r. ,

|

SRR
ARI Research Note 91-57 4% 1o P

S JULZ 5181y E

W g‘; fi‘F ;"‘
AD-A238 713 e L

[

A Workshop on the Gathering of
Information for Problem Formulation

Albert N. Badre

Georgia Tech Research Institute

for

Contracting Officer’s Representative
Michael Drillings

Office of Basic Research
Michael Kaplan, Director

June 1991

91-06064
IR0

United States Army
Research Institute for the Behavioral and Social Sciences
Approved for public release; distribution is unlimited
Yl 9 247 41

U.S. ARMY RESEARCH INSTITUTE

FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON
Technical Director

JON W. BLADES
COL, IN
Commanding

e~]

Research accomplished under contract
for the Department of the Army

School of Information and Computer Science, Georgia Tech Research Institute . -2

Technical review by

Michael Drillings

CAnoension Feor

i R S
} PTLO Ty
buniran e e
H

H

o v ’
J‘.Jun.A \IL’.\,-‘._»‘ .

F
LT lent oo,
6 *Uacts Ty oL nes
';,‘.w:‘i nog/gy
iz i Seanse

DISTRIBUTION: This report has teen clearcd for release to the Defense Technical Informatinn
Center (DTIC) to comply with regulatory requirements, It has been given no primary distribution
other than to DTIC and will be available only through DTIC or the National Technical

Information Service (NTIS).

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not

return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The views, opinions, and findings in this report are those of the author(s) and should not
be constiued as an official Department of the Army position, policy, or decision, unless so

designated by other authorized documents.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE P e 188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified _
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
— Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

—_ ARI Research Note 91-57

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Information and (if applicable) U.S. Army Research Institute

Computer Science - Office of Basic Research

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Georgia Tech Research Institute 5001 Eisenhower Avenue

Atlanta, GA 30332 Alexandria, VA 22333-5600

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBSER
ORGANIZATIONU.S. Army Research (If applicable)

Institute_for the Behavioral MDA903-80~C-0144 and Modification No. 1

and Social Sciences PERI-BR

8¢c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Office of Basic Research PROGRAM PROJECT TASK WORK UNIT

5001 Eisenhower Avenue ELEMENT NO. NO. NO. ACCESSION NO.

Alexandria, VA 22333-5600 61102B 74F N/A N/A

11. TITLE (Include Security Classification)
A Workshop on the Gathering of Information for Problem Formulatlon

12. PERSONAL AUTHOR(S)
Badre, Albert N,

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT

Final FROM 80/03 TO_81/09 1991, June 152

16. SUPPLEMENTARY NOTATION
This report was monitored by the Office of Naval Research.
Michael Drillings, Contracting Officer's Representative

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Human-computer interface
N Interactivity M
Information processing “’Tf/

19. ABSTRACT (Co. *inue on reverse if necessary and identify by block number)

—) The purpose of this workshop was tc assemble a group of research scientists from various
disciplines to discuss and report their research findings on problem #epresentation for
interactive information prccessing. The proposed general topic was limited to the problems
of representation and information processing in the context of human-4computer interface.
Based on this theme, a set of topics was developed and used to select and organize speakers
and panels. Topics were

1; Psycholinguistic factors in computer communications
2; Compatible knowledge and memory structures for computer communication

b} ¢

3. Representing and structuring displayed information in compuier communication,

]
-

J
(Continued)
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
&l uncLassipieounumited 3 same As RPT. [oric users | Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYM3OL
Michael Drillings (703) 274~8722 PERI-BR
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

- I8

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ARI Research Note 91-57
19. ABSTRACT (Continued)

“ja\\Z) Representing information for decision, learning, and help processes in

computer communication,
(T — ________'_,_.)

The result was a successful workshop that included a total of 20 presenta-
tions and 40 participants.

r.

UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ii

A WORKSHOP ON THE GATHERING OF INFORMATION FOR PROBLEM FORMULATION

CONTENTS

SCHEDULE CF EVENTS
ALBERT N, BADRE .
The Human Computer Interface: Introductory Remarks
RICHARD BURTION
Experiences with a Natural Language Interface to an ICAI System
JAIME G. CARBONELL
Towards a Robust, Task-Oriented Natural Language Interface
SAM L. EHRENREICH .

Creating an Algorithm for Gemerating Abbreviations to Be
Used in User-Computer Transactions

JAMES D. FOLEY
Tools for the Designers of User Interface

GEORGE W. FURNAS

Psychological Structure in Information Organization and Retrieval:

Arguments for More Considered Approaches and Work in Progress
MARK D. JACKSON AND JUDITH E. TSCHIRGI

The Nature of User-Generated Commands for Interacting with a
Computer

JANET L. KOLODNER .
A Conceptual Approach to Natural Language Fact Retrieval

THOMAS K. LANDAUER AND SUSAN T. DUMAIS

Psychological Investigations of Natural Command and Query
Terminology

Page

14

16

28

32

34

45

CONTENTS (Continued)

MICHAEL LEBOWITZ
Organizing Memory for Use in Understanding
PAUL R. MICHAELIS AND MARK L. MILLER

Artificial Intelligence and Human Factors Engineering: A
Necessary Synergism for the Interface of the Future

FRANKLIN L. MOSES .

Overview of Selected Display Formatting and Clutter Reduction
Techniques

PIIYLLIS REISNER .
Formal Grammar Representation of Man-Machine Interaction
ELAINE RICH AND AARON TEMIN .
A Rule-Based Help System for Scribe
MICHAEL L. SCHNEIDER
Models for the Design of Static, Software Systems
BEN SHNEIDERMAN .

System Message Guidelines: Positive Tone, Constructive,
Specific, and User Centered

ELLIOTT SOLOWAY AND JEFF BONAR

Empirical Evaluation with Novice Users of Some Programming
Language Constructs

ALBERT L. STEVENS, MICHAEL D. WILLIAMS, AND JAMES D. HOLLAN .

Steamer: An Advanced Computer-Aided Instruction System for
Teaching Propulsion Engineering

JOHN C. THOMAS

Metamorphosis through Metaphor

iv

Page

48

55

87

92

96

107

118

125

134

135

CONTENTS (Continued)

Page

MICHAEL D. WILLIAMS AND J. HOLLAN 146
A System for Computer-Aided Memorization

APPENDIX A, NAMES AND ADDRESSES OF PARTICIPANTS 143

e Yt

11:18

A WORKSHOP ON THE GATHERING OF INFORMATION FOR
PROBLEM FORMULATION

careh 26, 15%1

- 1tent Catfee an” teuchnute

- 1:4S Npenirg Session

A. Badre

S. Halpin
- 12:2" indelino rhe l'ser

E. Rich and A. Temin

M. Schneider

"E. Soloway and J. Bonar
- 1:2; Luncheon

P = Tt Tpterfaces - Nevelopnent

J. Foley
M. Miller and P, Michaelidis
J. Thomas
- 3:2" vpeak = Coffee ancd Softrdrirnke
- T hesinrine Irtellizert Interf=ces
R. Burton
J. Carbonell
A. Stevens, M. Williams, and J. Hollan
areh 27, 1921
-) feffer uwnd Pruthruts
- 11:01 =um~n Factars cf Tnteractive Ler-usres
S. Ehrenreich
G. Furnas
T. Landauer and S. Dumais
M. Jackson and J. Tschirgi
- 11:15% tireak
-12:L" “omory Structures for Pursn=Crenuter Cornunicrty
J. Kolodner
M. Lebowit2
M, Williams and J. Hollan
- 1:4% Lunchron
- 3:07 ‘acgp.es and Pis-laye
F. Moses
P. Reisner
B, Shneiderman
- 2:10 i‘reak = Cotfee and Seft Privks
= 4:15% <enersrl Discussicn and Turpary
- e [anel

THE HUMAN COMPUTER INTERFACE

INTRODUCTORY REMARKS

Albert N. Badre

When asked to sit down at a computer terminal and perform what
is considered an elementary task, most novice operators are likely
to be confused and frustrated. Even the simplest of tasks seems to
require an excessive level of computer sophistication or the
motivation to read and understand an overabundance of accompanying

documentation.

The population of computer users is growing at a very rapid
pace, and an increasingly large number of this generation of new
users is not data processing or computer trained. Yet,

-~ the language that the operator must use to interact with

the machine

~ the documentation, whether on~line or off-line, that
he/she has to read in order to learn how to instruct the

machine; and

- the system messages that are displayed

are couched in the vocabulary and language habits of the computer

expert.

Accordingly there is a growing coruznsus in the computer science
community that the user-compatibility of the human interface should
be considered and incorporated into the design of all computer systems
at the initial stages of development. "Information processing"
systems are likely to be more user compatible if they are designed to
adapt to the information processing capabilities and limitations of
the user. It is becoming, therefore, increasingly necessary to
explore and identify the human information processing factors,
constraints, and variables that are associated witch making the
interface more user compatible. This means identifying and
considering factors relating to what the operator '"does" at the
display station in order to perform a desired task and what the

system does in return.

In this workshop symposium we will be dealing with six inter-
related topics that revolve around the user interface theme. These
are: Modeling the user, interface development factors, design
considerations for intelligent and adaptive interfaces, memory
structures, the human factors of language interaction, and messages

and displays.

Experiences with a Natural Language

Interface to an ICAI System

Richard Burton

Towards a Robust, Task-Oriented
Natural Language Interface

Jaime G. Carbonell
Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

This paper analyzes the inception of a new generation of robust, task-oriented natural language
interfaces in light of new theoretical advances and analysis to avoid limitations uf previous efforts.
Three key ideas are discussed: 1) dynamic selection of parsing strategies, 2) exploiting domain-
specific semantics and grammatical constructions, and 3) integrating recent theoretical findings into
task-oriented parsing. An implemented natural language interface conforming to some of the new
objectives is discussed, as are current plans for a more-general-scope natural language interface.

3 February 1981

Towards a Robust, Task-Oriented
Natural Language Interface

Jaime G. Carbonell
Carnegie-Mellon University
Pittsburgh, PA 15213

1. Objectives and Historical Perspective

Natural language comprehension has been studied from two primary perspectives in Artificial
Intelligence:

e As a vehicle to investigate and simulate human cognitive processes embodying
components of either a linguistic or psychoiogical theory of language comprehension.

e As a means of implementing task-oriented "natural language front ends" to complex
computer systems.
The "basic science" approach has produced some significant principles and techniques (e.g.,
expectation-based language analyzers [7, 1]), but no trulv robust parsers for computer-naive users
have been developed in this paradigm.

The applied "engineering" approach has proceeded by either building the domain of application
into the parser itself, or by relying on syntax-only linguistic parsers. Neither approach has proven
wholy satisfactory. The former suffers from virtual lack of transferability to new domains, while the
latter suffers from extreme fragility: the inability to cope with any input not strictly conforming with its
rigid internal grammar. However, it must be noted that some successful parsers have emerged from
these limited approaches, such as LIFER [5] and LUNAR [8]. Both of these efforts, unfortunately,
required man-years of development and tuning before their performance approached the user-
acceptance level. Their primary contributions were in the computational mechanisms they
introduced, which could iater be incorporated into more sophisticated parsers.

A major objective in the design of task-oriented parsers is to provide the user maximal flexibility
(within the semantics of the domain) to express his utterance. For example, the graceful interaction
project [4] is a recent attempt at coping with limited ungrammaticality in a task-oriented parser. The
means by which recent task-oriented parsers strive for robustness and flexibility is to incorporate
domain semantics into their parsing knowledge bases (but not into the programs themselves). Here,
we go one step further and exploit domain knowledge to dynamically choose the optimal parsing
strategies. Moreover, the work described in this paper attempts to take ful! advantage of lessons
learned from more theoretical natural language research. Our objectives can be summarized as
follows:

e Create a robust parser, in the sense that it must tolerate common ungrammaticality,
ellipsed constructions, and different phrasings within its domain of application.

¢ Implement the parser in a modular manner with respect to its knowledge sources. This
means that domain knowledge necessary for the parser ought to be divorced from the
program, from general semantic knowledge, and from linguistic knowledge. Hence, only
one knowledge base need be altered in transfering the parser to a new application
domain. The program itself is general with respect to the choice of task domain.

o Exploit new advances in natural language processing not previously incorporated into
task-oriented parsers. Some well-established powerful methods developed to simulate
human language understanding (most notably expectation-based disambiguation) have
not previously been used in task-oriented approaches, although they have proven
computationally effective in more general domains.

o Minimize the time required to transfer the parser to a new domain. This goal is furthered
by our madularity consideration, but in addition | want to work towards a uniform method
of incorporating new domain knowledge, including knowledge of technical jargon
particular to a given domain,

in order to further these ends | developed an initial parser that combines partial pattern matching,
semantic-grammars [5] and equivalence transformations. | applied this parser to the task of building
and querying a semantic-network [2] data base. The central lesson learned from this exercise is that
the combination of the three parsing strategies yields not only a more robust parser than a single-
strategy method, but surprisingly the time it took develop its domain application (admittedly not a very
complex task) was considerably less than expected (less than three weeks).

A crucial (and perhaps unintuitive) fallacy of previous task-oriented parsers is their commitment to a
simple uniform parsing strategy. Since natural language is a complex phenomenon (even in task-
oriented domains), this design criterion had the effect of pushing the complexities into the domain
grammars, dictionaries and other domain-specific components of the parser. In the clearer vision of
hindsight, this design decision greatly complicated the application of existing parsers to new
domains. Is it not more desirable to incorporate all the decision-making comglexities required to parse
natural language structures into the kernel program itself? Once built, this program need not be
redesigned for a new task domain. Minimizing the requisite complexity and size of domain-dependent
components is an extremely productive venture. Parsing-strategy selection, semantic matching
routines, and other domain-independent components should be provided as a kernel parser, which is
augmented by domain-specific knowledge bases in each applications domain.

In designing the kernel parser, a dominant criterion is that it select the parsing strategy in
accordance with the type of natural language construct it attempts to parse. Some information can be
expressed more naturally and more parsimoniously in one form (e.g., linear patterns) while other
information is best expressed as case structures, equivalence transformations, or semantic grammar

productions. To illustrate this point, | attempted to encode all the knowledge in my parser as a pure
semantic grammar. This task has more than tripled the size of the task-specific knowledge base, and |
have not yet finished (nor do | intend to finish) the conversion. The primary reason for the relative
increase in size is that much of the information must be stated with a high degree of redundancy and
often in an awkward, round-about manner when it must be coerced into a uniform, context-free
representation.

2. The DYPAR Parser

DYPAR' combines three parsing strategies:

o A context-free semantic grammar component, grouping domain information into
hierarchical semantic categories useful in classifying individual words and phrases in the
input language.

o A partial pattern match component, represented as pattern-action rules. The patterns
may contain individual words, semantic categories (from the semantic grammar), wild
cards, optional constituents, register assignment and register reference. This method
enables the semantic grammar non-terminal categories to be applied in a much more
effective context-sensitive manner than would be the case is a pure context-free grammar
recognizer.

e Equivalence transformations map domain-dependent and domain-independent
constructs into canonical form, requiring a fraction of the patterns and semantic
categories that would otherwise be necessitated. If a phrase-structure can be expressed
in several different ways, while retaining the same meaning, it is clearly beneficial to first
map it into canonical form, rather than being forced to include all possible variants in
every context where that constituent could occur.

Below | give an example of each type of linguistic information used in DYPAR. In order to
understand these examples, a few notational conventions must be introduced: <BRACKETS) denote
a non-terminal semantic grammar symbol. A word starting with an exclamation mark (e.g.,
!REGISTER) denotes the name of register. A vertical bar (|) denotes disjunction in a pattern. A # in
a pattern matches a single word. An asterisk (*) matches an arbitrary sequence of words. The
construction ('REGISTEP pattern) assigns whatever matches the pattern to the register specified. A
colon (:) before a constituent in a pattern indicates that constituent is optional.

DYPAR, as we see in the dialog below, is the front end of a semantic network data-base update and
query system. Therefore, its domain knowledge consists of language constructs relevant to this task.
First, consider a fragment of its semantic grammar:

1Robust multi-strategy "DYnamic PARsing"” is still in its infant stages, requiring frequent changes.

8

CINFO-REQ> -> (<WHAT-Q> | <INFO-REQ1>]
<INFO-REQ1> -> (: <POLITE> <INFO-REQ2)> : <WHAT-Q>]
CINFO-REQ2> -> (TELL <me-US> : ABOUT | GIVE <me-US> | PRINT | TYPE]

This fragment, together with the rewrite rules for the other non-terminals above (e.g., <BE-PRES?,
whose rewrite is all the present-tense conjugations of the verb "to be") recognizes the initial segment
of information-request queries such as: "Whatis ...", "Tell me whatis ...", "Tell me about...", "Would
you give me ...", etc.

Now, consider a pattern-match rule:

(: <det> (lval #) <be-pres> : <DET> (!PROP #) OF
: <DET> (INAM #) : <dpunct))

=)

(LTM-STORE INAM !VAL IPROP)

This rule recognizes sentences such as: "Felix is a friend of Fido", or "Reagan is president of the
USA", and passes the information to the data base manager for consistency checking and storage. In
order to pass the information gathered in the pattern match process, the registers are assigned
appropriate values. For instance, in the second example, INAM is assigned "USA", IPROP is assigned
"president” and VAL is assigned "Reagan".

The equivalence transformations also use the pattern matcher. For instance, consider the following
simple (but useful) transformation:

((1S1 %) (W1 #) <POSS> (IW2 #) (1S2 ¢) : (IP <PUNCT>))
.o)

(NCONC 1S1 1W2 (LIST 'OF) IW1 IS2 IP)
This transformation maps possessive constructions into attribute-value constructions, which we
chose as canonical. For instance "Tell me about the VAX-7¢0's performance.” is mapped into "Tell
me ahout the performance of the VAX-785." (he latter construction is recognized by a pattern-action
rule. Since possessive constructions can occur in many contexts, the single transformation above
saves us from duplicating pattern match rules for each different context where an attribute-vaiue
construction can occur.

The control structure of DYPAR is essentially an applicative condition-action cycle, which haits
upon no rules being applicable (in which case a partial pattern-match strategy is attempted), or upon
one of the pattern-action rules firing and passing its information to the data-base manager. Let us see
a brief dialog with DYPAR. For simplicity, we start out with an empty data base. ltems in italics below
were typed in by the user. Everything else was output by the system. Items in UPPER CASE are
paraphrases of internal semantic network relations output by a rudimentary English generator.

*(parser)

You can build and query a simple semantic network

9

by stating information and quections in English.
+Fido is a nice dog.
Storing assertion in semantic net: FIDO IS DGG.

[COMMENT: When DYPAR does not reccgnicze concepts in Lthe input. 1t prompts
the user fer additional information required by the integrity-checker
in the data-base manager.]

What is NICE?
+Nice is a disposition.

Storing assertion in semantic net: NICE 1S DISPOSITION.

ls it correct to say that THE DISPOSITION OF F1D0 IS NICE?
(Y,N): Yes.
Adding new assertion: THE DISPOSITION OF FIDO 1S NICE.

+Fido’s cousin is Felix.

Transforming (FTDO $S COUSIN IS FELUX PERIOD)
Into ::> (THE COUSIN OF FIDC IS FELIX PERIZD)

Transforming (THE COUSIN OF FIDu 1l rEi IX PERICH)
Into ::> (FLLTX IS THE COUSIN (1 FIDO PCRIOD)

Adding new assertion: YTHE COUSTH OF FIDO IS FELIX.

[COMMENT: To illustrate tihe parsing procecs 1a 2 bat more detail,
the ruie tracer was activated for lne folliow:ng intaraction.]

+Cousin is a symmetnce relation.

Parse is:

Rule RUL19

Action will be: {PROGN (LTM-STORE !NAM !VAL (QUOTE ISA:))
(LTM-SPEC !NAM !VORP NIL NIL T))

With bindings:

('VAL RELATION)

('VORP SYMMETRIC)

({NAM COUSIN)

I already knew that: COUSIN WAS A RELATION.

Is it correct to say that THE RFLATION OF COUSIN IS SYMMECTRIC?

(Y ,N): yes.
Adding new assertion: THE RELATION OF COUSIN IS SYMMETRIC.
Inference: Adding new assertion: THE INVERSE OF COUSIN IS COUSIN.
Inference: Adding new assertion: THE COUSIN OF FELIX (S FI1DO.
+Cat chasing 1 a dog's hobby.

Transforming (CAT-CHASING IS A COG $S HOBBY PERIOD)

10

Into ::> (CAT-CHASING IS A HOBBY OF DOG PIRIOD)

Adding new assertion: THT HOBBY OF DOG IS CAT-CHASING.

| COMMENT - Since the program never heard of "dog” or “fido”

it does not know whether to express them with or withoul & determiner.
“fido" is a proper name, therefore it needs nc determiner, but "dog”
in all the examples above lonks strange without on¢ Now, we fix that
problem by providing the program with the necessiry informatior (in
English, of course).]

+The concept of dog is generic.

Transforming (THE CONCEPT OF DOG IS GENERJC PERIOD)
Into ::> (GENERIC IS THE NODE-TYPL OF DUG)

[COMMENT: 1n our domain “concept™ and "node-type” are synonyms In
future output, "dog” will be printed with 3 dele iiner «hen appropriate]

Adding new assertion: THE NODE-TYPE OF DOG IS GENERIC.

+Could you tell me what a dog's hobby is?

Transforming (COULD YOU TELL MbL WHAT A DOC %35 HOBBY IS QMARK)
Into ::> (COULD YOU TELL ME WHAT IS A DGO $S HOBBY QMARK)

Transforming (COULD YOU TELL ME WHAT IS A DOG $S HOBBY QMARK)
Into ::> (COULD YOU TELL ME WHAT IS THE HOBBY OF A DOG QMARK)

THE HOBEY OF A DOG IS CAT-CHASING.
+give me everything you know about tido
F1DO IS A DOG.

THE HOBBY OF f1DO IS CAT-CHASING.

THE COUSIN OF FIDO IS FELIX.
THE DISPOSITION Of FIDO IS NICE,

+Napping is the hobby of Fido.

That contradicts what I could nfer by 1nkerit.nce.
THE HOBBY OF FINDO WAS CAT-CHASING.

Should I add the assertion anyway? (Y,N): no.

0K, discarding new assertion,

+E£xit this program.

Leaving natural language interface. Back to LISP.
(CPU-SECONDS: 12.056 GC-TIME: 6.780)

As we sae in the above example, robust communication with the user requires not only a flexible

11

domain-oriented parser, but also an interactive query capability and a natural language gener«tor.
However, the latter two processes are conceptually simpler, and not the topic of this paper.

3. Future Directions

DYPAR illustrates the harmonious integration of three parsing strategies. However, it is only the first
step in exploiting the multi-strategy approach to develop real-world, robust, natural language
interfaces. In terms of sophistication, DYPAR straddles the boundary between an advanced toy and a
rudimentary real-applications system. One direction of continued development is to enhance the
pattern matcher, build additional general transformations, and create a sub-interface to facilitate
extensions to the grammar by a domain expert (not necessarily a natural-language expert). A first step
in the direction of automating and simplifying user extensibility has been taken in the development of
the KLAUS system [6]. At CMU, we are focusing on a complementary, and perhaps more fundamental
research direction.

it the gestalt performance of integrating three parsing strategies has proven miore effective than the
application of any single strategy, why not extrapolate this result to include additional parsing
strategies? Indeed, we have designed a flexible control structure for integrating case-instantiation as
the central parsing strategy -- calling upon other strategies discussed in this paper, in addition to
more domain-specific strategies, when appropriate [3]. Case-frame instantiation is the most general
parsing strategy capable of exploiting domain semantics. Hence, it should provide a quantum jump in
the general applicability of our task-oriented parser. Moreover, techniques such as expectation-driven
disambiguation [7, 1] developed by the non-applied school of natural language processing, can now
be brought to bear in reai-world applications. The reason why case-frame parsers have not been
developed in task-oriented domains is that while they capture general principles admirably, they fail to
recognize specific idioms, compound nouns and the like. However, the addition of partial pattern
matching (idealiy suited to detect idiomatic expressions) integrated with case-frame instantiation and
other parsing methods should provide a high degree of generality without sacrificing robustness.

