property
tlist (unit_status ‘imitisl unitname property)
{urnit_status ‘realboard unitname property)
status)
unitriame)))
)
reset_status
resets unit status and bosrd status of of _bname to to _btname
of _tiname 1s the name of ithe boszrd to chanae
to_btname is the name of “he board that of _brnsme skould te
equivalent o
tderun reset_status (of _bnane ta_tw.ame)

A-45

"~ 48 'O8 aE 4O o en

" 4e €O we ws

{prog {(tmpl tmp2)
{(setq tmpl list_of_unit_properties tmp2 31l _units)
loopl
{(set_sitatus of_bname (car tmp2) (car tmpl)
(unit_ctatus to_bname (car tmp2) (car tmpl)))
{and (setq tmpl (cdr tmpl)) (90 loopl))
(setg tmpl list_of_unit_properties;’
(3nd (setq tmp2 (cdr tmp2)) (50 loopl))
+ 3bove loop set 31l properties of 3 unit to be 35 in to_bname
{set of _bname (eval to_bname))
{putprop ‘time (9et! ‘time to_biname) of _bname)
s of _bhame is now reset
(setq tmp2 all_wunits friendly_units nil eneay_units nil)
loop2
(cond ({3nd (equal (urit_status of_bnam2 {(car tmp2) ‘side) ‘friend’
(null (Jead_unit of _brawe (03r tmol)})?
{setq friendly_units (cons (car tmo2) friendlv_unitsz),>
({and (equal (urat_status of bname (car tmp2} “s1de) ecrnemy)
(rull (dead_unit of _brname {(car tmp2))))
(setg enemy_units (cons (car tmo2) enemy_units)ii}
{and (setq tmp2 (cdr ftepl)} (90 lcop2)?
s 3bove loop sets up list of friendly_units znd enemy_units i5 he
2 3t status of of_bname
y note that this routine can be used with of _bname=tc_tname
+ to set friendly 3nd enemy units list properly
{return {(list ‘status of_bname ‘reset 'to to_tnrname))))
$ clear_orders
s+ this routine clears the orders for all units
+ that is sets present order to {(ro order)
(defur clear_orders ()
{groa (tmpl)
(cets tmpl (union friendly_units enemy_units))
(and (rull tmpl) (return {praimt ‘error_in_clear _orders’)?
loopi
(send_order {(car tmpl) ‘(no order))
{and (setq tmpl (cdr t:pl)) (30 loopl))
)
)
initislize_btoard
copys board and clears orders
(defun initialize_board (of_bname to_bname)
(rese._status of_btiname to _bname)
{clear _orders))
MOVEMENT FUNCTIONS
these functions define procedures for moving units
move_1_space
moves 3 unit one space 1f fessi1:!.:
otheruwise returns 3 Jisqnostic vice
briame is the name of the boar
unitname is the rame of the unit '.. move
to 1s the location to move v
(defun move_l_space (bname uniinan: 53)
(proa (dir mcost side from twmol :-nilct_flq)

L LYY

EYR LT RIRETETEIR 1]

{or (sntg from O at_status brame wvii? -ame “locsticen)) (return "m0 _unit_there))
(setq dir (list - (ca3r to) {(car from * (- (cadr ta) fcadr fromid? .
(cond (for (> (3.3 (car dir)) 1) . <abs (cadr dar)) 1)) (return not_one_jumb)))

;;"46

3 sets up from location and direction of move, reiects if illegal nove
{seta tmpl (list (boardval (eval bname) to)
{and (equal (+ (3bs (car dir)) (abs fcadr d4ir))) 2}
(toardval (eval bname) (list (+ (c3r frecm? ‘car dir)!}
(cadr from))))
(and (egual (+ (abs (car dir)) (abs {cadr gi1rl))) 2)
(boardval (eval bname) (list (c3r from)
(+ (cadr from) {(cadr dir}}}))
3
loapl

{and {(car tmpl) {cond ((null (equal

(unit_status bname (car tmpl) ‘side)

(uni1t_status bnome unmitname “cicel’)

treturn ‘enemyv_unit_in _the_wivi)

‘t (3nd (null cnflct _fla) {setg cnflict £1l3 4-3i:7?
cand (zetg tmol (cdr tmpl)) (2o loooir:
: if enemy unit in Wiy then aove 1z rejected if frsensiv Lnit ther oo
{setqg side funit_ztatus taname unitnise ’‘sided)
(seziq mcost {cost_of _move btname unitnzue from Jir side n1i):d
(cond (i> mcost (unit_status brame unitname ‘movement _3ilowancer!

{return “to_costly)}

(¢

{cond ({within_zone_of_control tnawme i‘opposite_side side: from)

(set_status bname unitname ‘proficiency
(subl (unit_status bname unitname “proficiency’))

>3

{change_location btname uniinsme from to?

