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Abstract

The ultimate purpose of this research is to reduce the time needed for execution of
parallel computer simulations. In particular, the impact of task assignment strategies is

determined for parallel VHDL circuit simulations.

The classical scheduling problem, which assigns n precedence-constrained tasks to
m processors is NP-complete in all but the simplest cases. The problem of assigning
simulation tasks is further complicated by the iterative nature of computer simulations:

each task is required to execute multiple times as the simulation executes.

This investigation develops a polynomial-time algorithm (the level strategy) which
provides optimal assignment for iterative systems with specific constraints. A mathemati-
cal foundation for iterative task systems is proved. In particular, it is shown that restricted
cases of iterative systems achieve minimal latency, (time between successive iterations of a
given task), when the level strategy is used for task assignment. In addition, the iterative

scheduling problem is proved NP-complete when constraints are relaxed.

To validate the theoretical results, various task scheduling strategies are compared
using VHDL logic-circuit simulations on the iPSC/2 Hypercube computer. Tests are run
with mappings based on the level strategy, the classical optimal assignment, a greedy
technique for assignment, and an unbalanced assignment. The best results of these ex-

periments, in terms of speedup, occur consistently in cases where the level strategy is

used.




Optimal Iterative Task Scheduling for Parallel Simulations

I. Introduction

1.1 Overview

Although computer technology has evolved dramatically in recent years, some ap-
plications are limited by intense computational requirements. Examples of these include

aircraft design; weather prediction; and computational fluid dynamics (5, 13).

Some computer applications, such as matrix operations and search problems, may
execute faster when parallel processing is used. If a designer can decompose the problem
into tasks, each processor in a parallel architecture can work on a subset of the original
problem. This may be done through data decomposition, a technique which partitions
a data structure into pieces with different processors working on separate parts of the
problem, or by control/algorithm decompositon, which allows different processors to per-
form different functions (31). Dividing the problem in this manner may enable the overall

solution to develop faster than on a sequential (one-processor) machine.

After a large problem has been decomposed into tasks, each task must be assigned to
a processor so that the computation can be performed. Assigning tasks to processors in an
optimal schedule to minimize execution time is, in general, 3 NP-complete problem (10).

All NP-complete problems have certain characteristics:

o There is no known polynomial-order solution fur any NP-complete problem.
¢ NP-complete proiriems have combinatoric or e» penential search spaces.

o Every NP-complete problem can be mapped (in polynomial time) to every oilicr
NP-complete problem. This implies that if a polynomial-time (p-time) solution is
Jound for any NP-complete problem, then a p-time solution can be found for all

NP-complete problems.
NP-complete problems can be approached in several ways:

i-1



o If an approximate solution is acceptable, heuristics can be developed to produce

“good” solutions for specific cases, rather than optimal solutions.

o Informed search strategies can be used to reduce the amount of time needed to find
an optimal solution in most instances. There are, however, cases where informed

search strategies produce no better results than an exhaustive search.

¢ The problem can be restricted so that it conforms to a problem which has a known

polynomial-time solution.

This thesis investigation concentrates on methods for finding an optimal solution to
the task scheduling problem, as defined by iterative task systems. In iterative systems, such
as those reflected in electronic circuit simulations, each task executes severai times during
the course of the simulation. This problem is shown to have a polynomial-time solution, for
highly-restricted cases, which means that a deterministic Turing machine (DTM) can solve
the problem with an algorithm of complexity O(n°), where c is constant (?). Most task
scheduling problems, however, require NP-time (10), which means that a nondeterministic
Turing machine (NDTM), can solve the problem with an algorithm of complexity O(n¢),
but that a DTM cannot (7).

1.2 Simulation Tasking Background

The development of electronic circuits, such as Very Large Scale Integration (VLSI)
circuits, involves numerous steps, from circuit design to physical implementation (30). One
attempt to streamline the process of circuit design uses the Very High Speed Integrated
Circuit (VHSIC) Hardware Design Language, or VHDL, a design methodology which allows
VLSI circuit behavior to be modelled on a computer (2). If VHDL simulations efficiently
model circuit behavior, the turnaround time from design to final implementation could be
decreased; instead of building intermediate designs and physically measuring the outputs,

computer simulotions could be used to iteratively refine the circuit before implementation.

Unfortunately, VDL simul .tions for current applications take a disproportionate

amount of coinputer time compared to the size of the circuit which is modeled. For




example, one projection estimates that simulating a VHDL design for a circuit with 100,000

transistors would require 700 hours to execute on a VAX 11/780 computer (30).

Previous research (30), attempted to decrease the time needed for VHDL processes
by running VHDL test cases on a parallel computer. Although successful VHDL circuit
sitnulations were impleriented in parallel, the parallel simulation required approximately
the same amount of time as the sequential version. This may have been due to any of

several factors which prevent parallel applications from achieving the theoretical speedup:

e Communicattons Qverhead:
The simulation must be amenable to parallelization. For example, if each simula-
tion task has a small armourt of computation compared to the required amount of
communication, then the simulation can spend more time communicating between

processors than performing actual work.

¢ Inefficient Loading:
The task schedulicg process, which assigns sub-problems to different processors, must
provide an assignment so that each processor is kept busy. If tasks are assigned to
processors so that processors are not fuliy-: tilized, execution time is dominated by
the processor with the heaviest workload. For example, tasks are assigned to 3
processors in Figure 1.1. Although the average processor finishing time is 17, the

finishing time for the entire job is 21.

P1

P2

P3

0 5 10 15 20

Figure 1.1. Unbaianced Processor I oads
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Since dependencies exist between mputs and outputs in VHDL tasks, the process of
assigning tasks to processors involves precedence-constr.ined scheduling. In 2 precedence-
constrained system, some tasks must delay until previous tasks are complete. For example,

the followirgz task system, shown in Figure 1.2, has a constrair- “etween tasks:

Task 1: Calculate a = (b+ ¢)/(364 x 972)
Task 2: Calculaie ¢ = a/2094

e = (b+c)+ (364 x 972) TASK 1

g =a < 2094 TASK 2

Figure 1.2. Relationships Between Tasks (1) and (2)

In this task system, Task 2 cannot begin until a value is given for a. Since the value of a
is the final recult of Task 1, Task 2 cannot begin until Task 1 has completed. Therefore,

Task 2 is constrained by Task 1.

The problem of mappirg precedence-constrained tasks to processors to obtain an
optimal schedule falis intc the class of NP-complete problems (10, 15). One characteristic
of NP-compiete problems is that a large search space exists implicitly a:id is partially gen-
eratcd e Hlicitly when deriving optimal solutions; another characteristic of these problems
is that ar optimal solution may require an excecdingly loug time to generate using a graph
search algorithm (4).

For example, ~uppose an cpiimal schedule is desired for 60 independent tasks assigned

I3

to 2 procsszars. If the problem is simplified by assuming that only 30 time slots can be

filied »n each nrocessor, it is possible to derive the number of possible combinations:
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o There are 60 choices for the placement of the first task.

o After the first task is chos2n, there are 59 choices for the placement of the second

task.

e After the second task is chosen, there are 58 choices for the placement of the third

task.

¢ For the final task, there is one choice for the placement.

e Thus, there are 60 x 59 X 58 x ... X 1 = 60! unique ways to scheduie 60 tasks

on 2 processors so that there are 30 tasks on each processor.

In order to det»rinine an optimal schedule for this problem by exhaustive search, 66!
zombinations must be examined. Assuming that schedules are generated by a computer
at the rate of 1,000,000 schedules per second, the time required to generate all schedules

would exceed hundreds of billions of centurizs!

60! schedules

1,000.000 schedules x 80 seconds x 80 minutes X "~ houra X 365 days X 100 years
second minute hour day year century

8.321 x 10% 6 .
= W = 2.63 x 10 centuries
Thus, optimal schedules must be derived using methods other than exhaustive search.

(Appendix A contains more complete calculations for this example).

Intelligent choice of search techniques can generate the optimal schedule without
exploring all possible combinations. One method of informed search is called branch and

bound. Branch and bound techniques place a bound, or limit, on the branches of the search

space which are traversed (8). As partial solutions exceed the cost of the current solution,
the search abandons the high-cost branch and backtracks to a previous state. In this way,

a limited search, rather than an exhaustive search is used to achieve an optimal solution.
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For example, suppose 4 independent tasks are to be scheduled on 2 processors. These
tasks may execute in any order, and there are no restrictions which limit the number of

tasks assigned to any processor.

Tasks 1, 3, 4 take 2 iime units to execute.

Task 2 takes 1 time unit to execute.

Figure 1.3 shows a partial search tree for this problem.

Cost > previous
BACKTRACK!

Figure 1.3. Branch and Bound Search Tree

At some point in the search, the following schedule is generated (shown on the left branch

of Figure 1.3):

T4 | T4 | T3 | T3 | T2
11| ™

s i |

Since this schedule can be completed in 5 time units, all partial schedules of more than 5

time units can be abandoned. For example, the partial schedule shown on the right branch
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i

of the search tree exceeds the current minimum complete schedule; thus, this schedule and

its variations can be eliminated from consideration:

-

==
|

Using techniques which allow the problem to be bounded by considering only those
options which fall beneath the current lowest-cost schedule, it is possible to generate an op-

timal schedule to an NP-complete problem without an exhaustive search of all alternatives

in most cages,

1.3 Task Scheduling Problem

Timing analysis has shown that large computer applications can often execute faster
on a parallel architecture than on a sequential machine (22). When VHDL circuit simula-
tions were ported to the parallel iPSC/2 Hypercebe, however, the execution time remained
the same as for serial implementations (30). This may have been due to communications
overhead or to unbalanced processor workload. In order to distribute the workload among

processors, the mapping process, which assigns tasks to processors, must be examined.

Previous AFIT research (30) used a greedy, or polynomial-time, technique to generate
a quick solution when mapping tasks to processors. In this method, the assignment strategy
is based on a candidate selection, but optimal results are not guaranteed. It is possible that
the overall execution time of the simulation can be reduced if more informed techniques

are used to assign VHDL tasks to processors.

In general, the task scheduling problem attempts to assign tasks to processors in
such a way that some criterion is optimized. (A formal definition is given in Chapter 2).

The VHDL problem attempts to assign n tasks to m processors (where » 3 m) in such a

way that overall execution time is minimized.




1.4 Assumptions
Before the scheduling process is begun, the task system must be defined. At a
minimum, the following must be know2 (10):
¢ pumber of tasks
¢ execution time for each task
e task precedences

e number of processors

It is also assumed that the parallel simulations generated by previous AFIT re-
search (23, 30) work effectively.

1.5 scope (Context)

The primary focus of this study is the problem of assigning n precedence-constrained
tasks to a multiprocessor system consisting of m identical processors such that n > m
and such that a minimal schedule in terms of overall execution time is generated. Since
scheduling thec:v. « ven with these constraints, encompasses a vast range of problems (9),

this investigation iz Turther restricted to simulations which meet the following criteria:

o The task g~ > contains no feedback loops.
o Messages bere on processors are held in a buffer until required.
e Eve.7 'isk in the task graph is executed multiple times.

¢ Once = iask is assigned to a processor, all subsequent iterations of that task remain

on that processor.

Using informed search techniques, an algorithm for assigning tasks to processors in
an optimal manner is developed. This algorithm, which derives a minimal schedule based

on the iterative nature of simulation tasks, is proved to be optimal in terms of latency, the

time between successive iterations of a task.




Finally, parallel VHDL implementations generated by previous AFIT research (30)
are executed with the following scheduling algorithms on the 8-node iPSC/2 Hypercube

and results are compared:

o greedy algorithm
¢ optimal one-ileration algorithm
o level strategy

e unbalanced mapping

1.6 Approach

This research begins with an analysis of scheduling algorithms which generate optimal
mappings of tasks to processors. These algorithms are examined to determine an optimal

method for scheduling tasks which conform to circuit simulation constraints.

Existing algorithms fail to capture one of the primary aspects of simulation task
systems: the simulation iferates through each task in the system numerous times during
execution. This iterative behavior dominates all other mapping considerations in some
simulations. A mapping strategy based on iterative tasks is developed. This strategy is
proved to result in optimal execution time for highly-restricted systems of simulation tasks.
As constraints are loosened, the problem of generating optimal solutions to iterative task

systems is shown to be NP-complete.

The next aspect of this effort requires an implementation of mapping algorithms to
generate optimal schedules for mapping n tasks to m processors, where n 3» m . The
implementation produced as a result of this thesis investigation directly supports mapping

strategies for iterative tasks in a precedence-constrained environment.

Finally, execution time is analyzed with respect to varied mapping strategies, using
VHDL and gaming simulations which were implemented in parallel in previous research {23,

30).
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1.7 Structure of Thesis

Chapter 2 of this investigation contains a detailed background on the general task
scheduling problem. The general problem is covered in detail, as a predecessor to the
iterative problem. In order to allow the iterative problem to be scheduled in polynomial

time, restrictions are defined, and the environment is limited to identical processors.

In Chapter 3, factors which impact the design of the level strategy algorithm are
defined. The search process is discussed, and methods for reducing the search space are

presented.

A detailed mathematical basis for the iterative scheduling problem is given in Chapter
4. When the problem is restricted to Unit Execution Time {UET) tasks with specific
precedence, the level strategy is formally proved to produce optimal mappings in terms of
latency. A proof is given to show that the iterative problem with variable-execution-time
tasks is NP-compiete. A variation on the basic problem determines the optimal number of

processors for variable-execution-time tasks.

Chapter 5 presents experimental results for simulation runs tested with various map-
ping strategies. The level strategy, a greedy algorithm, and an unbalanced assignment are

compared for identical simulation rups.

Conclesions are summarized in Chapter 6, and recommendations for future study

are given.




II. Background

Chapter 1 gives a brief introduction to the precedence-constrained scheduling prob-
lem, and to the ultimate goal of tack scheduling for VHDL simulations. In this chapter,
more detailed aspects of the problem are considered. The general scheduling problem,
which encompasses many different variants, is restricted to conform to the VHDL map-
ping problem. Decisions which impact the mapping algorithms are made, based on a prior:
knowledge of the simulation. Further constraints allow the iterative scheduling problem to

be mapped to an optimal solution in polynomial-time {or some cases.

2.1 General Task Scheduling Problem Description

The problein of assigning tasks to processors in an optimal manner is referenced
by several names: the Assignment Problem (6); the Mapping Problem (which takes the
characteristics of the target machine into consideration) (6); and the Scheduling Problem,
described below (10). The general scheduling problem may be defined in terms of the

available resources, task systems, sequencing constraints, and performance measures (10):

¢ System Resources
System resources consist of a set of m processors { Py, ..., P}

Additional resource types {Ry,..., R} (for example, I/O devices), may also be con-

sidered.

o Task Systems
Defined by (T, <, [7i;), {R;}, {w;}), where
Tasks: 7 = {T3,...,Tn} is the set of tasks to be executed
Precedence: < is an (irreflexive) partial order defined on T which specifies prece-
dence constraints. T; < T} signifies that T, must be completed before T, can begin.
Execution Times:[7;;] is an m X n matrix of execution times, where 7, is the time
required to execute 7}, on processor P;.

