
'C . , ' -

ARI Research Note 91-57
Iil

ADWA238 713

A Workshop on the Gathering of
Information for Problem Formulation

Albert N. Badre
Georgia Tech Research Institute

for

Contracting Officer's Representative
Michael Drillings

Office of Basic Research
Michael Kaplan, Director

June 1991

91-06064

United States Army
Research Institute for the Behavioral and Social Sciences

ACpproved for public release; distribution is unlimited

49 1 4 '41.

41

U.S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON JON W. BLADES
Technical Director COL, IN

Commanding

Research accomplished under contract
for the Department of the Army

School of Information and Computer Science, Georgia Tech Research Institute - . - - /
J

Technical review by

Michael Drillings "F.

* i * .:.U ' i ,, ~ --

D:~ J.,°, Z t

NOTICES

DISTRIBUTION: This report has been cleared for release to the Defense Technical Information
Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution
other than to DTIC and will be available only through DTIC or the National Technical
Information Service (NTIS).

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not
return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The views, opinions, and findings in this report are those of the author(s) and should not
be constuued as an official Department of the Army position, policy, or decision, unless so
designated by other authorized documents.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OM Ao.vd4.018

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABILITY OF REPORT
-- __Approved for public release;

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
ARI Research Note 91-57

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
School of Information and (If applicable) U.S. Army Research Institute
Computer Science Office of Basic Research

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Georgia Tech Research Institute 5001 Eisenhower Avenue
Atlanta, GA 30332 Alexandria, VA 22333-5600

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION U. S. Army Research (If applicable)

Institute for the Behavioral MDA903-80-C-0144 and Modification No. I
and Social Sciences PERI-BR

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Office of Basic Research PROGRAM PROJECT TASK WORK UNIT
5001 Eisenhower Avenue ELEMENT NO. NO. NO. ACCESSION NO.

Alexandria, VA 22333-5600 61102B 74F N/A N/A

11. TITLE (Include Security Classification)
A Workshop on the Gathering of Information for Problem Formulation

12. PERSONAL AUTHOR(S)
Badre, Albert N.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final FROM 80/03_ TO 81/09 1991, June 152

16. SUPPLEMENTARY NOTATION
This report was monitored by the Office of Naval Research.

Michael Drillings, Contracting Officer's Representative

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Human-computer interface

Interactivity -I
Information processing

19. ABSTRACT (Co. .inue on reverse if necessary and identify by block number)
) The purpose of this workshop was to assemble a group of research scientists from various

disciplines to discuss and report their research findings on problem representation for
interactive information prccessing. The proposed general topic was limited to the problems
of representation and information processing in the context of human 4computer interface.
Based on this theme, a set of topics was developed and used to select and organize speakers
and panels. Topics were

1 i Psycholinguistic factors in computer communication'

27 Compatible knowledge and memory structures for computer communication,

3. Representing and structuring displayed information in compuLr communication.9
(Continued)

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

Q UNCLASSIFIED/UNLIMITED 0l SAME AS RPT. El DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b.TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Michael Drillings (703) 274-8722 .PERI-BR

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(mimi Data Enterod)

ARI Research Note 91-57

19. ABSTRACT (Continued)

4 Representing information for decision, learning, and help processes in
computer communication

The result was a successful workshop that included a total of 20 presenta-
tions and 40 participants.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Olat. Iner.d)

ii

A WORKSHOP ON THE GATHERING OF INFORMATION FOR PROBLEM FORMULATION

CONTENTS

Page

SCHEDULE OF EVENTS1

ALBERT N. BADRE 2

The Human Computer Interface: Introductory Remarks

RICHARD BURTON 4

Experiences with a Natural Language Interface to an ICAI System

JAIME G. CARBONELL 5

Towards a Robust, Task-Oriented Natural Language Interface

SAM L. EHRENREICH 14

Creating an Algorithm for Generating Abbreviations to Be
Used in User-Computer Transactions

JAMES D. FOLEY16

Tools for the Designers of User Interface

GEORGE W. FURNAS28

Psychological Structure in Information Organization and Retrieval:

Arguments for More Considered Approaches and Work in Progress

MARK D. JACKSON AND JUDITH E. TSCHIRGI32

The Nature of User-Generated Commands for Interacting with a
Computer

JANET L. KOLODNER 34

A Conceptual Approach to Natural Language Fact Retrieval

THOMAS K. LANDAUER AND SUSAN T. DUMAIS45

Psychological Investigations of Natural Command and Query
Terminology

iii

CONTENTS (Continued)

Page

MICHAEL LEBOWITZ48

Organizing Memory for Use in Understanding

PAUL R. MICHAELIS AND MARK L. MILLER55

Artificial Intelligence and Human Factors Engineering: A
Necessary Synergism for the Interface of the Future

FRANKLIN L. MOSES 87

Overview of Selected Display Formatting and Clutter Reduction

Techniques

P!IYLLIS REISNER 92

Formal Grammar Representation of Man-Machine Interaction

ELAINE RICH AND AARON TEMIN 96

A Rule-Based Help System for Scribe

MICHAEL L. SCHNEIDER107

Models for the Design of Static, Software Systems

BEN SHNEIDERMAN 118

System Message Guidelines: Positive Tone, Constructive,
Specific, and User Centered

ELLIOTT SOLOWAY AND JEFF BONAR 125

Empirical Evaluation with Novice Users of Some Programming
Language Constructs

ALBERT L. STEVENS, MICHAEL D. WILLIAMS, AND JAMES D. HOLLAN 134

Steamer: An Advanced Computer-Aided Instruction System for
Teaching Propulsion Engineering

JOHN C. THOMAS 135

Metamorphosis through Metaphor

iv

CONTENTS (Continued)

Page

MICHAEL D. WILLIAMS AND J. HOLLAN 146

A System for Computer-Aided Memorization

APPENDIX A. NAMES AND ADDRESSES OF PARTICIPANTS143

v

A WORKSHOP ON THE GATHERING OF INFORMATION FOR
PROBLEM FORMULATION

- 1':11" Coffe(- an,'" rcju hritits

10):00 - 10':45 rnpenir..t Sessiu,
A. Badre
S. Halpin

- 111: - :*ncietin- the 11ser
E. Rich and A. Temin
M. Schneider
F. Sotoway and J. Sonar

- :3.; Lunchcon

13;- -z O Tr terfaces - !,,'vcLopi.#-nt
J . Foley
M. MiLLer and P. Michaelis
J. Thomas

3:I I1 - 3: -r reak -Cf f fe Pne' :of tilri r

-: r ..r r~esinrino lrtetti.-ert Interf-cfs
R. Burton
J. Carbonell
A. Stevenso M. WiLLiams, and J. Hottan

:3r, - r 0 fpf fee- arin Pr-uj,,hr.uts

9:01, - 11:0Vl Fa"'r'rctors c4 !ntfractive~ L,.ruie
S. Ehrenrelch
G. Furnas
T. Landauer and S. bumais
M. Jackson and J. Tschirgi

J. Kotodner
M. Lebowitz
M. WiLLiams and J,. Hottan

12:4't- 1:4c Lunc~fon

1 :4tss?- 7 ' . es i,nd .i- ay
F. Moses
P. Reisner
E. Shneiderman

- 1:17, irrak - Coftfee inr 'Irft rrir~s

3:1 S - :1 S ;,Pneri-t)iscussi(2! 4r'c rtlrft,rN

4:3' - ('(~rirw~L

THE HUMAN COMPUTER INTERFACE

INTRODUCTORY REMARKS

Albert N. Badre

When asked to sit down at a computer terminal and perform what

is considered an elementary task, most novice operators are likely

to be confused and frustrated. Even the simplest of tasks seems to

require an excessive level of computer sophistication or the

motivation to read and understand an overabundance of accompanying

documentation.

The population of computer users is growing at a very rapid

pace, and an increasingly large number of this generation of new

users is not data processing or computer trained. Yet,

- the language that the operator must use to interact with

the machine

- the documentation, whether on-line or off-line, that

he/she has to read in order to learn how to instruct the

machine; and

- the system messages that are displayed

are couched in the vocabulary and language habits of the computer

expert.

2

Accordingly there is a growing con ,ansus in the computer science

community that the user-compatibility of the human interface should

be considered and incorporated into the design of all computer systems

at the initial stages of development. "Information processing"

systems are likely to be more user compatible if they are designed to

adapt to the information processing capabilities and limitations of

the user. It is becoming, therefore, increasingly necessary to

explore and identify the human information processing factors,

constraints, and variables that are associated with making the

interface more user compatible. This means identifying and

considering factors relating to what the operator "does" at the

display station in order to perform a desired task and what the

system does in return.

In this workshop symposium we will be dealing with six inter-

related topics that revolve around the user interface theme. These

are: Modeling the user, interface development factors, design

considerations for intelligent and adaptive interfaces, memory

structures, the human factors of language interaction, and messages

and displays.

3

Experiences with a Natural Language

Interface to an ICAI System

Richard Burton

4

Towards a Robust, Task-Oriented
Natural Language Interface

Jaime G. Carbonell
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

This paper analyzes the inception of a new generation of robust, task-oriented natural language
interfaces in light of new theoretical advances and analysis to avoid limitations uf previous efforts.
Three key ideas are discussed: 1) dynamic selection of parsing strategies, 2) exploiting domain-
specific semantics and grammatical constructions, and 3) integrating recent theoretical findings into
task-oriented parsing. An implemented natural language interface conforming to some of the new
objectives is discussed, as are current plans for a more-general-scope natural language interface.

3 February 1981

5

Towards a Robust, Task-Oriented
Natural Language Interface

Jaime G. Carbonell
Carnegie-Mellon University

Pittsburgh, PA 15213

1. Objectives and Historical Perspective
Natural language comprehension has been studied from two primary perspectives in Artificial

Intelligence:

" As a vehicle to investigate and simulate human cognitive processes embodying
components of either a linguistic or psychoiogical theory of language comprehension.

" As a means of implementing task-oriented "natural language front ends" to complex

computer systems.

The "basic science" approach has produced some significant principles and techniques (e.g.,

expectation-based language analyzers [7, 1]), but no truly robust parsers for computer-naive users

have been developed in this paradigm.

The applied "engineering" approach has proceeded by either building the domain of application

into the parser itself, or by relying on syntax-only linguistic parsers. Neither approach has proven

wholy satisfactory. The former suffers from virtual lack of transferability to new domains, while the

latter suffers from extreme fragility: the inability to cope with any input not strictly conforming with its

rigid internal grammar. However, it must be noted that some successful parsers have emerged from

these limited approaches, such as LIFER [5] and LUNAR [8]. Both of these efforts, unfortunately,

required man-years of development and tuning before their performance approached the user-

acceptance level. Their primary contributions were in the computational mechanisms they

introduced, which could ;ater be incorporated into more sophisticated parsers.

A major objective in the design of task-oriented parsers is to provide the user maximal flexibility

(within the semantics of the domain) to express his utterance. For example, the graceful interaction

project [4] is a recent attempt at coping with limited ungrammaticality in a task-oriented parser. The

means by which recent task-oriented parsers strive for robustness and flexibility is to incorporate

domain semantics into their parsing knowledge bases (but not into the programs themselves). Here,

we go one step further and exploit domain knowledge to dynamically choose the optimal parsing

strategies. Moreover, the work described in this paper attempts to take ful! advantage of lessons

learned from more theoretical natural language research. Our objectives can be summarized as

follows:

6

* Create a robust parser, in the sense that it must tolerate common ungrammaticality,
ellipsed constructions, and different phrasings within its domain of application.

e Implement the parser in a modular manner with respect to its knowledge sources. This
means that domain knowledge necessary for the parser ought to be divorced from the
program, from general semantic knowledge, and from linguistic knowledge. Hence, only
one knowledge base need be altered in transfering the parser to a new application
domain. The program itself is general with respect to the choice of task domain.

*Exploit new advances in natural language processing not previously incorporated into
task-oriented parsers. Some well-established powerful methods developed to simulate
human language understanding (most notably expectation-based disambiguation) have
not previously been used in task-oriented approaches, although they have proven
computationally effective in more general domains.

e Minimize the time required to transfer the parser to a new domain. This goal is furthered
by our modularity consideration, but in addition I want to work towards a uniform method
of incorporating new domain knowledge, including knowledge of technical jargon
particular to a given domain.

In order to further these ends I developed an initial parser that combines partial pattern matching,

semantic-grammars [5] and equivalence transformations. I applied this parser to the task of building

and querying a semantic-network [2] data base. The central lesson learned from this exercise is that

the combination of the three parsing strategies yields not only a more robust parser than a single-

strategy method, but surprisingly the time it took develop its domain application (admittedly not a very

complex task) was considerably less than expected (less than three weeks).

A crucial (and perhaps unintuitive) fallacy of previous task-oriented parsers is their commitment to a

simple uniform parsing strategy. Since natural language is a complex phenomenon (even in task-

oriented domains), this design criterion had the effect of pushing the complexities into the domain

grammars, dictionaries and other domain-specific components of the parser. In the clearer vision of

hindsight, this design decision greatly complicated the application of existing parsers to new

domains. Is it not more desirable to incorporate all the decision-making complexities required to parse

natural language structures into the kernel program itself? Once built, this program need not be

redesigned for a new task domain. Minimizing the requisite complexity and size of domain-dependent

components is an extremely productive venture. Parsing-strategy selection, semantic matching

routines, and other domain-independent components should be provided as a kernel parser, which is

augmented by domain-specific knowledge bases in each applications domain.

In designing the kernel parser, a dominant criterion is that it select the parsing strategy in

accordance with the type of natural language construct it attempts to parse. Some information can be

expressed more naturally and more parsimoniously in one form (e.g., linear patterns) while other

information is best expressed as case structures, equivalence transformations, or semantic grammar

7

productions. ro illustrate this point, I attempted to encode all the knowledge in my parser as a pure

semantic grammar. This task has more than tripled the size of the task-specific knowledge base, and I
have not yet finished (nor do I intend to finish) the conversion. The primary reason for the relative

increase in size is that much of the information must be stated with a high degree of redundancy and

often in an awkward, round-about manner when it must be coerced into a uniform, context-free
representation.

2. The DYPAR Parser
DYPAR' combines three parsing strategies:

* A context-free semantic grammar component, grouping domain information into
hierarchical semantic categories useful in classifying individual words and phrases in the
input language.

e A partial pattern match component, represented as pattern-action rules. The patterns
may contain individual words, semantic categories (from the semantic grammar), wild
cards, optional constituents, register assignment and register reference. This method
enables the semantic grammar non-terminal categories to be applied in a much more
effective context-sensitive manner than would be the case is a pure context-free grammar
recognizer.

* Equivalence transformations map domain-dependent and domain-independent
constructs into canonical form, requiring a fraction of the patterns and semantic
categories that would otherwise be necessitated. If a phrase-structure can be expressed
in several different ways, while retaining the same meaning, it is clearly beneficial to first
map it into canonical form, rather than being forced to include all possible variants in
every context where that constituent could occur.

Below I give an example of each type of linguistic information used in DYPAR. In order to

understand these examples, a few notational conventions must be introduced: <BRACKETS> denote
a non-terminal semantic grammar symbol. A word starting with an exclamation mark (e.g.,
!REGISTER) denotes the name of register. A vertical bar (I) denotes disjunction in a pattern. A # in

a pattern matches a single word. An asterisk (*) matches an arbitrary sequence of words. The

construction (!REGISTEP pattern) assigns whatever matches the pattern to the register specified. A
colon (:) before a constituent in a pattern indicates that constituent is optional.

DYPAR, as we see in the dialog below, is the front end of a semantic network data-base update and

query system. Therefore, its domain knowledge consists of language constructs relevant to this task.
First, consider a fragment of its semantic grammar:

1Robust multi-strategy "DYnamic PARsing" is still in its infant stages, requiring frequent changes.

8

<INFO-REQ> -> (<WHAT-Q> I <INFO-REQI>]
<INFO-REQI> -> (: <POLITE> <INFO-REQ2> : <WHAT-Q>]
<INFO-REQ2> -> (TELL <me-US> : ABOUT I GIVE <me-US> I PRINT I TYPE J

This fragment, together with the rewrite rules for the other non-terminals above (e.g., <BE-PRES),

whose rewrite is all the present-tense conjugations of the verb "to be") recognizes the initial segment

of information-request queries such as: "What is ...", "Tell me what is ...", "Tell me about...", "Would

you give me ...", etc.

Now, consider a pattern-match rule:

(: <dot> (Ival #) <be-pros> : <DET> (IPROP 9) OF
: <DET> (INAM #) : <dpunct>)

a>

(LTM-STORE INAM IVAL IPROP)

This rule recognizes sentences such as: "Felix is a friend of Fido", or "Reagan is president of the

USA", and passes the information to the data base manager for consistency checking and storage. In

order to pass the information gathered in the pattern match process, the registers are assigned

appropriate values. For instance, in the second example, !NAM is assigned "USA", IPROP is as.igned
"president" and VAL is assigned "Reagan".

The equivalence transformations also use the pattern matcher. For instance, consider the following

simple (but useful) transformation:

((ISI *) (IW1 #) <POSS> (IW2 #) (ISZ) : (IP <PUNCT>))

(NCONC ISI IWZ (LIST 'OF) I/I IS2 IP)

This transformation maps possessive constructions into attribute-value constructions, which we

chose as canonical. For instance "Tell me about the VAX-7&.'s performance." is mapped into "Tell
me about the performance of the VAX-785." rhe latter construction is recognized by a pattern-action

rule. Since possessive constructions can occur in many contexts, the single transformation above

saves us from duplicating pattern match rules for each different context where an attribute-value

construction can occur.

The control structure of DYPAR is essentially an applicative condition-action cycle, which halts

upon no rules being applicable (in which case a partial pattern-match strategy is attempted), or upon

one of the pattern-action rules firing and passing its information to the data-base manager. Let us see

a brief dialog with DYPAR. For simplicity, we start out with an empty data base. Items in italics below
were typed in by the user. Everything else was output by the system. Items in UPPER CASE are

paraphrases of internal semantic network relations output by a rudimentary English generator.

*(parser)

You can build and query a simple semantic network

9

by stating information and questions in Engl i-h.

+Fido is a nice dog.

Storing assertion in semantic net: FIDO IS DOG.

[COMMENT: When DYPAR does not recognize concepts in the input, it prompts
the user for additional information required by the integrity-checker
in the data-base manager.]

What is NICE?

+Nice is a disposition.

Storing assertion in semantic net: NICE IS DISPOSITION.

Is it correct to say that THE DISPOSITION OF FIDO IS NICE?
(Y,N): Yes.

Adding new assertion: THE DISPOSIIION OF FIDO IS NICE.

+Fide's cousin is Felix.

Transforming (FIDO $S COUSIN IS FELIX PERIOD)
Into ::> (THil COUSIN OF FIDO IS FELIX PERIOD)

transforming (THE COUSIN OF Fil1, i. iE! IX PE,?i0))
Into ::> (FELIX IS THE COUSIN, 0I FIDO PERIOD)

Adding new assertion: IHF COUSIN OF F!O0 IS FELIX.

CCOMMENT: To iliustfate the parsing process ,a a bit more detail.
the rule tracer was activated for tiie fol1). ng interaction.]

+Cousin ,s a synmeltic relation.

Parse is:
Rule RUL19
Action will be: (PROGN (LTM-STORE !NAM !VAL (QUOTE ISA:))

(LTM-SPEC !NAM !VORP NIL NIL T))
With bindings:
(!VAL RELATION)
(!VORP SYMMETRIC)
(!NAM COUSIN)

I already knew that: COUSIN WAS A RELAFION.

Is it correct to say that THE RFLATIION OF COUSIN IS SYMMETRIC?
(Y,N): yes.

Adding new assertion: THE RELAIION OF COUSIN IS SYMMETRIC.
Inference: Adding new assertion: THE INVERSE OF COUSIN IS COUSIN.
Tnference: Adding new assertion: THE COUSIN or FELIX (5 FIDO.

+C.,t chaing t,, a dog's hobhy.

Transforming (CAI-CHASING IS A (OG SS HOBBY PERIOD)

10

Into ::> (CAT-CHASING IS A HOBBY OF DOG PFRIOD)

Adding new assertion: THE HOBBY OF DOG IS CAI-CIIASING.

ICOMMENI" Since the program never heard of "dog" or "fido"
it does not know whether to exprebs them with or without a deteiminer.
"Fido" is a proper name, therefore it needs n determiner, but "dog"
in all the examplps above looks strange without owc. Now, we fix that
problem by providing the program #ith the necesbary informatiop (in
English, of course).)

+The concept of dog is generic.

Transforming (THE CONCEPT OF DOG IS G.NERJC PERIOD)
Into ::> (GENERIC IS TIlE NODE-TYPE OF DOG)

[COMMENT: In our domain "concept" and "node-type" are synonywS In
future output. "dog" will be printed with a dete" iner dhen appropriate 3

Adding new assertion: THE NODE-TYPE OF DOG IS GENERIC.

+Could you tell me what a dog's hobby is?

Transforming (COULD YOU TELL ML WHAT A DOC $S 1OBBY IS OMARK)
Into ::> (COULD YOU TELL ME WHAT IS A rO $S HOBBY QMARK)

Transforming (COULD YOU TELL ME WHAT IS A DOG $S HOBBY QM1RK)
Into ::> (COULD YOU TELL ME WHAT IS THE HOBBY OF A DOG QMARK)

THE HOBBY OF A DOG IS CAT-CHASING.

+give me everything you know about fido

FIDO IS A DOG.
THE HOBBY OF FIDO IS CAT-CHASING.
THE COUSIN OF FIDO IS FFLIX.
THE DISPOSITION OF FIDO IS NICE.

+Napping is tne hobby of Fido.

That contradicts wha~t I could infer Dy lnh'rit.ce.
THE HOBBY OF FIDO WAS CA-CHASING.
Should I add the assertion anyway? (Y,N): no.
OK, discardinil new assertion.

+Exit this program.

Leaving natural language interface. Back to LISP.
(CPU-SECONDS: 12.056 GC-TIME: 6.780)

As we see in the above example, robust communication wth the user requires not only a flexible

13.

domain-oriented parser, but also an interactive query capability and a natural language gener, tor.

However, the latter two processes are conceptually simpler, and not the topic of this paper.

3. Future Directions
DYPAR illustrates the harmonious integration of three parsing strategies. However, it is only the first

step in exploiting the multi-strategy approach to develop real-world, robust, natural language

interfaces. In terms of sophistication, DYPAR straddles the boundary between an advanced toy and a

rudimentary real-applications system. One direction of continued development is to enhance the

pattern matcher, build additional general transformations, and create a sub-interface to facilitate

extensions to the grammar by a domain expert (not necessarily a natural-language expert). A first step

in the direction of automating and simplifying user extensibility has been taken in the development of

the KLAUS system [6]. At CMU, we are focusing on a complementary, and perhaps more fundamental

research direction.