(cet_status bname unitname “sovement_sllowance

(- (unit_status bname unitname ‘movement_sllouance!) zcost;))
v i? mov 15 too costly then :t is reiected mlse ihe move 13 wmade
iset_sit3tus bname unitnase ‘retresat direction
{cors to tunit_status bname unitn3ne "Tetreat Jirectiondi!
: retreat girection 15 3 1::t of esch past position
{cond ((null cnflct_2£19) (return t}}
(t (return ’‘possible_problems))

if to location already has 3 unit of same side then 3 possivle croblem
but move is still made

[Ty

- SV g

)
chanqe_location
this is the routine that sctually chinaes 311 locaticn viaristbles
bname 15 the name of the board
unitnase 1s the rname of the unit
from 1s the starting location
4o 1% the endingq location
function will 3llow tuwo units on toco of each cther but il
possible conflict
{defun charge_location (brame unitinsme from to)
(proa (tmpl?}
‘seta tmpl (2nother_at_location bnawe unitnime))
‘set_status bname unitname “location i}
{cond ({bo3rdval (evsl bname) to)
fcet _status brname uratname ‘location_ctatuys “sossible o
(t (set_status brame unitname “location_status -no_~son
(set brname (Loardset (eval bname) to unitnamelr)d))

A-47

SR IETEITI LTI LAY]
"l
"
]
[y
O
-y

(s 0
]

e
L]
I

o

Y
-
w

51

",

1s returned

{set bname (boardset (eval bname) from tmpl)’
)
)
seperate_moves
takes 3 set of move sequences for sultiple unitc 3nd zeperates tem ints 3 ceries
of independent and time sequences sinale move sizps
dJefun seperate_moves (bnime side?
(pros (tspl tmp2 tmp2 tapd unitname moves units:
(cond ((equal side ‘friend) (setq uynitls friendly units?:
{(equ3l side “enemy’® (setq units enemy_wunits));
loopl
{cond {((null (equal (car (present_order {c2ar units:)} “move)r) <
(seta unitname (car units) moves (cdr (present order unitniae::
{and {car moves)
(setq tapl (cone (1ist ‘move]l _space bhaze uniinsse C3r movet:! tooll:s
(3ng (c3dr moves)
isetqg tap2 (cons {(list ‘move_l spsce ondse unitnase C3dr 5vesl: LmOII:}
{and {caddr moves)
{(setq tmp3 (cons (list “zove_l _SPAaCe CHI%E ohltn3ee (C344F Sovef:l $spiidd
(and (c3dddr moves?’
(setq tmp4d (cons {(l1ist ‘moOve_l_cpsce THINE uniindme +C3d337 &0ves:) tmodi)d)
loop2
(and tsetq umits (cdr units)) i{2¢ lcoapl))
{return (list tepl tep2? tmp3 taparis}
sexecute _move
takes 3 set 01 cove sequernces for sultiple units 3nd plivs them out on
the came board
bname 15 the nsae of the board
display _toard is 3 fli2 which if t will dispiav boare sfter aover
defun execute_moves (Lnime disolay hoardg:
‘oroq (inpl tmpl r1slt Jrngd _moves nexy_woves nitls TEsFup_T
{setg frnd_soves (seéperate moves bLnayme - friend!
SNEMYV_NOVES *SEUETrILE_KOVeE Lrike ‘" sSnemy: !
tfrnd_moves Ing eneuy_moves 13 now 3 set of insepencent sinale wovas

™= 00 20 93

G is0pcild

[PNT}

~~ 4 o8 2 we

"
oy
.
.~

loopl
{setq tapl (car frnd_moves: {mp2 iC3r enemy _noves)
loop2

(and t{mpl (setq rslt (move_l_space bname (caddr (car tepil} 1c3dddr icar tmplidid:
{setq tapl (cdr tapl))
(and tmpl i{setg rslt twove] _sp3ice brase (caddr icar tapl)) (cadadr {car tmpl)))id)
{zetq tmp2Z {(cdr t=p2))
(and (or trpl twpl) ig90 loopl))
(setq frnd_moves (tdr {rn¢_soves) enemy moves tcdr engsy_soves::
{and (or frnd_moves eneay_moves! {ag locoi:l!}
sabove loogs execute 311 maves
{cetq units (3appens enemy_units friendly units:;
fong3
{(3nd {(equil (ynit_status bname (c3r units: "lscaticn st
{(setg tnpl (snother 3t _isc3tion bLAdme 030 Gnits:)
(setd backup_r3lt (backur Srase (C3IF uni1tssd e
{cong ({equsil fcsr backuo_rsli) "stiil have_conflinty
{set bhname
thoardset :svil btrname)
(unit_status brIme '1C3F unite: “location:
CCIF units)))
(setq umits (cons ic3r units) lcons ‘cadr bacruz reil) €03 urntstizs)

wh !t

A-48

(t t))
(set bname (boardset (eval brame)

{upit_status bname tmpl ‘location)

tmpl)))
(and (setq units (ecdr units)) (g0 loop3))
sabove loop will move_ back units to avoid double loecstions
(and display_board (print ‘3ll_moves_executed))
(return t)

))

; another _at_location

5 during moving of units more than one unit may ke on 3 single unit location

3 this routire dJetermines 1f more tham one wunit 15 3t the location of uniiname
H tmame is the name of the board

: unitname 1s the name of the wumit

(defun another_3t_location (bname unitname)

{(prog (tmpl units)
{setq tmpl (unit_status brname unitname ‘location)

uriits (delete unmitname (urnion friendly urits enemy_units)))

loopl
(and (ryll wnits) (return nil))
(and (equal tmpl (umt_ststus brname (car units) ‘location?) (return (car urits)))
(setq unmits (cdr units))
(a0 loopl)
{(return n1l)
)
)
biackup
this routines backs a wurnat up 3lony the path 1t just tool
by backing up the problem of havang multiple urmits at 3 simqle location
1s resolved
(defun backup (briame unitnane)

