
AD-A238 631 0

0 0

JULU

jmgjmgm

* ~. 2A~Woved tor *~~ci146 4
~~~~= '2b1 ufl u ~ it~m4

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGiY

Wright-Patterson Air Force Base, Ohio



AFIT/GCS/ENG/91M-03

~ELECT

JUL 2 3 1991I

Optimal Iterative Task Scheduling for Parallel Simulations

THESIS

JoAnn M. Sartor

Captain, USAF

AFIT/GCS/ENG/91M-03

Approved for Duhlic release; distribution unlimited

91-05751' //ll/l//!I/ill/l/l/C



REPORT DOCUMENTATION -o(1 N 0
-,f'd V- - ,. N 74=-8

AGENCY USZ ONLY (Leave z n 1 2. REPORt DATE REPORT ANO DA_ --OVERED

---- _ _March 1991 Master's Thesis
4. TITLE AN-D S-ITLE 5. MBES

Optimal Iterative Task Scheduling for Parallel Simulations

AU HO(S --

JoAnn M. Sartor, Capt USAF

PERFORM:-NCCANtZA_1 . -AME(S) AN, 'DOESS(ES) N-11 "i G OR - .- N

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCS/ENG/91M-03

SPONSOR:.ci. MONITORiN- I .CYNAMES -- D ADDRES,-S, 10 5S .R NG, MC .

LTC John C. -Toole
-DARPA/ISTO

1400 Wilson Blvd
-.Aylington, VA 22209-2308

11. SUPPLEPINATRY NOTES

DIST RP"I+- N AVAILABS:L-- STATEMENT 12 D 8U UT10 ON 0

Approved for Public Release; Distribution Unlimited.

EASSTSAc2 'mum 2C,2 .. )

.... he ultimate purpose of this research is to reduce the time needed for execution of parallel computer simulations.
In particular, the impact of task assignment strategies is determined for parallel VHDL circuit simulations.
The classical scheduling problem, which assigns n precedence-constrained tasks to m processors is NP-complete
in all but the simplest cases. The problem of assigning simulation tasks is furtaer complicated by the iterative
nature of computer simulations: each task is required to execute multiple times as the simulation executes.
This investigation develops a polynomial-time algorithm (the level strategy) which provides optimal assignment
for iterative systems with specific constraints. A mathematical foundation for iterative task systems is proved. In
particular, it is shown that restricted cases of iterative systems achieve minimal lat.ncy, kti.nv between successive
iterations of a given task), when the level strategy is used for task assignment.
To verify the theoretical results, various task scheduling strategies are compared using V,.IDL logic-circuit siu ,
tions on the iPSC/2 Hypercube computer. Tests are run with mappings based on the level strategy, the classical
optimal assignment, a greedy technique for assignment, and an unbalanced assignment. The best results of these
expe'riments, in terms of speedup, occur consistently in cases where the level strategy is used.

simulation task scheduling, iterative scheduling, latency, optimal schedules, NP- 128
complete problems, precedence-constrained scheduling, polynomial-time algorithms,

_ repetitive schedules

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED U ,



GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave Blank) Block 12a. Distribution/Availablity Statement,
Denote public availability or limitation. Cite

Block 2. Reort Date, Full publication date any availability to the public. Enter additional
including day, month, and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR)

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Seenon Technial
Jun 87 - 30 Jun 88). Statements on TechnicalDocuments."

Block 4. Title and Subtitle. A title is taken from DOE - See authorities
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code.
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical
element number(s), project number(s), task Reportsnumber(s), and work unit number(s). Use the NASA - NASA - Leave blank
following labels: NTIS - NTIS - Leave blank.

C - Contract PR - Project
G - Grant TA -Task
PE - Program WU - Work Unit Block 13. Abstract, Include a brief (Maximum

Element Accession No. 200 words) factual summary of the most
significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Subject Terms, Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Oraanization Name(s) and number of pages.
Address(esL Self-explanatory. Block 16. Price Code Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number, Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17. - 19. Security Classifications.
performing the report. Self-explanatory. Enter U.S. Security

Classification in accordance with U.S. Security
Block 9. Sonorina/Monitorina Aaencv Regulations (i.e., UNCLASSIFIED). If form
I_ames(s) and Address(es). Self-explanatory. contains classified information, stamp

Block 10. Soonsorina/Monitoring Agency. classification on the top and bottom of the page.

Report Number. (If known)
Block 20. Limitation of Abstract. This blockBlock 11. Supplementary Notes. Enter must be completed to assign a limitation to the

information not included elsewhere such as: must b e ete to (nlimited) o the

Prepared in cooperation with...; Trans. of ..., To abstract. Enter either UL (unlimited) or SAR

be published in .... When a report is revised, (same as report). An entry in this block is

include a statement whether the new report necessary if the abstract is to be limited. If

supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.
Standard Form 298 Back (Rev. 2-89)



,F'IT/GCS/ENG/91M-O3

Optimal Iterative Task Scheduling for Parallel Simulations

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Science -.

----------------------------- - - :

JoAnn M. Sartor, B.S. Sy

Captain, USAF

14 M.rch 1991 A!'

Approv,-d f:r publi-= release; ditribution unlimited

//



Acknowledgments

There are many, many people who deserve mention here! I'd like to take this oppor-

tunity to thank some of them:

First of all, my family. Whenever I'd bring home report cards from school, my

mother's response was, "I don't care what grade you get, as long as you do your best."

(This, of course, doesn't let a student off-the-hook even if she brings home A's!) My dad,

with his stubborn outlook on life, taught me to persevere through the tough times. My

three siblings, Kathy, Joe, and Mike, (along with their spouses) performed a chameleon

act: a cheering section when I did well - and a support group when I needed a shoulder to

cry on. And my brother's children, Josh and Jessie, added sparkle to my life when research

looked dreary.

The Ebrary staff (in particular, Kathy, Barbara, and Jeff) searched databases; lo-

cated sources; and answered innumerable questions. Rick, the Keeper of the Hypercubes,

simplified the VHDL simulation input, answered computer questions - and helped me

scrounge an office. Dr. Roth guided me through the maze of IMTEX. My classmates (Ann

Lee, James Jaques, and especially Betty Topp) listened to my griping and helped me keep

my sense of proportion. And AFIT faculty members (Dr Khatri, Dr Howatt, Dr Bailor,

Dr Brown, ...) all answered questions and helped me to decipher technical materii. Dr

Potoczny worked with me to derive the Combinatoric Example in Appendix A, and Jeff

Simmers offered a method of simplifying induction proofs.

My committee members, MAJ Robert Hammell, Dr Gary Lamont, and Maj William

Holart all contributed valuable insights to this effort. Dr Hartrum, though not a member

of my committee, took an interest in this thesis and provided several of the ideas that led

to breakthroughs. In fact, Dr Hartrum was the first one to mention the iterative property

of VHDIJL simulations!

MAJ Hammell gave me constant encouragement; his confidence-building speeches

helped me through several low points: "Writing a thesis is like b:lilding a house..." "In

graduate school, you'Jl find that no one has 'TH1E' answer!" ... MAJ liammell, I am greatly

in your debt for all your work.. .If ever you need a blood donor, cal! on me!



Dr Lamont! You have been my role model, as well as my advisor- Scmetimes, I've

come back from a discussion with you feeling the way King Arthur's knights might have

felt after leaving the Round Table - as if I have the strength to triumph over any obstacle.

You hay" been a profound influence in my life, as well as the driving force behind this

research. Thank you!

And most of all, I'd like to acknowledge the patience and support given by my

husband Ray. (Often, Ray was more excited about this thesis than I was: "They're going

to let you work on the Hypercube!!!") Although putting in "80 hours a week" on his PhD

research, Ray found the time to cook huge batcbes of jambalaya; to go for walks around

the neighborhood; and to roar laughing at the escapades of Bertie Wooster!' Ray, you've

been a great blessing throughout this struggle; I wouldn't trade you for

" AN the tea in China,

" All the rum in Jamaica,

" Or even the jackpot in last week's Lotto!

JoAnn M. Sartor

'For those of you who havent had a good laugh lately, check out any "Bertie an. Jeeves" hook by P.G.
Wodehonse!

Hii



Table of Contents

Page

List of Figures .................................. . viii

List of Theorems ......... .................................. xi

Abstract ......... ....................................... xii

I. Introduction ....... ................................. . 1-1

1.1 Overview ........ ............................. 1

1.2 Simulation Tasking Background ...................... 1-2

1.3 Task Scheduling Problem ....... .................... 1-7

1.4 Assumptions ........ ........................... 1-8

1.5 Scope (Context) ....... ......................... 1-8

1.6 Approach ........ ............................. 1-9

1.7 Structure of Thesis ......................... . . . 1-10

II. Background ......... .................................. 2-

2.1 General Task Scheduling Problem Description ......... .... 2-1

2.,1 Algorithm Considerations ............... -

2.1.'. Notation and Diagrammatic Representation ..... 2-6

2.2 Classes of Repeating Schedules ...................... 2-7

2.3 Latency ........ .............................. 2 9

2.4 General appwoaches to the scheduling problem ............ 2 9

2.5 Iterative nature of the problem ...................... 2-12

2.6 AssumptioAe and Fnvirenntcnt ...................... 2-14

2.7 Additional Cons:derations ......................... 2- 16

2.8 Summary .................................... 2-16

iv



Page

III. Scheduling Algorithm Design .. . . . . . . . . . . . 3-1

3.1 Basis for Level Strategy (One-pass Systems). .. .. .. .. .... 3-1

3.1.1 One-Pass Level Algorithm .. .. .. .. .. ... ..... 3-1

3.2 Level -Algorithm for Iterative Tasks .. .. .. .. .. ... ..... 3-3

3.3 Search Process. .. .. .. .. ... ... ... ... ... ..... 3-3

3.3.1 Exhaustive Search .. .. .. .. ... ... ... ..... 3-4

3.3-2 Informed Search................................- - - 3-4

3.4 Reducing, the Search Space .. .. .. .. ... ... ... ..... 3-8

3.4.1 Lower Bound Metrics .. .. .. .. ... ... ...... 3-8

3-5 Heuristics for Schedule-Building .. .. .. ... .. ... .... 3.14

3.6 Summarv .. .. .. .. .. .. ... ... .. ... ... ... ... 3-16

IV. Low-level Analysis. .. .. .. ... .. ... ... ... ... ... ...... 4-1

4.1 Theoretical Design of Schedule. .. .. .. .. ... ... ..... 4-1

4.1.1 Justification for Latency Measure. .. .. .. ...... 4-3

4.2 Restrictions. .. .. .. .. ... ... .. ... ... ... ..... 4-5

4.3 Level Strategy .. .. .. .. ... ... ... ... ... ....... 4-6

4.4 Scheduling, Within a Processor. .. .. .. .. ... ... ..... 4-9

4.4.1 Decision Strategy .. .. .. .. .. ... ... .. ..... 1-9

4.5 Lower Bound on Latency. .. .. .. ... ... .. ... .... 4-10

4.6 Upper Bound on Latency .. .. .. .. ... ... ... ....... 4-12

4.6.1 Processor Delay Time. .. .. .. .. ... ... ..... 4-13'

4.6.2 Chain of Tasks .. .. .. .. ... ... .. ... .... 4-11

4.6.3 Arbitrary Precedence. .. .. .. ... ... ... ... 4-18

4.7 Equal Execution Time Task Systems .. .. .. .. .. ... ... 4-24

4.8 Variable Execution Times.... .. .. .. .. .. .. .. .. ... -2

4.8.1 Problem Description .. .. .. .. ... .. ... .... 4-25

4.8.2 Reasons for Level-Strate-p Failure. .. .. .. .. ... 4-26

V



Page

4.8.3 Bounds on Variable-Execution-Time Latency . . . 4-28

4.8.4 Minimizng Number of Processors .. .. .. .. ..... 4-32

4.9 NP-Complete Aspects .. .. .. .. .. .. .. ... .. ...... 4-35

4.9.1 Background. .. .. .. .. .. .. .. .. ... ...... 4-35

4.9.2 Proving NP-Completeness. .. .. .. .. .. .. ..... 4-36

4.9.3 Variable Execution Time Systems .. .. .. .. ..... 4-37

4.10 Summay . .. .. .. .. .. .. .. ... .. ... .. ... ... 4-42

V. Application/Experimental Results .. .. .. .. .. .. ... .. ... ... 5-i

5-1 VHDL Application. .. .. .. .. .. .. .. ... .. ... ... 5-1

5.1.1 VHDL Parameters and Results............... 5-i1

5.2 Gaming Simulation Results........................-5-4

5.3 Slimrnary...................................5-7

VI. Conclusions and Recommendations......................... 6-i

6.1 Conclusions and Contributions..................... 6-i

6.2 Recommendations for Further Research. .. .. .. .. .. .... 6-4

Appendix A. Coinbinatoric Complexity Example .. .. .. .. .. .. ..... A-1

A.1 Detailed Example............................. A-I

Appendix B. Level Strategy Example........................ B-I

B-1 Level Strategy...............................JB-3

Appendix C. A* Search................................. %f- I

CA A* overview................................ C-1

C .2 Sample A* r......................... .... C-I

C-3 Evaluation P ................................... C-3

Appendix 1). Iteration- Nu r,fb Decision Strategy .............. D-l

vi



PWr

Vit ..................... VIT.A-I

Index . . . . . . . . . . . . . . . . . . . .. IND-1

Bibliograph . . . . . . . . . . . . . . . . . .. BIB-1



List of Figures

Figure Page

1.1. Unbalanced Processor Loads ........................ 1-3

1.2. Relationships Between Tasks (1) and (2) ................. 1-4

1.3. Branch and Bound Search Tree ....................... 1-6

2.1. Relationship Between Multiprocessor Scheduling Problems ....... 2-3

2.2. Taxonomy of Scheduling Problems ..................... 2-5

2.3. Task system ..........-....................... 2-T

2.4. Arbitrary Precedence Graph with Optimal Schedule ........... 2-10

2.5. Tree-Structured P-ece-ence Graph wth O'nt.MI Sch.- .. . 2-11

2.6. Graph(a); Chordal Complement(b) .................... 2-12

2.7. CORBAN Tasks ........ ............................... 2-13

2.8. Optimal (i-pass) vs Pipelined ....................... 2-14

3.1. Assignment by level strategy. .............................. 3-2

3.2. Exhaustive Search .............................. 3-5

3.3. Partial Search Tree ............................. 3-6

3.4. Branch and Bound Search Tree ............................. 3-7

3.5. Chain of 9 Tasks ........ ............................... 3-9

3.6. Longest Path = .5 ........ ............................. 3-10

3.7. Search Graph and Optimal Sch'_Auie for Independent Task Example . 3-13

3.8. Scheduling Tasks with Most Successors ...................... 3-15

3.9. Search Tree for Tasks with Most Successors ..................... 3-17

4.1. Precedence Graph- S-kr Adder ................................. 4-2

4.2. Latency. ............................................ 4-3

4.3. Search Tree (Ivel-Strategv Assinment) ..................... .4-4

VIII



Figdre Page

4.4. Mapping for 10 tasks and 10 processors; (latency = 1) ............ 4-4

4.5. Task System with Non-optimal Mapping ..................... 4-7

4.6. Assigning Levels to Tasks ................................ 4-8

4.7. Effects of Decision Strategy .............................. 4-9

4.8. 5 independent tasks; 2 iterations ........................... 4-11

4.9. Maximum Latency for Task System ......................... 4-13

4.10. Comparison: Assignment Strategies with Schedule 1 ........... .... 4-14

4.11. Level Strategy Assignment: chain of m tasks on rn processors ...... .. 4-15

4.12. Level Strategy Assignment: chain of m + 1 tasks on m processors . . . 4-15

4.13. Level Strategy Assignment: Serial Precedence (chain) .......... .... 4-16

4.14. Last task execution on all processors ......................... 4-17

4.15. Level Strategy Assignment: arbitrary precedence vs. serial precedence . 4-19

4.16. Idle time due to level change ............................. 4-20

4.17. Variable execution time task system ......................... 4-27

4.18. Task System with Variable Execution Time .... ............... 4-28

4.19. Variable execution time task system ......................... 4-29

4.20. Relationship between bounds ............................. 4-33

4.21. Lower Bound on Processors . ................... 4-33

4.22. Transformation to Show NP-Completeness .................... 4-37

4.23. Nondeterministic Turing Machine Assignment .................. 4-39

4.24. Mapping NP-Complete Problem into Open Problem ........... .... 4-40

4.25. Transforming the Iterative Problem to the Classical Problem ...... ... 4-41

4.26. Transforming the Classical Problem to the Iterative Problem ...... ... 4-43

5.1. Precedence Graph: VHDL tasks ............................ 5-2

5.2. Varied Mapping Strategies ............................... 5-5

5.3. Speedup ........................................... 5-6

5.4. Gaming Simulation Precedcnce Graph ........................ 5-7

ix



Figure Page

5.5. Varied Mapping Strategies (Spin Loops 10,000) ................... 5-8

5.6. Varied Mapping Strategies (Spin Loops 100,000) ................. 5-8

6.1. Precedence Graph with Feedback .......................... 6-5

B.1. Precedence Graph .................................... B-1

B.2. Level Assignment .................................... B-2

B.3. More ready tasks than processors .......................... B-4

C.1. Graph for A* Example ................................. C-2

D.1. Delay Time Due to , rbitrary Decision Strategy ................ D-1

D.2. Optimal Schedule .................................... D-2

X



List of Theorems

Theorem Pg

UET Lower Bound...................................... 4-11

Delay Time: chain .................................... 4-15

Delay Time: arbitrary precedence............................ 4-18

Maximum Delay Time .. .. .. .. .. .. .. .. .. ... .. ... .. ..... 4-21

UET Upper Bound. .. .. .. .. .. .. ... .. ... .. ... .. ... ... 4-22

Firm Bound on UET Latency . . ....... .. .. .. .. .. .. .. 4-23

Equal Execution Time .. .. .. .. .. .. .. .. .. ... .. ... .. ...... 4-24

Variable-execution-time Lower Bound .. .. .. .. .. .. .. ... .. ...... 4-29

Variable-execution-time Upper Bound .. .. .. .. .. .. .. ... .. ...... 4-31

Number of Processors: Variable-execution-timq .. .. .. .. .. ... .. ... 4-34

NP-completeness .. .. .. .. .. .. .. ..... ... .. ... .. ...... 4-37

xi



AFIT/GCS/ENG/91M-03

Abstract

The ultimate purpose of this research is to reduce the time needed for execution of

parallel computer simulations. In particular, the impact o' task assignment strategies is

determined for parallel VHDL circuit simulations.

The classical scheduling problem, which assigns n precedence-constrained tasks to

m processors is NP-complete in all but the simplest cases. The problem of assigning

simulation tasks is further complicated by the iterative nature of computer simulations:

each task is required to execute multiple times as the simulation executes.