If the gestalt performance of integrating three par3ing strategies has proven more effective than the
application of any single strategy, why not extrapolate this result to include additional parsing

strategies? Indeed, we have designed a flexible control structure for integrating case-instantiation as
the central parsing strategy -- calling upon other strategies discussed in this paper, in addition to

more domain-specific strategies, when appropriate [3]. Case-frame instantiation is the most general

parsing strategy capable of exploiting domain semantics. Hence, it should provide a quantum jump in
the general applicability of our task-oriented parser. Moreover, techniques such as expectation-driven

disambiguation [7, 1] developed by the non-applied school of natural language processing, can now

be brought to bear in real-world applications. The reason why case-frame parsers have not been

developed in task-oriented domains is that while they capture general principles admirably, they fail to

recognize specific idioms, compound nouns and the like. However, the addition of partial pattern

matching (idealiy suited to detect idiomatic expressions) integrated with case-frame instantiation and

other parsing methods should provide a high degree of generality without sacrificing robustness.

Graceful interaction with the user is a worthy goal for any natural language front end whose users

may be computer-naive. People invariably produce ungrammatical utterances, leave out words, add

interjections, and use terms outside the vocabulary of any system [4]. It is essential that a real-world

system "fail soft" in such circumstances, and interact with the user to enable graceful recovery. We
saw some simple examples of this in DYPAR. However, the expectation-setting provided by a case

system incorporating domain knowledge can be a more powerful tool to minimize failure.

Consider, for instance, a file-management system where a user may type "Transfer the flies in my

directory to the accounts directory." It is fairly clear to us humans that the user meant to type "files",

even if we know perfectly well that "flies" is a legitimate word in our vocabulary. A case-frame system

12

knows that the objective case in the transfer imperative (as applied to the file-management domain)

requires a logical data entity, which "flies" is not. Realizing this violated semantic requirement, it can

proceed to see whether by spelling correction, morphological decomposition, or detecting potential

omissions it can map "flies" into a known filler of that case. Here, spelling correction works, and the
system can proceed to inform the user of its correction (allowing the user to override if need be).

I conclude by reiterating my central theme: Integration of multiple parsing strategies is perhaps the

single most powerful principle in the development of robust, task-oriented natural language

interfaces.

4. References

1. Birnbaum, L. and Selfridge, M., "Conceptual Analysis in Natural Language," in Inside
Computer Understanding, R. Schank and C. Riesbeck, eds., New Jersey: Erlbaum Assoc.,
1980, pp. 318-353.

2. Brachman, R. J., "On the Epistemological Status of Semantic Networks," in Associative
Networks, N. V. Findler, ed., New York: Academic Press, 1979.

3. Carbonell, J. G. and Hayes, P. J., "Dynamic Strategy Selection in Flexible Parsing,"
Proceedings of the 19th Meeting of the Association for Computational Linguistics, (Submitted
1981).

4. Hayes, P. J. and Mouradian, G. V., "Flexible Parsing," Proceedings of the 18th Meeting of the
Association for Computational Linguistics, 1980, pp. 97-103.

5. Hendrix, G. G., Sacerdoti, E. D. and Slocum, J, "Developing a Natural Language Interface to
Complex Date," Tech. report Artificial Intelligence Center., SRI International, 1976.

6. Hendrix, G. G. and Haas, N., "Acquiring Knowledge for Information Management," in Machine
Learning, Michalski, R., Carbonell, J. G. and Mitchell, T., eds., Palo Alto, CA: Tioga Pub. Co.,
1981.

7. Riesbeck, C. and Schank, R. C., "Comprehension by Computer: Expectation-Based Analysis
of Sentences in Context," Tech. report 78, Computer Science Department, Yale University,
1976.

8. Woods, W., Kaplan, R. and Nash-Webber, B, "The Lunar Sciences Natural Language
Information System: Final Report," Tech. report 2378, Bolt Beranek and Newman Report,
1972.

13

CREATING AN ALGORITHM FOR
GENERATING ABBREVIATIONS TO BE USED

IN USER-COMPUTER TRANSACTIONS

Sam Ehrenreich
US Army Research Institute for the

Behavioral and Social Sciences

The US Army is in the process of developing automated tactical systems.

These systems will incorporate a dialogue mode (e.g., form-filling, menu, query

language) for communicating between the user and the computer. For the con-

venience of both, much of this communical-ion will involve abbreviations. The

Army Research Institute (ARI) is engaged in preparing an algorithm for use by

system designers in creating easy to use abbreviations for these systems. The

algorithm will not only be concerned with generating abbreviations for command

terms. Rather, the primary domain of the algorithm will be the lexical terms

used in exchanging information between the user and the computer.

This summary describes the empirical issues that were investigated in ARI's

abbreviation project. The data that was collected, along with an algorithm for

generating abbrevi-tions, will be presented at the workshop.

All of the experiments for this project have already been completed.

However, a few still remain to be analyzed. The participants used in these

experiments were enlisted Army personnel. The stimuli used were words which are

likely candidates for abbreviation on an automated tactical system. However, it

is believed that the nature of both the participants and the stimuli are such

that the resulting algorithm will be applicable for use with most classes of

operators and with most sets of words.

The general abbreviation techniques which were considered as candidates for

forming the basis of the algorithm are: (1) truncation, i.e., delete all but the

first few letters of a word; (2) contraction, i.e., remove all of the word's

vowels except for vowels occurring as the first letter; and (3) abbreviation

14

by the consensus of a committee. In order to create the desired algorithm, the

empirical questions which were investigated are:

1. What are people's personal preferences with regard to the abbreviations

formed by the different abbreviation techniques?

2. How do the different abbreviation techniques compare when participants are

presented with a word and asked to recall its abbreviation (i.e., encoding)?

How do the methods compare when the task is decoding?

3. When participants are asked to produce abbreviations of their own choosing,

what abbreviation method do they tend to naturally use?

4. When participants' experiences with a word and its abbreviation increases,

do the absolute and relative effectiveness of the different abbreviation tech-

niques change?

5. When participants are instructed in the rule system underlying the different

abbreviation techniques, do the absolute and relative effectiveness of the

abbreviations change?

6. Should abbreviations be of a fixed or variable length?

7. How can different words that result in identical abbreviations be handled

(e.g., when using the truncation method, both TRANSLATOR and TRANSPORT are

abbreviated as TRAN)?

8. Can endings (e.g., -ed, -ing) be effectively incorporated into abbreviations?

The answers to these questions will represent the empirical basis on which

an abbreviation algorithm is formed. The desired algorithm is one which is

completely deterministic in the abbreviations it forms. Using the algorithm,

the system designer should have minimum input in determining the abbreviation to

be created. Although the algorithm that will be created will not be based on a

complete investigation of all possible variables, it is expected that it will

result in abbreviations which are significantly easier to use than the arbitrary

and inconsistent abbreviations presently used on Army systems.

15

Tools for the Designers o User InterFaces*

James D. Foley

March, 1931

Institute for Information Science and Technology

Department of Electrical Engineeri;tg and Computer Science

School of Engineering and Applied Science

The George Washington University

Washington, D.C. 20052

REPORT GWU-IIST--l-07

This paper was presented at the Workshop/Symposium on Human
Computer Interaction, sponsored by the U.S. Army Research
Institute and Georgia Institute oF lechnology.

*This work is being carried out by the author and M.B.
Feldman# co-principal investigator, H. Holmes, Visiting
Scientist from Lawrence Berkeley Laboratory, J. Thomas,
Visiting Scientist from Battelle Northwest Laboratories,
Research Assistants T. Bleser and G. Rogers, GTraduate
Research Assistant A. Kamran., and P. Chan. The work is
partially sponsored by the U.S. Department of Energy (Grant
DE-AS05-79ER1052) and the U.S. Army Research Institute
(Grant MDA 903-79-G-01). V.L. Wallace oF the University of
Kansas is co-principal investigator with the author for the
work entitled "Evaluation of Interaction Techniques."

16

lools Por the Designers of User Interfaces

Our research objective is to develop methodologies and

tools which can aid in the design of user-computer

interfaces. We want to impose structure on the typically

very complex task of designing a user-computer interface, so

the design can be divided into manageable pieces, each of

which can be dealt with in a systematic, rigorous and at

least partially quantitative way. We believe this will nelp

make User Itterface Design more of a science and less of an

art, and lead to improved design.

The actual process of designing a user interface can be

accomplished as four major steps, which we call the

conceptual, semantic, syntactic, and lexical design steps.

Each step can be dealt with iT. sequence, one after the

othqr, with an occazional reexamination of a previous step.

We call these four steps a design framework.

The Design Framework

The conceptual design is the definition of the key

application concepts which the user of the interface must

understand in order to use the system. For a simple text

editor, the key concepts are filis, lines of a file, and

operations (add, delete, move) on lines. The conceptual

model, as in this case, typically defines objects, relations

between objects (a line is in a file), and operations on the

17

objects, and sets the stage for the semantic design of the

user-computer interPace.

The semantic design deals w~h the functionality oP the

system to be accessed via the intermediary of the user

interface. The user performs certain acticns,

calculations/processing ensues, and information is presented

to the user. At the semantic design level we are co;cerned

only with the meanings of the inputs, the processing, and

the outputs: we are not concerned with the form or the

sequence of the inputs and outputs.

The syntactic design deals with the sequence of the

inputs and outputs. for the input, sequence is akin to

grammar--the rules by which sequences of words in a language

are formed into legitimate sentences. The types of words in

an input sentence are typically commands, quantities# names,

coordinates, or arbitrary text. As in English. the words

are the units oF meaning in the input and cannot be further

decomposed without losing their meaning. to include the

spatial domain as well. Therefore the output syntax

includes the 2D or 3D organization of a display as well as

any temporal variation in the form. The "words" in the

output sequence, by analogy to the input sequence, represent

the units of meaning being conveyed from the computer to the

user. The units oP mecning are often conveyed graphically as

symbols and drawings made up of lines, curves, and points

rather than as words made up of letters.

18

The lexical design determines how words in the input

and output are actually formed from the available hardware

capabilities. For input, this involves designing the

interaction techniques for the application. An interaction

technique is a way of using a physical input device (tablet,

keyboard, mouse, etc.) to input a certain type of word

(command, values coordinates, etc.). For example, some of

the interaction techniques for command specification are

selection From a menu with a liht pen or with a cursor

controlled by a mouse# typing of the command name on a

keyboard, and speaking the name oF the command into a speech

recognize,.

For autput, lexical design means forming the symbols

and shapes which are to be presented to the user, using the

available hardware lexemes. For text output, this reduces

to selecting text attributes such as font, size, color,

background color: the spelling (i.e., combination of

hardware lexemes, the character set) of words is already

defined in the dictionary. In other cases, such as

situation displays, the symbols used must be designed and

composed from lexemes such as lines and other grahics

primitives, and the symbols must be assigned attributes such

as color, intensity, linestyle, arid size.

The nub of this Four-level framework for design are

found in formal language theor.y; the framework has been

successively refined and reported in a series of papers

19

CFOLE74, FOLE78, FOLESO, FOLE81b3. We have worked/are

working with this Framework in several ways: the

organizatin of design principles, the evaluation of existing

user-conouter interfaces, the evaluation of interaction

techniques (which are the lexical-level design of the

input), the formal specification of the syntactic and

lexical design of input and output, the calculation of

metrics of "goodness" based on the Formal specification, and

the design of an "abstract interaction handler" to remove

much of the syntactic and lexical design from the

application program.

Organizing Design Principles

The past ten years have seen several user interface

designers setting forth their design principles EBENN76,

BRITT77, ENGE750 HANS71, WALL763 in the form of general

objectives and specific do's and dorit's. These papers plus

personal experience form the knowledge base available to

most designers. Often the criteria are soundly-based: a

useful start in developing tools for designers is to

organize the principles, showing how they apply at the

conceptual, semantic, syntactic* arid lexical design levels.

This process has been partially completed, as reported in

FOLE81b, for principles dealing with feedback, error

correction,, response time, coniistency, and display

structure.

Evaluating User-Computer Interfaces

20

F

Givert an orgatied set of design criteria, it is

possible to perform a systematic evaluation of existing

user-computer interFaces by a combination of watching others

use the interface and liarning to use the interface

oneself. In this process it is critical to note

idiosyncratic features of an interface when they are first

encountered, lest one adjust to the features. Two such

evaluations have thus far been conducted: the first

CHERBSO of DIDS, the Decision InFormatin Display System

used bq the federal government for policy studies; the

second EBLES813 of SEEDIS, the Socio-Economic Environmental

Demographic Information System developed at Lawrence

Berkeley Labs. A third evaluation will be of a new

user-interface design,, prior to its implementation, for

Battelle Northwest Labs' ALDS (Analysis of Large Data Sets)

system.

Evaluationt of Interaction Techniques

Recall that an interaction tethnique is a way of using

a physical input device to input a word, and hence is the

lexical level input design. In FOLEB1a we have described

and organized the interaction techniques by their purposes

which can be to make a selection, designate a position,

orientation, or sequence of positions and orientations,

input a value, or input a character string. A number of

germane human factors design issues have been identified for

the techniques bq drawing on the literature and the

21

guidelines mentioned above. Nine experiments dealing with

interaction techniques are also critically reviewed. A

method of interaction technique diagrams is created, to aid

in understanding, atalyzing, and documenting the techniques

and experiments. A diagram shows the cognitive, motor, and

perceptual steps which the user of a technique performs.

The report is meant as a guide to aid designers in selecting

appropriate interaction techniques and devices.

22

Formal Specification and Metrics

The syntactic arid lexical designs of a user interface

* should be describable by formal language tools, in the

spirit (but not neressarily in the image) of BNF, regular

expressions, and flow expressions. We are developing formal

tools for describing both the input and output of a user

interface, as well as the relationship between input and

output. ihe input definition deals with concepts such as

token types (which are the purposes of interaction

techniques, as described above), sequences of tokens, and

the binding of tokens to sequences of actions wth physical

devices. The output definition deals with concepts such as

screen areas and their contents, and attributes (such as

color, font, and linestyle) of toketis within various areas.

Metrics treat issues such as complexity and consistency of

syntactic rules, cotisistency in the use of codings,

continuity of visual attention on the display, continuity of

tactile motion with the interaction devices, and time

required to input commands. The metrics draw upon the

guidelines mentioned above.

The designer of a user interface will use the tools to

describe the interface. This in itself helps create a more

disciplined design environment. In addition, the formal

definition' will be pyrocessed, metrics evaluated, and

potential design problems flagged for further attention by

the designer. In the long run, the user interface definition

23

will be input to an inmteraction handler which will actually

implement the user interface.

24

Abstract Interaction Handler

Writing an interactive application program involves

coding the semantic, syntactic, and lexical designs,

typically using FORiRAN, PASCAL, or a similar language.

There are two problems with this. First, the procedural

languages are not well-suited to programming the syntactic

and lexical designs. Secondly, it is easy to intertwine the

code which implements each of the three levels, making later

changes to any of the levels difficult. The abstract

interaction handler is being designed to implement the

syntactic and lexical aspects of input, and those parts of

the syntactic and lexical output design having to do with

interaction, such as menus, prompts, and error messages.

This approach allows much of the user interface to be

changed by modifying the interface definition made available

to the interaction handler rather than by reprogramming. It

will be possible to use two completely different user

interfaces, such as menu driven and command-language driven,

with the same application program, and to "fine-tune" the

details of a given user interface. Within the interaction

handler, syntactic and lexical level designs will be

separated, so that one can be easily changed without

affecting the other. A preliminary design of an interaction

handler can be found in FELD81.

25

Referenc s

BENN76 Bennett, J., "User-oriented Gr.;phics Systems for Decision
Support in Unstructlied T.. sks, " Proceedings of
ACM/SIGOkAPH Woik.hop orn sc-r-Oriented Design of
Interactive Graphics Sjstems, Pittsburgh, PA., October
1976, pp. 3-11.

BLES81 Olesser, T., P. Ch.a-n Mai Chu, "A Critiq~ue of the SEFDIS
User Inter~ace," The george Washington University,
Institute for InFovmation Scieuci- and Tc hnologg T.ch.
Report GWU-IIST-81-04, March L90).

BRIT77 Britton E., "A Methodology .oT the Eronornmic Design .i
Interactive Computer Graphic,, Sist, n;, and Its
Application to Caystallograph, " Univ~rittl of North
Caroli:,a at Chapel Hill. UN L. f:pot No IR--77-OL L I
Novemb.r 1977.

ENGE75 Engel, F. arid fR. Grrnda, ,' -,Jelines for tan/Li-..j
Interf ac ?s, IBM P'oughkeepsie -, borr,, 0. ?7?'),

December I ?7 3.

-E:-D)I Fe I dmanl, M "",' ."j inartj ne d l n Ai s -,r,_ t

interaction Handler, " Ihe george Washinyton Univer:;ity,
Institute for InFomatior Sci-:.nce and Technology Tech.
Report GWU-IIST-81-06, Washington, D.C. , 1981.

FOLE74 Foley, J. and V. Wallace, "The 4,rt of Natural Graphic
Man-Machine Cnvevsation, " ?roc.-edings TEEE 62(4), April
1974, pp. 462-470.

FOLE78 Foley, , . , "lhc Human Factors-Computer Graphics
Interface," PIroceedings oF Symrpo'.ium on Human Factors and
Computer Sciences, Computer Systems Technical Interest
Group, Human Factors Society, June 1978, pp. 103-114.

FOLESO Foley, J., "The Structure of Command Languages," iii R. A.
Quedj, et al., eds., Methodology oF Interactior,
North-Holland, Amsterdam, 1980, pp. 227-234.

FOLE8la Foley, J., V. Wallace, and P. Chan, "The Human Factors of
Interaction lachitiques," ihe George Washington
Univer;ity, Instituite For Ir,"ormat i or. Science and
TechnoIogy Technical Report GWU-iEST-81 03, W.shinton,
D.C., March J91.

FOLE8Ib Foley, .J., "A Methodology fot ti . ,.sign a-o Evaluation

of Us-r Coipulter Inier faceB, " The George Washi:-gton
Univer sit'j, Institute f ar fnfa-nti or, Science and
Technology Technical R-2port GW'J-IIST-0I-05, Washincto.,
D. C. , March . 'O.

HANS71 Hansen, W., "User Etg nering Pirinciples for Interactive

Systems. " Proceedings 1971 ..7all Joint Computer
Conferenre, pp. 522-532

HERBSO Herbert, I., "Ev.luation of the User-Computer Interface
Design oi the Domestic Information Display System," "ine
George Waqhington Universit, Ueparilment of Electrical
Engineerir. and Computer S cLrtce Technical R 2p.rt
OWU-EE:mS-80-07, Washinglon, D.(' , 1s'6O.

WALL76 Wallace, V., Suimm-ry of "C,v-:-jtivnal Ergano.tc!
Sessioi, ACM/SIGGRAFH Workshop ot J.. r-O-rien., d Design of
Interactivc Oraphics Stqstems, Pittsbuvgh, PA.. Octoier
1976, pp. 121-12P.

Psychological structure in information organization and retrieval:
Arguments for more considered approaches.

and work in progress.

George W. Furnas
Computer-user Psychology Research Group

Bell Laboratories, Murray Hill, NJ

Any given artificial storage and retrieval system forces structure
on the information stored within it. Psychologically, however
many kinds of structures exist for the representation of
information, and each has domains where it is well suited and
domains where it is at best misfit. The motivating assumption here
is that. if one wishes to make information systems humanly
accessible, more serious consideration is needed of the variety of
representations characterizing human knowledge, coupled with the
necessary invention of new compatible retrieval interfaces.

A textile dyer would no doubt be exasperated by a menu-driven, or
even key word, specification of colors. Our knowledge of color
space argues that adjusting three knobs. or perhaps moving a light
pen on a graphics screen would prcbably be much better. In
contrast, asking zoo visitors to access information about
individual animals by this same three-knob technology would be
ridiculous. Menus or keywords would be very appropriate. The
domain of animals has a very different structure than does that of
color, and to use the same retrieval system for the two is a
mistake.

Not much experimental evidence exists regarding implications for
computer access, but from the standpoint of reflectinF
psychological similarity, recent work by Pruzansky. Tversky and
Carroll (1980) emphasizes the diversity of appropriate
representations. Using currently available scalinF procedures in
a large survey of categories, they typically found the domains to
differ strongly in the relative suitability of tree and
multidimensional structures for capturing people's similarity
judgerents.

There are of course even more representational structures than the
two investigated by Pruzansky. et al. From the context of
similarity scaling alone, one might mention, in addition to
multidimensional spaces and hierarchical clusterings, additive
trees. more general graphs. factor-analytic structures. additive
clusterings, etc. These structures differ in many ways. including
continuity, contingency constraints on structural components.
complexity. and symmetry. All of these properties presumably
affect representational adequacy.

28

Scalinp techniques. among others, can help to identify
psychological adequacy of representations. but in constructinp
retrieval systems, a further issue arises: How can any of the
variety of possibly appropriate representational struntures be
accessed? Hierarchical tree structures lend themselves to
classical menu-tree schemes, and multidimensional configurations
with suitable properties (e.g. low number of dimensions,
separability?) may perhaps be accessed by various analog input
devices. But what of other types of structures, especially as we
seek richer structural representations?

Thus cognitive considerations motivate the search for nonstandard
database interface solutions.., new structures. and new access
processes. The work presented here re-resents a simple ongoing
effort in that direction. It basically involves a generalization
of tree structures, and of the corresponding familiar menu access
mechanisms.

Standard menu systems present a screenful of choices subdividing
the domain of a database. The user makes a selection from
these. resulting in a new set of more detailed selections. further
subdividing the selected set. A- sequence of choices from a
succession of menus eventually brings the user t,, some final
target item. Typically. the menbs are organized into trees. That
is. there is usually only one sequence of choices that will arrive
at any given target. While some systems have exceptions to the
unique path rule. these tend to be infrequent, and certainly not
essential to the character of the system.

Note that in menu trees, there are many choices, a whole menu
full. presented at each step when moving down.through the
structure. There are occasions, however, when one must move back
upward in generality, as in recovering from a mistake or changing,
targets in mid-searcn. Then, unlike when moving downward. there
is no choice given: Trees have many "down' choices at any point.
but only one up". The concept being explored here revolves
around allowing menus for upward choices, as well as the usual
downward ones.

The psychological motivation goes as follows: Consider a piven
node. or point of menu presentation in the structure. to represent
a conceptually defined class of possible targets. A given
conceptual class can certainly contain many different subordinate
classes, enumerated in the downward menu. but often in rich
domains the class can also be contained in many superordinate
classes. A traditional tree representation is forced to organize
on the basis of only one superordinate at each level. In so far
as these different superordinates may each be useful in different
circumstances, this psycholoical organization should be reflected
in the access structure. by giving users choice when moving to
superordinate levels.

29

Imagine. for example, one had a computerized system for retrieving
cookinf recipes that was being used to plan a meal. Imagine
further that the user had proceeded down to a screenful of choices
about types of salad (CAEtiAN. SPINACH & NUSHmuUM. etc.). but had
just decided after all, against any salad for the meal, and was
ready to retreat back up the structure to other categories of
choices. Conceivably, the user would have been interested in an
alternative in the form of some other cold food. say cold cuts
instead of salad, so that a superordinate of CuLD FOOD would be
appropriate in the structure. Alternatively, it might have been
that the user wanted some other vegetable dish, so that a
VEGETABLE node would have been the most useful superordinate. Or
perhaps the user wanted a different early course for the meal. say
soup instead of salad. Thus. any of several superordinates (COLD
FOODS, VEGETABLE DISHES, EARLY COURSE DISHES) might have been what
the user wanted. Why not give the user exactly such a choice, in
an Up menu from the salad node, in addition to the typical Down
menu? If the user's head prominently figures a certain form of
representation, externalize it in the organization of the data.
and take advantage of it in the access mechanism.