Graceful interaction with the user is a worthy goal for any natural fanguage front end whose users
may be computer-naive. People invariably produce ungrammatical utterances, leave out words, add
interjections, and use terms outside the vocabulary of any system [4]. It is essential that a real-world
system "fail soft" in such circumstances, and interact with the user to enable graceful recovery. We
saw some simple examples of this in DYPAR. However, the expectation-setting provided by a case
system incorporating domain knowledge can be a mora powerful tool to minimize failure.

Consider, for instance, a file-management system where a user may type "Transfer the flies in my
directory to the accounts directory.” It is fairly clear to us humans that the user meant to type "files",
even if we know perfectly well that "flies” is a legitimate word in our vocabulary. A case-frame system

12

knows that the objective case in the transter imperative (as applied to the file-management domain)
requires a logical data entity, which “flies" is not. Realizing this violated semantic requirement, it can
proceed to see whether by spelling correction, morphological decomposition, or detecting potential
omissions it can map "flies" into a known filler of that case. Here, spelling correction works, and the
system can proceed to inform the user of its correction (aliowing the user to override if need be).

| conclude by reiterating my central theme: Integration of multiple parsing strategies is perhaps the
single most powerful principle in the development of robust, task-oriented natural language
interfaces.

4. References

1. Birnbaum, L.and Selfridge, M., "Conceptual Analysis in Natural Language," in Inside
Computer Understanding, R. Schank and C. Riesbeck, eds., New Jersey: Erlbaum Assoc.,
1980, pp. 318-353.

2. Brachman, R.J., "On the Epistemological Status of Semantic Networks,” in Associative
Networks, N. V. Findler, ed., New York: Academic Press, 1979.

3. Carbonell, J.G. and Hayes, P.J., "Dynamic Strategy Selection in Fiexible Parsing,”
Proceedings of the 19th Meeting of the Association for Computational Linguistics, (Submitted
1981).

4, Hayes, P. J. and Mouradian, G. V., "Flexible Parsing,” Proceedings of the 18th Meeting of the
Association for Computational Linguistics, 1980 , pp. 97-103.

5. Hendrix, G. G., Sacerdoti, E. D. and Slocum, J , "Developing a Natural Language Interface to
Complex Datz,” Tech. report Artificial Intelligence Center., SR! international, 1976.

6. Hendrix, G. G. and Haas, N., "Acquiring Knowledge for Information Management," in Machine
Learning, Michaiski, R., Carbonell, J. G. and Mitchell, T., eds., Palo Alto, CA: Tioga Pub. Co.,
1981.

7. Riesbeck, C. and Schank, R.C., "Comprehension by Computer: Expectation-Based Analysis
of Sentences in Context,” Tech. report 78, Computer Science Department, Yale University,
1976,

8. Woods, W, Kaplan, R.and Nash-Webber, B, "The Lunar Sciences Natural Language

Informatic:n System: Final Report,” Tech. report 2378, Bolt Beranek and Newman Report,
1972

13

CREATING AN ALGORITHM FOR
GENERATING ABBREVIATIONS TO BE USED
IN USER-COMPUTER TRANSACTIONS
Sam Ehrenreich
US Army Research Institute for the
Behavioral and Social Sciences

The US Army is in the process of developing automated tactical systems.
These systems will incorporate a dialogue mode (e.g., form-filling, menu, query
language) for communicating between the user and the computer. For the con-
venience of both, much of this communica*ion will involve abbreviations. The
Army Research Institute (ARI) is engaged in preparing an algorithm for use by
system designers in creating easy to use abbreviations for these systems. The
algorithm will not only be concerned with generating abbreviations for command
terms. Rather, the primary domain of the algorithm will be the lexical terms
used in exchanging information between the user and the computer.

This summary describes the empirical issues that were investigated in ARI's
abbreviation project. The data that was collected, along with an algorithm for
generating abbrevi-+«iong, will be presented at the workshop.

All of the experiments for this project have already been completed.
However, a few still remain to be analyzed. The participants used in these
experiments were enlisted Army personnel. The stimuli used were words which are
likely candidates for abbreviation on an automated tactical system. However, it
is believed that the nature of both the participants and the stimuli are such
that the resulting algorithm will be applicable for use with most classes of
operators and with mcst sets of words.

The general abbreviation techniques which were considered as candidates for
forming the basis of the algorithm are: (1) truncation, i.e., delete all but the
first few letters of a word; (2) contraction, i.e., remove all of the word's

vowels except for vowels occurring as the first letter; and (3) abbreviation

14

by the consensus of a committee. In order to create the desired algorithm, the

empirical questions which were investigated are:

1. What are people's personal preferences with regard to the abbreviations

formed by the different abbreviation techniques?

2. How do the different abbreviation techniques compare when participants are

presented with a word and asked to recall its abbreviation (i.e., encoding)?

How do the methods compare when the task is decoding?

3. When participants are asked to produce abbreviations of their own choosing,

what abbreviation method do they tend to naturally use?

4. When participants' experiences with a word and its abbreviation increases,

do the absolute and relative effectiveness of the different abbreviation tech-

niques change?

5. WVhen participants are instructed in the rule system underlying the different

abbreviation techniques, do the absolute and relative effectiveness of the

abbreviations change?

6. Should abbreviations be of a fixed or variable length?

7. How can different words that result in identical abbreviations be handled

(e.g., when using the truncation method, both TRANSLATOR and TRANSPORT are

abbreviated as TRAN)?

8. Can endings (e.g., -ed, -ing) be effectively incorporated into abbreviations?
The answers to these questions will represent the empirical basis on which

an abbreviation algorithm is formed. Tle desired algorithm is one which is

completely deterministic in the abbreviations it forms. Using the algorithm,

the system designer should have minimum input in determining the abbreviation to

be created. Although the algorithm that will be created will not be based on a

complete investigation of all possible variables, it is expected that it will

result in abbreviations which are significantly easier to use than the arbitrary

and inconsistent abbreviations presently used on Army systems.

15

Tools for the Designers of User Interfaces#»

James D. Foley

March, 1981

Institute for Information Scicnce and Technology
Department of Electrical Engineering and Computer Science
School of Engineering and Applied Science

The George Washington University

Washingtaon, D.C. 20052

REPORT GWU~IISY-81-07

This paper was presented at the Workshop/Symposium on Human
Computer Interaction, sponsored by the U.S. Army Research
Institute and Georgia Institute of lechnology.

#This work 1is being carried out by the author and M. B.
Feldman: co-principal investigator, H. Holmes, Visiting
Scientist from Lawrcnce Berkeley Laboratory, J. Thomas,
Visiting Scientist from Battelle Northwest Laboratories,
Rassarch Assistants 7. Bleser and G. Rogers, Graduate
Rasaarch Agssistant A. Kamran, and P. Chan. The work is
partially sponsored by the U.S. Department of Energy (Grant
DE-ASDS5-79ER1082) &and the U. S, Army Research Institute
(Grant MDA 903-79-G-01). V.L. Wallace of the University of
Kansas is co-principal investigator with the author for ¢the
work entitled “"Evaluation of Intervaction Techniques. "

lools for the Designers of User Interfaces

Qur research objective is to develop methodologies and
tools which can aid in ¢the decign of user—computer
interfaces. We want to impose structuré on the typically
very camplex task of designing a user—computer interface, so
the design can be divided into manageable pieces, each of
which can be dealt with in a systematic, rigorous and at
least partixlly quantitative way. We believe this will nelp
make User Interface Design more of a science and less of an

art, and lead to improved design.

The actual procecs of designing a user interface can be
accamplished as four major steps, which we call ¢the
conceptual, semantic, syntactic, and lexical design steps.
Each step can be dealt with in sequence, one after the
othar, with an occacsional reexamination of a previous step.

We call thece four steps a design framework.
The Design Framework

The conceptual design is ¢the definition of the key
application concepts which the user of the interface must
understand in ovrder to use the system. For a simple text
editor, the key concepts are files, lines of a file, and
operations (add, delete, move) on lines. The conceptual
model, as in this case, typically dcfines objects, relations

between objects (a line is in a file), and operations on the

17

objects, and sets the stage for the semantic design of the

user~computer interface,

The semantic design deals wih the functionality of the

system to be accessed via the intermediary of the wuser

interface. The user performs cartain act

STy

»e

calculations/processing ensues, and information is presented
to the user. At the semantic design level we are concerned
only with the meanings of the inputs, the processing: and
the outputs: we are not concerned with the form or the

saquence of the inputs and ovtputs.

The syntactic design deals with the sequence of the
inputs and outputs., For the input, sequence is akin ¢to
grammar --thes rules by which sequences of words in a language
are formed into legitimate sentencez. The types of words in
an input sentence are typically commands, quantities, names,
coardinates, or arbitrary ¢text. As in English, the words
are the units of meaning in the input and cannot be further
decomposed without losing their meaning. +to include the
spatial domain as well, Therefore the output syntax
includes the 2D or 3D organization of a display as well as
any temporal variation in the form. The ‘"words" in the
output sequence., by analogy to the input cequence:, represent
the units of meaning being conveyed from the computer to the
user. The units of mecning are often convey2d graphically as

symbols and drawings made up of lines, curves, and points

rather than as words made up of letters.

The lexical design determines how words in the input
and output arve actuzlly faormed from the available hardware
capabilities. For input, ¢this invelves designing the
interaction techniques for the application. An interaction
technique is a way of using a physical input device (tablet,
keyboard, mouse, etc.) to input a certain type of word
(command, value, coordinates, etc.). For example, some of
the interaction technigues for command specification are
selection from a menu with a Jliht pen or with a cursor
controlled by a mouce. typing of the command name on a
keyboard, and speaking the name of the command into a speech

recognizer.

For cutput, lexical design means forming the symbols
and.shapes which are to be presented to the user, using the
available hardware lexemes. For text output, this reduces
to selecting text attributes such as +font, size, color,
background color: the spelling (i.e., combination of
hardware lexemes, the character sect) of words is already
defined in ¢the dictionary. In other cases, such as
situation displays, the symbols used must be designed and
composed from lexemes such as lines and other grahics
primitives, and the symbols must be assigned attributes such

as color, intensity, Jinestyle, and size.

\

The nub of this four-level fraomework for design are
found in formal language ¢theory;, the framework has been

successively refined and reported in a series of papers

19

CFOLE74, FOLE78, FOLEBO, FOLES1bLI. We have worked/are
working with ¢this Fframework in sevaral wags: the
organizatin of design principles, the evaluation of existing
user~canguter interfaces, the evgluation of interaction
techniques (which are ¢the lexical-level design of the
input), the formal specification of ¢the syntactic and
lexical design of input and output, the calculation of
metrics of “goodness" based on the formal specification. and
the design of an "abstract interzction handler" to remove
much of the syntactic and lexical design from the

application proagram.
Organizing Design Principles

The past ¢ten years have seen several user interface
designers setting forth their design principles [BENN764,
BRITT77, ENGE7S, HANG71, WALL761 in the form of general
objectives and specific do’s and dont’s. These papers plus
personal experience form the knowledge base available to
most designers. Often the criteria are soundly-based: a
vsefuyl start in developing tools for designers is to
organize the principles, showing how they apply at the
conceptual. semantic, syntactic, and lexical design levels.
Thiz process has been partially completed, as reported in
FOLEBLD, for principles dealing with feedback, error
correction, rvesponse time, concistency. and display

gstructure.

Evaluating tser—-Computer Interfaces

20

Given an organired sat of design criteria, it is
possible to perform & systematic evaluation of existing
user—camputer interfaces by a combination of watching others
use the interface and Isarning to use the interface
anesalf. In this process it is critical ta note
idiosyncratic features of an interface when they are first
encounteresd, lest one adjust ¢to the features. Two such
evaluations have thus far been conducted: the +first
(HERBBOJ of DIDS. the Decision Informatin Display System
used by the federal government for policy studies; the
second [BLESB81] of SEEDIS, the Socion-Economic Environmental
Demographic Information System developed at Lawrence
Berkeley Labs. A third evaluation will be of a new
user—interface design, prior ¢to its implementation, for
Battelle Northwest Labs’ ALDS (Anzlysis of Large Data Gets)

system.
Evaluation of Intercction Techniques

Recall that an interaction tecthnique is a way of using
a phgs}cal input device to input = word, and hence is the
lexical 1level input design. In FOLEB13 we have described
and organizad the interaction techniques by their purpose,
which can be to mcke a selection, designate a position,
orientation, or sequence of positions and orientations,
input a wvaluer or input a character string. A number of
germane human factors design issues have been identified for

the techniques by drawing on the 1literature and the

21

guidelines mentioned above. Nine experiments dealing with
interaction techniques are also critically reviewed. A
method of interaction technique diagrams is created, to aid
in understanding, analyzing, and documenting the techniques
and experiments. A diagram shows the cognitive, motor, and
perceptual steps which the user of a technique performs.
The report is meant as a guide to aid designers in selecting

appropriate interaction techniques and devices.

22

-~

Formal Specification and Metrics

The syntactic and lexical dec«igns of a user interface
should be describable by formal language ¢toals, in the
gspirit (but not necessarily in the image) of BNF, regular
expressions: and flow expressions. We are developing formal
tools for describing both the input and output of a user
intarface, as well as the relstionship between input and
output. The input definition deals with concepts such as
tokesn types (which are the purposes of interaction
techniques, as described above), sequences of <¢okens, and
the binding of tokens to sequences of actions wth physical
devices. The output definition deals with concepts such as
screen areas &nd their contents, and attributes (such as
color, font, and line<«tyle) of tokens within variocus areas.
Metrics ¢treat issues such as complexity and consistency of
syntactic rules, consistency in the wuse of cadings,
continuity of visval cttention on the display, continuity of
tactile motion with the interaction devices, and ¢time
raquired to input commands. The metrics draw upon the

guidelines mentioned zbovae.

The decigner of a user interface will use the tools to
describe the interface. This in itself helps create a more
disciplined design environment. In addition, the formal
definition will be processed, metrics evalvated, and
potential design problems flagged for further attention by

the designer. In the Jong run, the user interface definition

23

will be input to an interaction handler which will

implement the user interface.

24

actually

Abstract Interaction Handler

Writing an interactive application program involves
coding the semantic, syntactic, and lexical designs,
typically wvusing FORIRAN, PASCAL, or a similar language.
There are two problems with this. First, the procedural
languages are not well-suited to programming the syntactic
and lexical designs. Secondly, it is easy to intertwine the
code which implements each of the three levels, making later
changes to any of the levels difficult. The abstract
interaction handler is being designed to implement the
syntactic and lexical aspects of input, and those parts of
the syntactic and lexical output design having to do with

interaction, such as menus, prompts, and error messages.

This approach allows much of the user interface ¢to be
changed by modifying the interface definition made available
to the interaction handler rather than by reprogramming. It
will be poscible ¢to use ¢two completely different user
interfaces, such as menu driven and command-language driven,
with the same application program, and to “fine-tune" the
details of a given user interface. Within the interaction
handler, syntactic and lexical 1level designs will be
separated, so ¢that one can be easily changed without
affecting the other. A preliminary design of an interaction

handler cen be found in FELDBL.

25

Referaencas

BENN74

BLEES1

BRIT77

EMNGET7S

rE.D81

FOLE?4

FOLE78

FOLESO

FOLEB1a

FOLESLD

Bennett, J., "User-oriented Gr.phics Systems for Decision
Support in Unztructured Tasks, " Proceedings of
ACM/SIGGRATH Workchop an Ugep=0Orianted Design of
Interactive Graphics Oystems, Pittzburgh, PA., fctober
1976, pp. 3-11.

Blesser, T., P. Chan M2i Chu, "A Critique of the SFEDIS
Uger Interface, " The Gaeorge Washingtor University,
Institute for Infovmation Scieuncr and Toechnalagy Tach.
Regort GWU-IIST-81-04, March 1[93/.

Britton €., "A Methodaolagy for the Eryonamic Design ur
Interactive Ccmputer Graphics Sgstens, and Its
Application to Crystalloagraphu.,” Univzireity of [lorth

Carolina atr Chepel Hill. UNI Heport No TR-77-011,
Novembzr 17977

Engel, €., and & Granda, @ deiines for Man/Di-alsy
Interfacas, IBM Poughkeepsie _ubroratory, TR Q0. 2720,
Dacember L9703,

Faldman, b “Uraolivinary itecign ¢ an Alssrazt
interaction Handlewr, " The Gesrge Washington Universiky,
Institute for Information Sciznce and Technology Tach.
Report GWU-1[ST-B1-04, Washinglon, D.C., 198%1.

Foley, J. and V. Wallace, "The Arg of Natural Grephic
Man-Machine Canvevsation, " Prucradings TEEE 42(4), April
1974, pp. 462-470.

foley. Joo "The Human Factors~Caomputer Graphics
Interface, " Proceedings of Sympo-.ium an Human Factarsc and
Computer Sciences, Computer Systems Technical Interest
Graup. Human Factors Saciety, June 1978, pg. 103-114,

Foley, J.. "The Structure of Command Languages," iu R.A.
Gued 4, et al.., eds., Methodology of Interactior.
North~Holland, Amsterdam. 1980, pp. 227-234,

Foley, J., V. Wallace, and P. Chan, "The Human Factors of
Interaction lTechuiques, " the George Washington
University, Institute For 1a"ormatior Science and
Technology Technical Report GWU-LIST-81 03, Washington.
R.<.. March 1934,

Foley, J., "“A Methadoalogy fo: ti 2 Tesign ard Evaluaticn
of YUszr Canputer Interfaces, ® The George MWashington
iniversity, Institute far Information 3ciernce and

Technology Technical R2port GWU-TIST-B1-035, Washingtsu,
D.C.+ March (701,

HANS71

HERB3O

Wal .76

Hansen, W., "User Engin2ering Principles for Interactive
Systems., " Proceedings 1971 Fall Joing Computer
Conference, pp. 523-532

Herbert, 1., "Evaluation of the User—Computer Interface
Design of the Domecztic Information Display System * Tae
George HWashington University, Depariment of Electricasl
Engineerirgy and Computer Srience Technical Rapart
GWU-EETS-B0~07, Washingsan, D. O , (980,

Wallace, V.. SGuamary of “Cauvyre2tiunal Ergonemice’
Sesgion: ACM/SIGGRAFH Workshap on U. sr=DOriaentad Design of
Interactive Graphics Systems, Pittshurgh, PA.. (QOctober

1976, pp. 121-1209.

Psychological structure in information organization and retrieval:
Arguments for more considered approaches.
and work in progress.

George W. Furnas
Computer-user Psychology Research Group
Bell Laboratories, Murray Hill, NJ

Any given artificial storage and retrieval system forces structure
on the information stored within it. Psychologically, however
many kinds of structures exist for the representation of
information, and each has domains where it is well suited and
domains where it is at best mistit. The motivating assumption here
is that. if one wishes to make information systems humanly
accessible, more serious consideration is needed of the variety of
representations characterizing human knowledge, coupled with the
necessary invention of new compatible retrieval interfaces.

A textile dyer would no doubt be exasperated by a menu-~driven. or
even key word, specification of colors. Our knowledge of color
space argues thet adjusting three knobs. or perhaps moving a light
pen on a graphics screen would prcbably be much better. In
contrast, asking zoo visitors %o access information about
individual 2nimals by this same three-knob technology would be
ridiculous. Menus or keywords would be very appropriate. The
domain of anirmals has a very different structure than does that of
color. and to use the same retrieval system for the two is a
nistake.

Not much experimental evidence exists regarding implications for
conputer access, but from the standpoint of reflectinf
psychological similarity. recent work by Pruzansky. Tversky and
Carroll 51980) emphasizes the diversity of appropriate
representations. Using currently available scaling procedures in
a large survey of categories. they typically found the domains to
differ strongly in the relative suitability of tree and
nmultidimensional structures for capturing people's similarity
judgerents.

There are of course even more representational structures than the
two investigated by Pruzansky. et al. From the context of
similarity scaling alone, one might mention, in addition to
multidimensional spaces and hierarchical clusterings. additive
trees. more general graphs. factor-analytic structures. additive
clusterings, etc. These structures differ in many ways. including
continuity. contingency constraints on structural components.
complexity., and symmetry. All of these properties presumably
affect representational adequacy.

28

Scaling techniques. among others, can help to identify
psychological adequacy of representations. but in constructing
retrieval systems, & further issue arises: How can any of the
variety of possibly appropriate representational structures be
accessed? Hierarchical tree structures lend themselves to
classical menu-tree schemes, and multidimensional configurations
with suitable properties (e.g. 1low number of dimensions,
separability?) may perhaps be accessed by various analog input
devices. But what of other types of structures, especially as we
seek richer structural representations?

Thus cognitive considerations motivate the search for nonstandard
datatase interface solutions... new structures. and new access
processes. The work presented here represents a simple ongoing
eftort in that direction. It basically involves a generalization
of tree structures, and of the corresponding familiar menu access
mechanisms.

Standard menu systems present a screenful of choices subdividing
the domain of a database. The user makes a selection from

these. resulting in a new set of more detailed selections. further
subdividing the selected set. A sequence of choices from a
succession of menus eventually brings the user t., some final
target item. Typically, the menus are organized into trees. That
is. there is usually only one séquence of choices that will arrive
at any given target. While some systems have exceptions to the
unique path rule. these tend to be infrequent, and certainly not
essential to the character of the systen.

Note that in menu trees, there are many choices, a whole menu
full. presented at each step when moving down .through the
structure. There are occasions, however, when one must move tack
upward in generality. as in recovering fror a mistake or changing
targets in mid-searcn. Then, unlike when moving downward. there
is no choice given: Trees have many "down' choices at any point.
but only one wup”. The concept being explored here revolves
around allowing menus for upward choices., as well as the usuel
downward ones.

The psychological motivation goes as follows: Consider a given
node. or point of menu presentation in the structure. to represent
a conceptually detined class of possible targets. A given
conceptual class can certainly contain many difterent subordinate
classes. enumerated in the downward menu. but often in rich
domains the class can also be contained in many superordinate
classes. A traditional tree representation is forced to organize
on the basis of only one superordinate at each level. In so far
as these different superordinates may each be useful in ditferent
circumstances, this psychological organization should be reflected
in the access structure. by giving users choice when moving to
superordinate levels.

29

Imagine. Ior example, one had a computerized system for retrieving
cooking recipes that was being used to plan a meal. Imagine
further that the user had proceeded down to a screenful of chcices
about types of salad (CAESAK., SPINACH & MUSHROUN. etc.). but had
just decided after all. ageinst any salad for the meal. and was
ready to retreat back up the structure to other categories of
choices. Conceivably., the user would have been interested in an
alternative in the form of some other cold tood. say cold cuts
instead of salad, so that a superordinate of CuLD FOOD would be
appropriate in the structure. Alternatively, it might have been
that the user wanted some other vegetable dish. so that a
VEGETAELE node would have been the most useful superordinate. Or
perhaps the user wanted a different early course for the meal. say
soup instead of salad. Thus. any of several superordinates (COLD
FOODS, VEGETABLE DISHES. EARLY CUURSE DISHES) might have been what
the user wanted. Why not give the user exactly such a choice, in
an Up menu from the salad node, in addition to the typical Down
menu? If the user's head prominently figures a certain form of
representation, externalize it in the organization of the data,
and take advantage of it in the access mechanism.

We are in the midst of exploring the concept of up/down menu (FUD)
systems on a small artificial data base of a few hundred target
items. There are a number of implementation choices that require
research. mosat notably regarding how to construct the MUD
structures: In using normative. categorization data. various
verification and "garbage collection” ideas must be invoked to
ensure that links exist everywhere they are appropriate, and
nowhere else. We currently ask subjects to construct "isa”
networks by repeatedly nominating successive superordinates from
each node. and then use frequency thresholds on nodes and links
produced across subjects.

