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Preface

This report is a collection of material that has been used
in courses on ‘search, detection and localization modeling. 1Its
organization follows to Some extent material by S. M. Pollock in
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is listed in the report bibliography. Tre report is not intended
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does not provide the depth of coverage that is found in the book
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I. Detection Models and Signal Detection Theory

Signal detection theory is the basis for analyzing the
detection models that are described in this report. In signal
detection theory, the decision making portion of a detection systen
is called the receiver and a detection experiment is the analysis
by a receiver of input data observed during some time interval.
The data that is related to a target is called signal. The data
that is not related to the target is called noise. In general, the
target data is associated with a localization region that in some
cases 1is called a resolution cell. In a detection experiment,
either the event H, = (the receiver input is noise) or its
compliment H, = {the receiver input is signal and noise} occur.
In the first detection models that are described ir. this report,
after analysis of the input data by the receiver, either the event
D, ={the receiver decides the input is noise} or its complement
D, = {the receiver decides the input is signal and noise} also
occurs. Detection models for which D, is the complement of D,
are called binary detection models or forced choice detection
models. Eight events which are important in binary detection
models are indicated in the Venn diagram of Figure 1.

The Venn diagram emphasizes a decision problem that is
associated with a receiver that can be modeled using a binary
detection model in a forced choice situation. The problem is this:

Under what conditions shculd the event D, occur? That is, under

what conditions should a receiver decide that the input data




H, H,

D, n HO D0 n H,
missed missed D,
false alarm detection
false alarm detection D,
D, n H, D, N H,
"Figure 1. Eight events that are important in binary detection

models.

accumulated during the observation time interval is signal and
noise? Four criteria that provide a basis for answering this
question are discussed in Section II. 1In the discussion and in the
development of the detection models that are based these criteria,
the following notation and terminology is used: p; = P(D,|H),
the conditional probability of D; given Hj, is called the false
alarm probability; p, = P(D,|H;), the conditional probability of
D, given H,, is called the detection probability and P = P(H,),
the probability of H,, is called the prior probability.

In the detection models, the input to a receiver is determined
by a stochastic process that has the follewing chacacteristics: It
is a random noise process when there is no target data and it is a
random noise process plus a signal process when there is target
data. Although the receiver input in some cases may appear to be
determined by a continuous parameter stochastic process, because of

the finite amount of data contained in a bounded sequence of finite
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length, a discrete parameter stochastic process is sufficient to
determine the receiver input in thece cases. This is established
formally by the stochastic sampling theorem. Consegquently, in
these models, the input to a receiver is determined by a sequence
of random variables Y,, *-- , Y and an observation yields a
sequence of values y,,... , ¥,

Three detection models are described in Section III. In the
first model, the signal process is a d2terministic process. That
is, the signal data can be determined prior to its gener—~tion. 1In
the second and third models, the signal process is a random
process. Therefore, the noise data can not be determined prior to
its generation except in terms of its statistical characteristics.
To define a random noise preocess or a random signal process, only
the joint distribution of the finite sequence of random variables
that determine the process needs to be specified. If the signal
process is a deterministic process, the signal values cun be

determined before an observation is performed. To define the

process in this case, only these values need to be specified.




II. Decision Criteria

To simplify the discussion of decision criteria and decision
rules, a receiver's input will be assumed to be determined by a
single decision random variable Y. In this case, the input
process in determined by the conditicaal distribution function
F,(y|H;) when the input is noise alone and by the conditional
diétribution function F,(y|H,) when the input is signal plus
noise. |

The condition that a receiver's input is required to
satisfy in order that the event D, will occur can be specified in
terms of a decision rule. For the assumed case, a decision rule is
a rule which determines for every observable value of Y the
decision that the receiver is to make. The decision rule can be
considered to be a function ¢(y) which relates each observable
value of y to one or the other of the following two decisions:

d, = "the receiver input was noise"

d, "the receiver input was signal and noise".

Choosing a decision rule ¢(y) defines a s2t Q of observable
values of Y such that the event D, = {( Y e o1 }.

The problem which was considered in Section I can now be
restated in the following way: What criterion should be adopted in
order to determine a decision 1ule or, what is equivalent, its
corresponding set @ ? A desirable characteristic for a criterion
is suggested by the following argument: Consider the odds in favor

of H, given y 1is observed. That is, consider




P(H,|Y = y)/P(H,|]Y = y). One might expect that y would be a
member of the set 1 if and only if y made this ratio equal to
or greater than some value k. But this is equivalent to defining
1 as follows: 1= (y : L(y) 2 K} where L(y) is the likelihood
ratio associated with an observed value y and K 1is a constant
related to the constant k. This suggests that choosing an optimum
criterion is equivalent to choosing an optimum value for K.

Four specific decision criteria are defined next in terﬁs of
K. For each criterion, 0 has the above form. But for each
criterion the choice of K is different. The decision criteria
are:

1. The Neyman-Pearson Criterion: Choose 1 so that p, is
a maximum subject to the constraint that p, £ a where « is a
specified value. For a continuous decision random variable, the
constant K 1is chosen so that p; =

2. The Bayes Criterion: Choose I so that the expected cost

of a receiver's decision is a minimum. For a continuous decision

random variable, if Cyg > Gy and ¢, > ¢,y where Ci; is the cost

of Dirw}g, then K = [(c,4=Cy)/ (CSo4mcyy) 1(1-P) /P,

3. The Ideal Observer Criterion: Choose 1 so that the
probability that the receiver makes an incorrect decision is a
mininum. For a cortinuous decision random variable, K = (1-P)/P.