We are in the midst of exploring the concept of up/down menu (EUD)
systems on a small artificial data base of a few hundred target
items. There are a number of implementation choices that require
research. most notably regardiAp how to construct the MUD
structures: In using normative.categorization data. various
verification and "garbage collection" ideas must be invoked to
ensure that links exist everywhere they are appropriate, and
nowhere else. We currently ask subjects to construct "isa"
networks by repeatedly nominating successive superordinates from
each node, and then use frequency thresholds on nodes and links
produced across subjects.

When other subjects are then allowed to use the MUDs. several more
profound issues arise. A necessary result of having multiple Up
choices is that Down choices are not always partitions of the
conceptual class encompassed by a node. The consequence that that
some choices overlap is of mixed advantage. Under some
circumstances it allows subjects the benefit of approaching a
target with different interests in mind or with a different
psychological "set." but it can also mean that subjects rust not
only decide whether a given choice will lead to their target. but
weigh the relative merits when several reasonable choices exist.
Another issue is that MUD structures lack the systematic traversal
algorithms that trees have. Thus it is more difficult to be
exhaustive, i.e. to make sure all nodes have been seen at least
once, and efficient. i.e. to avoid unnecessary repetitive
viewing of nodes. Circumstances exist where these considerations
might be important. A thi.-d issue is that the class of targets
actually subsumed by any downward choice is constant. while the
users interpretation of the choice can be effected by the history
of superordinates just passed through. In a tree, there is only
one possible ancestral history. so no ambiguity arises, but not so
in a VUD structure, so users can interpret a choice variably, due
to the different emphases of different superordinates.

30

Some issues also arise in working with MUDs that are perhaps even
more relevant to tree structures. Transitivity of class inclusion
is critical to any system based on conceptual hierarchy. IBiph
level choices require inferrine the targets sulsuned under
intermediate level nodes. Intransitivity c.n foil this: Suppose
one. is looking, in a lay person's botanical guide. for Scrub Oaks
which are classified under OAKS. and that OAKS are in turn
classified as TREES. Thb problem is that Scrub Oaks are not
popularly considered trees (rather, say shrubs). This lack of
transitivity, due perhaps to fuzzy classification systems, would
lead one away from a correct choice of TREES in the pursuit of
Scrub Oaks. MUD structures have an advantage over menu trees since
they can allow other routes to Scrub Oaks that are perhaps free
from intransitivities.

While this work represents only one modest example of exploration
of more diverse psychologically motivated structures, we believe
that efforts like it can lead. to systems of greater help to human
users.

31

The Nature of User-Generated

Commands for Interacting with a Computer

Mark D. Jackson

Judith E. Tschirgi

We describe the results of an experiment investigating

user conceptions of a natural language for interacting with

a computer information system. Novice and experienced

computer users performed text editing and information

retrieval tasks using a simulated interactive system. For

each task, a script or sequence of actions was presented

to the user. At each step, users read a description of an

action, such as correcting errors in text or selecting a

page of information to view, and typed a command that they

thought was a natural request for the action. If their

command was inappropriate, they were asked to reword their

attempt; otherwise there were no constraints on their input.

A diverse set of command terms was generated by both

groups of users, with few actions eliciting common terms

from within or across groups. Novices used more English-

like command formats whereas the experts followed computer

dialogue conventions learned from experience. When correcting

commands, novices were more likely to use strategies applicable

to normal conversation. In general, the responses generated

32

by our users under insLructions to produc'e "natural" commands

depended critically on the us.er's experience.

We have shown that computer experienacc 4ef-lcLs Users'

spontaneous approaches to interacting wit c Lpu er.

Our results suggest tthat no singleria syn.ax 'r set

o lexical itorns will. be consistent wish ,irh wq,'c ":,on

of all users withou: additional training. Thus, future

research must determine the characteristics of easily

learned person-computer dialogues that are "naLural" across

all levels of experience.

33

A Conceptual Approach to Natural Language Fact Retrieval

Janet L. Kolodner
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA 30332

1. The problems

person: What's been going on in the world recently?
computer: The last hostage was finally released from Iran.
person: I thought the hostages were released all at once.
computer: She wasn't really one of the hostages, but was

arrested later when she traveled to Iran as a
journalist to cover the Iranian revolution.
She's been referred to as the 53rd hostage.

person: Why was she arrested?
computer: Trumped-up espionage charges.

Suppose we wanted to build an intelligent fact retrieval system

such as the one above. What would that require? It would have to be

able to deal intelligently with a human user, giving answers containing

not only the appropriate information, but also the right amount of

information. It would have to be able to analyze the intent of a human

question or response, figuring out what the questioner really wanted to

know. The system would also have to be able to search its memory in a

smart way, so that as the memory grew, it would still respond in a

r'asonable amount of time.

There are three major problem areas to be addressed in designing

such a system:

1. Interfacing with the user: analyzing his natural language
questions, and deriving search keys from them

2. Memory search

3. Memory organization and maintenance

34

These problems cannot be solved independently of each other. The

organization of memory constrains the types of retrieval and updating

processes the memory can have. On the other hand, memory organization,

and therefore procedures for adding information to memory, must be

designed based on retrieval requirements. Similarly, memory's organiza-

tion and content, and the relationship between items and categories in

memory should be taken into account in interpreting the intent of user

questions.

The CYRUS system has dealt with aspects of all three of these

problems. CYRUS has a long term memory which was designed to store

information about important political dignitaries. It has been used to

store and retrieve information about former Secretaries of State Cyrus

Vance and Edmund Muskie. CYRUS automatically adds new information to

its memory, maintaining good memory organization in the process. It can

be queried in English, and uses retrieval strategies and knowledge about

the organization of its memory to search for answers. A successor to

CYRUS, TED, will keep track of events in the life of Ted Turner, a

celebrity, sports figure, businessman, and broadcasting figure.

The remainder of this paper will outline some of the problems

involved in designing a fact retrieval system which will communicate

effectively with people. Interactions between the interface, memory

search, and memory organization will be described. It will also outline

the solutions to these problems, as implemented in CYRUS and described

in Kolodner (1980).

In considering these problems, we will assume a memory organized by

conceptual categories, with events indexed and sub-indexed in those

categories by their salient features. Thus, memory processes will

35

manipulate conceptual information, or the meaning of the data in the

memory, and will not be concerned with the words used to express those

concepts.

2. Retrieval requirements

2.1 Choosing a category for search

Searching a memory organized in categories requires specification

of a category or categories to be searched. Consider, for example, the

following question:

(Qi): Mr. Vance, when was the last time you saw an oil field
in the Middle East?

If "seeing oil fields" were one of memory's categories, then this

question would be fairly easy to answer. "Seeing oil fields" would be

selected for search. If it indexed an episode in the Middle East, that

episode could be retrieved from it. Similarly, if "seeing objects" were

a memory category, it could be selected for retrieval and events in the

Middle East and events at oil fields could be retrieved.

If neither of these categories existed, however, a category for

search would have to be chosen. We can imagine the following reasoning

process being used to do that:

Al: An oil field is a large sight, perhaps I saw an oil field

during a sightseeing episode in the Middle East.

Using information about episodic contexts associated with "large

sights", a "sightseeing" category can be chosen for retrieval. Its

contents can be searched for an episode at oil fields in the Middle

36

East. If the sightseeing category organized its episodes according to

the type of sight and its part of the world, and if there had been an

episode in the Middle East at an oil field, then "a sightseeing episode

at an oil field in the Middle East" could be retrieved.

The problem of choosing a category for search is both an interface

problem and a search problem. Search requires specification of a

category to be searched. For a very complex data base, however, we can-

not expect a user to know all of memory's categories. Nor can we expect

that every natural language question asked of a data base will specify a

category for search.

In CYRUS, this problem is solved by associating with each concept

in memory the categories it is related to. Thus, the concept "large

sights" has "sightseeing" associated with it, while "international

contract" has the category "political meetings" associated with it. In

the first step of the retrieval process, the conceptual representation

of the question (produced by a conceptual analyzer) is checked to see if

it already specifies a category for search. If not, contexts are chosen

from among the categories associated with each of the question com-

ponents.

2.2 Non-enumeration

One of the most important problems to address in designing an

interactive retrieval system is the following:

Retrieval should not have to slow down as memory grows.

This requirement constrains both the retrieval processes and the memory

organization. In terms of the retrieval processes, it requires the fol-

lowing:

37

Retrieval from a category must be able to happen without

enumeration of the category.

In fact, this interface problem depends on both memory organization and

retrieval processes for a solution. If categories cannot be enumerated,

then there must be some other way of searching a category. This can be

done by indexing items intelligently in categories, and then by specify-

ing and following appropriate indices during retrieval.

This method of retrieval brings up special problems. Retrieval is

easy if a question specifies features which are indexed. This is not

always the case, however. Two solutions to this problem have been

implemented in CYRUS -- automatic generation of plausible indices, and

search for alternate contexts.

2.2.1 Index fitting and generation of plausible features

Just as we cannot expect a user to know all of memory's categories

or to specify a category in his question, we cannot expect him to know

memory's indexing scheme. Thus, features specified in a question might

not correspond to features indexed in memory. In that case, given

features must be transformed into indexed features.

Inferring indexed features is a way of directing search within a

memory category without enumerating the category. Generated features

can be followed to find the target item in the category. In addition,

there must be a way of recognizing that two different descriptions refer

to the same item. One way to do that is by transforming one description

into the second one.

Continuing with the example above, suppose sightseeing episodes

were not organized in a category according to the type of sight or by

38

their place in the world. In that case, the following elaboration of

the initial retrieval specification might be appropriate to answer the

question:

A2: Which countries in the Middle East have oil fields? Iran
and Iraq have oil fields, and Saudi Arabia does . ..

If sightseeing episodes are organized according to the country they

took place in, then elaborating on "the Middle East" and specifying

particular countries in the Middle East would enable retrieval of

episodes that took place in each of those places. Instead of searching

for "sightseeing at an oil field in the Middle East", search for each of

the more specific episodes "sightseeing at an oil field in Iran", "sigh-

tseeing at an oil field in Iraq", etc. could be attempted.

The process of transforming given features into indexed ones is

called index fitting. Index fitting is done in CYRUS by component-

instantiation rules. These rules use information about components in

context to infer additional features of a specified item. The

nationality of participants in a political meeting, for example, is

known to correspond to the sides of the contract being discussed at the

meeting. Given the participants in a meeting, that information can be

used to infer aspects of the meeting topic. Component instantiation

rules generate plausible features for a targetted item. These features

correspond to indices which should be traversed to retrieve that item

from memory.

2.2.2 Alternate context search

Elaboration of plausible features is only one way of directing

search, and it is not always successful. Suppose, for example, that

39

there was not enough information to narrow a search key to an easily

enumerable (i.e., small) part of the data base. In a memory where

records refer to other contextually related records, it might instead be

appropriate to search memory for an alternate, more retrievable context.

In other words, retrieval can proceed by searching for a related context

which (1) might be more retrievable than the target item, and (2) might

refer to the item targetted for retrieval.

Since CYRUS' memory is organized in event categories, alternate

context search in CYRUS corresponds to search for an episode related to

the targetted event. Since sightseeing in the Middle East would have

had to happen during a trip to the Middle East, retrieving a trip to the

Middle East could aid retrieval of an appropriate sightseeing

experience. Thus, the following reasoning would also be appropriate to

answer the question above.

A3: In order to go sightseeing in the Middle East, I would

have had to have been on a trip there. On a vacation
trip, I wouldn't go to see oil fields, so I must have been
taken to oil fields during a diplomatic trip to the Middle
East. Which countries might have taken me to see their
oil fields? Saudi Arabia has the largest fields, perhaps
they took me to see them. Yes, they did when I was there
last year.

Why does it seem reasonable to search for "trips" when a "sigh-

tseeing" episode should be retrieved? How can search for alternate

events be constrained? Only alternate contexts that might be related to

an event targeted for retrieval should be searched for.

In general, for search to be constrained to relevant contexts,

memory categories must hold generalized information concerning the

relationships of their items to items in other memory categories. In

CYRUS, alternate context search is facilitated by three things:

40

1. knowledge of the usual relationships between event
categories

2. a set of context construction rules for constructing a new
context based on that knowledge

3. a set of search strategies for directing search for the

target event within the context of the alternate event

Thus, CYRUS knows about the usual relationship between sightseeing and

trips, how to construct a trip context based on a sightseeing context,

and how to search the sequence of events of the trip to find a sigh-

tseeing experience once an appropriate trip is found.

2.3 Maintaining a conversational context

Maintenace of a conversational context is necessary for resolution

of ambiguous references, anaphora, and pronominal reference. Suppose,

the question above were followed in conversation by the following one:

(Q2): Did you talk to the workers there?

In order to understand what "there" means, the answer to the previous

question must be consulted. In order to understand which workers are

being talked about, the context of "visiting oilfields", plus knowledge

about oilfields themselves must be used.

Maintenance of a conversational context can also constrain memory

search. Often, it is necessary to search only the context of the answer

to the previous question to find an answer to the current one. In the

example above, for example, only the events involved in Vance's visit to

the oilfield in Saudi Arabia need be searched for an answer. If the

previous context is maintained, it can constrain search to that episode

only, so that all of memory does not have to be searched.

41

2.4 Summary of retrieval

The retrieval process described can be seen as a process of

reconstructing what might be true, and checking memory to make sure it

indeed was. To retrieve an episode of "seeing oilfields", a hypothesis

was made about the type of event it might have been (sightseeing), where

it might have happened (Iran, Iraq, Saudi Arabia, etc.), and what else

might have been going on at the time (a trip).

Judging from this example, the process of retrieval requires at

least the following processes:

1. selection of a category for search

2. search within the category for the targeted event

3. elaboration on the specification of the event to be
retrieved

4. search for episodes related to the target event

3. Requirements on the memory organization

The ability of memory to support retrieval without enumeration is

also dependent on the memory organization. The traditional solution

within computer science to the non-enumeration problem is to index items

within categories. An event should be indexed in a category by those of

its features that are salient to the category. In that way, specifica-

tion of an indexed feature will enable retrieval of items with that

feature without enumerating the whole category.

If memory categories are heavily indexed by salient features,

retrieval processes will have a large selection of features to specify,

any of which might specify a target event. The retrieval process will

42

be made easier since the easiest elaborations can be attempted first.

The richer the indexing, however, the more space is needed for

storage. Indexing must be controlled so that memory does not grow

exponentially. In CYRUS, similarities between events are used to

control indexing. Memory keeps track of the similarities between events

within a category, and limits indexing to the differences between

events. Thus, if almost all the events in a "diplomatic meetings"

category are with foreign diplomats, indexing them according to the

occupations of their participants would be redundant and therefore

unnecessary. It would not divide the category into significantly smal-

ler parts. If, however, one of those meetings were with someone other

than a foreign diplomat, indexing the meeting by that feature would

differentiate it from other events in the category. In fact, the

similarities which constrain indexing correspond to the generalized

information necessary for retrieval.

Finally, a memory for events should maintain itself. This means

that the process of selecting indices should be automated. It also

means that events must be sub-indexed within the sub-categories that are

formed when multiple events are indexed in the same way. Otherwise, the

sub-categories would have to be enumerated. This places another

requirement on the updating processes. In order to constrain later

indexing, and in order to guide the retrieval strategies, the automatic

updating process must also keep track of the similarities between events

in each newly-created sub-category. If we don't want retrieval to slow

down as new events are added to memory, then memory must be able to

maintain its organization, creating new conceptual categories when

necessary and building up required generalized information. CYRUS does

43

this through a series of organizational strategies.

Another aspect of maintaining memory's organization involves

monitoring memory search. More frequently requested information should

be more accessible than less frequently requested information, and more

recently accessed information should be more accessible than less

recently accessed information. This involves both reorganization of

memory taking frequency of access into account and restructuring the

organizational strategies themselves, so that more frequently asked for

types of information will automatically be organized for accessibility

as they are added to the data base. This, and other memory maintenance

problems which have not been described here, are being addressed in

current and future research.

44

Psychological Investigations of
Natural Command and Query Terminology

Thomas K. Landauer
Susan T. Dumais

Computer-user Psychology Research Group
Bell Laboratories, Murray Hill, NJ

It is frequently asserted that unsophisticated users would
find computer systems more congenial if communications with
them were to employ more "natural" words. In a series of
empirical studies, we have (l) developed a method for iden-
tifying natural command words for a particular task, (2)
tested the value of the resulting natural command lexicon
in the initial stages of transfer from manual to automated
task performance, and (3) induced people to form "natural"
data queries and analyzed the language they used.

Identification of "natural" command terms. Twenty-two stu-
dents in secretarial schools and twenty-six high school
students with typing skills were given manuscripts with
author's marks. The author's marks indicated a variety of
desired corrections corresponding systematically to the
kinds of changes that are accomplished in manual or compu-
ter text-editing operations. The students were asked to
write instructions to another typist, who did not have the
author's marks, specifying what was to be done to the
manuscript. This method produced verbal descriptions of
actual editing operations (e.g. "take out the word the")
as contrasted to description of the author's marks Te.g.
"crossout") or goal (e.g. "fix the spelling"). Among
noteworthy resulting observations were the following:
(1) There was little agreement on word use; e.g. the three
most frequent operational verbs used accounted for no more
than 33% of descriptions of any one correction, (2) The words
used were not like those commonly employed by computerized
editing systems, e.g. the verb "delete" was never used, and
(3) Unlike many computerized text-editing systems, students
and secretaries tended to use different words to describe
operations on characters and blanks, but the same words to
describe similar operations on whole lines and line-internal
strings (e.g. "change 'string a or line a' to"string b or
line b'").

Testing the value of natural command terms for initial learning.
We devised a set of miniature text-editing systems, each con-
sisting of only append, delete, and substitute operations plus
start and stop commands. For one version, the verbs used in

45

the operation commands were "append", "delete" and "substitute",
terms often used in computer text-editors. For another, they
were the verbs most frequently used by secretaries and typists
to describe the required action, "add", "omit", and "change",
respectively. A third variant used randomly chosen English
verbs, "cipher", "allege", and "deliberate" as a baseline
control for lexical naturalness. In addition, the text-
editors varied (a) with respect to whether the command verb
was to be spelled out or abbreviated to its first letter,
and (b) with respect to whether the same command word applied
to both line-internal strings and whole lines (e.g. "omit /a/"
for within - and "omit" for whole-line) or used different
command words (e.g. "change /a//" for within-line and "omit"
for whole-line). Forty-eight secretarial and typing students
each spent about two hours studying an introductory self-
instructing manual and simultaneously doing a series of on-line
learning and test exercises. The manuals varied only in neces-
sary ways (essentially only in command names) and as little
extra help as possible was provided.

The main results of interest were as follows: (1) The time
to perform test exercises was not significantly influenced by
command name variations; subjects performed as well when they
were learning to "allege", "cipher", and "deliberate" as when
they were learning to "add", "omit" and "change". However, a
post-session questionnaire revealed some subjective preference
for the more familiar terms. It is also important to note
that the subjects were learning a very simple system with very
few terms, and that they were not required to remember the
terms over substantial periods. It is possible that "natural"
terms would be advantageous in larger lexicons or when long-
range recall was necessary. However, natural words do not
appear to provide substantial benefit during the highly cri-
tical first few hours of introduction to the new and exotic
computer aided text-editing environment, as one might have ex-
pected and/or hoped. (2) Abbreviated command names were
slightly more time-consuming to use at first, but became sig-
nificantly less so after some practice. (3) In this case, at
least, the use of different commana names for whole-line and
within-line operations resulted in better performance than
using the same name for both. This is contrary to subjects'
usage in spontaneous descriptions. We hypothesize that the
requirement to use different syntactic constructions in our
editors was responsible; that differing command words make it
easier to learn and use differing constructions even if the
operations are naturally thought of as similar.

Characteristics of natural data specifications. Three hundred
and thirty-seven college students tried to specify verbal
objects. They were given a list of items like "newsweek",
"Empire State Building", etc. and asked to try to specify each
so that another student or (in other cases) a computer would

46

respond with the provided word. There were no restrictions
as to the form or content of the descriptions (except, of
course, that they could not contain the target item).

Among interesting characteristics of the response were these:-
(1) Students rarely used boolean expressions more complicated
than simple conjunction. (2) Specification by exclusion
(e.g. "a popular weekly newsmagazine other than Time") was
very infrequent despite the intentional inclusion of items
that easily admitted of such specification. (3) The most
common specification techniques were simple lists of positive
attributes or a single immediate superordinate, followed by a
list of attributes (e.g. "a tall building in New York located
on 34th Street and 5th Avenue"). (4) Specifications were
often very vague and depended heavily on presuppositions about
preferredresponses of the target person or system (e.g. "a
tall building in New York", a specification that-apparently
assumes that one member of a large class will be known to be
most representative or most dominant and will be given in the
absence of further specification).

We have no evidence as yet as to whether systems allowing
"natural" query specifications would be easier to use.
However, it does seem apparent that the use of more precise
expressions cannot be expected without special, perhaps dif-
ficult, training.

47

ORGANIZING MEMORY FOR USE 4 IJNDEPSTANIMNG

by

Michael LebowiLz -- (X-lunbi:, LUr1oersity

I Introduction

Episodic memory plays an impo-tant role ;n the understanding of natural

language. It can oe -tsed to ptovide context for top-down processing, to

determine the s;egments of a text that sho:nid be focused upon,

situation-dependent iotailts, and so forth. While this chould come as no

great surprise, it is the case that most of the work relating mefior, (in the

form of databases) and language understanding has emphasized the utilit of

natural languaye fronz-ends for database query (rlarris 78, Kaplan 77, .oods

and Kaplan 72], for example), rather than the ways that memory can be used in

language processing. Furthermore, what n'rk there has been on using memory

for language processing has been in the form of question answering, ignoring

enLirely the crucial issue of usinj ..xistinq knowledge in memory t: help

acquire more information. 'ihe us, of memori in the process of reading text

for the purpose of ,pdating memory - and the eifect tni3 has on ;1 vory

organization - is extremely important, and is the issue I willi address rvere.

in the course of this brief presentation I will be using examples from a

computer model that is concerned with the relation between language and

memory. IPP (the Integrated Partial Parser), written at Ygle, is able to read

news stories about terrorism and record them in a coherent memory. It makes

generalizations thzt help organize th: memories of the events described and

c:e ut',ed to assist in later processing. IPP i." fufl'y described in [Lebowitz

801. A second proqrvi, RFSEARCHE1%, is in ', -rly ,-tages of" .Lvclo[nent. Z'

4,

will be based upon IPP, but will in'lude o rer:or',' ol) si.-,rtif]c domain,

built up by reading technical ab-,tr:!.cts. "', ..o tee ,'orap..yicy oi i-he

material that RESEARCHER wil I be rea-1ir., -.h- ize o -. I,,mocy L n r:he

understanding process will be extreni.e.y important.

The point that I want to stres'i hey' is tbhlt tiv need Eor apnlyi:ng

information from me; Pry during understanding (knowld4e acquisition) must le

considered while attempting to determine an appropriate memory organization.

In the space available here I will give several examples illustrating the need

for the application of episodic memory to understanding, and then outliie an

appropriate memory organization that keeps this use in mind.

2 Why we need to use memory in understanding

The following story is rather typical of those read by IPP.