When other subjects are then allowed to use the MUDs. several more
profound issues arise. A necessary result of having multiple Up
choices is that Down choices are not always partitions of the
conceptual class encompassed by a node. The consequence that that
some choices overlap is of rixed advantage. Under some
circumstances it allows subjects the benefit of approaching a
target with different interests in mind or with a different
psychological "set."” but it can also mean that subjects rust not
only decide whether a given choice will lead to their target. but
weigh the relative merits when several reasonable choices exist.
Another issue is that NUD structures lack the systematic traversal
algorithms that trees have. Thus it is more difficult to be
exhaustive, i.e. to make sure all nodes have been seen at least
once, and efficient. i.e. 1o avoid unnecessary repetitive

viewing of nodes. Circumstances exist where these considerations
might be important. A thi-d issue is that the class of targets
actually subsumed by any downward choice is constant. while the
users interpretation of the choice can be effected by the history
of superordinates just passed through. 1In a tree. there is only
one possible ancestral history. so no ambiguity arises. but not so
in a FUD structure, so users can interpret a choice variably. due
to the different emphases of different superordinates.

30

Some issues also arise in working with MUDs that are perhaps even
nore relevant to tree structures. Transitivity of class inclusion
is critical to any system based on conceptual hierarchy. High
level choices require inferring the targets sutsumed under
intermediate level nodes. Intransitivity cen foil this: Suppose
one is looking. in a lay person's botanical guide. for Scrut Oaks
which are classified under OAKS. and that OAKS are in turn
classified as TREES. The problem is that Scrub Oasks are not
popularly considered trees (rather, say. shrubs). This lack of
transitivity. due perhaps to fuzzy classification systems, would
lead one away from a correct choice of TREES in the pursuit of
Scrub Oaks. MUD structures have an advantage over menu trees since
they can allow other routes to Scrud Oaks that are perhaps free
from intransitivities.

While this work represents only one modest example of exploration
of more diverse psychologically motivated structures., we believe

that efforts like it can lead to systems of greater help to human
users.

31

The Nature of User-Generated

Commands for Interacting with a Computer

Mark D. Jackson
Judith E. Tschirgi

We describe the results of an experiment investigating
user conceptions of a natural language for interacting with
a computer information system. Novice and experienced
computer users performed text editing and information
retrieval tasks using a simulated interactive system. For
each task, a script or sequence of actions was presented
to the user. At each step, users read a description of an
action, such as correcting errors in text or selecting a
page of information to view, and typed a command that they
thought was a natural request for the action. If their
command was inappropriate, they were asked to reword their

attempt; otherwise there were no constraints on their input.

A diverse set of command terms was generated by both
groups of users, with few actions eliciting common terms
from within or across groups. Novices used more English-
like command formats whereas the experts followed computer
dialogue conventions learned from experience. When correcting
commands, novices were more likely to use strategies applicable

to normal conversation. In general, the responses generated

32

by our users under instructions to produce "patural" commands

depended critically on the user's experience.

We have shown that computer experieunce affzcts uvsers'
spontaneous approaches to interacting with =i compurer.
Our results suggest that no single coumand syiulax or set
of lexical items will be consistent wich the ewpectacions
of all users withou: additional training. <Thus, furuvre
research must determine the characteristics of easily
learned persor-computer dialecgues that are "na.ural' across

all levels of experience.

33

A Conceptual Approach to Natural Language Fact Retrieval
Janet L, Kolodner
School of Information and Computer Science

Georzia Institute of Technology
Atlanta, GA 30332

1. The problems

person: What's been going on in the world recently?

computer: The last hostage was finally released from Iran.

person: 1 thought the hostages were released all at once.

computer: She wasn't really one of the hostages, but was

arrested later when she traveled to Iran as a
Journalist to cover the Iranian revolution.
She's been referred to as the 53rd hostage.

person: Why was she arrested?

computer: Trumped-up espionage charges.

Suppose we wanted to build an intelligent fact retrieval system
such as the one above., What would that require? It would have to be
able to deal intelligently with a human user, giving answers containing
not only the appropriate information, but also the right amount of
information. It would have to be able to analyze the intent of a human
question or response, figuring out what the questioner really wanted to
know. The system would also have to be able to search its memory in a

smart way, so that as the memory grew, it would still respond in a

rcasonable amount of time.

There are three major problem areas to be addressed in designing
such a system:

1. Interfacing with the user: analyzing his natural language
questions, and deriving search keys from them

2. Memory search

3. Memory organization and maintenance

These problems cannot be solved independently of each other. The
organization of memory constrains the types of retrieval and updating
processes the memory ;an have. On the other hand, memory organization,
and therefore procedures for adding information to memory, must be
designed based on retrieval requirements. Similarly, memory's organiza-
tion and content, and the relationship between items and categories in

memory should be taken into account in interpreting the intent of user

questions.

The CYRUS system has dealt with aspects of all three of these
problems. CYRUS has a 1long term memory which was designed to store
information about important political dignitaries. It has been used to
store and retrieve information about former Secretaries of State Cyrus
Vance and Edmund Muskie. CYRUS automatically adds new information to
its memory, maintaining good memory organization in the process. It can
be queried in English, and uses retrieval strategies and knowledge about
the organization of 1ts memory to search for answers. A successor to
CYRUS, TED, will keep track of events in the 1life of Ted Turner, a

celebrity, sports figure, businessman, and broadcasting figure.

The remainder of this paper will outline some of the problems
involved in designing a fact retrieval system which will communicate
effectively with people. 1Interactions between the interface, memory
search, and memory organization will be described. It will also outline
the solutions to these problems, as implemented in CYRUS and described

in Kolodner (1980).

In considering these problems, we will assume a memory organized by
conceptual categories, with events indexed and sub-indexed in those

categories by their salient features., Thus, memory processes will

35

manipulate conceptual information, or the meaning of the data in the

memory, and will not be concerned with the words used to express those

concepts.

2. Retrieval requirements

2.1 Choosing a category for search

Searching a memory organized in categories requires specification

of a category or categories to be searched. Consider, for example, the

following question:

(Q1): Mr. Vance, when was the last time you saw an oil field

in the Middle East?

If "seeing oil fields" were one of memory's categories, then this
question would be fairly easy to answer., "Seeing oil fields" would be
selected for search, If it indexed an episode in the Middle East, that
episode could be retrieved from it. Similarly, if "seeing objects" were

a memory category, it could be selected for retrieval and events in the

Middle East and events at oil fields could be retrieved.

If neither of these categories existed, however, a category for
search would have to be chosen. We can imagine the following reasoning

process being used to do that:

A1: An oil field is a large sight, perhaps I saw an oil field
during a sightseeing episode in the Middle East.
Using information about episodic contexts associated with "large
sights", a "sightseeing" category can be chosen for retrieval, Its

contents can be searched for an episode at o0il fields in the Middle

36

East, If the sightseeing category organized its episodes according to
the type of sight and its part of the world, and if there had been an
episode in the Middle East at an oil field, then "a sightseeing episode

at an oil field in the Middle East" could be retrieved,

The problem of choosing a category for search is both an interface
problem and a search problem. Search requires specification of a
category to be searched. For a very complex data base, however, we can-
not expect a user to know all of memory's categories. Nor can we expect

that every natural language question asked of a data base will specify a

category for search,

In CYRUS, this problem is solved by associating with each concept
in memory the categories it is related to. Thus, the concept "large
sights" has "sightseeing" associated with 1it, while "international
contract" has the category "political meetings" associated with it. 1In
the first step of the retrieval process, the conceptual representation
of the question (produced by a conceptual analyzer) is checked to see if
it already specifies a category for search. If not, contexts are chosen
from among the categories associated with each of the question com-

ponents.
2.2 Non-enumeration

One of the most important problems to address in designing an
interactive retrieval system is the following:
Retrieval should not have to slow down as memory grows.
This requirement constrains both the retrieval processes and the memory

organization. In terms of the retrieval processes, it requires the fol-

lowing:

37

Retrieval from a category must be able to happen without
enumeration of the category.

In fact, this interface problem depends on both memory organization and
retrieval processes for a solution. If categories cannot be enumerated,
then there must be some other way of searching a category. This can be
done by indexing items intelligently in categories, and then by specify-

ing and following appropriate indices during retrieval.

This method of retrieval brings up special problems. Retrieval is
easy if a question specifies features which are indexed. This is not
always the case, however, Two solutions to this problem have been

implemented in CYRUS -- automatic generation of plausible indices, and

search for alternate contexts,
2.2.1 1Index fitting and generation of plausible features

Just as we cannot expect a user to know all of memory's categories
or to specify a category in his question, we cannot expect him to know
memory's indexing scheme. Thus, features specified in a question might
not correspond to features indexed in memory. In that case, given

features must be transformed into indexed features.

Inferring indexed features is a way of directing search within a
memory category without enumerating the category. Generated features
can be followed to find the target item in the category. In addition,
there must be a way of recognizing that two different descriptions refer

to the same item., One way to do that is by transforming one description

into the second one.

Continuing with the example above, suppose sightseeing episodes

were not organized in a category according to the type of sight or by

their place in the world. In that case, the following elaboration of

the initial retrieval specification might be appropriate to answer the

question:

A2: Which countries in the Middle East have oil fields? Iran

and Iraq have o0il fields, and Saudi Arabia does. ...

If sightseeing episodes are organized according to the country they
took place in, then elaborating on "the Middle East" and specifying
particular countries in the Middle East would enable retrieval of
episodes that took place in each of those places. Instead of searching
for "sightseeing at an o0il field in the Middle East", search for each of
the more specific episodes "sightseeing at an oil field in Iran™, "sigh-

tseeing at an oil field in Iraqg", etc. could be attempted.

The process of transforming given features into indexed ones is

called index fitting. Index fitting is done in CYRUS by component-

instantiation rules. These rules use information about components in

context to infer additional features of a specified item. The
nationality of participants in a political meeting, for example, is
known to correspond to the sides of the contract being discussed at the
meeting. Given the participants in a meeting, that information can be
used to infer aspects of the meeting topic. Component instantiation
rules generate plausible features for a targetted item. These features

correspond to indices which should be traversed to retrieve that item

from memory.

2.2.2 Alternate context search

Elaboration of plausible features is only one way of directing

search, and it 1s not always successful. Suppose, for example, that

39

there was not enough information to narrow a search key to an easily
enumerable (i.e., small) part of the data base. In a memory where
records refer to other contextually related records, it might instead be
appropriate to search memory for an alternate, more retrievable context.
In other words, retrieval can proceed by searching for a related context
which (1) might be more retrievable than the target item, and (2) might

refer to the item targetted for retrieval.

Since CYRUS! ﬁemory is organized in event categories, alternate
context search in CYRUS corresponds to search for an episode related to
the targetted event. Since sightseeing in the Middle East would have
had to happen during a trip to the Middle East, retrieving a trip to the
Middle East could aid retrieval of an appropriate sightseeing
experience, Thus, the following reasoning would also be appropriate to

answer the question above.

A3: In order to go sightseeing in the Middle East, I would
have had to have been on a trip there. On a vacation
trip, I wouldn't go to see oil fields, so I must have been
taken to o0il fields during a diplomatic trip to the Middle
East. Which countries might have taken me to see their

0il fields? Saudi Arabia has the largest fields, perhaps
they took me to see them. Yes, they did when I was there
last year.
Why does it seem reasonable to search for "trips" when a "sigh-
tseeing" episode should be retrieved? How can search for alternate

events be constrained? Only alternate contexts that might be related to

an event targeted for retrieval should be searched for.

In general, for search to be constrained to relevant contexts,

memory categories must hold generalized information concerning the

relationships of their items to items in other memory categories. In

CYRUS, alternate context search is facilitated by three things:

40

1. knowledge of the usual relationships between event
categories

2. a set of context construction rules for constructing a new
context based on that knowledge

3. a set of search strategies for directing search for the
target event within the context of the alternate event

Thus, CYRUS knows about the usual relationship between sightseeing and
trips, how to construct a trip context based on a sightseeing context,
and how to search the sequence of events of the trip to find a sigh-

tseeing experience once an appropriate trip is found.

2.3 Maintaining a conversational context

Maintenace of a conversational context is necessary for resolution
of ambiguous references, anaphora, and pronominal reference. Suppose,

the question above were followed in conversation by the following one:

(Q2): Did you talk to the workers there?
In order to understand what "there" means, the answer to the previous
question must be consulted, 1In order to understand which workers are
being talked about, the context of "visiting oilfields™, plus knowledge

about oilfields themselves must be used,

Maintenance of a conversational context can also constrain memory
search. Often, it is necessary to search only the context of the answer
to the previous question to find an answer to the current one. 1In the
example above, for example, only the events involved in Vance's visit to
the oilfield in Saudi Arabia need be searched for an answer, If the

previous context is maintained, it can constrain search to that episode

only, so that all of memory does not have to be searched.

41

2.4 Summary of retrieval

The retrieval process described can be seen as a process of

reconstructing what might be true, and checking memory to make sure it
indeed was. To retrieve an episode of "seeing oilfields", a hypothesis
was made about the type of event it might have been (sightseeing), where
it might have happened (Iran, Iraq, Saudi Arabia, etc.), and what else

might have been going on at the time (a trip).

Judging from this example, the process of retrieval requires at

least the following processes:

1. selection of a category for search
2. search within the category for the targeted event

3. elaboration on the specification of the event to be
retrieved

4, search for episodes related to the target event

3. Requirements on the memory organization

The ability of memory to support retrieval without enumeration is
also dependent on the memory organization. The traditional solution
within computer science to the non-enumeration problem is to index items
within categories. An event should be indexed in a category by those of
its features that are salient to the category. In that way, specifica-
tion of an indexed feature will enable retrieval of items with that

feature without enumerating the whole category.

If memory categories are heavily indexed by salient features,
retrieval processes will have a large selection of features to specify,
any of which might specify a target event. The retrieval process will

42

be made easier since the easiest elaborations can be attempted first.

The richer the indexing, however, the more space is needed for

storage. Indexing must be controlled so that memory does not grow

exponentially. In CYRUS, similarities between events are used to

control indexing. Memory keeps track of the similarities between events
within a category, and 1limits indexing to the differences between
events. Thus, if almost all the events in a "diplomatic meetings"
category are with foreign diplomats, indexing them according to the
occupations of their participants would be redundant and therefore
unnecessary. It would not divide the category into significantly smal-
ler parts. If, however, one of those meetings were with someone other
than a foreign diplomat, indexing the meeting by that feature would
differentiate it from other events in the category. 1In fact, the
similarities which constrain indexing correspond to the generalized

information necessary for retrieval.

Finally, a memory for events should maintain itself., This means

that the process of selecting indices should be automated, It also
means that events must be sub-indexed within the sub-categories that are
formed when multiple events are indexed in the same way. Otherwise, the
sub-categories would have to be enumerated. This places another
requirement on the updating processes. In order to constrain later
indexing, and in order to guide the retrieval strategies, the automatic
updating process must also keep track of the similarities between events
in each newly-created sub-category. If we don't want retrieval to slow
down as new events are added to memory, then memory must be able to
maintain its organization, creating new conceptual categories when

necessary and building up required generalized information, CYRUS does

43

this through a series of organizational strategies.

Another aspect of maintaining memory's organization involves
monitoring memory search. More frequently requested information should
be more accessible than less frequently requested information, and more
recently accessed information should be more accessible than less
recently accessed information. This involves both reorganization of
memory taking frequency of access into account and restructuring the
organizational strategies themselves, so that more frequently asked for
types of information will automatically be organized for accessibility
as they are added to the data base. This, and other memory maintenance
problems which have not been described here, are being addressed in

current and future research,

44

Psychological Investigations of
Natural Command and Query Terminology

Thomas K. Landauer
Susan T. Dumais
Computer-user Psychology Research Group
Bell Laboratories, Murray Hill, NJ

It is frequently asserted that unsophisticated users would
find computer systems more congenial if communications with
them were to employ more "natural" words. 1In a series of
empirical studies, we have (1) developed a method for iden-
tifying natural command words for a particular task, (2)
tested the value of the resulting natural command lexicon
in the initial stages of transfer from manual to automated
task performance, and (3) induced people to form "natural"
data queries and analyzed the language they used.

Identification of "natural" command terms. Twenty-two stu-
dents in secretarial schools and twenty=-six high school
students with typing skills were given manuscripts with
author's marks. The author's marks indicated a variety of
desired corrections corresponding systematically to the
kinds of changes that are accomplished in manual or compu-
ter text-editing operations. The students were asked to
write instructions to another typist, who did not have the
author's marks, specifying what was to be done to the
manuscript. This method produced verbal descriptions of
actual editing operations (e.g. "take out the word the")

as contrasted to description of the author's marks {e.g.
"crossout") or goal (e.g. "fix the spelling"). 2mong
noteworthy resulting observations were the following:

(1) There was little agreement on word use; e.g. the three
most frequent operational verbs used accounted for no more
than 33% of descriptions of any one correction, (2) The words
used were not like those commonly employed by computerized
editing systems, e.g. the verb "delete" was never used, and
(3) Unlike many computerized text-editing systems, students
and secretaries tended to use different words to describe
operations on characters and blanks, but the same words to
describe similar operations on whole lines and line-internal
strings (e.g. "change 'string a or line a' to''string b or
line b'").

Testing the value of natural command terms for initial learning.
We devised a set of miniature text-editing systems, each con-
sisting of only append, delete, and substitute operations plus
start and stop commands. For one version, the verbs used in

45

the operation commands were "append", "delete" and "substitute",
terms often used in computer text-editors. For another, they |
were the verbs most frequently used by secretaries and typists |
to describe the required action, "add", "omit", and "change",

respectively. A third variant used randomly chosen English

verbs, "cipher", "allege", and "deliberate" as a baseline

control for lexical naturalness. In addition, the text-

editors varied (a) with respect to whether the command verb

was to be spelled out or abbreviated to its first letter,

and (b) with respect to whether the same command word applied

to both line-internal strings and whole lines (e.g. "omit /a/"

for within - and "omit" for whole-line) or used different '
command words (e.g. "change /a//" for within-line and "omit"
for whole-line). Forty-eight secretarial and typing students
each spent about two hours studying an 1ntroductory self-
instructing manual and SLmultaneously doing a series of on-line
learning and test exercises. The manuals varied only in neces-
sary ways (essentially only in command names) and as little
extra help as possible was provided.

The main results of interest were as follows: (1) The time

to perform test exercises was not significantly influenced by
command name variations; subjects performed as well when they
were learning to "allege", "cipher", and "deliberate" as when
they were learning to "add", "omit" and "change". However, a
post-session questionnaire revealed some subjective preference
for the more familiar terms. It is also important to note
that the subjects were learning a very simple system with very
few terms, and that they were not required to remember the
terms over substantial periods. It is possible that "natural"
terms would be advantageous in larger lexicons or when long-
range recall was necessary. However, natural words do not
appear to provide substantial benefit during the highly cri-
tical first few hours of introduction to the new and exotic
computer aided text-editing environment, as one might have ex-
pected and/or hoped. (2) Abbreviated command names were
slightly more time-consuming to use at first, but became sig-
nificantly less so after some practice. (3) In this case, at
least, the use of different commana names for whole-line and
within-line operations resulted in better performance than
using the same name for both. This is contrary to subjects'
usage in spontaneous descriptions. We hypothesize that the
requirement to use different syntactic constructions in our
editors was responsible; that differing command words make it
easier to learn and use differing constructions even if the
operations are naturally thought of as similar.

Characteristics of natural data specifications. Three hundred
and thirty-seven college students tried to specify verbal
objects. They were given a list of items like "newsweek",
"Empire State Building"”, etc. and asked to try to specify each
so that another student or (in other cases) a computer would

46

respond with the provided word. There were no restrictions
as to the form or content of the descriptions (except, of
course, that they could not contain the target item).

Among interesting characteristics of the response were these:-

(1) students rarely used boolean expressions more complicated
than simple conjunction. (2) Specification by exclusion
(e.g. "a popular weekly newsmagazine other than Time") was
very infrequent despite the intentional inclusion of items
that easily admitted of such specificatien. (3) The most
common specification techniques were simple lists of positive
attributes or a single immediate superordinate, followed by a
list of attributes (e.g. "a tall building in New York located
on 34th Street and 5th Avenue"). (4) Specifications were
often very vague and depended heavily on presuppositions about
preferred responses of the target person or system (e.g. "a
tall building in New York", a specification that_apparently
assumes that one member of a large class will be known to be
most representative or most dominant and will be given in the
absence of further specification).

We have no evidence as yet as to whether systems allowing
"natural" query specifications would be easier to use.
However, it does seem apparent that the use of more precise
expressions cannot be expected without special, perhaps dif-
ficult, training.

47

ORGANIZING MEMORY FCGR USE N UNDERSTANDI!

Ly
Michael Lebowitz - Columbiz university

1 Introduction

gpisodic memory plays an impoctant role in the understanding of natural
language. It can oe used to provide context for top-down processing, to
determine the segaents of a text that shonld be focused upon,
situation-dependent Adsfaults, and so forth. While this should come as no
great surprise, it is the case that most of the work relating memory (in the
form of databases) and language understanding has emphasized the util!ity of
natural languaye froni-ends for databise query ('llarris 78, Kaplan 77, Woods
and Kaplan 72], for example), rather than the ways that memory can be used in
language processing. Furthermore, what wnrk there has been on using memory
for language processing has been 'n the form of question answering, ignoéing
entirely the crucial issue of usinjy -xisting knowledge 1 memory > help
acquire more information. 'ine us? of memory in the process of reading text
for thz purpose of updating memoty - and the e=f{fect tnis has on wuiory

organization - is extremely important, and is the issue [wili address nere.

In the course c¢f this brief presentation I will be using examples from z
computer model that is concerned with the relation between language and
memory. 1PP (the Integrated Partia! Parser), written at Yale, is able to read
news stories about terrorism and record them in a coherent memory. It makes
qgeneralizations thit help organize th:> memories of the events described and
are used to assist in later processing. (PP (- fully described in ([Lebowitz
8). A second program, RFSEARCHEER, is in the -~riy stages of loavelomment. Tt

I

will be based upon IpP, but wiil include a memory of a seientific domain,
7

built up by readiny technical abstracts. weo o tpe complericv o the

material that RESEARCHER will be readirg, 2= e oI memocy in rche

understanding process will be extrenely important.

The point that I want to sktvess hece i5 that the nead for applving
information from menory during undarstanding (knowl-edje acquisition) must he
considered while attempting to determine an appropriate memory organization.
In the space available here I will give several oxamples illustrating the need
for the application of episodic memory to understanding, and then outline an

appropriate memory organization that keeps this use in mind.

2 Why we need to use memory in understanding
The following story is rather typical of those read by IPP.

Figure 1l: Attack on kibbutz
Sl - UPI, 7 April 30, Israel

Israeli troops today stormed a children's dJormitory in a kibbutz on
the Lebanese border to free hostages seiz:d nine hours earlier by
gun-blazing Palestinian querrillas and kiiled all five raiders.

There are two problems in understanding story S$i that memory can help
overcome. The first inveolves the meaning of the werd "stormed”, which in this
domain can refer to either terrorists attacking a building or qgovernment
officials counterattacking a group of terrorists. A similar problem arises
with "seized", which could plausibly refer to either a kidnapping or a
building takeover. The later ambiguity is in fact never resolved in this
text. Each of these problems is easi'y overcome by 3ccessing the rreper
information from memory, generalizations such as those in the next [iqure,

made after reacding earlier stories.

49

Figure 2: Gencralizations about extoriien in Isrsel

Israeli troops corry out counterattacvs against terrorists.

n

Palestinisis in Isra2l engege in extortion by taking places cver.