{preq (tmpl tmp2 flg)
(secq tmpl (cdr (unit_ststus bname unitname ‘retrezt_direction)))
Carg (rall tmpl) (print ‘ampossible_backup_protlem))

loopl
(comd ((rull tmpl)
(gcet_status bname tmp2 ‘location_status ‘possitle_conflict)
" (zet_status bname unitname ‘location_status ‘no_conflict)
(return (list ‘still_have_conflict tmp2))))
sif ean not bachkup further then return this fact and the name of the other
tunit that is at location this unit will now have to backup
(amd (rull (setq tmp2 (boardval (eval brame) (car itmpl)))) (setg {lg t))
{(cnange_location briane uritname (unit_status bname wnitname “location) {(esr tmpl))
(set_status bname unitname ‘retreat_direction
(cdr (unit_status brname unitmame ‘retrest_direction))d)

(setq tmpl (cdr tmpl))
tand (rll flg9) (90 loopl))
sthis loop teeps backing up one space 3t 3 time until unit has
smoved into an empty location
(set_status brname unitnsme ‘location_status ‘no_comflict)
(returm (list ‘rno_problem_in_backup)l))
ZONE OF CONTROL functions
these routines define 5 units zome_of_control
sdjacent _caquares
returns all squares adjscent to a3 given location

location 1s 2 wunit location

4% we g3 we

e gz ws WP ue

A-49

(defurn adjacent_sgquares (location)
(mapecar
‘{lambda (k)
(list (+ (car location) (car k))
(+ (cadr loecation) (cadr k))))
01 0) (=1 0) (0 1) ¢0 -1) (1 1) (1 -1» (-1 1) (-1 =131
sone_of _control
returns zome of contorl of unitname
the =zone of control should be equal to all locations adjarcent to
t+he umit that can be resched by that unit im one jump
briame 15 the name of the bosrd
unitname is the name of the unit
{(defun cone_of_control (bname unitname)
{setq qlokalarg (list brname umitname (unit_status bname unitname ‘locatiorn)
(v _L_status brname unitname -1de)))
-a3larg was defined us:rg defvar
HY 1g used to pass an arguement into the mapcar
sthis 18 obviously 3 h3d cluqge
{coms (umit_status bname unitnsme “location?
(remove nil
(mapecar
‘Clambeda (k)
(and (< (cost_of_move (ecar globalarg) {(cadr globalarg)
{caddr glokalarqg) k (c2dddr gqliobalarg) 1) 4.9)
(list (+ (car (caddr glcohbalarg)) (car ¥))
(+ (ecadr (caddr globalarq)) (cadr k)))))
7¢(1 0) (-1 0) (0 1) (O -1) ¢1 1) (1 -1) (-1 1) (-1 =131)1))
within_cone_of_control
determines if 3 location 15 within zone of comtrol of side
this iz eguivalent to the (oecation being within the zone of eonirol
of any of the units of the specified sidn
brizme 13 the name of the board
zi1de 1s either friend or enemy
loeation 15 2 uwmit loestion
(defun within_sone_of_control {btname side locsation)
(proa (tmpl)
(cond ((equal side ’enemy) (setq tmpl eremy_units))
((equal side ‘friend) (setq tmpl friendly_units))
(¢t (return ‘error-in-within-cone-of-control)))
loopl
(and (rwll tmpl) (return niljd)
{eond ((member location (zone_of_control brname (car tmpl))
(return t))
(t (setq tmpl (cdr impl))))
(an loonrl)))
5 ATTACK AND LEFEND ROUTINES
+ these routines execute 3nm 3ttack snd update unmit status and board
¢ pnsitions appropriately
t execute_3all_sattacks
H
(

32 P ey B e e

48 am WO gp S g O

evecutes enemy 3nd friendly sttacks erneny first
brnamne is the name of the bisard
defun execute_3all_sttacks (brnszne)
(execute_sattacks brame ‘arnemy’
(execute_attacks brame ‘friend))
exacute_sttacks
gets all of the attacks for one side and executes them

e o

A-50

H tname is the name of the board
- side is the side executing attacks
+ the actual attacks are defined by the orders for the side side
(defun execute_sttacks (brnane side)
(prog (tmpl wunits dfndlst)

(cond ((equal side ‘friend) (setq wnits friemdly_units))

((eanal side ‘enemy) (setq units enemy units))

(t (return ‘error_in_execute_attack)))

loopl
(cond ((mull

(equal (car (setq tmpl
{(present_order {(car units))))
“3attachk))
(qo loop2)))
taf it is 3n attack cord below will add 1t to dfndlst
(comd ({member {(cadr tmpol) dfrndlst)
(setq dfndlst
(add_to_dfrndlst (cadr tmpl) (c3r umits) dfrndlst)))
(t
(setq dfrdlst
(cons (cadr tmpl)
(cons (list (car urits)) dfndlst)))))

loop2
(and (seta units (cdr units)) (90 loopl))
tabove loops set up list 3 list of alternmnatair efending unit
sand list of attackers pairs
ssuch as (furmitl (eunitl ewunitl) funit2 (euni- +it4)) where funitl
y1s to be sttacked by eunitl snd eunitl ard fur 15 to 3ttascked by
seunitd and eunit4

loop3

(and dfrndlst (3ttack brname (cadr dfndlet) (car dfrndlst)))
(3rod (setg dfndlst (eddr afndlst)) (g0 loopd))
tloop3 2actual enecutes each attschk
(return t)
1)
3 add_to_dfndlst
5 local routine that adjusts list of attackers in dfndlst
(defun add_to_dfrdlst (defervler attacker dfndlst)
(prog (tmpl)
loopl