Figure 1: Attack on kibbutz

Si - UPI, 7 April W(, Israel

Israeli troops today stormed a children's jormitory in a kibbutz on
the Lebanese border to free hostages seiz-._d nine hours earlier by
gun-blazing Palestinian guerrillas and kiJied all five raiders.

There are two problems in understanding story S; :h-at mer.ory car. help

overcome. The first involves the m,!aning of the word "stornedJ", which i- this

domain can refer to either terrorists attacking a building or government

officials counterattacking a group of terrorists. A similar problem arises

with "seized", which could plausibly refer to either a kidnapping or a

building takeover. The later ambiguity is in fact never resolved .n this

text. Each of these problems is easily overcome by accessing the proper

iiformation from memory, qeneral Jzations such as th¢0se in the next figure,

made after reading earlier stories.

4,9

Figure 2: Ceneralizations abcbit (-xtor-icn in Israel

Israeli troo.s .',rry out counLErat,"ackc against terrorists.

Palestini,-;s in Israal engqe in 'xtortiorn by taking places ovctz.

Both ambiguous w,.d in S1 can ho rescl,,d thy issam7.ng that when r.Jev.ant

generalizalions exi.-., .,or- is shoull _ ., disjnirgUatr1 so thnt the w -cty

fits the existin generaLization:. The Eirst- generalization allows the

disambiguation-, e' "stort, " as i is r.aci, ,Isi:;g this ::u!. Simil-%rly, we

assume "seized" indicates a takaove2r, since that -orresponds to the second

generalization. haJ U.- generalizatior. stated that extortions in Israel were

usually kidnapping:, then "seized" would have been assumed to refer to suc. an

event.

Notice that we cannot expect a person (or ccmputer program) to be

pre-supplied with all the generalizations necessary to resolve problems of

this sort. Instead, these observations must be developed by reading (or

otherwise learning about) specific events .ind generalizing from them.

The following story also requires information from memory.

Figure 3: Basques implicit in attack

S2 - New York Time.;: '24 August 79, Spain

Bombs exploded in c. French bank and a French A;a:.grati,:r, office in
northern spain eat:r.- today, cailinq damage blit no jnjlies, accring
t ri I ic,.

This story does not specify the iientity of the terrorisLs who sut off

the explosion ,*e,.cribed. Howa,"er, inst people wi'.h some knowledge)f Spain

are aware that this ws probably a Basque attack. such a conclusion comes

from a previously made g'.neralization abotit terrorists in Spain.

5O

The next figure shows how IP! hcndlcs itory S2 hen it has existing in

memory a generalization that Basqucs are the ittacKzts ir, wiombinqs in Sp:',in.

Figure 4: IPP inferr ,']efuJ t x,. f ."'r f,'.

Generalization (BASQUE-fFN) ai ready irn menyry:
S-DESTRUCTIVC-A7?ACK wi th:

ACTOR (1) DEMAND-TYPE SEPAATt'M <..
NATIONALITY BASQUi- .. .

METHODS (1) AU $EXPL,,-BYB
LOCATION (1) AREA N%'STER!--EYRO":'

NATION SPAIN
RESULTS (1) AU CAUSP -r':GI;

*(PARSE S2)

Story: S2 (8 24 79) SPAIN

(BC)MBS EXPLODED IN A FRENCH BANK AND A FRENCH
IM!MIGRATION OFFICE IN NORTHERN SPAIN EARLY TODAY
CAUSING DAMAGE BUT NO INJURIES ACCORDING TO POLICE)

>>> Beginning final memory incorporation ...

Feature analysis: EV16 (S-DESTRUCTIVE-ATT1ACK)
RESULTS AU CAUSE-DAMAGE
METHODS AU $EXPLODE-BOMB
LOCATION AREA WESTERN-EUROPE

NATION SPAIN

Indexing EV16 as variant of BASQUE-GEN

Inferring feature ACTOR DEMAND-TYPi.' SEPARATI. <a<

of EV16

Inferring feature T.Cr.)R NATION BASQUE
of EV16

>>> Memory incorivrati.'n complete

In this ex-npJe, 1PP i e i. cs tivt S2 :S an "n:itance of

qenerr.raization tnat it has made prev.ou.;I' (L.y:QU.-(EN) .,;nd us , ",

genoralization to supply default ch.orfter ti,- ., -he terrrnrist!3. in

51

particular, IPP assumes, correspondir.,g ;rh the jenarJi:, tion, that the

terrorists are Basque .eparatists. Th' detpiumirc.-,Jon of defatl ts o[;-his .;:'ri

is a major use of gerieralizations. IPP .7[so r;-,'xes this event as an i.. :s--r.,,

of Lhe most re.var g-neraliz-tio, - - - 1, ; ee it U-' t.,a.:c

further generalizations. I will say irc abouL Ini't i.Dst poln, helow.

3 Organizing memory for understanding

Examples such as SI and ; pL:.e .,. :r constraints upor: th,

organization for memory. In particular:

1. It m - be possible to access generalizations; based -)n partial
information so that relevant information can be applied during
understanding, and not just after it has been completed.

2. Many different features of a goneralizaticn must provide access t-
that generalization, so that instances with different relevant
features mentioned explicitly can all oe identified.

3. Generalizations must lead to memories of actual events so that
further generalization can occur.

These constrain:s suggest a p-.ssible memory scheme. This scl.onc, as

implemented in IPP, has several tree-like structures, each consisting ,.f mrre

and more specific versions of generaizeti.,,. The genera[iztio,3 ir, -.

tree are ued to or:n .w actual m'm-u ies cf '-1-t-.i . The tr .. . ci-v '.,ci

with high-level knovledle ,t.ructa:e , th . -:!co t&-,t dr.. ,-i: - r!. F

domain at an intent~c nL level. (t." terror .m th,.se i Y:'K!" eXt) tCt:,

attacks on individua',;.

A typical tree oL; ,rn ralizat ', :, in 'P'-- mr,,-ry :i.3 .o- .,r.,t,

like the next figre.

A tree nf qenerni izitions such : ,,,ie ,i Figu r 5

between each gener,,6 ;z-t.ion and it, ii,-., -;i:- :it er: ion,. Norma'.: y -ah

52

Figure 5: An IPP Generalization Tree

S-EXTORT/\
G1 - kidnappings of G2 - hijackings of

businessmen German planesI
V

G3 - kidnappings of businessmen
in Italy by the Red BrigadeI

V
the kidnapping of a shoe manufacturer

in Milan in August

novel feature of a generalization is used as an index for that node in memory.

(Some exceptions for common features are mentioned in [Lebowitz 80].) So in

Figure 5, generalization G1 could potentially be accessed once a story has

been identified as an extortion that is a kidnapping or an extortion with the

hostage being a businessman. This kind of identification is exactly what we

need to do during the processing of a story so that the remaining information

in a relevant generalizations can be used to help processing in the ways

indicated above.

The processing scheme that uses such a memory involves identifying the

most specific generalizations relevant to a story as it is read, using any

features accumulated from the story along with the corresponding

generalization index tree. Then the remainder of the story can be interpreted

in terms of these generalizations. Further, by having actual events stored

under the generalizations, by the time we have finished reading a story we

have available similar events that might be suitable for additional

generalization.

53

Similar schemes Eor organizing me~nor-y i, vi L:.o shown to be useful in

explaining reminding piWnomena [Schank Fit! ji i hunar memory rutrieval

(Kolodner 80].

4 Conclusion

Clearly the merknoy scheme devised for IPP somewhat too simple. For aore

complex types of data (such as in the scientific domain thaL will be dealt

with by RESEARCHER), memory will clearly have to be more -.'rongly

interconnectedi, resulting in a structure that is more a network that a tree.

Howc-ver, the organizat[Jn used for IPP indicates how the organization of

memory must be appropriate for the process of knowledge acquisition, and noc

just the retrieval of information.

5 References
[Harris 78] Harris, L. R.

Natural language processing applied to data base query.
In Proceedings of the 1978 ACM Annual Conference. Association

for Computer Machinery, Washington, D. C., 1978.

[Kaplan 771 Kaplan, S. J.
Cooperative responses from a natural language data base uery

system.
Technical Report, Moore School of Enqineering, Universicy of

Pennsylvaoia, 1977.
fKolndner 80] Kolodner, J. L.

Retrieval and organizational st.raties- in corepLual emory: .
com p.ter model. -

Technical Report 187, 'ziGa Unive:rsity D,-;p-2rtment of Computer
Science, 980.

[Lebowitz 80] Lebowitz, M.
Generalization and memo Lr in an inte Lr ted understandtin,

syste1.

Technical Report]86, Y.,le Univci-sity Department of CoMpUi.cr
Science, 1980.

PhD Thesis.
[Schank 80] Schank, R. C.

Language and Memory.
Cotive Science 4(3)::243 - 234, 1980.

(Woods and Kap n 7:1
Woods, W. A. and Kaplan, R. M.
The lunar sciences natural lan uae information system: Final

Technical Report BBN Report 2265, Bolt Beranek and Newmar.,

Inc., Cambridge, MA, 1972.

54

Artificial Intelligence and Human Factors Engineering:

A Necessary Synergism in the Interface of the Future

WOUJ(iNC 1RAViT

Paul Roller Michaelis and Mark L. Miller

Computer Science Laboratory
Central Research Laboratories
Texas Instruments Incorporated

M.S. 371, P.O. Box 225621
Dallas, Texas 75265

ABSTRACT

In the coming decade. a new generation of
computer-based systems offers the potential to do for the
human mind what the industrial revolution did for human
muscle. To realize this potential# we must study
sophisticated kinds of software, in which the computer
performs tasks previously thought to require human
intelligence. We must also study how to organize such
hardware/software systems to interact most eff'ctively with
their human masters.

TI's Computer Science Laboratory is attempting to
construct and evaluate experimental prototypes of such
systems. Their design has required unique combinations of
talent from diverse disciplines. Wt are combining expertisE
from two fields in particular: artificial intelligence 4nd
human factors engineering. This talk will ilustra t
synergistic effects of cooperation between thest two fieldS.
Cxamples will be drawn from current research projects in
natural language processing and advanced computer based
instruction.

55

56

TA;BLE OF CvITENTS

1.11 INTRODUCTION

2.0 INTERACTIVE NATURAL LAN'..',.' L ,

2.1 Descri. ton of thi Frob:eri

2.2 Wtiat Human F.actc'rz t.optribute,.

2.3 What rti:ficial Intel)lgence Cc ntr'tbute.i

3.6 INTELLIGENI TUTORING SY iE i

3.1 Descrirtion of the P, JIem

3.2 What H!umar Factor. Contributes

3.3 What Artificial Inlefligcnce Contributes

4.0 CONCLUSION

5.0 REFERLNCES

57

1.0 INTRODUCTION

People will have trouble performing a physical task if

the demands of the task exceed their physical capacities.

To many of us nowadays, that seems like simple common sense.

However, it was not until the late 1890's that Frederick W.

Taylor made his pioneering studies of how how to design jobs

and tools so that they more closely match the physical

capacities of people. (As an aside, what Taylor studied was

shovels and how best to use them.)

The field of human factors engineering had its birth

during World War II. The founders o" the field recognized

that errors can occur in man-machi,,e systems when the man's

job in these systems overloads his mental capacities.

Before going any furthers let's first examine what is meant

by "man-machine system." In a man-machine systems one or

more of the components is a person, and the person must

interact with the machine components. The designs, goals

and complexity of these systems vary considerably. Figure I

shows a schematic of a simple man-machine system.

--------------------------- -----------------
Show Foil Number -I- Here.

(Man-machine system cartoon from Chapanis, 1965)

During World War II it was found that many errors in

human-machine systems, such as airplane accidents due to

"pilot error," could in fact be traced to the design of the

controls and displays. These are the components of the

58

THE WORK ENVIRONMENT

INFORMATION

PROCESSING

SENSING MAN C ONTROLLING

MACHINE

OPERATION :

DISPLAYS 7-CONTROLS

INPUT '*41 ~ OUTPUT

59

system through which the human and machine components

exchange information. Researchers such as Alphonse Chapanis

and Paul Fitts discovered that certain control and display

designs virtually invited even experienced people to misuse

or misinterpret them. The solution lay in redesigning tt.

controls and displays so that they operate in manner more

compatible with the mental capacities of people.

The TI Computer Science Laboratory develops

human-machine systems in which the machine is a digital

computer whose software is intended to be (more or less)

"intelligent." Efforts to create such artificially

intelligent systems have been underway for only a few

decades; the founders of the field (e.g.# McCarthy C19653,

Minsky E19653, and Newell & Simon E19723) are still active

contributors. In even this short times much has been

accomplished. There are systems that can play master-level

chess* solve complex integrals, understand and obey commands

stated in simple English, speak in a human-like voice*

recognize objects in scenes, solve analogy problems, and so

on. Central themes, such as the notion of a problem space.

means-ends analysis* and heuristic programming have emerged

to organize thinking in the field. Al software techniques

such as semantic network knowledge representations,

augmented transition networks and chart parsers, and

production rule deduction systems have gained wide

acceptance even as better approachvs appear.

60

The long term goal of this work is to evuelop

"intelligent interactive systems" which do for people's

minds what the industrial revolution did for their muscles.

Accomplishing this goal requires combining the skills of

human factors engineers and AX specialists. The purpose of

this talk is to describe the benefits of a synergistic

relationship between these two fields. 1wo research

projects currently underway at TI serve to illustrate these

benefits.

2.0 INTERACTIVE NATURAL LANGUAGE SYSTEMS

2.1 Description Of The Problem

Chapanis (1975) has demonstrated that interactive

natural language dialog is remarkably unruly, with many

misspellings and grammatical errors. Although progress has

been made in getting computers to process pristine English

text, it will be many years before computers will b? able to

process unlimited interactive natural language dialog.

As our group works toward a system that interacts in

true natural language& another project is under way that is

oriented toward intermediate results. The goal of this

project is to define a human engineered subset of natural

language. This subset would retain all of the user-oriented

benefits of unrestricted natural language dialog. However,

its use would greatly reduce the processing burden that true

61

natural language interaction places on te computer. Tnis

is clearly a goal that can test be accomplished by

cooperation between artificial intelligence and human

factors specialists.

2.2 What Human Factors Contributes

Ford, Weeks and Chapanis (1980) and Michaelis (1980)

reported a series of experiments that were conducted in the

human factors laboratory at Johns Hopkins. In these

experiments, two-person teams exchanged information over a

telecommunications medium in order to solve problems. Half

of the teams were rewarded solely for correctly solving

their problems. The other half had their correct sol.ition

reward diminished for each more token they used. Tt:-.As,

these latter teams were encouraged to keep their

communication as brief and concise as possible. The

problem-solving task assigned to the subjects in the

Michaelis experiment is typical of the type used in these

studies: One team member was given a completely assembled

prism-shaped wooden model and was required to assist the

other member, who had to build an identical model from the

separate parts. In these experiments, the team members were

in different rooms. In the Ford et al. study, half the

teams communicated by voice and the other half via

teletypewriters; in the Michaelis study, all communication

was over teletypewriters.

In both studies, there were dramatic and highly

significant differences between the two experimental groups.

However, it is important to note that problem-solving

accuracy was not affected by self-imposed brevity.

Show Foil Number -2- Here.
(Summary of the data presented in the next paragraph.)

Among the significant differences noted in both studies

are that the self-limited teams generated, on the average,

about one fifth as many word tokens, one third as many word

types# and one third as many messages. In a linguistic

analysis of the protocols from their study, Ford et al.

found that the self-limited subjects used proportionally

more nouns (41.9 vs. 26.1%, p < .001), feuer pronouns (5.5

vs. 11.9%, p < .001), fewer verbs (10.3 vs. 16.9;,

p < .081), more adjectives (18.3 vs. 10.4:, p < .001) and

fewer prepositions (8.9 vs. 11.3%, p < .035).

Show Foil Number -3- Here.
(Summary of data presented in next paragraph.)

Probably the most interesting finding of these studies

is that# on the average, the self-limited teams solved their

problems faster than their unlimited counterparts, 14.9

versus 19.3 minutes in the Ford et a1. study and 20.5

versus 27.6 minutes in the Michaelis study. This difference

was not statistically significant in the Ford et __., study.

However, in the Michaelis study, which tested more teams (48

63

When compared with the unlimited teams, the self-limited
teams generated:

o One fifth as many word tokens.
o One third as many word types.
o One third as many messages.

Mean Percentenages of Parts of Speech Used by Teams in the
Two Word Usage Conditions. (from Ford, et al., 1980)

Parts of speech Self-limited Unlimited p

Nouns 41.9 26.1 .001
Pronouns 5.5 11.9 .001
Verbs 10.3 16.9 .001
Adjectives 18.3 10.4 .801
Prepositions 8.9 11.3 .835

64

Average Number of Minutes for Teams to Solve Their Problems
in Both Experiments and Word Usage Conditions.

Experiment Self-limited Unlimited p

Ford et al. 14.9 19.3 N.S.

Michaelis 28,5 27.6 (0,805

65

vs. 32), the p value was less than 8.005. This is strong

evidence that requiring people to be concise does not hurt

their ability to communicate; it may even help.

2.3 What Artificial Intelligence Contributes

At this point* natural language specialists in the

Texas Instruments Ar group became involved. They contrasted

the limited and unlimited Frotocols from the Michaelis

study. Their goal was ti determine how the dialog

limitation might affect the processing burden of natural

language computer systems. They were specifically concerned

with contrasting the effects on systems ttat do a syntactic

analysis first and then pass the results to a semantic

component, versus those which integrate the semantic and

syntactic components during analysis.

Pronominal reference and the attachment of

prepositional phrases* two stumbling blocks for many present

syntactically based systems, occur somewhat less frequently

in the limited condition. However, in the limited protocols

over one third of the utterances were ungrammatical, while

in the unlimited case this was closer to one tenth. They

therefore believe that syntax-first approaches will have

significantly more problems parsing the)!mited condition

utterances than systems which have less reliance on syntax.

66 (

The word types used in the limited condition are

virtually a subset of those used by the unlimited users;

apparently# many of the words used by the unlimited subjects

were not necessary for the solution of the problem. This

finding has also been reported in a study of interactive

limited-vocabulary dialog (Michaelis, Chapanis, Weeks, &

Kelly, 1977), and suggests that the conceptual coverage of

the limited protocols is less than that of the unlimited.

Therefore# a semantics based system, such as a semantic

grammar Cc.f. Burton, 1976) or conceptual analyzer (c.f.

Schenk, 1975), could possibly gain efficiency from the

language limitations.

The protocols were also analyzed to examine whether the

problem solving strategies used were different between the

unlimited and limited conditions. The protocols were

classified according to the problem solving strategies used

and the ordering of their subgoals. No statistically

significant differences were found between the unlimited and

limited conditions in the number of teams using the

different strategies.

In 38 of the 48 protocols (nineteen in each condition)

the subjects used subgoals characteristic of classic

means-ends analyses (Newell & Simon, 1972). These teams

established two major subgoals of the task, building the

triangular sides and building the rectangular base. The

order in which these were performed did not significantly

67

differ between the limited and unl;mited condaions.

The ten remaining teams did not have obvious sub..,als;

six used an approach in which they described the appearance

of the model, and the remaining four used a strategy of

making small pieces and then connecting these together.

Again* no significant differences were found between the two

conditions in the number of teams using each strategy.

--
Show Foil Number -4- Here.

(Conclusions from NLP research)
--

To summarize the findings thus far in this research

effort, human factors specialists found no evidence that the

dialog restriction discussed in this paper will hurt the

user's efficiency. Indeed, the Michaelis study suggests

that the efficiency of the users may actually be improved by

well chosen limitations on the interactions. Further, the

language restriction could not be shown to significantly

change the problem solving stratecies used by the subjrcts.

The protocol analyses performed by artificial intelligence

specialists suggest that semantic,lly based interactive

natural language processing systems mignt also benefit from

this restriction.

68

Conclusions

From a human factors perspective:

o Ho evidence that the dialog restriction hurts people's
ability to communicate,

o No evidence that the dialog restriction changes people's
problem solving strategies.

From an AI perspective:

o Some evidence that a semantically based interactive
natural language processing system might benefit from
this dialog restriction.

69

3.0 INTELLIGENT TUTORING SYSTEMS

A second illustration of the AI/HF synergism involves

the development of "intelligent tutoring systems" intended

to teach elementary computer programing. Such systems

represent enhancements over conventional "drill and

practice" or "frame-based" multiple-choice branching systems

because they incorporate considerable knowledge about the

task, the student# and about tutoring per se. The long-term

goal is to provide a computer-based educational experience

comparable to a one-on-one interaction with an expert human

tutor.

3.1 Description Of The Problem

Three systems intended to teach elementary computer

programming are examined. The first system, BIP (for "BASIC

Instructional Program") EBarr, Beard and Atkinson 19763

serves as a problem solving laboratory wherein students

solve programming exercises in the BASIC language. The

second system# SPADE-S (for 'Structured Planning and

Debugging Environment") CMiller 19793, was developed as an

AI exercise. Its purpose was to articulate the underlying

programming knowledge involved in writing graphics programs

in the LOGO CPapert 19803 language. A third system#

currently under development, blends both Al and human

factors considerations.

70

XWTU.I 6tA/T

IN

AL To71

BIP is an effe:tt.,e working computer-based

instructional system whicii has beer In ose by the Navy for

some time, both as a researcn vehicle and as a practical

tool for teaching BASIC programming. It serves as a useful

representative of previous ujor-k on programming tutors. (BIP

has been in use in our laboratory for over a year.) BIP is

able to individualize the sequence of tasks encountered by a

given student, on the basis of a !Kills model inferred from

performance on prior tasks. Hence, not every stuOent

encounters every task; and 50te encounter tasks -in .i

different order than others. We p'usent A (sligntly ed;tE,)

excerpt from a session with this ;gsVem t. il!ustrate its

capabilities and limitations.

COMPUTER: On the first a ": * M,., , %,oXmo f one's tru., 1;v:
sent him a partr i.Gj " , ,r-Far tree. On tne
second day# they spnt "cl tt:rtle doves plus
another partridge (3 giftc, 2nd day). This
continued through tre twe 14 th day, when Lne
true love sent 12 lcrds, it ladies. ... all
the way to yet another partridge. Write a
program that computes and pr:nts the number

of gifts sent on that twelfth day. (Th1s is
not the same as the TOTAL numnber of gifts
sent for all 12 days')

STUDENT: HINT?

COMPUTER: This program requires a loop. Each execution
of the loop involves accumulating the value

of the index into a total.

STUDENT: HINT?

COMPUTER: Finding a total almost always means you need
two things:
(1) Setting a variablte to F berore the loop.
(2) Accumulating values into that variable

within the loop.

/.

BIP has impressive features for creating flow diagrims

and does an excellent job of sequencing tasks. However, its

understanding of the domain is limited to a flat collection

of language constructs. Based on informal analyses, BIP

often rejects answers that students believe to be correct;

it tries too hard to elicit a single solution, which is not

always appropriate in complex domains such as programming.

BIP was hampered by its lack of understanding of

planning and debugging, two central AI concerns. While SIP

could individualize the sequence of tasks, it coull not

individualize the hints given within a task. Thus, 11

students who encountered the Y'1PS task and requested t%;o

hints would see the same two hints shown above. To impro,.,

upon BIP's pre-stored hints, our problem was twcfcid: to

represent the underlying knowiedge and to apply that

knowledge in a fashion helpful to the human user.

