AD-A238 723	AENTATION PAGE					
	1985y	16. RESTRICTIVE	MARKINGS			
		3. DISTRIBUTION	AVAILABILITY	OF REPORT		
25. DECLASSIFICATION / DOWNGRODING SCHEDU	Li 7 1991	Approved for unlimited.	or public	release;	distribution	
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATIO	N REPORT NU	IMBER(S)	
<u></u>		JAALU3-87-K- 0142				
6a. NAME OF PERFORMING ORGANIZATION California Institute of Technology	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION U. S. Army Research Office				
6C. ADDRESS (City, State, and ZIP Code)	· · · · · · · · · · · · · · · · · · ·	7b. ADDRESS (City, State, and ZIP Code)				
Pasadena, California 91125	، ۱ ۱	P.O. Box 12211 Research Triangle Park, NC 27709-2211				
BA NAME OF FUNDING / SPONSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
U. S. Army Research Office		ARO 24876.5-PH				
3c. ADDRESS (City, State, and ZIP Code)	DRESS (City, State, and ZIP Code)			10 SOURCE OF FUNDING NUMBERS		
P.O. Box 12211 Research Triangle Park, NC 2770	9-2211	ELEMENT NO. DAALO3	NO: 87	NO K	ACCESSION NO	
1. TITLE (Include Security Classification) Fiber Coupled Phase Conjugati tive Materials	Lon Mirror and 1	Femporal Info	rmation E	xchange l	Jsing Photorefra	
2. PERSONAL AUTHOR(S) A. Yariy						
13a. TYPE OF REPORT13b. TIME COFinal ReportFROM 9/2	DVERED 8/87 TO 9/27/89	14. DATE OF REPO	RT (Year, Mor	nth, Day) 15	PAGE COUNT	
15. SUPPLEMENTARY NOTATION The view,	opinions and/or	findings co	ntained i	n this re	port are those	
of the author(s) and should not	be construed a	as an officia	1 Departm	ent of th	he Army position	
17. COSATI CODES	18. SUBJECT TERMS	Continue on revers	e if necessary	and identify	by block number)	
FIELD GROUP SUB-GROUP					by block nonibely	
	pnase conjuga	Best Available Copy				
19. ABSTRACT (Continue on reverse if necessary	and identify by block i	number)				
-opercal phase conjugation has h In particular it is well known	een investigate	ed extensivel	y in many	areas of	nonlinear opti	
the wavefront-reversal properti	es of an incom	ing optical w	ave, For	this re-	ions pecause of a son the main	
emphasis has been on the study	of the propert:	les of ordina	ry phase	conjugate	e mirrors (PCN's	
that reffect waves of a partic.	dar polärizatio	m Guardy a	linear p	olarizati	ion). In opit	
distortions include optical and	PCM's, however.	they cannot	be appli	ed to the	cases where the	
scrambling as well as phase dis	stortions. This	ich ibeldenro S fa chusod	waves sur for examp	for from	polarization :	
fringence in high power optical	amplifier stay	ges and by the	e strong	intermoda	il coupling in	
multimode fibers. These call f	for phase conjug	ation of bot	h polariz	ation con	ponents of the	
information recovery by model	coretically and	experimental	ly on poly	arization	and spatial	
of a tandem combination of a sat	dispersal and pi dilaode fiber c	ud a photore	ion. The fractive a	scheme, aclf-pum	which consists and PCL uses the	
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT		21. ABSTRACT SE	CURITY CLASS	FICATION		
22a. NAME OF RESPONSIBLE INDIVIDUAL		226 TELEPHONE (Include Area C	ode) 22c. Ol	FFICE SYMBOL	
D Form 1473, JUN 86	Previous editions are	obsolete	SECURI	TY CLASSIFIC	ATION OF THIS PAGE	
91-051	96	S			n	

<u>}</u>. 1

Best Available Copy

inherent strong intermodal coupling (i.e., modal dispersal) in the fiber combined with phase conjugation of one polarization component of the depolarized (i.e., mode-scrambled) field emitted from the fiber.

f.