This investigation develops a polynomial-time algorithm (the level strategy) which

provides optimal assignment for iterative systems with specific constraints. A mathemati-

cal foundation for iterative task systems is proved. In particular, it is shown that restricted

cases of iterative systems achieve minimal latency, (time between successive iterations of a

given task), when the level strategy is used for task assignment. In addition, the iterative

scheduling problem is proved NP-complete when constraints are relaxed.

To validate the theoretical results, various task scheduling strategies are comared

using VHDL logic-circuit simulations on the iPSC/2 Hypercube computer. Tests are run

with mappings based on the level strategy, the classical optimal assignment, a greedy

technique for assignment, and an unbalanced assignment. The best results of these ex-

periments, in terms of speedup, occur consistently in cases where the level strategy is

used.

xii

I



Optimal Iterative Task Scheduling for Parallel Simulations

L Introduction

1.1 Overview

Although computer technology has evolved dramatically in recent years, some ap-

plications are limited by intense computational requirements. Examples of these include

aircraft design; weather prediction; and computational fluid dynamics (5, 13).

Some computer applications, such as matrix operations and search problems, may

execute faster when parallel processing is used. If a designer can decompose the problem

into tasks, each processor in a parallel architecture can work on a subset of the original

problem. This may be done through data decomposition, a technique which partitions

a data structure into pieces with different processors working on separate parts of the

problem, or by control/algorithm decompositon, which allows different processors to per-

form different functions (31). Dividing the problem in this manner may enable the overall

solution to develop faster than on a sequential (one-processor) machine.

After a large problem has been decomposed into tasks, each task must be assigned to

a processor so that the computation can be performed. Assigning tasks to processors in an

optimal schedule to minimize execution time is, in general, a NP-complete problem (10).

All NP-complete problems have certain characteristics:

" There is no known polynomial-order solution f,r any NP-complete problem.

" NP-complete problcm, have combinatoric or e. ponerntiai search spaces.

* Every NP-complete problem can be mapped (in polynomial time) to every oi,rr

NP-complete problem. This implies that if a polynomial-time (p-time) solution is

found for any NP-complete problem, then a p-time solution can be found for all

NP-complete problems.

NP-complete problems can be approached in several ways:

1i



" If an approximate solution is acceptable, heuristics can be developed to produce

"good" solutions for specific cases, rather thaii optimal solutions.

" Informed search strategies can be used to reduce the amount of time needed to find

an optimal solution in most instances. There are, however, cases where informed

search strategies produce no better results than an exhaustive search.

" The problem can be restricted so that it conforms to a problem which has a known

polynomial-time solution.

This thesis investigation concentrates on methods for finding an optimal solution to

the task scheduling problem, as defined by iterative task systems. In iterative systems, such

as those reflected in electronic circuit simulations, each task executes several times during

the course of the simulation. This problem is shown to have a polynomial-time solution, for

highly-restricted cases, which means that a deterministic Turing machine (DTM) can solve

the problem with an algorithm of complexity O(nc), where c is constant (?). Most task

scheduling problems, however, require NP-time (10), which means that a nondeterministic

Turing machine (NDTM), can solve the problem with an algorithm of complexity O(nc),

but that a DTM cannot (?).

1.2 Simulation Tasking Background

The development of electronic circuits, such as Very Large Scale Integration (VLSI)

circuits, involves numerous steps, from circuit design to physical implementation (30). One

attempt to streamline the process of circuit design uses the Very High Speed Integrated

Circuit (VHSIC) Hardware Design Language, or VHDL, a design methodology which allows

VLSI circuit behavior to be modelled on a computer (2). If VHDL simulations efficiently

model circuit behavior, the turnaround time from design to final implementation could be

decreased; instead of building intermediate designs and physically measuring the outputs.

computer simulations could be used to iteratively refine the circuit before implementation.

Unfortunately, VIIDL simul tions for current applications take a disproportionate

amount of computer time compared to the size of the circuit which is modeled. For

1-2



example, one projection estimates that simulating a VHDL design for a circuit with 100,000

transistors would require 700 hours to execute on a VAX 11/780 computer (30).

Previous research (30), attempted to decrease the time needed for VHDL processes

by rundng VHDL test cases on a parallel computer. Although successful VHr)L circuit

simulations were implemented in parallel, the parallel simulation required approximately

the same amount of time as the sequential version. This may have been due to any of

several factors which prevent parallel applications from achieving the theoretical speedup:

" Co.mmunicatiors Overhead:

The simulation must be amexable to parallelization. For example, if each simula-

tion task has a small apmouitt of computation compared to the required amount of

communication, then the simulation can spend more time communicating between

processors than performing actual work.

" Inefficient Loading:

The task scheduling process, which assigns sub-problems to different processors, must

provide an ass;gnment so that each processor is kept busy. If tasks are assigned to

processors so that processors arc not fuijy-t tilizd, execution time is dominated by

the processor with the heaviest workload. For example, tasks are assigned to 3

processors in Figure 1.1. Although the average processor finishing time is 17, the

finishing time for the entire job is 21.

! 1

1P2

P3j _ _ _

0 10 15 20

Figure 1-1. Unbatanced Processor Ioads

i ",['~



Since dependencies exist between inputs and outputs in VHDL tasks, the process of

assigning tasks to processors involves precedence-constr;ined scheduling. In a precedence-

constrained system, some tasks must delay until previous tasks are complete. For example,

the following task system, shown in Figure 1.2, has a constrai,. "letween tasks:

Task 1: Calculate a = (b + c)/(364 x 972)

Task 2: Calculaie g = a/2094

a = (b + c) (364 x 972) -ASK1

1 a + 2094 TASK 2

FigVTe 1.2. Relationships Between Tasks (1) and (2)

In this task system, Task 2 cannot begin until a value is given for a. Since the value of a

is the final result of Task 1, Task 2 carnot begin until Task 1 ha5 completed. Therefore,

Task 2 is constrained by Task 1.

The problem of mappi-g precedence-constrained tasks to processors to obtain an

optimal schedule faZ:; into the class of NP-complete problems (10, 15). One characteristic

of NP-complete problerns is that a large search space exists implicitly az-Ei is partially gen-

erated e )licitly when deriving optimal solutions; another characteristic of these problems

is that at optimal solution may require an exceedingly lc:.g time to generate nsing a graph

search algorithm (4).

For exam.pP, -uppose an optimal schedule is desired for 60 independent tasks assigned

to 2 pr'2r-,oers. If "-fe problem is simplified by assuming that only 30 time slots can be

filled , eac r nrocessor. it i.o possible to derive the number of possible combinations:

1-4



" There are 60 choices for the placement of the first task.

" After the first task is chosen, there are 59 choices for the placement of the second

task.

" After the second task is chosen, there are 58 choices for the placement of the third

task.

* For the final task, there is one choice for the placement.

" Thus, there are 60 x 59 x 58 x ... x "A = 60! unique ways to schedule 60 tasks

on 2 processors so that there are 30 tasks on each processor.

In order to determine an optimal schedule for this problem by exhaustive search, 60!

• embinations must be examined. Assunzig that schedules are generated by a computer

at the rate of 1,000,000 schedules per second, the time required to generate all schedules

would exceed hundreds of billions of centurias!

60! schedules
1,000.000 schedules 60 seconds 60 minutes X "z hour:X 365_dys X 100 years

second ;minute hour daiv, iear centu-

8.:321 × 1081831 = 2.63 x 106 centuries3.15 x 1015

Thus, optimal schedules must be derived using methods other than exhaustive search.

(Appendix A contains more complete calculations for this example).

Intelligent choice of search techniques can generate the optimal schedule without

exploring all possible combinations. One method of informed search is called branch and

bound. Branch and bound techniques place a bound, or limit, on the branches of the search

space which are traversed (8). As partial solutions exceed the cost of the cturrent solution,

the search abandons the high-cost branch and backtracks to a previous state. In this way,

a limited search, rather than an exhaustive search is used to achieve an optimal solution.

1-5



For example, suppose 4 independent tasks are to be scheduled on 2 processors. These

tasks may execute in any order, and there are no restrictions which limit the number of

tasks assigned to any processor.

Tasks 1, 3, 4 take 2 time units to execute.

Task 2 takes 1 time unit to execute.

Figure 1.3 shows a partial search tree for this p-oblem.

4 I I~ P

T3 -+P

-P1 4 ~4PI

Cost = 6

T2 Cost > previous
BACKTRACK!

Figure 1.3. Branch and Bound Search Tree

At some point in the search, the following schedule is generated (shown on the left branch

of Figure 1.3):

Pl IT4 T4 T3 T3 T2

P2 T1I TI

Since this schedule can be completed in 5 time units, all partial schedules of more than -a

time units can be abandoned. For example, the partial schedule shown on the right branch

1-6



of the search tree exceeds the current minimum complete schedule; thus, this schedule and

its variations can be eliminated from consideration:

P1 T3 T3j T1 Ti T4 T4

P2

Using techniques which allow the problem to be bounded by considering only those

options which fall beneath the current lowest-cost schedule, it is possible to generate an op-

timal schedule to an NP-complete problem without an exhaustive search of all alternatives

in most cases.

1.3 Task Scheduling Problem

Timing analysis has shown that large computer applications can often execute faster

on a parallel architecture than on a sequential machine (22). When VHDL circuit simula-

tions were ported to the parallel iPSC/2 Hypercube, however, the execution time remained

the same as for serial implementations (30). This may have been due to communications

overhead or to unbalanced processor workload. In order to distribute the workload among

processors, the mapping process, which assigns tasks to processors, must be examined.

Previous AFIT research (30) used a greedy, or polynomial-time, technique to generate

a quick solution when mapping tasks to processors. In this method, the assignment strategy

is based on a candidate selection, but optimal results are not guaranteed. It is possible that

the overall execution time of the simulation can be reduced if more informed techniques

are used to assign VHDL tasks to processors.

In general, the task scheduling problem attempts to assign tasks to processors in

such a way that some criterion is optimized. (A formal definition is given in Chapter 2).

The VHDL problem attempts to assign n tasks to m processors (where n > m) in such a

way that overall execution time is minimized.

1-7



1.4 Assumptions

Before the scheduling process is begun, the task system must be defined. At a

minimum, the following must be known (10):

* number of tasks

* execution time for each task

" task precedences

* number of processors

It is also assumed that the parallel simulations generated by previous AFIT re-

search (23, 30) work effectively.

1.5 s-cope (Context)

The primary focus of this study is the problem of assigning n precedence-constrained

tasks to a multiprocessor system consisting of m identical processors such that n > m

and such that a minimal schedule in terms of overall execution time is generated. Since

scheduling the,:y.. " en with these constraints, encompasses a vast range of problems (9),

this i.'Z-e .pztation 1 - "urther restricted to simulations which meet the following criteria:

* The task g-: . contains no feedback loops.

* Mess-"s betu !n processors are held in a buffer until required.

" Eve. -.w1 iH, the task graph is executed multiple times.

* Once . task is assigned to a processor, all subsequent iterations of that task remain

on that processor.

Using informed search techniques, an algorithm for assigning tasks to processors in

an optimal manner is developed. This algorithm, which derives a minimal schedule based

on the iterative nature of simulation tasks, is proved to be optimal in terms of latency, the

time between successive iterations of a task.

1-8



Finally, parallel VHDL implementations generated by previous AFIT research (30)

are executed with the following scheduling algorithms on the 8-node iPSC/2 Hypercube

and results are compared:

" greedy algorithm

" optimal one-iteration algorithm

" level strategy

" unbalanced mapping

1.6 Approach

This research begins with an analysis of scheduling algorithms which generate optimal

mappings of tasks to processors. These algorithms are examined to determine an optimal

method for scheduling tasks which conform to circuit simulation constraints.

Existing algorithms fail to capture one of the primary aspects of simulation task

systems: the simulation iterates through each task in the system numerous times during

execution. This iterative behavior dominates all other mapping considerations in some

simulations. A mapping strategy based on iterative tasks is developed. This strategy is

proved to result in optimal execution time for highly-restricted systems of simulation tasks.

As constraints are loosened, the problem of generating optimal solutions to iterative task

systems is shown to be NP-complete.

The next aspect of this effort requires an implementation of mapping algorithms to

generate optimal schedules for mapping n tasks to m processors, where n > m . The

implementation produced as a result of this thesis investigation directly supports mapping

strategies for iterative tasks in a precedence-constrained environment.

Finally, execution time is analyzed with respect to varied mapping strategies, using

VHDL and gaming simulations which were implemented in parallel in previoufi research (23,

30).

1-9



1.7 Sructutre of Thesis

Chapter 2 of this investigation contains a detailed background on the general task

scheduling problem. The general problem is covered in detail, as a predecessor to the

iterative problem. In order to allow the iterative problem to be scheduled in polynomial

time, restrictions are defined, and the environment is limited to identical processors.

In Chapter 3, factors which impAct the design of the level strategy algorithm are

defined. The search process is discussed. and methods for reducing the search space are

presented.

A detailcd mathematical basis for the iterative scheduling problem is given in Chapter

4. When the problem is restricted to Unit Execution Time (UET) tasks with specific

precedence. the level strategy is formally proved to produce optimal mappings in terms of

latency. A proof is given to show that the iterative problem with variable-execution-time

tasks is NP--omplete. A variation on the basic problem determines the optimal number of

processors for variable-execution-time tasks.

Chapter 5 presents experimental results for simulation runs tested with various map-

ping strategies. The level strategy, a greedy algorithm, and an unbalanced assignment are

compared for identical simulation runs.

Conclusions are summarized in Chapter 6. and recommendations for future study

are given.

1.10



II. Background

Chapter 1 gives a brief introduction to the precedence-constrained scheduling prob-

lem, and to the ultimate goal of tark scheduling for VHDL simulations. In this chapter,

more detailed aspects of the problem are considered. The general scheduling problem,

which encompasses many different variants, is restricted to conform to the VHDL map-

ping problem. Decisions which impact the mapping algorithms are made, based on a priori

knowledge of the simulation. Further constraints allow the iterative scheduling problem to

be mapped to an optimal solution in polynomial-time for some cases.

2.1 General Task Scheduling Problem Description

The problem of assigning tasks to processors in an optimal manner is referenced

by several names: the Assignment Problem (6); the Mapping Problem (which takes the

characteristics of the target machine into consideration) (6); and the Scheduling Probicm,

described below (10). The general scheduling problem may be defined in terms of the

available resources, task systems, sequencing constraints, and performance measures (10):.

e System Resources

System resources consist of a set of m processors {P1 , ..., P,,}

Additional resource types {R 1, ... , R,} (for example, I/O devices), may also be con-

sidered.

e Task Systems

Defined by (T, -<, [rij], {R7j}, {wj}), where

Tasks: T = {T,, ...,7n} is the set of tasks to be executed

Precedence: -< is an (irreflexive) partial order defined on T which specifies prece-

dence constraints. 7i -< Tj signifies that T, must be completed before T, can begin.

Execution Times:[7j] is an m x n matrix of execution times, where 7", is the time

required to execute T3 on processor Pi.

Resources: If additional resources, such as I/0 devices, must be considered in the

scheduling problem, these resources - e designated by a vector: {IZ1(T}), ...,

2-1



The ith component of this vector specifies the amount of resource type 7Zi required

through the execution of task Tj, (1 < j - .). This constrains the problem so that a

set of tasks requiring more of a given resc .'ce than is allowed in the system cannot

execute at the same time.

For example, suppose that available resources consist of 3 I/O devices and 4 Pro-

cessors. If 4 tasks, each requiring 1 I/O device are to be scheduled, they cannot all

execute in the same time slot. Although several different types of resources may be

allowed, this investigation concentrates on scheduling only one resource type (pro-

cessors).

Weighting: The weights {wj} are interpreted as cost rates, which are taken as con-

stants. For example, each task may be weighted with a profit factor or a tardiness

penalty.

* sequencing constraints

non-preemptive: tasks run uninterrupted until completion.

preemptive: tasks may be interrupted during execution.

e performance measures: Pprformance measures define the criteria that must be

optimized as the schedule is built. For example, the overali goal of the scheduling

process could be to minimize the schedule length (or execution ti;c Another goal

relates to thc weighting criteria which may be associated with each task; €,'';ectives

such as maximize profit and minimize tardiness fall into this category.

There are many different variations of the basic scheduling problem. Figure 2.1 shows

the relationships between some of these variants, based on such parameters as processor

type (identical or heterogeneous) and precedence structure (tree, forest, arbitrary, ...) (10).

The scheduling problem considers both single-processor and multiprocessor schedul-

ing. The single-processor case attempts to assign many tasks to one processor in order to

minimize or maximize come criterion. For example if each task is associated with a dead-

line and a penalty for each missed deadline, the goal of the schedule might be to assign

tasks so that the penalty is minimized. The multiprocessor scheduling problem can involve

2-2



Multiprocessor Scheduling

hetereogeneous homogeneous
processors processors

precedence-constrained independent
tasks tasks

goal: max pal: min goal: meet periodic one-pass
profit finishing time deadlines scheduling scheduling

variable equal
execution time execution time

S---------r -
tree/forest arbitrary chordal
precedence precedence I complement

L ---- ------------- j

r -- > 3 processors

2 processors
I !
L- --------- J

Note: Boxes denote polynomial-time solutions

Figure 2.1. Relationship Between Multiprocessor Scheduling Problems

2-3



identical (homogeneous) processors er heterogeneous processors, which operate at differ-

ent rates. Within the homog,-naeous proces;cor branch of the tree, precedence-constrained

task systemv. involve tasks which are related in sor .u manner. Several g- azs tor qch l ding

prf~cede.)c-constrained systems ar- considered:

* Minimize exe :ution time.

* Minimize weighted factor3 (tardiness, deadlines)

Witbin the precedence-constrained, homogeneo, processor condition, task systems

with unit execution time (UET) differ from those with variable execution time. Although

both cases contain NP-complete problems, there are no know- pul) nomial-time algorithms

for mapping variable -executi n-time tasks. Figure 2.1 ind" Ltes that polynomial algo-

rithms which find optimal solutions to the scheduling problem are rare: For example, a

task 5ystem with arbitrary precedence can be mapped to 2 processors in polynomial time.

If there are 3 or more available processors, there is no known polynomial-time algorithm

which provides an optimal solution (10). Table 2.1 illnstrates the limited range of p-time

solutiots *u the scheduling problem (10).

J[ Numbe." of Processors]J Task Len,,thsI Precedence [ Problem complexity1
arbitrary ]Thequal forest 0(n)

2 equed arbitrary 0(n2)
fixed, > 3 equal j arbitrary Onen
arbitrary equal arbitrary NP-complete
fixed, > 2 1 or 2 , arbitrary NP-complete

Table 2.1. Results for Minimizing Execution Time (non-preemptive; no rezourcP
constraints)

One version of the ciassial scheduling problem attempts to rqinimize the overall

executin time when n related tasks are to be mapped to m identical processors tl ').

Since the goal o, parallelizing VHDL processes is to reduce overall eecuucn time, this

version of the scheduling problem is most pertinent to this research.