3.2 What Human Factors Contributes

The goal of the Al specialists is to design

"artificially intelligent" computer environments that tutor

students in much the same way that a human teacher might

tutor his students. The Al technology has progressed to the

point that some very basic questions must be answered before

progress can continue: What makes an intelligent human

tutor successful? What are his techniques for diagicsing

student problems and m:sconceptitns' What are his

73

techniques for aovising students' In short, how does he use

his intelligence to provide tutoring superior to that

provided by pre-stored hint systems like BIP? All of these

questions relate to the human-cotoFuter interface, so the Al

specialists at TI took the questions to the human factors

group.

Job and task analyses are two of the basic tools of

human factors engineering. The human factors group

addressed the Al specialists' questions by setting up a

system in which a computerized intelligent tutor is

simulated by having an intelligent human playing the role of

the computer tutor. Very simply, the human tutor observes a

student's efforts by watching a monitor that is slaved to

the student's work terminal. The tutor maker judgments

about the student's problems and misconceptions, and :ypes

appropriate help messages th- ,ppear on triv stuient's nelp

terminal. It is important to recognize that. in this

paradigm, the human tutor bases decisions on exactly the

same information that would be available to the computer

tutor, and similarly provides help the same way that the

computer tutor should.

In these studies, the human tutor is carefully

evaluated. Human factors specialists meticulously record

all his activities, along with verbal protocols in which he

explains the rationale behind his decisions. These studies

are not yet complete, but a clearer model of the intelligent

human tutor is already ei:erging. (in e ,npcr tant trend

observed thus far is that the level of sophisticatior

required for a successful %& tutor might rot need to be

as great as was originallj expected.

Show Foil Number -X- Here.
(The following paragraphs, including the BASIC code.)

Here is an example of a problem a student had that wfas

easily diagnosed by the human tutor. The student was

learning how to program in BASIC# using the SIP problem set.

In this particular problem, the student was asked to take

two numbers, M and NP and compute their sum, difference,

product, and quotient. This is what the student typed:

10 PRINT "WHAT IS THE FIRST NUMBER"

20 INPUT M
30 PRINT "WHAT IS THE SECOND NUMF3ER"
40 INPUT N
5(0 LET A = M 4 N
6;3 LET B = M - N
70 LET C z M * N
183 LET D = M

At this point, the student paus : For .ver a ir,ninutc,

then asked for help. QuiLe cledrlL!, thf, sttident'.- p'Jtllem

was that he did not know the symbol for division. This sort

of problem is representative uF the type solved by the human

tutor that uould not have been solved by a pre-stored hint

tutor like DIP. Note th-3t even a very simple means-enas

analysis model involving sequential accomplishment of

subgoals is adequate to provide a correct hint here.

7.

The student was asked to write a BASIC program that would
take two numbers, M and N, and compute their sum,
difference, product, and quotient, Here is what he did:

10 PRINT "WHAT IS THE FIRST NUMBER"
20 INPUT M
30 PRINT "WHAT IS THE SECOND NUMBER"
40 INPUT N
50 LET A : M + N
6B LET B ,: M - N
70 LET C : M * N
80 LET D : M

When he got to this pointy the student paused for over a
minute, and then asked for help. What information does he
need in order to continue?

76

3.3 What Artificial Intelligence Contributes

The crucial contributions of Al to CAI derive from

representing the underlying knci'uleage. In tne case of

programming, representing the oomain knowledge requires

asking such questions as, "What is it that the expert

programmer knows that the novice does not?" Miller's SPADE-S

project was more an attempt to investigate and formalize

this type of knowledge than to build a useful programming

tutor. It represented knowledge about programming plans

(i.e., procedural templates independent of the particular

programming language) and debugging techniques.

SPADE-0 built upon A! work in automatic planning and

debugging developed in HACKER [Sussman 1973], MYCROFT

(Goldstein 1974), and NOAH [Saceraoli 19753. SPADE-3 coulo

prompt the student throughi hierarchtcal planning processes.

encouraging the student to postpore premature commitment to

the detailed form of the code. (This AI planning technique

grew out of such systems as ABSTRIPS Cref).) SPADE-0

provided a vocabulary of concepts for describing plans.

bugs* and debugging techniques# 4nd handled the routine

bookkeeping tasks involved in simple program development.

Figure XX illustrates a sample interaction with

SPADE-S. The key feature is the system's deeper analysis of

the underlying knowledge. This is manifested by commands

for editing the plan -- rather than merely the code -- of

the student's program. However, the design of SPADE-0

7 ?

PLAN(L~~

I'ltAV (LLL 4

)Web,% WEL
j1Afe.TTtO TLANA.

cke-aions J~vr <ir ckrns or)

* 4 ccr 4Cor ELSi>

78

ignored human factors considerations* imposing its own

technical vocabulary on the student, and adopting a style of

interaction that took away much of the initiative.

Our current work is an attempt to extend the underlying

Al knowledge represented by SPADE-0 and merge it With the

improved human factors guidelines resulting from careful

analyses of what good human tutors do. Like BIP# it will

dynamically select tasks from a curriculum database; but

like SPADE-S, it will build a model of the student's problem

solving skills (rather than simply recording which

programming language constructs have been mastered). The

key Al aspect is fine-grained diagnosis of student errors to

provide custom-generated (rather than pre-stcred) advice.

We are basing the design of our new tutoring module on

human factors studies in which a human simulates this

module. As the system implementation progresses# additional

tasks will be taken over by the computer, and the need for

the human tutor to intervene will be correspondingly

diminished. The proportion of tasks successfully performed

by the computer tutor is a measure of our progress.

Earlier "intelligent tutoring systems" such as BIP and

SPADE-S used their intelligence to build models of the

student. However, the interface between the intelligent

tutor and the student remained crude. By working with human

factors engineers, the Al specialists now better understand

how human tutors interact with students. The emphasis of

79

0

L~CL

80

30
zI.-

sa

0 4c

z (

L-U l-

0 40 .i
29 IL=z nA

I.

= U.lzu

too 0, IiJJ
U. us IA uw z

w B U 30

LL.~U do"u Z U

x i-c 0 49 W
CD IA 1- 31 =4A

66 a.~~
us 0-

"o 0- U,

I- us I4D 0

1.- Z9d *310 a

4o wo a
c# at a oi

- 81

the Al work has now shifted to modelling this tutor/student

interface.

4.8 CONCLUSION

In closing# it is worthwhile to review a central human

factors problem: the division of labor between human and

machine in human-machine systems. In any well-designed

system, tasks are allocated to those components best suited

to perform them. Textbooks on human factors engineering

typically state that machines tend to be superior to humans

in such tasks as calculation and coordination of many

simultaneous activities. Conversely, they state that humans

tend to excel in such tasks as problem solving where

originality is required, pattern recognition, and decision

making based on incomplete or conflicting data, or when

unlikely or unexpected events occur. Thus, these guidelines

would allocate responsibility for calculation to the

machine, but leave the human responsible for recognizing

patterns in the results of those calculations.

As artificial intelligence continues to progress,

machines will begin to achieve superiority over humans in

many aspects of tasks traditionally assigned to humans.

This might lead to speculation that research on

human-maLhine interfaces may be unnecessary, since the need

for the human component will disappear. For certain kinds*

of menial tasks presently performed by humans, this line of

82

HUMANS ARE BETTER AT: MACHINES ARE BETTER AT:

PATTERN RECOGNITION ACCURATELY AND RAPIDLY PERFORMING
COMPLEX CALCULATIONS

APPLYING ORIGINALITY IN SOLVING
PROBLEMS COORDINATING AND PERFORMING MANY

SIMULTANEOUS ACTIVITIES
MAKING DECISIONS BASED ON
INCOMPLETE OR CONFLICTING DATA PERFORMING ROUTINE OR REPETITIVE

TASKS
MAKING DECISIONS WHEN UNLIKELY
OR UNEXPECTED EVENTS OCCUR MONITORING

83

reasoning is probably sound. However, it is our expectation

that, as work in artificial intelligence and human factors

engineering continues to advance, the nature and power of

the human-computer interface will become more critical and

sophisticated. The art and science of interface design will

never become obsolete. Obsolescence is faced only by our

traditional task-allocation guidelines.

This paper has described two examples of research

projects in which AI and human factors specialists have

collaborated. From these projects and others like them, we

have learned to stop thinking in terms of separate

disciplines that merely benefit from cooperation.

Particularly in the design of "intelligent interactive

systems," the borderline between these two fields has

blurred in our eyes. Human factors specialists are learning

to exploit the tremendous benefits for the human component

made possible by more intelligent software components; Al

specialists are learning to write software that is sensitive

to the needs, capacities, and limitations of the human

component. Due to this kind of synergism, the well-designed

human-computer interface can become a link between the

creative thoughts of men and machines, contributing to a

technological revolution that offers to do for the huf...i

mind what the industrial revolution did for human muscle.

84

5.0 REFERENCES

Barr, Avron, Marian Beard and Richard Atkinson. The
Computer as a Tutorial Laboratory: the Stanford BIP
Project. International Journal of Man-Machine Studies,
8, 1976, pp. 567-596.

Burton, R.R. Semantic Grammar: An Engineering Technique
for Constructing Natural Language Understanding
Sustems, BBN Report No. 3453, 1976.

Chapanis, A. Man-Machine Engineering. Belmont, California:
Brooks/Cole, 1965.

Chapanis, A. Interactive human communication. Scientific
American, 1975v 232(3), 36-42.

Ford, W. R., Weeks, G.D., & Chapanis, A. The effect of
self-imposed brevity on the structure of dyadic
communication. The Journal of Psucholoq4, 1980, 104,
87-183.

Goldstein, Ira. Understanding Simple P cture Programs.
Massachusetts Institute of Techn~ilogy Artificial
Intelligence Laboratoryg Technical Report ?P?, 1974.

McCarthy* John, et al.. LISP 1.5 Programmer's Manual. MIT
Press, 1965-6.

Michaelis, P.R. Cooperative problem solving by like- and
mixed-sex teams in a teletypewriter mode with
unlimited, self-limited, introduced and anonymous
conditions. JSAS Catalog of Selected Documents in
Psuchologu, 1980, 10, 35-36 (Ms. No. 2066).

Michaelis, P.R., Chzpanis, A., Weeks, G.D., and Kelly, M.
3. Word usage in interactive dialog with restricted
and unrestricted vocabularies. IEEE Transactions on
Professional Communication, 1977P PC-20, 214-221.

Miller, Mark. "A Structured Planning and Debugging
Environment for Elementary Programming." International
Journal of Man-Machine k'udies, Januarj 1979.

85

Minsky# Marvin. "Matter, Mind, and Models." Proceedinas Of
International Federation of Information Processing,
1966.

Newell, A., & Simon, H.A. Human Problem Solving. Prentiss
Hall, 1972.

Papert, Seymour. Mindstorms. Basic Books, 1980.

Sacerdoti, Earl. A Structure for Plans and Behavior.
Publisher???, 1975.

Schank, R.C. Conceptual Information Pro.:essing. New York:
Elsevier, 1975.

Sussman, Gerald, A Computational Model of Skill Acquisition.
Massachusetts Institute of Technology Artificial
Intelligence Laboratory, Technical Report 297, August
1973.

86

OVERVIEW OF SELECTED DISPLAY FORMATTING
AND CLUTTER REDUCTION TECHNIQUES1,2

Franklin L. Moses
Human Factors Technical Area

US Army Research Institute for the Behavioral and Social Sciences
Alexandria, VA

System and software designers for graphic applications have a real
dilemma. Designers often are given the type of symbols to be displayed,
the amount of information to be portrayed, and the hardware to be used. If
they cannot change the symbols, reduce the data, or replace the hardware,
what can be done to make a display speak to the user with the clarity
desired? One solution is to format the information so that the display is
compatible with the user's perceptual abilities and task requirements.
The essence of such formats is to highlight information relevant to a task
and thereby make it stand out from the irrelevant information.

The goal of creating "good" displays is to present information so that
user needs can be satisfied quickly and efficiently. However, one problem
created by adding more information to a display screen, even if it is rele-
vant to the user, is generally called clutter. For the sake of discussion,
clutter exists when the extraction of information from a display is hindered
by the density or similarity of symbols. A number of alternative formatting
techniques can be suggested to reduce clutter. Of course, some methods
will work better than others, depending on the situation.

Although the examples of formatting in this paper all relate to Army
applications, the principles should easily generalize. Army representations
of the battlefield illustrate a classic problem for displays: or users
try to display more information, they end up extracting less due to clutter.
Formatting guidelines are needed to help reduce the clutter problem.

Formatting Situation Displays

Figure 1 is a typical, albeit ficticious, Army battlefield map. Anyone
who has seen a real one will recognize this one as a severely stripped down
version. It shows only the most essential information: terrain (mountains,
rivers, roads and forests); the unit type (artillery, infantry, armor); and
the unit sizes (division, brigade, and battalion). Yet, it already is clut-
tered. Consider the time and effort that a person would need to compare the
number of armor, artillery, and infantry units, even on such a simplified
display. Alternative formats using the same symbols and the same information
can help to make such tasks easier for the user. Several suggestions, based
on Army Research Institute (ARI) work, should allow more information to be
meaningfully displayed without adding hardware costs or decreasing user
performance.

1An earlier paper by Leon H. Gellman (currently at Sarah Lawrence College, N.Y.)
was presented at the US Army Second Computer Graphics Workshop, Virginia Beach,
VA, September 1979, and used as a basis for the current report.
2The views expressed by the author do not necessarily reflect the views of the
US Army or of the US Department of Defense.

87

_______ 'Z?

L~i r(cY4Z

r-: L+ 0 x x..a.

0, .

- ./

r .x

FIG. 1

88

Redundant Codes

The first formatting technique to be discussed is based on the re-

search of Vicino, Andrews and Ringel (1965). They doubly or redundantly
coded information on a battlefield display, thereby allowing users two
chances to find the information. Redundant coding takes information which
is already on the display and repeats it in a salient code that helps the
user to organize the display. For example, Figure 2 presents the map with
redundantly coded unit symbols. The code is the heavy broken line for
artillery, the heavy rectangle for armor and the heavy X for infantry.
There is no more or less information here; rather, there are two ways of
identifying the units. The double code has been used to maximize the saliency
of unit types making similar units seem to stand out together. When
Vicino et al. used this technique, they increased the speed of information
extraction by 97% when compared with a single code. Redundant codes will
not necessarily increase processing speed this much in all situations.
However, processing should be easier and the cost of such formatting is
minimal. Redundant coding can be done with any number of stimulus dimensions
such as blinking, size, intensity and color.

Sequential Formats

Sequential Presentation by Topographic Segments. So far, the discus-
sion has centered on using codes to organize display content. If a display
has to show a lot of detail, then a second type of format, called sequential
presentation, organizes the information by breaking it up into component
parts. This is accomplished by showing information in segments over time.
Sequential presentation reduces clutter by showing less information per
screen and, for similar reasons, it increases the amount of detail that users
can see. The technique is particularly useful for showing standard topo-
graphic information that easily exceeds state-of-the-art display resolution
capabilities.

Sequential formats require users to depend on their ability to inte-
grate information over time. Thus, an important formatting question con-
cerns whether to display segments of an entire map by scanning them or by
sequentially presenting static (i.e., discrete) views. Based on an ARI
experiment by Moses and Maisano (1979), static views with overlaps of
around 25% are more efficient for users than continuous scanning methods
of sequential map presentations. When resolution and clutter are serious
problems, sequential presentation should be considered as a solution.

Sequential Presentation by Data Dimension. The final formatting
technique to be discussed is also a sequential presentation method, but
this one displays information by data dimensions. The idea is once again
to segment information. This is accomplished by presenting a limited num-
ber of data dimensions simultaneously while removing other information from
the screen. Of course, questions such as how many separate data dimensions
can be shown per screen and what is the effect of user control over selection
of dimensions need to be considered. These and other inquiries about sequen-
tial presentation are topics for possible fu!ure investigation at ARI.

89

I3.'C f W5 f
Umt :;A

II

2S x xJ

N ?1~~! m~m%~iD~4-

xxI
xx x K .'.' t

~1

le.

FIG. 2

90

Summary

This paper discusses the problem of putting too much information on
a display and outlines four formatting techniques which may alleviate
some effects of clutter. The suggested formatting techniques are only a
few of many methods available to the graphic system designer. The question
that remains is: Which format should be used? The answer can only be found
by determining the format that optimizes task performance for display users.
Clearly, none of the recommendations made here will provide an unconditional
solution to graphic problems. However, it is incumbent upon the designer
and programmer to use every trick at their disposal to provide graphics
which have the impact and clarity commonly believed possible. The Workshop
presentation will consider this goal in more detail along with some guide-
lines for attaining it.

References

Moses, F.L. and Maisano, R.E. User Performance Under Several Automated

Approaches to Changing Displayed Maps. ARI Technical Paper 366,
June 1979.

Vicino, F.I., Andrews, R.S. and Ringel, S. Conspicuity Coding of Updated
Symbolic Information. APRO (now ARI) Technical Research Note 152,

May 1965.

91

FORMAL GRAMMAR REPRESENTATION OF MAN-MACHINE INTERACTION

Phyllis Reisner
IBM Research

5600 Cattle Rd.
San Jose, CA 95193

End users communicate with a computer system by using a language. The

language might be, for example, a query language, a natural language, or

an "action language" - a sequence of button presses, typing actions,

cursor or lightpen actions, etc. These user input languages can be

represesented in the same way as any other language - by a formal grammar

which shows the permitted strings and also shows the structure of the

language.

The work to be described in this talk attempts to use a formal description

of the user input language as a design tool to improve the ease-of-use of

a man-machine interface. The talk will first describe earlier work, which

uses a BNF-like grammar in the context of a color-graphics system for

making slides. It will then discuss current work using a formal grammar

to describe text editing. The current work is first attempting to make

sime of the concepts introduced informally in the earlier work

sufficiently precise that people with a variety of backgrounds can use

them.

The field of human factors, which attempts to measure and improve the

ease-of-use of products, is largely experimental. It uses techniques of

behavioral science as its primary methodology. The intent of the work

with the color-graphics system was to demonstrate that a formalism could

92

be applied in this area which is usually considered soft, or even ad hoc.

The intent was also to explore the possibility of using the formalism to

compare alternative designs for ease-of-use and to located design flaws

that might cause user problems. We wanted to see whether a tool could be

developed that had some predictive potential. One problem with the usual

behavioral approach to interface design is that it must frequently await

the existence of a prototype or working model. We wanted to augment this

approach with a more analytic one.

The color-graphics system, ROBART, existed in two versions, ROBART 1,

which was designed without explicit attention being paid to ease-of-use,

and ROBART 2, a redesigned version with the end-user a major focus of

attention. It was an experimental, interactive system for creating slides

for technical presentations. It was intended to be used by people without

computer training doing non-routine tasks. The function available in both

versions was essentially the same, bi-. 'e design of the human interface

differed.

To explore the issues discussed, the " action language" of the first

version was described, using a BNF-like notation. (In this action

language, the user selected colors by dipping a cursor into a paintbox of

colors on a CRT screen by using a joystick, selected shapes such as lines,

circles, rectangles, etc. by verious combinations of switch selections

and button presses on an external switchbox, indicated the location and

orientation of the shapes by combinations of cursor positioning and button

presses. It was also possible to type textual material on the screen, in

color). Portions of the action language for ROBART 2 were also described,

93

also using the BNF-like notation.

The next step was to make predictions, from these formal descriptions,

about very specific differences in the ease-of-use of the two versions,

and then to test the predictions to see if they were in fact

substantiated. The goal was to see if formal grammar could be used as a

predictive tool and if the predicted differences were indeed measurable.

This did indeed turn out to be the case. Among others, we predicted that

the action of selecting shapes would be more difficult in ROBART 1 than in

ROBART 2, for each of the shapes available. We also predicted that users

would make a particular error in "initiating" shapes (the first action to

indicate location and orientation) in ROBART 1 and would not make an error

in the same step for ROBART 2. Since the same error was not expected to

occur in ROBART 2, we felt that the problem would indeed be attributable

to the interface design and was not inherent in the function itself.

In an exploratory experiment with temporary office workers, the

predictions were in fact substantiated.

Current work, in the context of text editing, is first attempting to

clarify some of the concepts and techniques used in the above work. The

concepts were intuitive, but not precise enough to develop into a design

tool to be used by a variety of people with different backgrounds. For

example, we introduced the notion of a "cognitive" terminal symbol, since

we thought that what the naive user has to learn and remember will be of

major importance in the ease-of-use of a system he uses intermittently.

94

This notion clearly needs to be made more precise. We also used a

quasi-automatable technique for locating structural inconsistencies in

the language. We expected these structural inconstencies to cause users to

make mistakes. Neither the notion of "structural inconsistency" nor the

technique have been made explicit. These and other related issues will be

discussed.

95

A RULE BASED HELP SYSTEM FOR SCRIBE

ELAINE RICH

AARON TEMIN

26 February 196t

96

V-

b

People need access to help it they are goino to use complex

computer systems effectively, There wi11 not always oe other

people or even manuals arouno to help them. So we-need tne

computer itself to be able to provide the nelp its users need.

This is not a new arqument, See, for example , [Pirtle b].

The extent to which anyone can help someone else is limited by

the deoth of the helner*s own knowledge, So If computers are

going to help people, they must nave a great deal of knowledge

about *hat tney do,

but tne usefulness of help information to a person seeking help

is a direct function of the extent to which the information

answers the specific question the user had, So simply dumpino an

entire manual or ever large chunks of it on a user every time he

asks a ouestion is useless.

People who need help are missing some information about how the

syster works, So they cannot be counted on to describe their

problem in terms of specific system commands so that the relevant

parts of tne manual can be tound and fed back to tnem, (Tnts

precludes simele Keyword based help systems such as [Shapiro 15

or [Kenler So).)

These obvlous tacts force us to the conclusion that to provide

a good interactive help facility will require a larqe data base

of knowledge about tne operation of the system in questions This

data base must he structured in sucn a *ay that it can be

accessed froT descriptions at a variety of levels about what the

proqraa, did and what the user vanted. To investigate the issues

97

raiSed by Such constraints, we are building a help system for the

docuj';ent formattinq program Scribe (Held 80),

the knowledge base used ny tne system is a set of rules that

describe Scribe's cenavior at a variety of levels, Too level

rules describe the behavior of the system in terms of fairly hiqh

level functions. Other rules then describe tnose functions in

terms of lower level functions, and so fortn, we plan Initially

not to try to provide rildes that describe Scribe down to the

lowest level, at wnich individual characters are Placed on tne

page, This will of course limit the ability of the syste:n to

answer ouestions about that aspect of the system's performanceq

But tnis is analogous to tne situation that occurs with human

consiultants. There colnes a point where, unless they are familiar

Witn tne details of the cooe of the system, they simply cannot

ans*er a Question. rhis rule oased, successive decomposition

approach, however, orevents us frojo being locked into a

particular level of cescription. New rules that provide

additional levels of description can oe added at any time,

Each rule in the systeq. contains a left side that describes

when it can he invoked, and a right side that describes the

sequence of actions that will resuits The left side consists of

two oarts, a command or a piece of the inout file, which tries to

trigger tne rule, and a list of auxiliary conditions that [Dust be

met in order for the rule to be aole to be invoked. For example,

the followino rules describe how Scribe orocesses the @ref arg)

cofnnan, which suostitutes for the string "oref(arg)", the

reference indicated by tne string arg, (Commands to Scribe are

98

signalled by the character "@",)s

I tref(arg) and lookuPsyqboltao'e(arq) NEU I ->
send(maintext, looKupsyMhltable(arg))

2 @ref(arg) and looKuopauxtile(arg) Nu 0 a>
send('aintextelooKupauxtile(arg))

3 Oref(arq)->
send0(maintextoc(arg))
send(errorfilep"ndefined reference",arg)

The order of tne rules In the date base reflects the order in

whicn Scribe cnecKs for things. In tnis example, Rule I says

that if tnere is d ref command with a particular argument and It

there is an entry in the internal symool table indicating a

previous definition of that argument, tnen print in tne outout

the approorlate value as indicateo by the definition. OtherwIse,

If tnere is a definition of the argument in the AUX file (a file

containing the symbol table that Was built the last time Scribe

processed this file) then use tnat definition. It there was no

definition in eittner place, then simply insert into the text the

string that was the argument to ref, but capitalize it. Also

make a note of this error in the error log file,

The actions indicated by tnese rules are fairly high-level.