Both ambiguous worces in Sl can be resclved by assuming that when relevant
genzralizations exi:z, words shouid be disamtiguarctn so that Lthe new stcty
fits the existirg generalizationz. The first generalization ailows the

disambiguation of "stormed" as i

[l

is reaq, using this sule. Cimilarly, we
assume "seized" indicates a takz2over, since that corresponds to the second
generaliéation. kad the generalizatior. stated that extortions in Israel were
usually kidnapping:, then "seized" would have be2n assumed to refer to such an

event.

Notice that we cannot expect a person (or ccmputer program) to be
pre-supplied with all the generalizations necessary to resolve problems of
this sort. Instead, these observations must be develcped by reading (ot

otherwise learning about) specific events and gencralizing from them.

The following story also requires information from memory.

Figure 3: Basques implicit in attack
S2 - New York Times, 24 August 79, 3pain

Bombs expladed in « French bank and a French Lamigraticr office in
northern Spain eariy today, cansing demage tih no iajuries, according
te police,

this stery does not specify the identity of the terrorists who set off
the explesion described. Howzver, most people witnh some knowledge >f Spain
are aware that this wis probably a Basque attack, duch a conclusion cnmes

from a previously mads goneralization abeut terrorists in Spain.

50

The next figure shows how 1PI hendles story £2 vhen it has existing in
memory a generalization that Basques are the altackzrs i bombings in Spain.
Figure 4: IPP inferring default col~ f 11 fearen s

Generalization (BASQIE-EN) already in memory:
S-DESTRUCTIVE-ATTACK with:

ACTOR (1) DEMAND-TYPE SEPALATL:M A TIL I
NATIONALITY BASCUI K= -
METHODS (V) AU SEXPLOUE-BONB
LOCATION (1) AKREA WESTERI--EUROPZ
NATION SPATN
RESULTS (1} AU CAUSF -DiMn G

* (FMRSE S2)

Story: S2 (8B 24 79) SPAIN

(BOMBS EXPLODED IN A FRENCH BANK AND A FRENCH
IMMIGRATION OFFICE IN NORTHERN SPAIN EARLY 'TODAY
CAUSING DAMAGE BUT NO INJURIES ACCORDING TO POLICE)

>>> Beginning final memory incorporation ...

Feature analysis: EV16 (S-DESTRUCTIVE-ATTACK)

RESULTS AU CAUSE-DAMAGE

METHODS AU $EXFLODE-BOMB

LOCATION AREA WESTERN~EUROPT.
NATION SPAIN

Indexing EV16 as variant of BASQUE-GEN

Inferring feature ACTOR DEMAND-TYPi SEPARATISM” ST REE
of EV1S

Inferrino feature R77TJK NATION BASQUE TR
of EV16

>>> Memory incorperation complete

In this example, [IPP tezogai.es that S22 17 an instance of
generalization tnat it has made previously (B oQUE-GEN) ond uages *out
gencralization to supply default charecteristics of -he terrorists, in

51

particular, IPP assumes, corresponding wirh the wgenaralizatien, that *he
terrorists are Basque separatists. The deteimination of defaults of vhis et
is a majer use of generaiizations. IPP aizo 'niexes this eveont as an inatance
of the most velevant generalizetion, &2 taas - co1 czrrieve if later to amake

further generalizations. 1 will say more about nais cast point helow.

3 Organizing meimory for understanding
Examples such a3 S1 and 2 pluze see:ral censtraincs upor: the
organization for memory. In particular:

1. It m '~ be possible to access generalizations based »n partial
informa.ion so that relevant information can be applied during
understanding, and not just after it haes been complzted.

2. Many different features of a generalizaticn must provide access t~
that generalization, so that instances with different relevant

features mentioned explicitly can all be identified.

3, Generalizations must lead to memoriss of actual events so that
further generalization can occur.

These constrain:zs suggest a possible memcry scheme. This sclemi, as
implemented in IPP, has several trea-like structures, each consisting of rore
and more specific versions of gereraiizeticrns. The gereralizations ir i
troe are used to or#nize actual memories of anare. The trees are assnnci dvod
with high-level krewledye sceructures thar Ar: cxea by del Sl ovenns o b
domain at an intenticnci level. (Fo: tarporism these iwlwxle ext>etice wd

attacks on ind:ividuale,.

A typical tree ol generalizations in IPP's memory night Lo~% sorethia

like the next figure,

A trae nf generaiizations such an the oae .n Figure 5 mulriple fndexing

between cach gencraiizetion and ite more sp citie ver<ions. Normaliy <ach

52

Figure 5: An IPP Generalization Tree

S—-EXTORT
/ \
Gl - kidnappings of G2 - hijackings of
businessmen German planes

I
v

G3 - kidnappings of businessmen
in Italy by the Red Brigade
|

v
the kidnapping of a shoe manufacturer
in Milan in August

novel feature of a generalization is used as an index for that node in memory.
(Some exceptions for common features are mentioned in [Lebowitz 88].) So in
Figure 5, generalization Gl could potentially be accessed once a story has
been identified as an extortion that is a kidnapping or an extortion with the
hostage being a businessman. This kind of identification is exactly what we
need to do during the processing of a story so that the remaining information
in a relevant generalizations can be used to help processing in the ways

indicated above.

The processing scheme that uses such a memory involves identifying the
most specific generalizations relevant to a story as it is read, using any
features accumulated from the story along with the corresponding
generalization index tree. Then the remainder of the story can be interpreted
in terms of these generalizations. Further, by having actual events stored
under the generaiizations, by the time we heve finished reading a story we
have available similar events that might be suitable for additional

generalization.

53

Similar schemes for organizing memery have 1lso shown to be useful in
explaining reminding pheromena [Schank &0 ond hupar memory retrieval

[Kolodner 80].

4 Conclusion

Clearly the menory scheme devised for IFP somewhat too simple. [For aere
complex types of data (such as in the scierntific doimain that will be dealt
with by RESEARCHFR), memory will <clearly hove to be more rongly
interconnectad, resulting in a structure that is mere a netwsrk that a tree.
Howcver, the organizacion used for IPP indicates how the organization of
memory must be appropriate for the process cof knowledge acquisition, and not

just the retrieval of information.

5 References
{Harris 78] Harris, L. R.
Natural language processing applied to data base query.
In Proceedings of the 1978 ACM Arnual Conference. Association
for Computer Machinery, Washington, D. C., 1978.
[Kaplan 77] Kaplan, S. J.
Cooperative responses from a natural fanguage data base query
system.
Technical Report, Moore School of Engineering, Universicy of
Pennsylvania, 1977,
[Kolodner 88] Kolodner, J. L.
Retrieval and organizational strategies in conceptual memory: 2
ﬂomgntnr model.
Technical Roport 187, Yaie University Department of Computer
Science, 1980.
{Lebowitz €8] Lebowitz, M.
Generalization and memory in an integrated understandiny
systen.
Technical Report 186, Y.le University Department of Compul er
Science, 1984.
PhD Thesis.
{Schank 80] Schank, R. C.
Lanquaje and Memory.
ngnx_lvp Science 4(3):243 - 284, 1980.
{Woods and Xaplan 77}
Woods, W. A, and Kaplan, K. M,
The lunar sciences natural language information system: Finai
report.
Technical Report BBN Report 2265, Boit Beranek and Newmar,,
Irc., Cambridge, MA, 1972.

54

|

Artificial Intelligence and Human Factors E£ngineering:
A Necessary Synergism in the Interfacz of the Future '

WORIK I NG DRAMY
Paul Roller Michaelis and Mark L. Miller

Computer Science Laboratory
Central Research Laboratories
Texas Instruments Incorporated

M.S. 371, P.O. Box 22%621
Dallas, Texas 75265

ABSTRACT

In the coming decade., a new generation of
computer-hased systems offers the potential to do for the
human mind what the industrial revolution did for human
muscle. To realize this potential, we aust study
sophisticated kinds of software, in which the computer
perfores tasks previously thought to require human
intelligence, We must also study how to organize such
hardware/software systems to interact most efésctively with
-their human masters.

TI’s Computer Science Laboratory is attempting to
construct ard evaluate experimental prototypes of such
systems. Their design has required unique comb.nations of
talent from gdiverse disciplines. We are combining expertise
from two fields in particular: artificial inteiligence and
human factors engineering. This talk will 1flustrate
synergistic effects of cooperation Betyeen these twy fields.
Cxamples will &e crawn from current research projects in
natural language processing and advanced computer based
instruction.

55

d‘"‘-

T

miLL&ep

MmicHAE LIS &

56

TARBLE OF CUNTENTS

- §£.8 INTRODUCTION
2.8 INTERACTIVE NATURAL LAN.Uuth SYOTEh3

2.1 Descragtion of thi Frobiew

2.2 What Human Facters ctontribute-

2.3 What Artifacial Intelligence Contrdutes
3.8 INTELLIGENY TUTORING SY& LMy

3.1 Descrirtron of the P, 2Licm

3.2 What Humar Factors Cantributes

2.3 What Artifacial Intellinence Contridutes
4.8 CONCLUSION

5.8 REFERLNCES

1.0 INTRODUCTION

Peaple wiil have trouble performing a physical task (€
the demands of the task exceed their physical capacities.
To many of us nowadays, that seems like simple common sense.
However., 1t was not until the late 1898°s that Frederick W.
Taylor made his pioneering studies of how how to design jobs
and tools so that they more closely match the physical
capacities of people. (As an aside, what Taylor studied was

shovels and how best to use them.)

The field of human factors engineering had its birth
during World War II. The founders o° the field recognized
that errors can occur in man-machine systems when the man’s
job in these systems overloads his mgntal capacities.
Before going any further, let’s first examine what is meant
by "man-machine system.™ In a man-machine system, one or
more of the components is a person, and the person must
interact with the machine components., The designs, goals
and complexity of these systems vary considerably. Figure 1
shows a schematic of a simple man-machine system.

Show Foil Number -1~ Here.
(Man-machine system cartoon from Chapanis, 1963)

- A D > G S A B W D T W BN T WY G s SO PO D P T Y D P D D DY D A G T L D T B > Ty T

During Wortia War II it was found that many errors in
human-machine systems, such as gairplane accidents due to
“pilot error,' could in fact be traced to the design of the

controls and displays. These are the components of the

58

THE WORK ENVIRONMENT

INFORMATION
PROCESSING

go "

SENSING MAN CONTROLLING

conmdi’.'s'"""

= outPUT

59

P D T T I

system through which the human and machine components
exchange information. Researchers such as Alphonse Chapanis
and Paul Fitts discovered that certain control and display
designs virtually invited even experienced pecplie toc misuse
or misinterpret them. The solution lay in redesigning tFr.
controls and displays so that they operate in manner more

compatible with the mental capacities of people.

The TI Computer Science Laboratory develops
human-machine systems in which the michine is a digital
computer whose software is intended to be (more or less)
"intelligent," Efforts to create such artificially
intelligent systems have been underway for only a few
decades; the founders of the field (e.g., McCarthy (19651,
Minsky £19651, and Newel!l & Simon (1972)) are still active
contributors, In even this short time, much has been
accomplished. There are systems that can play master-~level
chess, solve complex integrals, understand and obey commands
stiated in simple English, speak in a human-like wvoice,
recognize objects in scenes, solve analogy probliems, and so
on. Central themes, such as the notion of a problem space.
means-ends analysis, and heuristic programming have emerged
to organize thinking in the field. AI software techniques
such as semantic network Know.edge representations,
augmented 1transition networks and chart parsers, and
production rule deduction systems have gained wide

acceptance even as better approaches appear,

60

The long term goal of this work is to tieve lop
“intelligent interactive systems"” which do for people’s
minds what the industrial revolution did for their amuscles.
Accomplishing this goal requires combining the skills of
hiuman factors sngineers and AI specialists, The purpose of
this talk is to describe the benefits of a synergist.c
relationship between these two fields, Two research
projects currently underway at TI serve to i1llustrate these

benefits.

2.0 INTERACTIVE MNATURAL LANGUAGE SYSTEMS
2.1 Description Of The Problem

Chapanis (1975) hags demonstrated that interactive
natural language dialog is remarkadbly unruly, with many
misspellings and grammatical errors. Although progress has
been made in getting computers to process pristine Englisn
text, it will be many years before computers will by able to

process unlimited interactive natural language dialog.

AS our group works toward a system that interacts in
true natural language, another project is under way that s
oriented toward intermediate results,. The goal! of thas
project is to define a human angineered subset ¢f natural
language. This subset woulg retain all of the user-orienten
benefits of unrestricted natural language dialog. Howewver,

its use would greatly reduce the processing burden that true

61

natural language interaction places on thgz computer. This
is clearly a goal that can ¢C2st be accomplished by
cooperation between artificial intelligence and human

factors specialists.

2.2 What Human Factors Contributes

Ford, Weeks and Chapanis (1388) and Michaelis (198@)
reported 2 series of experiments that were conducted in the
human factors laboratory at Johns Hopkins. In these
experiments, two-person teams exchanged information over a
telecommunications medium in order to solve problems. Half
of the teams were rewarded solely for correctly solving
the:r problems. The other hatf had their correct soiution
reward diminished for each word token they used. Thus,
these latter teams were encouraged to keep their
communication as brief and concise 2as possible. The
problem-solving task assigned to the subjects in the
Michaelis experiment is typical of the type used in these
stucies: One team member was given a completely assembled
prism-shaped wooden model and was required to assist the
other member, who had to build an identical model from the
separate parts. In these experiments, the team members were
in different rooms. 1In the fora et al. study, half the

teams communicated by voice and the other half via

teletypewriters; in the Michaelis study, all communication

was over teletypeuriters.

In both studies, there wuwere dramatic and highly
significant differences between the two experimental groups.
However, it is important to note that problem-spolving
accuracy was not affected by self-imposed brevity.

D S e G . B G G GBSy B D GO W W W D e S P - T TR SR e GRS S W S e W g wm -

Show Foil Number -2~ Here,
(Summary of the data presented in the next paragraph.)

D W T S . - A G W Y AP e D G o A . — - — - - - - -

AmoOng the significant differences noted in both studies
are that the self-limited teams generated, on the average,
abou{ one fifth as many word tokens, one third as many word
types, and one third as many messages, In a linguistic
analysis of the protocols from their study, Ford et al.
found that the self-limited subjects used proportionally
more nouns (41.9 vs, 26.1%, g < .0Bl), feuer pronouns ($.5
Vs, 11.9%, p < .001), fewer wveru:s (18.3 wvs, 16.9%,
p < .001), more adjectives (18,3 vs. 186.4¥%, p < .081) and

fewer prepositions (8.9 vs, 11.3%, p < .035),

Show Foil Number -3- Here.
(Summary of data presentea in next paragraph.)

D S n - — T Gy W WD e W W s P W n P . S B S R G D Ga N PP T A WD — e WO W

Probably the most interesting finding of these studies
is that, on the average., the self-limited teams solved their
problems faster than their unlimited counterparts, 14.9
versus 19.3 minutes in the Ford et alJ. Sstudy and 20.5
versus 27.6 minutes in the Michaelis study. This difference
was not statistically significant in the ford et al. study,

However, in the Michaelis study, which tested more teams (48

When compared with the unlimited teams, the self-limited
teams generated:

0 One fifth as many word tokens.
0 One third as many word types.
0 One third as many messages.

Mean Percentenages of Parts of Speech Used by Teams in the
Tuo Word Usage Conditions. (from Ford, et al., 1980)

Parts of speech Self-limited Unlimited p
Nouns 41.9 26.1 .0e
Pronouns 9.9 i1.9 001
Verbs 18.3 16.9 .01
Adjectives 18.3 18.4 001

Prepositions 8.9 1.3 035

Average Number of Minutes for Teams to Solve Their Problems
in Both Experisents and Word Usage Conditions.

Experinent Self-limited Unlimited p
Ford et al. 14.9 19.3 N.S.

Michaelis 28.5 27.6 (8,885

65

Vs, 32), the p value uwas less than 8.085. This is strong
evidence that requiring people to be concise does not hurt

their ability to communicate; it may even help.

2.3 HKWhat Artificial Intelligence Contributes

At this point, natural language specialists in the
Texas Instruments Al group became involved. They contrasted
the limited and wunlimited protoccols from the Michaelas
study. Thear goal was t2 determine how the dialog
limitation might affect the processing hurden of natural
language computer systems. Theu were specifically concerned
with contrasting the effects on systems trat do a syntactic
analysis first and then pass the results to a semantic
component, versus those which integrate the semantic and

syntactic components during analys:s.

Pronominal reference and the attachment of
prepositional phrases, two stumbling blocks for many present
syntactically based systems, occur somewhat less frequently
in the limited condition. However, in the limited protocols
over one third of the utterances were ungrammatical, while
in the wunlimited case this was closer to one tenth. They
therefore believe that syntax-first approaches will have
gignificantly more problems parcsing the l:mited condition

utterances than systems which have Jess reliance on syntax.

hHi

The word types wused in the limited condition are
virtually a subset of those used by the unlimited users;
apparently, many of the werds used by the unlimited subjects
were not necessary for the solution of the problem. This
finding has also been reported in a study of ‘nteractive
limited-vocabulary dialog (Michaelis, Chapanis, Weeks., &
Kelly, 1977), and suggests that the cunceptual coverage of
the limited protocols 15 less than that of the unlimited.
Therefore, a semantics based system, such as a semantic
grammar (c.f. Burton, 1976) or conceptual analyzer (c.f.
Schank, 1975), could possibly gain efficiency ¢from the

language limitations.

The protocols were also analyzed to examine whether the
problem solving strategies used were different between the
unlimited and limited conditions. The protocols were
classified according to the problem solving strategies used
and the ordering o0f their subgoals. No statistically
significant differences were found between the unlimjted and
limited conditions in the number of teams using the

different strategies.

In 38 of the 4B protocols (nineteen in each condition)
the sub jects used subgoals characteristic of class:c
means-ends analyses (Neweil 8 Simon, 1872). These teams
established two major subgcals of the task, builaing the
triangular sides and building the rectangular base. The

order in which these were performed didg not significantly

67

differ betuween the limited and unl:mited cond:tions.

The ten remaining teams did not have obvious sub_,als;
six used an approach in which they described the appearance
of the model, and the remaining four wused a strategy of
making small pieces and then connecting these together,
Again, no significant differences were found between the two

conditions in the number of teams using each strategy.

Show Foil Number -4- Here.
(Conclusions from NLP research)

- o G W T W D WS M - D D TP A - i . - A S —— W S D D - W WD v S -

Yo summarize the findirigs thus far in this research
effort, human factors specialists found no evidence that the
dialog restriction discussed in this paper will hurt the
user’s efficiency. Indeed, the Michaelis study suggests
that the efficiency of the users may actually be :1mproved by
well chosen 1limitations on the interactions. Further, the
language restriction could naot be shown to significantly
change the problem solving strategies used by the subjrcts.
The protoccl analyses performed by artificial 1ntelligance
specialists suggest that semantic:lly based interactaive
natural language processing systemsc mignt also benefit from

this restriction.

68

Conclusions

From a human factors perspective:

0 No evidence that the dialog restriction hurts people’s
ability to communicate,

0 No evidence that the dialog restriction changes people’s
problem solving strategies.

From an RI perspective:
0 Some evidence that a semantically based interactive

natural language processing system might benefit froa
this dialog restriction,

69

3.8 INTELLIGENT TUTORING SYSTEMS

A second illustration of the RI/HF synergism involves
the development of “intelligent tutoring systems" intended
to teach elementary computer programing. Such systems
represent enhancements over conventional *arill and
practice" or “frame-based"” multiple-choice branching systems
because they incorporate considerable knowledge about the
task, the student, and about tutoring per se. The long-term
goal is to provide a computer-based educational experience

comparable to a one-on-one interaction with an expert human

tutor.

3.1 Description Of The Problem

Three systems intended to teach elementary computer
programming are examined. The first system, BIP (for "BASIC
Instructional Program") (Barr, Beard and Atkinson 1976]
serves as a problem solving laboratory wherein students
solve programming exercises in the BASIC language. The
second system, SPADE-@ (for "Structured Planning and
Debugging Environment”) [(Miller 19791, was developed as an
Al exercis;. Its purpose was to articulate the underlying
programming knowledge involued in writing graphics programs
in the LOGO (Papert 19801 Ilanguage. A third system.,
currently under development, blends both Al and human

factors considerations.

70

INTEU [EENT
TATAR /N G-

P Ly
\— FEILITT

BIP 1S an effertive workaing computer-bdaced
instructiconal system which has been 10 use by the Navy for
some time, both as & researcn wvehicie Jand as a practical
tool for teaching BASIC programming. It serves as a usefuyl
representative of previocus work on programming tutors. (BIP
has been in use in our laboratory for over a year.) BIP s
able to individualize the sequence of tasks encountered bty a
given student, on the basis of 2 s«xi1lls model ainferred from
performance on prior tasks. Hence, nat every student
encounters every task; and gnte encounter tasks -an 4
different order than others. We p-esent 2 (sl:;gntly euite)
excerpt from a session with this system t5 1ilustrate 1ts

=

capabilities ang limitations,

COMPUTER: On the first n:g i XMuS, someone’'s irur lou:
sent him a periraioye 1- «+ rear ree. On the
second day, they sent lwo turtle doves plus
another partridge (3 qufts, 2nd day). This
continued through the twel+th day, when tne
true love sent 12 lcrds, {1 lad:ies. ... all

the way to yet anocther partridge. write 2
program that camputes and prints the numb2:~
of gifts sent on that twelfth day. (This s
not the same as the TOTAL number of gifts
sent for all 12 days!')

STUDENT: HINT?

COMPUTER: This program requires a loop. £ach execution
of the loop involves accumulating the wvalue
of the index into a total.

STUDENT: HINT?

COMPUTER: Finging a total almcst always means you need
two things:
(1) Setting a variable tc B before the loop.
(2) Accumutlating wvalues into that wvariable
within the loop.

/1.2

BIP has impressive features for creating flow diagrams
and does an excellent job of sequerncing tasks. However, its
understanding of the domain is limited to a flat collection
of language constructs. Based on informal analyses, BIP
often rejects answers that students believe to be correct;
it tries too hard to elicit a single solution, which is not

always appropriate in complex domains such as programming.

BIP was hampered by 11ts lack of wunderstanding of
planning and debugging, twe central Al cancerne. While BIP
could individualize the sequence 0nf tasks, 1t could not
individualize the hints Jiwven within 3 task. Thus, &1l
students who encountered *the »¥MAS task and requested tuo
hints would see the same tuc h:ints <hown apove. To imprew:
upon BIP’s pre-stored hints, our problem was twcfcid: to
represent the wunderlying kncwiedge =and <9 apply that

knowledge in a fashion helpful to the human user.

3.2 What Human Factors Contributes

The goal of the Al specialists is to design
“artificially intelligent"” computer environments that tutor
students in much the same way that a human teacher might
tutor his students. The AI technology has progressed to the
point that some very basic questions must be answered before
progress can continue: What makes an intelligent human
tutor successful? What are his tachniques for diagicsing

student problems and misconcegrtiuns® What are nhis

73

techniques for aovising students? In short, how does he use
his intelligence to provice tutoring superior ¢ that
provided by pre-stored hint systems like BIF? All of these
questions relate to the human-cowmputer 1ntervace., so the AL

specialists at TI took the questions to the human factors

group.

Job and task analyses are two of the basic tools of
human factors engineering. The human factors group
addressed the Al specialists’ questions by setting up a
systenm in which a computerized intelligent tutor is
simulated by having an intell:igent human playing the role of
the computer tutor. Very simply., the human tutor observes a
student’s efforts by watching a monitor that s 3slaved to
the student’s work terminal. The tutor makez judgments
about the student’s problems and misconcepgtions, and iypes
appropriate nhelp messages thi* - ppear on the stutent’s nelp
terminal. It is important to recognize that. in th,s
paradigm, the human tutor bases decisions on exactly the
same information that would be available to the computer
tutor, and saimilarly provides help the same way that the

computer tutor should.