(cond ((equal defender {(car dfndlst))

(setq tmpl (cons defender tmpl))

({setq tmpl (cons (cons attacker (cadr dfndlei)) tmpl))>

t (setq tmpl (coms (car dfrdlst) tmpl))
(setq tmpl (coms (cadr dfndlst) tmpll)))
(and (setq dfndlst (cddr dfndlst)) (30 loopl))
(return (reverse tmpl))))
s attack
sthis is the main routine for determing the outcome of an attack
(defun attack (bname attackers defernder)

(proa (sctual_stck_strath actual_dfnd_strath zttack _rslt itmpl
terrain_vi3lue terrain_mult defend_pos_mult)
{setq sctual_atck _strgth 0 actual _dfnd_strath 0)
7+ thses two varisbles a3re used to
;determine ratio for battle outcomes

(setq tmpl 3attackers)

A-51

loopl
(or (can_attack? bname (car tmpl) defender)
(print (list ‘illea3al_attacker (esr tmpl)))
(delete (car tmpl) attackers))
(and (setq tmpl (cdr tmpl)) (50 loopl))
;set attackers to be sublist of attackers
sthat camn defernd unitary defend group
(setqg tmpl attackers)
loop2
(setc terrain_value
(terrain_between bname
(unit_ststus brname (car tmpl) ‘location)
(unit_status bname defender ‘location)))
{cond ((equal (unit_status bname (car tmpl) “type) ’‘helicopter)
(setg terrain_mult 1.0))
f{(equal terr3in_value 1) (seta terrain_mult 1.0))
({equal terrain_value 2) (setq terrain_mult .753)
((equal terrain_value 3) (setq terrain_mult .G5)7
{{equal terrain_value 4) (setq terrain_mult .4)))
(setq actual_stchk_strath
(+ (k (kx (unit_status bname (car tmpl) ‘3attack_strength’
(unit_status bname (car tmpl) ‘proficiency))
terrain_mult)
actusl_atck_strath))
(and (setq tmpl (cdr tmpl)) {20 loopl))
s set 3ctual_sttack _stremngth to be total of 311 umit attack =ztrerath
(setq defend_pos_mult
(cond
{(equal (car (present_order defender)) ‘move) .5)
((rosll
{equal
tunit_status brname defender ‘location?
(cadr (unit_status bname
defender
‘previous_locstions)))
«75)
(t 1.0)))
(setq actual_dfnd_strath
(+ (& (% (unit_status brname defernder ‘defend_strenath?
(urm1t_status brname defender ‘proficiency))
defernd_pos_mult)
actual_dfnd_strath))
stotal defend strenqgth now set
(setq attack_rslt
(battle_outcome actual _atck_strath asctusl_dfnd strqih)y
(setq attack_rslt
(list
(guotient (car atitack_rslt) (lemath attackers))
{cadr attack_rslt)))
seffect on each attacking unit is now definel
(setg tmpl 3ttackers)
loop4
{(set_status bname (car itmpl)
‘mroficiency
(- (unit_status bname (car tmpl) ‘proficiency)
(car sttack_rslt)))

A-52

(and (dead_unit bname {(car tmpl)) (remove from_qgame bname (car tmpl)))
{(and (setq tmpl (cdr tmpl)) {30 loop4))
syattackers status now reset
(set_status bname defender
‘proficiency
(- (umnit_status bname defernder ‘proficiency)
(cadr attack_rsit)))
(and (dead_unit bname deferder)
{remove_from_game bname deferder))
sdefender status nouw reset
)
can_attack®?
determines if attacker can leqally attack defender
3 unit can only sttack snother unit that 1s within the attacking
unit zone of control
aname is the name of the board
attacker is the name of the potential attacking unit
- defender 15 the name of the potential defendina unit
defun ecan_sttack? (brname sttachker defender)
{proa ()
(3nd (member (unit_ststus brname defender ‘location)
(mone_of_control bname 3ttacker))
(return 1))
(return nil)))
v dead_unit
; determines if wunit is ro longer s3ctive
3 when 3 units proficiency drops to 0 then it 1s
; removed from the btoarsd
(defun dead_urit (bname unitname)
(¢« (unit_status bname unitname ‘proficiency) .01))
remove_from_g3ame
removes 3 unit from play of game
bname 13 the name oi the board to remove unit from
urintname is the name of the unit to remove
Glefun remd'e_from_game (brname unitname)
.prog (tmpl:
(setq tmpl {(unit_sztatus bname urnitname ‘side))
(cord ((egual tmpl ‘fraisno?
(seto friendly_uniis
(remove unitname friendly_units)))
((equal tmpl ‘enemy)
{setq enemy_units
{remove unitname enemy_unitcly))
tabove cond removes yriat for list of active units
tspt_status brname vhitname ‘13_active nil)
i3 property of 3 wunit 1s whether or not 1t 1s active
sdnis 12 set to nil
{set brame
(bozsrdset (eval tiname)
{urit_status brisme unitname ‘location)
mLL))
;the unit is -emoved from the bLoard brname
¥