2-4



~2.1.1 Algorithm Gonsiderabions TIhe 2-ched-uhnjj jroblems examined in this inve-

tigation involve multiproces!, ir schedu-alingp t rcdpe.'~ta~~ tarr.~fi ~

idenu..'al processors. At this stage, some decisions ajre required to determine tlv', types (if

schedulling aigori~lwxi- t-o be considered. A' ta;c.rinom y of selicclulig problems (11igure 2.2)

highlights these decisions (9):

local global

Static dynamic

opt mal sub-optimal physically physically
di.utributed -ion- distributed

approximate heuristic cooperative non-cooperative

opia sub-optimal

approximate heuristic

enumerative graph theory ma~th. pgmg. queuing theory

Figure 2.2. Taxonomy of Scheduling Problems

e Approximate vs. Optimal

Ist-ause of the inherent intractibility of NP-comiplete problems, nuimeron. researchers

have eeveloped approximation algorithms which 1i ,. near-optimal solutions for the

schedi-ling p~roblem (3, 12. 21). In most cases. htowever, ! roximation algforithm is are

no' guaranteed to be within a specified c of the optimal bcA'it;on; if an optimial solution

2-5



is required, the problem is still NP-complete. Therefore, this resep-_n considers the

generation of optimal solutions for the scheduling problem (10, 32).

* Static vs. Dynamic

Processors may be assigned their workload in one of two ways: static assignment

or dynamic load-balancing. Static assignment divides the problem into 'chunks.'

Each processor is given one chunk of the problem to solve. If a processor finishes

its portion of the problem, it remains idle until all other processors have completed

their workload.

Dynamic load b %ancin, aih 'rithms begin with an assignment of work for each proces-

&m., As each proc 4sor u npletes its assigned tasks, the workload is redistributed so

that idle processors take on tasks which were originally assigned to other processors.

lI order to mn16 this method practical, the overhead associated with redistributing

work must be offset hyr the gain in processor efficiency. Since the VHDL simulations

h.,ve been constructed so that all work is assigned to processors only at the start of

the sim , .tion (30), static assignme:, techniques are considered for this research.

2.1.2 Notation and Diagrammatic Representatit,," Precedeitce-constrained task sys-

tems can be defined in terms of the relationship between tass. 1r a tzsk graph represen-

tation, each task is represented by a circle on the chart, with task P-umbers and task

execution times in the circle. Directpd arcs between tasks indicate precedence. Figure 2.3

shows an example of a task graph, consisting of 5 tasks to be scheduled onto 3 processors.

Task 3 requires 2 time units to execute. The arrow between task 1 and task 2 indicates

a precedence relationship, (tl -< t2), which means that task 1 must complete execution

before task 2 can begin. The complete set of precedence relationships can be expressed as

follows:

J(tl -< t2 -< t5);,(tl -< t3 -< tS),(tl -< t4)1

Since the longest chain of tasks requires 5 time units, an optimal schedule for this

task system also requires 5 time units, as shown in the Gantt chart of Figure 2.3.

2-6



1/2

2/2 3/1 /

5/1

P1 Ti TI T31 . l
P2 T2 T2 T51i
P3 T4

Figure 2.3. Task system

2.2 Classes of Repeeting Schedules

The classical scheduling problem is concerned with a s~ngle pass through the task

system; h6wever, VHDL simulatious iterate through the system numeroas times. Several

categories of nonpreemptive scheduling problems (periodic scheduling, fi.ced-r:,c'e schedul-

ing, and iterative scheduling) require tasks to repeat multiple times. These categories are

summarized in Table 2.2.

In periodic scheduling, each task is associated with a repetition frequency (or pe-

riod). The objective of periodic scheduling is to assign task- to processors such that all

tasks cxecute within their given period (32). Variations include minimizing the numbet of

processors and scheduling tasks so that no task execut2s before a given release time.

2-7



Task systems which use fixed-cycle scheduling are given a set of tasks and a cycle-

length (16). The objective of fixed-cycle scheduling is to determine the time points where

a new task set must start in order to minimize the delay in task sets which have already

begun execution. This problem has polynomial-time solutions in two cases: no precedence

constraints; unit-execution-time tasks and serial precedence constraints; unit-execution-

time tasks (16). One variation attempts to minimize the number of processors when tasks

are not precedence-constrained, an NP-complete problem (27).

This investigation introduces the concept of iterative scheduling, which attempts,

under specific constraints, to maximize the repetition rate at which each task is executed.

1IType II Parameters Goal [Comments
periodic n tasks min # processors NP complete

execution time Ei if empty precedence (32)
task period Ti NP complete

_ < if precedence-constraints (32)
fixed-cycle cycle-length n minimize delay p-time

m processors by choosing times for empty precedence (16)

unit execution time to insert tasks p-time
1 tasks for serial precedence (17)

fixed-cycle cycle-length n min # processors NP complete (27)
m processors
execution time li
I tasks

iterative n tasks minimize latency 0(n3 ) if equal execution time
7r processors NP complete if variable execution time
execution time li

iterative n tasks min # processors NP complete (27)

m processors
execution time li

Table 2.2. Categoriet of Nvi:.-Preemptive Repeating Schedrieb lo '%'I tiprocssors

2-8



2.3 Latency

The iterative scheduling problem attempts to minimize overall execution when each

task in the system is required to execute more than once. When multiple-iteration systems

are scheduled, the concept of latency, time between successive iterations of a given task, is

used to measure the quality of the mapping.

Since both the one-pass and the iterative probleirs have many similarities, a study

of the classical scheduling problem yields insight about the iterative scheduling problem,

especially for cases where efficient solutions for the classical problem are known to exist. In

particular, the level strategy, which assigns tasks based on the longest chain of unscheduled

tasks, forms a core for the iterative scheduling algorithm.

Finding an optimal schedule for a precedence-constrained task system is usually

an NP-complete problem (15)(Table 2.1). This means that there is no known efficient

(polynomial-time) algorithm to solve the optimization problem.

2.4 General approaches to the scheduling problem

As shown in Table 2.1, the problem of assigning tasks to processors in an optimal

manner has been proved NP-complete (33) for most task systems. There are, however,

efficient algorithms for several specialized instances of this problem (15):

" Two identical processors; arbitrary precedence (10)

If the multiprocessing system consists of two identical processors, then a list strategy,

which scans an ordered list of prioritized tasks each time a processor is free, is used

to build the schedule. Tasks are prioritized based on the number of immediate

successors, beginning with the terminal nodes; ready tasks with the highest priority

are assigned first. Since this algorithm assigns higher-level tasks first, simulation

mappings which fit this schema can be expected to perform well. Figure 2.4 shows

an arbitrary precedence graph and an optimal 2-processor schedule generated by this

gorithm.

* Arbitrary number of processors; precedence graph is a forest structure (10)

If the task system precedence graph is a forest of trees (each node has only one source

2-9



label 8 label 7 label= 6

label 4 4 label =5 T15

labe 3 label =2 label= 1

P1 IT1 T3 T5 T7
P2 T2 T4 T6 T8

Figure 2.4. Arbitrary Precedence Graph with Optimal Schedule

[sink]), then a level strategy, which computes the level for each task, [level(x) = max E(execution time

associated with the nodes in a path from x to a terminal vertex),] for as-

signing tasks to processors so that overall execution time in minimized. As in the

above case, this algorithm can be used to derive an optimal iterative algorithm for

simulation tasks; since the assignment is made level-by-level, tasks are assigned in

much the same manner as the iterative level strategy. Figure 2.5 shows an example

of this type of system.

* chordal complement

Often, a priori knowledge about a system can provide insight about improved ways

to solve a specific problem. If it is known that the graph of the task system has a

chordal complement, [i.e. The complemented graph has chords connecting vertices in

2-10



T1 LEVEL 3

T2 T3
LEVEL 2 LEVEL 2

T4 T5; 6

LEVEL I LEVEL 1 LEVEL 1

11-PIl TI T2 I T4 T6
P2 T3 T5

Figure 2.5. Tree-Structured Precedence Graph with Optimal Schedule

each subgraph of 4 or more nodes.], then there is a p-time algorithm which generates

an optimal schedule (28). In general, however, the question "Is graph G a chordal

graph?" is itself an NP-complete problem (15). In large simulations, the question of

chordality may overwhelm any benefit which could be derived from the algorithm.

Figure 2.6(a) shows a graph containing 4 nodes. In Figure 2.6(b), the complement

(obtained by placing arcs between all vertices which are unconnected in the original

graph, and removing the arcs of the original graph) of the graph in (a) is shown.

heterogeneous processors; cyclic forest

In the case of heterogeneous processors, even the cases described above are NP-

complete (18). However, if the tasks fall into a precedence relationship such that the

tasks form a 'cyclic forest,' (all tasks at any given level must execute on the same

processor), then there is a p-time algorithm that generates an optimal schedule (18).

2-11



11

2 3 2 3

4 4

(a) (b)
Figure 2.6. Graph(a); Chordal Complement(b)

Since this effort is concerned with homogeneous processors, and since the tasks in

this simulation are not pre-assigned to a specific processor, the cyclic forest algorithm

does not apply.

2.5 Iterative nature of the problem

Although the problem of mapping tasks to processors in a simulation environment

has many similarities to the general scheduling problem, the task system may be required to

execute multiple times during the course of the simulation. For example, the Corps Battle

Analyzer (CORBAN) simulation executes tasks LOOK, SHOOT, DECIDE, MOVE, COMM U-

NICATE, RECOVER, PROVIDE, and SUPPORT at each time step in the simulation (11). A

precedence graph for this simulation is shown in Figure 2.7.

If these are the only tasks in the simulation, and if these tasks were to be mapped

to a 3-processor system, an optimal mapping, (in the classical sense) could assign all tasks

to one processor. This ensures that communication is minimized, which, in a one-iteration

mapping, would be a reasonable decision. But if multiple iterations of the task system are

needed for a complete simulation run, then a mapping which assigns each task to a separate

processor can complete the simulation in less time, assuming that certain conditions are

2-12



LOOK:

examine status
and surroundings

SHOOT:
if close to

enemy. engage

DE IE: 2..COBN ak

evaluat2 13



met. For example, Figure 2.8 shows a task system and a comparison of an optimal one-

iteration mapping which is executed 3 times and an optimal 'pipelined' mapping, which

also requires each task to execute 3 times.

Qe -11 T31

PI1 TIT2 IT3I TI' T'I iT-3 TV" I TV "T3"

i[P3 H [ [l i [ i . l

3 iterations of 1-pass mapping: 9 time units

P1 TI TV T-"
1P211 'T2 1TY j 2"

T3- I T-1TiI P3 II ' T3 .T.3' IT3"H

3 iterations of pipelined mapping: 5 time units

Figure 2.8. Optimal (1-pass) vs Pipelined

2.6 Assumptions and Environment

The general scheduling problem comes in many variations; so does the iterative

scheduling problem. This section discusses the restrictions which the current VIIDL sim-

ulations, implemented on the iPSCi2, impose on the iterative scheduling problem:

* homogeneous processors

Since an 8-node Intel iPSC/2 hypercube was used for previous research, this thesis

concentrates on solutions for identical processors. Athough 8 nodes are used for

all experiments, the mapping strategy developed as a result of this thesis can be

extended to any number of nodes.

* no preemption

The algorithms for preemptive task assignment differ significantly fronm non-prf'emp

2-14



tive algorithms. Since preemptive algorithms require specific knowledge about timing

information (for example, time that a process is suspended for memory reads), no

preemption is assumed throughout.

* unit-execution-time tasks

All tasks in the system are assumed to have equal execution time. In the VHDL simu-

lation, each VHDL assignment statement is a separate task. The very small amount

of computation required by each of these tasks (5 or 6 floating-point operations)

produced unstable timing results when the simulation was executed. For example,

one execution took 18 seconds. The next execution, with identical parameters, ran

in 42 seconds. In order to stabilize the test runs, spin loops, (large computational

segments of code which force the processor into a small comunication ratio), have
calculation

been added to dominate the activity of each task. This allows task-to-processor as-

signment to be based solely on the c .mputation time of each task. In the simulation,

spin loops of 100,000 operations were added to each task to ensure that calculation

is the overriding factor and that all tasks have equal execution time.

* queued message passing

The VHDL simulations implemented on the iPSC/2 use a queued-message paradigm (30).

Messages from one task to another are buffered until the recieving task is ready to

receive the message. This allows predecessor tasks to send messages to successor

tasks and then to execute subsequent iterations without waiting for successor tasks

to begin. This protocol permits simulation execution tim to be minimized when an

pipelined approach is used for task assignment.

e task exists on only one processor

In the current VHDL simulations, all iterations of a task execute on the same pro-

cessor as the initial iteration of that task. Tasks are loaded onto computing nodes at

the start of the simulation and remain on those nodes until simulation is complete.

(No dynamic load-balanring.)

* no feedback loops

The level algorithm developed as a product of this research is based on the assumption

that all task systems can be represented by directed acyclic graphs (dags). This

2-15



limits the simulatio-s to 'fo-ward flow' applications which do not have feedback

loops between tasks. Such applications include various wargame simulations,

logic circuit simulations, and assembly-line simulations.

2.7 Additional Considerations

If communication time must be incorporated into the scheduling problem, then there

is no known case where a p-time algorithm exists (12).

If the precedence graph of the system to be modeleu contains cycles and if buffer sizes

between communicating nodes must be considered, then a methodology exists to transform

these graphs into directed acyclic graphs (dags). These dags may be scheduled, using the

one-pass level algorithm, to obtain near-optimal solutions in terms of overall execution

time (24).

2.8 Summary

There are many variations of the classical problem for mapping tasks to processors.

This research explores optimal solutions for the multiprocessor, precedence-constrained

problem, with identical processors. Since simulation tasks itcate through many passes

of the task system, iterative scheduling techniques are investigated. Primary emphasis is

given to tasks with equal computation requirements, which reflects the system used for

existing VHDL simulations.

The problem of deriving an optimal assignment for a precedence-constrained task

system is essentially a search problem. In highly-restricted cases, a polynomial-time algo-

rithm will produce an optimal schedule for iterative task systems; however, most instances

of the iterative scheduling problem require sophisticated search techniques to generate an

optimal solution.

2-16



III. Scheduling Algorithm Design

Although simulation tasks differ from the classical scheduling problem in that they

iterate numerous times through the task system, insight into the iterative problem is gained

from a study of the classical problem. This chapter discusses the design of the Level Strat-

egy for iterative task assignment. The Level Strategy is a polynomial-time algorithm which

produces optimal latency schedules for highly-restricted forms of the iterative problem.

Since the Level Strategy only provides optimal schedules for restricted forms of the

iterative scheduling problem, the rationale is presented for limiting the search space in

more complex forms of this problem. Tests for optimality are discussed. Heuristics are

chosen to guide the A* search algorithm (29) which uses additive costs to generate optimal

schedules for an NP-complete variation of the iterative task scheduling problem.

3.1 Basis for Level Strategy (One-pass Systems)

Polynomial-time algorithms which provide optimal solutions to the classical schedul-

ing problem can be found for limited parameter constraints. Of these algorithms, there

are two theorems which provide insight into the iterative scheduling problem (10):

1. Unit Execution Time (UET) tasks; -< a forest; arbitrary number of processors

The algorithm which gives an efficient solution for this case uses a level strategy of

assignment: The precedence graph is divided into levels, and tasks at the highest

level are assigned first.

2. UET tasks; -< arbitrary; 2 processors

The p-time algorithm is based on number of successor tasks: Ready tasks are pri-

oritized according to the successors of each task. The ready task with the highest

priority is then assigned to the first available processor.

3.1.1 One-Pass Level Algorithm The level algorithm for single-execution task sys-

tems is as follows (10):

3-1



Let the level of a node x in a dag [directed acyclic graph] be the maximum
number of nodes (including x) on any path from x to a terminal task. In a
forest, there is exactly one such path. A terminal task is at level 1. Let a task
be ready when all its predecessors have been executed.

Level strategy: whenever a processor becomes available, assign it an unexe-
cuted ready task at the highest level (farthest from a terminal).

The level strategy for iterative tasks uses the same criteria as the one-pass level

strategy: Tasks are assigned to a level, based on their distance from the terminal task.

Ready tasks at the highest level are assigned first. Since no transitive arcs and no level-

traversing arcs are allowed in the task system, successor tasks become ready as soon as

their predecessor level is finished. This allows all tasks at the successor level to be assigned

without delay. Figure 3.1 shows an example of assignment made by the level strategy.

2 3

LEVEL ?Z3 LEVEL 3
LEVVEL 

331

4 56
LEVV

LEVEL 2 LEVEL 2 LEVEL 1

7
LEVEL 1

P1 T1 T5
P2 T2 T6
P3 T3 T7
P4 T4

Figure 3.1. Assignment by level strategy

3-2



3.2 Level Algorithm for Iterative Tasks

The level strategy for iterative task assignment can be formalized as follows:

Let n be defined as the number of tasks and m the number of processors. Let the level

of a node x in a task graph be the maximum number of nodes (including x) on any path

from x to a terminal task. A terminal task is at level 1. Let a task be ready when all its

predecessors have been executed.

Assign tasks to processors in the following manner:

last-assigned-processor = m

while levels remain

calculate number-ready

for i in 1..numberoready

assign task i to Processor ((last - assigned - processor + 1) mod m)

last-assigned-processor = ((last - assigned - processor + 1) mod m)

end for

end while

Since the last-assigned-processor is used to determine the next-processor for assign-

ment, the amount of tasks assigned to each processor is roughly equivalent. If the queued-

message paradigm is used, this allows predecessor tasks to iterate in 'vacant' time slots.

If the system meets the restrictions outlined in Chapter 2, and if all tasks are of

the same length, then the level strategy of task assignment is used to generate an optimal

schedule (in terms of latency) in polynomial time. If, however, variable execution times are

allowed in the task system, a search process is necessary to produce an optimal schedule.

(Proofs of these assertions are given in Chapter 4 (Theorems 1, 3, and 6.))

3.3 Search Process

The problem of mapping tasks to processors is essentially a search problem: How

can n tasks be mapped to m processors, where n > m, in such a way that an optimal

3-3



schedule is found?

3.3.1 Ezhaustive Search For very small problems, an exhaustive search may be

appropriate. Using exhaustive search, all possible schedules are generated, and the smallest

schedule is chosen.

For example, Figure 3.2 illustrates that a task system with 3 tasks to be assigned

to 2 processors. An e.Jiaustive search of this system would generate 12 unique schedules,

some of which are shown in the figure.

Figure 3.3 shows a partial search space generated by an exhaustive search of this

task system. For example, if Task 1 is assigned to Processor 1 at time 0, then either

* Task 2 may be assigned to Processor 1 at time 3, or

* Task 2 may be assigned to Processor 2 at time 0, or

* Task 3 may be assigned to Processor 1 at time 3, or

* Task 3 may be assigned to Processor 2 at time 3.