In these studies, the human tutor is carefully
evaluated. Human <factors specialists meticulously record
all his activities, along with verbal protocols in which he
explains the rationale behind his decisions. These studies

are not yet complete, but a clearer mode!l of the intelligent

h

human tutor (s already erxerging. One .mportant trena
observed thus far is that the level of sophistication
required for 2 successful Muwaai» tutor might rot need to be
as great as was originally expected,

D G G . Gt G B D P P o s P Gt W em Wm S T Gw e S S AR HA CH S M me e A W

Show Foil Number -X~- Here,
(The following paragraphs, including the BASIC code.)

- e S Cm G G WD G EE VD G e W B e P P W = G A TR G g G R R VS G Gm S SR T S S e e e

Here is an example of a problem a student had that was
easily diagnosed by the human tutor. The student was
learning how to program :n BASIC, using the BIP problem cset.
In this particular problem., the student was asked to take
two numbers, M and N, and compute their sum, difference,

product, and quotient. This is what the student typed:

18 PRINT "WHAT IS THE FIRCT NUMBER"

248 INPUT M

33 PRINT "WHAT IS THE SECOND NUMBER"
49 INPUT N

S0 LET A = M + N

68 LET B - M - N

78 LET C = M » N

82 LET D = ™

At this point, the stucent pdusewv for “JEr a minute.
then asked for help. Quite ctlearly, the stiudent’s prublem
was that he did not know the symbol for davision, Thic scrt
of problem is representative of the type solwved by the human
tutor that would not have been solved by a pre-stored hint
tutor 1like BIP, Note that even a very simple means-ends

analysis model involving sequential accomplishment cf

subgoals is adequate to provide a correct hint here.

The student was asked to write a BASIC program that would

take two numbers, M and N, and compute their sum,
difference, proguct, and quotient. Here is what he did:

18 PRINT "WHAT IS THE FIRST NUMBER"
28 INPUT M

38 PRINT "WHAT IS THE SECOND NUMBER"
48 INPUT N

BLETA:-N+N

GOLETB-M-N

TOLETC-MxN

BOLETD - M

When he got to this point, the student paused for over &
minute, and then asked for help. Hhat information does he
need in order to continue?

76

3.3 What Artifici1al Intetligence Contributes

The crucial contributions of AI to CAI derive from
representing the wunderlying KkKnowledge. In tne case of
programming, representing the domain knowledge requires
asking such quesZions as, “What is 1t that the expert
programmer knows that the novice does not?" Miller’s SPADE-Q
project was more an attempt to investigate and formalize
this type of knowledge than to build a useful programming
tutor. It represented knowledge about programming plans
(i.e,, procedural templates i1ndependent of the particular

programming language) and debugging techniques.

SPADE~® built upon AI work i1n automatic planning and
debugging developed in HACKER [Sussman 19731, MYCROFT
{Goldstein 197431, and NOAH {Sacerdot: 19753. SPADE-3 coulo
prompt the student througl hierarchical planning processes.
encouraging the student to postpore preéemature commitment 1o
the detailed form of the code. (This AI planning technique
grew out of such systems as ABSTRIPS (refl.) SPADE-B
provided a uvocabulary of concepts for describing plans,
bugs., and debugging techniques, and handled the routine

brokkeeping tasks inuvolved in simple program development,

Figure XX 1llustrates a sample interaction with
SPADE-8. The key feature 1s the system’s deeper analysis of
the underlying knowledge. This 15 manifested by commands
for editing the plan -- rather than merely the code -- of

the student’s program. However, the design of GSPADE-Q

SPAOE -&
\Puaw: \PeTure - /

pLﬂ'N (ww))
i’t-f-')t\l (w&u..‘%t
REPEAT U TiMES

L<wew-swg 3\

What now 7

2 Runv W
W Done.
What now ? iﬂunmnc' W \s

2> Oebug WELL
Well uwks a 'REPE\'\T\«)&\) TLAN.

T top \evel comteins Z alesign

deasions. There a@ warmngs on
the code for 4werL-sied.

78

ignored human factors considerations, 1mposing its ouwn
technical vocabulary on the student, and adopting a style of

interaction that took away much of the initiative,

our current work is an attempt to extend the underlying
AI knowledge represented by SPADE-@ and merge it with the

improved human factors guidelines resulting from careful

" analyses of what good human tutors do. Like BIP, it will

dynamically select tasks from a curriculum odatabase; but
like SPADE-@, it will build a model of the student’s problem
solving skills (rather than simply recording which
programming language constructs have been mastered). The
key Al aspect is fine-grained diagnosis of student errors to

provide custom-generated (rather than pre-stcred) advice.

We are basing the design of our new tutoring module on
human factors studies in which a human simulates this
module. As the system implementation progresses, additioneal
tasks will be taken over by the computer., and the need for
the human tutor to intervene will be correspondingly
diminished. The proportion of tasks successfully performed

by the computer tutor is a measure of our progress.

Earlier "intelligent tutoring systems'" such as BIP and
SPADE~-B® used their intelligence to builg models of the
student. However, the interface between the intelligent
tutor and the student remained crude. By working with human
factors engineers, the Al specialists now better understanc

how human tutors interact with students. The emphasis of

79

SR
o aifd § PT
oo

A N SR
WAVEPRRIN BRI

.«
LI e
PO

[@L29)]
inaino

N
%
et
1

%s:.‘

PJ1D00QA3)Y paz

o
O
c

-2

A101STH
uo[ssas

4011p3

X0og yo33ds 03
inding Joang

X

s6ng ® SUD[d

3O 9507 3bpa[MOuYy

(1430%3)
30A13yduy

SS340A3)Y

13008
IN3ANLS

0Z W3ASAS 234

Bicc N
GyiNal

80

0 SIHL X1J VIR XSVLIENS 3ITONVINL

T QNY ¥SViENS 3¥VNOS 3IHL NIIALIE 3IIDVINILINI FHL ONILIO3¥N¥0) °11 3A0QV
10N 338VYNADS 3IHL 3GISNI SI 3IT9NVIYL YNOA “YIAINOY °3J¥VNOS ANV 3ITONVINL

Y SNIAYYEG 40 SASVLIENS 3IHL AILIN4NO0D ATTINISS3IDINS 3AVH NOA, 3d0LNL LYUVHS

o, SASVIENS AIN 9ONIL¥VIS 40438 371401
¥ROA 30 NOILVI0T GNV SNIGVIH 1J33¥00 3IHL 4N 13S 0L ¥3IEW3INIY, :2¥01M1 €wNN(

¥0L1NL .1¥VHS. ONV HOLRL .GWAG. WOY¥3 SINIH d0 NOSIY¥VIHO)I

81

the Al work has now shifted to modelling this tutors/student

interface.

4.8 CONCLUSION

In closing, it is worthwhile to review a central human
factors problem: the division of labor between human and
machine in human-machine systems. In any well-designed
system, tasks are allocated to those components best suited
to perform them. Textbooks on human factors engineering
typically state that machines tend to be superior to humans
in such tasks as calculation and coordination of many
simultaneous activities. Conversely, they state that humans
tend to excel in such tasks as problem solving wuwhere
eriginality is required, pattern recognition, and decision
making based on incomplete or conflicting data, or when
unlikely or unexpected events occur. Thus, these gquidelines
would allocate responsibility <for calculation to the
machine, but leave the human responsible for recognizing

patterns in the results of those calculations.

As artificial intelligence continues to progress.,
machines will bdbegin to achieve superiority over humans in
many aspects of tasks traditionally assigned to humans.
This might lead to speculation that research on
human-machine interfaces may be unnecessary, since the need
for the human component will disappear. For certain kinds

of menial tasks presently performed by humans, this line of

82

HUMANS ARE BETTER AT: MACHINES ARE BETTER AT:

PATTERN RECOGNITION ACCURATELY AND RAPIDLY PERFORMING

COMPLEX CALCULATIONS
APPLYING ORIGINALITY IN SOLVING

PROBLEMS COORDINATING AND PERFORMING MANY

_ _ SIKULTANEOUS ACTIVITIES
MAKING DECISIONS BASED ON

INCOMPLETE OR CONFLICTING DATA PERFORMING ROUTINE OR REPETITIVE

TASKS
MAKING DECISIONS WHEN UNLIKELY

OR UNEXPECTED EVENTS OCCUR MONITORING

- - - - - - e a - - .- - - - - - - = e - - - e - -

83

reasoning is probably sound. However, it is our expectation
that, as work in artificial intelligence and human factors
engineering continues to advance, the nature and power of
the human-computer interface wijll become more critical and
sophisticated. The art and science of interface design will
never become obsclete. Obsolescence is faced only by our

traditional task-allocation guidelines.

This paper has described two examples of research
projects in which AI and human factors specialists have
collaborated. From these projects and others like them, uwe
have learned to stop thinking in terms of separate
disciplines that merely benefit from cooperation,
Particularly in the design of “intelligent interactive
systems," the ©borderline between these twoc fields has
blurred in our eyes. Human factors specialists are learn’ ng
to explgit the tremendous benefits for the human component
made possible by more i1ntelligent software components; Al
specialists are learning to write software that is sensitive
to the needs, capacities, and limitations of the human
component. Due to this kind of synergism, the well-designed
human-computer interface can become a 1link between the
creative thoughts of men and machines, contributing to a
technological revolution that offers to do for the hun .

mind what the industrial revolution did for human muscle.

84

5.8 REFERENCES

parr, Avron, Marian Beard and Richard Atkinson. The
Computer as a Tutorial Laboratory: the Stanford BIP
Project. JInterngtional Journal of Man-Machine Studies.
8, 1976, pp. B67-596.

Burton, R.R. Semantic Grammar: An Enqgineering Technigue

for Constructing Natural Language Understanding
Systems, BBN Report No. 3453, 1976,

Chapanis, A. Man-Machijne Engineering. Belmont, California:
Brooks-/Cole, 1965,

Chapanis, A. Interactive human communication. Sciantific
American, 1975, 232(3), 36-42.

Ford, W. R., Weeks, G.D., & Chapanis, R, The effect of
self-imposed brevity on the structure of dyadic
communication. The Journal of Psycholoqy, 1988, 184,
87-103.

Goldstein, Ira. Understanding Simple g'cture Programs.
Massachusetts Institute of Techn::logy Artificial
Intelligence Laboratory, Technical Report ?7?, 1974.

McCarthy, John, et al.. LISP 1.5 Programmer’s Manual. MIT

m———

Press, 1965-6.

Michaelis, P.R. Cooperative problem solving by 1like~ and
mixed-sex teams in 2 teletypewriter mode w:ith
unlimjted, self-limited, 1ntroduced and anonymous
conditions, JSAS Cataloq of Selected Documents in
Psycholoqy., 19680, 18, 35-36 (Ms. No. 2066).

Michaelis, P.R., Che2panis, A., Weeks, G.D., and Kelly, M.
J. Word wusage in interactive dialog with restricted
and unrestricted vocabularies. IEEE Transactions on
Professiona}l Communication, 1977, PC-28, 214-221.

Miller, Mark. "A Structured Planning and Debugging
Environment for Elementary Programming.' International
Journal of Man-Machine S-udies, Januar) 1879,

85

Minsky, Marvin. ‘'Matter, Mind, and Models." Proceedings of

International Federation of Information Processing.,
1966.

Newell, A., & Simon, H.A. Human Problem Solving. Prentiss
Hall, 1972.

Papert, Seymour. Mindstorms. Basic Books, 1988.

Sacerdoti, Earl. A Structure or Plans and Behavior,
Publisher???, 1975,

Schank, R.C, conceptual Information Processing. New York:
Elsevier, 197S5.

Sussman, Gerald, A Computational Model of Skill Acquis:tion.
Massachusetts Institute of Technology Artificial
Intelligence Laboratory, Technical Report 297, August
1973.

86

OVERVIEW OF SELECTED DISPLAY FORMATTING
AND CLUTTER REDUCTION TECHNIQUESI’

Franklin L. Moses
Human Factors Technical Area

US Army Reseavch Institute for the Behavioral and Social Sciences
Alexandria, VA

System and software designers for graphic applications have a real
dilemma. Designers often are given the type of symbols to be displayed,
the amount of information to be portrayed, and the hardware to be used. If
they cannot change the symbols, reduce the data, or replace the hardware,
what can be done to make a display speak to the user with the clarity
desired? One solution is to format the information so that the display is
compatible with the user's perceptual abilities and task requirements.

The essence of such formats is to highlight information relevant to a task
and thereby make it stand out from the irrelevant information.

The goal of creating '"good'" displays is to present information so that
user needs can be satisfied quickly and efficiently. However, one problem
created by adding more information to a display screen, even if it is rele-
vant to the user, is generally called clutter. TFor the sake of discussion,
clutter exists when the extraction of information from a display is hindered
by the density or similarity of symbols. A number of alternative formatting
techniques can be suggested to reduce clutter. Of course, some methods
will work better than others, depending on the situation.

Although the examples of formatting in this paper all relate to Army
applications, the principles should easily generalize. Army representations
of the battlefield illustrate a classic problem for displays: or users
try to display more information, they end up extracting less due to clutter.
Formatting guidelines are needed to help reduce the clutter problem.

Formatting Situation Displays

Figure 1 is a typical, albeit ficticious, Army battlefield map. Anyone
who has seen a real one will recognize this one as a severely stripped down
versicun. It shows only the most essential information: terrain (mountains,
rivers, roads aud forests); the unit type (artillesry, infantry, armor); and
the unit sizec (division, brigade, and battalion). Yet, it already is clut-
tered. Consider the time and effort that a person would need to compare the
number of armor, artillery, and infantry units, even on such a simplified
display. Alternative formats using the same symbols and the same information
can help to make such tasks easier for the user. Several suggestions, based
on Army Research Institute (ARI) work, should allow more information to be
meaningfully displayed without adding hardware costs or decreasing user
performance,

1an earlier paper by Leon H. Gellman (currently at Sarah Lawrence College, N.Y.)
was presented at the US Army Second Computer Graphics Workshop, Virginia Beach,
VA, September 1979, and used as a basis for the current report.

2The views expressed by the author do not necessarily reflect the views of the
US Army or of the US Department of Defense.

87

(¢} wv .
it ¢

o,
1

3

b3y

i
e,
425

FG.

88

Redundant Codes

The first formatting technique to be discussed is based on the re-~
search of Vicino, Andrews and Ringel (1965). They doubly or redundantly
coded information on a battlefield display, thereby allowing users two
chances to find the information. Redundant coding takes information which
is already on the display and repeats it in a salient code that helps the
user to organize the display. For example, Figure 2 presents the map with
redundantly coded unit symbols. The code is the heavy broken line for
artillery, the heavy rectangle for armor and the heavy X for infantry.

There is no more or less information here; rather, there are two ways of
identifying the units. The double cnde has been used to maximize the saliency
of unit types making similar units seem to stand out together., When

Vicino et al. used this technique, they increased the speed of information
extraction by 97% when compared with a single code. Redundant codes will

not necessarily increase processing speed this much in all situationms.
However, processing should be easier and the cost of such formatting is
minimal. Redundant coding can be done with any number of stimulus dimensions
such as blinking, size, intensity and color.

Sequential Formats

Sequential Presentation by Topographic Segments. So far, the discus-
sion has centered on using codes to organize display content. If a display
has to show a lot of detail, then a second type of format, called sequential
presentation, organizes the information by breaking it up into component
parts., This 1is accomplished by showing information in segments over time.
Sequential presentation reduces clutter by showing less information per
screen and, for similar reasons, it increases the amount of dctail that users
can see. The technique is particularly useful for showing standard topo-
graphic information that easily exceeds state-of-the-art display resolution
capabilities,

Sequential formats require users to depend on their ability to inte-
grate information over time. Thus, an important formatting question con-
cerns whether to display segments of an entire map by scanning them or by
sequentially presenting static (i.e., discrete) views. Based on an ARI
experiment by Moses and Maisano (1979), static views with overlaps of
around 257 are more efficient for users than continuous scanning methods
of sequential map presentations. When resolution and clutter are serious
problems, sequential presentation should be considered as a solution.

Sequential Presentation by Data Dimension. The final formatting
technique to be discussed is also a sequential presentation method, but
this one displays information by data dimensions, The idea is once again
to segment information. This is accomplished by presenting a limited num-
ber of data dimensions simultaneously while removing other information from
the screen. Of course, questions such as how many separate data dimensions
can be shown per screen and what is the effect of user control over selection
of dimensions need to be considered. These and other inquiries about sequen-
tial presentation are topics for possible futLure investigation at ARI.

89

5
- SR
Ayl B

‘.
LIOERORS ()

90

FIG. 2

h ..\.‘vr\

A So] ~
DRETERE N
W\

Summary

This paper discusses the problem of putting too much information on
a display and outlines four formatting techniques which may alleviate
some effects of clutter., The suggested formatting techniques are only a
few of many methods available to the graphic system designer. The question
that remains is: Which format should be used? The answer can only be found
by determining the format that optimizes task performance for display users.
Clearly, none of the recommendations made here will provide an unconditional
solution to graphic problems, However, it is incumbent upon the designer
and programmer to use every trick at their disposal to provide graphics
which have the impact and clarity commonly believed possible. The Workshop
presentation will consider this goal in more detail along with some guide-
lines for attaining it.

References
Moses, F.L. and Maisano, R.E. User Performance Under Several Automated

Approaches to Changing Displayed Maps. ARI Technical Paper 366,
June 1979,

Vicino, F.I., Andrews, R.S. and Ringel, S. Conspicuity Coding of Updated
Symbolic Information. APRO (now ARI) Technical Research Note 152,
May 1965.

FORMAL GRAMMAR REPRESENTATION OF MAN-MACHINE INTERACTION

Phyllis Reisner
IBM Research
5600 Cottle Rd.
San Jose, CA 95193

End users communicate with a computer system by using a language. The
language might be, for example, a query language, a natural language, or
an "action language" - a sequence of button presses, typing actinms,
cursor or lightpen actions, etc. These user input languages can be

represesented in the same way as any other language - by a formal grammar

which shows the permitted strings and also shows the structure of the

language.

The work to be described in this talk attempts to use a formal description
of the user input language as a design tool to improve the ease-of-use of
a man-machine interface. The talk will first describe earlier work, which
uses a BNF-like grammar in the context of a color-graphics system for
making slides. It will then discuss current work using a formal grammar
to describe text editing. The current work is first attempting to make
s me of the concepts introduced informally in the earlier work

sufficiently precise that people with a variety of backgrounds can use

them.

The field of human factors, which attempts to measure and improve the
ease~of-use of products, is largelvy experimental. It uses techniques of
behavioral science as its primary methodology. The intent of the work

with the color-graphics system was to demonstrate that a formalism could

be applied in this area which is usually considered soft, or even ad hoc.
The intent was also to explore the possibility of using the formalism to
compare alternative designs for ease-of-use and to located design flaws
that might cause user problems. We wanted to see whether a tool could be
developed that had some predictive potential. One problem with the usual
behavioral approach to interface design is that it must frequently await
the existence of a prototype or working model. We wanted to augment this

approach with a more analytic one.

The color-graphics system, ROBART, existed in two versions, ROBART 1,
which was designed without explicit attention being paid to ease-of-use,
and ROBART 2, a redesigned version with the end-user a major focus of
attention. It was an experimental, interactive system for creating slides
for technical presentations. It was intended to be used by people without
computer training doing non-routine tasks. The function available in both
versions was essentially the same, br. rhe design of the human interface
differed.

To explore the issues discussed, the "

action language" of the first
version was described, using a BNF-like notation. (In this action
language, the user selected colors by dipping a cursor into a paintbox of
colors on a CRT screen by using a joystick, selected shapes such as lines,
circles, rectangles, etc. by verious combinations of switch selections
and button presses on an external switchbox, indicated the location and
orientation of the shapes by combinations of cursor positioning and button

presses. It was also possible to type textual material on the screen, in

color). Portions of the action language for ROBART 2 were also described,

93

also using the BNF-like notation.

The next step was to make predictions, from these formal descriptions,
about very specific differences in the ease-of-use of the two versions,
and then to test the predictions to see if they were in fact
substantiated. The goal was to see if formal grammar could be used as a

predictive tool and if the predicted differences were indeed measurable.

This did indeed turn out to be the case. Among others, we predicted that
the action of selecting shapes would be more difficult in ROBART 1 than in
ROBART 2, for each of the shapes available. We also predicted that users

would make a particular error in'

'initiating" shapes (the first action to
indicate location and orientation) in ROBART 1 and would not make an error
in the same step for ROBART 2. Since the same error was not expected to

occur in ROBART 2, we felt that the problem would indeed be attributable

to the interface design and was not inherent in the function itself.

In an exploratory experiment with temporary office workers, the

predictions were in fact substantiated.

Current work, in the context of text editing, is first attempting to
clarify some of the concepts and techniques used in the above work. The
concepts were intuitive, but not precise enough to develop into a design
tool to be used by a variety of people with different backgrounds. For
example, we introduced the notion of a "cognitive" terminal symbol, since
we thought that what the naive user has to learn and remember will be of

major importance in the ease-of-use of a system he uses intermittently.

94

This notion clearly needs to be made more precise. We also used a
quasi-automatable technique for locating structural inconsistencies in
the language. We expected these structural inconstencies to cause users to
make mistakes. Neither the notion of "structural inconsistency” nor the

technique have been made explicit. These and other related issues will be

discussed.