Resources: If additional resources, such as I/O devices, must be considered in the

scheduling problem, these resources » 2 designated by a vector: {Ry(7,}),..., Rs(T;})-




The ith component of this vector specifies the amount of resource type R; required
through the execution of task T}, (1 < j -~ »). This constrains the problem so that 2
set of tasks requiring more of a given resc -ce than is allowed in the system cannot

execute at the same time.

For example, suppose that available resources consist of 3 I/O devices and 4 Pro-
cessors. If 4 tasks, each requiring 1 I/O device are to be scheduled, they cannot all
execute in the same time slot. Although several different types of resources may be
allowed, this investigation concentrates on scheduling only one resource type (pro-
Cessors).

Weighting: The weights {w;} are interpreted as cost rates, which are taken as con-
stants. For example, each task may be weighted with a profit factor or a tardiness

penalty.

* sequencing constraints
non-preemptive: tasks run uninterrupted until completion.

preemptive: tasks may be interrupted during execution.

o performance measures: Performance measures define the criteria ihat must be
optimized as the schedule is built. For example, the overali goal of the scheduling
process could be to minimize the schedule length (or execution ‘iznic} Another goal
relates to the weighting criteria which may be associated with each task; o':iectives

such as mazimize profit and minimize tardiness fall into this category.

There are many different variations of the basic scheduling problem. Figure 2.1 shows
the relationships between some of these variants, based on such parameters as processor

type (identical or heterogeneous) and precedence structure (tree, forest, arbitrary, ...) (10).

The scheduling problem considers both single-processor and multiprocessor schedul-
ing. The single-processor case attempts to assign many tasks to one processor in order to
minimize or maximize <ome criterion. For example if each task is associated with a dead-
line and a penalty for each missed deadline, the goal of the schedule might be to assign

tasks so that the penalty is minimized. The multiprocessor scheduling problem can involve
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Multiprocessor Scheduling

™
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goal:ﬁ gnax goal: min goal: meet periodic one-pass
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i precedence ' precedence ! complement !
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12 processors :
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Note: Boxes denote polynomial-time solutions

Figure 2.1. Relationship Between Multiprocessor Scheduling Problems




identical (homogencous) processors cr heterogeneous processors, which operate at differ-
ent rates. Within the homogeneous processor branch of the tree, precedence-constrained
task systems involve tasks which are related in sor « inanner. Several g us for sched 1ling

precedece-constrained systewns are considered:

o Minimize ene:ution time.

¢ Minimize weighted factors (tardiness, deadlines)

Within the precedence-constrained, homogeneo' processer condition, task systems
with unit execution time (UET) differ from those with variable execution time. Although
both cases contain NP-complete problems, there are no know- poly nomial-time algorithms
for mapping variable-executi n-time tasks. Figure 2.1 ind* ues that polynomial algo-
rithms which find optimal solutions to the scheduling problem are rare: For example, a
task svstem with arbitrary precedence can be mapped to % processors in polynomial time.
If there are 3 or more available processors, there is no known polynomial-time algorithm
which provides an optimal solution (10). Table 2.1 illustrates the limited range of p-time

solutions *u the scheduling prohlem (10).

" Numbe. of Processors

| Task Lengths | Precedence | Problem complezity |

arbitrary I equal forest O(n)
2 |l equal arbitrary | O(n?)
fixed, > 3 equal arbitrary | Onen
arbitrary equal arbitrary | NP-complete
u i‘:xed, > 2 lor2 arbitrary | NP-complete ]

Table 2.1. Results for Minimizing Execution Time (non-preemptive; no reznurce
constraints)

One version of the ciassizal scheduling problem attempts to rinimize the overall
execution time when n related tasks are to be mapped to m identical processors (10).
Since the goal or parallelizing VHDL processes is to reduce overall executicn time, this

version of the scheduling problem is most pertinent to this research.




2.1.1 Algorithm Considerations 'The scheduling problems examined in this inves-
tigation involve multinrocess v scheduling with precedencr-constraitied 1ack Cystems on
iden.i~al processors. At this stage, some decisions are required to determine the iypes of
scheduling aigoriihuiz to be considered. A tanomomy of schaduling problems (Tigure 2.2)

highlights these decisions (9):

/
local global
—
/_ o \
’/stat}\c dynamic
.
— = / \
/ \\ nvsi /-,_] 1 }a‘u
. chonntimal physically physically
optjmal suboplimal doributed ron-distributed
/
/ yd \\ / \
approxima.te heuristic Cooperative non_cooperativg
optimal sub-op}mal
approximate heuristic
enumerative  graph theory Thath. pgmg.  queuing theory

Figure 2.2. Taxonomy of Scheduling Problems

o Approzimate vs. Optimal
Because of the inherent intractibility of NP-complete problems, numerou. researchers
. , L . e . .
have developed approzimation algorithms which fi 1 near-optimai solutions for the
schedrling problem (3, 12, 21). In most cases. however, 1 nroximation algorithms are

not guaranteed to be within a specified ¢ of the optimal sulntion; if an optimal solution
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is required, the problem is still NP-complete. Therefore, this resea-.n considers the

generation of optima!l solutions for the scheduling problem (10, 32).

e Static vs. Dynamic
Processors may be assigned their workload in one of two ways: static assignment
or dynamic load-balancing. Static assignment divides the problem into ‘chunks.’
Each processor is given one chunk of the problem to solve. If a processor finishes
| its portion of the problem, it remains idle until all other processors have completed

their workload.

Dynamic load br.ancin, " alg rrithms begin with an assignment of work for each proces-
; o1, As each proc ~ssor ; mpletes its assigned tasks, the workload is redistributed so
that idle processors take on tasks which were originally assigned to other processors.
In orler to m.ke this method practical, the overhead associated with redistributing
work must be offset by the gain in processer efficiency. Since the VHDL simulations
tave been consiructed so that all work is assigned te processors only at the start of

the simuj tion (30), static assignmes* techniques are considered for this research.

2.1.2 Notation and Diagrammatic Representatic.» Precedence-constrained task sys-
tems can be deiined in terms of the relationship between tasss. In a tusk graph represen-
tation, each task is represented by a circle on the chart, with task numbers and task
execution times in the circle. Directed arcs between tasks indicate precedence. Figure 2.3
shows an example of a task graph, consisting of 5 tasks to be scheduled onto 3 processors.
Task J requires 2 time units to execute. The arrow between task 1 and task 2 indicates
a precedence relationship, (t1 < t2), which means that task 1 must complete execution
before task 2 can begin. The complete set of precedence relationships can be expressed as

follows:
{(t1 < t2 < 15),(t1 < t3 < t5),(t1 < t4)}

Since the longest chain of tasks requires 5 time units, an optimal schedule for this

task system also requires 5 time units, as shown in the Gantt chart of Figure 2.3.




2/2 3/1

PlL}|T1|T1| T3
P2 | T2[T2|T5
P3 || T4

Figure 2.3. Task system

2.2 Classes of Repecting Schedules

The classical scheduling problem is concerned with a s'ngle pass through the task
system; however, VHDL simulatious iterate through the system numeroas times. Several
categories of nonpreemptive scheduling problems (periodic scheduling, fized-cycle schedul-
ing, and ilerative scheduling) require tasks to repeat multiple times. These categories are

summarized in Table 2.2.

In periodic scheduling, each task is associuted with a repetition frequency (or pe-
riod). The objective of periodic scheduling is to assign task. to processors such that ail
tasks cxecute within their given period (32). Variations include minimizing the number of

processors and scheduling tasks so that no task execut2s before a given release time.

2-7



Task systems which use fized-cycle scheduling are given a set of tasks and a cycle-

length (16). The objective of fixed-cycle scheduling is to determine the time points where

a new task set must start in order to minimize the delay in task sets which have already

begun execution. This problem has polynomial-time solutions in two cases: no precedence

constraints; unit-execution-time tasks and serial precedence constraints; unit-execution-

time tasks (16). One variation attempts to minimize the number of processors when tasks

are not precedence-constrained, an NP-complete problem (27).

This investigation introduces the concept of iterative scheduling, which attempts,

under specific constraints, to maximize the repetition rate at which each task is executed.

| Type || Parameters | Goal | Comments B
periodic n tasks min # processors | NP complete
execution time E; if empty precedence (32)
task period T NP complete

<

if precedence-constraints (32)

ﬁxed-;}'cle

cycle-length n

M Processors

unit execution time

[ tazks

<

minimize delay
by choosing times
to insert tasks

p-time

for empty precedence (16)
p-time

for serial precedence (17)

fixed-cycle

cycle-length n

M processors

execution time I;

{ tasks

min ## processors

NP complete (27)

iterative

n tasks

. processors

execution time [;

=

minimize latency

O{n®) if equal execution time
NP complele if variable execution time

iterative

n tasks

T processors

execution time /;

=

min # processors

N P complete (27)

Table 2.2.

Categories of Non-Preemptive Repeating Schedvies lor Muitiprocessors




2.8 Latency

The iterative scheduling problem attempts to minimize overall execution when each
task in the system is required to execute more than once. When multiple-iteration systems
are scheduled, the concept of latency, time between successive iterations of a given task, is

used to measure the quality of the mapping.

Since both the one-pass and the iterative problems have many similarities, a study
of the classical scheduling problem yields insight about the iterative scheduling problem,
especially for cases where efficient solutions for the classical problem are known to exist. In
particular, the level strategy, which assigns tasks based on the longest chain of unscheduled

tasks, forms a core for the iterative scheduling algorithm.

Finding an optimal schedule for a precedence-constrained task system is usually
an NP-complete problem (15)(Table 2.1). This means that there is no known efficient

(polynomial-time) algorithm to solve the optimization problem.

2.4 General approaches to the scheduling problem

As shown in Table 2.1, the problem of assigning tasks to processors in an optimal
manner has been proved NP-complete (33) for most task systems. There are, however,

efficient algorithms for several specialized instances of this problem (15):

e Two identical processors; arbitrary precedence (10)
If the multiprocessing system consists of two identical processors, then a list strategy,
which scans an ordered list of prioritized tasks each time a processor is free, is used
to build the schedule. Tasks are prioritized based on the number of immediate
successors, beginning with the terminal nodes; ready tasks with the highest priority
are assigned first. Since this algorithm assigns higher-level tasks first, simulation
mappings which fit this schema can be expected to perform well. Figure 2.4 shows
an arbitrary precedence graph and an optimal 2-processor schedule generated by this

gorithm.

o Arbitrary number of processors; precedence graph is a forest structure (10)

If the task system precedence graph is a forest of trees (each node has only one source
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label = 8 label = 7 - label =6

Iabel =3 label = 2 label = 1

fPLIT1|T3]|T5]|T7
| P2 || T2 | T4 T6 | T8

Figure 2.4. Arbitrary Precedence Graph with Optimal Schedule

[sink]), then a level strategy, which computes the level for each task, [level(z) = maz ¥ (execution
associated with the nodes in a path from x to a terminal vertex),] for as-
signing tasks to processors so that overall execution time in minimized. As in the
above case, this algorithm can be used to derive an optimal iterative algorithm for
simulation tasks; since the assignment is made level-by-level, tasks are assigned in
much the same manner as the iterative level strategy. Figure 2.5 shows an example

of this type of system.

¢ chordal complement
Often, a priori knowledge about a system can provide insight about improved ways
to solve a specific problem. If it is known that the graph of the task system has a

chordal complement, [i.e. The complemented graph has chords connecting vertices in
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LEVEL 3

LEVEL 2

LEVEL 1 LEVEL 1 LEVEL 1

PlL|T1|T2|{T4|T6
P2 T3 | T5

Figure 2.5. Tree-Structured Precedence Graph with Optimal Schedule

each subgraph of 4 or more nodes.], then there is a p-time algorithm which generates
an optimal schedule (28). In general, however, the question “Is graph G a chordal
graph?” is itself an NP-complete problem (15). In large simulations, the question of
chordality may overwhelm any benefit which could be derived from the algorithm.
Figure 2.6(a) shows a graph containing 4 nodes. In Figure 2.6(b), the complement
(obtained by placing arcs between all vertices which are unconnected in the original

graph, and removing the arcs of the original graph) of the graph in (a) is shown .

heterogeneous processors; cyclic forest

In the case of heterogeneous processors, even the cases described above are NP-
complete (18). However, if the tasks fall into a precedence relationship such that the
tasks form a ‘cyclic forest,’ (all tasks at any given level must execute on the same

processor), then there is a p-time algorithm that generates an optimal schedule (18).
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(2) (b)

Figure 2.6. Graph(a); Chordal Complement(b)

Since this effort is concerned with homogeneous processors, and since the tasks in
this simulation are not pre-assigned to a specific processor, the cyclic forest algorithm

does not apply.

2.5 Iterative nature of the problem

Although the problem of mapping tasks to processors in a simulation environment
has many similarities to the general scheduling problem, the task system may be required to
execute multiple times during the course of the simulation. For example, the Corps Battle
Analyzer (CORBAN) simulation executes tasks LOOK, SHOOT, DECIDE, MOVE, COMMU-
NICATE, RECOVER, PROVIDE, and SUPPORT at each time step in the simulation (11). A

precedence graph for this simulation is shown in Figure 2.7.

If these are the only tasks in the simulation, and if these tasks were to be mapped
to a 3-processor system, an optimal mapping, (in the classical sense) could assign all tasks
to one processor. This ensures that communication is minimized, which, in a one-iteration
mapping, would be a reasonable decision. But if multiple iterations of the task system are

needed for a complete simulation run, then a mapping which assigns each task to a separate

processor can complete the simulation in less time, assuming that certain conditions are




LOOK:
examine status
and surroundings )

SHOOT:
if close to -
enemy. engage )

DECIDE:

evaluate and
obey orders

MOVE:

change
position \

COMMUNICATE:
talk with

superior/
subordinates

RECOVER:
reorganize

from
attrition

PROVIDE:
give

logistic
support

SUPPORT:
assist
other units

Figure 2.7. CORBAN Tasks
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met. For example, Figure 2.8 shows a task system and a comparison of an optimal one-
iteration mapping which is execuied 3 times and an optimal ‘pipelined’ mapping, which

also requires each task to execute 3 times.

T3/1

P l {g Tl T2 T3 T}.' T2’ T3-' Tl" T?_” T3”zi§:
P3| -

3 iterations of 1-pass mapping: 9 time units

gmfn TV [ T1”
{;Pz T2 | T2 [ T2"
T3 | T3 | T3"

by el bt

3 iterations of pipelined mapping: 5 time units

Figure 2.8. Optimal (1-pass) vs Pipelined

2.6 Assumptions and Environment

The general scheduling problem comes in many variations; so does the iterative
scheduling problem. This section discusses the restrictions which the current VHDL sim-

ulations, implemented on the iPSC/2, impose on the iterative scheduling problem:

¢ homogeneous processors
Since an 8-node Intel iPSC/2 hypercube was used ior previous research, this thesis
concentrates on solutions for identical processors. Athough 8 nodes arc used for
all experiments. the mapping strategy developed as a result of thiz thesis can be

extended to any number of nades.

s no preemption

The algorithms for preemiptive task assignment differ significantly from non-precinp-
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tive algorithms. Since preemptive algorithms require specific knowledge about timing
information (for example, time that a process is suspended for memory reads), no

preemption is assumed throughout.