If Task 2 is assigned to Processor 2 at time 0, then there are two choices for the

assignment for Task 3, (Processor 1 at time 3, or Processor 2 at time 3). In an exhaustive

search, even redundant schedules are generated. (For example, the schedule shown below

is generated in the (1,1,0) case and the (2,2,0) case.)

P1 11T1 IT1 IT1I

P2 1 T21 I T3 T I

3.3.2 Informed Search If an exhaustive search is used, the scheduling problem has

complexity on the order of n!, [O(n!)] (10, 15). Table 3.1 shows the amount of time it

would take to generate an optimal schedule if

* Exhaustive search is used; and

3-4



T2/1

T3/2

P1 lTi ITl T1 T2 T3 T

P2 I A
ONE POSSIBLE SCHEDULE (6 TIME UNITS)

P1i I I I I I
P2 T1i Ti Ti T2 T3 T3

P'I T2 Ti TI TI T3 T3
P2

1iPl1 T21 I I I I
?F2 11TlI TlI Ti T3 IT31

PITi" TI Ti
1P2 11T2 T3

AN OPTIMAL SCHEDULE (3 TIME UNITS)

Figure 3.2. Exhaustive Search

3-5



3,1,3 3,2,3 2,1,32,,

(z, y, z) where x is the task number, y is the processor number, z is the time of

assignment.

Figure 3.3. Partial Search Tree

0 1,000,000 schedules are generated every second.

n if Time to Schedule all n! Combinations
5 .00012 seconds
10 3.6288 seconds

15 1307674 seconds
20 77,146 years

Table 3.1. Time for exhaustive search on n tasks

Informed searches use a priori information about a problem to generate a solution

without exploring every possibility. These branch and bound techniques place . bound,

or limit, on the branches of the search tree which are traversed for a solution. Often this

3-6



is done by assigning costs to each node in the search tree. During the search process, tho

additve costs are computed, and lowest-cost paths are traversed before high-cost paths,

in an effort to minimize the solution cost. For example, suppose 4 independent tasks are

to be scheduled on 2 processors. These tasks may execute in any order, and there are no

restrictions which limit the number of tasks assigned to any processor.

Tasks 1, 3, 4 take 2 time units to execute.

Task 2 takes 1 time unit to execute.

Figure 3.4 shows a partial search tree for this problem. At some point in the search, the

following schedule is generated (shown on the left branch of Figure 3.4):

P1 1T4 T4 T3 T3 T2

P2_12 TI Ti

T3 -~P

3 -4PI 4 -~PI

SCost = 6

T2 PICost > previous
BACKTRACK!

Cost =5

Figure 3.4. Branch and Bound Search Tree

3-7



Since this schedule can be completed in 5 time units, all partial schedules of more than 5

time units can be abandoned. For example, the partial schedule shown on the right branch

of the search tree exceeds the current minimum complete schedul,.; thus, this schedule and

i' s variations can be eliminated from consideration:

P1 T3 T3 Ti T1 T4 T4

P2

Using techniques which allow the problem to be bounded by considering only those

options which fall beneath the current lowest-cost schedule, it is possible to generate an

optimal schedule without an exhaustive search of all alternatives.

3.4 Reducing the Search Space

In order to generate an optimal schedule without an exhaustive search of all possi-

ble schedules, several tactics can be cxaployed to drive toward an optimal schedule more

quickly. Lower-bound calculations allow the search process to terminate it a lower-bound

schedule is generated. Heuristic choices are embedded into the algorithm to reduce the

search space by prioritizing branches which are searched (29).

3.4.1 Lower Bound Metrics Informed search methods work to find an optimal so-

lution without an exhaustive search of all possible solutions. Tests for optimality help

the searching process determine when an optimal schedule is found. An example which

illustrates the necessity for detecting an optimal schedule is shown for the one-pass system

in Figure 3.5:

Assume that the 9 tasks shown in Figure 3.5 are to be scheduled onto 8 processors.

How many ways are there to derive an optimal schedule for these 9 tasks?

There are 8 ways to schedule task 1 in timeslot 1.

There are 8 ways to schedule task 2 in timeslot 2.

There are 8 ways to schedule task 3 in timeslot 3.

3-8



Figure 3.5. Chain of 9 Tasks

There are 8 ways to schedule task 9 in timeslot 9.

Since all these combinations are possible, there are 89 = 134,217,728 optimal sched-

ules.

Therefore, even the BEST search would have to generate 134,217,728 schedules.

If the problem is further complicated by adding one independent task to the system

shown in Figure 3.5, the number of optimal schedules becomes even greater: For each of

t e 89 optimal schedules from above, there are (8 x 9) - 9 = 63 vacant time slots. This

meana that there are 63 x 89 = 8,455,716,864 optimal schedules!

Although there are more than 134 billion possible optimal schedules for assigning a

chain of 9 takA. to 8 processors, it is impossible for any of these schedules to be less than 9

time units long. if the searching process were able to test for a lower bound on the length

of any given schedule, then the first schedule of length 9 to be generated would be accepted

as an optimal schedule, and the search process could stop.

3.4. 1.1 Tests for Lovir-bound There are several tests for lower bounds which

can be used to limit the search for an optimal schedule in classical (one-pass) systems. If

these tests are implemented as part of the search, it is possible to terminate the search as

soon as a lower-bound solution is found. Some of these tests for optimality can be directly

applied to iterative scheduling; however, most are limited to one-pass applications.

* Lower-bound test: A schedule can be no shorter than its critical path (longest

chain of tasks) (10). For example, suppose the task systein in Figure 3.6 must be

3-9



scheduled onto 3 2rocessors:

t6 - a -< t3 -< t -< s

t6 has no constraints

t7 has no constraints

All tasks take 1 time unit.

Figure 3.6. Longest Path = 5

In this case, the shortest amount of time needed to complete all tasks is 5 time

units: The chain of precedence-constrained tasks dominates other considerations;

even though there are idle processors, the following is an optimal schedule:

Pi1 T1 T2 T3 TT

P2 36

P3 T

3-10



This test does not apply to iterative task systems. Using the Level Algorithm, the

tasks shown in Figure 3.6 can be scheduled so that a complete iteration is output on

average every 3 time units:

P1 T1 TI' TI T4 T4' T4" T7 T7' T7"

P2 T2 T2' T2" T5 T5' T"

P3 T3 T3' T3" T6 T6' TV

9 time units 3 time units
3 iterations - iteration

* Lower-bound test: If all tasks have been scheduled, and there is no idle time in

the schedule (or if the amount of idle time is less than
I

smallest task execution time x number of processors)

then the schedule is optimal (10).

Example:

P1 TI T2 4

P2 T6 T3

P3 T5 T71

smallest task execution t;me = 1 time unit

number of processors = 3

1 x 3 = 3; idle time = 2 time units, thus the schedule is optimal.

Lower-bound test: If all tasks in a multiple-iteration system have been scheduled.

and there is no idle time in the schedule (or if the amount of idle time is less than

smallest task execution time x number of processors

then the schedule is optimal.

3-11



9 Lower-bound test: A schedule can be no shorter than the sum of task execution

times divided by the number of processors (10).

An example of this is shown for 4 independent tasks:

t1: 2 time units

t2: 2 time units

t3: 1 time unit

t4: 1 time unit

No precedence constraints

These tasks are scheduled on 2 processors.

The shortest schedule requires

execution times 2+ 2 + 1+ 1= = 3 time units
number of processors 2

An optimal schedule for this task system is found by the search graph in Figure 3.7.

(This test also works for multiple-iteration systems.)

" Lower-bound test: If every 'ready' task is assigned to a processor at the time it

becomes ready, then the schedule is optimal.

This test does not apply to iterative scheduling. If subsequent iterations are counted

as 'readv' tasks, then the number of tasks must be less than or equal to the nuimber

of processors for this test to pass.

* Lower-bound test: If (at any point in a schedule) all ready tasks have been sched-

uled as soon as available, then the minimum schedule can be no less than:

of current partial schedule I[ rema_ning excution 4i_ .,
! number of processors

3-12



T2 -*P2

T4 -4PI

(Minimal cost,)

P2 11T3 IT2 IT2

Figure 3.7. Search Graph and Optimal Schedule for Independent Task Example

3-13



This test does not apply to iterative scheduling. If subsequent iterations are counted

as 'ready' tasks, then the number of tasks must be lesb than or equal to the number

of processors for this test to pass.

" Lower-bound test: The minimum schedule can be no less than

[ all tasks (execution times ) with successors on critical path]
number of processors

summed over all levels wi the critical path.

This test does not apply to iterative scheduling.

Of all these tests for optimality, only the following apply to iterative scheduling:

* Lower-bound test: A schedule can be no shorter than the sum of task execution

times divided by the number of processors (10).

" Lower-bound test: If all tasks have beeu scheduled, and there is no idle time in

the schedule (or if the amount of idle time is less than

smallest task execution time x number of processors),

then the schedule is optimal.

3.5 Heuristics for Schedule-Building

Infor searching, which eliminates certain branches from the search tree, can be

used to shorten the amount of time to find an optimal solution However, the search must

be guided by rules which lead to good branches for selection. Heuristics are rules which

can help prune the search space so that lower-cost branches are given priority for selection.

The following heuristics can be used to decide which of several ready tasks should be added

to the schedule under construction:

e Task with most successors.

An algorithm for generating an optimal schedule of unit-execution-time tasks on two

3-14



processors uses the number of successors for each ready task to build schedules. In-

tuitively, this makes sense: by scheduling a task with many succesors, more tasks

become ready in the next time step. This provides the opportunity for more proces-

sors to be in-use at that time step, indicating that processor utilization is relatively

high. An example of this is shown in Figure 3.8.

P2 Ti T3 T5 ost3 5

P1 T3 T6 T4 T7 ost= 5
P2 T1 T2 T5

Figure 3.8. Scheduling Tasks with Most Successors

In the task system shown in Figure 3.8, scheduling Task 3 before Task 2 yields

a schedule of length 4, rather than a schedule of length 5. The reason for this

improvement is that Task 3 has 3 successors, 2 of which can begin processing as soon

as Task 3 completes execution.

The number-of-successors heuristic can be incorporated into an informed search in

the following manner: If costs are assigned to each node in the search tree, tasks with

many successors can be given a lower cost than tasks with fewer successors. This

ensures that first consideration is given to tasks with many successors. Figure 3.9

shows part of the search tree which would produce the schedule shown in Figure 3.8.

3-15



* Farthest task from terminal. At time step 5 in Figure 3.8, either task 10 or 16 can

be scheduled next. Since task 16 is only one step from the terminal and task 10 is

two levels above the terminal, task 10 should be scheduled in time slot 5.

This factor may also be cost-weighted to give higher-level tasks earlier scheduling

preference than lower-level tasks.

3.6 Summary

This chapter has introduced the factors which must be considered in order to design

a software solution to the iterative task scheduling problem:

" Execution time (equal or variable).

* Precedence of task system.

* Number of successors for each task.

" Length of each task from terminal.

Before an attempt is made to solve the specific problem, the structure of the un-

derlying task system must be classified. If the system contains no level-traversing arcs,

and if all tasls are of equal execution time, then assignments can be made based on the

level strategy. If, however, the tasks have variable execution times, then an informed search

which avoids redundant search paths should be used in order to obtain an optimal solution.

Appendix C contains a more detailed explanation of the A* search algorithm.

3-16



T-> 2

T2->P2

4->P1 T6->Pl

5->P2 T5->P2

T6->Pl T4->P1

T7->Pi l>P

Figure 3.9. Search Tree for Tasks with Most Successors

3-17



IV. Low-level Analysis

The level strategy for assigning iterative tasks to minimize overall execution time is

based on the level algorithm for one-pass task systems with a forest-structure precedence.

This greedy algorithm provides an optimal latency schedule in polynomial-time when all

tasks in the system have equal length. The iterative problem, like the classical scheduling

problem (10), is shown in this chapter to be NP-complete when variable execution times

are allowed. Since the time required to generate an exhaustive-search optimal solution

may be prohibitive (7), an informed search can be used to create optimal schedules for

large task systems with variable-execution times.

This chapter is divided into four sections. The first section describes the concept

of latency as a measure of optimality for iterative task systems. In the second section,

the decision strategy, which selects the task to schedule at a given time point within a

processor, is developed. The third section contains results pertaining to Unit Execution

Time task systems; the final section has results for Variable Execution Time systems.

Variable-execution time results include proofs that the scheduling problem for iterative

task systems does not produce results at the optimal latency when the level strategy is

used; and that the minimal-latency problem is NP-complete.

4.1 Theoretical Design of Schedule

In many cases, a simulation iterates through hundreds of executions of each task. In

such simulation, it becomes impractical to derive schedules based on a static task graph.

With hundreds of nodes to consider, simply generating such a graph is a non-trivial task!

For example, Figure 4.1 shows a task system of 33 tasks. A task graph which represented

10 iterations of this system would have 330 nodes (33 nodes x 10 iterations). In addition

to the dependency arcs shown in the single-iteration graph, dependency arcs between

successive iterations of a task would be required as well. In addition to the complexity of

the task graph, These obstacles to analysis can be overcome if a new measure (latency) is

used to define the effectiveness of the mapping. The latency measures the average delay

between successive iterations of the same task. For example, a task graph and a mapping

4-1



0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15) 16

Figure 4.1. Precedence Graph: 8-bit Adder

4-2



with two iterations of the task system are shown in Figure 4.2. In this case, latency is 3.

The search graph which assigns these tasks to processors is hown in Figure 4.3. Since the

P1 T1 T4 T7 T11 T4 T7I
P2 T2 T5 T2' T'

P3 T3 T6 T3' T6'

LATENCY: [-!I= [1= 3

Figure 4.2. YLatency

L.vel Strategy is a greedy method, the first assignment of tasks to processors is selected.

Although latency measures ignore the startup time when the 'pipeline' of processors is

filling with tasks, it is a valid measure of performance if the number of iterations is large.

For example, if a system with 10 precedence-constrained tasks is executed 1,000 times,

(Figure 4.4), the latency reflects the rate at which complete iterations are produced. In

the case where the system is to be mapped onto 10 processors, the startup time would

require 10 time units before the first result is produced. However, the system produces a

complete iteration every time unit once the pipeline is filled.

4.1.1 Justification for Latency Measure The scheduling problem has traditionally

been associated with measurements which relate to a single execution of all tasks in tile

system. Two of the performance measures are to minimize schedule lengt!. aw- t to optimize

weighting factors (10). These measures are not appropriate tests for iterative task systems

for the following reasons:

4-3



Ti-> P1

T2 -> P2

T3 -> P3

T4 -> Pi

T5 -> P2

T6 -> P3

T7 -> P1

Figure 4.3. Search Tree (Level-Strategy Assignment)

P1 Ti [Ti' Ti" TI" TI" Ti"" T1"" ... -

P2 _ T2 T2' T2" T2"" T2"" ...___

P3 T3 T3' ...

P4 T4
P5 T5 ...

P6 T6 ...

P7 T7 ...

P8 T8...

P9 T9 ...

P10 TIO T10' T10"

Figure 4.4. Mapping for 10 tasks and 10 processors; (latency = 1)

4-4



1. Minimize schedule length

An optimal mapping for a single-execution system does not necessarily produce an

optimal schedule for an iterative system. For example, an optimal one-pass schedule

for the task system in Figure 4.4 maps all 10 tasks to one processor. This allows the

first iteration to complete at the same time as the iterative mapping, but subsequent

iterations would be output every 10 time units, rather than every time unit, as in

the iterative mapping.

2. Optimize weighting factors

In general, weighting factors (such as tardiness) are associated with individual tasks,

and algorithms to optimize weighting factors rely heavily on the values associated

with each individual task. For example, if the goal is to minimize tardiness, tasks

with higher penalties for tardiness are scheduled before tasks with lower penalties.

Since the goal of the iterative-task scheduling problem is to minimize execution time,

tardiness (and other weighting factor) considerations for individual tasks do not ap-

ply.

Scheduling techniques for periodic tasks (32) also fail to map iterative simulation

tasks in an optimal manner. In periodic scheduling, each task is associated with an ex-

ecution time and a maximum period. For example, a 10-millisecond (execution time)

task may be required to execute every 200 milliseconds (period). Since there is no peri-

odic requirement associated with tasks in iterative simulation systems, periodic scheduling

considerations do not apply.

4.2 Restrictions

In order to show that a minimal latency can be achieved, the task system must be

constrained with the following assumptions:

* homogeneous processors

* unit-execution-time tasks

4-5



" queued message passing (no bounds assumed on buffer size)

" task exists on only one processor

The parallel VHDL simulation has been constructed so that all iterations of a task

execute on the same processor as the initial teration of that task (30). Tasks are

loaded onto computing nodes at the start of the simulation and remain on those

nodes until simulation is complete, that is, no dynamic load-balancing. Since VHDL

simulations are the primary application of this effort, scheduling considerations reflect

the task structure of the existing VHDL simulations.

" no feedback arcs

The level algorithm developed as a product of this research is based on the assump-

tion that all task systems have no cycles. This limits the simulations to 'fcrward

flow' applications which do not have feedback loops between tasks. Applications

of simulations without cycles include various gaming simulations, logic circuit

simulations, and assembly-line simulations (11, 22, 30).

Counterexamples to the optimal nature of the scheduling algorithm can be found if any

of these assumptions are violated. For example, the task system in Figure 4.5 contains

tasks 1 and 3 with execution time of 1 and tasks 2, 4, and 5 which require 2 units of

execution time. For this system, the level strategy would produce the assignment shown

in Figure 4.5.

However, exhaustive search generates an optimal schedule with latency of 4:

IP1 11T I T3 T3

1 P2 T2 T4T5

4.3 Level Strategy

In order to prove that a minimal schedule can be achieved, task assignments are

made using the LEVEL ALGORITHM:

Let n be defined as the number of tasks and rn the number of processors.
Let the level of a node x in a task graph be the maximum number of nodes

4-6



T32T4/1 T5/1

IP1 I T Ti IT3 IT3. T5 11
P2 T2 I T4 _ 11

Figure 4.5. Task System with Non-optimal Mapping

(including x) on any path from x to a terminal task. In a forest, there is exactly
one such path. A terminal task is at level 1. Let a task be ready when all its
predecessors have been executed.

Figure 4.6 shows the general idea between assigning levels to tasks: beginning with terminal

tasks, each task is given a level. Tasks at the highest level represent the start of the longest

chain of dependent tasks.