95

A RULE BASED HELP SYSTEM FOR SCRIBE

ELAINE RICH

AARON TEMIN

26 Febryary 1961

96

People need access to help it they are goina to use complex
computer systems eftectively, There will nol always ope otnher
pecple or even manuals arouna to help them, So we.need tne
conmputer itself to be ahle to provide the nelp 1its users need,

This {s not a new arqument, See, for example , {(pPirtle 68},

The extent to whnich anyone can help someone else is limited by
the deoth of the helper’s own Knowledge, So 1f computers are
going to help people, they must have & great deal of knowledge

about ~hat tnhey do,

sut tne usefulness of nelp information to a person seexing nhelp
is a direct function of the extent to which the information
answers the specific question the user nad. So simply dumpinc an
entire manual or ever large chunks O0f it on 3 user every time he

asks & aquestion i{s useless,

People who need help are missing some information about how the
systemn vorks, SO they cannot be counted on to describe their
problem in terms of specific system commands so that the relevant
parts of tne nanual can be tound and fed back to tnem, (Tnis
precludes sinrle keyword based help systems such as [Shapiro 75])

or ([Kkenler 82),)

These obvious tacts force us to the conclusion that to provide
a gooa interactive help facility will require a large data bhase
of knowledge about the operation ot the system in guestion, Tnis
data base must be structured in sucn a way that it can vpe
accessed fror cdescriptions at a variety of levels about what the

program did and what the user wanted, 70 investigate the {ssues

97

raised by such constraints, «e are building a help system tor the

docuuent formatting program Scrive ([(Heid &0},

Ihe knowledge base used py tne syster {8 a set of rules that
descrine Scrine’s oenavior at a varfety of levels, Tov lavel
rules describe the behavior of the system in terms of fairly high
level ftunctions, Other rules then describe tnose functions in
terms of lower level functions, and so fortn, Wwe plan ({nitially
not to try to oprovide rules that describe Scribe down to the
lowest level, at wnich {ndividual characters are placed on tne
page, this will of course limit the ability of the systen toO
answver aguestions about that aspect of the system’s performance,
dut tnis {s analogous to tne situation that occurs with huyman
consnultants, There cones a point wnere, unless they are familiar
with tne details of tnhe coue of the system, ¢they simply cannot
ans~er & question, Inis rule pased, successive decomposition
approach, however, orevents us from bodeing locked into a
particular level of aescription, hew rtules that provice

additional levels of description can oe added at any time,

€ach rule in the systemr contains a left side that describes
when 1t c¢an be {nvoked, and a rignt side that describes the
sequence ot actions that w~ill fesulte. The left side consists of
two 0arts, a comaand or a8 riece of the inbut file, which tries to
trigder tne rule, and a list of auxiliary conditions that must be
met in order for the rule to be aple to ve invoked, For example,
the ¢followlinc rules descrite how Scrive orocesses tne fref(arg)
coqardnn, w#hich substitutes ¢tor the string “"<aref(arq)", the

reference indicated by tne string arg, (Commands to Scrive are

98

signalled by the character "@",)¢

1 Rref(arg) and lookupsynpoltan'e(arg) NEQ 0 =>
send{maintext, looxupsympoltable(arq))

2 Rref(arg) and lookuvpauxtile(arg) NEQ 0 =
send(maintext,looxupauxtile(arg))

3 fref(arqg)=>
send(maintext,%clarg))
send(errorfile,"undefined reference®,arg)

The order of tne rules in the data base reflects the order in
whicn Scribe cnhecks for things, 1In tnis example, Rule 1 says
that {f tnere i{s 4 ref command «#ith a particular argument and if
there is an entry in the ({internal sympol table {indicating a
nrevious definition of that argument, tnen print in tne outout
the approoriate value &8s indicatea by the definition, Otherwise,
if tnere is a definition of the arqument in the AUX file (a ¢file
containing the symbol table that was built tne last time Scribe
processed this file) then use that definition, It there was no
definition in eltner place, then simply insert into the text the
string that was the argument to ref, but capitalize |{t, Rlso

make a note of this error in the error loqg file,

The actions 1indicated by these rules are fairly nignhelevel,
They inaicate that text should be placed in ocutput files, They
do not indicate how, rhey do not specify such things as tne
margins or the type font to be used, Those things are specified
in the rules tnat descripe the operation ot the send function,
Some ot the actions, such as send, can only oe generated by the
operation of otner rules, Others, such as ec(text), could also

have occurred in the input file, [Ihe fact that tne Scribe systenm

99

{s very well structured makes it easy to describe tne operation
ot one tunction {n terns ot a well detined set of otner
functions, This one=step=atwa~time descrintion 1is very important
for tne generstion of responses to user’s guestions, ~No one
#3nts a bit level answer to every question they ask, People
usuAally +~ant & aescription 1in terms one or perhaps two levels

higher or lower than the level at which they asked the question,

The set of rules provides a static description ot the way
operations in Scrive are performed {n terms ot other, lower level
operatlions, As scribe executes, it ouilds a separdte
nierarchical structure tnat retlects the block structure of tne
specific document that 1s velng Dprocessed, For example, 4
docuinent couly contain tne sequenca:

dpagin(iyotation)

[2L

gvegin(icemize)

LN

send(itemize)

gend(auntation)

The quotation environment specifies that the margin should ne
moves {in and that the text should be printed single spaces, The
{tenize environment svecifies that the marains snould pe moved {n
and that paragrapns snould ne numoered, Tnese specifications
nest, so tnat tne +varqins inside tnhe {temize will pe narrower
than for the rest of the quotation, whicn will be nparrower than

the surrounding text,

Jo answer a user’s juestions, the help system w#ill match pieces

of tne user’s yuestion against pieces of rules, and use unmatched

100

pleces of tne rules or patterns of c¢haining tnrouqgh the rules as
answers to the auestions, fany auestions cah ove ansserea oy
referring only to tne static description of Scrioe’s operation,
Ho~ever, when o2 guestion refers to sSomething specitic tnat
haprened &t Aa particular point 1in tne user’s file, it may ne
necessary for the nely systeir to pulld A piece of the dynanmic
tree, wirroring thet opuilt by Scrice durina execution, so that it
wi.l xnos enougn context to te anle to identify the rules that

vere apnllied,

une of tne most comnon tynes of juestions a help system must
ans«er 1s "why -id4 X occur?", Inis usually means tnat the user
expectet that sovelhinu else would occur, To aAansver such
.questions, tie ueln syvsten finds the rules whose right nand siaes
specrfy the efftect the user has descrived, Lel’s assumwe, tor
sinclicity, tnat taere 1is exactly one such rule, NOw a
suoerficial answer to the guestion is simply to state the lett
side of tnat rule, dut much ot what 1is there {is usually
recundant. For exawple, the user Kknows wnat command he
specifiead, shat tue help system will do is to compare the ruyle
it found to otners anose left stides are Jifferent, Ihe
ajfferences in the left sides are the specific reasons why the
observed effect occurred, ratner than some other, S0, for
exanrple, If the user asks why nis dref commana resulted 1in the
lacel and not tne thing to wnich it referred being printeas, the
system onserves tnat tnis happeneu bpecause the label was not
previously deilneo, It concluaed this by comparing Rule 3, tne

one tnat describes wnat Scrioe ¢ia, to Rules 1 and 2, wnich

101

describe what it would H"ave done {f thinls nag been slightly

difterent,

Sometimes thera .ay ne o8 areat mwany rules wnose lett siaes
almost raten the selected rule, It may tnen be necessary for the
helrer to ask tne user what he expecteo to have happen, Then
only tne rules whose risnt sides matcen tnat expected action neea
to be considered, Jaeally the systed wonld maintdin a 900a moael
of tne user so tnat such ~mestions would rarely need to be asked,
Soretimnes deneral Knowsleaue anout the ~ay peoble use tne systen
4111 hele nere, fOr example, teople usually expect some fairly
dlrect cornection pet~een the Comwnands they issue and the results
they see, Iney rarely expect a command to ne a nowop, But there
~i11 alvways ovpe times snen an inuividual ras an jainsvncratic
nisunderstanding ot tre svstem and nothing short of a4 direct
juestion »111 Dboint this out, For tnis reason, tne process of
ans@ering 4 question ust pe thouant ot as A aialogue rather than

As a nne=shot alest1on Anrd answer,

Arotner comron tvpe ot guestion is what Genesereth (Geneseretn
4] calls the "hoayn" question, For exanple, "How do I get my
footantes to Come out at the ena of my document rather than at
the end of each wage?", Aowdo guestions are answered oy matching
the user®s descrintiorn of w#nat he sants to do against tne rignt
sf.es of tne rules to find tnose that can produce the desired
effect, ILf tnere are aore tnan one, tnen the cnoice Among then
will b»e wade ny considerin: sucn things as the coaplexity ot tne
constructs {nvolvea anua the user’s level of excertise «{itn ¢tne

Systra, Tne 1left sive ot tne chosen rule describes what is

102

necessary to accomclish the desirea eftect, dut it may contain
conditions that tne user cannot scvecify directly, So the nelp
syster aust chafn backwards throuah the ruvles to find the

commanas that will cause tonose conditions to be true,

Yet anotner common type ot inauiry is the "what 1s the
4ifference bhetveen™ question, For example, & Scrine unser ajight
ask, "snat is the difterence between the ftemize anj enumerate
commanis?”®, lhese yuestjons Cun pe& answereo easily ny this kind
of rule based systen «itnout naviny been anticipated in advance,
It need nerely find tne rules that descrine tne oreration of eacn
command bty matching against left sides, In tne simple case,
there will rne onhe tiule for each and the answer to tne question is
simply 8 list of the Aifferences netween tne correscvonaing rignt
hand. sides, ln rore complex cases, it will be necessary to
conpare lett nand sides also to detervine the eftect of various

otner factors on tne operations of the two co~mands,

dne ot tae most comaan situations (n whien users ask questions
1s vnen they have gottein some xina of error message fror the
systen. lalxing ahont such errors |s easy for & rule vasea
system, (e rules descrive all the things the system can do and
the sitvations in wnich it #{1]1 do them, Errors ao not need to
be representen exnlicitly, They are implied by tne absence of
rules, If the user wrote a conmand X and there are no rules tor
coamandg X whose otncr oreconditions were sdatistiec at the time
the command occurred tnen an error will arise. (ne systenm can
expldin the errcr »ny comparing tne existing stste to the reauired

vreconiitions and reporting the differences, 1his s extrerely

103

usefuyl, since tor a complex syste«x the nimoer ot possible error
configqurations can ne very large and 1t #ould pe very ditficule

to tdve to aescrine each of tnem explicitly,

A anoa help systerm must tajlor its responses to the needs of
inaividual users, T this 1t s no different fromw other
interactive svysteqns Lkich 79§, Upe way to represent a model of
a Scrine user weould be as a set of rules, presutanly a suvset,
vossiblv #fitn errors, cf the rules that tne system knows, with
suech 5 model, some uduestion woula ne very easy to answer, For
exaLnle, #hy auestions coulo ne answered oy comoaring the user’s
rules 3nAalnst the systen’s correct rules to find the difference
and reajort it. Inis tecnnique w~as sugagested by Aurton and Brown

(nurrton 7ol as & say an intelligent CAlL syster c¢nula disCover
puys {a a4 studenrt’s Knosleduae, w»ut it {s unreasonaole tor a help
systae to saintain sucn 4 massive amount ot information aoout
eact user., Insteaa, we prooose to record a very small numper of
facts aQaLout edcr user, sucn 85 3 neas:re of nis expertise with
the syster, tach 0f tne opjects used in the system will have
asscefateas with 1t some oroperties, somne of wnhich can be wAatcned
against user characteristics to aetermine tne aAppropriate rules
to use 1in aqencratina a response to tne auestion, So, for
exanorle, comrands will pe rarkea as simule, {intermediate, or
advanced, utner factors tnat should be {ncluded in the model of
eacn user are nis inclination toward veing & hacker (L,e, aoes he
want to jeara fancy nes conranas or does ne want to Know a way to
qet ov ¥itn tne cnxmands ne Knows?) and nis fan{liarity witn

coapitter science concepts (sueh 4$ vloek structure, one pass

104

systein, Sywnol tazles),

Une ot the rator aavantages of this rTule hased representation
of the knowvledges reaufred oy an intelliadent heloer §s that ({t
mirrors tnhe structure of the systea for whicn the fhelp is beiny
provided, (Ur at least {t <does {if the system 1s well
structure-,) This suaagests that the top down process of writing
the rules could e used to proouce a well structured program ano
its relo syster simyltaneously., e would like eventually to try

to build an entire systed tnis way,

{(Burton 741

{Genesereth 7»]

iKenler n¢]

fPirtie ey}

[Refa d40)

{Ricrn 79)

{Snapire 73)

REFERENCES

nurton, Richard & Jonn Seely Brown,

4 Tutoring and Student modelling Paradigm for
Ganing fnvironments ,

In Riac. 0f the Syapssiug ab Cosnutar Scieace and
Education., 1976,

enesereth, Mmichael,

Autosated Consultation £o0f Complex CompuLer
S¥SLEeus.

" thesis, Harvard, 1978,

kenler, T, P, & %, barnes,
Alternatives tor tn=line tlelp Systems,

In Brac, Bk ACY SIQULLC LUser Seruices Lopierence.
1980,

Pirtle, welvin,

iielb,

in Conyersaticnal Cazputezs, « John wiley & Jons,
New York, 196H,

heild, %Hrian,

Sexibe: 4 Qocuszedt Seecificaticn Language aad its

coapdilec.
Py tnesis, Carneqglie=*ellon, 1980,

~iecn, i£lafine,
user roueling via Stereotypes,
Lagalitive 3Sclenoce $329-394, 1979,

snapiro,Stuvart & Stanley Kwvasny,

Interactive Consulting via w~sdtural Language,
Connunicaticns oL Ltha ACd :459«463, Auqust, 1975,

106

PO

Models for the Design
of Static, Software Systems

M.L. Schneider
Sperry Univac
Blue Bell, Pa 19424

1. TINTRODUCTION

One of the "axioms" for ease-of-use is: "Help systems are necessary"
(Clark 1980). While an increasing number of of software systems
provide some form of user assistance (Relles 1979), the information is
usually prcvided without regard to its useage. 1In general, assistance
is nothing more than an "electric reference manual."

When factoring exists, it usually consists of a layered approach; the
user can request additional details about a specific topic. This
addresses the problem of verbosity, but only indirectly considers the
expertise level of th2 requester.

This paper proposes cognitive factors that may impact information
factoring: different levels of user sophistication (the User Taxonomy)
and different segments of task performance (the Transaction Taxonomy).
The interaction between these two taxonomies can provide guidelines
for improved static information factoring in assistance systems.

2. USER SOPHISTICATION TAXONOMY

The developmental levels of computer language acquisition defina2d in
this taxonomy are

1. Parrot

2. Nowvice

3. Intermediate

4, Advanced

5. Expert
Each level is characterized by skills in language production: item,
field, or statement chunking; breadth of language scope; and degrea nf
generalization or abstraction of concepts. The change in systen
knowledge is manifested through an incrcased competence in the

commands that are reqularly used and an awareness of additional
functions available within the system or language.

107

The basis for this taxonomy arises from qualitative observations of
computer usage in a wide variety of software systems and the
relationship between the observed computer productions to those
observed in the natural language development. This taxonomy describes
an individual's expertise or sophistication in a single software
system or language (or subset thereof) and may not be transferable.
The level at which an individual stops progressing appears to depend
upon a number of factors related to the learning of complex tasks aad
the demands placed upon the person by the task requirements.

2.1. THE PARROT

An individual at the lowest level in the taxonomy, the Parrot, has
minimal knowledge of the computer system. The Parrot approaches the
computer system and types commands. This individual does not think,
quaestion, understand, or synthesize the commands. These commands, or
sequence of commands in some cases, may be moderately complex.
Satisfaction is derived simply by having the computer perform the
task.

When the question "What am I doins?" is asked, the Parrot is ready to
progress to the next stage of sophistication: the Novice.

2.2. THE NOVICE

With experience, a user begins to understand several isolated concepts
and is able to choose a specific lexical entry (command) for a
function. The user is required to know specific but not complex
information. Semantically, the items are considered in th=2 concrete,
not in the abstract. The Novice may ask, "What does this command item
do?" not "What can it do?" By now, the user has a minimal command of
the grammar, but is only able to operate on an item-by-item basis.

For exanple, the Novice may recognize a verb and one or more objects
in a command, even if the grammar allows modifiers in the verb phrase
.or in the object phrase.

Unlike the Parrot, the Novice analyzes each item, thus extracting
lexical information. The language components now have meaning and can
be used in a flexible manner.

2.3. THE INTERMEDIATE

The Intermediate is a level between the Novice and the Advanced user.
Whereas the Novice concentrates on items in isolation, the
Intermediate operates with items in fields and with fields in
statements. A statement now becomes the primitive conceptual unit.
The use of a larger chunk encourages syntactic and semantic
conciseness in the grammar, allowing the user to minimize keystrokes,

108

At times, the Intermediate user may link statements into command
*chains" such as compile...collect...execute. Even so, each command
is still considered it isolation. The user generally waits until a
function has been completed before proceeding to the next reguest,
wishing to see the result of a command before continuing with the
task.

The Intermediate begins to concentrate on the task rather than its
components. Use of the full language may be restricted by a lack of
knowledge. Thus, the Intermediate continuass to expend significant
effort on language details. At this point in the user's development,
the more subtle grammatical rules become evident. A Novice would use
a default, unaware of the fact that an item can be specified. An
Intermediate would consciously use a default in order to reduce
keystrokes or save time. Initially the Intermediate uses knowledge in
a specific problem domain., Later, this information is generalized,
allowing new problems to be solved.

Toward the end of the Intermediate level, considerable skill in the
understanding and manipulation of a segment of the command set has
been achieved. With the increased use of larger syntactic chunks each
requires less attention. This is the prozes:. of automatization.

Thus, increased attention can be given to the entire task, rather than
to the mechanisms required for its performance.

With further experience and increased’ task requirements, the
Intermediate can evolve into an Advan ‘ed user, subordinating the
computer language to the task.

2.4. THE ADVANCED USER

Whereas the Intermediate attempts to solve problems via a series of
isolated commands, the Advanced user realizes that an interconnacted
collection of statements can be more productive for certain tasks. At
this level a program or procedure, rather than a single statement
results. Because commands are now interrelated, the scope of the
syntax and semantics expands. The syntactic elements are abstract
rather than concrete. Data structures provide the vehicle for
producing abstract objects. For example, a variable would be used to
represent a filename or a string. The Advanced user continues to
retain the command, together with other defined procedures, as
language primitives,

Control structures are useful if the direction of flow between
statements is to be modified. Using these structures requires a
modification of the user's thought process. A Novice or Intermediate
user may not foresee the success or failure status of a command as an
object on which operations are defined. An Advanced user thinks about
the possible outcomes of commands and has the ability to take
appropriate action. While Novice and Intermediate users operate with
concrete syntactic constructions, existing with in a specific,
restricted semantic scope, the Advanced user expands his language
knowledge to cope with complax structures and abstractions.

109

Practically speaking, the Advanced user has the ability (though not
necessarily the need) to accomplish any function within the system.
The Advanced user is ccmpletely facile with the language and can deal
with the language at the global "metalinguistic" level.

2.5. THE EXPERT

The Advanced user has the ability to use the language with relative
ease., Since any computer language is restricted in scope, it can
limit a user (fc =2»xample, the inability to have abstract data types
in FORTRAN 77). The Advanced user, knowing the scope of the language,
is constrained when faced with a new problem whose solution cannot be
derived from existing functions or ob:ects within the system. The
Expert transforms this finite system .nto a generative one. When
faced with the above situation, he creates, not derives, a new
syntactic element within the system. Thus the Expert expands the
existing system, creating new objects and functions.

3. TRANSACTION TAXONOMY

While the sophistication level of the nser is important, it is
necessary to know how a transaction is processed in order to acquire
additional assistance information. A transaction is defined as the
task contemplated by the user (For example: writing a program,
"checking-in" an airline passenger, or performim a data base query).

The five stage transaction taxonomy shown below builds upon a simple
taxonomy (command d data input, processing, and system output) by
expanding the firsr operation, input, into its semantic and syntactic
components as suggested by Shneiderman (Shneiderman 1979).

STAGE ACTION
I Task Analysis
It Semantic Analysis
It Syntactic Analysis
v System Performance
v Response Analysis

3.1. STAGE I -- TASK ANALYSIS

In the first stage thie user decomposes a single conceptual task into
its component subtasks and determines the specific commands required
for task completion. The user asks the question, "What steps and
commands are necessary to perform the overall task?" For example,
running a program (the single conceptual task) may require the
following subtasks: editing, compilation, collection, and execution.
It is possible that more than one step can be included within a single
command (for example a compile-load-go) or more than one subtask is
required within each subtask (for example operations with the editor).

110

-—

The cognitive processes at this stage may Include all or some of th=
following steps:

1. Identification of the full task.
2. Decomposition of the task into its subtasks or steps.
3. Definition of the conceptual operation for each step.

4. Choice of the appropriate command for the implementation of
each step.

It should not be assumed that all commands will be chosen at the
outset. It is highly probable that an individual will determine the
conceptual operation for the first subproblem, choose an appropriate
command, perform it, assess the result, then progress to the next
conceptual operation, the choice of which may be influenced by the
result of a previous task.

Once the conceptual operation has been defined, a user may wish to
examine the set of commands for its implementation. 1t is possible to
relate commands and conceptual operations in two ways: define a
conceptual operation for commands that are conceptually related, or
its antithesis, to 2xtract from 2 conceptual operation its constituant
commands. By iterating between these perspectives, it should be
possible for the user ‘o determine a command that allows the
conceptual operation f» bz performed.

A command subset of a hypothetical editor illustrates this iterative
approach. Consider the command "LOCATE" (this searches the text
printing the lines whenever a string occurs). The spacific to general
relationship would be:

"LOCATE" =--me-= >sezarch
Erint

The general concept print may refer to a number of commands that, if
successfully executed, print a line:

print -—---ceew- >"PRINT"
"LOCATE"
"FIND"
"GOTO"
"NEXT" -

If all commands of the concept search print a line, then the structure
could be represented as:

Erint --------- >*PRINT"
*GOoTO"
"NEXT"
search ------—-- >"LOCATE"

"FIND"

111

A similar grouping can occur for "GOTO" and “NEXT".

When explanations are provided (basic semantic information) within the
above framework, the user can obtain the information in a unified
manner.,

3.2, STAGE IT1 -~ SEMANTIC ANALYSIS -
In the second stage, the scope of the command is considered by the
user. Upon entry to the semantic analysis, the command is conceptual
in the broadest sense. Now it must be refined into its detailed
semantic components.

The question: "What do I want to do?" is asked by the user. The user
must be cognizant of two semantic concepts: definition of the data and
the control of the process. A sorting program illustrates the type of
information considered by the user. A user must be aware of the date
restrictions (eg. numerics only, alphanumerics, maximum number of
items, maximum number of fields, etc.) and the method(s) of data
storage or entry. 1In addition, information is required to control the
processing (ascending, descending, key(s), collating sequence, etc.).
At the s2mantic stage, it is unnecessary to know how to encode this
information.

3.3. STAGE IIT -- SYNTACTIC ANALYSIS

When a user reaches the third stage, 'ncoding the information, the
correct function has been chosen and t.e semantics for task completion
are understood. Now the question is, "How do I do it?" The
translation of the conceptual operation into the input format is
purely mechanical. The user requires syntactic information and
techniques that facilitate this transformation. The form of the
human-computer interface (command language, dialoguess, menus, function
keys, etc.) has a primary impact at this stage.

3.4. STAGE IV -- SYSTEM PERFORMANCE

System response, the fourth stage, can be treated as a "black box".
The underlying architecture that supports the interface is outside the
scope of this paper.

3.5. STAGE V -- RESPONSE ANALYSIS

The analysis and interpretation of the response produced by the
software is the final stage of a transaction. The user now asks,
"What have I done?" The primary goal of a response is to provide the
user with relevant information. Unnecessary details that obscurec this
information should be avoided. Two independent topics should be
considered: verbosity and information content (Schneider 1980).

112

For example, if the task is to assign the file, MYFILE, there are a
number of possible responses if it 1s successful (ordered by
increasing verbosity and content):

1, > {a prompt for the next command}

2. READY {, OK, COMPLETE,...}

3. File MYFILE has been assignad.

4. MYFILE assigned with the PUBLIC, and CATALOG options.

5. File MYFILE has been assiqned. It can be used by anyone
(PUBLIC) anid will exist for one cday (CATALOGUED) unless
otherwise requested. To keep the file longer than one day
contact the file administrator.

The last response is an oxample of layering. Three items of
information have been displayed:

1. The name of the assignad file
2. The file attributes
3. The administrative procedure requir2d to Xeep tha file.

In a similar manner, it is possible to design a layered HELP function
(a user initiated reguast for assistance).

A 72ortzand nay not atvrys tarminat2 sucsessfuylly. 's2faY anAd
neaningyful error messages are important. Good error reporting shoulr
provide sufficient information for the user to:

1. Understand the nature of the error;
2. Uncderstand the source of the error;:
3. Understand the methods for recovary or ~norraction.

Again the questions of verbosity and information content are
important. Verbosity may b. correlated with the number of tines an
individual has seen the messaje, while information contant shoulsd be
related to the levels in the user taxonomy and task requirements .,

4. INTERACTIONS BETWEEN TAXONOMIES

The user and transaction taxonomies should not b2 considered in
isolation. Based upon the sophistication level of tha user, tha s3cop»
of assistance may vary. Different segments of the transactian
taxonomy need to be emphasized or deemphasized. The method of
assistance presentation provided to individuals at different
sophistication levels for the same transaction may differ. For
example:

113

FILE MYFILE HAS BEEN ASSIGNED T
attributes

PUBLIC CATALOGED

physical

SIZE - 12 TRACKS. LOCATED ON D2734. UNFORMATTED

s RN e RN}

In order to better understand the type of assistance applicable at
each level of use, it is necessary to examine the requirements of
users at each sophistication level.

4.1. PARROT

A Parrot operates in a simple “"transcription mode." There i& no
consideration of input variability. The best form of input assistance
1s an example or a single choice from a single level menu system. The
latter 15 analogous to function keys. By careful design, eicher of
these approaches can bz extended to assistance forms suitable for a
Novice.