¢ unit-execution-time tasks
All tasks in the system are assumed to have equal execution time. In the VHDL simu-
lation, each VHDL assignment statement is a separate task. The very small amount
of computation required by each of these tasks (5 or 6 floating-point operations)
produced unstable timing results when the simulation was executed. For example,
one execution took 18 seconds. The next execution, with identical parameters, ran
in 42 seconds. In order to stabilize the test runs, spin loops, (large computational
segments of code which force the processor into a small %‘m‘—:’ﬂ ratio), have
been added to dominate the activity of each task. This allows task-to-processor as-
signment to be based solely on the ¢ .mputation time of each task. In the simulation,

spin loops of 100,000 operations were added to each task to ensure that calculation

is the overriding factor and that all tasks have equal execution time.

o queued message passing
The VHDL simulations implemented on the iPSC/2 use a queued-message paradigm (30).
Messages from one task to another are buffered until the recieving task is ready to
receive the message. This allows predecessor tasks to send messages to successor
tasks and then to execute subsequent iterations without waiting for successor tasks
to begin. This protocol permits simulation execution tim to be minimized when an

pipelined approach is used for task assignment.

task exists on only one processor

In the current VHDL simulations, all iterations of a task execute on the same pro-
cessor as the initial iteration of that task. Tasks are loaded onto compﬁting nodes at
the start of the simulation and remain on those nodes until simulation is complete.
(No dynamic load-balaning.)

no feedback loops

The level algorithm developed as a product of this research is based on the assumption

that all task systems can be represented by directed acyclic graphs (dags). This
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limits the simulatiors to ‘forward flow’ applications which do not have feedback
loops between tasks. Such applications include various wargame simulations,

logic circuit simulations, and assembly-line simulations.

2.7 Additional Considerations

If communication time must be incorporated into the scheduling problem, then there

is no known case where a p-time algorithm exists (12).

If the precedence graph of the system to be modeleu contains cycles and if buffer sizes
between communicating nodes must be considered, then a methodology exists to transform
these graphs into directed acyclic graphs (dags). These dags may be scheduled, using the
one-pass level algorithm, to obtain near-optimal solutions in terms of overall execntion

time (24).

2.8 Summary

There are many variations of the classical problem for mapping tasks to processors.
This research explores optimal solutions for the multiprocessor, precedence-constrained
problem, with identical processors. Since simulation tasks iterate through many passes
of the task system, iterative scheduling techniques are investigated. Primary emphasis is
given to tasks with equal computation requirements, which reflects the system used for

existing VHDL simulations.

The problem of deriving an optimal assignment for a precedence-constrained task
system is essentially a search problem. In highly-restricted cases, a polynomial-time algo-
rithm will produce an optimal schedule for iterative task systems; however, most instances
of the iterative scheduling problem require sophisticated search techniques to generate an

optimal solution.
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III. Scheduling Algorithm Design

Although simulation tasks differ from the classical scheduling problem in that they
iterate numerous times through the task system, insight into the iterative problem is gained
from a study of the classical problem. This chapter discusses the design of the Level Strat-
egy for iterative task assignment. The Level Strategy is a polynomial-time algorithm which

produces optimal latency schedules for highly-restricted forms of the iterative problem.

Since the Level Strategy only provides optimal schedules for restricted forms of the
iterative scheduling problem, the rationale is presented for limiting the search space in
more complex forms of this problem. Tests for optimality are discussed. Heuristics are
chosen to guide the A* search algorithm (29) which uses additive costs to generate optimal

schedules for an NP-complete variation of the iterative task scheduling problem.

3.1 Basis for Level Strategy (One-pass Systems)

Polynomial-time algorithms which provide optimal solutions to the classical schedul-
ing problem can be found for limited parameter constraints. Of these algorithms, there

are two theorems which provide insight into the iterative scheduling problem (10):

1. Unit Execution Time (UET) tasks; < a forest; arbitrary number of processors
The algorithm which gives an efficient solution for this case uses a level strategy of
assignment: The precedence graph is divided into levels, and tasks at the highest

level are assigned first.

2. UET tasks; < arbitrary; 2 processors
The p-time algorithm is based on number of successor tasks: Ready tasks are pri-
oritized according to the successors of each task. The ready task with the highest

priority is then assigned to the first available processor.

3.1.1 One-Pass Level Algorithm The level algorithm for single-execution task sys-

tems is as follows (10):




Let the level of a node z in a dag [directed acyclic graph] be the maximum
number f nodes (including z) on any path from z to a terminal task. In a
forest, there is exactly one such path. A terminal task is at level 1. Let a task
be ready when all its predecessors have been executed.

Level strategy: whenever a processor becomes available, assign it an unexe-
cuted ready task at the highest level (farthest from a terminal).

The level strategy for iterative tasks uses the same criteria as the one-pass level
strategy: Tasks are assigned to a level, based on their distance from the terminal task.
Ready tasks at the highest level are assigned first. Since no transitive arcs and no level-
traversing arcs are allowed in the task system, successor tasks become ready as soon as
their predecessor level is finished. This allows all tasks at the successor level to be assigned

without delay. Figure 3.1 shows an example of assignment made by the level strategy.

LEVELQ

LEVEL LEVEL 2 LEVEL 1

LEVEL 3 LEVEL 3

LEVEL 1
PI|T1|T5
P21 T2|T6
P3| T3 T7
P4 T4

Figure 3.1. Assignment by level strategy




3.2 Level Algorithm for Iterative Tasks

The level strategy for iterative task assignment can be formalized as follows:

Let n be defined as the number of tasks and m the number of processors. Let the level
of a node z in a task graph be the maximum number of nodes (including z) on any path
from z to a terminal task. A terminal task is at level 1. Let a task be ready when all its

predecessors have been executed.

Assign tasks to processors in the following manner:

last-assigned-processor = m
while levels remain
calculate number-ready
for i in i..number-ready
assign task ¢ to Processor ((last — assigned — processor + 1) mod m)
last-assigned-processor = ((last — assigned — processor + 1) mod m)
end for

end while

Since the last-assigned-processor is used to determine the next-processor for assign-
ment, the amount of tasks assigned to each processor is roughly equivalent. If the queued-

message paradigm is used, this allows predecessor tasks to iterate in ‘vacant’ time slots.

If the system meets the restrictions outlined in Chapter 2, and if all tasks are of
the same length, then the level strategy of task assignment is used to generate an optimal
schedule (in terms of latency) in polynomial time. If, however, variable execution times are
allowed in the task system, a search process is necessary to produce an optimal schedule.

(Proofs of these assertions are given in Chapter 4 (Theorems 1, 3, and 6.))

3.8 Search Process

The problem of mapping tasks to processors is essentially a search problem: How

can n tasks be mapped to m processors, where n » m, in such a way that an optimal
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schedule is found?

3.3.1 FEzhaustive Search For very small problems, an exhaustive search may be
appropriate. Using exhaustive search, all possible schedules are generated, and the smallest

schedule is chosen.

For example, Figure 3.2 illustrates that a task system with 3 tasks to be assigned
to 2 processors. An e..haustive search of this system would generate 12 unique schedules,

some of which are shown in the figure.

Figure 3.3 shows a partial search space generated by an exhaustive search of this

task system. For example, if Task 1 is assigned to Processor 1 at time 0, then either

o Task 2 may be assigned to Processor 1 at time 3, or
e Task 2 may be assigned to Processor 2 at time 0, or
o Task 3 may be assigned to Processor 1 at time 3, or
o Task 3 may be assigned to Processor 2 at tine 3.
If Task 2 is assigned to Processor 2 at time 0, then there are two choices for the
assignment for Task 3, (Processor 1 at time 3, or Processor 2 at time 3). In an exhaustive

search, even redundant schedules are generated. (For example, the schedule shown below

is generated in the (1,1,0) case and the (2,2,0) case.)

PIIT1|T1|T1
P2 1T2 T3 | T3

3.3.2 Informed Search If an exhaustive search is used, the scheduling problem has
complexity on the order of n!,[O(n!)] (10, 15). Table 3.1 shows the amount of time it

would take to generate an optimal schedule if

s Exhaustive search is used; and
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[PrTi]Ti[T1[T2[T3[ T3 |
| P2
ONE POSSIBLE SCHEDULE (6 TIME UNITS)
] |
[P2[[T1{T1|T1{T2[T3[ T3]
PL||T2{T1|[T1|T1|T2!T3
P2
P1 || T2
rz|TI|T1|T1|T3]|T3
PL[Ti[T1]TL
P2 T2| T3 | T3

AN OPTIMAL SCHEDULE (3 TIME UNITS)

Figure 3.2. Exhaustive Search




2,2,0

QN

(z,y,2) where z is the task number, y is the processor number, 2 is the time of

assignment.

Figure 3.3. Partial Search Tree

e 1,000,000 schedules are generated every second.

[ » | Time to Schedule all n! Combinations |
5 || .00012 seconds
10 || 3.6288 seconds
15 |} 1307674 seconds
20 || 77,146 years

Table 3.1. Time for exhaustive search on n tasks

Informed searches use a priori information about a problem to generate a solution
without exploring every possibility. These branch and bound techniques place 2 bound,

or limit, on the branches of the search tree which are traversed for a solution. Often this
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is done by assigning costs to each node in the search tree.‘ During the search process, the
addit.ve costs are computed, and lowest-cost paths are traversed before high-cost paths,
in an effort to minimize the solution cost. For example, suppose 4 independent tasks are
to be scheduled on 2 processors. These tasks may execute in any order, and there are no

restrictions which limit the number of tasks assigned to any processor.

Tasks 1, 3, 4 take 2 time units to execute.
Task 2 takes 1 time unit to execute.
Figure 3.4 shows a partial search tree for this problem. At some point in the search, the

following schedule is generated (shown on the left branch of Figure 3.4):

P1| T4 |74 |T3]| T3 | T2]
alnfnl | 1 ]

Cost > previous
BACKTRACK!

Figure 3.4. Branch and Bound Search Tree




Since this schedule can be completed in 5 time units, all partial schedules of more than &
time units can be abandoned. For example, the partial schedule shown on the right branch
of the search tree exceeds the current minimum complete schedul.; thus, this schedule and

iss variations can be eliminated from consideration:

I P1fTs|Ts|m|T1|Ta| 14 ||

Bl |

Using techniques which allow the problem to be bounded by considering only those
options which fall beneath the current lowest-cost schedule, it is possible to generate an

optimal schedule without an exhaustive search of all alternatives.

3.4 Reducing the Search Space

In order to generate an optimal schedule without an exhaustive search of all possi-
ble schedules, several tactics can be cuiployed to drive toward an optimal schedule more
quickly. Lower-bound calculations allow the search process to terminate it a lower-bound
schedule is generated. Heuristic choices are embedded into the aigorithm to reduce the

search space by prioritizing branches which are searched (29).

3.4.1 Lower Bound Metrics Informed search methods work to find an optimal so-
lution without an exhaustive search of all possible solutions. Tests for optimality help
the searching process determine when an optimal schedule is found. An example which
illustrates the necessity for detecting an optimal schedule is shown for the one-pass system
in Figure 3.5:

Assume that the 9 tasks shown in Figure 3.5 are to be scheduled onto 8 processors.

How many ways are there to derive an optimal schedule for these 9 tasks?

There are 8 ways to schedule task 1 in timeslot 1.
There are 8 ways to schedule task 2 in timeslot 2.

There are 8 ways to schedule task 3 in timeslot 3.
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02020,0,0,0,0,0,0

Figure 3.5. Chain of 9 Tasks

There are 8 ways to schedule task 9 in timeslot 9.

Since all these combinations are possible, there are 8° = 134,217, 728 optimal sched-

ules.
Therefore, even the BEST search would have to generate 134,217,728 schedules.

If the problem is further complicated by adding one independent task to the system
shown in Figure 3.5, the number of optimal schedules becomes even greater: For each of
ti:e 8% optimal schedules from above, there are (8 X 9) — 9 = 63 vacant time slots. This

meass that there are 63 x 8 = 8,455, 716, 864 optimal schedules!

Although there are more than 134 billion possible optimal schedules for assigning a
chain of 9 tackz to 8 processors, it is impossible for any of these schedules to be less than 9
time units long. if the searching process were able to test for a lower bound on the length
of any given schedule, then the first schedule of length 9 to be generated would be accepted

as an optimal schedule, and the search process could stop.

3.4.1.1 Tests for Lower-bound There are several tests for lower bounds which
can be used to limit the search for an optimal schedule in classical (one-pass) systems. If
these tests are implemented as part of the search, it is possible to terminate the search as
soon as a Jower-bound solution is found. Some of these tests for optimality can be directly

applied to iterative scheduling; however, most are limited to one-pass applications.

s Lower-bound test: A schedule can be no shorter than its critical path (longest

chain of tasks) (10). For example, suppose the task systemn in Figure 3.6 must be
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scheduled onto 3 processors:

1112 <13 <14 <15
t6 has no constraints
t7 has no constraints

All tasks take 1 time unit.

OnOa0R0R0

Figure 3.6. Longest Path = 5

In this case, the shortest amount of time needed to complete all tasks is 5 time
units: The chain of precedence-constrained tasks dominates other considerations;

even though there are idle processors, the following is an optimal schedule:

P1|T1|T2|T3|T4]|T5
P2 || Té
P3 I T7
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This test does not apply to iterative task systems. Using the Level Algorithm, the
tasks shown in Figure 3.6 can be scheduled so that a complete iteration is output on

average every 3 time units:

P1 }F’l v |17\ Te {72 | T2 | T7 |7 | "

P2 T2 | T2 |T2"{T5 | T5 | T5"

P3 T3 | T3 |T3"|Te6 |Te | T6"
9t_ime units =3 time units
3 iterations iteration

s Lower-bound test: If all tasks have been scheduled, and there is no idle time in

the schedule (or if the amount of idle time is less than
smallest task ezecution time X number of processors)
then the schedule is optimal (10).

Example:

P1 HTI T2 | T4
P2 || T6 T3
P3| |T5|17

smallest task execution time = 1 time unit

number of processors = 3
1 x 3= 3; tdle time = 2 time units, thus the schedule is optimal.

Lower-bound test: If all tasks in a multiple-iteration system have been scheduled,

and there is no idle time in the schedule (or if the amount of idle time is less than

smallest task execution time X number of processors

then the schedule is optimal.




e Lower-bound test: A schedule can be no shorter than the sum of task execution

times divided by the number of processors (10).

An example of this is shown for 4 independent tasks:

t1: 2 time units

t2: 2 time units

t3: 1 time unit

t4: 1 time wunit

No precedence constraints

These tasks are scheduled on 2 processors.

The shortest schedule requires

L execuliontimes _ 2+ 2+ 1+ 1 3 time units
number of processors 2 B

An optimal schedule for this task system is found by the search graph in Figure 3.7.

(This test also works for multiple-iteration systems.)

¢ Lower-bound test: If every ‘ready’ task is assigned to a processor at the time it
becomes ready, then the schedule is optimal.

This test does not apply to iterative scheduling. If subsequent iterations are counted
as ‘ready’ tasks, then the number of tasks must be less than or equal to the number

of processors for this test to pass.

¢ Lower-bound test: If (at any point ir 2 schedule} all ready tasks have been sched-

uled as soon as available, then the mirimum schedule can be no less than:

. . 5 . Y remaining execulion tiries
Z of current partial schedule + {"‘" g cre -

number of processors




COC.L=3
(Minimal cost!)