They inaicate that text Should be placed in output files. They

do not indicate how. rhey do not specify suen things as the

margins or the type font to be used. Those things are specified

in the rules tnat descrioe the operation ot the send function#

Some of the actions, such as send, can only oe generated by the

operation of otner rules. Others, sucn as @c(text), could also

have occurred in the input file. the fact that tne Scribe system

99

Is very well structured makes it easy to describe tne operation

ot one tunction In teris ot a well detined set of otner

functionr, This one-step-at-a-time description is very important

for tne generition of responses to user's questions. No one

wants a bit level answer to every question they aSK. People

usul11y want a aescription In terms one or perhaps two levels

hicher or lower than tne level at Which they asked the question.

The set of rules provides a static description ot the way

operations tn Scribe are oerformed in terms ot other, lower level

operations. As Scribe executes, it buills a separdte

hier.irchical structure tnat retlects the block structure of tne

specific document that is oeinq orocessed. For example, a

docu: ent coula contain tne sequence:

@beqin(iuntation)

@tueqin(iiemize)

enddit em ze)

@enJ(ouotation)

The quotation environment soecifies that the margin should be

moved in and that the text should oe printed sinQle spaceo. Thie

itemize environment soecifles that the marqIns snould be moved in

and that paragrons snould oe numoered, Tnese specifications

nest, so tnat the iarglns inside the itemize will oe narrower

than for the rest of the quotation, whicn will be narrower than

the surrounding text.

jo answer a user's questions, the help system #1.11 match pieces

of tue user's question against pieces of rules, 3nld use unmatched

100

pieces of tne riles or oatterns of cha.ninq tnrouqh the rules as

answers to the ,iucstions. "any questions can ve dnsoereo Py

referrinu only to tie static mescription of scrioe's operation,

However, ,when o ,v3estion reers to something specitic tnat

hapoened at a particular point in tne user's file, it may .0

neCessary for the nei" syster to build a piece of the dynamic

tree, mirroring thot Oiilt by Scrioe durinq execution, so that it

wi,.l Xnow enouqn conteyt to (e anle to identify the rules that

were appltied.

One of toe most Com".ion tyoes of questions a help system must

ans~er is "Khy 11d X occur't", Hnis usually means tnat the user

expectei tniat sonethtn'o else would occur. To answer such

.Muestions, tWe ',eln svstem finds toe rules whose r'jht hand sioes

spectfy the etfect the user has described, bet's assume, for

sinplicity, tnAt toere is exactly one such rule. NO* a

suoerficidl answer to the question is simply to state the left

side of tnaL rule. Aut much ot What is there is usually

redundant. For exA,,,ple, the user knows wnat comand he

specifieo. ,iat tize help system will do is to compare the rule

it found to otners ".nose leltt stdes are different, The

Aifferencps in the left sides are the soecific reasons why the

observed effect occurred, ratner than some other, So, for

exa.iple, If the user ASKS why nis ref commanm resulted in the

laoel ahd nnt tne thlng.to wnicn it referred being printed, the

system ooserves tnat tois happeneo oecause the label was not

previously deiineo. It concluood this by comparing Rule 3, toe

one trat describes what Scrioe cla, to Rules 1 and 2, wnicn

101

descrit)r' hlat it w'ould iv've done if tninis nea been sliqhtly

il fierent,

Sooletities there .1-y oe a, aredt r.eny rules wnose lett sintes

almost rPatcr the selecteu rule. It m~ay then be necessary for the

helv'er to asik the user what hie expectea tm have happen, Then

only tne rules whose ric"nt sidies w'atch tnat expected action neca

to be considered. IdeAlly the systedl. woold incintin a Qooo 'Tnael

of tne itser so toat stich iiiestions would rarely need to be Asked.,

Sor-etimes 'Jeferal Krnov1eaoe atiotit true way peoDJle use tne systen,

41l11 he~c, nere, Vor exar.-le, I-eople usually expect some fiirl.y

direct connection oetmeen tne cO:iediands tney issue and the results

they see* I'cey rarely expect a comrri;ind to ne d no-oo, dut tnere

mill always ve times Anen an inciivtiual has an jcorsyncratic

*nsr~rtni~or tr~e svsteDr and nothin-i short of a direct

juestion *III Point this out, F~or this reason, the Process of

answ.ering A quest-Urn .,ust Lie thouont of as A ajaloque rather than

as a nne-Shot o'IeStlon Rnei ans*pr,

Arott'er com-won typ~e of *uestion is what Geneseretm [Geneseretn

7I calls the "~Aj"question. For exanp-le, "tow do I get 11,y

foot-notrs to co~ite out at the eno of my diocum'ent rather than at

the end of eachs L'Acje?1, uHowdo ziuestions are answered oy smatchinq

the user's dJesCrintio"1 Of mla Ie tonts to do against trie riqrut

slies of tne rutes to find toose tnat can proice the diesired

effect. Ift tnere are r-ore tnian one, then the cnoicc among the:A

will Ie -'.'ade on' considerino1 50co thinQS as the conplexity of tne

constructs iruvolveo amn: the user's level of exrnertise witn tne

sys"'e. True left sioe ot tnie chosen rule describes what Is

102

necessary to accoMulish tne desirea effect, Out it may contain

conditions that tne user cannot svecify directly. So the help

syste r dst Chain backwards throuoh the rules to find the

comnnas that will CaJse toose conditions to be true,

Yet anotner comnon type of innuiry is the "what is the

difference between" question. For example, a Scrioe user miight

ask, "hnat is the difterence between the itemize an, enumerate

commanis?". lhese questions cdn oe answerea easily oy this Kind

of rule oased system witnout navinq been anticipated in advance.

It need)ierely fin toe rules that lescrioe toe operation of each

Comnand by natcning eqalnst left sides. In tne simple case,

there will ne one rule for each and the answer to the question is

simrly o list of the Hitferences tetween the corresoonning rigot

hand. siles. In more complex cases, it will oe necessary to

conrare left nand sides also to determine the eftect of various

otner factors on tne operations of the two co-mands,

13ne ot tsie most Com.on situations In whicn users asK questions

, is wnen they nave qotten some Kino of error message from toe

system, lalKtnq atot such errors is easy for a rule oasen

system. Coe rules descrioe all the thinqs the system can do and

the situations in wnicn It gill do them. Errors ao not need to

be representei expllcitly. They are implied by tne absence of

rules. If the user wrote a Command X and there are no rules for

conmnant X whose otner oreconditlons *ere satistleo at the time

the commari occurred then an error will arise. roe system can

explain tne errcr oy comparlnq the existing state to the reaulred

ureconi i.tons and reporting the differences. Ihis is extremely

103

qsefI, sirIce tot a com.plex svste.t, the numoer ot possible error

contiqurations Cain ne very large anj It would oe very ditficult

to '-dve to nescite eaci ot tnei,, explicitly.

A qooi help systemn must tailor its resoonses to the needs of

individual users, Ili this it is no different f roi-; other

interactive svste.is Lkicri 79J. une *ay to represent a model of

a Srrine user %rrjld be as a set of rules, Presumanly a suoset,

oosstblv wit^ errors, of the rules that tne system knows, hitil

sucm ;j nroiel, sone iuestion .oula re very easV to answer. For

exar,.le, vhy questions colito ne ans=erel oy conoaring the user's

rules drjAinst tile syster,'s correct ruips to tind the difference
• nd reiort It. !,nis tec,,nique s suqoested oy trton and brown

[!,itrton 7t] as a 4aiy an intelliqent CAL svstei' coula discover

ouqs in ; student's KnoJedae. otit it is unreasonao)e tor a help

systQ,., to :-Falnta3.n sucn d passive arount ot infornation about

eacr user. Inste:3a, we prooose to recorl a very snall numoer of

facts at,out eecr user, sucn as a .ieasire of his expertise with

tne syste.r. h..ach ot te e oojeets used in the system will have

asscclatei titr, it sorte oroperties, somie of wnich can ve t,,atchei

aqdinst user characteristics to aetermine tne appropriate rules

to ust in oen-.!ratini a response to tne ouestion, So, for

exa,..'1oe, commands will oe ,arKea as simiile, intermediate, or

adv-lce., utnor factors tnat should be i cludel in the model of

eacrh oser are nts inclination toaird oeinr; a hacKer (I.e, ooes he

want to iearn fancy nem co,.-nanas or does ne want to Know a way to

get)v with tne cn:t;:,ands ne Knosf) and his ta.ntliarity witn

Co'nt'tet science conceots (such as olocK structure, one pass

104

SySte~n, sy.i,nol ra,::.es),

One of tne ralor anvantages of this rule based representation

of tne Knowledwq re'uired oVy an intelliaent helper is that it

mirrors the structure of the system for wnicn the help is beingJ

provided* (Or at least it does it the system is well

structure'.) Tns suqaests that the top down process of writinq

the rules could oe used to Proauce a well structured program dno

its h.eJp syste" sim ultaneously, ie would li'e eventually to try

to build an entire system tnis way,

105

REFERENCES

tfurton, 7t,1 rj.urtorn, Riehiri & Jornn Seely brown,
A Tutorin'g and Student modelling Paradtqm for

Gam'irni Environmsents
In 2rro ,to Suasu ou Comoutgz S£lea

LACL12 19Th.

[Genesereth 71
(Geneseretn, Mwichaels

Vn2)' tnesis, Harvardt 1978.

IKehler b(J 'Kener, T. P. & M. barnes.
Alternatives tor Onh-line Hielp Systems,
in g8r. At ACx SIUC LLsar Sazle.% CQQazence.

r~irte t~ Pile. il

in Caeratiaza Colatas John oifley 6 -ions,
New VnrK, 19tdb,

£a.bg: A Ujcimet ajec~catJ.Q Lauaaaa &adLt
LQu±lleze

Isser voueltrq via Stereotypes,
Co±ltlu Scae :32 9-3 $,4, 1979.

(Sriaptrc 75i1 Sriaoira,Stuart & Stanley K'vasnv,
Interactive Consuitinq via ttlral Language,
CoQjCat.QQS QL LoS ACJ1 :459-463, August, 191b,

106

Models for the Design
of Static, Software Systems

M.L. Schneider
Sperry Univac

Blue Bell, Pa 19424

I. INTRODUCTION

One of the "axioms" for ease-of-use is: "Help systems are necessary"
(Clark 1980). While an increasing number of of software systems
provide some form of user assistance (Relles 1979), the information is
usually prcvided without regard to its useage. In general, assistance
is nothing more than an "electric reference manual."

When factoring exists, it usually consists of a layered approach; the
user can request additional details about a specific topic. This
addresses the problem of verbosity, but only indirectly considers the
expertise level of the requester.

This paper proposes cognitive factors that may impact information
factoring: different levels of user sophistication (the User Taxonomy)
and different segments of task performance (the Transaction Taxonomy).
The interaction between these two taxonomies can provide guidelines
for improved static information factoring in assistance systems.

2. USER SOPHISTICATION TAXONOMY

The developmental levels of computer language acquisition defined in
this taxonomy are

1. Parrot

2. Novice

3. Intermediate

4. Advanced

5. Expert

Each level Is characterized by skills in language production: item,
field, or statement chunking; breadth of language scope; and degree of
generalization or abstraction of concepts. The change in system
knowledge is manifested through an increased competence in the
commands that are regularly used and an awareness of additional
functions available within the system or language.

107

The basis for this taxonomy arises from qualitative observation~s of
computer usage in a wide variety of software systems and the
relationship between the observed computer productions to those
observed in the natural language development. This taxonomy describes
an individual's expertise or sophistication in a single software
system or language (or subset thereof) and may not be transferable.
The level at which an individual stops progressing appears to depend
upon a number of factors related to the learning of complex tasks and
the demands placed upon the person by the task requirements.

2.1. THE PARROT

An individual at the lowest level in the taxonomy, the Parrot, has
minimal knowledge of the computer system. The Parrot approaches the
computer system and types commands. This individual does not think,
question, understand, or synthesize the commands. These commands, or
sequence of commands in some cases, may be moderately complex.
Satisfaction is derived simply by having the computer perform the
task.

When the question "What am I doinq?" is asked, the Parrot is ready to
progress to the next stage of sophistication: the Novice.

2.2. THE NOVICE

With experience, a user begins to understand several isolated concepts
and is able to choose a specific lexical entry (command) for a
function. The user is required to know specific but not complex
information. Semantically, the items are considered in thn concrete,
not in the abstract. The Novice may ask, "What does this command item
do?" not "What can it do?" By now, the user has a minimal command of
the grammar, but is only able to operate on an item-by-item basis.
For example, the Novice may recognize a verb and one or more objects
in a command, even if the grammar allows modifiers in the verb phrase
.or in the object phrase.

Unlike the Parrot, the Novice analyzes each item, thus extracting
lexical information. The language components now have meaning and can
be used in a flexible manner.

2.3. THE INTERMEDIATE

The Intermediate is a level between the Novice and the Advanced user.
Whereas the Novice concentrates on items in isolation, the

Intermediate operates with items in fields and with fields in
statements. A statement now becomes the primitive conceptual unit.
The use of a larger chunk encourages syntactic and semantic
conciseness in the grammar, allowing the user to minimize keystrokes.

108

At times, the Intermediate user may link statements Into command
"chains" such as compile...collect...execute. Even so, each command
is still considered it. isolation. The user generally waits until a
function has been completed before proceeding to the next request,
wishing to see the result of a command before continuing with the
task.

The Intermediate begins to concentrate on the task rather than its
components. Use of the full language may be restricted by a lack of
knowledge. Thus, the Intermediate continues to expend significant
effort on language details. At this point in the user's development,
the more subtle grammatical rules become evident. A Novice would use
a default, unaware of the fact that an item can be specified. An
Intermediate would consciously use a default in order to reduce
keystrokes or save time. Initially the Intermediate uses knowledge in
a specific problem domain. Later, this information is generalized,
allowing new problems to be solved.

Toward the end of the Intermediate level, considerable skill in the
understanding and manipulation of a segment of the command set has
been achieved. With the increased use of larger syntactic chunks each
requires less attention. This is the proces. of automatization.
Thus, increased attention can be given to the entire task, rather than
to the mechanisms required for its performance.

With further experience and increased task requirements, the
Intermnediate can evolve into an Advan'ed user, subordinating the
computer language to the task.

2.4. THE ADVANCED USER

Whereas the Intermediate attempts to solve problems via a series of
isolated commands, the Advanced user realizes that an interconnected
collection of statements can be more productive for certain tasks. At
this level a program or procedure, rather than a single statement,
results. Because commands are now interrelated, the scope of the
syntax and semantics expands. The syntactic elements are abstract
rather than concrete. Data structures provide the vehicle for
producing abstract objects. For example, a variable would be used to
represent a filename or a string. The Advanced user continues to
retain the command, together with other defined procedures, as
language primitives.

Control structures are useful if the direction of flow between
statements is to be modified. Using these structures requires a
modification of the user's thought process. A Novice or Intermediate
user may not foresee the success or failure status of a command as an
object on which operations are defined. An Advanced user thinks about
the possible outcomes of com;nands and has the ability to take
appropriate action. While Novice and Intermedlote users operate with
concrete syntactic constructions, existing with in a specific,
restricted semantic scope, the Advanced user expands his language
knowledge to cope with complex structures and abstractions.

109

Practically speaking, the Advanced user has the ability (though not
necessarily the need) to accomplish any function within the system.
The Advanced user is completely facile with the language and can deal
with the language at the global "metalinguistic" level.

2.5. THE EXPERT

The Advanced user has the ability to use the language with relative
ease. Since any computer language is restricted in scope, it can
limit a user (fc 2xample, the inability to have abstract data types
in FORTRAN 77). The Advanced user, knowing the scope of the language,
is constrained when faced with a new problem whose solution cannot be
derived from existing functions or ob'ects within the system. The
Expert transforms this finite system Lnto a generative one. When
faced with the above situation, he creates, not derives, a new
syntactic element within the system. Thus the Expert expands the
existing system, creating new objects and functions.

3. TRANSACTION TAXONOMY

While the sophistication level of the uiser is important, it is
necessary to know how a transaction is processed in order to acquire
additional assistanue informatioui. A transaction is defined as tite
task contemplated by the user (For example: writ:ng a program,
"checking-in" an airline passenger, or performin a data base query).

The five stage transaction taxonomy shown below builds upon a simple
taxonomy (command id data input, processing, and system output) by
expanding the first operation, input, into its semantic and syntactic
components as suggested by Shneiderman (Shneiderman 1979).

STAGE ACTION
I Task Analysis

II Semantic Analysis
III Syntactic Analysis
IV System Performance
V Response Analysis

3.1. STAGE I -- TASK kNALYSIS

In the first stage the user decomposes a single conceptual task into
its component subtasks and determines the specific commands required
for task completion. The user asks the question, "What steps and
commands are necessary to perform the overall task?" For example,
running a program (the single conceptual task) may require the
following subtasks: editing, compilation, collection, and execution.
It is possible that more than one step can be included within a single
command (for example a compile-load-go) or more than one subtask is
required within each subtask (for example operations with the editor).

110

The cognitive processes at this stage may Include all or some of th !

following steps:

I. Identification of the full task.

2. Decomposition of the task into its subtasks or steps.

3. Definition of the conceptual operation for each step.

4. Choice of the appropriate command for the implementation of
each step.

It should not be assumed that all commands will be chosen at the
outset. It is highly probable that an individual will determine the
conceptual operation for the first subproblem, choose an appropriate
command, perform it, assess the result, then progress to the next
conceptual operation, the choice of which may be influenced by the
result of a previous task.

Once the conceptual operation has been defined, a user may wish to
examine the set of commands for its implementation. It is possible to
relate commands and conceptual operations in two ways: define a
conceptual operation for commands that are conceptually related, or
its antithesis, to 2xtract from a conceptual operation its constituont
commands. By iteratini between these perspectives, it should be
possible for the user ,-o determine a command that allows the
conceptual operation f,-) be performed.

A command subset of a hypothetical editor illustrates this iterative
approach. Consider the command "LOCATE" (this searches the text
printing the lines whenever a string occurs). The specific to general
relationship would be:

"LOCATE" ------- >search
print

The general concept print may refer to a number of commands that, if
successfully executed, print a line:

print--------->"PRINT"
"LOCATE"
"FIND"
"GOTO"
"NEXT"

If all commands of the concept search print a line, then the structure
could be represented as:

print --------- >"PRINT"
"GOTO"
"NEXT"
search --------->"LOCATE"

"FIND"

111

A similar grouping can occur for "GOTO" and "NEXT".

When explanations are provided (basic semantic information) within the
above framework, the user can obtain the information in a unified
manner.

3.2. STAGE IT -- SEMANTIC ANALYSIS

In the second stage, the scope of the command is considered by the
user. Upon entry to the semantic analysis, the command is conceptual
in the broadest sense. Now it must be refined into its detailed
semantic components.

The question: "What do I want to do?" is asked by the user. The user
must be cognizant of two semantic concepts: definition of the data and
the control of the process. A sorting program illustrates the type of
information considered by the user. A user must be aware of the date
restrictions (eg. numerics only, alphanumerics, maximum number of
items, maximum number of fields, etc.) and the method(s) of data
storage or entry. In addition, information is required to control the
processing (ascending, descending, key(s), collating sequence, etc.).
At the s:!mantic stage, it is unnecessary to know how to encode this
information.

3.3. STAGE III -- SYNTACTIC ANALYSIS

When a user reaches the third stage, -coding the information, the
correct function has been chosen and toe semantics for task completion
are understood. Now the question is, "How do I do it?" The
translation of the conceptual operation into the input format is
purely mechanical. The user requires syntactic information and
techniques that facilitate this transformation. The form of the
human-computer interface (command language, dialogues, menus, function
keys, etc.) has a primary impact at this stage.

3.4. STAGE IV -- SYSTEM PERFORMANCE

System response, the fourth stage, can be treated as a "black box".
The underlying architecture that supports the interface is outside the
scope of this paper.

3.5. STAGE V -- RESPONSE ANALYSIS

The analysis and interpretation of the response produced by the
software is the final stage of a transaction. The user now asks,
"What have I done?" The primary goal of a response is to provide the
user with relevant information. Unnecessary details that obscure this
information should be avoided. Two independent topics should be
considered: verbosity and information content (Schneider 1990).

112

For example, if the task is to assign the file, MYFILE, there are a
number of possible responses if it is successful (ordered by
increasing verbosity and content):

1. > (a prompt for the next command)

2. READY {, OK, COMPLETE,...)

3. File MYFILE has been assigned.

4. MYFILE assigned with the PUBLIC, and CATALOG options.

5. File MYFILE has been assigned. It can be used by anyone
(PUBLIC) and will exist for one day (CATALOGUED) unless
otherwise requested. To keep the file longer than one day
contact the file administrator.

The last response is an example of layerinj. Three items of
information have been displayed:

1. The name of the assigned file

2. The file attributes

3. The administrative procedure required to keep the file.

In a similar manner, it is possible to design a layered RELP function
(a user initiated request for assistance).

A m--, n. . y not ri' iys t-.rmin - .i su:-:es-,Fu'. ' y. 'J-e 'j '
ne :ningful error messages are important. Good error reporLinj shoul-
provide sufficient information for the user to:

1. Understand the nature of the error;

. Understand the source of the error;

3. Understand the methods for recovery or correction.

Again the questions of verbosity and information content -iro
important. Verbosity mey b. correlated with the nu'nber of ti' es an
individual has seen the nessage, while inform;:tion content should be
related to the levels in the user taxonomy and task requirements

4. INTERACTIONS BETWEEN TAXONOMIES

The user and transaction tpxonomies should not be considered in
isolation. Based upon the sophistication level of the user, the :cop.,
of assistance may vary. Different segments of the transaction
taxonomy need to be emphasized or deemphasized. The method of
assistance presentation provided to individuals at different
sophistication levels for the same transaction may differ. For
example:

113

C: FILE MYFILE HAS BEEN ASSIGNED
u: attributes
C: PUBLIC CATALOGED
u: physical
C: SIZE - 12 TRACKS. LOCATED ON D2734. UNFORMATTED

In order to better understand the type of assistance applicable at
each level of use, it is necessary to examine the requirements of
users at each sophistication level.