assign each task (first iteration only) to a processor in the following manner:

last-assigned-processor = m

while levels remain

calculate number-ready

for i in 1..number-ready

assign task i to processor ((last - assigned - processor + 1) mod m)
last-assigned-processor = ((last - assigd - processor + 1) md m)

end for

end while

4-7



level j 03I level j

level 4

level 3 1ev 3 level 3

level 2

level 1 level 1 level 1

Figure 4.6. Assigning Levels to Tasks

When all of the ready tasks are assigned to processors, the precedecence matrix is restruc-

tured. Assigned tasks are deleted from the matrix; this enables the immediate successors

of the already-scheduled tasks to enter a "ready" state. The tasks which are ready after the

first 'level' tasks have been scheduled are now available for scheduling. The level strategy

assigns these tasks, beginning with the next processor in rotation (i.e. If P3 was given the

last task at level 1, then P4 gets the first task from level 2)..

This process (scheduling ready tasks and then modifying the precedence graph) is continued

until the last task (T,) is scheduled on processor k, where k is the remainder of n/rn. Once

each task is assigned to a processor, all iterations of that task execute on that processor

(by constraint). A detailed example of the level assignment strategy is given in Appendix

B.

4-8



4.4 Scheduling Within a Processor

Although the level strategy provides an assignment of tasks to processors, the algo-

rithm does not provide a schedule for all iterations of the task. Scheduling within each

processor obeys the following constraints:

" If only one task (or iteration of a task) is ready at a given time, that task is executed.

" If a processor contains a choice of tasks to execute, the choice is selected based on a

decision strategy.

4.4.1 Decision Strategy To ensure that there is minimal idle time on the most-

heavily-loaded processor, an appropriate decision strategy must be employed. Otherwise,

if the 'wrong" task is thosen in a conflict between tasks, idle time may result. increasing

latency. For example, Figure 4.7, shows the results of an arbitrary decision strategy when

4 iterations of a task system are mapped to 3 processors. In this case, Proce.sor I is forced

to be idle at time7 because task1 has completed all iterations, and all remaining iteratior4

of task4 are waiting for tasks on other processors to complete.

Ii P3 Hi r TVOIT3 I T 4-f i V ITT3 i

Idle Time Due to Arbitrary Decision Strategy

'ji Ti' 13T1:T401T13 T41 1T42 :T43 1TI i TV.T1,- TuT

fP2 iT2 1 27! T-i?- TV3

I P3 ii IT3iT3' T 3 IT33  i

Optimal Schedule

Figure 4.7. Effects of Decision Strategy

4-9



Figure 4.7 shows that an arbitrary decision strategy can result in unnecessary idle

time, generated when a process,)r waits for predecessor tasks to complete. In order to

minimize this delay, a formal decision strategy muist select which task to execute whenever a

conflict occurs. The decision strategy should evaluate factors such as number of predecessor

iterations, which impact delay. Some suggestions include an all-iterations-first strategy,

which tends to ccnsolidate &,uty time at the start of the schedule and an iteration-number

strategy, which attempts to keep enough predecessor iterations buffered so that unnecessary

delay is avoided.

1. SCHEDULE I: All iterations of the first task assigned to each processor will execute

before any iteration of the second assigned task. In a similar manner, all of the

second task's iterations must execute before any of the third assigned task, and so

forth.

2. SCHEDULE Ii: Each task i numbered with the task number and iteration number:

task) is used to represent the (# + 1)th itera of task,. For example, the first

iteration of task1 is represented as task°; he second iteration of task3 is represented

as tasks; and so forth. The scheduling decision is made by conparing iteration num-

bers. If tlw difference between iterations . less than the number of processors, then

the highest-level task (task with the highest iteration number) should be scheduled

since it riiay be a predecer-)r of (m - 1) tasks on other processors. If the differ-

ence between iterations is greater than or equal to the number of processors, then

the lower-level task should Le scheduled, since the higher-level task has stored up

eIM;gh 1teratiors co keep the sy~tern from generating idle time.

SCHEDULE o is conjectared to produce miiiinal delay time (Appendix D). SCHEDULE

i, however, is tire less complex scheduling strategy. Terefore, SCHEDULE I has been chosen

as the decision --t-ategy for this investigatiun.

4.5 Lower Bound or Lctency,

-'he minimum latency trat can be achievzd r ccurs when all tasks in the system are

coripletely independent. In this case, n tasks a7signed to m processors can complete one

4-10



iteration every [a] time units. Figure 4.8 shows an example of this for 5 independent

tasks mapped onto 3 processors.

P1 TI Ti T4 T4'
P2 T2 T2'1 T5 T5'
P3 T3 T31 I

LATENCY: raI [f =~ 2
Figure 4.8. 5 independent tasks; 2 iterations

Theorem 1 (UET Lower Bound)

The lower bound for latency on task systems with the following restrictive assumptions

is [M:

* n unit-execution-time tasks

* m homogeneous processors

* precedence relationship -< defined between tasks

* level-strategy assignment

* all-iterations-first decision strategy

9 queued message passing (no bounds assumed on buffer size)

• task exists on only one processor

This proof uses the simplest task system - completely independent tasks - to show that

the minimum latency is r n

PROOF: Independent Tasks

Case 1: n < m (by construction)

In this case, (n < m), each task can be scheduled on a separate processor. Since all tasks

4-11



are independent, each task can begin another iteration every timestep. This results in a

latency of f al = 1.

Case 2: n > m (by construction)

If there are more tasks than processors, (n > m), then each processor contains more than

one task (by the level strategy.) Furthermore, the level strategy attempts to balance the

amount of tasks assigned to each processor, with no more than [-1 tasks assigned to any

processor and with [n1 tasks to at least one processor, Processor k. By the all-iterations-

first decision strategy, the first task on Processor k executes all iterations before any other

task executes any itertions. Thus the latency becomes

number of tasks on one processor x number of iterations
number of output values

-- rMx = [n]number "terations

Therefore, the average time between iterations, over the life of the schedule, for at least

one processor is [al . Since the processor with the heaviest load dominates execution

time, r1 is the minimal latency achieved by the system.

E7

4.6 Upper Bound on Latency

The derivation of an upper bound for iterative task systems is not intuitively obvious.

In order to prove that r[i is an upper bound, as well as a lower bound on latency for

UET iterative task systems, it is necessary to categorize the impact of delay time, time

periods in which a processor has not completed all tasks but must remain idle because no

tasks can execute. It is also necessary to prove that (in a balanced mapping), an optimal

latency is achieved when at least one processor has no idle time in a time frame equivalent

to the pipelined portion of the schedule. This is done in lemmas which bound the amount

4-12



of time a processor may be delayed while predecessor tasks execute.

An example is given in Figure 4.9 which shows the maximum latency achieved when a

UET task system is mapped to 2 Processors using the level strategy.

T 

T2 

T3

T4 T5

P1 TII Ti' T3 T3' T5 T5'
VP2 T2 T2' T4 T4'

latency 6 time units = =

latency 2 iterations ~ L ~

Figure 4.9. Maximum Latency for Task System

In this example, the largest latency is determined by the processor which contains

the most tasks, P1. The number of time units required by the most-heavily-loaded pro-

cessor is equal to the number of tasks on that processor multiplied by the number of

iterations required by the task system. For example, in Figure 4.9, Processor 1 contains

1I = [f] = 3 tasks. Since the entire system must perform 2 executions, this value is

multiplied by 2, indicating that the most-heavily-used processor is active for 6 time units

during the schedule.

The concept of delay t "; closely associated with the concept of latency. The next

section discusses the maximum oeay time which can occur when tasks are assigned by the

level strategy and are scheduled with the all-iterations-first strategy.

4.6.1 Processor Delay Time If the level algorithm were not used to assign tasks to

processors, the following could occur with SCHEDULE I:

4-13



P1 IT1 0 IT1 T1 2  T13  T2 IT21  T22 1T23 I I
P2 I T3 V T3I T32 T3 T4 ° T41  T42  T4

Arbitrary Assignment (5 units of delay time)

IP1 T 0 T1'1T12 T13 T30 T31 T321TI 3 1=
P2 T2 T21  T2; T2 T4°  T41 T42  T4

Level-Strategy Assignment (1 unit of delay time)

Figure 4.10. Comparison: Assignment Strategies with Schedule 1

Intuitively, the level strategy assignment seems to produce 'better' schedules than an

arbitrary assignment, as demonstrated in Figure 4.10. The next question to arise involves

the amount of delay time that can be generated when the level strategy with SCHEDULE I

is used for assignment.

4.6.2 Chain of Tasks If the task system is a chain of related tasks

(TI -< T2, T2 -'T3,, -< --- -< T.),

such that the number of tasks is equal to the number of processors, then the level strategy

will generate at most m - 1 units of delay time on any given processor, as shown in

Figure 4.11. In fact, each processork will have exactly k - 1 units of delay time during the

entire simulation.

Suppose that there are m + 1 tasks to be scheduled on m processors. For example,

Figure 4.12 shows 3 iterations of 4 tasks to be mapped onto 3 processors. In this example,

P1 has no delay time; P2 has 1 unit of delay time and P3 has 2 units of delay time. This

iir'ulies that the most-heavily-loaded processor will have the least idle time throughout the

4-14



P1 TI Ti' TI"
P2 T2 T2' T2"
P3 T3 T3' T3"
P4 T4 T4' T4"

Figure 4.11. Level Strategy Assignment: chain of m tasks on m processors

simulation.

P1 Ti TI' TI" T4 T4' T4"
P2 T2 T2' T2"
P3 T3 T3' Th"

Figure 4.12. Level Strategy Assignment: chain of m + 1 tasks on m processors

Lemma 1 (Delay Time: chain)

For a system with the following constraints, the maximum amount of delay time (On any

processor) is equal to m - 1 time units:

* chain of n unit-execution-time tasks

" m homogeneous processors

• precedence relationship -< defined between tasks

" level-strategy assignment

* all-iterations-first decision strategy

* number of iterations, i, is greater than the number of processors

9 queued message passing (no bounds assumed on buffer size)

* task exists on only one processor

4-15



PROOF: (by construction)

BASE STEP: Show that P has no more than m - 1 units of delay time.

DELAY TIME AT THE START OF SCHEDULE: Since tasks are assigned by the level

strategy, each processor begins execution 1 time unit after the previous processor: I begins

execution of the task at level n at timeo; 2 begins executing the task at level n -1 at time,;

... Since the all-iterations-first decision strategy is used, Pi is busy in the first i time units;

2 executes all iterations of its first task between time, and timei+i; 3 is busy between

time2 and timei+2 ; ... m receives its first task at timem-1, and thus has a delay time of

m - 1 time units at the start of the schedule. This pattern is shown in Figure 4.13.

P1 T1 TI' TI" ... Tm+i ... T2m+I ...

P2 T2 T2' T2" ... Tm.+ 2  ...

-Pm T_ m I T .. T2M ... ,

timem to timei+m: i time units

Figure 4.13. Level Strategy Assignment: Serial Precedence (chain)

DELAY TIME DURING THE SCHEDULE: At time i, Pi has completed all executions

of TI. The second task assigned to Pa is taskm+,, which has m predecessors, each of which

are assigned to different processors. Since i > m, and since m predecessor tasks niave each

performed their first execution by timem, taskm+l can begin execution at or after time,.

Since timei > timem, taskm+, begins execution at timei, generating no delay time.

At time 2i, P1 has completed all executions of Tm+i. The third task assigned to P1 is

task2m+a, which has 2m predecessors. Since 2i > 2m, and since the 2m predecessor tasks

have each performed their first execution by time2m, task2m+1 can begin execution at or

aft,,r time2m. Since time 2i > time2m, task2m+l begins execution at time2i, generating no

delay time.

At time ji, (j < last task assigned to P1,) P has completed all executions of

Tjn+l. The next task assigned to P1 is task(,+,)m+l, which has (j + 1) x m predecessors.

4-16



Since (j + 1) x i > (i + 1) x m, and since the (j + 1) x m predecessor tasks have each

performed their first execution by time(j+l)m, task(j+)m+l can begin execution at or after

time(j+l)m. Since time(j+l)i > time(j+l)m, task(j+l)m+l begins execution at time(j+)i,

generating no delay time.

DELAY TIME AT END OF SCHEDULE: Once P executes the last iteration of its last

task, no further delay time can be added to P1. This is indicated in Figure 4.14.

P1 ... Tn.- m ... T, _ _,_

P2 ... Tn.-(,-) ... T_,(m-l)

el ... Tn T"..

Figure 4.14. Last task execution on all processors

Induction Step:

If Pn has no more than n - 1 units of delay time, then Pn+l has no more than n units of

delay time.

Pn can accumulate delay time at the start of the schedule and during the schedule. In a

chain of k tasks, each processor (other than P1) to recieve a task is delayed from beginning

execution by 1 time unit, since all tasks are unit-execution-time. Therefore, P,' is delayed

by n - 1 time units; Pn can thus begin its first task at time._ 1.

Pn delays Pn+, from beginning execution by 1 additional time unit. (Since the predecessor

to T+, is scheduled on Pn.) Therefore, P,+ can thus begin its first task at time,.

By the all-iterations-first strategy, P executes its first task, T,,, from timen-. to time,.-+ , .

P+' executes its first task, T+,, from timen to time,+i.

Between the first iteration of Tn+l on P,,+1 and the first iteration of the second task on

Pn+i,T+i+m, there can be at most one additional delay for each of the m - I other

4-17



processors which contain tasks. Therefore, the longest delay between the first iteration of

T+, and the first iteration of Tn+,+m is m - 1 time units. But, since P,,+, performs all

iterations of Tn+,, P,+, is not idle before time,+ _1+i. Since i > m,i > m - 1 Therefore

the i time units between the first execution of T+, and the first execution of T, 1+m are

completely filled with iterations of T,+i, and no delay time is generated.

Thus Pn+l has n units of delay time at the start of the schedule and no delay time internal

to the schedule. Therefore Pn+l has n units of delay time.

0

At this point, a question may arise: What happens if the system is not a simple chain of

tasks?

4.6.3 Arbitrary Precedence Intuitively, it appears that a chain of tasks provides

a more restricted case than an arbitrary precedence graph - In a chain, only one new

task becomes ready in each time slot; arbitrary precedence can have many tasks become

ready at the same time. This seems to imply that an arbitrary system can have less delay

time before all processors are busy, as demonstrated in Figure 4.15: As each processor

receives a task by the level strategy assignment, an idle time slot is created whenever the

level changes. For example, Figure 4.16 shows a precedence graph and the level strategy

assignment for the first task on each processor. In this example, P4 delayed until task4 is

ready to execute. Each of these idle time slots is called a stagger point. Before Pk begins

processing, the greatest number of stagger points which can occur is k- 1. (Because, if each

task is at a different level, task1 begins processing on P at timeo; task2 begins processing

on P2 at time1 ... taskk begins processing on Pk at timek-..)

A proof is given to show that arbitrary precedence produces no more than the amount

of delay time in a task system with serial precedence:

Lemma 2 (Delay Time: arbitrary precedence)

In a system with the following constraints. P.+, can be delayed by at most 1 time

unit by Pk:

4-18



(a) Arbitrary Precedence

P11 Ti TV' TI" T4 T4' T4"
IP21 T2 T2' T2 5 T5' TV"
P3 T3 T3' T3 6 T6' ITV"

(b) Serial Precedence

P1l T1ITV' TV T4 T4' 1W" J I
P21 IT2 T2'_[T2# T5 ITS' -T5"
P3 T3 IT3' T3" T6 IT6' TV"

Figure 4.15. Level Strategy Assignment: arbitrary precedence us. serial precedence

a n unit-execution-time tasks

* m homogeneous processors

* precedence relationship -< defined between tasks

* level-strategy assignment

* all-iterations-first decision strategy

* number of iterations, i, is greater than the number of processors

* queued message passing (no bounds assumed on buffer size)

4-19



T4 T5

P2 T2
P3 T"3
P4 T4

Figure 4.16. Idle time due to level change

o task eists on only one processor

PROOF: (by contradiction)

Assume that Pk+j is delayed more than 1 time unit by Pk. Since delays are only caused

by change in level between tasks, the level between tasks assigned to Pk and Pk+j must

change at least twice.

" Let time, denote the time when Pk+i must first be idle, waiting for the first iteration

of a predecessor task on Pk.

• Let Ti denote the first predecessor task assigned to Pk, and Th denote the next task

assigned to Pk by the level strategy.

" Let Tj denote the first succcessor task assigned to Pk+, and T, denote the next task

assigned to Pk+j by the level strategy.

At time, Pk begins its first itertion of Ti.

4-20



At time,+, Pk+l begins its first iteration of Tj (since all tasks take 1 time unit). This

creates 1 time unit of delay.

At time,+i, Pk completes its final iteration of Ti.

Pk+l completes its last iteration of Tj at time +I+i (i time units later).

At time ,+, Pk begins the first iteration of Th, the next task assigned.

If Th is a not predecessor to T, then Th cannot impact the schedule on Pk+,.

If Th is a predecessor to T, then T2 cannot begin execution until time+i+,. But, Pk+l

completes its last iteration of Tj at timeu++1 . Thus there is no delay incurred between

the last iteration of T and the first iteration of T.

Pk+l is delayed 1 time unit by Pk.

Contradiction.

0

Theorem 2 (Maximum Delay Time)

If the following constraints are observed, the maximum amount of delay time on any pro-

cessor is m - 1 time units

" n unit-execution-time tasks

" m homogeneous pr.cessors

" precedence relaticnship -< defined between tasks

4-21



" level-strategy assignment

* all-iterations-first decision strategy

" number of iterations, i, is greater than the number of processors

" queued message passing (no bounds assumed on buffer size)

" task exists on only one processor

PRooF:

By Lemma 2, Pk+l can be delayed by at most I time unit by Pk. Since there

are m - 1 processors which can delay any other processor, the greatest possible delay is
1 time unitX
processor m - I processors = m - 1 time units.

13

Theorem 3 (UET Upper Bound)

Task systems which meet the following assumptions have a latency upper bound of []

" m homogeneous processors

" n unit-execution-time tasks

" precedence relationship -< defined between tasks

" assignment by level algorithm

" all-iterations-first decision strategy

" queued message passing (no bounds assumed on buffer size)

" task exists on only one processor

This theorem (proved by construction) uses Theorem 2 to show that the MAL is achieved

if no processor has more than m - 1 units of idle time.

PROOF:

4-22



The maximum delay time on any processor is m - 1 time units (Theorem 2).

The maximum startup cost is m - 1 time units.

The in-use time on a processor is equal to

number of tasks on the processor x number of iterations for each task + delay time.

For the most-heavily-loaded P:ocessor, this is equivalent to

[n Xi+(m_-I)

Since the startup cost must be subtracted to compute latency, the latency for the

most-heavily-loaded processor is

in use time - startup cost MnA
number of iterations m

0

Theorem 4 (Firm Bound on UET Latency)

Task systems which meet the following conditions and which are scheduled using the level

algorithm have a latency of [ ] :

" In homogeneous processors

" n unit-execution-time tasks

" precedence relait, nship -< defined -tween tasks

" level-strategy assign,.. tnt

" all-iterations-first dec 11- strategy

* number of iterations, i, .;-ater than the number of processors

* queued message passing !n, -L.i nds assumed on buffer size)

1 23



9 task exis,s on only one processor

PROOF:

Theorem 1 showed that 1MI is a lower bound on latency. Theorem 3 showed that r - is

an upper bound on latency. Let latency =_ a.