Pl T1[T1[74
P2 T3 |12 [ T2

Figure 3.7. Search Graph and Optimal Schedule for Independent Task Example
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This test does not apply to iterative scheduling. If subsequent iterations are counted
as ‘ready’ tasks, then the number of tasks must be less than or equal to the number

of processors for this test to pass.

¢ Lower-bound test: The minimum schedule can be no less than

Z l’all tasks (execution times) with successors on critical path'l
number of processors

summed over all levels o« the critical path.

This test does not apply to iterative scheduling.

Of all these tests for optimality, only the following apply to iterative scheduling:

s Lower-bound test: A schedule can be no shorter than the sum of task execution

times divided by the number of processors (10).

o Lower-bound test: If all tasks have been scheduled, and there is no idle time in

the schedule (or if the amount of idle time is less than
smallest task ezecution time X number of processors),

then the schedule is optimal.

3.5 Heuristics for Schedule-Building

Infor searching, which eliminates certain branches from the search tree, can be
used to shorten the amount of time to find an optimal solution. However, the search must
be guided by rules which lead to good branches for selection. Heuristics are rules which
can help prune the search space so that lower-cost branches are given priority for selection.
The following heuristics can be used to decide which of several ready tasks should be added

to the schedule under construction:

e Task with most successors.

An algorithm for generating an optimal schedule of unit-cxecution-time tasks on two




processors uses the number of successors for each ready task to build schedules. In-
tuitively, this makes sense: by scheduling a task with many succesors, more tasks
become ready in the next time step. This provides the opportunity for more proces-
sors to be in-use at that time step, indicating that processor utilization is relatively

high. An example of this is shown in Figure 3.8.

Pl T2 T4 [T6[T7]. . _ .
P2 || T1|T3]| T5 osb =

P1|T3|T6|T4|T7

P2 | T1| T2 |15 Cost = 4

Figure 3.8. Scheduling Tasks with Most Successors

In the task system shown in Figure 3.8, scheduling Task 3 before Task 2 yields
a schedule of length 4, rather than a schedule of length 5. The reason for this
improvement is that Task 3 has 3 successors, 2 of which can begin processing as soon

as Task 3 completes execution.

The number-of-successors heuristic can be incorporated into an informed search in
the following manner: If costs are assigned to each node in the search tree, tasks with
many successors can be given a lower cost than tasks with fewer successors. This
ensures that first consideration is given to tasks with many successors. Figure 3.9

shows part of the search tree which would produce the schedule shown in Figure 3.8.
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e Farthest task from terminal. At time step 5 in Figure 3.8, either task 10 or 16 can
be scheduled next. Since task 16 is only one step from the terminal and task 10 is

two levels above the terminal, task 10 should be scheduled in time slot 5.

This factor may also be cost-weighted to give higher-level tasks earlier scheduling

preference than lower-level tasks.

3.6 Summary

This chapter has introduced the factors which must be considered in order to design

a software solution to the iterative task scheduling problem:

Execution time (equal or variable).
e Precedence of task system.

Number of successors for each task.

Length of each task from terminal.

Before an attempt is made to solve the specific problem, the structure of the un-
derlying task system must be classified. If the system contains no level-traversing arcs,
and if all tasks are of equal execution time, then assignments can be made based on the
level strategy. If, however, the tasks have variable execution times, then an informed search
which avoids redundant search paths should be used in order to obtain an optimal solution.

Appendix C contains a more detailed explanation of the A* search algorithm.
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COST =5 COST =

Figure 3.9. Search Tree for Tasks with Most Successors




IV. Low-level Analysis

The level strategy for assigning iterative tasks to minimize overall execution time is
based on the level algorithm for one-pass task systems with a forest-structure precedence.
This greedy algorithm provides an optimal latency schedule in polynomial-time when all
tasks in the system have equal length. The iterative problem, like the classical scheduling
problem (10), is shown in this chapter to be NP-complete when variable execution times
are allowed. Since the time required to generate an exhaustive-search optimal solution
may be prohibitive (7), an informed search can be used to create optimal schedules for

large task systems with variable-execution times.

This chapter is divided into four sections. The first section describes the concept
of latency as a measure of optimality for iterative task systems. In the second section,
the decision strategy, which selects the task to schedule at a given time point within a
processor, is developed. The third section contains results pertaining to Unit Execution
Time task systems; the final section has results for Variable Execution Time systems.
Variable-execution time results include proofs that the scheduling problem for iterative
task systems does not produce results at the optimal latency when the level strategy is

used; and that the minimal-latency problem is NP-complete.

4.1 Theoretical Design of Schedule

In many cases, a simulation iterates through hundreds of executions of each task. In
such simulation, it becomes impractical to derive schedules based on a static task graph.
With hundreds of nodes to consider, simply generating such a graph is a non-trivial task!
For example, Figure 4.1 shows a task system of 33 tasks. A task graph which represented
10 iterations of this system would have 330 nodes (33 nodes x 10 iterations). In addition
to the dependency arcs shown in the single-iteration graph, dependency arcs between
successive iterations of a task would be required as well. In addition to the complexity of
the task graph, These obstacles to analysis can be overcome if a new measure (latency) is
used to define the effectiveness of the mapping. The latency measures the average delay

between successive iterations of the same task. For example, a task graph and a mapping
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Figure 4.1. Precedence Graph: 8-bit Adder
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with two iterations of the task system are shown in Figure 4.2. In this case, latency is 3.

The search graph which assigns these tasks to processors is hown in Figure 4.3. Since the

O2020
-3

4 | TT

P1|| T1| T4 TV | T
P2 T2|T5|T2 | T9
P3 T3 |Te | T3 | T¢

LATENCY: [2] = [1' =3

m 3

Figure 4.2. Tatency

L.vel Strategy is a greedy method, the first assignment of tasks to processors is selected.

Althcugh latency measures ignore the startup time when the ‘pipeline’ of processors is
filling with tasks, it is a valid measure of performance if the number of iterations is large.
For example, if a system with 10 precedence-constrained tasks is executed 1,000 times,
(Figure 4.4), the latency reflects the rate at which complete iterations are produced. In
the case where the system is to be mapped onto 10 processors, the startup time would
require 10 time units before the first result is produced. However, the system produces a

complete iteration every time unit once the pipeline is filled.

4.1.1 Justification for Latency Measure The scheduling problem has traditionally
been associated with measurements which relate to a single execution of all tasks in the
system. Two of the performance measures are to minimize schedule lengt!. ai.d to optimize
weighting factors (10). These measures are not appropriate tests for iterative task systems

for the following reasons:
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Figure 4.3. Search Tree (Level-Strategy Assignment)

P 1 T 1 T 11 T 1/! T Illl T lllll Tlm” T lllllll

P2 T2 | T2 | T2" | T2" | T2™

P3 T3 {T¥

P4 T4 | ..

P5 T5

Pé T6

pP7 T7

P8 T8 | ...

P9 1 T9 ...

P10 T10 | T10' | T10"
Figure 4.4. Mapping for 10 tasks and 10 processors; (latency = 1)




1. Minimize schedule length
An optimal mapping for a single-execution system does not necessarily produce an
optimal schedule for an iterative system. For example, an optimal one-pass schedule
for the task system in Figure 4.4 maps all 10 tasks to one processor. This allows the
first iteration to complete at the same time as the iterative mapping, but subsequent
itera.til)ns would be output every 10 time units, rather than every time unit, as in

the iterative mapping.

2. Optimize weighting factors
In general, weighting factors (such as tardiness) are associated with individual tasks,
and algorithms to optimize weighting factors rely heavily on the values associated
with each individual task. For example, if the goal is to minimize tardiness, tasks
with higher penalties for tardiness are scheduled before tasks with lower penalties.
Since the goal of the iterative-task scheduling problem is to minimize execution time,
tardiness (and other weighting factor) considerations for individual tasks do not ap-

ply.

Scheduling techniques for periodic tasks (32) also fail to map iterative simulation
tasks in an optimal manner. In periodic scheduling, each task is associated with an ex-
ecution time and a maximum period. For example, a 10-millisecond (execution time)
task may be required to execute every 200 milliseconds (period). Since there is no peri-
odic requirement associated with tasks in iterative simulation systems, periodic scheduling

considerations do not apply.

4.2  Restrictions

In order to show that a minimal latency can be achieved, the task system must he

constrained with the following assumptions:

¢ homogeneous processors

s unit-execution-time tasks




o queued message passing (no bounds assumed on buffer size)

e task exists on only one processor
The parallel VHDL simulation has been constructed so that all iterations of a task
execute on the same processor as the initial iteration of that task (30). Tasks are
loaded onto computing nodes at the start of the simulation and remain on those
nodes until simulation is complete, that is, no dynamic load-balancing. Since VHDL
simulations are the primary application of this effort, scheduling considerations reflect

the task structure of the existing VHDL simulations.

¢ no feedback arcs
The level algorithm developed as a product of this research is based on the assump-
tion that all task systems have no cycles. This limits the simulations to ‘fcrward
flow’ applications which do not have feedback loops between tasks. Applications
of simulations without cycles include various gaming simulations, logic circuit

simulations, and assembly-line simulations (11, 22, 30).

Counterexamples to the optimal nature of the scheduling algorithm can be found if any
of these assumptions are violated. For example, the task system in Figure 4.5 contains
tasks 1 and 3 with execution time of 1 and tasks 2, 4, and 5 which require 2 units of
execution time. For this system, the level strategy would produce the assignment shown

in Figure 4.5.

However, exhaustive search generates an optimal schedule with latency of 4:

B I I

BRNEE

4.3 Level Strategy

In order to prove that a minimal schedule can be achieved, task assignments are

made using the LEVEL ALGORITHM:

Let n be defined as the number of tasks and m the number of processors.
Let the level of a node z in a task graph be the maximum number of nodes
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PLIT1[T1|T3[T3|T5
P2 || T2 T4

Figure 4.5. Task System with Non-optimal Mapping

(including z) on any path frum 2 to a terminal task. In a forest, there is exactly
one such path. A terminal task is at level 1. Let a task be ready when all its
predecessors have been executed.

Figure 4.6 shows the general idea between assigning levels to tasks: beginning with terminal
tasks, each task is given a level. Tasks at the highest level represent the start of the longest

chain of dependent tasks.
assign each task (first iteration only) to a processor in the following manner:

last-assigned-processor = m
while levels remain
calculate number-ready
for i in 1..number-ready
assign task i to processor ((last ~ assigned — processor + 1) mod m)
last-assigned-processor = {(last — assigicd — processor + 1) med m)

end for

end while




level j O O level j
\J

level 4

IEVEI 3 level 3
level 2
level 1 level 1 level 1

Figure 4.6. Assigning Levels to Tasks

When all of the ready tasks are assigned to processors, the precedecence matrix is restruc-
tured. Assigned tasks are deleted from the matrix; this enables the immediate successors
of the already-scheduled tasks to enter a “ready” state. The tasks which are ready after the
first ‘level’ tasks have been scheduled are now available for scheduling. The level strategy
assigns these tasks, beginning with the next processor in rotation (i.e. If P3 was given the

last task at level 1, then P4 gets the first task from level 2).

This process (scheduling ready tasks and then modifying the precedence graph) is continued
until the last task (T, ) is scheduled on processor k, where k is the remainder of n/m. Once

each task is assigned to a processor, all iterations of that task execute on that processor

(by constraint). A detailed example of the level assignment strategy is given in Appendix

B.




4.4 Scheduling Within a Processor

Although the level strategy provides an assignment of tasks to processors, the algo-
rithm does not provide a schedule for all iterations of the task. Scheduling within each

processor obeys the following constraints:

o Ifonly one task (or iteration of a task) is ready at a given time, that task is executed.

e If a processor contains a choice of tasks to execute, the choice is selected based on a

decision strategy.

4.4-1 Decision Strategy To ensure that there is minimal idle time on the most-
heavily-loaded processor, an appropriate Gecision strategy must be employed. Otherwise,
if the “wrong” task is chosen in a conflict between tasks, idle time may result, increasing
latency. For exam:ple, Figure 4.7, shows the results of an arbitrary decision strategy when
4 iterations of a task system are mapped to 3 processors. In this case, Processor 1 is forced
to be idle at time; because task; has completed all iterations, and all remaining iteratiors

of task, are waiting for tasks on other processors to complete.

P iTIo T ITI? T I T [T I T13 T4®
P2 T2" | T2' | 727 T2
I P3|l T3° | T3' | T3? ,, T3®

Idle Time Due to Arbitrary Decision Strategy

TP T [T [T T [T [ T4 | T2 [ IF
P2 |12 [T o

Optimal Schedule

Figure 4.7. Effects of Decision Strategy




Figure 4.7 shows that an arbitrary decision strategy can result in unnecessary idle
time, generated when a processnr waits for predecessor tasks to complete. In order to
minimize this delay, a formal decision strategy mmnst select which task to execute whenever a
conflict occurs. The decision strategy should evaluate factors such as number of predecessor
iterations, which impact delay. Some suggestions include an all-iterations-first strategy,
which tends to ccnsolidate duiay time at the start of the schedule and an iteration-number
strategy, which attempts to keep enough predecessor iterations buffered so that unnecessary

delay is avoided.

1. ScHEDULE It All iterations of the first task assigned to each processor will execute
before any iteration of the second assigned task. In a similar manmer, all of the
second task’s iterations must execute before any of the third assigned task, and so

forth.

2. SCHEDULE 11: Each task i> numbered with the task number and iteration number:
task? is used to repraseat the (8 + 1)¥ iterat  of task,. For example, the first
iteration of task; is represented as task?; .he second iteration of tasks is represented
as task}; and so iorth. The scheduling decision is made by con.paring iteration num-
bers. If the difference between iterations is less than the number of processors, then
the highest-level task (task with the highest iteration number) should be scheduled
since it may be a predeces~or of (m — 1) tasks on other processors. If the differ-
ence between iterations is greater than or equal to the number of processors, then
the lower-level task should Le scheduled, since the higher-level task has stored up

cuough {terations to keep the system frum generating idle time.

SCHEDULE 17 :s conjectured to produce miniinal delay time (Appoudix D). SCHEDULE
I, however, ie i}i¢ less conuplex scheduling strategy. Therefore, SCHEDULE I has been chosen

as the decision strategy for this investigation.

4.5 Lower Bound or Lctency

The minimum letency trat can be achievzd nccurs when all {asks in the system are

coripletely independent. Tn this case, n tasks assigned o m processors can complete one
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iteration every [Z] time units. Figure 4.8 shows an example of this for 5 independent

tasks mapped onto 3 processors.

P1||T1|{T1 | T4 | T4
P2 T2 | T2 |T5|T¥
P3 || T3 | T3

LATENCY: [2] = [g] =2

Figure 4.8. 5 independent tasks; 2 iterations

Theorem 1 (UET Lower Bound )
The lower bound for latency on task systems with the following restrictive assumptions

is [2] :

o n unil-ezecution-time tasks

e m homogeneous processors

precedence relationship < defined between tasks

level-strategy assignment

all-iterations-first decision strategy

queued message passing (no bounds assumed on buffer size)

e task exists on only one processor

This proof uses the simplest task system — completely independent tasks — to show that

the minimum latency is [2] .