4.1. PARROT

A Parrot operates in a simple "transcription mode." There is no
consideration of input variability. The best form of input assistance
is an example or a single choice from a single level menu system. The
latter is analogous to function keys. By careful design, either of
these approaches can be extended to assistance forms suitable for a
Novice.

Only two basic responses can exist for the Parrot: the function
completed successfully, or it was unsuccessful. If an unsuccessful
response is provided, it can only state that the command was
incorrectly entered and should be entered again (a Parrot does not
2ompreh.nd the command's contents). If the system is unable to
pirforn the task at this time, it can be suggested th-It the user try
l~'t-r. Sinc t-sk co ,l~ti'n is the rewarc! for suc L-ss.ful
.-nir/, this infcrmatLin should -ilways be provid d to the user.

Thus at th-. Parrot level there is only one typc of input assistance:
an exam~ple.

4.2. NOVICE

The Novice may not distinguish between the first three stages of a
transaction (Task, Semantic, and Syntactic Analysis). Thus, these
stages should not be differentiated if the user's perspective is to be
reflected in the interface. The system should lead the user from the
determination of the subtask(s), through the isolation of the correct
command and the determination of its semantic components, to the
encoding of the infornation.

Once the user is ready to provide data for the c-mmand, a nuner of
techniques can be Pppliced. As stnte, earlier, continuity between the
first three stages is important; the user should be unaware of any
distinct phase of the transaction. Since the traditional command
format may be inapplicable to the Novice, menus could be used for
stages I and II followed by a mixture of menus, dialogs, and
"fill-in-the-blanks" for stage III.

114

This expands the-syntactlc assistance to two levels:

Assistance Sophistication
Type Level

Example Parrot
Simplest Form Novice

Irrespective of the technique, the computer should take the
initiative; the Novice may not know what information is required, or
even if it is available. Thus, it is incumbent upon the assistance
system to announce its existence. Information for clarification,
however, should be provided only upon demand. To do so automatically,
may unnecessarily confuse or annoy the user.

Responses, aside from providing information to the user, should
indicate the successful completion of the command in a non-null form
(something more than a prompt). A Novice, lacking confidence in the
ability to control the system, may require this positive
reinforcement.

2.1. INTERMEDIATE

Because the Intermediate is familiar with the system, the user, not
the computer, should take the initiative. An individual at this
sophistication level has the ability to decompose a task into its
..Ubtasks and determine an appropriate command (Staae). Sirnce cl.e
components of the system are known to exist, even if not understocd,
information should be factored into the following topics: command
semantics, command syntax, and field or keyword semantics and synt'x.
Since individuals generally employ a subset of commands (Huckle 19RO),
assistance is still required for those used less commonly.

Assistance in the semantic and syntax analyses (Stages I' and II)
require additional information. As a user gains experience with a
command, defaults are better understood, overridden, or modified.
Thus, the scope of the command perceived by the user is extended. The
semantic and syntactic expansion of commands requires that two new
levels of assistance must be added:

1. The most common form of the command. This will occur when
some commonly defaulted items are overridden.

2. The command is used in its full form. This occurs when no
item is defaulted.

Thus, the number of levels are increased to four:

Assistance Sophistication
Type Level

Example Parrot
Simplest Form Novice
common Form Intermediate
Full Concrete Form Tntermediate

115

When the semantics'and syntax of a command are not complicated, two or
even one of the above forms may fulfill the information requirements.

Because the Intermediate operates in a terse mode, abbreviated forms
of the command should be provided. This includes, not only contracted
forms of the strings within the command (name, keywords, flags, etc.),
but the items that can be defaulted and the values supplied.

The layered approach for responses should be available. As in case of
information required for the input of a command, the user should be
able to request specific information. The advantages (terseness and
specificity) of requesting specific information is offset by the need
for a query language.

2.2. ADVANCED

The needs of the Advanced user differ from the Intermediate in three
ways.

1. The transaction stages considered prior to entering a
command require a different emphasis because data and
control structures are now a part of the user's command
repertoire.

2. There is a need for assistance in the monitoring of an
executing command since they are exe.uted in a "batch
environment".

3. A different type of resonse structure is needed since it
must be interpreted dir..ctly bv' command within the
software without human intervenion.

Within the first two stages, an increase in the type of information
exists, reflecting the added control nnd data structures employed by
the -]-,nn-ed user. These new structures may be implemented within an
existing command cr via new commands. Assistance and instruction in
the methods of building macLos, procedures and programs are useful for
the Advanced user. These new functional elements are reflected not
only in Stages II and [II, but their concepts must be included in
Stage I.

Control and data structures are now used in the development of
procedures. This places additional demands upon the response segment.
Whereas in the lower sophistication level interfaces, the responses
must be understood by a human, in a procedures, responses must be
understood by the software.

The abstract nature of the command requires additional syntactic
information. When a command has constricts that relate only to these
structures, they must exist only in the information supplied to the
Advanced user. Thus, in addition to the three assistance levels
applicable to the Novice and Intermediate users, a fourth level,

116

containing the expanded language view must be included. The five
levels of assistance are shown below:

Assistance Sophistication
Type Level

Example Parrot
Simplest Form Novice
Common Form Intermediate
Full Concrete Form Intermediate
Full Abstract Form Advanced

3. CONCLUSION

On a theoretical basis, it is possible to factor software user
assistance information into three independent categories:

1. verbosity

2. user sophistication

3. task segmentation

Although it is possible to prepare guidelines for the further
classification of information within each category, only experimental
investigations will validate these suppositions. At the present time,
studies of specific topics are in progress.

4. REFERENCES

Clark, I.A., 1980, How to "Help" Help, IBM Report HF022, IBM United
Kingdom Laboratories Ltd. (Hursley Park).

Huckle, B.A., 1980, Designing a Command Language for Inexperienced
Users, Command Language Directions (D. Beech ed.), 199-212 (Amsterdam:
North-Holland Publishing Company).

Relles, N., 1979, The Design and Implementation of User-Oriented
Systems. Madison WI, Univ. of Wisconsin. Ph.D. Thesis.

Schneider, M.L., Wexelblat, R.L., and Jende, M.S., 1980, Designing
Control Languages From the User's Perspective, Command Language
Directions (D. Beech ed.), 181-198 (Amsterdam: North-Holland
Publishing Company).

Shneiderman, B., and Mayer, R., 1979, Syntatic/Semantic Interactions
in Programmer Behaviour: A Model and Experimental Results, Journal of
Computer and Information Sciences 7, 219-239.

117

SYSTEM MESSAGE GUIDELINES:

POSITIVE TONE, CONSTRUCTIVE, SPECIFIC, AND USER CENTERED

Ben Shneiderman
University of Maryland

Department of Computer Science
College Park, MD 20742

January 27, 1981

*** Draft paper prepared for Workshop on Human Factors in
Interactive Systems, Georgia Institute of Technology, March
26-27, 1981, Atlanta, Georgia.

Prompts, explanations, error diagnostics, and warnings play a
critical role in influencing user acceptance of software systems.
Programming and command languages and application systems are
appreciated not only for the functionality they offer but for the
phrasing of system messages in a specific implementation. This
is true for batch systems, but it is more important for
interactive systems in which the impact of a message is immediate
and more dramatic.

The wording of prompts, advisory messages, and system responses
to commands may influence user perceptions, but the phrasing of
diagnostic messages or warnings about improper conditions is
critical. Since errors occur because of lack of knowledge,
incorrect understanding or inadvertent slips, the user is likely
to be confused, feel inadedquate, and be anxious. Messages with
an imperious tone, which condemn the user for an error, can
heighten user anxiety, making it more difficult to correct the
error and increasing the chances for further errors. Messages
which are too generic, such as the ubiquitous "SYNTAX ERROR",
obscure "FAC RJCT 004004400400", or mystical "0C7" offer little
assistance to the novice user.

These concerns are especially important with respect to the
novice user whose lack of knowledge and confidence amplify the
stress related feedback which can lead to a sequence of failures.
The discouraging effects of a bad experience in using a computer
are not easily overcome by a few good experiences. In fact, I
suspect that systems are remembered more for what happens when
things go wrong than when things go right. Although these
effects are most prominent with novice computer users,
experienced users also suffer. Experts in one system or part of
a system are still novices for many situations.

118

Nwareness of the difficulties that novices encounter has prompted

the development of student-oriented compilers for some languages,
which emphasize good diagnostic messages and even limited error
correction. The early DITRNN effort (Moulton and Muller, 1967)
and CORC (Freeman, 1964) weri followed by the WATFOR/WATFIV
compilers (Cress, Dirksen and Graham, 197U) and the PL/C compiler
(Conway and Wilcox, 1973). These efforts demonstrate what can be
accomplished if the developers are sincere about their concern
for ease of use. PL/C and WATFIV are widely used in academic
environments not only because of their diagnostic messages but
also because of their rapid compilation speeds. These systems
demonstrate that although there may be a greater development cost
for good diagnostics, the production costs can be kept low.
Although I am not aware of any controlled experimental research
which proves that students using these compilers learn faster,
make fewer errors or have a more positive attitude toward
computers, these hypotheses are shared by many people. Rigorous
human factors studies would be useful in evaluating the
improvement brought about by these systems and would be helpful
in convincing skeptics about the importance of designing good
system messages.

Producing a set of guidelines for writing system messages is not
an easy task because of differences of opinion and the
impossibility of being complete. Inspite of these dangers, I
feel that producing such guidelines could yield better systems.
Input parsing strategies, message generation techniques, and
message phrasing can be changed without affecting system
functionality. Hopefully, more attention to system messages will
lead to instrumentation of systems to capture data on error
frequency distributions. Such data will enable system designers
and maintainers to revise error handling procedures, improve
documentation and training manuals, alter instructional
materials, or even change the programming or command language
syntax. Focusing increased attention on system messages should
compel system developers to include the complete set of messages
in user manuals. This high visibility will produce even more
concern for the quality of these messages.

These comments are the result of experience and subjective
evaluation. Controlled psychologically-oriented experimentation
would be useful in verifying these conjectures.

BE SPECIFIC

:3essages which are too general make it difficult for the user to
know what has gone wrong. The simple minded and condemning
messages such as "SYNTNX ERROR" or "ILLEGML ENTRY", or "INVLID
DATA" are frustrating because they do not provide enough
information about what has gone wrong. Improved versions might be
"Unmatched left parenthesis", "Legal commands are: Send, Read,

119

File, or Drop", or "Days must be in the range of 1 to 31."

Even in widely appreciated systems like WATFIV there is room for
improvement. Messages such as "INVALID TYPE OF ARGUMENT 'q
REFERENCE TO A SUBPROGRAM" or "WRONG NUMBER OF ARGUMENTS IN A
REFERENCE TO A SUBPROGRAM" might be improved if the name of the
subprogram were included and the correct type or number of
arguments were provided. The APL system which has so many nice
human factors-oriented features comes out poorly when evaluated
for system messages. The extremely brief "SIZE ERROR", "RANK
ERROR", or "DOMAIN ERROR" comments are too cryptic for novices
and fail to provide information about which variables are
involved. On the plus side, the standardization (most systems
use the APL360 messages) of messages does make it easier for
users to move from one system to another. I have long felt that
language standardization efforts should include standardization
of at least the fundamental messages.

Execution time messages in programming languages should provide
the user with specific information about where the problem arose,
what variables are involved and what values were improper. When
division by zero occurs some processors will terminate with a
crude message such as "DOMAIN ERROR" in APL or "SIZE ERROR" in
some COBOL compilers. PASCAL specifies "division by zero" but
may not include the line number or variables that the PLUM
compiler offers (Zelkowitz, 1976). Maintaining symbol table and
line number information at execution time so that better messages
can b? generated is usually well worth the modest resource
expenditure.

Systems whicn offer a code number for error messages are also
annoying because the manual may not be available and consulting
it is disruptive and time consuming. In most cases, system
developers can no longer hide behind the claim that printing
complete messages consumes too many system resources.

BE CONSTRUCTIVE

Rather than condemning the users for what they have done wrong,
where possible tell them what they need to do to set things
right. Nasty messages such as "DISASTROUS STRING OVERFLOW. JOB
NBANDONED." (from a well-known compiler-compiler), "UNDEFINED
LABELS", or "ILLEGAL STA. WRN." (both from a major manufacturer's
FORTRNN compiler) can be replaced by more constructive phrases
such as "String space consumed. Revise program to use shorter
itrings or expand string space.", "Define statement labels before
use", or "RETURN I statement cannot be used in a FUNCTION
subprogram".

120

It may be difficult for the compiler writer to write code which

accurately determines what the user's intention was, so the
advice to be constructive is often difficult to apply. I believe
that error correcting compilers should be extremely conservative
for the same reason. Automatic error correction has the danger
that users will fail to learn proper syntax, and become dependent
on the compiler making corrections for them. For interactive
systems the user can be consulted before corrections are
automatically applied.

BE USER-CENTERED

By user-centered I mean that the user controls the system rather
than the system directs the user what to do. This is partially
accomplished by avoiding the negative and condemning tone in
messages and by being courteous to the user. If the system will
take a long time to respond to a command then the user should be
informed with a simple estimate of the time. Prompting messages
should avoid the imperative forms such as "ENTER DATA" and focus
on user control such as "READY FOR COMMAND" or simply "READY".

Brevity is a virtue, but the user should be allowed to control
the kind of information provided. Possibly the standard system
message should be less than a line, but by keying a "?" the user
should be able to get a few lines of explanation. Two question
marks might yield a set of examples and three question makks
might produce explanations of the examples and a complete
description. The CONFER teleconferencing system provides
appealing assistance similar to this. The PLATO computer
assisted instruction system offers a special HELP button and
other options to provide explanations when the student needs
assistance.

The designers of the Library of Congress' SCORPIO system (Woody
et al., 1977) for bibliographic retrieval understood the
importance of making the users feel that they are in control. In
addition to using the properly subservient "READY FOR NEXT
COMMAND" the designers avoid the use of the words "error" or
"invalid" in the text of system messages. Blame is never
assigned to the user but instead the system displays "SCORPIO
COULD NOT INTERPRET THE FOURTH PART OF THE COMMAND CONTENTS,
WHICH IS SUPPOSED TO BE A 4-CHNRACTER OPTION CODE." rhe message
then goes on to define the proper format and present an example
of its use.

USE AN APPROPRIATE PHYSICAL FORMAT

Although professional programmers have learned to read upper case
only text, most novices prefer and find it easier to read upper
and lower case messages. Messages that begin with a lengthy and

121

mysterious code number only serve to remind the user that the
designers were insensitive to the real needs of users. If code
numbers are needed at all they might be enclosed in parentheses
at the end of a message.

There is some disagreement about the placement of messages in
program listing. One school of thought argues that the messages
should be placed at the point in the program where the problem
has arisen. The second opinion is that the messages clutter the
listing and anyway it is easier for the compiler writer to -place
them all at the end. This is a good subject for experimental
study, but I would vote for placing messages in the body of the
listing assuming that a blank line is left above and below the
message so as to minimize interference with reading the listing.
Of course, certain messages must come at the end of the listing
and execution time messages must appear in the output listing.

Some application systems ring a bell or sound a tone when an
error has occurred. This can be useful if the error could be
missed by the operator, but it is extremely embarrassing if other
people are in the room and potentially annoying even if the
operator is alone. The use of audio signals should be under the
control of the operator.

The early high level language, MAD (Michigan Algorithmic Decoder)
printed out a full page picture of Alfred E. Neuman if there were
syntac tic errors in the program. Novices enjoyed this playful
approach, but after they had accumulated a drawer full of
pictures, the portrait became an annoying embarrassment.
Highlighting errors with rows of asterisks is a common but
questionable approach. Designers must walk a narrow path between
calling attention to a problem and avoiding embarrassment to the
operator. Considering the wide range of experience and
temperment in users, maybe the best solution is to offer the user
a choice of alternatives - this coordinates with the
user-centered principle.

2. EXPERIMENTAL R-EtLTS

2.1 COBOL Compiler Messages

A pilot study was run to explore the impact of improved messages
on the ability of programmers to locate and repair bugs. The
experiment, carried out by Patrick Peck and David Fuselier under
the direction of the author, was administered to 22 second term
COBOL students at the University of Maryland in Fall 1979.

Five bugs were included in 3 132 line C033L program yielding the

122

following messages from a UNIVAC COBOL compiler:

1) RESERVED WORD USED AS PARAGRAPH OR SECTION NAME IGNORE
ATTEMPT RECOVERY HERE AFTER PREVIOUS ERROR

2) DANGLING ELSE OR WHEN; TREATED AS AN IMPERATIVE

3) UNDEFINED DATA ITEM STATEMENT OMITTED
ATTEMPT RECOVERY HERE AFTER PREVIOUS ERROR
PREVIOUS ERRORS CAUSE LOSS OF OBJECT CODE

4) WORD NOT A VERB; SCAN SKIPS TO NEXT VERB
ATTEMPT RECOVERY HERE AFTER PREVIOUS ERROR

5) BLANK MISSING BEFORE OPERATOR OR LEFT PARENTHESIS
BLANK MISSING AFTER ARITH/COND OPERATOR OR PUNCTUATIOR

A second version of the listing was produced with the following
five improved messages:

1) PERIOD IN PREVIOUS LINE CONTAINED IN IF STATEMENT, DELETE

2) EXTRANEOUS ELSE IN PREVIOUS LINE, DELETE

3) BLANKS IS UNDEFINED DATA ITEM, MUST USE SPACES

4) USE AFTER PAGE INSTEAD OF AFTER 1 PAGE

5) SPACE REQUIRED BEFORE OPERATOR
SPACE REQUIRED AFTER OPERATOR

Code numbers and severity levels were eliminated in the improved
messages and a single blank line was left above and below the
improved messages. Eleven copies of each of the listings were
produced and randomly distributed to the subjects. Seven minutes
were allowed to locate and repair the bugs. One point was given
for locating the error and two points were given for correcting
the bug, yielding a maximum score of 10 points.

Subjects with the UNIVAC COBOL compiler listing had an average of
6.6 points while those with the improved messages had an average
of 8.5 points. A t-test yielded a significant difference at the
5% level.

The results of this pilot study should be considered exploratory.
Replications should be performed with other messages,
professional subjects, and different languages. A more realistic
study could be performed if two versions of the same language
compiler were available. One group of subjects would be required
to work with the standard version and the other group of subjects
would work with the improved message version. Capturing
performance in actual projects over longer time frames could

123

demonstrate the true impact of improved messages.

2.2 COBOL Compiler Messages: Tone and Specifity

2.3 Presence or Absence of Text Editor Messages

2.4 Tone and Content of Text Editor Messages"

2.5 Job Control Language Messages

3. CONCLUSIONS

REFERENCES

124

Workshop -- The Human Computer Interface

-- Fxtenizd ftstri -

Empirical Evaluation with Novice Users of Some
Programming Language Conutructs

Elliot SolowaV and Jeff Bonar

Computer and Information Science Department
University of Massachusetts
Amherst Massachusetts 01003

This work was supported by the Army Research Institute for the
Behavioral and Social Sciences, under ARI Grant
No. MDA903-80-C-050S.

Any opinions, findings, conclusions or recommendations expressed
in this report are those of the authors, and do not necessarily
reflect the views of the U.S. Government.

125

Workshop -- The Human Computer Interface

I. Intr2ductio

Language designers and language proponents are often given
to making claims about the "readability," "debug-abilit,"
"understandability," "learnability," "naturalness," etc. of a
(JLir!) particular programming language. For the most part suchclaims are psychological in nature, and thus open to empirical
inquiry. The problem is that this type of research is difficult
to carry out and, frankly, only lip service (and "lip resources")
to its need is given by the computing community. Moreover, with
the major push behind Ada and methodologies appropriate to large
5cale software development, the needs of novice programmers have
gotten particularly short shrift. We increasingly see the
attitude that a "programmer" is a :palson who works on a 100
person team on some massive project -- not someone tailoring
their home "mail network" or interacting with a computerized --
"programmable" -- toy. This view of programming seems a bit
narrow.

With that introductory polemic, let us turn to the specifics
of our presentation. We have been looking at how novice Pascal
users cope with problem solving in Pascal. (1) In this extended
abstract we shall first highlight several Pascal constructs which
are particularly troublesome. Next, we shall make a more general
statement, based also 'on empirical data, on the need to keep
procedurality in programming languages.

II. Performan'ce ja s B .Prk.gs j. y Process i/Read
Next-i

Consider problem 3 in Table 1. For this problem, the
stylistically correct solution in Pascal requires a curious
coding structure:

read first-value
while (test ith value)

process ith value
read next-ith value

The loop must 'gJ be executed if the test variable has the
specified value, and this value could turn up on the first read;
thus, a TIad outside the loop is necessary in order to "get the
thing going." However, this results in the loop processing being
"behind the read; it processes the ith input and then fetches
the next-i. We call this structure "process i/read next-i."

{1} One goal of our project, which will not be reported on in
this summary, is to build a Run-Time Support Environment for
novice Pascal users. This system, components of which are
currently being built will attempt to catch run-time bugs (not
compile time errors, which are adequately handled in other
systems) in students' programs, arid provide remediation with
respect to the underlying mental misconceptions.

Problem 1. Write a pogram bdtch reads 10 Integers and then
pr"nts out the averae. hemmber, the average of a
series of numbers Ti th asum of those numbers divided
by how many numbers there are In the sries.

Problem 2. Write a program %Mich repeatedly reads in
Integers until their A 1 greater than 100. After
reaching 100. the pogram should print out the average
of the lategers entered.

Problem 1. Write a program which repeatedly reeds in
Integers until It reads the integer 99999. After program StudentTProblem3;
seeing 99999, it should print out the correct average. var N. Sum I te
That is, is should not count the final 99999. v r a ! : -

Stop : boolean;

lable I. Problem. used in our test instrument. These problems t a l
were Liven t4 an introductory programaing Clss n the last cay :& 0:.e
of the course. They are designed to test stunent Iciowlea&s of Sun:6 0
sey differences between different loop constructs in Pascal. while not Stop o

begin
lead X):
if X a 99999

then Stop a true

elseben
Sum : Sum * X;
N : N * I
Ind

end;
Average -a Sum / K;
Writeln (Average)

end.

program Stuaent6Problm3. pr'.rrm Student16 Problm3:

var Count, Sum. Number : Integer; Average reOA; ver Count, Sum, Wej : Integer; Average reel;

bee In begin
Count :8 0; Count :a -1:
Sum :8 0; Sum :2 0;
Read (Number); repeat
while Number 0 99999 do Count '. Count . 1;

beI Reza Num):,
u Sum * Number; Sum :. Su * hum

Count :, Count . I; until . At 9999:
Reao (iuaber) S.1, :Z ,uz - 99199:
end: Average :r Sum / Count

Averate a Sum / ount; end.
Writel.n (Average)
end.

Figure ? These projruas are attempts at probco . cescrioea .n
3 table 1. They are typical of the contortions stucents %,nil ,

Figure I A stylistically correct solution to problem 3 in table througi. to make this probler fall into a "rea a vdLue. p'ncess
1. hote "he neeo for two Read cealls and the curious "process the thiat value" Franc. Thrse ;rogrm have been -iiiral:) eC:en !r
.ast .l'ue, read the next value" semantics of the loop body. presentation tere. Stuoents wrote these progr.s ira :aass-oom.
Ths program was minimally edited for presentation here. They were never 3sOmttte to a translator.
StuoentS wrote these programs in a classroom. They were never
submitteo to a translator.