8 ga MY au *4 35 38

e 6% wy 92

)
; battle_ouw come
7 determines the results of am attack 1i1n terms of proficiency lossy

A-53

(defun battle_outcome (atck_strath dfnd_strgth)
{prog (ratio)

(setq ratio (quotient atck_strgth dfnd_strgth))

tecond ((x ratio 10) (returm (list 0 10)))

((> ratio 9) (return (list 0 9)))
((> ratio 8) (return (list O 8)))
((> ratio 7) (return (list 1 7)))
({> ratio 6) (return {(list 1 6)))
({> ratio 9) (return (list 2 S)))
((: ratio 4) (return (list 2 4)))
((> ratio 3) (return (list 3 3)))
(¢(> ratio 2) (return (list 4 2)))

({(> ratio 1.3) (return (list 4 1.5))>
((> ratio 1) (return (list 4 1)))
(¢(- ratio ,S) (return (list 5 13))
{(: ratio .3) freturn (list 7 1))
(+ (return (list 92 0)))))
THESE ROUTINES DEFINE TOF LEVEL GAME AnNDt ACTIVITIES DURING & TURN
display_orders
will display all orders for given side
tJefurn display_orders (side)
(proa (tmpl tmp2)
(cond ({equal side ‘friend) (setq tmpl friendly_nnits))
({equal side ‘enemy) ‘setg tmpl enemy_units))
{t (return {print "2rror_in_display_orders))))
{primt (list side ‘ORDERS “ARE))
loopl
(print (car tmpl))
(princ * "3
(setq tmp2 (presemnt_order (car tmpl)))
(princ tmp22
{and (seto tmpl (cdr tmpl)) (an loopl))
i

(

sernd_order
will sand am order to i1dentified unit
" unitname is the name of the umt
order 1s the new order for that unit
(fefun send_order (unitrname order)
(proa (tmpl})
(cond
({equal (car (g3et ‘s314e unitname)) ‘friend)
(setq tmpl ‘friend_nrders))
({equal {(car (get ‘side unitname)) ‘enemy)
(setqg tmpl ‘enemy_ordere))
(t (return (print ‘error_in_send_order))))
(g2t tmpl
(cens (list unitname order?
{jelete (list uratname
(present _order unitname))
(eval tmpl)))
{return
{(list ‘present_order unitname
{present_order unitname’’)
)
)

.8 4% 4a @8

-

y present_ordex

s returns the present order for specified unit
: unitname is the name of the unit
H friend_orders is alobal list of present orders for side friend
H eneny_orders is global list of present orders for side enemvy
(defun present_order (unitname)
{prog (tmpl)
(arnd (nuil unitrname)
(return ‘no_unit_in_present))
(cond
“((eaual (car (get ‘side unitname)) ‘friend)
{setq tmpl friend_orders))
((equal (car (get ‘side uwnitname)) ‘enemy)
(setq tmpl eneny_orders))
(t (return (print ‘error_in_present_order))))
stmpl is set to list of orders
loopl
(3nd (equal {(ca3ar tmpl) unitname)
{return (cadar tmpl)))
(and (setq tmpl fecdr tmpl)) (a0 loopl))
tloopl will returrn an orcer if one is found
(return ‘{(no_order))
+if rno order found the return no order
)
)
7 new_turn
vy initializes the units for 3 new turn
s resets the movement_sllowance
H list of previous_locations
H the order to no order
H qo0loka3l list of supported _corridore to nil
H tiime of board to time + 1
(defun new_turn (bname)
{proa v*mpl)
(setq tmpl 'wnion friemdly _units enemy_units))
lcopl
(sdt_status Lname (car tmpl) ‘wmovement_allowance
(umit_status “imitial (car tmpl) ‘movement_21lowance))
smovement allowance it reset to intial value usually 4
(set_status
bname (car tmpl) ‘previous_locations
(cons (unit_status briame (car tmpl) ’‘Yocation)
(unit_status brame (car tmpl}
‘previous_locatiaqns)))
73 list of locations 3t previous turns is saved
(sgnd_order (car tmpl) ‘(mo_order))
sunit has no c~der at beginnaing of turn this defarlt could be removed
tleaving urmit with standing orders
(and (setq itmpl (edr itmpl)) (30 loopl))
tloopl resets status for eszch unmit
(setq cupported_corridors ni1l)
ssupported_corridors is gqlobal variable used by krno.iedae base
t1its existence is 2 poor cluge
tputprop ‘time (3ddl (aet ‘time btname)) bname?
yupdate Lthe time
{(retuin
(list /NEW_TURN