Then the following are true:

or> ral

Therefore o =

0

4.7 Equal Execution Time Task Systems

These results can be extended to task systems where all tasks have the sam- execution

time: In UET systems, the length of each task is 1, and the sum of all task execution times

1- n. ct ;.erefore the latency, r], can be written as = [ -1 , where k is he

execution time of each tash (k = 1, .n the UEET case). This reasoning is expanded in t'.e

prooi of Theorem 5.

Theorem 5 (Equal Execution Time)

If the following conditions are met:

" 21 3qual-execution-time tasks, each of length k

" m homogeneous processors

• precedence relationsh.p -< defined between tasks

" level-strategy assignment

" all-iterations-first deci.5,on strategy

" rumber of iterations, i, is greater than the number of processors

4-24

I



* queued message passing (no bounds assumed on buffer size)

. task exists on only one processor then the MAL = [x]

PROOF:

Since all tasks are of length k, and since no preemptibn is allowed, the only time

points which have task start- or end-times are multiples of k. These 'interesting' time

points can be mapped to the positive integers by dividing by a scaling factor of k:

" task length k becomes task of length k = 1.

" time k becomes time 1

" time 2k becomes time 2

" time nk becomes time n

At this point, the tasks in the EET system are mapped to a UET system. The MAL for

a UET system, (Theorem 4), is [.

In order to restore the converted system to the original configuration, it is necessary

to multiply the MAL by k, the scaling factor. Thus the MAI, becomes:

k EET time units x[1 UET time units = k x =
1 UET time unit- -M IM m it M l

0

4.8 Variable Execution Times

4.8.1 Problem Description The Level Strategy generates schedules at the maximum la-

tency for Unit Execution Time (UET) tasks. However, schedules for tasks with variable

execution times produced by the Level Strategy are not guaranteed to iterate at the op-

timal latency, as shown in Figure 4.5. This section discusses factors which impact the

following result:

4-25



If task lengths = {1, 2}, the minimum achievable latency is no longer guaranteed to be

found by the Level Strategy.

4.8.2 Reasons for Level-Strategy Failure When task execution times E {1, 2}, the Mini-

mum Achievable Latency is not longer guaranteed to be the sum of task execution times

divided by the number of processors, rz task execution timesI There are several reasons

that the minimum latency differs from the unit execution time case:.

" Since tasks are assigned in one-time-unit and two-time-unit blocks, there is no guar-

antee that there will be a maximum of task execution times unique tasks on each

processor.

* In addition, tasks of length-2 tasks must be assigned in blocks of 2 time units. This

seems to be an obvious point; however, it places a limiting factor on the available

time slots for subsequent iterations of tasks which take 2 time units to execute.

In order to show that the Level Strategy fails to generate mappings at the minimal achiev-

able latency for variable-execution-time task systems, counterexamples are used. Although

it is not possible to prove the truth of a general statement by example, a single counterex-

ample is sufficient to disprove a statement (19).

4.8.2.1 Maximum Tasks/Processor In order to demonstrate that the Level Strategy

produces non-optimal latency mappings for variable-execution-time tasks, it is necessary

to consider the method the Level Srategy uses to assign tasks: In the UET system,
7' task execution times

produces a number, say x, plus a remainder, r Assigning x tasks to

each processor allows the r remaining tasks to be each given to a separate processor, with

no more than
[ task exec'ion times]

tasks on any prucessor. If variable execution times are allowed, the Level Strategy could

assign more than task czecutiontimes] unique task-time-slots to one processor. For

example, in Figure 4.17 ' task cxecution times = 3; however, the tasks assigned to Processor

1 consume 4 time units on each iteration.

4-26



T1/2 T2/1 T3/1

"T4/2 T5/1 T6/1

P1 T  I T1 IT4 T 4 11
P2 11T2 IT5I

P3 T3 T6

Figure 4.17. Variable execution time task system

Although the level strategy assignment produces output once every 4 time units, the small-

est possible latency is 3 time units. task execution times = 3] ExhaustiveIn3

search generates a schedule which produces outputs every 3 time units:

P1 T1 Ti Til Til

PjT2 T3 T6 T2V T3 T61

31[T5 T4 T4 T5: T4t T41

4.8.2.2 Blocks of Size 2 Figure 4.18 shows a task system whicl contains tasks

with execution time of 1 or 2 time units. Since T2', for example, requires 2 time units to

execute, it cannot be inserted in timeslot 1. This barrier is not present when UET tasks

are scheduled; any subsequent iteration in that system can fill any hole in the schedule.

4-27



1/1 2/23/2

LEVE LEVEL 2

4/1 5/27/1

LEVEL 2 LEVEL 2 LEVEL 1

LEVEL 1

P1 T2 T2 T4 T6 T21I T21 T41
P2 T3 T3 T7 TI'- T3I
P3 T1I T5 T5 T11 T&1 T51

Figure 4.18. Task System with Variable Execution Time

Since the execution time = {1, 2} scenario can have gaps of 1 time unit with only 2-time-

unit tasks ready to iterate, the test for a completely-filled processor does not produce the

same information as in the UET case.

4.8.3 Bounds on Varioble-Execution-Time Latency Although the unit-execution-

time problem differs from the variable-execution-time prob:3m, it is possible to apply some

of the same criteria as a measure of optimality. Theorem 6 is used to prove that a lower

4-28



bound for latency is at least as large as the following:'

max tas IX~i~ tms, length of the longest task)

Intuitively, this makes sense. Figure 4.19 shows a 2-task system with a MAL dom-

inated by the task of length 7. Although [3- task execution times] = [+ 1 = 4, the

best achievable latency is 7.

aT1/7 
T2/1

P1 7 i TI T1 T1 T1 T 1I T 1 T 'I TI' TI TI TI TI...
P2 T2 T2'

Figure 4.19. Variable execution time task system

Theorem 6 (Variable-execution-time Lower Bound ) If variable execution times are al-

lowed in an iterative task system, with the following:

" n variable-execution-time tasks

" m homogeneous processors

" level-strategy assignment

" precedence relationship -< defined between tasks

" all-iterations-first decision ;trategy

" number of iterations, i, is greater than the number of proccsors

" queued message passing (no bounds assumed on buffer size)

1where m' denotes processors-in-use.

4-29



e task exists on only one processor

a lower bound on latency is the larger of the following:

, [T task execution times]

* length of the longest task

This theorem is proved in two steps: First, it is shown that the length of the longest

task provides a lower bound for latency when

task execution times] < length of longest task

After that, it is shown that

[ task execution times]

provides a lower bound when

r task execution times] > length of longest taskI m*I

PROOF: (by contradiction)

Case 1:

Assume that

• 'task execution timnes
M I < length of longest task, and

• latency < length of longest task.,

Let r = length of longest task. The best case occurs when the longest task, say tk does

not share a processor with any other tasks. In this case, tk performs a new iteration every

r time units, and the processor is finished i x r time units after startup. Since latency is

measured by the throughput of all tasks in the system, system latency cannot be less than

4-30



tia latency for any processor in the system. In particular, the processor containing t k has

a atency of r; therefore overall latency _! r = length of longest task, which violates the

asumption that latency < length of longest task.

C. 3e 2:

/.:'sume that

. task execution times]
tk t > length of longest task and

" latency < task execution times]

If 1:."k e~etio time task ex~ecutiotie
If 'a" eeuton > longest task, then the best case occurs when m

exceen the longest task by 1 time unit (since all tasks can be scaled to integer lengths.)

Assume the least restrictive case, where all tasks are independent. Then, for
task execution times to exceed the length of the longest task, all tasks may be assigned

to processors so that there is no idle time in the schedule.t 2 task execution
As long as m. > length of longest task, there must be at least one pro-

cessor, .. - kwhich has task eeutintimes time slots filled with the first iteration of

its tasks. In that case, Pk cannc iterate at a frequency greater that [.eectiontines]

Contradiction.

0

Theorem 7 (Variable-execution-time Upper Bound)

If variable execution times are allowed in an iterative task system, with the following con-

straints, an upper bound on latency is defined as n enth of ost tas!

" n variable-execution-tirre ta..ks

" m homogeneous processors

* precedence relationship -< defined between tasks

4-31



" level-strategy assignment

" all-iterations-first decision strategy

" number of iterations, i, is greater than the number of processors

" queued message passing (no bounds assumed on buffer size)

" task exists on only one processor

PROOF: (by construction) Let 9 represent the graph of the task system; and let g', be the

task system of 9, adjusted so that all task lengths are equal to the length of the longest

task.

Then latency(g) < latency(g').2

Let k be the length of the longest task.

Then, by Theorem 5, an upper bound for latency on 9' is [k-].

Since jka] > latency(g') > latency(g), then [kX, is an upper bound on latency.

4.8.4 Minimizing Number of Processors In some cases, the task system may not

require all available processors in order to achieve the MAL. In that case, it would be useful

to select an optimal number of processors so that remaining (idle) processors can be used

for other applications. An obvious upper bound on the number of processors is n, where

n = the number of tasks in the sytem. This bound allocates one task to each processor,

which allows tasks to iterate at the minimum latency.

It is possible to place a bound on the number of processors required to obtain the

optimal latency in a task system. For example, the parameters of a task system could

indicate that a task system requires at least 4 processors (minimum lower bound) and at

most 6 processors (maximum upner bound) to achieve the optimal latcncy. Although the

optimal number of processors is not completely determined, the bounded range of values

21f this were not true, then it would be necessary to have a space of length 2 to map every iteration of
a task of length I.

4-32



can be used when deciding on the number of processors required by the system. Figure 4.20

shows the relationship between lower and upper-bound notations used in this section.

minimum absolute absolute maximum
value for lower upper value for
lower bound bound upper
bound bound

Figure 4.20. Relationship between bounds

Intuitively, the idea of minimizing the number of processors can be seen in Fig-

ure 4.21. In this figure, Task 2, the longest task, requires as much time for execution as

all other tasks in the system combined! Therefore, there is no benefit, in terms of latency,

in assigning this task system for iterative execution to more than two processors.

Example:

e 
TI/I 

T2/4

T3/1AT4 1T5/1

[ execution times _ 1+4+1+1+11 =1
[length of longest task] 4 =

U PR I T2-T2 fT2 1T2 - -I

lP2 1 TI TV I TI" I T1 1 T3 T4 T5 IH

Figure 4.21. L wer Bound on Processors

4-33



This value for the minimum value of the lower bound gives the least number of processors

required to obtain the optimal latency:

Theorem 8 (Number of Processors: Variable-execution-time)

In an iterative task system with

" n variable-execution-time tasks

* m homogeneous processors

" precedence relationship -< defined between tasks

" level-strategy assignment

* all-iterations-first decision strategy

* number of iterations, i, is greater than the number of processors

" queued message passing (no bounds assumed on buffer size)

" task exists on only one processor

the minimum value for a lower bound on the number of processors can be computed by the

f.& -)wing formula? r ~eeuion times1

[ength of longest task I

PROOF: An upper bound on the minimum achieva-ble latency (MAL) is dofined as

ma n x length of longest task] .(length of longest task))

(Theorem 7).

3Thi- thcrn was deriived by Professors Lamot and I1a.anell of the Air Force Institt or Trchnology

4-34



In non-preemptive scheduling, the length of the longest task must remain constant. There-

fore, the only way to reduce the MAL is to reduce

rn x length of longest task]

This can be done by 'throwing more processors at the problem!' Thus, if

rn x length of longest task] < (length of longest task),

the MAL can be decreased by increasing m*, the number of processors in use.

0

4.9 NP-Complete Aspects

4.9o1 Background The level strategy presented in Section 4.3 generates a minimal-

latency mapping of tasks to processors in 0(n 3 ) time. However, the level strategy only

guarantees optimal latency for task systems with the following restrictions:

" homogeneous processors

" no preemption

" equal-execution-time tasks

" queued message passing

" task exists on only one processor

" no feedback loops

As constraints are relaxed, the level strategy is no longer guaranteed to generate

an optimal mapping. Furthermore, it is not obvious whether any p-time algorithm can

produce minimal-lat,-ncy schedules. At present. there are numerous problems which have

no known polynomial time solutions (7, 15). The class NP-complete contains probl-ms of

this type. A primary characteristic of the class NP-complet: is that every NP-complete

problem can be mapped to every other NP-complete problem with a polynomial-time

4-35



transformation (1, 7, 15). This implies that if a polynomial-time solution is found for one

NP-complete problem, a p-time solution can be derived for all NP-complete problems.

At first glance, NP-complete problems often appear to be no more complex than problems

with polynomial-time solutions. Closer scrutiny, however, reveals intractable aspects of the

problem. Since the one-pass scheduling problem is NP-complete when variable-execution-

time tasks are allowed (10), a reasonable conjecture is that the iterative scheduling problem

also becomes NP-complete in the variable-execution-time case.

4.9-2 Proving NP-Completeness Knowing whether a given problem is NP-complete

is useful for several reasons:

9 If a problem can be shown to be NP-complete, then there is no currently-known

polynomial-time algorithm to solve it (7, 15). Although this does not preclude the

possibility that a p-time algorithm will eventually be discovered, it emphasizes the

difficulty of deriving such an algorithm.

• If an optimal solution cannot be acquired, it may be possible that an approximation

algorithm will generate an acceptable solution (21, 25).

* Once a problem is known to be NP-complete. effort can be redirected into refining

the graph search heuristics, rather than attempting to derive a p-time solution.

As a first step toward proving a problem NP-complete, the problem is often restated

as a decision problem, which can be answered with a 'yes' or 'no' (7). For example, the

one-pass scheduling problem- "Find the minimum execution time for a given task system,"

may be restated as "Is there a schedule for task system 9 which completes by time z?"

In order to prove that an open problem is NP-complete two conditions must be

met (1. 7. 15):

I. A nondeterministic Turing machine (NDTM) 4 must be able to solve the problem in

polynomial time. 'This condition demonstrates that the open problem is no larger

then NP-complete.

'The concept of a NDTM is an abstraction; such a machine does not exist in the physical word.

4-36



2. A known NP-complete problem must K, r-olynomially transformable to the open

problem. The idea behind this transformitt on is shown in Figure 4.22 (20). This

shows that the open problem is at least L r.-e as an NP-complete problem.

p-time transformation

.open
NP-time

(:p-time

Figure 4.22. Transformation to Show NP-Completensess

4.9.3~ variable Execufion Time Systems Results concernIng the iterative scheduling

problem of Section 4.3 were dependent on several constraints, such as equal-execution time

and homogeneous processors. In general, relaxing these constraints increases the difficultY

of generating a minimal-latency solution. This section discusses results when the equal.

execution-time resti-iction is removed,

Theorem 9 (N-P-completeness )

The minimal-latenry iterative scheduling (311)problem tith

" n i-ariable-ceceution-!iMe tasks. E (1.2)

" m homogeneous pyronrssars

" precedenre re~lton-shIp -C defined betireen tasks

4.-37



* level-strategy assignment

* all-iterations-first decision strategy

* number of iterations, i, is greater than the number of processors

* queued message passing (no bounds assumed on buffer size)

a task exists on only one processor

is NP-Complete.

This theorem is proved by showing that MLIS problem with task execution times E {1, 2}

can be solved in polynomial-time by a NDTM and that a known NP-complete problem

can be mapped to the MLIS problem with a polynomial-time transformation.

PRooP:

Problem E NP.

la order to show that the minimal-latency iterative scheduling (MLIS) problem with ex-

ecution times of {1, 2} E NP, the problem is restated as a decision problem. It is then

necessary to show that the question "Does the MLIS problem produce a schedule with

latency L?" can be answered in polynomial time on a nondeterministic Turing machine

(NDTM) (15).

For a NDTM to answer this question in polynomial time, each copy of the NDTM

makes an assignment of tasks to processors, as shown in Figure 4.23. Since there are a

finite number of ways to assign tasks to processors, there are a finite number of NDTM's.

In Figure 4.23, a copy of the NDTM is generated to produce each schedule beginning with

a certain assignment of tasks to processors. For example, if task3 is assigned to P1 at

tim, separate copies of the NDTM generate schedules beginning with P2 at time,. This

procedure is continued until the last task is scheduled on all copies of the NDTM. At this

point, the latency of each assignment can be checked in at most O(nk) time, where n is

the number of tasks in the system and k is the number of iterations. Thus, the NDTM

produces an answer in polynomial time.

Polynomial Transformation.

The second step in proving an open problem to be NP-complete requires that a known

4-38



TIME 0

task1  task2  task3  task,, time1 , P1

task, task2  task,_ time1 , P2

task,-2

time1 , Pm

time2, P1

timek, Pm

Figure 4.23. Nondeterministic Turing Machine Assignment

NP-complete problem be transformed to the open problem in polynomial time (15). Let II

represent the non-iterative scheduling problem with tasks of one- and two-time units, an

NP-complete problem (34), and let II' represent the iterative problem with tasks of one-

and two-time units. Then the goal becomes Transform H to IF.

The task graph for H and the task graph for 1 iteration of H' can be represented as

shown in Figure 4.24. These graphs have a 1-1 correspondence, as shown in Figure 4.24 (c).

Thus, II can be directly transformed to II'.

0

4.9.3.1 Transformation to Other NP-Complete Problems A primary charac-

teristic of NP-complete problems is that any NP-complete problem can be transformed to

any other in polynomial time (1, 7, 15). Since the MLIS problem has been proved NP-

complete, it is possible to transform the MLIS problem to any other NP-complete problem

with a polynomial-time transformation. The simplest method of transformation uses the

4-39



i/i

T22T/ T2/2 ~ T3/1

T4/ T5/2 T6iT4/2 T5/2 T6/1

(a) task graph representation (b) task graph representation
for classical problem for 1 iteration of th2i

iterative problem

---------- ---------------

T2/2 T3/1i22T/

T4/2 T5/2 T6/1 T4/2 T5/2 r/

(c) Mapping classical problem to iterative problem
for # iterations = 1

Figure 4.24. Mapping NP-Complete Problem into Open Problem

4-40



relationship between the MLIS problem (II') and the noniterative scheduling problem (H):

once IW has been transformed to II, all previous transformations which apply to I also

apply to the transformed version of II'.

The idea behind the transformation from I' (the iterative problem) to I (the general

scheduling problem) is shown in Figure 4.25 for 2 iterations of H'. In this transformation,

both iterations of the MLIS problem are mapped into a precedence graph. This precedence

graph is identical to the task graph which represents the non-iterative scheduling problem

with tasks of one- and two-time units (10). Therefore, the MLIS problem can be mapped

into the non-iterative scheduling problem.