R uead I/Proceas I Process i/Read N other

used used

repeat loop iwhile loop I other repeat loop while loop

Correct 4 2 2

incorrect 3 5 4 I2

I I

Table Z

Tte numberv in thi s table refer to the actual number , : ,u4e ts.
not percentages.

127

Workshop -- The Human Computer Interface

One of the authors -- the one with less Pascal experience --
intuitively felt this coding strategy to be unnecessarily awkward
and downright confusing. Perhaps a more "natural" coding
strategy would be to read the ith value and then process it; we
call this the "read i/process " coding strategy. Others have
noticed this problem before, but treated it largely as a coding
inconvience. Their response was baroque looping constructs which
eliminated writing the same code twice. We are not as concerned
with elegance as with learnabilitu. Do novice programmers use
the stylistically correct coding strategy (process i/read
next-i), or do they add extra machinery to a while or reeyet loop
(e.g., an embedded it test tied to a boolean variable) in order
to force the code into a read i/process i structt,-e?

Table 2 lists the performanck of those students who
attempted the problem with either a Nihi~e or repeat loop. Of the
9 who solved it correctly, only 2 used the stylistically correct
"process i/read next-i" coding strategy. (See Figure 1 for a
solution using this coding strategy.) In order to correctly
solve the problem using either a Treoct or while loop and the
read i/process i coding strategy requires extra machinery;
Figure 2 shows student programs which use this strategy.
Nonetheless, the vast majority of students attempted this
solution; given the extra complexity needed for a correct
solution, it is not surprising that many failed.

It is tempting to conclude that withe respect to tivese types
of problems# Pascal requires that students circumvent their.
"natural" problem solving intuitions. Before we can actually
assert this conclusion# more research needs to be done (13. But,
since we must live with Pascal for some period of time to come,
it would only be responsible for teachers to explicilu teach
their students about this peculiar coding strategy.

(13 We have designed and pilot-tested the following experiment:
we first ask all students to write a plan or design for problem 3
in Table 1 (the same one examined in this section), in a language
other than a programming language. We then ask half the students
to write the program in Pascal. For the other half of the group,
we provide a one page description of constrained version of the
Ada JUjj ... Znd jgj9g construct in which only one exit from the
loop body is allowed. While the sample size was small (13
students in total), the data is suggestive: invariably the L~a-a
of the students was Worded in terms of a read i/process i.
However, the Pascal versions were typically coded with a process
i/read next-i strategy. But, those programs written using the
Ada jg-gL ... ejM Jgo were coded using the read i/process i
strategy. Thus# the program coded in Ada more closely matched
the students' plans than did those program coded 'in Pascal. We
Plan to run this experiment on a larger group.

128

* Workshop -- The Human Computer Interface

In all 3 problems (Table 1), a correct solution required
that the program "get a new value with a r. L." 23% of all the
student written programs did not perform this Function correctlU.
OFten students try to get the previous or next value of a
variable by subtracting or adding one (see Figure 3). {1} We
also Found programs in which we Felt students assumed that each
9&& oF Nextvalue automaticallu retrieved a new value.

As "expert programmers" we have a great deal of deep
knowledge about how to program. In particular# we know that
variables have not just types, but also roles. DiFferent coding
stratagies are needed to realize like operations on variables
whose roles are diFFerent. For example# "getting the next value"
implies adding one For a counter variable# TrIjting For a
New.value variable, and adding in the Newvalue For a
Runningtotal variable. (The problems in Table 1 need one
variable in each of these roles.) Perhaps students committing
the above errors did not understand or garbled these different
variable roles.

Misunderstanding this "deep" knowledge about Pascal -- mind
bugs -- could result in many different student errors -- surface
bugs. Perhaps student* committing the above errors did not
understand that r-Cj is actually just a special case of
assignment.. IF so, then a language which treated I/0 calls as
special values which can be assigned "to" or "from" might be more
Palatable to beginning programmers, e.g.,

New.value :- ReadFrom-terminal, or,
Write toterminal := Runningsum / Count.

Another possible mind bug which could result in some of the
observed %rrors would be that students incorrectly
overgeneralized From the Counter variable. That is, since the
next value of a variable Functioning as a counter can be
retrieved by simply adding a I to the variable, why not get the
next value of j= variable by simplg adding a 1 to it! While
reasonable, this is incorrect.

IV. ie.iU 6J.iJUai.Ji Th± 3 La LJb I e 1j test

Based on our examination of student programs. and on
analysis of audio-taped, itrdividual interviews, we felt that
there was a great deal of confusion surrounding the liint at which
the terminating test in the wjjge loop gets evaluated: is it

i1 "Backing up" may be needed when a student does problem 3 in
table 1 with a read i/process i strategy.

129

Proram StuddQ3Oproblam2;

var . Sum, Score : inteer; Mean real: program Studentl9?robleal;

vLr Mus, prev nun. Count .: integer;
hu : 0;

beginScore :8 0;
Count :8 0;

. le fSum (a I0) o Sum (, 0 ;
e: in re at

Score : Score * 1;Prey :z um -
Sum :2 SUm N Score: Sum 2 um -reY nm;
N :a N . t Sum : X Sum * 1;
end: Count :3 Count * 1;

.4 an a e n / N; until Count a 10;
ritt n (tha oan Mon:1O:10) Average :z Sum / Count:

Writeln (IAverage of ten integers ts equal to 1:2)

end.

Figur3e These programs are attemptS at the problems descrtbed
in tebtl 1. They 1lustrate Student probiem $ with getting a
New value. These progrms have been minlmally edited for
presentation here. Stunents worte these programs in a clasroom.
They were never sLmitted to a translator.

Gsven the following statement:

"At the last company cocktail party. For every 6 people who drank
hard liquour. there were 11 people who drank beer. "

Write a computer program in BASIC which will output the number of
beer drinkers when supplied (via user input at the terminal) with the
number of hard liquour drinkers. Use H For the number of people who
drank hard liquour, and 8 for the number of people who drank beer.

Sample size % Correct X Incorrect

52 69 31

Given the following statement:

*At the last company cocktail party, Per every 6 people who drank
hard liqueur, there were 11 people Who drank beer. *

Write an equation which represents the above statement. Use H for the
number of people who drank hard liquour and B for the number of
people who drank beer.

Sample Size Correct % Incorrect

51 45 55

Probability of these results an the assumption that errors on each
problem were equally likely is p < .05

130

Workshop -- The Human Computer Interface

evaluated once, at the top of the loop, or is the test
continually evaluated during the execution of the body of the
loop? The program given below was also on a written test taken
by the 31 summer school students.

oj'9.m Problem41

yjM Count : jntgeLr

Count :- 0;
ible Count < 7 do

Writeln ("1');
Count := Count + 1;
Writeln (1/')

m .

If the students felt that the terminating test was evaluated
£.,ntinuglus then the IMn shold jem- inDgi before an '/ were
printed, thus providing one more 1*1 and 1/1.{1} In otherwords,
it is as if the test were a "demon" watching the statements in
the loop body# and waiting for its condition to become true. Of
the 31 students# 34% made the above mistake. Given the ubiquity
Of the i.hJLy construct in programs and in the instructioi. and
given the lateness in the course (the end of the semester), we
felt that this Was a surprisingly high percentage.

We feel that the basis for this confusion is grounded in the
mismatch between the semantics of !g11j in a programming language
context, and the semantics -- the meaning -- of 'while' in "every
day experience." In the latter case# 'while' has a global sense:
juing the course of some event. In contrast, the programming
language jgjj requires a local, narrow interpretation: at a
specific point in time. Clearly# the names of programming
language constructs allit rely on real world semantics of their
analogs. However, care ought to be exercised in their selection.
Again, we are unl.ikely to change Pascal or the i loop
construct, but educators must take note of this error, and pay
attention to it in their instruction.

V. IiiA KLRed f2L Proceduralitu jiLn for Novices

{1} We were not interested in the actual number of '*' and 'I'.
i.e., we were not studying the "off-by-one" bug in this
particular problem.

131

Workshop -- The Human Computer Interface

There is a definite trend in programming langauge design and
programming methodology. towards more "formality." For example,
"logic" and production rules have been seriously suggested as
progamming languages. Dijsktra suggests that the process of
writing a program should be akin to that of writing a
mathematical proof. Backus' new language takes a different, yet
similar approach: take procedurality out of the programming
language and make it algebra based to facilitate program proofs.
While these langauges and approaches iqti be appropriate for
experts, we are quite skep'tical of their appropriateness for
novices. We are seriously concerned that programming not be
equated with mathmatics. For'whatever reasons, most people have
a great deal of trouble learning arid using mathematics. We
believe, and we are not alone, that there are aspects of
programming which uniquely lend themselves'to the demystif.cation
of mathematics. The formal programming people propose to remove
exactly those aspects of programming while increasing required
math ability. In our increasingly sophisticated world, just
plain folks will need to "program", and our formal programming
friends have no answers for these non--professional programmers.
We are not willing to write off just plain folks.

In the following, we take a less polemical, and more
evidence based look at one of the "unique aspects of programming"
alluded to above, namely, proceduralitV.

P-rogldur.Ta yj.._ Non-Procedurl: flhj9 i jb Question

The first study which we feel supports the need to keep
proceduralitg in programming languages For novices was done by
Weltg and Stemple E19813. They compared the ability of novice
subjects to write database queries in languages with different
amounts of procedurality. In all issues except proceduralitu,
the languages were identical. A typical query in SOL, the less
procedural languages is:

SELECT NAME
FROM STUDENTTABLE
WHERE HOMESTATE a 'OHIO'

The equivalent query in TABLET# the more procedural language, is:

FORM OHIOANS FROM NAME, HOMESTATE OF STUDENTTABLE
KEEP ROWS WHERE HOMESTATE = 'OHIO'-
PRINT NAME

In their paper they formalize "amount of procedurality" based on
the number of variables, tho number of operations, and the degree
to which the bindings and oporations are ordered by the language
semantics. The two languages were learned by subjects working
largely on their own. The same example problems and order of
presentation was used for each group. The experiment showed that
subjects who learned the more procedural query language TABLET#

132

wrote difficult queries better than those using the less
procedural language SQL.

The second study which we feel supports our claim is beingcarried out by Soloway and his colleagues at UMASS. In our work,we explored the performance of students on "ratio" type word
Problems. Typically# half the students in a low-levelprogramming class were asked to solve a word problem with analgebraic equation, while the other half were asked to solve the
same problem with a program (Table 3). As the results indicates
significantly more students got the problem correct in the the
Programming context than did those in the algebraic context. A
number of these experiments have been run in which variousparamters were varied (e.g., problem wording). In all cases the
results were similar to those in Table 3.

We have a number of specific hypotheses which could accountfor this performance difference. The basis for all of them,
however, is Droceduralitu., Some students who used algebra as thesolution language seemed to view the equation as a "picturedescription:" there are more beer drinkers than hard liquour
drinkers, thus lIB, which represents the beer drinkers, isrelated to 6H# the hard liquour drinkers, via 11B- 6H.
Alternatively, some students viewed the algebraic equation as
"label descriptors," much like "3ft. a, ld." -M- On the otherhand, programming appears to encourage students to view the
equation as an actiye JLR .eiLin.. or transformation. That is, thefact that variables have values, and that variables are actedupon by operations, appear.more understandable to students in the
Programming environment. Thus, the procedural nature ofProgramming seems to be a key factor in understanding and usingsuch basic concepts as variable, operation, equal sign.

Qncluini R*Mgrks

Clearly, this note is only a "teaser;" a fuller discussionof these issues must await the workshop. We genuinely solicit
Your comments, and look forward to an active interchange at the
workshop.

Ml) These hypotheses are based on the analysis of many hoLrs ofvideo-taped clinical interviews with individual students as they
solved problems of the above sort.

133

Steamer: An Advanced Computer Aided Instruction

System For Teaching Propulsion Engineering

Albert L. Stevens

Michael D. Williams

James D. Hollan

In this presentation, we describe the current state

of Steamer, an intelligent CAI system with a graphics-

based human interface. Steamer includes a math model of

a steam plant, an interactive graphics front end and a

qualitative modelling component. The math model and

graphics interface allows the student to control and

observe a simulated steam plant. The qualitative model-

ling component enables Steamer to explain in casual

terms the operation of components and subsystems. The

design of the graphics interface is based on object-

oriented programming to allow much more modularity and

flexibility than is normal with computer graphics. The

qualitative modelling component is based on incremental

qualitative simulation to model systems in terms of

psychologically meaningful events.

134

METAMORPHOS IS THROUGH METAPHOR

J.C. THOMAS

IBM CHQ Armonk,NY

The problems that mankind faces in the twentieth century

sometimes seem insurmountable. Nuclear weapons, the

population explosion, rising demand and falling levels of

most natural resources provide a potentially devastating

combination. In addition, our new lifestyles have provided

a number of unwelcome ecological surprises.

The organism and the environment are necessarily in an

intimate relationship. Yet, we humans are, seemingly by

choice, changing our environment much faster than we can

adapt biologically. It seems suicidal.

The only major way out of these dilemmas is for effective

human intelligence to increase dramatically over the next

century. This could theoretically be accomplished

biochemically, educationally, or through more effective group

problem solving procedures.

The fourth possibility, which is addressed in this

paper, is that of the computer augmenting effective human

intelligence. By augmenting effective human intelligence I

mean that by using a computer, people will operate so as to

bring greater short and long term happiness to themselves, to

mankind, and to life than they will without the computer.

135

The major obstacle to this goal is not the lack of

progress in computer technology: we are able to build

smaller,faster, cheaper components. (That progress, of

course, is what enables us to address the next problem).

What we have been slow to achieve is a computer that is

anything near optimally designed to help a human being do a

more effective, higher quality job. In order to accomplish

this latter goal, we need some notion of what humans can do,

what they need to be able to do better in order to solve

their problems and what the capabilities of the computer are.

In this paper, I will focus on part of this problem. First,

I will present a model of how the person approaches and

learns to use a new tool. Second, I will point out where in

this process there is likely to be a critical breakdown

which prevents the person from using the tool in an effective

fashion (e.g., to solve previously insoluble problems).

Third,I will present a theory of what the tool should look

like and provide some suggestively supporting evidence based

on experimental work of my own and of other investigators.

Fourth, in the area of office systems, I will present some

examples of how my recommendations might be implemented.

136

The model of mind is multi-viewed; at the current state

of integration of behavioral science no single view (e.g.,

behavioristic or cognitive) provides as sufficient a scope as

does a multi-viewed approach.

The presented model is novel in the context of

human-computer interaction in the notion of resource

allocations with differentiably usable resources, in an

emphasis upon motivational issues, and in the analysis of

primary, secondary and tertiary memory limitations.

The model implies that under certain conditions a kind

of "gambler's ruin" phenomenon will occur in which the

aspiring learner of a potentially useful system will stop

short. An even more common case of essentially the same

phenomenon will occur among those learners who learn enough

about the system to do what they did before only marginally

better. Rarely, a user will learn an interface so that they

are truly facile with the facilities.

Still rarer are cases in which the computer-tool allows

a qualitative change in the user's work. Yet for augmenting

effective human intelligence, it is this last category that

we would like to contain the majority of users. For such a

qualitative change to occur, the interface must be designed

to allow a more optimal allocation of the user's

psychological resources.

137

One way of accomplishing this latter goal is through the

use of an appropriate metaphorical interface presented to the

user along with a well though-out mapping inside the computer

system that translates the actions the user takes in the

metaphorical space into the appropriate state changes in the

machine, and translates the machine state changes into the

appropriate presentations in the user's metaphor.

A large body of empirical evidence strongly suggests

that "meaningful" material can greatly affect the user's

performance quantitatively and in some cases qualitatively.

"Meaningfulness" can exist at many levels. Editing commands

that are more English-like are better than their

abbreviational counterparts (Ledgard, et als (1980).

Non-programmers can learn an English-like query language

better than its symbolic counterpart (Reisner, 1975). Older

subjects particularly, but younger ones as well, are aided in

learning by the addition of "extra" mnemonic material (Thomas

& Rubin, 1972).

The implications of these findings for a particular

domain - office systems is drawn in some detail. A number of

objects, organizing schemes, features, and actions that

138

people are familiar with are reviewed along with the way in

which these can be combines to let the user know what is

going on. The model explains how using such metaphors can

increase comprehension, motivation, and performance of given

tasks and how such metaphors can be used to improve the

effective intelligence that goes into the user's solutions.

In addition to using metaphors, a better allocation of

the user's psychological resources can be achieved by making

more complete use of various input and output

characteristics of human beings. People can discriminate

better when information is presented on a large number of

channels (rather than a single channel). People can also

output at greater data rates over several channels. In

traditional, pencil and paper editing, non-verbal, spatial

..ymbols are used as the metalanguage for the verbal

material. In film directing, on the other hand, much of the

metalanguage is verbal. We need to become more sensitive to

this kind of-"division of labor" in our computer interfaces.

139

A SYSTEM FOR COMPUTER AIDED
MEMORIZATION

Michael D. Williams

Xerox Palo Alto Research Center

Palo Alto, California

James D. Hollan

Navy Personnel Research and Development Center

San Diego, California

and

University of California, San Diego

La Jolla, California

We are constructing an intelligent computer based instructional system to facillitate students in
the memorization of a large collection of facts. The system consists of a series of games played on a
microprocessor, a relational data base to drive the games, a student model, and a computer coach.
To the student the system appears as a series of games played with a table top computer against a

computerized opponent. Example games are twenty questions, flash cards, a property specification
game where students successively enhance the definition of an object until one or no objects match
the cumulative description, a picture recognition game, and a concentration-like table fill-in game.
The data base can be modified to allow a variety of topic matters. Present data bases include US
and Russian ships, their radars and weapons, South American geography, the anatomy of the
human hand, and a fantasy data base on star trek trivia. The student model consists of a simple
marking of the relations in the data base. The computer coach consists of a series of opponents of
variable "intelligence" and a scheme for focusing game activity on portions of the data base where

the student is weak and the information important.

Our principle student population are Naval Officers learning the properties of Russian ships,
radars, and weapons. The data base they are attempting to master consists of thousands of facts.
Approximately 3 and 1/2 weeks of a 6 week course on tactical decision making are taken up with
lectures, practice, and tests to support this memorization.

Our primary scientific goal in this work is to explore the process of remembering. We are
using this computerized memorization system as a tool to gather data as well as a forcing function
to drive the development of of our theory. An issue that anyone building a computerized

140

instructional system must confront is what information to present a student and when to present the

information. The goal for our theory of remembering is to determine the implications of learning
any particular piece of information with regard to the durability of what the student knows,
flexibility of retreival, errors in recall, incidential information recovered, and speed of retrieval.

We come to the problem with the view that remembering is a complex process of
reconstruction from an array of fragments. An essential observation is that people memorize more

than just the facts in the data base. A large amount of their learning seems to focus around
abstractions drawn, in part, from the regularities within the data base. Thus, a student might notice
that all ships which carry a scoop-pair radar also carry shaddock missiles (this is because the scoop-

pair radar is the guidence radar used to control that particular missile, it has no function without
the missile). In effect, students seem to be building a "theory" of the data base from which they
can reconstruct the portion they need to answer any given query. Given that this is the case, what
we are looking for are the particular mnemonic effects of these "abstractions", and principled
reasons for these effects within a reconstructive theory or remembering.

Our primary engineering goal in this work is to build a system which provides substantial
facilitation to students who must memorize some collection of facts. In this role we are investing
substantial efforts in what we call the pragmatics of the system design. Thus we are using computer
games to enhance motivation, have spent large amounts of time designing and tuning the interface
betweeen student and machine, and are using a technique of in situ development to tune the system
towaid realistic user needs.

141

APPENDIX A

Names and Addresses of Participants

Albert N. Badre School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332
(404)-894-2598

Richard Burton Xerox PARC
3333 Coyote Hill Road
Palo Alto, California 94304
(415)-494-4000

Jaime G. Carbonell Carnegie Mellon University
Department of Computer Science
Schenley Park
Pittsburg, Pennsylvania 15213
(412)-578-3064

Susan T. Dumais Bell Laboratories

600 Mountain Avenue
Murray Hill, New Jersey 07974
(201)-582-2054

Sam L. Ehrenreich U.S. Army Research Institute
Attention: Peri-OS (S.L. Ehrenreich)
5001 Eisenhower Avenue
Alexandria, Virginia 22333
(202)-274-8905

Jim Foley Department of Electrical Engineering
and Computer Science

George Washington University
Washington, D.C. 20052
(202)-676-4952

George W. Furnas Bell Laboratoriei
600 Mountain Avenue
Murray Hill, New Jersey 07974
(201)-582-6128

Stanley M. Halpin U.S. Army Research Institute
Attention: Peri-OS (Stanley M. Halpin)
5001 Eisenhower Avenue
Alexandria, Virginia 22333
(202)-274-8905

143

Mark D. Jackson Bell Laboratories
Room 6A304B
Warrenville and Naperville Roads
Naperville, Illinois 60566

Janet Kolodner School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332
(404)-894-3285

Thomas K. Landauer Bell Laboratories
6C0 Hountain Avenue
Murray Hill, New Jersey 07974
(201)-582-4324

Michael Lebowitz Department of Computer Science
406 Mudd Building
Collumbia University
New York, New York 10027

(212)-280-2564

Paul R. Michaelis Texas Instruments

Computer Science Lab
Post Office Box 225936
Mail Station 371
Dallas, Texas 75265
(214)-995-7081

Mark Miller Texas Instruments
Computer Science Lab
Post Office Box 225936
Mail Station 371
Dallas, Texas 75265
(214)-995-7081

Franklin L. Moses U.S. Army Research Institute
Attention: Per-OS (F.L. Moses)
5001 Eisenhower Avenue
Alexandria, Virginia 22333
(202)-274-8905

Jean Nichols U.S. Army Research Institute
Attention: Peri-OS (J. Nichols)

5001 Eisenhower Avenue
Alexandria, Virginia 22333
(202)-274-8905

Phyllis Reisner IBM
Department K54/282
5600 Cottle Road
San Jose, California 95193

144

Elaine Rich Department of Computer Science
University of Texas
Austin, Texas 78712

(512)-471-7316

Michael L. Schneider Sperry Univac
Post Office Box 500
Blue Bell, Pennsylvania 19424

(215)-542-4011

Ben Shneiderman Department of Computer Science

University of Maryland
College Park, Maryland 20742
(301)-454-4245

Elliot Soloway Department of Computer Science

University of Massachusettes - Amherst
Amherst, Massachusettes 01002
(413)-545-1324

Albert L. Stevens Bolt Beranek and Newman, Inc.
50 Moulton Street
Cambridge, Massachusettes 02238
(617)-491-1850

John C. Thomas IBM
Old Orchard Road
Armonk, New York 10504

(9114)-765-1900

Judith Tschirgi Bell Laboratories
Room 6A304B
Warrenville and Naperville Roads
Naperville, Illinois 60566
(312)-462-5976

Michael D. Williams Xerox PARC
3333 Coyote Hill Road
Palo Alto, California 94304
(415)-494-4000

'45

Workshop/Symposium

on

Human Computer Interaction

March 26 and 27, 1981

Atlanta, Georgia

Albert N. Badre

Sponsored by the U.S. Army Research Institute for the
Behavioral and Social Sciences in conjunction with
Georgia Institute of Technology, School of Information
and Computer Science