A-5%

*TIME_IS (qet ‘time bname)})}))
s execute_orders
s executes all orders for both sides
; brname is the name of the board to execute order ans.~. -
o display_board is a flaq which if t will display the |«
(defun execute_orders (brname display_hoard debug_mode”
(execute_2all_attacks bname)
3 all attack goals con both sides are executed first
(execute_moves bname nil)
all moves on both sides are executed second
units may not move and attack on the same turn
(setq unit_actions (update_wuniv_actions))
3 records what all the active units just Jdidd
(and display_board (display (eval brame) nil))
(and display_board
{print (list ‘suypported_corridors_z:re eupported_corridorz))*
(and display_board debuq mode
(break):
sthis break is sised for showing the planner 1s action should be
sremoved for sctual planning
(rnew_turn bname)
safter all orders executed update the board to new time
)
$ update_unit_sctions
s+ retuyrns list of esch action of each unit
5 this is used by krnowledge base 3s 3 qQlobkal variahkle
r
(

very much 3 cluge
defun update_umit_sctions ()
(prog (tmpl tmp2)
(setq tmpl
(union friendly wnits enemy_units:)
loopl
{(setq tmp2
(cons (list (c3r tmpl?
(car (present_order (car tmpl))3,
tmp2))
{and (setq tmpl (cdr tmpl*, (ag loopl))
(return tmp2)
)
)
¢ DOMAIN SPECIFIC UTILITIES
$ some utilitiv, that can be used by the knowiedas biase
$ oppo3ite_side
jreturns apposing side of side specified
(defur opposite_side (side)
(cond ((equal side ‘friend) ‘&nemy’
(Cequal side ‘enemy) ‘friersi’))
aet_path
function to fina = path from the precent location of unmitname
to the locztion 1in to
brisme is the nsme of the board
spitrname is tne ~ame of the wunit
1o 1€ the loration to move to
®3n_cost bourds thy depth of the
seareh in terms of movement costs
~top_at_enexy 15 3 flag which if m1i will mot account for fact

I3 6N we WL g B

e wa .

A-56

' that the enemy may be blocking ones path
(defun get_path (bname unitname to max_rost stop_at_enemy)
s1f max_cost under 6 then may not get any path
{prog (tmpl wnit_locs)
isetq unit_locs (list_unit_locs bname (union friendly_units enemy_units)))
(setg tmpl previous_aet_paths)
loopl
{3nd (equal (list urnt_lccs unitname 1o max_cost stop_3t_enemy)
(car (first tmpl)))
{return (cadr (first tmpll)))
(3nd (setq tmpl (cdr tmpl)) (g0 loopl))
:if path has been previously calculated ther just retrieve it
3if this starts to use up to much memory then replace eval bname with somethan
s more limited or do io
(setg tmpl (find_path bname nnitname
tlist (unit_status bname unitrame ‘location)) to 9
(€1 1) (0 1Y (1 02 «-1 €) (0 -1) (1 =1) (-1 1; (-1 -1))
nax_cost stop_st_enemy))
tsetg tmpl (cdr (reverse {(cadr tmpl))))
;path has pgou been found 1f within maxecost distance
(and (n2ll tepl)
(setq tmpl (move_towsrd bname unitname to stop_at_enemy)ld?d
yif rno optimal path found then simply find 3 move_towsard path
{(zahd tmpl {(setq previous_set_paths
(cons (list (list unit_loecs unitname to max_cost stop_at_enemy) tmpl)
previous_get_paths)))
s save path in list of previous get_paths
(return tmpl)
)
)
list_wunit_locs
unigue board identier equal to list of all umits 3nd thear location
(defur list_umit_locs tbname unitriames)
(proa (tmpl)
., loopl
(setq tmpl (comns (list (c3r wvnitnames)
(unit_status bname (¢ r unitrnames) ‘location))
tmpl))
(and (setq unitnames (cdr unitinames)) (g0 loopl))
(return (reverse tmpl))
)
)
; move_toward
: trve to find 3 non_optimal path until within m3.:_cost distance
$ this 1s wsed by qet_path if find path cannot find 3 complete
$ path within maximum sllowed movement cost
’
(

.
.
.
?

this routine reflects the inelegance of the path finding aslgorithm
presently beinqg use.d
defun move_toward (tname unitname to stop_at_enemy)
(prog (tmpl tmp2 “wmp3 tmp4 cournt)
(setq tmpl (unit_status bnrname unitname “location) count 4)
loopl
(setq tmp2 (-list to tmpl))
{cond ({3nd (= (car tmpl) 0) (: (cadr tmp2) 0))
(setq tmp2 7(0 13))
(C(and (> (car tmp2) 0) (= (cadr tmp2) 0))

A-57

(setq tmp2 (1 0)))
((and (= (car tmp2) 0) (< (cadr tmp2) 0))
(setq tmp2 (0 ~1)))
({arnd (< (car tmp2) €} (= (cadr tmp2) 0))
(setq tmp2 ‘(-1 0)))
((and (> (car tmp2) 0) (> (cadr tmp2) 0))
(setq tmp2 ‘(1 1)))
({and (> (car tmp2) 0) (< (cadr tmpl) 03)
(setq tmp2 ‘(1 -1)))
((and (< (car tmp2) 0) (> (cadr tmp2) 0))
(setq tmp2 ‘(-1 1))
({and (< (car tmpl} 0) (< (cadr tmp2) 0))
(setq tmp2 (-1 -1))))
{and (enemy_in_way bname unitname tmpl tmp2) (return tmp4d))
(setqg
tmp3
(cdr
(revaerse (cadr (faind_path tname
unitname
(list tmpl)
(+1list tmpl tmp2)
0
({0 1) (1 0) (-1 9) (0 -1>
(1 1) (1 -1) (-1 1) (-1 -1)M)
4 stop_at_enemyl))))
(and tmp3 (setq tmp4 (union tmpd tmp3)))
(and (> (setq count (subl count)) 03
(setq tmpl (+list tmpl tmp2))
{90 loopl))
(return tmp4)))
5 find_path
5 will firnd 3 path for unitrname to location to
$ this 15 3 recursive search routine that returns results
H equivalent to exhaustive search
H briame is the name of the board
H unitnane is the name of the urat to move
H path_so_far is the path taken to this point
H initially it is the list of the umit location
H to is the location of the destination
H cost_so_far is the total movement cost of the path_so_far
H dirs_to_check is 3 list of allowable directions to move in
H max_cost is tha maximum 3llowable movement cost of 3 path
H stop_at_enemy is flag to determine 1s path search should acecount
H for enemy position
(defun find_path (tname unitname path_so_far
to cost_so_far dirs_to_chech
max_cost stop_at_enemy)