Proor: Independent Tasks
Case 1: n < m (by construction)

In this case, (n < m), each task can be scheduled on a separate processor. Since all tasks
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are independent, each task can begin another iteration every timestep. This results in a

latency of [2] = 1.

Case 2: n > m (by construction)

If there are more tasks than processors, (n > 12), then each processor contains more than
one task (by the level strategy.) Furthermore, the level strategy attempts to balance the
amount of tasks assigned to each processor, with no more than [2] tasks assigned to any
processor and with [2] tasks to at least one processor, Processor k. By the all-iterations-
first decision strategy, the first task on Processor k executes all iterations before any other

task executes any itertions. Thus the latency becomes

number of tasks on one processor X number of iterations
number of output values

Bl x _ P]
number ~ ‘terations m
Therefore, the average time between iterations, over the life of the schedule, for at least

one processor is [2] . Since the processor with the heaviest load dominates execution

time, [£] is the minimal latency achieved by the system.

4.6 Upper Bound on Latency

The derivation of ar upper bound for iterative task systems is not intuitively obvious.
In order to prove that [Z] is an upper bound, as well as a lower bound on latency for
UET iterative task systems, it is necessary to categorize the impact of delay time, time
periods in which a processor has not completed all tasks but must remain idle because no
tasks can execute. It is also necessary to prove that (in a balanced mapping), an optimal

latency is achieved when at least one processor has no idle time in a time frame equivalent

to the pipelined portion of the schedule. This is done in lemmas which bound the amount




of time a processor may be delayed while predecessor tasks execute.

An example is given in Figure 4.9 which shows the maximum latency achieved when a

UET task system is mapped to 2 Processors using the level strategy.

[PL]|T1|T1|T3 | T3 |T5 | T5
| P2 T2 | T2 | T4 | T4

latency = izt = 5 =[] =[]

Figure 4.9. Maximum Latency for Task System

In this example, the largest latency is determined by the processor which contains
the most tasks, P;. The number of time units required by the most-heavily-loaded pro-
cessor is equal to the number of tasks on that processor multiplied by the number of
iterations required by the task system. For example, in Figure 4.9, Processor 1 contains
2] = [%] = 3 tasks. Since the entire system must perform 2 executions, this value is
multiplied by 2, indicating that the most-heavily-used processor is active for 6 time units

during the schedule.

The concept of delay t* -7 closely associated with the concept of latency. The next
section discusses the maximwmn .lay time which can occur when tasks are assigned by the

level strategy and are scheduled with the all-iterations-first strategy.

4.6.1 Processor Delay Time If vhe level algorithm were not used to assign tasks to

processors, the following could occur with SCHEDULE 1:
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PLIT1I° |71t {112 {113 | T2° | T2' | T2 | T2®
P2 T3° | T3 [T3* [ T3 | T4 | T4 [ T4 [ T4 |

Arbitrary Assignment (5 units of delay time)

PLT1° [T1* [T1? | T3 | T3° | 78! | T'3° | T'3°
P2 | T20 | T2' | T2% | T2° | T4° | T4! | T4* | T4°

Level-Strategy Assignment (1 unit of delay time)

Figure 4.10. Comparison: Assignment Strategies with Schedule 1

Intuitively, the level strategy assignment seems to produce ‘better’ schedules than an
arbitrary assignment, as demonstrated in Figure 4.10. The next question to arise involves
the amount of delay time that can be generated when the level strategy with SCHEDULE 1

is used for assignment.

4-6.2  Chain of Tasks If the task system is a chain of related tasks

(T1 < Tz, Ty < T3,, < e = Tn),

such that the number of tasks is equal to the number of processors, then the level strategy
will generate at most m ~ 1 units of delay time on any given processor, as shown in
Figure 4.11. In fact, each processory will have exactly k — 1 units of delay time during the

entire simulation.

Suppose that there are m + 1 tasks to be scheduled on m processors. For example,
Figure 4.12 shows 3 iterations of 4 tasks to be mapped onto 3 processors. In this example,
Py has no delay time; P, has 1 unit of delay time and P; has 2 units of delay time. This

irnlies that the most-heavily-loaded processor will have the least idle time throughout the
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PLT1|T1 | T1"

P2 T2 | T2 | T2"

P3 T3 | T3 | T3"

P4 T4 | T4 | T4"

Figure 4.11. Level Strategy Assignment: chain of m tasks on m processors

simulation.

N PL{{T1|TV|T1” | T4 | T4 | T4"
| P2 T2 |T2 | T2"
| P3 T3 [ T3 | ™"

Figure 4.12. Level Strategy Assignment: chain of m + 1 tasks on m processors

Lemma 1 (Delay Time: chain )
For a system with the following constraints, the mazimum amount of delay time (on any

processor) is equal to m — 1 time units:

e chain of n unit-ezecution-time tasks
¢ m homogeneous processors

e precedence relationship < defined between tasks

level-strategy assignment

all-iterations-first decision strategy

number of iterations, 1, is greater than the number of processors

queued message passing (no bounds assumed on buffer size)

task exists on only one processor




Proor: (by construction)

BAsSE STEP: Show that P; has no more than m — 1 units of delay time.

Deray TIME AT THE START OF SCHEDULE: Since tasks are assigned by the level
strategy, each processor begins execution 1 time unit after the previous processor: 1 begins
execution of the task at level n at timeg; 2 begins executing the task at level n—1 at timey;
... Since the all-iterations-first decision strategy is used, P; is busy in the first ¢ time units;
2 executes all iterations of its first task between time; and time;;+;; 3 is busy between
timey and time;y2; ... m receives its first task at time,,—;, and thus has a delay time of

m — 1 time units at the start of the schedule. This pattern is shown in Figure 4.13.

PL [ T1] TV [TV | . | Togr | o Tomt1
P2 T2 | T2 | T2" Ttz
Pm Tm T,.,n T.,’r,‘ e T’_)m

- - -

~
timem to timejym: i time units

Figure 4.13. Level Strategy Assignment: Serial Precedence (chain)

Deray TiME DURING THE SCHEDULE: At time i, P; has completed all executions
of T;. The second task assigned to P is taskm41, which has m predecessors, each of which
are assigned to different processors. Since i > m, and since m predecessor tasks nave each
performed their first execution by time,,, task,+1 can begin execution at or after timey,.

Since time; > time,,, taskm41 begins execution at time;, generating no delay time.

At time 2¢, P, has completed all executions of T}, 3. The third task assigned to Py is
taskom41, which has 2m predecessors. Since 27 > 2m, and since the 2m predecessor tasks
have each performed their first execution by time,,,, taskam41 can begin execution at or

aftor timegy,. Since timeg; > timey,, taskom4y begins execution at timey;, generating no

delay time.

At time ji, (j < last task assigned to Pp,) P; has completed all executions of

Tym+1- The next task assigned to Py is task(;41)ym+1, Which has (j 4 1) x m predecessors.




Since (j+ 1) X %> (j+1) x m, and since the (j + 1) X m predecessor tasks have each
performed their first execution by time(;,1)m, 1a8k(j11)m+1 can begin execution at or after
time(j1ym. Since time(jp1); > time(i1ym, task(j41)m41 begins execution at time(; )i,

generating no delay time.

DeLAY TIME AT END OoF SCHEDULE: Once P; executes the last iteration of its last

task, no further delay time can be added to P;. This is indicated in Figure 4.14.

Pl .| Them | - Ty
P2 Tn—(m—l) Trzz—(m-—l)
2 T |- N

Figure 4.14. Last task execution on all processors

Induction Step:

If P, has no more than n — 1 units of delay time, then P,4; has no more than n units of

delay time.

P, can accumulate delay time at the start of the schedule and during the schedule. In a
chain of k tasks, each processor (other than P;) to recieve a task is delayed from beginning
execution by 1 time unit, since all tasks are unit-execution-time. Therefore, P, is delayed

by n — 1 time units; P, can thus begin its first task at time,_;.

P, delays P, from beginning execution by 1 additional time unit. (Since the predecessor

to Tryy is scheduled on P,.) Therefore, P,4; can thus begin its first task at time,.
By the all-iterations-first strategy, P, executes its first task, Ty, from time,—; to timey_;4,.
FPr41 executes its first task, Ty 41, from time, to timeny;.

Between the first iteration of 7,41 on P,41 and the first iteration of the second task on

P41, Tnt14m, there can be at most one additional delay for each of the m — 1 other
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processors which contain tasks. Therefore, the longest delay between the first iteration of
Tn41 and the first iteration of Tnt14m is m — 1 time units. But, since Pn4y performs all
iterations of Tp,41, P41 is not idle before time,yy_14i. Since ¢ > m,i > m — 1 Therefore
the ¢ time units between the first execution of T},4; and the first execution of T3, 14m are

completely filled with iterations of T,,41, and no delay time is generated.

Thus P,41 has n units of delay time at the start of the schedule and no delay time internal

to the schedule. Therefore Py4; has n units of delay time.

O

At this point, a question may arise: What happens if the system is not a simple chain of

tasks?

4.6.3 Arbitrary Precedence Intuitively, it appears that a chain of tasks provides
a more restricted case than an arbitrary precedence graph - In a chain, only one new
task becomes ready in each time slot; arbitrary precedence can have many tasks become
ready at the same time. This seems to imply that an arbitrary system can have less delay
time before all processors are busy, as demonstrated in Figure 4.15: As each processor
receives a task by the level strategy assignment, an idle time slot is created whenever the
level changes. For example, Figure 4.16 shows a precedence graph and the level strategy
assignment for the first task on each processor. In this example, Py delayed until tasky is
ready to execute. Each of these idle time slots is called a stagger point. Before Py begins
processing, the greatest number of stagger points which can occur is k- 1. (Because, if each
task is at a different level, task, begins processing on Py at timeg; tasky begins processing

on P, at time; ... tasky begins processing on Py at timeg_;.)

A proofis given to show that arbitrary precedence produces no more than the amount

of delay time in a task system with serial precedence:

Lemma 2 (Delay Time: arbitrary precedence )

In a system with the following constraints, Pryy can be delayed by at most 1 time

unit by Pp.:
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(a) Arbitrary Precedence

(PLITL|TV|T1"|T4 | T4 | T¢"
| P2|T2|T2 |T2" |T5|T5 | T5"
| P3 || T3 | T3 | T3"|T6|T6'|T6"

(b) Serial Precedence

[PrTi [TV [T1"[Ta [T4 [T4"
| P2 T2 |T2' |T2"|T5 |T5 | T5"
| P3 T3 [T [T3" [Te | T6" | T6"

Figure 4.15. Level Strategy Assignment: arbitrary precedence vs. serial precedence

e n unil-ezecution-lime tasks

¢ m homogeneous processors

o precedence relationship < defined between tasks

level-strategy assignment

all-iterations-first decision strategy

number of iterations, i, is greater than the number of processors

queued message passing (no bounds assumed on buffer size)




F1|T1
P2 || T2
P3 || T3
P4 T4

Figure 4.16. Idle time due to level change

o task ezists on only one processor

Proor: (by contradiction)

Assume that Ppy, is delayed more than 1 time unit by Px. Since delays are only caused
by change in level between tasks, the level between tasks assigned to P, and Ppy; must

change at least twice.

o Let time, denote the time when Py must first be idle, waiting for the first iteration

of a predecessor task on Fg.

o Let T} denote the first predecessor task assigned to Pi, and T denote the next task

assigned to Py by the level strategy.

o Let T; denote the first succcessor task assigned to Piy, and T; denote the next task

assigned to Piyq by the level strategy.

At time,, Pr begins its first iteration of T;.




At timeyy; Piyq begins its first iteration of T; (since all tasks take 1 time unit). This

creates 1 time unit of delay.

At time,y;, P, completes its final iteration of T;.

P41 completes its last iteration of T; at timeyq14i (i time units later).

At timeyyi, P begins the first iteration of T}, the next task assigned.

If Tx is a not predecessor to T7, then T}, cannot impact the schedule on Pryg.

If T), is a predecessor to Tj, then T; cannot begin execution until timeyyiq41. But, Pryg
completes its last iteration of T; at timeyyy4i. Thus there is no delay incurred between

the last iteration of T; and the first iteration of T;.
P41 is delayed 1 time unit by Fk.

Contradiction.

Theorem 2 (Mazimum Delay Time )
If the following constraints are observed, the mazimum amount of delay time on any pro-

cessor is m — 1 time unils

e 7 unil-ezecution-time tasks
e m homogeneous pricessors

o precedence relaticnship < defined between tasks
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level-strategy assignment

all-iterations-first decision strategy

number of iterations, i, is greater than the number of processors

queued message passing (no bounds assumed on buffer size)

task ezists on only one processor

Proor:

By Lemma 2, Pi4; can be delayed by at most 1 time unit by Px. Since there

are m — 1 processors which can delay any other processor, the greatest possible delay is

1 time unit

croessag. X m—1 processors = m — 1 time units.

o

Theorem 3 (UET Upper Bound )

Task systems which meet the following assumptions have a latency upper bound of [2] :

m homogeneous processors

n unit-ezecution-time tasks

precedence relationship < defined between tasks

assignment by level algorithm

all-iterations-first decision strategy

queued message passing (no bounds assumed on buffer size)

task exists on only one processor

This theorem (proved by construction) uses Theorem 2 to show that the MAL is achieved

if no processor has more than m ~ 1 units of idle time.

PROOF:




The maximum delay time on any processor is m — 1 time units (Theorem 2).
The maximum startup cost is m — 1 time units.

The in-use time on a processor is equal to

number of tasks on the processor x number of iterations for each task 4 delay time.

For the most-heavily-loaded processor, this is equivalent to
n R
[-;J X1 + (m - 1)

Since the startup cost must be subtracted to compute latency, the latency for the

most-heavily-loaded processor is

in use time — startup cost _ [n'l = MAL
number of iterations -

Theorem 4 (Firm Bound on UET Latency )
Task systems which meet the fellowing conditions and which are scheduled using the level
algorithm have a latency of [2] :

o m homogeneous processors
& n unit-ezecution-time lasks

o precedence relaitv nship < defined b tween tasks

level-strategy assiyn-.. =nt

all-iterations-first dec <:on stralegy

o gueued message passing ine baunds assumed on buffer size)

number of iteralions, i, . gi=aler than the number of processors




e task exisus on only one processor

PROOF:
Theorem 1 showed that 2] is a lower bound on latency. Theorem 3 showed that [Z] is
an upper bound on latency. Let latency = o.
Then the following are true:
o< [l

o> [2]

Therefore ¢ = [Z].

4.7 Equal Ezecution Time Task Systems

These results can be extended to task systerus where all tasks have the samz execution
time: In UET systems, the length of each task is 1, and the sum of all tasik execution times

%1 1= n. 1herefore the latency, [2], can be written as = k—;’i] , where k is he

execution time of each task (k = 1,.n the ULT case). This reasoning is expanded in t'.e

proot of Theorem 5.

Theorem 5 (Equal Ezecution Time )

If the following conditions are met:

e u 2qual-execution-time tusks, each of length k

m homogeneous processors

precedence relationsh.p < defined vetween tasks

level-strategy assignment

all-iterations-first decis.on strategy

rumber of ilerations, i, is greater than the number of processors
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o queued message passing (no bounds assumed on buffer size)

e task ezists on only one processor then the MAL = [k—;‘}]

Proor:

Since all tasks are of length k, and since no preemption is allowed, the only time
points which have task start- or end-times are multiples of k. These ‘interesting’ time

points can be mapped to the positive integers by dividing by a scaling factor of &:

o task length k becomes task of length % =1
o time k becomes time 1

s time 2k becomes time 2

o time nk becomes time n

At this point, the tasks in the EET system are mapped to a UET system. The MAL for
a UET system, (Theorem 4), is [2] .