Only two basic respons2s can 2xist for the Parrot: “he function
completed successfully, or it was unsuccessful. 1f an unsuccessful
response2 is provided, it can only state that the command was
incorrectly entered and should be entered again (a Parrot does not
conpreh2nd the command's contents). If ths system is unable to
parform the task at this timz, it can be suggested that the user try
latar. SGinge task completinn is the raward for sun-~essfal anmmand
snory, this infcrmatiosn should always be provid 2 to the user.

Thus at the Parrot level there is only one type of input assistance:
an exanple,

4.2. NOVICE

The Novice may not distinguish hetween the first three stajges of a
transaction (Task, S2mantic, and Syntactic Analysis). Thus, these
stages should not be differentiated if the user's perspactive is to be
reflected in the interface. The system should lead the usar {rom the
determination of the subtask(s), through the isolation of the correct
command and the determination of its semantic components, to the
enzoding of the information.

Once the user is ready to provide data for the command, a number of
techniques can bYe opplicd. As stated earlier, continuity betwaen rhe
first three stages is important; the user should be unsware of any
distinct phase of the transaction. Since the traditional command
format may be inapplicable to the Novice, menus could be usad for
stages I and I1 followed by a mixturc of menus, dialogs, and
"fill-in-the-blanks" for stage TII.

This expands the_syntactic assistance to two levels:

Assistance Sophistication
Type " Level

Example Parrot

Simplest Form Novice

Irrespective of the technique, the computer should take the
initiative; the Novice may not know what information is required, or
even if it is available. Thus, it is incumbent upon the assistance
system to announce its existence. 1Information for clarification,
however, should be provided only upon demand. To do so automaticaily,
may unnecessarily confuse or annoy the user.

Responses, aside from providing information to the user, should
indicate the successful completion of the command in a non-null form
(something more than a prompt). A Novice, lacking confidence in the
ability to control the system, may require this positive
reinforcement.

2.1. INTERMEDIATE

Because the Intermediate is familiar with the system, the user, nct
the computer, should take the initiative. An individual at this
sophistication level has the ability to decompose a task into its
sudtasks and Jdetermine an anpropriate command (S-aae 1). Since the
conponents of the system are known to exist, even if not understocd,
information should be factored into the following topics: commang
semantics, command syntax, and field or keyword semantics ané synt-x.
Since individuals generally employ & subset of commands (Huckle 193)),
assistance is still required for those used less commonly.

Assistance in the semartic and syntax analyses (Stages IT and I{I)
require additional information. As a user gains experience with a
conmand, defaults are better understood, overridden, or nodified.
Thus, the scope of the command perceived by the user is extended. The
semantic and syntactic expansion of commands requires that two new
levels of assistance must be added:

1. The most common form of the command. This will occur when
some commonly defaulted items are overridden,

2. The command is used in its full ferm. This oc-ours when no
item is defaulted.
Thus, the number of levels are increased to four:

Assistance Sophistication
Type Level
Example Parrot
Simplest Form Novice
common Form Intermediate
Full Concrete Form Intermediate

115

a——

When the. semantics and syntax of a command are not complicated, two or
even one of the above forms may fulflll the information requirements.

Because the Intermediate cperates in a terse mode, abbreviated forms
of the command should be provided. This includes, not only contracted
forms of the strings within the command (name, keywords, flags, etc.),
but the items that can be defaulted and the values supplied.

?he layered approach for responses should be available. As in case of
information required for the input of a command, the user should be
able to request specific information. The advantages (terseness and

specificity) of requcsting specific information is offset by the need
for a query language.

2.2. ADVANCED

The needs of the Advanced user differ from the Intermediate in three
ways.

1. The transaction stages considerad prior to entering a
command require a different emphasis because data and

control structures are now a part of the user's command
repertoire.

2. There is a need for assistance in the monitoring of an
executing command since they are exccuted in a "batch
environment",

3. A different type of resjyinse structure is needed since it
aust be interpreted dir.:ctly by » command within the
software without human intervention.

Within the first two stages, an increase in the type of information
exists, reflecting the added control and date structures employed by
the *dvanr~ed user. These new structures may be implemented within an
existing command ~r vie new commands. Assisctance and instruction in
the methnds of bu.lding macios, procedures and programs are useful for
the Advanced user. These new functional elements are reflected not

only in Stages II and [II, but their concepts must be inzluded in
Stage T.

Control and data structures are now used in the development of
procedures. This places additional demands unon the response segment
Whereas in the lower sophistication level interfaces, tne responses
must be understood by a human, in a procedures, responses must be
understood by the software.

The abstract nature of the command requires additional syntactic
information. When & command has constructs that relate only to these
structures, they must exist only in the information supplied to the
Advanced user. Thus, in addition to the three assistance levels
applicable to the Novice and Intermediate users, a fourth level,

116

containing the expanded language view must be included. The five
levels of assistance are shown below:

Assistance Sophistication
Type Level
Example Parrot
Simplest Form Novice
Common Form Intermediate
Full Concrete Form Intermediate
Full Abstract Form Advanced

3. CONCLUSION .

On a theoretical basis, it is possible to factor software user
assistance information into three independent categories:

1. verbosity
2. user sophistication
3. task segmentation

Although it is possible to prepare guidelines for the further
classification of information within each category, only experimental
investigations will validate these suppositions. At the present time,
studies of specific topics are in progress.

4. REFERENCES

Clark, I.A., 1980, How to "Help" Help, IBM Report HF022, IBM United
Kingdom Laboratories Ltd. (Hursley Park).

Huckle, B.A., 1980, Designing a Command Language for Inexperienced
Users, Command Language Directions (D. Beech ed.), 199-212 (Amsterdam:
North-Holland Publishing Company).

Relles, N., 1979, The Design and Implementation of User-Oriented
Systems. Madison WI, Univ. of Wisconsin. Ph.D. Thesis.

Schneider, M,L., Wexelblat, R.L., and Jende, M.S., 1980, Designing
Control Languages From the User's Perspective, Command Language
Directions (D. Beech ed.), 181-198 (Amsterdam: North-Holland
Publishing Company).

Shneiderman, B., and Mayer, R., 1979, Syntatic/Semantic Interactions

in Programmer Behaviour: A Model and Experimental Results, Journal of
Computer and Information Sciences 7, 219-239.

117

SYSTEM MESSAGE GUIDELINES:

POSITIVE TONE, CONSTRUCTIVE, SPECIFIC, AND USER CENTERED

Ben Shneiderman
University of Maryland
Department of Computer Science
College Park, MD 20742
January 27, 1981

*** praft paper prepared for Workshop on Human Factors in
Interactive 5ystems, Georgia Institute of Technology, March
26-27, 1981, Atlanta, Georgia.

Prompts, explanations, error diagnostics, and warnings play a
critical role in influencing user acceptance of software systems.
Programming and command languages and application systems are
appreciated not only for the functionality they offer but for the
phrasing of system messages in a specific implementation. This
is true for batch systems, but it 1is more important for
interactive systems in which the impact of a message is immediate
and more dramatic.

The wording of prompts, advisory messages, and system responses
to commands may influence user perceptions, but the phrasing of
diagnostic messages or warnings about improper conditions is
critical. Since errors occur because of lack of knowledge,
incorrect understanding or inadvertent slips, the user is 1likely
to be confused, feel inadedquate, and be anxious. Messages with
an imperious tone, which condemn the wuser for an error, can
heighten user anxiety, making it more difficult to correct the
error and increasing the chances for further errors. Messages
which are too generic, such as the ubiquitous "SYNTAX ERROR",
obscure "FAC RJCT 004004400400", or mystical "0C7" offer 1little
assistance to the novice user.

These concerns are especially important with respect to the
novice wuser whose lack of knowledge and confidence amplify the
stress related feedback which can lead to a sequence of failures.
The discouraging effects of a bad experience in using a computer
are not easily overcome by a few good experiences. 1In fact, I
suspect that systems are remembered more for what happens when
things 3o wrong than when things go right. Although these
cffects are most prominent with novice computer users,
experienced users also suffer. Experts in one system or part of
a system are still novices for many situations.

Awareness of the diffjcyitjes that novices encounter has prompted
the development of student-oriented compilers for some languages,
which emphasize good diagnostic messages and even limited eorror
correction. The early DITRAN effort (Moulton and Muller, 1967)
and CORC (Freeman, 1964) wer: followed by the WATFOR/WATFIV
compilers (Cress, Dirksen and Graham, 197(¢) and the PL/C compiler
(Conway and Wilcox, 1973). These efforts demonstrate what can be
accomplished if the developers are sincere about their concern
for ease of use, PL/C and WATFIV are widely used in academic
environments not only because of their diagnostic messag2s but
also because of their rapid compilation speeds. These systems
demonstrate that although there may be a greater development cost
for good diagnostics, the production costs can be kept low.
Although I am not aware of any controlled experimental research
which proves that students usinj these compilers learn faster,
make fewer errors or have a more positive attitude toward
computers, these hypotheses are shared by many people. Rigorous
human factors studies would be useful in evaluating the
improvement brought about by these systems and would be helpful
in convincing skeptics about the importance of designing good
system messages.

Producing a set of guidelines for writing system messages is not
an easy task because of differences of opinion and the
impossibility of being complete. Inspite of these dangers, I
feel that producing such guidelines could yield better systems.
Input parsing strategies, message generation techniques, and
message phrasing can be changed without affecting system
functionality. Hopefully, more attention to system messages will
lead to instrumentation of systems to capture data on error
frequency distributions, Such data will enable system designers
and maintainers to revise error handling procedures, improve
documentation and training manuals, alter instructional
materials, or even change the programming or command language
syntax. Focusing 1increased attention on system messages should
compel system developers to include the complete set of messages
in user manuals. This high visibility will produce even more
concern for the quality of these wmessages.

These comments are the result of experience and subjective
evaluation. Controlled psychologically-oriented experimentation
would be useful in verifying these conjectures.

BE SPECIFIC

4essages which are too general make it difficult for the user to
know what has gone wrong. The simple minded and condemning
messajes such as "SYNTAX ERROR" or "ILLEGAL ENTRY", or "INVALID
DATA" are frustrating because they do not provide enough
information about what has gone wrong. Improved versions might be
"Unmatched left parenthesis", "Legal commands are: Send, Read,

File, or Drop", or "Days must be in the range of 1 to 31."

Bven in widely appreciated systems like WATFIV there is room for
improvement. Messages such as "INVALID TYPE OF ARGUMENT iV
REFERENCE TO A SUBPROGRAM" or "WRONG NUMBER OF ARGUMENTS IN A
REFERENCE TO A SUBPROGRAM" might be improved if the name of the
subprojram were included and the correct type or number of
arguments were provided. The APL system which has so many nice
human factors-oriented features comes out poorly when evaluated
for system messages. The extremely brief "SIZE ERROR", "RANK
ERRIR", or "DOMAIN ERROR" comments are too cryptic £for novices
and fail to provide information about which variables are
involved. On the plus side, the standardization (most systems
use the APL360 messages) of messages does make it easier for
users to move from one system to another. I have long felt that
language standardization efforts should include standardization
of at least the fundamental messages.

Execution time messages in programming languages should provide
the user with specific information about where the problem arose,
what variables are involved and what values were improper. When
division by zero occurs some processors will terminate with a
crude mess3age such as "DOMAIN ERROR" in APL or "SIZE ERROR" in
some CO30L compilers. PASCAL specifies "division by zero" but
may not 1include the 1line number or wvariables that the PLUM
compiler offers (Zelkowitz, 1976). Maintaining symbol table and
line number information at execution time so that better messages
can b2 generated 1is wusually well worth the modest resource
expenditure.

Systems whicn offer a code number for error messages are also
annoying because the manual may not be available and consulting
it is disruptive and time consuming. In most cases, system
developers can no longer hide behind the claim that printing
complete messages consumes too many system resources.

BE CONSTRUCTIVE

Rather than condemning the users for what they have done wrong,
where possible tell them what they need to do to set things
right. HNasty messages such as "DISASTROUS STRING OVERFLOW. JOB
A3ANDONED." (from a well-known compiler-compiler), "UNDEFINED
LABEL3", or "ILLEGAL STA. WRN." (both from a major manufacturer's
FORTRAN compiler) can be replaced by more constructive phrases
such as "String space consumed. Revise projram to use shorter
strinys or ecxpand string space.", "Defins statcment labels before
use", or "RETURN I statement cannot be used in a FUNCTION
subprojram”.

120

It may be difficult for ths compiler writer to write code which
accurately determines what the wuser's intention was, so the
advice to be constructive is often difficult to apply. 1 believe
that error correcting compilers should be extremely conservative
for the same reason. Automatic error correction has the danger
that users will fail to learn proper syntax, and become dependent
on the compiler making corrections for them. For interactive
systems the wuser can be consulted before corrections are
automatically applied.

BE USER-CENTERED

By user-centered I mean that the user controls the system rather
than the system directs the user what to do. This is partially
accomplished by avoiding the negative and condemning tone in
messages and by being courteous to the user. If the system will
take a long time to respond to a command then the user should be
informed with a simple estimate of the time. Prompting messajes
should avoid the imperative forms such as "ENTER DATA"™ and focus
on user control such as "READY FOR COMMAND" or simply "READY".

Brevity is a virtue, but the user should be allowed to control
the kind of information provided. Possibly the standard system
message should be less than a line, but by keying a "?" the user
should be able to get a few lines of explanation. Two question
marks might yield a set of examples and three question makks
might produce explanations of the examples and a complete
description, The CONFER teleconferencing system provides
appealing assistance similar to this. The PLATO computer
assisted instruction system offers a special HELP button and
other options to provide explanations when the student needs
assistance.

The designers of the Library of Congress' SCORPIO system (Woody
et al., 1977) for bibliographic retrieval understood the
importance of making the users feel that they are in control. 1In
addition to wusing the properly subservient "READY FOR NEXT
COMMAND" the designers avoid the use of the words "error" or
"invalid" in the text of system messages. Blame 1is never
assigned to the wuser but instead the system displays "SCORPIO
COULD WOT INTERPRET THE FOURTH PART OF THE COMMAND CONTENTS,
WHICH IS SUPPOSED TO BE A 4-CHARACTER OPTION CODE." The message
then goes on to define the proper format and present an example
of its use,

USE AN APPROPRIATE PHYSICAL FORMAT

Although professional programmers have learned to read upper case
only text, most novices prefer and find it easier to read upper
and lower case messages. Messages that begin with a lengthy and

121

mysterious code number only serve to remind the user that the
designers were insensitive to the real needs of users. 1f code
numbers are needed at all they might be enclosed in parentheses
at the end of a message.

There is some disagreement about the placement of messages in
program 1listing. One school of thought argues that the messages
should be placed at the point in the program where the problem
has arisen. The second opinion is that the messages clutter the
listing and anyway it is easier for the compiler writer to -place
them all at the end. This is a 3ood subject for experimental
study, but I would vote for placing messages in the body of the
listing assuming that a blank line is left above and below the
message so as to minimize interference with reading the 1listing.
Of course, certain messages must come at the end of the listing
and execution time messages must appear in the output listing.

Some application systems ring a bell or sound a tone when an
error has occurred. This can be useful if the error could be
missed by the operator, but it is extremely embarrassing if other
people are in the room and potentially annoyin3g 2ven 1if the
operator is alone. The use of audio signals should be under the
control of the operator.

The early high level language, MAD (Michigan Algorithmic Decoder)
printed out a full page picture of Alfred E. Neuman if there were
syntactic errors in the program. ®Hovices enjoyed this playful
approach, but after they nad accumulated a drawer full of
pictures, the portrait became an annoying embarrassment.
Highlighting errors with rows of asterisks 1is & common but
questionable approach. Designers must w3alk a narrow path between
calling attention to a problem and avoiding embarrassment to the

operator. Considering the wide range of experience and
temperment in users, maybe the best solution is to offer the user
a choice of alternatives - this coordinates with the

user-centered principle.

2. EXPERIMENTAL RESULTS

2.1 COBOL Compiler Messages

A pilot study was run to explore the impact of improved messages
on the ability of programmers to locate and repair bugs. The
experiment, carried out by Patrick Peck and David Fuselier under
the direction of the author, was administered to 22 second term
COBOL students at the University of Maryland in Fall 1979.

Five bugs were included in 2 132 line COB)JL program yielding the

122

following messages from a UNIVAC COBOL compiler:

1) RESERVED WORD USED AS PARAGRAPH OR SECTION NAME IGNORE
ATTEMPT RECOVERY HERE AFTER PREVIOQUS ERROR

2) DANGLING ELSE OR WHEN; TREATED AS AN IMPERATIVE

3) UNDEFINED DATA ITEM STATEMENT OMITTED
ATTEMPT RECOVERY HERE AFTER PREVIOUS ERROR
PREVIOUS ERRORS CAUSE LOSS OF OBJECT CODE

4) WORD NOT A VERB; S5CAN SKIPS TO NEXT VERB
ATTEMPT RECOVERY HERE AFTER PREVIOUS ERROR

5) BLANK MISSING BEFCRE OPERATOR OR LEFT PARENTHESIS
BLANK MISSING AFTER ARITH/COND OPERATOR OR PUNCTUATIOW

A second version of the listing was produced with the following
five improved messages:

1) PERIOD IN PREVIOUS LINE CONTAINED IN IF STATEMENT, DELETE
2) EXTRANEOUS ELSE IN PREVIOUS LINE, DELETE

3) BLANKS IS UNDEFINED DATA ITEM, MUST USE SPACES

4) USE AFTER PAGE INSTEAD OF AFTER 1 PAGE

5) SPACE REQUIRED BEFORE OPERATOR
SPACE REQUIRED AFTER OPERATOR

Code numbers and severity levels were eliminated in the improved
messages and a single blank line was left above and below the
improved messages. Eleven copies of each of the 1listings were
produced and randomly distributed to the subjects. Seven minutes
were allowed to locate and repair the bugs. One point was given
for locating the error and two points were given for correcting
the bug, yielding a maximum score of 10 points.

Subjects with the UNIVAC COBOL compiler listing had an average of
0.6 points while those with the improved messajes had an average
of 8.5 points, A t-test yielded a significant difference at the
5% level.

The results of this pilot study should be considered exploratory.
Replications should be per formed with other messages,
professional subjects, and different languages. A more realistic
study could be performed if two versions of the same language
compiler were available. One group of subjects would be required
to work with the standard version and the other group of subjacts
would work with the improved message version. Capturing
performance in actual oprojects over longer time frames could

123

demonstrate the true impact of improved messages.

2.2 COBOL Compiler Messages: Tone and Specifity

2.3 Presence or Absence of Text Editor Messages

2.4 Tone and Content of Text Editor Messages"

2.5 Job Control Language Messages
3. CONCLUSIONS

REFERENCES

124

Workshop == Tha Human Computer Interface

~- Extended Apstrect —

Empiricsl Evalvation with Novice Users of Some
Programming Language Constiructs

Elliot=Solowau and Jeff Bonar

Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

This work was supported by the Army Research Institute for the
Behavioral and Bocial Sciences, under AR1 grant
No. MDA903-80-C-0508.

Qnu opinions, findings, conclusions or recommendations expressed
in this report are those of the authors, and do not necessarily
Teflect the views of the U.8 Government.

125

Workshop == The Human Computer Interface .

I. Introduction

Language designers andnlanguagn proponents are often given
to making claims about the “readability, " “debug—ability,"
"understandability, " “learnability,"” ‘“paturalness," etc. of a

(their!) particular programming language. For the most part such
tlaims are psychological in nature, and thus open to empirical
inquiry. The problem is that this type of research is difficult
to carry out and, frankly, only lip service (and "lip resources”)
to its need is given by the computing community. Moreover, with
the major push behind Ada and methodologies appropriate to 1large
“cale software development, the needs of novice programmers have
gotten particularly short shrift. We increasingly see the
attitude that a ‘“programmer" is a' person who works on a 100
person team on some massive project ~- pot someone tailoring
their home "mail network" or interacting with a computerized —-
"programmable” -- toy. This view of programming seems a bit
nNnarrow.)

With that introductory polemic, let us turn to the specifics
of our presentation. We have been looking at how novice Pascal
. users cope with problem solving in Pascal. {1 In this extended
abstract we shall first highlight several Pascal constructs which
are particularly troublesome. Next, we shall make a more general
statement, based alsc ‘on empirical data, on the need to keep
Procedurality in programming languages.

11. PBerformapce Analusis; Read i/Process j vs, Progess i/Read
Next-i

Consider problem 3 in Table 1. For +this problem., the
stylistically correct solution in Pascal requires a curiogus
coding structure:

read first-value

while (test ith value)
process ith value
read next—ith value

The loop must not be executed if the +test variable has the
specified wvalue, and this value could turn up on the first read;
thus, a read outside the loop is necessary in order to "get the
thing going. " However, this vresults in the loop processing being
"behind the read; it processes the ith input and then fetches
the next—-i. We call this structure "process i/read next—-i, "

T ——

{1} One goal of our project, which will not be reported on in
this summary, is to build a Run-Time Support Environment for
Novice Pascal wusers. This system, components of which are
currently being built., will attempt to catch run—time bugs (ngt
Compile time errors, which are adequately handled in other
systems) in students’ programs, and provide remedistion with
Tespect to the underlying mental misconceptions.

- -

Problem 1, Write a program which resds 10 {ntegers and then
prints out the aversge. IMesember, the average of a
series of numbers the sum of those numbders divided
by how many numbers thare are in the series.

Problem 2, Write s progrem shich repestedly resds (n
integers until their sum is grester than 100, After
resching 100, the program should print gut the average
of the integers entered.

froblem 3. Write 8 progrsm which repestedly resda in
integers until it resds the integer 99599, After
seeing 99999, it should print out the correct average.
That i3, i3 should not count the finsl 99999,

Table ’. Prodblems used in our test inatrument, These problems
were given t5 an introauctory programming class an the last asy
Nl the course. They sre designed to test student lnowlesge of
xey differences Detween different loop constructs in Pascal.

program Student§_Prodblem3:

yar Gunt, Sum, Nmber : integer; Average ; real;

begin
Count i3 0;
Sum 3 03

Read (Number);
while humber <> 99995 do

begin
Sua s Sum o Nuaber;

Zount i3 Count « 1
Reaa (Nuaber)
g
Average :3 Sum / Count:
Writelr (Aversge)
eng.

Figure ' A stylistically correct solution to prnoblem 3 in tadle
1. Mte the nged for two Read calls and the curious "process the
<ast saive, resd the next value® sesantics of the 1loop body.
This progrea was ainimslly editea for presentation here.
Stucents wrote these prograas in a clessroom, They were never
swmitted tn s translator,

progrss Student?_Probleml;

var N, Sum, X : jateger;
Average : real:
Stop : boolean:

Dbegin

Stop = false;

N 12 0;

Sum :s 0%

while not Step co
b!!ln
Read (X):

1f X = 99999
then Stop :z true
else begin
Sum :: Sum ¢ X;
Ni:sN e
3

o .

n

l

gngd; .
Average iz Sum / N;
Writeln (Average)
and.

pregram Stugenti6_Problem3:
yar Count, Sum, Mum : integer; Average :@ resi;

begin

Count 33 «1;
Sum iz 03
repeat
Count iz Count « 13
Rezs {Num):
Sum Iz Sum « Num
until Mum = 79999
Sur iz Sum - 99%99G;
Aversge :z Sum / Count
eoa.

v
Figure & These progrims are attempts #t probjes 3 cescripes .n
tadble 1. They are typical aof the contortinns students will 7
througl. to make this prodbler fail intn a "resgd 2 value, prncess
that value® Frame, Thrse rrograms have been miriraliy eciten !or
presantstion bere. Stusents wrnte these prograns if a 2.3ss"o0a0m.
They vere never s.omittes to 3 transiator,

| ' Rasd {/Process i Process i/Read Nexz-1 ' Other |
')
4 ! '
! i used ; used '
i 1
| ; repeat loop : vhile loop | other : fepeat loop |, while loop '
' ' - X
‘ . | s . :
b ! | . '
: Correct i 4 ! 2 ; 2 Y ;
])
i ! ' . ! .
i ' = ; - '
i I ! :
| N ! ' ' '
H . ' i]
)
. | : | ! !
; Incorrect ! 3 : 5 . :. 2 f
! ! !
L}

S ——

The numbery in this table refer

not parcentages.