{prog (dirs best_so_far next_loc next_loc_cost tcost rslt)
(cond ((and (cdr path_so_f3ar)
(ememy_1n_way hnsme unitname (cadr path so_fiar)
(-11st (car path_so_far) (cadr path_so_far)?))
(return ‘(100 ~5_pathl))))
scheck if eremy in way on last move
sthis can happen dependina on how find_path was first called
(ared (equal (car path_so_fa3r) to)

A-58

(return (list cost_so_far path_so_far)))
sif destination found then 3 leaal path has been found so0 it 1s returned
(setg tcost (+ max_cost .01) dirs dirs_to_chech)
loopl
(setq next_loc (+list (car dirs) (car path, so_far))
next_loc_cost (cost _of move bname unitname (car path_so_far) (ear dirs)
(unit_status bname unitname ‘side) n1l))
(and (> tcost (+ (+ cost_so_far next_loc_cost)
(distance (+list (car path_so_far) (car dirs)) to))?
(> 5 next_loc_cost)
{rnll (member next_loc path_so_far))
(cond (stop_at_enemy
(or (equal (+list {(car path_so_far) (car dirs)) to)
{(rll (enemy_in_way bname unitname (car path_so_far) (car dirs)i)))
(+ 1))
(setg rslt
(find_path bname unitname (cone next_loec gath_so_far! to
t+ next_loc_cost cost_so_far:
dirs_to_check max_cost stop_st_enemy)))
srecursively calls find_path if next_loc may lead to goo0d path
{and rsit (< (car rslt) tecost)
(setq best_so_far rslt tcost (car rslt) relt nil))
sif new path 1s cheaper, then use it as the standard
(and (setq dirs (cdr dirs)) (a0 loopl)?
{cond ((null best_so_far) (return ‘(100 no_path)))
(t (return best_so_far)))
s returns either no path of the best path so far
)
)
s best_adar
3+ sets the direction 1o check in the correct general direction
; makes find_path more efficient
H from is the startimg inat locstion
H to is the ending unit locstion
(defun best_dar (from to)
(prog (tmpl tmp2)

(setq tmpl (-list to from) +tmp2 “((0 1) (1 0) (1 1) (0 -1) ¢(-1 O3 (-1 -1) (1 -1) (-1

{econd ((and (= (car tmpl) 0) (> (cadr imol) 0))
tsetq tmp2 (union ({0 1) (1 1) (-1 1)) tmp2)))
((and (> (car tmpl) 0) (= (cadr tmpl) 0))
(setq tmp2 (union “((1 0) (1 1) (1 -1)) tmp2)))
((3nd (= (car tmpl) 0) (< (cadr tmpl) O))
(setq tmp2 (urnion “((0 ~1) (-1 -1) (1 -1)) tmp2)))
((3nd (¢ (car tmpl) 0) (= (cadr tmpl) 0))
(setq tmp2 (union “((-1 0) (-1 -1) (-1 1)) tmp2)))
{(and (> (car tmpl) O) (> {(ecadr tmpl) 0))
(setq tmp2 (union “((1 1) (1 0) 70 1)) tmp2)))
{(and (> (car tmpl) 0) (< (cadr tmpl) O))
(setq tmp2 (urmaon “((1 ~1) (1 0) (0 ~-1)) tmp2))>
({and (< (car tmpl) 0) (: (cadr tmpl) 0))
{setq tmp2 (urion ‘((-1 1) (-1 0) (0 1)) tmp2)))
((and (< (car tmpl) 0) (< (cadr tmpl) 0))
{setq tmp2 (union “((-1 =1) (-1 0) (0 -1)) tmp2)))
)
(return tmp2)
)

A-59

J—

)
‘{defun dest_dir (from to)
7¢¢1 1) (1 0) (0 1) (1 -1) (O -1) (-1 1) (-1 O0) (-1 -1)))
t enemy_in_way
s this function will determine if an enemv uwnit blocks movement in direction dir
s if a3 unit is in the way it will return this fact otherewise it returns nil
; briame is the name of the board
H unitname is the name of ithe unit
H from should be the location moving from
; dir is the direction of the proposed move
(defun enemy_in_way (bname unitname from Jir)
{prog (tmpl)