In order to restore the converted system to the original configuration, it is necessary

to multiply the MAL by k, the scaling factor. Thus the MAL becomes:

k EET time units I’ n

. ) n kxn
TTUET fime unz’[x ] UET time units = k X [E = [ ]

m

m

4.8 Variable Execution Times

4.8.1 Problem Description The Level Strategy generates schedules at the maximum la-
tency {or Unit Execution Time (UET) tasks. However, schedules for tasks with variable
execution times produced by the Level Strategy are not guaranteed to iterate at the op-
timal latency, as shown in Figure 4.5. This section discusses factors which impact the

following result:
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If task lengths = {1,2}, the minimum achievable latency is no longer guaranteed to be

found by the Level Strategy.

4.8.2 Reasons for Level-Strategy Failure When task execution times € {1,2}, the Mini-

mum Achievable Latency is not longer guaranteed to be the sum of task execution times

E task execution timc:s-l

- . There are several reasons

divided by the number of processors, {

that the minimum latency differs from the unit execution time case:

e Since tasks are assigned in one-time-unit and two-time-unit blocks, there is no guar-

Z task execution times
m

antee that there will be a maximum of l- ] unique tasks on each

Pprocessor.

o In addition, tasks of length-2 tasks must be assigned in blocks of 2 time units. This
seems to be an obvious point; however, it places a limiting factor on the available

time slots for subsequent iterations of tasks which take 2 time units to execute.

In order to show that the Level Strategy fails to generate mappings at the minimal achiev-
able latency for variable-execution-time task systems, counterexamples are used. Although
it is not possible to prove the truth of a general statement by example, a single counterex-

ample is sufficient to disprove a statement (19).

4.8.2.1 Mazimum Tasks,/Processor In order to demonstrate that the Level Strate y
produces non-optimal latency mappings for variable-execution-time tasks, it is necessary
to consider the method the Level S:rategy uses to assign tasks: In the UET system,

task execution times . ..
D — produces a number, say z, plus a remainder, . Assigning z tasks to

each processor allows the r remaining tasks to be each given to a separate processor, with

no more than

[E task execulion times'l
m

tasks on any prucessor. If variable execution times are allowed, the Level Strategy could

Z task ezecution times
m

assign more than [ .I unique task-time-slots to one processor. For

task crecution times .
) - = 3; however, the tasks assigned to Processor

example, in Figure 4.17

1 consume 4 time units on each iteration.
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T4/2

P1||T1|T1]|T4|T4
P2 [ T2 | T5
P3 || T3 | T6

Figure 4.17. Variable execution time task system

Although the level strategy assignment produces output once every 4 time units, the small-

;
= [g] = 3] Exhaustive

Y task ezecution times
m

est possible latency is 3 time units. H

search generates a schedule which produces outputs every 3 time units:

PryT1|T1| T | Tu
P2|\T2|T3|T6 | T2 | T3 | Tet
P3 T5|T4 | T4 |T5 | T4 | T4

4.8.2.2 Blocks of Size 2 Figure 4.18 shows a task system whict contains tasks
with execution time of 1 or 2 time units. Since T2, for example, requires 2 time units to

execute, it cannot be inserted in timeslot 1. This barrier is not present when UET tasks

are scheduled; any subsequent iteration in that system can fill any hole in the schedule.




LEVEL 2

LEVEL 2 LEVEL 1

LEVEL 1
(PL|T2|T2|T4 T6 | T2 [ T2 [ T4
| P2 || T3] T3]T7 T3r | T3
P3|l T1 T5 | T5 | TV T5/ | T5

Figure 4.18. Task System with Variable Execution Time

Since the execution time = {1,2} scenario can have gaps of 1 time unit with only 2-time-
unit tasks ready to iterate, the test for a completely-filled processor does not produce the

same information as in the UET case.

4.8.3 Bounds on Variable-Ezecution-Time Latency Although the unit-execution-
time problem differs from the variable-execution-time probi2m, it is possible to apply some

of the same criteria as a measure of optimality. Theorem 6 is used to prove that a lower




bound for latency is at least as large as the following:!

([E task ezecution times
maz

— ] , length of the longest task)

Intuitively, this makes sense. Figure 4.19 shows a 2-task system with a MAL dom-
inated by the task of length 7. Although [2 fask execution “"‘"] = [142] = 4, the

m

best achievable latency is 7.

PLI: |||y IV |TY

P2 || T2 TZ

Figure 4.19. Variable execution time task system

Theorem 6 (Variable-ezecution-time Lower Bound ) If variable ezecution times are al-

lowed in an iterative task system, with the following:

n variable-ezecution-time lasks

e m homogeneous processors

level-strategy assignment

precedence relationship < defined between tasks

all-iterations-first decision strategy

number of iterations, 1, is greater than the number of proccssors

e queued message passing (no bounds assumed on buffer size)

'where m* denotes processors-in-use.




e lask exists on only one processor

a lower bound on latency is the larger of the following:

m.

. [2 task execution times]

o length of the longest task

This theorem is proved in two steps: First, it is shown that the length of the longest

task provides a lower bound for latency when

[)_‘_, task ezecution times

- -I < length of longest task

After that, it is shown that

"Z task execution times"
m‘

provides a lower bound when

[Z task ezecution times
mﬂ

] > length of longest task

Proor: (by contradiction)
Case 1:

Assume that

Z task execution limes
® prery

.l < length of longest task, and

e latency < length of longest task.

Let r = length of longest task. The best case occurs when the longest task, say t; does
not share a processor with any other tasks. In this case, {; performs a new iteration every
r time units, and the precessor is finished 7 X r time units after startup. Since latency is

measured by the throughput of all tasks in the system, system latency cannot be less than
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ti2 latency for any processor in the system. In particular, the processor containing #; has
a :atency of r; therefore overall latency > r = length of longest task, which violates the
assumption that latency < length of longest task.

o

C.se 2:

Assume that

o [Z task execution times
m.

-l > length of longest task and

rz task ezecution times
+ latency < l

m*

Z task ezecution times

m*

AR : L
i [ Lo iask ezecution times i

] > longest task, then the best case occurs when l-

exceeqs the longest task by 1 time unit (since all tasks can be scaled to integer lengths.)

Assume the least restrictive case, where all tasks are independent. Then, for

P: task “;‘_""'“ “"‘“] to exceed the length of the longest task, all tasks may be assigned

to processors so that there is no idle time in the schedule.

Aslong as [E task crecution “m“.l > length of longest task, there must be at least one pro-

E task execuiion times
m'

Cessor, 5. 4%, which has { ] time slots filled with the first iteration of

ok 'y g
its tasks. In that case, Py cannc.c iterate at a frequency greater thar [E e a:.umn hm"“ .

Contradiction.

a

Theorem 7 (Variable-ezecution-time Upper Bound )

If variable execution times are allowed in an iterative task system, with the following con-

. . > fa
straints, an upper bound on latency is defined as ["x length °n{ Jovgest tas! ]:

e n variable-ezecution-time ta.ks
e m homogeneous processors

o precedence relationship < defined between tasks

l




level-strategy assignment

all-iterations-first decision strategy

number of iterations, i, is greater than the number of processors

o gueued message passing (no bounds assumed on buffer size)

task ezists on only one processor

Proor: (by construction) Let G represent the graph of the task system; and let G’, be the
task system of G, adjusted so that all task lengths are equal to the length of the longest
task.

Then latency(G) < latency(G').2

Let k be the length of the longest task.

Then, by Theorem 5, an upper bound for latency on G’ is [-’%‘}‘-1 .

Since |¥x2| > latency(G') > latency(G), then kxn] i an upper bound on latency.
m m |

O

4.8.4 Minimizing Number of Processors In some cases, the task system may not
require all available processors in order to achieve the MAL. In that case, it would be useful
to select an optimal number of processors so that remaining (idle) processors can be used
for other applications. An obvious upper bound on the number of processors is n, where
n = the number of tasks in the sytem. This bound allocates one task to each processor,

which allows tasks to iterate at the minimum latency.

It is possible to place a bound on the number of processors required to obtain the
optimal latency in a task system. For example, the parameters of a task system could
indicate that a task system requires at least 4 processors (minimum lower bound) and at
most 6 processors (maximum upper bound) to achieve the optimal latency. Although the

cptimal number of processors is not completely determined, the bounded range of values

2If this were not true, then it would be necessary to have a space of length 2 to map every iteration of
a task of length 1.
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can be used when deciding on the number of processors required by the system. Figure 4.20

shows the relationship between lower and upper-bound notations used in this section.

| | I
L P

minimum absolute

absolute maximum
value for lower upper value for
lower bound bound upper
bound bound

Figure 4.20. Relationship between bounds

Intuitively, the idea of minimizing the number of processors can be seen in Fig-
ure 4.21. In this figure, Task 2, the longest task, requires as much time for execution as
all other tasks in the system combined! Therefore, there is no benefit, in terms of latency,
in assigning this task system for iterative execution to more than two processors.

Ezample:

@ @) &

{ 3. ezxecution times " _ l'1+4+1+1+1'l .
length of longest task| ~ 4 -

fpPifiTe[T2 [T2 [T2
EiP2iTL{TY |[TI" [T |[T3|[T4|T5

Figure 4.21. Lower Bound on Processors

4-33




This value for the minimum value of the lower bound gives the least number of processors

required to obtain the optimal latency:

Theorem & (Number of Processors: Variable-ezecution-time )

In an iterative task system with

o n variable-ezecution-time tasks
e m homogeneous processors

o precedence relationship < defined between tasks

level-strategy assignment

all-iterations-first decision strategy

number of iterations, i, is greater than the number of processors

queued message passing (no bounds assumed on buffer size)

task ezists on only one processor

the minimum value for a lower bound on the number of processors can be computed by the

fo rwing formula?

l’ ) ezxecution times
length of longest task

ProoOF: An upper bound on the minimum achievable latency (MAL) is defined as

( l'n x length of longest task
maz p—

] . (length of longest task))

(Theorem 7).

3This theasmr: was derived by Professors Lamont and Ha.amell of the Air Force Institute of Technology
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In non-preemptive scheduling, the length of the longest task must remain constant. There-

fore, the only way to reduce the MAL is to reduce

l’n X length of longest task]
m.

This can be done by ‘throwing more processors at the problem!” Thus, if

length t
l’n X <19 :{-Iongcs t”k] < (length of longest task),
the MAL can be decreased by increasing m*, the number of processors in use.

8]

4.9 NP-Complete Aspects

4.9.1 Background The level strategy presented in Section 4.3 generates a minimal-
latency mapping of tasks to processors in O(n?) time. However, the level strategy only

guarantees optimal latency for task systems with the following restrictions:

¢ homogeneous processors

e no preemption

¢ equal-execution-time tasks

e queued message passing

o task exists on only one processor

e no feedback loops

As constraints are relaxed, the level strategy is no longer guaranteed to generate
an optimal mapping. Furthermore, it is not obvious whether any p-time aigorithm can
produce minimal-latency schedules. At present. there are numerous problems which have
no known polynomial time solutions (7, 15). The class NP-complete contains problems of
this type. A primary characteristic of the class NP-complet. is that every NP-complete

problem can be mapped to every other NP-complete problem with a polynomial-time

e
wd
o




transformation (1, 7, 15). This implies that if a polynomial-time solution is found for one
NP-complete problem, a p-time solution can be derived for all NP-complete problems.

At first glance, NP-complete problems often appear to be no more complex than problems
with nolynomial-time solutions. Closer scrutiny, however, reveals intractable aspects of the
problem. Since the one-pass scheduiing problem is NP-complete when variable-execution-
time tasks are allowed (10), a reasonable conjecture is that the iterative scheduling problem

also becomes NP-complete in the variable-execution-time case.

4.9.2 Proving NP-Completeness Knowing whether a given problem is NP-complete

is useful for several reasons:

o If a problem can be shown to be NP-complete, then there is no currently-known
polynomial-time algorithm to solve it (7, 15). Although this does not preclude the
possibility that a p-time algorithm will eventually be discovered, it emphasizes the
difficulty of deriving such an algorithm.

e If an optimal solution cannot be acquired, it may be possible that an approximation
algorithm will generate an acceptable solution (21, 25).

¢ Once a problem is known to be NP-complete, effort can be redirected into refining

the graph search heuristics, rather than attempting to derive a p-time solution.

As a first step toward proving a problem NP-complete, the problem is often restated
as a decision problem, which can be answered with a ‘yes” or ‘no’ (7). For example, the
one-pass scheduling problem. “Find the minimum execution time for a given task system,”

may be restated as “Is there a schedule for task system G which completes by time z77

In order to prove that an open problem is NP-complete two conditions must be

met (1.7, 15):

1. A nondeterministic Turing machine (NDTM)* must be able to solve the problem in
polynomial time. This condition demonstrates that the open problem is no larger

then NP-complete.

*The concept of a NDTM is an abstraction; such a machine does not exist in the physical world.

4-36




2. A known NP-complete problem must 5: polynomially transformable to the open
problem. The idea behind this transformizt on is shown in Figure 4.22 (20). This
shows that the open problem is at least »: ::c7e as an NP-complete problem.

NP-complete

NP-time

Figure 4.22. Transformation to Show NP-Completeness

4.9.3 Variable Execution Time Systems Results concerning the iterative scheduling
problem of Section 4.3 were dependent on several constraints, such as equal-execution time
and homogeneous processors. In general, relaxing these constraints increases the difficuity
of generating a minimal-latency solution. This section discusses results when the equal-

execution-time restiiction is removed.

Theorem 9 (NP-completeness }

The minimal-latency ilerative scheduling {MIIS} problem with

e n variable-crecution-time tasks. € {1.2}
¢ m homogencous processors

o precedence relationship < defined betireen lasks
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level-strategy assignment

all-tterations-first decision strategy

number of iterations, i, is greater than the number of processors

queued message passing (no bounds assumed on buffer size)

task exists on only one processor

is NP-Complete.

This theorem is proved by showing that MLIS problem with task execution times € {1,2}
can be solved in polynomial-time by a NDTM and that a known NP-complete problem

can be mapped to the MLIS problem with a polynomial-time transformation.

PRoOF: .
Problem € NP.
1a order to show that the minimal-latency iterative scheduling (MLIS) problem with ex-
ecution times of {1,2} €& NP, the problem is restated as a decision problem. It is then
necessary to show that the question “Does the MLIS problem produce a schedule with

latency £7” can be answered in polynomial time on a nondeterministic Turing machine
(NDTM) (15).

For a NDTM to answer this question in polynomial time, each copy of the NDTM
makes an assignment of tasks to processors, as shown in Figure 4.23. Since there are a
finite number of ways to assign tasks to processors, there are a finite number of NDTM’s.
In Figure 4.23, a copy of the NDTM is generated to produce each schedule beginning with
a certain assignment of tasks to processors. For example, if tasks is assigned to P1 at
time, separate copies of the NDTM generate schedules beginning with P2 at time;. This
proc:dure is continued until the last task is scheduled on all copies of the NDTM. At this
point, the latency of each assignment can be checked in at most O(nk) time, where 7 is
the number of tasks in the system and k is the number of iterations. Thus, the NDTM

produces an answer in polynomial time.