Ti/i1

T2/2 T3/1

T4/2

(a) Task graph for (b) Precedence graph for 2
iterative system iterations of tlsk system

Figure 4.25. Transforming the Iterative Problem to the Clssicai Pr,;blc:i.

Since every known NP-complete problem is classified by proof and transformation,

there is a finite number of known NP-complete problems. In addition, there are numerous

cases where the class of a particular problem is unknown (10, 15). Thus the border between

NP-complete problems and problems with polynomial-time solutions is not a wen-defined

threshold. For example, the classical scheduling problem with arbitrary precedence has ,

4-41



p-time solution for UET tasks mapped to 2 processors, but the p7oblem is NP-complete

when variable-execution-times are allowed (10)- In the same manner, there is a polynomial-

time algorithm for the iterative scheduling problem wi;,h equal-execution-thie tasks on a

fixed number of processors, but the problem of deriving an optimal-latency schedule for

iterative systems with variable-execution-time is NP-complete (Theorem 9).

Since the iterative problem with equal-execution-times has a polynornial-,ime solu-

tior, an additional result can be conjectured for the noniterative problem:

If, in a noniterative UET system, the task graph can be collapsed to represent
k iterat.ons of an iterative task system, then the level strategy produces an
optimal assignment in polynomial time.

For example, Figure 4.26 shows a UET task graph reduced to an iterative task graph which

,..ust be repeated twice.

4.10 Summary

The mathematical development for the iterative scheduling problem is presented

in this char.' er. Proofs are given to show that the Level Strategy produces an optimal

mapping for UET systems, and that systems with variable execution time tasks are NP-

complete. An additional proof is shown to demonstrate that the number of processors

car he minimized in an iterative system with variable execution times. These results are

summarized in Table 4.1.

Task Lengths 11 Precedence j Problem compleity I

a~birar__Ip-time
i r 2 arbiN.P.ry N-complete

Table 4.1. Results '% vfinirniY:ng Execution 'fime: Iterative Task Systems (non-
preem.)tiv:;, o resot3nc,. -..strairts)



TI/

a T2/1 T3/1

-- T4/1
2 iterations

T4'11

(a) i-pass task graph (b) Representation as
iterative system

Figure 4.26. Transforming the Classical Problem to the Iterative P~roblem

4-43



V. Application/Ezperimental Results

Computer simulation of electronic circuit behavior can be used to streamline the

process of circuit and chip design. The VHDL (VHSIC High-level Design Language) was

created to enable designers to model circuit behavior on a computer, rather than actually

building the circuit to be tested. As designs become larger and more complex, sequential

computer simulations of circuit behavior take a disproportionate amount of time. The

parallel simulations which were implemented in previous research (30) are used to test the

mapping strategies developed in Chapters III and IV, with the objective of minimizing

overall execution time.

5.1 VHDL Application

The precedence graph in Figure 5.1 shows the simulation to be modeled. This simu-

lation uses a queued-message protocol for passing data between tasks. For example, Task I

can execute several times before Task 18 executes once. Every time a data value necessary

for Task 18 is changed in Task 1, a message is sent to Task 18. These messages are queued

in an input buffer until Task 18 is ready to respond to each message.

5.1.1 VHDL Parameters and Results Tests were conducted on VHDL simulations

to d&.ermine the effects of various mapping strategies on execution time. Table 5.2 shows

the matrix of tests which were used to test the various mapping strategies. The simnlation

parameters were set to model circuit simulation for different amounts of time: the shortest

simulation modeled 1000 nanoseconds of circuit behavior (approximately 10 iterations of

the complete task system); the longest simulation modeled 64,000 nanoseconds of operation

(640 iterations of the system).

The LEVEL8 strategy uses the level algorithm developed in Section 5: the GREEDY

mappings assign [ tasks to each processor so that the first [ ] tasks in the system are

assigned to processor 0, the 2nd [a] tasks to processor 1, etc. The I-PASS OPT strategy

assigns tasks to processors based on one iteration of the task system (clascica scheduling

5-1



0 1 2 3 4 5 6 7 0

F9ur 5. 1 Prcdec Grph 4D tasks6

1eho) Sic1hs8pi~ loae I ak t ny4poesrpo efrac

is~1 exetd 2h0~BLNE taeyasgs n rtotsst otpoesr n

overloads th2ean 2 rcso it l eann ak.Tes sinet fr$ud

Figure5.2 sowsute data frmcedene . Graphical form.

in exete S-noe test LAcae, tel strategy onortwtask ot-promedt pllotessrs and

a ping fmes Ia runns hch simulat n takes~ 0sec onds aici behaote le struategy

takes only 56% of the time of the nextJ-t mapping (greedy8). When simulation run.s

5~-2



d lTask Number '- Procsor #
11 Level 1-Pass Optimal Greedy Unbalaned

0 0 0 0 0
1 1 1 0 1
2 2 2 0 2
3 3 2 0 3
4 4 2 0 4
5 5 2 1 5
6 6 2 1 6
7 7 2 1 7
8 0 2 1 0
9 1 3 2 0
I0 2 3 2 0
11 3 3 2 0
12 4 13 2 0
13 5 3 3 0
14 6 3 3 0
15 7 3 3 0

:16 10 3 3 0

17 1 0 4 0
18 2 i 1  .. 4 0
19 _ 3 10 4 0

1.20 14 1 4 0
1II.21 i5 0 5 o
122 16 1 5 0
23_7 0 5 0
24 so0 1 5 0
25 1 0 6 0
26 2 1 6 11!27 j 3 10 6

,28 1 4 1 1.6
29 15 0 7 1
30 . - 6 11 6 I
31 I i _ _ _
32 T0 .. 87d i

Table 5.1.8$-node Mapping Strategies

-5-3



4-node mappings Simulated time
1000 .sec 18000 nsec 16000 nsec

level4 34 253 511
I-pass optimal 51 381 780

greedy4 60 447 897 1
unbal4 72 541 1051

S8-noe mappings 11-Simulated time -

1000o nsec 18000 nsec 16000 nsec "32000 nsec 64 000 nsec

Ilevel8 18 sec 126 sec 252 sec 509 sec 1108 sec
1-pass optimal 51 sec 381 sec 779 sec 1621 sec 3358 sec
greedy8 42 sec 314 sec " 595 sec j1086 sec 1973 sec
unbal8 , 79 sec 573 sec 1147 sec 2272 sec 4404 sec

Table 5.2. VHDL Test Cases

are based on the level s'.ra-egy of assignment, the VHDL simulation completes in approx-

imately 56% of the time needed by the greedy8 strategy, the second-best mapping. When

compared with an optimal schedule generated by the one-pass scheduling algorithm, the

level strategy simulation required only 33% of the time needed by the classical mapping

scheme. This is due to the nature of the VHDL task system: an optimal 1-pass mapping

assigns the longest chain of tasks to one processor. in an attempt to minimize communi-

cation time. Finally, comparison with a deliberately unbalanced mapping shows that the

level strategy executes in 25% of the time.

As the number of processing nodes is increased from 4 to 8, the time for execution

decreases to half of the 4-node amount; therefore, l.near speedup is obtained, as shown in

Figi,7e 5.3.

5.2 Gaming Simulation Results

In order to further substantiate the r f found in VIIDL simulation mappings. a gaming

simulation developed in previous re5eac--. 1'2 was tested with th- same mapping strategies

as used in the VHDL test runs. The isr. tiirnce graph for this simulation is shown in Figure

5.4.



3000

2500 I-pas opt-

T'ime torhalann4

0 10000 20000 30000 40000 50000 60000
Simulated Time: nsecJ

Figure 5.2. Varied Mapping Strategies

Table 5.3 and Figure 5.5 summarize the results of these tests.

fl 4-node mappings ji Simulated time ___

1000 If2500 15000 I10000 1 15000
level4k 42 sec 114 1260 160 1 119
1-paws optimal 4__ 7_10_286 75 1375
1grey4 42 11 i 261 69 1272
Iunbal4 !6 157 j346 833 1478

Table 5-.3- Gaming Test Cases (Spin Loops = 10-000)



600

I 500 r

1Znode level srategy -

400p [4SM eil-rtI I

I 2~*300-I -i
3 r

i! J.
100I

0 2000 4000 6000 8000 I0000 12000 i4000 1600
Simulated Time: mswc

Figure 5.3. Speedup

When spin loops of 100.000 are input, the greedy 4 strategy (which assigns tasks

so that no two communica-fing tasks are on the same processor) produces results in less

time than the level strategy mapping. This may be due to some unspecified simulation

parameter or to the sma!) nur.ther of tasks on each pro-essor-if a sending task and receiving

task are both blocked for communication on the same processor. then the node operating

system has no other tasks which can be working on computation.

4-node mappings S Simdafacd time
_____________ II,50 1 .00 1.5000

t evel4 i 562 1238 1 2 10'2

j __otml_ 2660 '
_ greedy4 5 2.1 ":i13-S n 2 {57
_ __un _4 1973 31.30

lab!e .-5A. Gaingi-g Test Cases !Spin Loops = 100.000



12 3

45 6 7

Figure 5.4. Gaming Simulaticn Precedence Graph

5.3 Summary

This chapter discusses the results when various mapping strategies are used to assign

VHDL simulation tasks. When simulation runs are based on the level strategy of assign

ment, the VHDL simulation completes in approximately 56% of the time needed by the

second-best mapping, which also assigns a balanced load to each processor. When com-

pared with the optimal one-pass mapping, the results appear counterintuitive: the level

strategy simulation executes in 33% of the time needed by the one-pass optimal simulation;

however, an optimal one-iteration mapping for this simulation assigns all tasks to 4 pro-

cessors; this minimizes communication time, but does not take advantage of all available

processors.

5-7



SI IIII

1400

1200

1000 - 1-pass opt -

greedy4 -

Time 800- level4 =
sec unbalanced

600

400

200 .

0 2000 :000 6000 8000 10000 12000 14000
Simulated Time: nsec

Figure 5.5. Varied Mapping Strategies (Spin Loops 10,000)

3500

3000

2500

2000
Time

sec 1500

1000 -pass opt -

greedy4 -

500 level4
unbalanced

0 1I I 1 I I

0 2000 4000 6000 8000 10000 12000 14000
Simulated Time: nsec

Figure 5.6. Varied Mapping Strategies (Spin Loops 100,000)

5-8



VL Conclusions and Recommendations

This research has explored the problem of mapping parallel simulation tasks to pro-

cessors, with emphasis on VHDL circuit simulations. In the process, some interesting

results have been uncovered - in p,-rticular, the tendency for a single-execution optimal

mapping in the classical sense to produce suboptimal timing results for parallel simulations.

In addition to producing an algorithm for optimal iterative schedules, the mathematical

foundation for the simulation task scheduling problem has been developed, and the set of

NP-complete now includes the iterative scheduling problem.

6.1 Conclusions and Contributions

This research has approached the science of Scheduling Theory from a new , erspec-

tive; as a result, several contributions to the field have been made. The most important of

these are the following:

" This investigation has exposed the fallacy tha ma optimal mapping for a single

execution is optimal for multiple iterations as v Schedules which are optimal

in the classical sense are shown to produce less-than-optimal results for simulation

tasks. The critical factor which produces this anomoly is shown to be the iterative

nature of simulation tasks.

" Having determined that the iterative nature of simulations presents significant dif-

ferences from classical multiprocessor scheduling, a polynomial-time algorithm, the

level strategy, is developed for scheduling iterative task systems with properties cor-

responding to VHDL simulations. This algorithm is shown to produce speedup in

applications other than circuit simulation when the specified constraints are met.

" In order to formalize the theory of iterative task scheduling, a mathematical foun-

dation is developed for iterative task systems. The characteristics of parallel VHDL

simulations are used to form the basis of this foundation, leading to the following

theorems which are proved for task systems conforming to these conditions:

6-1



n unit-execution-time tasks 1

m homogeneous processors

precedence relationship -< defined between tasks

level-strategy assignment

all-iterations-first decision strategy

number of iterations, i, is greater than the number of processors

queued message passing

task exists on only one processor

- The lower bound for latency, the time between successive iterations of a given

task, on task systems with the above assumptions is [ ] (i.e. lower bound

- Task systems which meet the above assumptions have a latency upper bound

of [-] (i.e. upper bound < r )..
- Task systems which meet the above conditions have an absolute bound on la-

tency of [-] (because the upper-bound is equal to the lower-bound).

- If the above conditions are met, and all tasks have equal execution time k, then

an absolute bound on latency is -

This theoretical foundatation is further expanded by removing the equal-execution-

time restriction and examining the variable-execution-time case. Theorems are proved

about variable-execution-time systems with the following constraints:

n variable-execution-time tasks

m homogeneous processors

precedence relationship -< defined between tasks

level-strategy assignment

all-iterations-first decision strategy

number of iterations, i, is greater than the numb.r of processors

'This constraint is later scaled in the time domain and results are proved for equal-execution-time tasks.

6-2



queued message passing

task exists on only one processor

- A lower bound on latency for iterative task systems with the above conditions

is 2: ra [ task execution times]1
max * ,length of the longest task

- An upper bound on latency for iterative task systems with the above constraints,

is defined as

upper bound < [n x length of longest task]

- In an iterative task system with the constraints listed above, the minimum value

for a lower bound on the number of processors can be computed by the following

formula:
3

lower bound> execution times
[ length of longest task ]

9 In addition to the mathematical and simulation contributions listed above, the set of

NP-complete problems is expanded to include iterative task systems. When classical

repetitive problems, periodic scheduling and fixed cycle scheduling, are examined, it

becomes ?zvident that simulation task scheduling requires different parameters and

goals (Section 2.2), Thu. the category of iterative scheduling is introduced. Problems

which conform to the iterative scheduliig parameters and which have task systems

with variable execution times are shown to be NP-conleto; problems with the re-

strictions outlined above and with u-fjal-execution-time can be scheduled to mini.-nize

latency in polynomial-time.

* In addition to developing and proving the theoretical foundation, experirental re-

sults, based on current parallel implementations, are used to validate the use of

2where m" denotes processors-in-use
3This theorem was derived by 1-rofessors Lamont and Hammell of the Air Force Institute of Technology

6-3



latency as a measure of optimality. When parallel circuit simulations are executed

with different mappings, the level strategy consistently out-performed the other test

cases. A sample of the results is shown below-

Mapping Technique Execution Time

level strategy 126 seconds

1-pass optimal 314 seconds

greedy method 381 seconds

unbalanced 573 seconds

Timing runs which use the level algorithm to schedule tasks ran significantly faster

than any other test case; the closest competitor was the greedy strategy which took

2.49 times as long to execute the same circuit simulation.

6.2 Recommendations for Further Research

The iterative scheduling problem is proven to be NP-complete when the variable

execution-times are allowed. 'The following topics are suggested for future research into

the iterative scheduling problem:

* Expand the theoretical foundation of iterative task scheduling by relaxing the con-

straints on the basic Equal Execution Time (EET) system:

- Task systems with dynamic load balancing

(goal; minimize latency)

r) EET tasks

m homogeneous processors

no limits on bhuffer size

- Heterogeneous processor systems

(goal: minimize latency)

6-4



n EET tasks

Processor speeds 1 and 2

no limits on buffer size

- Simulations with feedback loops

(goal: minimize latency)

n BET tasks

m homogenecus u ,-4ssors

no limits on buffer size

The feedback constraint requires delp',ident tasks to iterate before subsequent itera-

tions of the first task. For example, in Figure 6.1, Task A is allowed to perform all

iterations Lonsecuti'.;ely, but Task B must receive an input from Task C before it can

perform a subsequent iteration.

A 

B

Figure 6.1. Precedence Giaph with Feedback

-- Task systems with variable number of processors

(goal: minimize number of processors)

n EET tasks

homogeneous processors

no limits on buffer size

6-5



" Expand the decision strategy results fox the iteration-number decision strategy (Ap-

pendix D).

* Examine results when variable execution times (i.e. spin loops of 50,000; 100,000;

and 150,000) are incorporated as part of the VHDL ' ask sytem, i c -eFDonding to the

variable-execution-time problem.

* As larger VHDL simulations becowe available, rse the levet i: - ._ssign tasks

to processors. Validate conclusions.

" Explore mapping strategies for simulations which contain feedbi- ps and cycles.

Methodologies exist for transforming precedence graphs containi.. _ies into acyclic

graphs (24). Determine and implement algorithms for this transformation process.

6-6



Appendix A. Combinatoric Complexity Example

In Chapter 1, the following problem is considered:

Find the number of combinations which must be examined to derive an optimal
schedule for 60 independent tasks assigned to 2 processors.

When the problem was simplified so that exactly 30 tasks were scheduled on each processor,

there were still 60! possible combinations.

A. 1 Detailed Example

In order to explore the wcrst-case ramifications of an unsimplified version of the

problem, an system of indcpendent tasks is chosen. (Dependent, or precedence-constrained,

syti* ;,ave fewer po-sibilities for combinations of tasks in each time slot.) In this case,

a system of 5 tasks is to be scheduled on 2 processors. All combinations of assignments

must be considered:

5 tasks on Processor 1; 0 tasks on Processor 2

(There are 5! x 0! ways to arrange these tasks.)

4 tasks on Processor 1; 1 task on Processor 2

( There are 4! x 1! ways to arrange these tasks.)

3 tasks on Processor 1; 2 tasks on Processor 2

( There are 3! x 2! ways tc- arrange these tasks.)

2 tasks ofi Processor 1; 3 tasks on Processor 2

( There are 2! x 3! ways to arrange these tasks.)

I tasks on Processor 1; 4 tasks on Processor 2

( There are 1! x 4! ways to arrange these tasks.)

0 tasks on Processor 1; 5 tasks on Processor 2

( There are 0! x 5! ways to arrange these tasks.)

Therefore, the following equation applies:

A-i



Number of combinations = 5!0! + 4!1! + 3!2! + 2!3! + 1!4! + !5! = 312 combinations

In order to determine an optimal schedule by exhaustive search, 312 combinations must be

examined. For the simple problem of 5 tasks assigned to 2 processors, exhaustive search

is not an unreasonable option. However, if the proulem is increased by just one task, the

number of combinations that must be checked in an exhaustive search is

Number of combinations = 6!0! + 5!1! + 4!2! + 3!3! + 2!4! + 1!5! + 0!6! = 1812 combinations.

Table A.1 indicates the growth rate for number of combinations as the num.er of

tasks is incremented

n n! number of combinations

7 5040 > 32, 080
8 40320 > 80,640
9 362,880 > 725,760
10 3,628,800 > 7,257,600

Table A.I. Growth Rate for n!

'The number of combinations for each schedule of n tasks includes n! tasks on PI and 0! task on P2. as
well as the mirror-image combinations (0! tasks on P1 and n! on P2).

A-2



Appendix B. Le ;el Strategy Example

This appendix shows a step-by-step example of a task schedule generated by the

level strategy. Figure B.1 contains the precedence graph for a system where il -< t2 -< 3.

Assume these tasks are to be scheduled on 2 processors.