(setq tmpl
(list
{boardval (eval brname) (+list from dir)>
(and (equzl 1+ (3bs (car dar)) (sbs (casr <Zir))) 2)
(boardval (eval bname)
(list (+ (car from) (car Jir))
(cadr from))))
(and (equal (+ (abs (car dir)) (abs (cadr d1rd)J) 2)
{bkoardval «eval bname)
(list (car from)
(+ (cadr from) (cadr Jir)))))
))
loopl

(and (car tmpl)
(risll (equsl
(unit_status bnau= (car tmpl) ‘side)
(unit_status bname " itname ‘side)))
(return ‘eneav_ura* 3.:_the_way))
(and (setq tmpl {(cdr tmp:!) (g0 loopl))
(return n1l)))
s distance
s-euclidian discance meme .. 2
5 will be less than or €qs ' to actual travel distance betweer from and to
(defun distance (fros ta)
(sqrt (+ (expt tcar (~-1is from to)) 2)
(expt (cadr (~1list fram tad) 2))))
;3 GENERAL UTILITIES
H these utilies sre not necessarily tied to this qame
s +list
s for two lists of numbers of equal <ize
; returns list of the respective sums of those numbers
(defun +1list (lstl lst2)
{prog (sumlst)
tor (equal (lenath 1lstl) (lengtih 1st2)) return ‘unequal_lists))
(or 1lstl {ret rn ‘no_1list))
loopl
(setq sumlst (cons (+ (car 1stl) {car 1si2)) sumlsi))
(and (setq 1stl (edr 1stl) 1st2 {cdr 1stl)) (a0 loopl))
(return (reverse sumlst))
)
)
;s ~list

A-60

s for two lists of numbers of equal size returns list of the
s respective subtraction of those numbers
vdefun -list (lstl 1st2)

{prog (diflst)
{or (eaual (length lstl) (lenath 1st2)) (return ‘unequal_lists))
(or 1stl (return ‘no_list))
loopl
{setq diflst (cons (-~ (car lstl) (car 1st2)) diflst))
(and (setq 1stl (cdr 1stl) 1st2 (cdr 1lst2)) (g0 loopl))
(return (reverse diflst))

)
+ THESE FUNCTIONS ARE TO SAVE AND RETRIEVE FILES OF GAME SITUATIONS
¢ save_game
3 saves the present game in the file filename
H realtoard is 3lways the name of the present active board
+ rnote thst tecause previous_aet_paths 1s 3 lona list this could be an
+ extensive file
(defun save_qgame (filename)

{(with-apen-file (istandsrd-oulputs filename ’out)
(proa (tmpl twpZ)
{urite realboard)
(urite 31l _wnits:
{write friendly_units)
(write enemy_units?
(write list_of _unit_properties)
(write previous_aet_paths)
(setq tmpl 31l _units tmp2 list_of_unit_properties)
loopl
{urite (aet (car tmp2) (car tmpl)))
(and {(setg tamp2 (cdr tmp2)) (40 loopl))
(and (setq tmpl {(cdr impl)) (setq tmo2 lizt_of _unrit_sroperties) fac loool):
)
)
)
s retrieve_same
; retrieves 3 game saved by save_game
+ note thst because previous_get_paths 1s 3 long list this could be an
; extensive file
(defun retrieve_dame (filename)
(with-open-file (istandard-inputx filename “1n)
(prog (tmpl tmp2}
(setq realboard (read))
(setq 3ll_units (read))
(setq friendly urits (read))
(setq eremy_units (read))
(setq list_of_unit_properties (read))
(setq previous_aet_paths (rezd))
(setq tmpl 311 _units tmp2 list_of_unit_properties)
loopl
(putprop (car twp2) (car tmpl) (read))
(and (setq tmp2 (cdr tmpl)) (30 loopl))
(and (setq tmpl (cdr tmpl)) (setq tmp2 list_of_unit_properties) (a0 loopl))
)
)
)

A-61

s save_board
3 this funciion will save the display of 3 board in 3 file
s this a3llous board to be printed later
3 bname is the name of the board
’ file is the name of the file to save to
(defun save_board (bname file)

{with-open-file (Astandard-outputix fi.e ‘out)

{proa (tmpfla board)

(and (null (3tom bname)) (return ’bad_ssquement_to_save_board)?}

{setg board (eval bnase))

(setq tmpflay t)

(loop for j from 1 %o 25 do
{princ * *)
(loop for i from 1 to 27 do

{displayl board (list z 31
(cond (tmpfla C(princ * ")}
(t forinc * *?)})

tand (rull tmpfla) (princ (addl (quotient (subl i) 2):¥)
(terpri) (terepgri)
{setq tupflg (null tmpflial))

{princ * *3

(loop for i from 1 to 12 do
{princ 1) (cond ((< i 1Q) (princ *)
(t (princ °* *3)))

)

A-62

PROGRAM LISTINGS
PROGRAM | PAGE
1 DEMOINSTRUCTIONS............ TR A1
\
2 TERRAIN...........ooovvevnennenn. t\ A-4
3 GOAL DEFINITION PARAMETERS \ A-10
\\.
4 GOALDEFINITION STRUCTURE.............. N A-12
5 CONTINGENCY GOALTREEuevneeerenenannannnns, A-31
6 WARGAMEeonenens ettt e A-39

APPENDIX /!

23 June 1988

Prepared by:

PAR Government System.s Corporation (PGSC)
1840 Michael Faraday Drive, Suite 300
Reston, Virginia 22090

PGSC Report 88-44