11日本市に日本日本日本日本日本日本日

Investigation of polarization and spatial information recovery by modal dispersal and phase conjugation

Optical phase conjugation has been investigated extensively in many areas of nonlinear optics. In particular it is well known that it can be used to correct phase distortions because of the wavefront-reversal properties of an incoming optical wave. For this reason the main emphasis has been on the study of the properties of ordinary phase-conjugate mirrors (PCM's) that reflect waves of a particular polarization (usually a linear polarization). In spite of the usefulness of the ordinary PCM's, however, they cannot be applied to the cases where the distortions include optical anisotropies by which incident waves suffer from polarization scrambling as well as phase distortions. This is caused, for example, by the induced birefringence in high power optical amplifier stages, and by the strong intermodal coupling in multimode fibers. These call for phase conjugation of both polarization components of the beam.

We have investigated theoretically and experimentally on polarization and spatial information recovery by modal dispersal and phase conjugation. The scheme, which consists of a tandem combination of a multimode fiber and a photorefractive self-pumped PCM* (see Fig. 1), uses the inherent strong intermodal coupling (i.e., modal dispersal) in the fiber combined with phase conjugation of one polarization component of the depolarized (i.e., mode-scrambled) field emitted from the fiber.

We have found that this scheme permits phase conjugation of an arbitrary polarized wave in spite of the elimination of one polarization component (see Fig. 2). This is because the polarization and spatial information of an input is distributed via the strong intermodal coupling among all the fiber modes, and the surviving single polarization modes contain sufficient information about the missing modes so that the latter are reconstructed during the reverse propagation and the intermodal coupling in the fiber.

The fidelity of this phase conjugation process has also been studied. It is found that the depolarized noise associated with a reconstruction of the original information contains nearly the same amount of the total power as that of the reconstructed true phase-conjugate beam and is distributed among all of the fiber modes, independently of the mode distribution of the original input beam. Therefore the noise power per mode can be negligibly small compared to that of the true phase-conjugate beam for the input-

beam numerical aperture (N.A.) much smaller than the fiber's N.A. This enables the complete recovery of polarization and spatial information.

The concept of modal dispersal and phase conjugation has been applied to a number of novel applications. These include correction of nonreciprocal polarization distortions, correction of lossy amplitude distortions, temporal data channeling between beams, all-optical beam thresholding, and phaseconjugate fiber-optic sensors. There is no doubt, although the scheme may be somewhat limited as far as pictorial information processing is concerned (i.e., when large N.A. inputs are required), it permits new signal processing applications involving sensors, gyroscopes, multichannel switching, and optical interconnections.

* A photorefractive self-pumped PCM is a simple and an efficient PCM but works only for a linearly polarized input.

List of publications resulting from this research

- 1. K.Kyuma, A.Yariv, and S.-K.Kwong, Appl. Phys.Lett. 49, 617(1986).
- 2. A.Yariv, Y.Tomita, and K.Kyuma, Opt.Lett. 11, 809(1986).
- 3. Y.Tomita, R.Yahalom, and A.Yariv, Opt.Lett. 12, 1017(1987).
- 4. Y.Tomita, K.Kyuma, R.Yahalom, and A.Yariv, Opt.Lett. 12, 1020(1987).
- 5. S.-K.Kwong, R.Yahalom, K.Kyuma, and A.Yariv, Opt.Lett. 12, 337(1987).
- 6. R.Yahalom, K.Kyuma, and A.Yariv, Appl.Phys.Lett. 50, 792(1987).
- 7. Y.Tomita, R.Yahalom, and A.Yariv, J.Opt.Soc.Am. B5, 690(1988).
- 8. R.Yahalom and A.Yariv, Opt.Lett. 13, 889(1988).
- 9. Y.Tomita, R.Yahalom, K.Kyuma, A.Yariv, and N.S.-K.Kwong, IEEE J.Quantum. Electron. QE-25, 315(1989).

Figure 1. Schematic diagram of the fiber-coupled PCM for polarization and spatial information recovery. The (polarization and modal-scrambling) multimode fiber is assumed to be linear with negligible loss.

(IMAE) DTTC THE Benetical cale JULLIFICULLON 5, はちょうりょう ity deden Avns nou/or 111.0 ST:BOINT A-

Figure 2. Degree of polarization recovery p and reflectivity R₁ of the fiber-coupled PCM are plotted as a function of the input power P₀ for the three different input polarization states; linearly polarized (o), circularly polarized (•), and 45° elliptically polarized (x).