Polynomia! Transformation.

The second step in proving an open problem to be NP-complete requires that a known
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timez, P,

Figure 4.23. Nondeterministic Turing Machine Assignment

NP-complete problem be transformed to the open problem in polynomial time (15). Let U
represent the non-iterative scheduling problem with tasks of one- and two-time units, an
NP-complete problem (34), and let II’ represent the iterative problem with tasks of one-

and two-time units. Then the goal becomes Transform II to II'.

The task graph for I and the task graph for 1 iteration of II’ can be represented as
shown in Figure 4.24. These graphs have a 1-1 correspondence, as shown in Figure 4.24 (c).

Thus, II can be directly transformed to IT'.

o

4.9.8.1 Transformation to Other NP-Complete Problems A primary charac-
teristic of NP-complete problems is that any NP-complete problem can be transformed to
any other in polynomial time (1, 7, 15). Since the MLIS problem has been proved NP-
complete, it is possible to transform the MLIS problem to any other NP-complete problem

with a polynomial-time transformation. The simplest method of transformation uses the

|
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(a) task graph representation (b) task graph representation
for classical problem for 1 iteration of tho
iterative problem

(c) Mapping classical problem to iterative problem
for # iterations = 1

Figure 4.24. Mapping NP-Complete Problem into Open Problem




relationship between the MLIS problem (II) and the noniterative schedulirg problem (II):
once II' has been transformed to II, all previous transformations which apply to II also

apply to the transformed version of II'.

The idea behind the transformation from II’ (the iterative problem) to II (the general
scheduling problem) is shown in Figure 4.25 for 2 iterations of II'. In this transformation,
both iterations of the MLIS problem are mapped into a precedence graph. This precedence
graph is identical to the task graph which represents the non-iterative scheduling problem
with tasks of one- and two-time units (10). Therefore, the MLIS problem can be mapped

into the non-iterative scheduling problem.

(a) Task graph for (b) Precedence graph for 2
iterative system iterations of task system

Figure 4.25. Transforming the Iterative Problem to the Classicai Pr.ble:

Since every known NP-complete problem is classified by proof and transformation,
there is a finite number of known NP-complete problems. In addition, there are numerous
cases where the class of a particular problem is unknown (10, 15). Thus the border between
NP-complete problems and problems with polynomial-time solutions is not a well-defined

threshold. For example, the classical scheduling problem with arbitrary precedence has
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p-time solution for UET tasks mapped .t.o 2 processors, but the problsru is NP-complete
when variabl2-execution-times are allowed (10). In the same manner, there is A polynomial-
time algorithm for the iterative scheduling problem with equal-execution-tirae tasks on a
fixed number of processors, but the problem of deriving an optimal-latency schedule for

iterative systems with variable-execution-time is NP-complete (Theorem 9).

Since the iterative problem with equal-execution-times has a polynomial-iime solu-

tior, an additional resvit can be conjectured for the noniterative problem:

If, in a noniterative UET system, the task graph can be collapsed to represent
k iterat ons of an iterative task system, then the level strategy produces an
optimal assignment in polynomial time.

For example, Figure 4.26 shows a UET tash graph reduced to an iterative task grapt which

«..ust be repeaied twice.

4.10 Summary

The mathematical development for the iterative scheduling problem is presented
in this chanier. Proofs are given to show that the Level Strategy produces an optimal
mapping for UET systems, and that systems with variable execution time tasks are NP-
comple‘e. An additional proof is shown to demonstrate that the number of processors
can be ininiinized in an iterative system with variable execution times. These results are

summarized in Table 4.1.

il Task Lengths || Precedence | Problem complezity |
[ equal T a:hitrary | p-time
i 1or? [l arbic.ary | NP-complete

Table 1.1. Results "1 Minimiz'ng Execution Time: Iterative Task Systems (non-
preemntivz; , 0 reson, @ <oastrairts)




(a) 1-pass task graph (b) Representation as
iterative system

Figure 4.26. Transforming the Classical Problem to the Iterative I”roblem
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V. Application/Ezperimental Results

Computer simulation of electronic circuit behavior can be used to streamlire the
process of circuit and chip design. The VHDL (VHSIC High-level Design Language) was
created to enable designers to model circuit behavior on a computer, rather than actually
building the circuit to be tested. As designs become larger and more complex, sequential
computer simulations of circuit behavior take a disproportionate amount of time. The
parallel simulations which were implemented in previous research (30) are used to test the
mapping strategies developed in Chapters III and IV, with the objective of minimizing

overall execution time.

5.1 VHDL Application

The precedence graph in Figure 5.1 shows the simulation to be modeled. This simu-
lation uses a queued-message protocol for passing datz between tasks. For example, Task 1
can execute several times before Task 18 executes once. Every time a data value necessary
for Task 18 is changed in Task 1, a message is sent to Task 18. These messages are queued

in an input buffer until Task 18 is ready to respond to each message.

5.1.1 VHDL Parameters and Results Tests were conducted on VHDL simulations
to Jd-termine the effects of various mapping strategies on execution time. Table 5.2 shows
the matrix of tests which were used to test the various mapping strategies. The simlation
parameters were set to model circuit simulation for different amounts of time: the shortest
simulation modeled 1000 nanoseconds of circuit behavior (approximately 10 iterations of
the comploate task system); the longest simulation modeled 64,000 nanoseconds of operation

(640 iteraticns of the system).

The LEVELS strategy uses the level algorithm developed in Section 5: the GREEDY
mappings assign [2] tasks to each processor so that the first [2] tasks in the system are
assigned to processor 0, the 2nd [%‘[ tasks to processor 1, etc. The 1-PASS OPT strategy

assigns tasks to processors based on one iteration of the task system (clascical scheduling




Figure 5.1 Precedence Graph: VHDL tasks

method). Since this mappiz ; allocates all tasks to only 4 processors, poor performance
is expected. The UNBALANCEL strategy assigns one or two tasks to most processors and
overloads the remaining processor with all remaining tasks. These assignments (for 3-vode

mappings) are shown in Figure 5.1.

In all test cases, a linear relatio - .hip holds for simulated-time increments. (i.e. If
a mapping for a 10-nanosecond simulation takes 10 seconds, a 20-nanosecond simulation

with the same mapping will take 2U seconds.)
Figure 5.2 shows the data from iable .2 in graphical form.

In the 8-node test cases, the levelS strateg} consistantiy out-performed all other r...p-
ping schemes. In runs which simulated 64,60 nsec of circuit behavior, the levelS strategy

takes only 56% of the time of the next-* ><t mapping {greedy8). When simulation runs




Processor #

Level | 1-Pass Optimal | Greedy | Unbalanced

i

—

Wy

[T

o=

ﬂ}‘ask Number

L]

Table 5.1. 8-node Mapping Strategies
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4-node mappings Simulated time
H 1000 ».sec | 8000 nsec | 16000 nsec
leveld 34 253 511
1-pass optimal 51 381 780
greedyd 60 447 897
unbal4 72 541 1051
8-node mappings Simulated time
H H 1000 nsec | 8000 nsec | 16000 nsec | 32000 nsec | 64000 nsec
{| level8 | 18 sec 126 sec 252 sec 509 sec 1108 sec
| 1-pass optimal  jj 51 sec 381 sec 779 sec 1621 sec | 3358 sec
greedy8 u 42 sec 314 sec 595 sec 1086 sec 1973 sec
i unbals i 79 sec 573sec | 1147sec | 2272sec | 4404 sec

Table 5.2. VHDL Test Cases

are based on the level siraregy of assignment, the VHDL simulation completes in approx-
imately 56% of the time needed by the greedy$ strategy, the second-best mapping. When
compared with an optimal schedule generated by the one-pass scheduling algorithm, the
level strategy simulation required only 33% of the time needed by the classical mapping
scheme. This is due to the nature of the VHDL task system: an optimal 1-pass mapping
assigns the longest chain of tasks to one processor, in an attempt to minimize communi-
cation time. Finally, comparison with a deliberately unbalanced mapping shows that the

level strategy executes in 25% of the time.

As the number of processing nodes is increased from 4 to 8, the time for execution
decreases to half of the 4-node amount; therefore, linear speedup is obtained, as shown in

Figvre 5.3.

5.2 Gaming Simulation Resulls

In order to further substantiate the r.::-:i- tound in VHDL simulation mappings. a gaming
simulation developed in previous ressaseh (72" was tested with the same mapping strategies

as used in the VHDL test runs. The - ~irnce graph for this simulation is shown in Figure

5.4.
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Figure 5.2. Varied Mapping Strategies

Table 5.3 and Figure 5.5 summarize the results of these tests.

Il 4-node mappings T Simulated time

i || 1000 ] 2500 | 5000 | 10000 | 15000
leveld 42sec [ 114 | 260 60! 1179

gﬁ-pass optimal [ 47 130|286 |75l 1375

|| greedy4 Il 42 116 {267 |69 1272

i unbal4 § 67 157 |346 833 1478

Table 5.3. Gaming Test Cases {Spin L.oops = 10.000}
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°
-t




sm‘ ¥ 3 3 1 4 1 3 H

m -
8-node level strategy ——
409 [4-node level strategy —

Time 300 - -
sec
206 4
106 + 4

] £ i £ [ -

0  200¢ 4060 6000 8000 10000 12000 4000 160GC
Simulatzd Time: psec

Figure 5.3. Speedup

Wkhen spin loops of 106,000 are input, the greedv 4 strategy {which assigns tasks
so that no two communicating tasks are on the same processor} produces results in less
time than the level strategy mapping. This may be due to some unspedfied simulation
parameter or to the smal' numhber of tasks on each pro.essor-if a sending task and receiving
task are both blocked for cominunication on the same processor. then the node operating

sysiem has no other tasks which can be working or computation.

4-node mappings i Simulated time
5000 | 10000 | 15000 ;
i leveld 562 1238 2i02
1-pass optimal 7i9 1605 2660
greedy4 524 1138 2057
unbalf 915 {1973 {3130

Table 5.4. Gaming Test Cases iSpin Loops = 100.060:




Figure 5.4. Gaming Simulaticn Precedence Graph

5.3 Summary

This chapter discusses the results when various mapping strategies are used to assign
VHDL simulation tasks. When simulation runs are based on the level strategy of assign-
ment, the VHDL simulation completes in approximately 56% of the time needed by the
second-best mapping, which also assigns a balanced load to each processor. When com-
pared with the optimal one-pass mapping, the results appear counterintuitive: the level
strategy simulation executes in 33% of the time needed by the one-pass optimal simulation;
however, an optimal one-iteration mapping for this simulation assigns all tasks to 4 pro-

cessors; this minimizes communication time, but does not take advantage of all available

processors.
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VI. Conclusions and Recommendations

This research has explored the problem of mapping parallel simulation tasks to pro-
cessors, with emphasis on VHDL circuit simulations. In the process, some interesting
results have been uncovered — in particular, the tendency for a single-execution optimal
mapping in the classical sense to produce suboptimal timing results for parallel simulations.
In addition to producing an algorithm for optimal iterative schedules, the mathematical
foundation for the simulation task scheduling problem has been developed, and the set of

NP-complete now includes the iterative scheduling problem.

6.1 Conclusions and Contributions

This research has approached the science of Scheduling Theory from a new nerspec-
tive; as a result, several contributions to the field have been made. The most important of

these are the following:

e This investigation has exposed the fallacy tha aa optimal mapping for a single
execution is optimal for multiple iterations as w Schedules which are optimal
in the classical sense are shown to produce less-than-optimal results for simulation
tasks. The critical factor which produces this anomoly is shown to be the iterative

nature of simulation tasks.

¢ Having determined that the iterative nature of simulations presents significant dif-
ferences from classical multiprocessor scheduling, a polynomial-time algorithm, the
level strategy, is developed for scheduling iterative task systems with properties cor-
responding to VHDL simulations. This algerithm is shown to produce speedup in

applications other than circuit simulation when the specified constraints are met.

e In order to formalize the theory of iterative task scheduling, a mathematical foun-
dation is developed for iterative task systems. The characteristics of parallel VHDL
simulations are used to form the basis of this foundation, leading to the following

theorems which are proved for task systems conforming to these conditions:
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n unit-execution-time tasks ?

m homogeneous processors

precedence relationship < defined between tasks

level-strategy assignment

all-iterations-first decision strategy

number of iterations, %, is greater than the number of processors
queued message passing

task exists on only one processor

- The lower bound for latency, the time between successive iterations of a given
task, on task systems with the above assumptions is [2] (i.e. lower bound
2 [51)-

— Task systems which meet the above assumptions have a latency upper bound

of [2] (i.e. upper bound < [2])..

— Task systems which meet the above conditions have an absolute bound on la-

tency of [Z] (because the upper-bound is equal to the lower-bound).

- If the above conditions are met, and all tasks have equal execution time k, then

an absolute bound on latency is [""T"] .

This theoretical foundatation is further expanded by removing the equal-execution-
time restriction and examining the variable-execution-time case. Theorems are proved
about variable-execution-time systems with the following constraints:

n variable-execution-time tasks

m homogeneous processors

precedence relationship < defined between tasks

level-strategy assignment

all-iterations-first decision strategy

number of iterations, ¢, is greater than the numl.r of processors

1This constraint is later scaled in the time domain and results are proved for equal-ezecution-time tasks.
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queued message passing

task exists on only one processor

— A lower bound on latency for iterative task systems with the above conditions

is 2:

Y. task ezecution times
mas

- ] ,length of the longest task

— An upper bound on latency for iterative task systems with the above constraints,

is defined as

upper bound < {

n X length of longest task‘l
m* )

— In an iterative task system with the constraints listed above, the minimum value
for a lower bound on the number of processors can be computed by the following

formula:®

lower bound > [ Y. execution times 'l

length of longest task

o In addition to the mathematical and simulation contributions listed above, the set of
NP-complete problems is expanded to include iterative task systems. When classical
repetitive probiems, periodic scheduling and fized cycle scheduling, are examined, it
becomes =vident that simulation task scheduling requires different parameters and
goals (Section 2.2), Thus the category of iterative schedulingis introduced. Problems
which conform to ihe iterative sckeduling parameters and which have task systems
with variable execution times are shown to be NP compleie; problems with the re-
strictions outlined above and with 2qual-execution-time can be scheduied to minimize

latency in polynomial-time,

¢ In addition to developing and proving the theoretical foundation, experirrental re-

sults, based on current parallel implementations, are used to validate the use of

?where m* denotes processors-in-use
3This theorem was derived by Frofessors Lamont and Hammell of the Air Force Institute of Technology
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latency as a measure of optimality. When parallel circuit simulations are executed
with different mappings, the level strategy consistently out-performed the other test

cases. A sample of the results is shown below:

Mapping Technique || Ezecution Time
level strategy 126 seconds
1-pass optimal 314 seconds

v greedy method 381 seconds
unbalanced 573 seconds

Timing runs which use the level algorithm to schedule tasks ran significantly faster
than any other test case; the closest competitor was the greedy strategy which took

2.49 times as long to execute the same circuit simulation.