Table z

to the actual nuamber o1 students,

127

Workshop == The Human Computer Interface

One of the authors —- the one with less Pascal experience ——
intuitively felt this coding strategy to be unnecessarily awkward

and downright confusing. Perhaps a3 more "natural” coding
strategy would be to read the ith value and then process it; we
ctall this the “read i/process i" coding strategy. Others have

noticed this problem before, but treated it largely as a coding
inconvience. Their response was baroque looping constructs which
eliminated writing the same code tuwice. Ue are not as concerned
with elegence as with Jlgarnability. Do novice programmers use
the stylistically correct coding strategy (process i/read
next-i), or do they add extra machinery to @ while or repeat loop
(e.9., an embedded jf test tied to 3 boolean variable) in order
to force the code into @ read i/procecs i structvre?

Table 2 1lists the performance of those students who
attempted the problem with either & yhile or repeat loop. Of the
9 who solved it correctly, only 2 used the stylistically correct
Yprocess i/read next-i" coding strategy. (See Figure 1 for a
solution using this coding strategy.) In order to correctly
solve the problem using either a repcat or yhile loop and the
Tead i/process i coding strategy requires extra machinery;
Figure 2 shows student programs which use this strategy.
Nonetheless, the vast majority of students attempted this
solution; given the extra complexity needed for a correct
sclution, it is not surprising that meny tailed.

It is tempting to conclude that with respect to Viese types
ocf problems, Pascal requires that students circumvent their
"natural” problem solving intuitions. Before we can actually
assert this conclusion, more research needs to be done (1), But,
since we must live with Pascal for some period of time to come.
it would only be responsible for teachers to gxplicitly teach
their students about this peculiar coding strategy.

{1} We have designed and pilot-tested the following experiment:
we first ask all students to write a plan or design for problem 3
in Table i1 (the same one examined in this section), in @ language
other than a programming language. We then ask half the students
to write the program in Pascal. For the other half of the group,
we provide a one page description of constrained version of the
Ada loop ... gnd loop construct in which only one exit from the
loop body is allowed. While ¢the sample size was small (13
students in total), the data is suggestive: invariably the plan
of the students was Worded in terms of a read i/process i.
However, the Pascal versions were typically coded with @ process
i/read next—-i strategy. But, those programs written using the
Ada lpop ... @end loop were coded using the rtead i/process i
strategy. Thus, the program coded in Ada more closely matched
the students’ plans than did those progrom coded in Pascal. We
plan to run this experiment on a larger group.

128

Workshop == The Human Computer Interface

111. Performance Analusis: @etting s New Value

In all 3 problems (Table 1), & correct solution required
that the program "get a new value with a pread. * 23% of all the
student written programs did not perform this function correctly.
Oftsn students try to get the previous or next value of a
variable by subtractxng or adding one (see Figure 3). {1} We
8lsoc found programs in which we felt students assumed that each
yse of Next_valuve automatically retrieved a new value.

As "expert programmers” we have a great deal of deep
knowledge about how to program. In particular, we know that
variables have not just types, but alsv roles. Different coding
stratagies are needed to realize like operations on variables
whose roles are different. For ezxample, "getting the next value®
implies adding one for & counter variable, reading for a
New_value variable, and adding in the New_value for a
Running_total variable. {The problems in Table 1 need one
variable in each of these roles.) Perhaps students committing
the above sarrors did not understand or garbled these different
variable roles.

Misunderstanding this "deep” knowledge asbout Pascal —- ' mind
bugs =—- could result in many different student errors —— surface
bugs. Perhaps students committing the above errors did not
understand that read is actually Just & special case of
assignment.. If so, then a langusge which treated 1/0 calls as
special values which can be assigned "to" or "from"” might be more
palatable to beginning programmers, a.9..,

New_value := Read_£from_terminal, or,
Write_to_terminal := Running_sum /7 Count.

Another possible mind bug which could result in some of the
Oobserved &TTOTS would be that students incorrectly
overgeneralized from the Counter varisble, That is, since the
next valuve of a variable functioning as a counter can be
retrieved by simply adding @ 1 to the variable, why not get the
next value of gnuy vavriable by simply adding @ 1 to it! While
Teasonable, this is incorrect.

lv.'m&mm}um;. Ihe “Pemon® in the while loop test

Based on our examination of student programs, and on
analysis of audio-taped, individual interviews, we felt that
there was a great deal of confusion surrounding the time at which
the terminating test in the whjle loop gets evaluvated: is it

{1} “Backing up” may be needed when a student does problem 3 in
table 1 with a read i/process i strategy,

129

program Stuaontzo.rroblua;

yar N, Sus, Score : {ateger: Mean : real: prograa Student19_Problemt;
Dbegin var Mum, Prev_nus, Count : integer;
h i3 0;
gcu- :s 0; begin
ore :a 0; Count iz O;
ahile es.u'<. 100) go Reag (Num):
begin e Sum : 0;
Score :: Score + 1; repest or Nos - 1
Sum iz Sum « Score: ev_num iz - 13
NisNeot * ¢ Sum ;2 Num « Prev_num;
ana; Sum :x Sua + 1;
Mesn ;s Sun / N Count :s Count « 1;
:;axuln ("tha mean » ', Mesn:10:10) :n:u countss u/):co .
Lns. versge :z Sus unt;
Writeln (‘*Aversge of ten integers i3 equal to ':2)
end,

Figure 3 These programs are attempts at the problems descrided
0 tedle M They 1llustrate student problems with getting a
New value. These programs have been minimally edited for
fresentatinsn here. Studants wrote these prograas in a classroom,
They were never submitted to a translator,

Ereplem 1l

Given the foliowing stateament:

“At the last company cocktail party. for every & people who drank
hard liquouwr, there were 1l pecple who drank beer.*

Write a computer program in BASIC which will output the number of
beer drinkers when supplied (via user input at the terminal) with the
number of hard liQuour drinkers. Use H for the number of people who
drank hard liguour. and B for the number of people who drank beer.

Sample Bize % Correct % lncorvrect
o2 69 31
Breblea Ri

Given the following stateaent:

*At the last company cocktail party, for every 6 people who drank
herd ligquour, there were 11 people who drank beer."

Hrite an equation which represents the above statement. Use H Por the

number of people who drank hard liquour, and B for the number of
people who drank beer.

Sample Bize % Correct % IJncorrect

51 45

V]

| 1]

Probability of thess results un the assumption thet errors on each
grobles were squally likely is p < .05

Table 3

130

Workshop ——~ The Human Computer Interface

evaluated once, at the top o0f ihe loop, or is the test
tontinually evaluated during ‘the execution of the body of the
loop? The program given below was also on @ written test taken
by the 31 summer school students.

program Problemad;
yar Count : jintegers

beain
Count := Q;
while Count < 7 do

begin .

Writeln (’%’);

Count := Count + 1;

Writeln (’/7)

eng .
gnd.

If the students felt that the terminating test was evalvated
sentinually, then the Jloop ghould terminate before an ‘/’ were
printed. thus providing one more ’‘#/ and ’/’. {1} 1In otherwords,
it is as if the test were a "demon" watching the statements in
the loop body, and waiting for its condition to become true. 0f
the 31 students, 347 made the above mistake. Given the ubiquity
of the while construct in programs and in the instruction, and
given the 1lateness in the course (the end of the semester), we
felt that this was a surprisingly high percentage.

We feal that the basis for this confusion is grounded in the
mismatch between the semantics of yhijle in a programming language
context, and the semantics -~ the meaning —— of ‘while’ in “every
day experience.” In the latter case, ‘while’ has a global sense:
during the course of some event. In coutrast, the programming
langusge while requires a 1local, narrow interpretation: at a
specific point in <time. Clearly, the names of programming
language constructs must rely on real world semantics of their
analogs. However, care ought to be exercised in their selection.
Again, we are unlikely to change Pascal or the while loop
Construct, but educators must take note aof this error, and pay
attention to it in their instruction.

V. Ihe Need for Procedurajlity in Langueges for Novices

{1} We were not interested in the actusl number of ‘*’ and /7
i. e, we were not studying the “off-by—one” bug in this
particular problem.

131

M RN

Workshop —— The Human Computer Interface

There is & definite trend in programming langavge design and
programming methodology towards more "formality.” For example,
"logic" and production rules have been seriously suggested as
progamming languages. Dijsktra suggests that the process of
writing a program should be akin to that of writing a
mathematical proof. Backus’ new language takes a different, yet
similar approach: take procedurality out of the programming
language and make it algebra based to facilitate program proofs.
While these langauges and approaches might be appropriate for
experts, we are quite skeptical of their appropriateness for
novices. We are seriously concerned that programming not be
equated with mathmatics. For whatever reasons, most people have
a3 great deal of trouble learning and using mathematics. We
believe, and we are not alone, that there are aspects of
programming which uniquely lend themselves to the demystification
of mathematics. The formal programming people propose to remove
exactly those aspects of programming while increasing required
math ability. In our increasingly scophisticated world, Just
plain folks will need to “program”, and our formal programming
friends have no answers for these non—professional programmers.
We are not willing to write off Just plain folks.

In the #following, we take a less polemical, and more
evidence based look at one of the "unique aspects of programming”
alluded to above, namely, proceduralily.

The first study which we feel supports the need to keep
procedurality im programming 1languagec for novices was done by
Welty and Stemple [19813. They compared ihe ability of novice
subjects to write database queries in languages with different
amounts of procedurality. In all issues except procedurality.
the languages were identical. A typical query in SAL, the less
procedural language, is: .

SELECT NAME
FROM STUDENTTABLE
WHERE HOMESTATE = ‘0OHIO’

The equivalent query in TABLET, the more procedural language, is:

FORM OHIOANS FROM NAME, HOMESTATE OF STUDENTTABLE
. KEEP ROWS WHERE HOMESTATE = ‘OHIO”
PRINT NAME

In their paper they formalize "amount of procedurality” based on
the number of variables, the number of operations, and the degree
to which the bindings and opurations ere ordered by the language
semantics. The two languages were learned by subjects working
largely on their own. The same example problems and order of
presentation was used for each group. The experiment showed that
subjects who learned the more procedural query language, TABLET,

132

wrote difficult queries better <than those using the 1less
Procedural language SQL.

The second study which we feel supports our claim is being
Carried out by Soloway and his colleagues at UMASS. In our work,
. We explored the performance of students on ‘"ratio” type word
problems. Typically, halé the students in @ low-level
Programming class were asked to solve & word problem with an
algebraic wequation, while the other half were asked to solve the
Same problem with a program (Table 3). As the results indicate,
significantly more students got the problem correct in the the
Programming context than did those in the algebraic context. A
number of these experiments have been vwun in which various
paramters were varied (e.g., problem wording). In all cases the
Tesults were similar to those in Table 3.

We have a number of specific hypotheses which could account
for this performance difference. The basis for 311 of them,
however, is procedurality, Some students who used algebra as the
solution 1language seemed to view the equation as a "picture
description: * there are more beer drinkers than hard liquour
drinkevs, thus 11B, which represents the beer drinkers, is
Telated to 6&H,2 the hard liquour drinkers. via 1iB = &H.
Alternatively, some students viewed the algebraic equation as
“label descriptors,“ much like "3ft. = lyd.* (1> On the other
hand, programming appears to encourage students to view the
®quation as an getive pperation: or transformation. That is, the
fact that variables have values, ond that variables are acted
Upon by operations. appear.more understandable to students in the
programming environment. Thus, the procedural nature of
Programming seems to be & key factor in understanding and wusing
such basic concepts as variable, operation, equal sign.

Concluding Remarks

Clearly, this note is only @ "teeser;” a fuller discussion
Of these issues must await the workshop. We genuvinely solicit
Your comments, and look forward to an active interchange at the
workshop.

{1> These hypotheses are based on the analysis of many howvrs of
video-taped clinical interviews with individual students as they
solved problems of the above sort,

133

Steamer: An Advanced Computer Aided Instruction
System For Teaching Propulsion Engineering
Albert L, Stevens
Michael D. Williams

James D. Hollan

In this presentation, we describe the current state
of Steamer, an intelligent CAI system with a graphics-
based human interface. Steamer includes a math model of
a steam plant, an interactive graphics front end and a
qualitative modelling component. The math model and
graphics interface allows the student to control and
observe a simulated steam plant. The qualitative model-
ling component enables Steamer to explain in casual
terms the operation of components and subsystems, The
design of the graphics interface is based on object-
oriented programming to allow much more modularity and
flexibility than is normal with computer graphics. The
qualitative modelling component is based on incremental
qualitative simulation to model systems in terms of

psychologically meaningful events,

134

METAMORPHOSIS THROUGH METAPHOR
J.C. THOMAS
IBM CHQ Armonk,NY

The problems that mankind faces in the twentieth century
sometimes seem insurmountable. Nuclear weapons, the
population explosion, rising demand and falling levels of
most natural resources provide a potentially devastating
combination. In addition, our new lifestyles have provided

a number of unwelcome ecological surprises.

The organism and the environment are necessarily in an
intimate relationship. Yet, we humans are, seemingly by
choice, changing our environment much faster than we can

adapt biologically. It seems suicidal.

The only major way out of these dilemmas is for effective
human intelligence to increase dramatically over the next
century. This could theoretically be accomplished
biochemically, educationally, or through more effective group

problem solving procedures.

The fourth possibility, which is addressed in thnis
paper, is that of the computer augmenting effective human
intelligence. By augmenting effective human intelligence 1I
mean that by using a computer, people will operate so as to
bring greater short and long term happiness to themselves, to

mankind, and to life than they will without the computer.

135

The major obstacle to this goal is not the lack of
progress in computer technology: we are able to build
smaller, faster, cheaper components. (That progress, of
course, is what enables us to address the next problem). ;
what we have been slow to achieve is a computer that is
anything near optimally designed to help a human being do a '
more effective, higher quality job. In order to accomplish !
this latter goal, we need some notion of what humans can do,
what they need to be able to do better in order to solve

their problems and what the capabilities of the computer are.

In this paper, I will focus on part of this problem. First,
I will present a model of how the person approaches and
learns to use a new tool. Second, I will point out where in
this process there is likely to be a critical breakdown
which prevents the person from using the tool in an effective
fashion (e.g., to solve previously insoluble problems).
Third,I will present a theory of what the tool should look
like and provide some suggestively supporting evidence based
on experimental work of my own and of other investigators. -
Fourth, in the area of office systems, I will present some

examples of how my recommendations might be implemented.

The model of mind is multi-viewed; at the current state
of integration of behavioral science no single view (e.g.,
behavioristic or cognitive) provides as sufficient a scope as

does a multi-viewed approach.

The presented model is novel in the context of
human-computer interaction in the notion of resource
allocations with differentiably usable resources, in an
emphasis upon motivational issues, and in the analysis of

primary, secondary and tertiary memory limitations.

The model implies that under certain conditions a kind
of "gambler's ruin" phenomenon will occur in which the
aspiring learner of a potentially useful system will stop
short. An even more common case of essentially the same
phenomenon will occur among those learners who learn enough
about the system to do what they did before only marginally
better. Rarely, a user will learn an interface so that they

are truly facile with the facilities.

Still rarer are cases in which the computer-tool allows
a qualitative change in the user's work. Yet for augmenting
effective human intelligence, it is this last category that
we would like to contain the majority of users. For such a
qualitative change to occur, the interface must be designed
to allow a more optimal allocation of the user's |

psychological resources.

137

One way of accomplishing this latter goal is through the
use of an appropriate metaphorical interface presented to the

user along with a well though-out mapping inside the computer

system that translates the actions the user takes in the
metaphorical space into the appropriate state changes in the
machine, and translates the machine state changes into the

appropriate presentations in the user's metaphor.

A large body of empirical evidence strongly suggests
that "meaningful' material can greatly affect the user's
performance quantitatively and in some cases qualitatively.
"Meaningfulness" can exist at many levels. Editing commands
that are more English-like are better than their
abbreviational counterparts (Ledgard, et als (1980).
Non-programmers can learn an English-like query language
better than its symbolic counterpart (Reisner, 1975). Older
subjects particularly, but younger ones as well, are aided in
learning by the addition of "extra' mnemonic material (Thomas

& Rubin, 1972).

The implications of these findings for a particular
domain - office systems is drawn in some detail. A number of

objects, organizing schemes, features, and actions that

138

people are familiar with are reviewed along with the way in
which these can be combines to let the user know what is
going on. The model explains how using such metaphors can
increase comprehension, motivation, and performance of given
tasks and how such metaphors can be used to improve the

effective intelligence that goes into the user's solutions.

In addition to using metaphors, a better allocation of
the user's psychological resources can be achieved by making
more complete use of various input and output
characteristics of human beings. People can discriminate
better when information is presented on a large number of
crannels (rather than a single channel). People can also
output at greater data rates over several channels. In
traditional, pencil and paper eaiting, non-verbal, spatial
:ymbols are used as the metalanguage for the verbal
material. In film directing, on the other hand, much of the
metalanguage is verbal. We need to become more sensitive to

this kind of- "division of labor" in our computer interfaces.

139

A SYSTEM FOR COMPUTER AIDED
MEMORIZATION

Michael D. Williams
Xerox Palo Alto Research Center

Palo Alto, California

James D. Hollan
Navy Personnel Research and Development Center
San Diego, California
and
University of California, San Diego

La Jolia, California

We are constructing an intelligent computer based instructional system to facillitate students in
the memorization of a large collection of facts. The system consists of a series of games played on a
microprocessor, a relational data base to drive the games, a student model, and a computer coach.
To the student the system appears as a series of games played with a table top computer against a
computcrized opponent. Example games are twenty questions, flash cards, a property specification
game where students successively enhance the definition of an object until one or no objects match
the cumulative description, a picture recognition game, and a concentration-like table fill-in game.
The data base can be modified to allow a variety of topic matters. Present data bascs include US
and Russian ships, their radars and weapons, South American geography, the anatomy of the
human hand, and a fantasy data base on star trek trivia. The student model consists of a simple
marking of the relations in the data base. The computer coach consists of a series of opponenis of
variable "intelligence” and a scheme for focusing game activity on portions of the data base where
the student is weak and the information important,

Our principle student population are Naval Officers learning the properties of Russian ships,
radars, and weapons. The data base they are attempting to master consists of thousands of facts.
Approximately 3 and 1/2 wecks of a 6 week course on tactical decision aking arc taken up with
lectures, practice, and tests to support this memorization.

Our primary scientific goal in this work is to cxplore the process of remembering. We are
using this computerized memorization system as a tool to gather data as well as a forcing function
to drive the development of of our thcory. An issuc that anyone building a computerized

140

instructional system must confront is whar information to present a student and when to present the
information. ‘The goat for our theory of remembering is to determine the implications of lcarning
any particular piece of information with regard to the durability of what the student knows,
flexibility of retreival, errors in recall, incidential information recovered, and speed of rotrieval.

We come to the problem with the view that remembering is a complex process of
reconstruction from an array of fragments. An cssential observation is that people memorize more
than just the facts in the data base. A large amount of their learning seems to focus around
abstractions drawn, in part, from the regularities within the data base. Thus, a student might notice
that all ships which carry a scoop-pair radar also carry shaddock missiles (this is because the scoop-
pair radar is the guidence radar used to control that particular missile, it has no function without
the missile). In effect, students seem to be building a "theory” of the data base from which they
can rcconstruct the portion they need o answer any given query. Given that this is the case, what
we are looking for are the particular mnemonic effects of these "abstractions”, and principled
reasons for these effects within a reconstructive theory or remembering.

Our primary engineering goal in this work is to build a system which provides substantial
facilitation to students who must memorize some collection of facts, In this role we are investing
substantial efforts in what we call the pragmatics of the system design. Thus we are using computer
games to enhance motivation, have spent large amounts of time designing and tuning the interface
betweeen student and machine, and are using a technique of in sifu development to tune the system
toward realistic user needs.

141

APPENDIX A

Names and Addresses of Participants

Albert N. Badre School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332
(404)-894-2598

Richard Burton Xerox PARC
3333 Coyote Hill Road
Palo Alto, California 9u304
(415)-494-4000

Jaime G. Carbonell Carnegie Mellon University
Department of Computer Science
Schenley Park
Pittsburg, Pennsylvania 15213
(412)-578-3064

Susan T. Dumais Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974
(201)-582-2054

Sam L. Ehrenreich U.S. Army Research Institute
Attention: Peri-0S (S.L. Ehrenreich)
5001 Eisenhower Avenue
Alexandria, Virginia 22333
(202)-274-8905

Jim Foley Department of Electrical Engineering
and Computer Science
George Washington University
Washington, D.C. 20052
(202)-676-4952

George W. Furnas Bell Laberatories
600 Mountain Avenue
Murray Hill, New Jersey 07974
(201)-582-6128

Stanley M. Halpin U.S, Army Research Institute
Attention: Peri-0S (Stanley M, Halpin)
5001 Eisenhower Avenue
Alexandria, Virginia 22333
(202)-274-8905

143

Mark D. Jackson

Janet Kolodner

Thomas K. Landauer

Michael Lebowitz

Paul R. Michaelis

Mark Miller

Franklin L. Moses

Jean Nichols

Phyllis Reisner

Bell Laboratories

Room 6A304B

Warrenville and Naperville Roads
Naperville, Illinois C€05¢6

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

(404)~-894-3285

Bell Laboratories

6C0 Mountain Avenue

Murray Hill, New Jersey 07974
(201)-582-4324

Department of Computer Science
406 Mudd Building

Collumbia University

New York, New York 10027
(212)-280-2564

Texas Instruments
Computer Science Lab
Post Office Box 225936
Mail Station 371
Dallas, Texas 75265
(214)-995-7081

Texas Instruments
Computer Science Lab
Post Office Box 225936
Mail Station 371
Dallas, Texas 75265
(214)-995-7081

U.S. Army Research Institute
Attention: Peri-0S (F.L. Moses)
5001 Eisenhower Avenue
Alexandria, Virginia 22333
(202)-274-8905

U.S. Army Research Institute
Attention: Peri-0S (J. Nichols)
5001 Eisenhower Avenue
Alexandria, Virginia 22333
(202)-274-8905

IBM

Department K5u4/282

5600 Cottle Road

San Jose, California 95193

144

Elaine Rich Department of Computer Science
University of Texas
Austin, Texas 78712
(512)-471-7316

Michael L. Schneider Sperry Univac
Post Office Box 500

Blue Bell, Pennsylvania 19424
(215)-542-4011

Ben Shneiderman Department of Computer Science
University of Maryland
College Park, Maryland 20742
(301)-45u-4245

Elliot Soloway Department of Computer Science
University of Massachusettes - Amherst
Amherst, Massachusettes 01002
(413)-545-1324

Albert L. Stevens Bolt Beranek and Newman, Inc.
50 Moulton Street
Cambridge, Massachusettes 02238
(617)-491-1850

John C, Thomas IBM
01d Orchard Road
Armonk, New York 10504
(914}-765-1900

Judith Tschirgi Bell Laboratories
Room 6A304B
Warrenville and Naperville Roads
Naperville, Illinois 60566
(312)~462-5976

Michael D, Williams Xerox PARC
3333 Coyote Hill Road
Palo Alto, California 94304
(415)-494-4000

145

Workshop/Symposium
on
Human Computer Interaction
March 26 and 27, 1981

Atlanta, Georgia

Albert N. Badre

Sponsored by the U.S. Army Research Institute for the
Behavioral and Social Sciences in conjunction with
Georgia Institute of Technology, School of Information
and Computer Science