T2

T3

Figure B.1. Precedence Graph

The first step assigns a level to each task in the system:

Let n be defined as the number of tasks and m the number of processors.
Let the level of a node x in a task graph be the maximum number of nodes
(including x) on any ;ath from x to a terminal task. A terminal task is at level
1. Let a task be ready when all its predecessors have been executed.

Figure B.2 shows the assignment of levels to each task.

The computer representation of the precedence graph is a precedence matrix, where a I in

the (i,j)h position of the matrix indicates that taskj -< 1aski, as shown below:

11 2 3

1 0 0 0

211 0 0

3j0 1 0

B-I



TI Level 3

T2 Level 2

T3 Level 1

Figure B.2. Level Assignment

(2,1) = 1 * tl -< t2

The schedule is generated as follows: Each row in the precedence matrix is scanned.

If a row contains all zeros, then that task is ready. For example, at timeo, rowr: is all zeros.

Therefore, task, is the only task which is ready for scheduling, and task, is assigned to

PF:

IP2II
After ali re.Wy .asi n this case, only task,) are assigned, the time is incremented

(so that the next rea.y ..-. will be scheduled at time,), and the precedence matrix is

recomputed to indicaLe .hat

* All assigned tasks are no longer available for schedifling.

* Tasks whose deper.dencies are satiried are now ready:

I 2 3

1 -1 0 0

2 0 0 0

310 1 0

11-2



At time1, task, is finished processing, and task2, the only ready task, is assigned to

P2. The Gantt chart becomes

P I T1
P2 IT2I

The same procedur, .-"s followed at time2 : The precedence matrix is recomputed. ani

ready tasks are assigned to processors.

1 2 3

1 -1 0 0

2 -1 0 0

3 0 0 0

Precedence Matrix

P1 TI 1 -1 T3

P2 IT2I

At this point, all tasks are assigned to processors.

If there are more ready tasks than available processors, the time is incremented when

all processors are given a task; however, the precedence matrix is not recomputed until the

last ready task is assigned to a schedule. Figure B.3 shows a case where 4 tasks are ready

at timeo, but there are only 3 available processors. In this case, the assignment of tasks

to processors continues until all ready tasks are scheduled.

B. 1 Level Strategy

The level strategy is concerned with the assignment of tasks to processors: however.

the operating system of the parallel processor is assumed to do the bookkeeping associated

with iterations of different time slots. This assumption allows the scheduling algonitbr to

determine what set of tasks is assigned to each processor without knowledge of operating

11-3



U -el 2 Level 2 Level 2 Level 2

P1 T1 i T4y Level 1
P2 Tr21
P3 11 T31

Figure B-3. More ready tasks than processors

system parameters such as the time quantum used for multitasking on each processor. An

algorithmic description of the level strategy is given below:

last-assigned-ljrocessor = m

while levels remain

calculate number-read-

for i in ..number-ready

as.ign task i to Processor ((lasst - assioned - processor - 1) mod m)

last-assigned-processor = i(last - assigned - processor + Im) od m)

end for

end while

In addition to the level strategy defined above. tasks must be scheduled within a

processor by the decision strategy given in Chapter 4 in order to ensure minimal latency.

Since the last-assigned-processor is used to determine the next-processor for assign-

ment. the amount of tasks assigned to each proco-ssor is roughly equi-alent. If the queied-

message paradigm i% used, this allows predcessor tasks to iterate in 'vacant' time slots.

Experimental results (Chapter .5 confirm the optimad nature of task assignments made

with this strategy.

11-4



Appendix C. A * Search

The problem of generating an optimal schedule is essentially a search problem. An exhaus-

tive search requires all possible schedules to be generated. From that list of all schedules,

the one with the shortest execution time is chosen.

Since, however, the problem of generating all possible schedules for real-life problems re-

quires more computing power than is available, heuristics are used to drive the search

toward the optimal, by rejecting high-cost branches of the search tree.

C. 1 A* overview

The A* search uses two functions to guide the search (26, 29)-

* g: A function which is used to calculate the cost of the path which has been traversed

so far.

* h: An estimator function, which is used to guess the cost from the current node to

the goal state.

These functions are added to obtain the node-selection function f, (f = g + h), which

leads the search to attempt lowest-cost paths before higher-cost paths.

C.2 Sample A * Search

Fgure C.1 shows a graph which represents the problem to be solved by A* search (26).

* s is the start node.

* n2 is the goal node.

* Arcs are labeled with traversal costs.

From this the cost and estimator functions are developed:

e g = cost of all arcs traveled on the current padli, (for example, g(n2) = 7).

C-1



ni 2

7
S n2

Figure C.1. Graph for A* Example

* Since information to estimate the distance to the goal is not available, the optimistic

estimator function, h = 0 is used. This degenerates to a breadth-first search which

ensures that the optimal solution is reached eventually; however, a tighter bound on

h tends to expand fewer nodes in the search (26, 29).

If n2 is the goal node, the search proceeds as follows:

* The successors of s, n1 and n2 are generated.

* The estimates are 3 and 7, respectively.

a The lowest-cost estimate is selected, and the successors of ni, (n2 and n3) are gen-

erated.

a The estimates become

n n2 n3

3 6 5

* Since n2 is the goal state, the search is complete, with a cost of 6.

C-2



C.3 Evaluation Functions

Evaluation functions are the additive cost function 9 and the estimator function h,

which are used to guide the A* search (29).

Within the context of the scheduling problem, the following heuristics can be used to guide

the search so that low-cost schedules tend to be derived without the necessity of traversing

all branches of the search tree. Although these heuristics do not guarantee that the first

solution is an optimal solution, when combined with delayed termination, these heuristics

will produce an optimal schedule.

e Greedy Heuristics for Single-Execution Problem

- longest chain of processes (higher-level tasks scheduled first)

- number of successors (greatest number scheduled first)

- execution time (longest execution time first)

* Heuristics for Iterative Problem

The iterative problem is NP-complete when execution times of 1 and 2 are allowed.

Since the goal of the iterative problem is to minimize latency rather than to measure

overall execution time, optimal solutions tend to occur when all processors have

equivalent task loads (Chapter 4). Therefore, the following are suggested as heuristics

to drive the search in the iterative problem:

- longest execution time first (Greedy method)

- keep processor loads balanced as tasks are assigned. For example, if a 1-time-

unit task and a 2-time-unit task are available at timek, and if P has 3 time-slots

used, while P2 is only loaded in 1 time-slot, then it would be reasonable to place

the 1-time-unit task on P1 and the 2-time-unit task on P2 .

C-3



Appendix D. Iteration-Number Deci.sion Strategy

To ensure that the:. is minimal delay time on the iv :rhe~ly-1iaded p,-, ,cej-,or, an

appr ~priate derision 3trategy must be used. Otherwise, if the "wrong: t-as-k is chosen in a

conflict between. tasks, ji time may resulit, increasing latency. For example, Figure DJl.

shows t kie resaics of ar. aruitrary decisibn strat-gy whea 4 iterations of a task system Pre

rrapped to 31 processors. In this case. Processor 1 is lorced to be idle at time7 because

tnisk1 has complmned all iterations, and all remaining iterations of taisk4 are waiting for

tasks on other pri-,essors to complete.

Ti -C{7 Ta To

r' 1 TiO T I 1 2 i T40 T41 iT42 TI T4

123 0 FT3 I T3 2 ItF-l TT3 II

'PIure D.I. Delay Time Due to Arbitrary Decision Strategy

To avoid this problem, a decision btracegy must guar- ntee that a choice between

tasks for ar particular time slot always chooses the task mobt likely to cause delay. Fcr

example, the schedule for the graph in Figure D.1 can be schedul d so that no idle ti ne

occurs on Procestor 1, as shown in Figure D.2

The decision strategy which yields the above schedule is based on the longest ti~we

a tllask might have to wait for predece sor tasks to execute: In the pruvious example, the

worst case occurs for task3 and task4. Each of these tasks is bound by prede--essors which

execute oi ther processors. Since there are at most m - 1 processors whici must iterate

before anty gii~en task can execute, no task will be blocked from execution if rn - 1 iterations

of predecessor task are stored in the buffer between tasks.

D-1



'I T11 T4 i~ jTTJ4
2TP2 I w fj 3 3-

Figure D.2. Optimal Schedule

The choc. is based on the i'eration number of each task. Each task is rnumbered with

the task number and iteration number: taskO is used to re -esent the (f + 1)th iteration of

task,. For example, the first iteration of ta: i i3 repre' .ntk ,: %s tadk0: the second iteraticn

of task3 is represented as task'; and so forth.

The scheduling decision is jr- 2e by comparing iteration numbers. If the difference

between iterations is less than the number of processors, then the highest. level task (task

with the highest iteration number) should be scheduled since it may be a prcd-.cessor of

(m -- 1) tasks rn other processors. If the difference between iterations is greater than or

equal to the number of processors, then the lower-level task should be scheduled, since the

higher-level task has stored up enough iterations to keep the system from generating idle

time.

In general, if the choice is between task and task(, the following tests are done:

* If 1k < l1 and 1k - 11 > m, then task. should be scheduled.

* If 1k < 11 and Ik - 11 < m, then taskO should be scheduled.

In the example above, the first decision point occurs at time3. In order to choose

which task should be selected for the schedule, task3 and task ° are evaluated:

13-01 = 3 = m * task° should be selected.

D-2



At the next decision point, time4, task3 is selected instead of taskI beca",;e:

13- 11 = 2 < m =>, task 3 should be selected.

This strategy is appropriate because it allows predecessor tasks to build up results in

ouffers so that successor tasks never have to wait for predecessors after the first iteration.

Conjecture 1 if the following conditions are met, then no processor has more than m - 1

units of delay time

f n nit-eze.uiton-tiae tasks

" ,n homogeneou.4 processors

" precedence relationsi':p -< defined between ksks

" ievei-strategy uesignment

" all-iteratiova-first decision strategyi

" queued message passi, ng (no bounds assumed om buffer size)

" task exists on only one processor

PROOF SKETCH: (by construction)

Part I: Level Changes for First Task on each Processor

Assume that the above conditions are met and that the first m tasks each cause a delay

of 1 time unit. It can be assumed, without loss of generality, that Pk is assigned 2 tasks,

task: and taskj, where i < j.

" Let timet denote the time when all processors have a task.

" Let time, denote the time when the last iteration of taski occurs.

D-3



* Le+ time, denote the time when the last iteration of task occurs. Since tasks are

assigned by the level strategy, time, also represents the end of the simulation.

Idle time cannot occur on Pk between timet and timet+m, since the iteration-difference

strategy gives priority to taski in this time frame.

In timet+mn+i, the first iteration of task° occurs because taski has executed m times.

Therefore task° is given priority by the decision strategy:

10 < m/ and 10 - nI = m, therefore taskj is scheduled.

At timet+m+2, 1k - 11 =m - 11 < m, and taski is scheduled.

This alternating pattern continues, until time., when taski completes its last iteration. At

this point, there are exactly m iterations of taskj which have not executed. From time.

until time,,, taskj is the only task remaining on Pk, so no scheduling decision is required.

Furthermore, since all predecessors of taskj are scheduled in the same manner as tasks

on Pk, and since there are at most m - I iterations of predecessor tasks which have not

executed, no delay is generated on the processor. Therefore, the last predecessor of taskj

executes by time, -,, and task, completes its last iteration at time,,.

Part II: Level Changes After Start of Schedule (incomplete proof sketch)

The remainder of the proof must show that delay time during the schedule will not

exceed m - 1 time units on any processor, even if one or more processors encounters its

first level change during the pipe'ied portion of the schedule. Using the same logic as the

all-iterations-first decision strategy (Lemma 2), it becomes necessary tc show that at most

m - I time units of delay can occur internal to the schedulc.

D4



Index

approximation algorithms, 2-5 polynomial-time solutions, 2-4

Assumptions precedence constraints, 2-6

iterative UET systems, 2-14 Precedence-constrained schedules, 4-1

chordal complement graphs, 2-10 precedence-constraints, 1-4, 1-8, 1-9, 2-1,

cyclic fore~st, 2-11 2-4, 2-9, 3-10

Theorem
general scheduling problem, 2-1

formal definition, 2-1 Latency for UET Systems, 4-23, 6-2

Lower bound, 4-11, 6-2

heuristics, 1-2, 3-14, 4-36 Number of processors, 4-34, 6-3

Latency, 1-8, 2-9, 4-1, 4-3, 4-5, 4-! 1-4-13, Upper bound, 4-22, 6-2

4-22, 4-23, 4-26, 4-27, 430, 4-31, Variable execution time tasks, 4-29,

6-2, 6-3 4-31, 6-3

near-optimal solutions, 2-5 unit execution time systems, 2-4, 2-15

NP-complete, 1-1, 1-2, 1-4, 1-7, 1-9, 1-10,

2-4-2-6, 2-9, 2-11, 4-1, 4-35-4-42,

6-3, C-3

NP-complete problems, 1-7, 3-1, 6-4

optimal schedules, 1-1, 1-2, 1-4, 1-5, 1-7-

1-9, 2-6, 2-9, 2-11, 2-12, 2-14, 3-3,

3-5, 3-8, 3-10-3-12, 3-14, 4-1, 4-6,

A-I

optimal solutions, 3-14

pipelined mapping, 2-14

polynomial-time algorithms, 2-9, 3-1, 3-3

2-processors, 2-9

chordal ,mplement, 2-10

heterogeneous processors, 2-11

UET forest, 2-10

IND-1



Bibliography

1. Aho, A.V., J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Bell Telephone Laboratories. 1974.

2. Armstrong, James R. Chip-Level Modeling with VHDL. Prentice Hall, Englewood
Cliffs, New Jersey, 1989.

3. Barhen, Edith et al. ROSES, A Robot Operating System Ezpert Scheduler: Method-
ological Framework. ORNL/TM-9987. CESAR-86-09. Oak Ridge National Laboratory.
August 1990.

4. Beard, R. Andrew. "Determinism of Algorithm Parallelism in NP-complete Problems
for Distributed Architectures." Master's thesis, Air Force Institute of Technology,
Wright-Patterson Air Force Base, Ohio, December 1989.

5. Bertsekas, Dimitri P. and John N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Prentice-Hall, Inc. Englewood Cliffs, New Jersey. 1989.

6. Bokhari, Shahid H. Assignment Problems in Parallel and Distributed Computing.
Kluwer Academic Publishers. Norwell, Massachusetts. 1987.

7. Brassard, Giles and Paul Bratley. Algorithmics: Theory and Practice. Prentice Hall,
Englewood Cliffs, New Jersey, First edition, 1988.

8. Beard, R. Andrew and Gary B. Lamont. Compendium of Parallel Programs. Electrical
Engineering Department, Air Force Institute of Technology. November 1989.

9. Casavant, T.L. and J.G. Kuhl. "Taxonomy of Scheduling in Distributed Computing
Systems." IEEE Transactions on Software Engineering. Vol 14. No 2. February 1988.

10. Coffman, E.G., et al. Computer and Job Shop Scheduling Theory. New York: John
Wiley & Sons, Inc., 1976.

11. Corps Battle Analyzer (CORBAN) Operations Guide. Volume IV. April 1986.

12. El-Rewini Hesham and T.G. Lewis. "Scheduling Parallel Program Tasks onto Arbi-
trary Target Machines." Journal of Parallel and Distributed Computing, 9, 138-153.
June 1990.

13. Fox, G., M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems
on Concurrent Processors., Englewood Cliffs, New Jersey: Prentice-Hall, 1988.

14. Garey M.R. and D.S. Johnson Miller Papadimitriou. "Complexity of Coloring Circular
Arcs and Chords." SIAM J. Alg. Disc. Meth. Vol 1, No 2. June 1980.

15. Garey, M.R. and D.S. Johnson. Computers and Intractability. W.H., Freeman & Co.,
San Francisco, Ca. 1979.

16. Garfinkel, R.S. and W.J. Plotnicki. "Fixed-cycle Scheduling: A Solvable Problem with
Empty Precedence Structure." Operations Research. Vol 38. No. 4. Juiy-August 1990.

17. Garfinkel, R.S. and W.J. Plotnicki. "A Solvable Cyclic Scheduling Problem with Serial
Precedence Structure." Operations Research. Vol 28. No. 5. September-October 1980.

BIB-I



18. Goyal, Deepak K. Scheduling Processor Bound Systems, Report No. CS-76-036,
Computer Science Department, Washington State University, Pullman, Washington.
November 1976.

19. Grimaldi, Ralph P. Discrete and Combinatorial Mathematics. Addison-Wesley. June
1989.

20. Harel, David. Algorithmics, the Spirit of Computing. Addison-Wesley Publishing Com-
pany. 1987.

21. Kruatrachue, Boontee. "Static Task Scheduling and Grain Packing in Parallel Pro-
cessing Systems." PhD thesis, Oregon State University. June 1987.

22. Lamont, Gary B. et. al. Compendium of Parallel Programs. Electrical Engineering
Department, Air Force Institute of Technology. December 1990.

23. Lee, Ann K. "An Empiracal Study of Combining Communicating Processes in a Par-
allel Discrete-Event Simulation." MS thesis, AFIT/GCS/ENG/90D-08. School of En-
gineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, De-
cember 1990.

24. Lee, Edward Ashford and David G. Messerschmitt. "Static Scheduling of Synchronous
Data Flow Programs for Digital Signal Processing." IEEE Transactions on Comput-
ers. Vol C-36, No. 1, January 1987. pp. 24-35.

25. Lewis, T.G. et al. "Task Grapher: A Tool for Scheduling Parallel Program Tasks."
Fifth Distributed Memory Computing Conference. Charleston, South Carolina. April
1990.

26. Nilsson, Nils J. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill Pub-
lishing. 1971.

27. Orlin, James B. "Minimizing the Number jof Vehicles to Meet a Fixed Periodic Sched-
ule: An Application of Periodic Posets. Operations Research Vol 30, No 4, July-August
1982.

28. Papadimitriou, C.H. and M. Yannakakis, Scheduling Interval-Ordered Tasks, Report
No. TR-11-78, Center for Research in Computing Technology, Harvard University,
Cambridge, MA. 1978.

29. Pearl, Judea. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison Wesley, Reading, Massachusetts, 1984.

30. Proicou, Michael C. "Distributed Kernel for Simulation of the VHSIC Hardware De-
scription Language". MS thesis, AFIT/GCS/ENG/89D-14. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1989.

31. Ragsdale, Susann, e, al. Parallel Programming Primer. Intel Corporation. March
1990.

32. Seward, Walter D. "Optimal Multiprocessor Schedulingj of Periodic Tasks in a Real-
Time Environment." PhD Dissertation, AFIT/DS/EE/79-2. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB 011, 1979.

I IB-2



33. Ullman, J.D. "NP-Complete Scheduling Problems." Journal of Computer and System
Sciences 10, 384-395, 1975.

34. Ullman, J.D. "Polynomial Complete Scheduling Problems." ACM Operating Systems
Review. Vol 7, No 4. 1973.

BIB-3