6.2 Recommendations for Further Research

The iterative scheduling problem is proven to be NP-complete when the variable
execution-times are allowed. The following topics are suggested for future research into

the iterative scheduling problem:

o Expand the theoretical foundation of iterative task scheduling by relaxing the con-

straints on the basic Equal Execution Time (EET) system:

— Task systems with dynamic load balancing

(goal: minimize latency)
n BEET tasks
m homogeneous processors

no limiis on hufler size

—~ Hetercgeneous processor systems

(goal: minimize latency)




n EET tasks
Processor speeds 1 and 2

no limits on buffer size

— Simulations with feedback loops

(goal: minimize latency)
n FET tasks
m homogenecus B><.ss0rs

nv limits on buffer size

The feedback constraint requires dependent tasks to iterate before subsequent itera-
tions of the first task. For example, in Figure 6.1, Task A is allowed to perform all
iterations vonsecutively, but Task B must receive an input from Task C before it can

perform a subsequent iteration.

C.

Figure 6.1. Precedence Giaph with Feedback

-- Task systems with variable number of processors

(goal: minimize number of processors)
n EET tasks
homogeneous .rocessors

no limits on bhuffer size




o Expand the decision strategy results for the iteration-number decision strategy (Ap-
pendix D).
¢ Examine results when variable execution times (i.e. spin loops of 50,000; 100,000;

and 150,000) are incorporated as part of the VHDL :ask sytem, « .-esponding to the

variable-execution-time problem.

o Aslarger VHDI, simulations become available, vse the lever . i:» - - _ssign tasks

to processors. Validate conclusions.

¢ Explore mapping strategies for simulations which contain feedu» - Lps and cycles.
Methodologies exist for transforming precedence graphs containin. ., :les into acyclic

graphs (24). Determine and implement algorithms for this transformation process.
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Appendix A. Combinatoric Complezity Ezample

In Chapter 1, the following problem is considered:

Find the number of combinations which must be examined to derive an optimal
schedule for 60 independent tasks assigned to 2 processors.

When the problem was simplified so that exactly 30 tasks were scheduled on each processor,

there were still 60! possible combinations.

A.1 Detailed Ezample

In order to explcre the worst-case ramifications of an unsimplified version of the
problem, an system of indcpendent tasks is chosen. (Dependent, or precedence-constrained,
svstoisnz have fewer possibilities for combinations of tasks in each time siot.) In this case,
a system of 5 tasks is to be scheduled on 2 processors. All combinations of assignments

must be considered:

5 tasks on Processor 1; 0 tasks on Processor 2

( There are 5! x 0! ways to arrange these tasks.)
4 tasks on Processor 1; 1 task on Processor 2

{ There are 4! x 1! ways to arrange these tasks.)
3 tasks on Processor 1; 2 tasks on Processor 2

( There are 3! x 2! ways tc arrange these tasks.)
2 tasks oni Processor 1; 3 tasks on Processor 2

( There are 2! x 3! ways to arrange these tasks.)
1 tasks on Processor 1; 4 tasks on Processor 2

( There are 1! x 4! ways to arrange these tasks.)
0 tasks on Processor 1; 5 tasks on Processor 2

( There are 0! x 5! ways to arrange these tasks.)

Therefore, the following equation applies:
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Number of combinations = 510! + 41! 4 312! + 2!3! + 114! + 015! = 312 combinations

In order to determine an optimal schedule by exhaustive search, 312 combinations must be

examined. For the simple problem of 5 tasks assigned to 2 processors, exbaustive search

is not an unreasonable option. However, if the proulem is increased by just one task, the

number of combinations that must be checked in an exhaustive search is

Number of combinations = 610! + 51! + 412! + 313! 4 214! 4 1!5! 4+ 0!6! = 1812 combinations.

Table A.1 indicates the growth rate for number of combinations as the num!-er of

tasks is incremented!

[n |n! number of combinations
{7 ] 5040 > 10,080 j]
8 T40320 T[> 80,640 1
9 | 362,880 | > 725,760 g
Lo 3,628,800 | > 7,257,600 g

Table A.1. Growth Rate for n!

}The number of combinations for each schedule of n tasks includes n! tasks on P1 and 0! task on P2, as
well as the mirror-image combinations (0! tasks on P1 and n! on P2).
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Appendix B. Le iel Strategy Ezample

This appendix shows a step-by-step example of a task schedule generated by the
level strategy. Figure B.1 contains the precedence graph for a system where £1 < 12 < 13.

Assume these tasks are to be scheduled on 2 processors.

Figure B.1. Precedence Graph

The first step assigns a level to each task in the system:

Let n be defined as the number of tasks and m the number of processors.
Let the level of a node z in a task graph be the maximum number of nodes
(including z) on any »ath from z to a terminal task. A terminal task is at level
1. Let a task be ready when all its predecessors have been executed.

Figure B.2 shows the assignment of levels to each task.

The computer representation of the precedence graph is a precedence matrix, where a 1 in

the (i, 7)** position of the matrix indicates that task; < task;, as shown below:
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Figure B.2. Level Assignment

(2,1)=1=t1<12

The schedule is generated as follows: Each row in the precedence matrix is scanned.
If a row contains all zeros, then that task is ready. For example, at timeg, ror- is all zeros.
Therefore, task, is the only task which is ready for schedulirg, and task, is assigned to
P]t

L p1 || T1

p2fl i

After ali ready tasi  n this case, only task,) are assigned, the time is incremented

(so that the next ready ... will be scheduled at time;), and the precedence matrix is

recomputed to indicaie that

o All assigned tasks are no longer available for scheduling.

o Tasks whose deper.dencies are satisSied are now ready:




At time,, lask; is finished processing, and task., the only ready task, is assigned to
P,. The Gantt chart becomes

P1 [ T1
P2 T2

The same procedur« :s followed at time, : The precedence matrix is recomputed. an}

ready tasks are assigned to processors.

o v -
L]
Jund
@ O o IN
o o O W

Precedence Matrix

P1i Tl T3
P2 T2

At this point, all tasks are assigned to processors.

If there are more ready tasks than available processors, the time is incremented when
all processors are given a task; however, the precedence matrix is not recomputed until the
last ready task is assigned to a schedule. Figure B.3 shows a case where 4 tasks are ready
at timeg, but there are only 3 available processors. In this case, the assignment of tasks

to processors continues until all ready tasks are scheduled.

B.1 Level Strategy

The level strategy is concerned with the assignment of tasks to processors: however.
the operating system of the parallel processor is assumed to do the bookkeeping associated
with iterations of different time slots. This assumption allows the scheduling algoiithm to

determine what set of tasks is assigned to each processor without knowledge of operating
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Level 1

Figure B_.3. More ready tasks than processors

system parameters such as the time quantum used for multitasking on each processor. An

algorithmic description of the level strategy is given below:

last-assigned-.rocessor = m
while levels remain
calculate number-ready
for i in i..number-ready
assign task 7 to Processor ({last - Gssioned — processor + 1) mod m}
last-assigned-processor = {{last — assigned — processor + 1) mod m)
end for

end while

In addition to the level strategy defined above. tasks must be scheduled within a

processor by the decision strategy given in Chapter 4 in order to ensure minimal latency.

Since the last-assigned-processor is used to determine the next.processor for assizn-
ment, the amount of tasks assigned to cach processor is roughiy equivalent. If the queued-
message paradigm i« used, this allows predecessor tasks to iterate in ‘vacant” time slots.

Experimental results (Chapter 5) confirm the optimal nature of task assignments made

with this strategy.




Appendix C. A* Search

The problem of generating an optimal schedule is essentially a search problem. An exhaus-
tive search requires all possible schedules to be generated. From that list of all schedules,

the one with the shortest execution time is chosen.

Since, however, the problem of generating all possible schedules for real-life problems re-
quires more computing power than is available, heuristics are used to drive the search

toward the optimal, by rejecting high-cost branches of the search tree.

C.1 A* overview

The A* search uses two functions to guide the search (26, 29):

e g: A function which is used to calculate the cost of the path which has been traversed

so far.

o h: An estimator function, which is used to guess the cost from the current node to

the goal staie.

These functions are added to obtain the node-selection function f, (f = g + h), which

leads the search to attempt lowest-cost paths before higher-cost paths.
C.2 Sample A¥* Search
Figure C.1 shows a graph which represents the problem to be solved by A* search (26).

¢ s is the start node.
¢ 12 is the goal node.

e Arcs are labeled with traversal costs.

From this the cost and estimator functions are developed:

o g = cost of all arcs traveled on the current pach, (for example, g(n2) = 7).




Figure C.1. Graph for A* Example

e Since information to estimate the distance to the goal is not available, the optimistic
estimator function, h = 0 is used. This degenerates to a breadth-first search which
ensures that the optimal solution is reached eventually; however, a tighter bound on

h tends to expand fewer nodes in the search (26, 29).
If n2 is the goal node, the search proceeds as follows:

e The successors of s, nl and n2 are generated.
o The estimates are 3 and 7, respectively.

o The lowest-cost estimate is selected, and the successors of n1, (n2 and n3) are gen-

erated.

e The estimates become

nl {i n2 | n3

e Since n2 is the goal state, the search is complete, with a cost of 6.




C.3 FEvaluation Functions

Evaluation functions are the additive cost function g and the estimator function &,

which are used to guide the A* search (29).

Within the context of the scheduling problem, the following heuristics can be used to guide
the search so that low-cost schedules tend to be derived without the necessity of traversing
all branches of the search tree. Although these heuristics do not guarantee that the first
solution is an optimal solution, when combined with delayed termination, these heuristics

will produce an optimal schedule.

o Greedy Heuristics for Single-Execution Problem

— longest chain of processes (higher-level tasks scheduled first)
— number of successors (greatest number scheduled first)

— execution time (longest execution time first)

o Heuristics for Iterative Problem
The iterative problem is NP-complete when execution times of 1 and 2 are allowed.
Since the goal of the iterative problem is to minimize latency rather than to measure
overall execution time, optimal solutions tend to occur when all processors have
equivalent task loads (Chapter 4). Therefore, the following are suggested as heuristics

to drive the search in the iterative problem:

— longest execution time first (Greedy method)

— keep processor loads balanced as tasks are assigned. For example, if a 1-time-
unit task and a 2-time-unit task are available at timey, and if P; has 3 time-slots

used, while P, is only loaded in 1 time-slot, then it would be reasonable to place

the 1-time-unit task on P; and the 2-time-unit task on P;.




Appendix D. Iteration-Number Decision Strategy

To ensure that therc is minimal delay time on the 1w «r-he..ily-Jnaded p- .cssor, an
appropriate decision strategy must be used. Otherwise, if the “wrong™ task is chosen in a
conflict between tasks, ili» time may result, increasing lutency. For example, Figure D1,
shows £ he results of an arvitrary decision strategy when 4 iterations of a task system: ete
mapped to 3 processors. In this case. Processor 1 is iorced to be idle at time; because
tusky has ¢cumplewed all iterations, and all remaining iterations of fask, are waiting for

tasks on other priicessors to complete.

@--»( T2 T3 T¢

PrT® T [T12 740 [ T4t | T42 | T13 T43
P2 T20 172 | T22 T2
P3 730113 | 73 T35

“isure D.1. Delay Time Due to Arbitrary Decision Strategy

Yo avoid this problem, a decision strategy must guar ntee that a choice between
tasks for a particular time slot always chooses the task most likely to cause delay. For
example, the schedule for the graph in Figure D.1 can be schedul d so that no idle tine

occurs on Processor 1, as shown in Figure D.2

The decision strategy which yields ithe above schedule is based on the longest tiiue
a task might have to wait for predece .sor tasks to execute; In the previous example, the
worst case occurs for tasks and tasks. Each of these tasks is bound by prede:essors which
execute oi ther processors. Since there are at most m — 1 processors whicl must iterate
hefore any given task can execute, no task will be blocked from execution if m - 1 iterations

of predecessor task are stored in the buffer between tasks.
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Figure D.2. Optimal Schedule

The chuice is based on the iieration number of each task. Each task is rumbered with
the task number and iteration number: task? is used fo re, cesent the (34 1) iteration of
tasky. For example, the first iteration of tar £; is repre nt. € 25 tus&S; the second iteraticn

of tagks is represented as taskl; and so forth.

The scheduling decision is m- ie by comparing iteration numbers. If the difference
between iterations is less than the number of processors, then the highest.level task (task
with the highest iteration number) should be schedule” since jt may be a prrdzcessor of
{m -- 1) tasks cn other processors. If the difference between iterations is greater than or
equal to the number of processors, then the lower-level task should be scheduled, since the
higher-level task has stored up enough iterations to keep the system from generating idle

time.

In general, if the choice is between task’ and task;-, the following tests are done:

o If |k < 1| and |k — I] > m, then taskF should be scheduled.

o If [k <!] and |k -] < m, then task} should be scheduled.

In the example above, the first decision point occurs at times. In order to choose

which task should be selected for the schedule, task} and taskd are evaluated:

3-0) = 3 = m = task) should be selccted.




At the pext decision point, timey, task? is selected instead of task} becav-e:

{3« 1j = 2 < m => task? should be selected.

This strategy is appropriate because it allows predecessor tasks to build up results in

ouffers so that successor tasks never have to wait for predecessors after the first iteration.

Conjecture 1 If the following conditions are met, then no processor has more than m—1
units of delay time

& 1 unit-execuiton-ti:ne tasks

& M homogeneous processors

e precedence relationsip < defined between tasks

o (cnei-slrategy ussignment

o all-iterations-first decision strategy

o gueued message passing (no bounds assumed oi: buffer size)

e task ezxists on only one processor

PRrOOF SKETCH: (by consiruction)

Part I: Level Changes for First Task on ezch Processor

Assume that the above conditions are met and that the first m tasks each cause a delay
of 1 time unit. It can be assumed, without loss of generality, thav P is assigned 2 tasks,

task. and task;, where i < j.

e Lot time, denote the time when all processors hava a task.

e Let time, denote the time when the last iteration of task; occurs.
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¢ Let time, denote the time when the last iteration of task; occurs. Since tasks are

assigned by the level strategy, time, also represents the end of the simulation.

Idle time cannot occur on P, between time, and time;sm, since the iteraticn-difference

strategy gives priority to task; in this time frame.

In timetym41, the first iteration of task? occurs because task; has executed m times.
Therefore task? is given priority by the decision strategy:

|0 < m| and |0 — m| = m, therefore task; is scheduled.
At timegpmyz, |k — 1] = |m — 1] < m, and task; is scheduled.

This alternating pattern continues, until time,, when task; completes its last iteration. At
this point, there are exactly m iterations of task; which have not executed. From time,
until time,, task; is the only task remaining on P, so no scheduling decision is required.
Furthermore, since all predecessors of task; are scheduled in the same manner as tasks
on Py, and since there are at most m — 1 iterations of predecessor tasks which have not
executed, no delay is generated on the processor. Therefore, the last predecessor of task;

executes by time,_;, and task; completes its last iteration at time,.

Dart II: Level Changes After Start of Schedule (incomplete proof sketch)

The remainder of the proof must show that delay time during the schedule will not
exceed m — 1 time units on any processor, even if one or more processors encounters its
first level change during the pipelied portion of the schedule. Using the same logic as the
all-iterations-first decision strategy (Lemma 2}, it becomes necessary t« show that at most

m — 1 time units of delay can occur iniernal to the schedulc.

o
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