4. The Minimax Criterion: Choose 1 when P is unknown so
that the maximum expected cost of a receiver's decision is a
minimum. For a continuous decision random variable, if ¢, > ¢

and Cg > €y, then K = [(c,=Cy )/ (Ce=Cyy) 1(1-P")/P" . Here, P’ is




the value of the prior probability P that would make the expected
cost of a receiver's decision a maximum if P were known and the
Bayes Criterion were used.

If a model which specifies the conditional distributions
F,(y|H) and F,(y|H,) and a decision rule are adopted, then the
value of p, and the value of p, are determined. This pair of
values (P¢Pg) is called a receiver operating point. If the

decision rule results from using a likelihood ratic eriterion such

as one of the four listed above, then it will involve the parameter

K since O = {(y: L(y) 2 K). And, for a given value of XK, since
1 uniquely determines the pair (p,,py), a single operating point
results. By varying K, a set of operating points can be generated
which determines a receiver operating characteristic curve or ROC
curve. Different ROC curves can be produced by changing either one
or both of the conditional distributions which implies either a
change in the signal process or a change in the noise process.

A decision rule which results from using a likelihood ratio
criterion in a model in which the input process is determined by a
set of m random variables can be expressed in terms of a set 0
as follows: 0 = ( (Y40 ' , ¥Yo) ¢ L(¥yr "°° Y)) 2 K} where K

is specified in the same way that it is when m = 1.




III. Three Binary Detection Models

Three detection models are examined in this section. For the
first two detection models, the input stochastic process for an
observation is defined by a time sequence of continuous random
variables. The random variables represent a sample from a
continuous parameter stochastic process which is sampled at times
_such that the random variables are incdependent. For the third
detection model, the input stochastic process is a counting process
and it is defined by a single discrete random variable that is
equal to the number of events that are counted during the
observation.

Model ¥I: In the first detection model, a sampled noise value
is a value of a normally distributed random variable with mean zero
and with known variance o¢?. And a sampled signal value is a known
value of a deterministic variable. Thus, the input process
corresponding to an observation consists of some number m of

independent normal random variables Y., , Y each with

m

variance o¢*, And, for i =1, 2, +++- , m, when a signal is not
present the mean of ¥, .is zero and when a signal is present the
mean is s,. The result of using a likelihood ratio decision rule
in the model can be expressed in terms of a random variable Z.
This random variable is called a crosscorrelation statistic and it
is defined by 2 = % s.-Y, where the sun index i =1, 2, *** , m
here and in the remainder of this section. However, it is more

convenient to express the result in terms of a statistic V which

is defined by V = Z/0,. In terms of V, the two conditional




probabilities p, and p,; are determined by: p; =1 - #(v#) and
Py = 1 - #(v' - &%) where ¢ 1is the standard normal cumulative
distribution function, v, = (1/0,)(6*ln K + (1/2) T s;?), is
determined by the decision rule and d = T s,'/0' 1is called the
detection index.

Often, the input stochastic process represents a gquantity
. whose square is proportional to power. 1In such a case, the average
'receiver'input power is the random variable £ Yf/m. The expected
average receiver input noise power is N = I 0?*/m = 0? where N
is called the noise. The average receiver input signal power is
S =% s'/m where 8 is called the signal. In terms of these two
quantities, d = m- (S/N) where 8/N is called the signal~-to-noise
ratio.

If a receiver's input data can be considered to be a time
sequence of current or voltage values, in some cases a frequency
representation can be used that involves the concept of receiver
bandwidth. In these cases, the noise process is assumed to be
such that m = t/ét where +t 1is the d4integration time (the
duration of an observaticn) and &t is the time between samples
with ét = 1/[2(BW)] where BW is the bandwidth and 6t is
determined by the sampling theorem. This implies that the
detection index d = 2t- (BW)(8/N). By defining N, as the power
spectral density where N, = N/BW‘ this becomes A4 = 2t- (8/N).

In Reference 2, the conditions required ' +iis form of the

first model are called Case I. In the folli« . <=actions, this

form of the first model: p, =1~ &(v) and p,= 1 = &(v -~ a%




where d = t- (BW) (S/N) is called the Case I model. A receiver
that processes data such that it would implement a likelihood ratio
decisicn rule under the conditions of the first model is called a
matched filter or crosscorrelation detector. If the description
of the input noise is adequate, a Case I model can be used to
obtain an estimate o¢f an upper bound on a detection system's
performance, since all the information necessary to define the
signal is assumed to be known.

Model II: In the second detection model, a sampled noise
value is ar independent normal random variable with mean zero and
known variance o). And, a sampled signal value is an independent
random variable with mean zero and known variance ¢*. Thus, the
input process corresponding to an observation consists of some
number m of independent normal random variables Y,,---, Y  each
with mean zero and each with variance o¢? when a signal is not
present and each with variance o! + 0 when a signal is present.
The result of applying a likelihood ratio decision rule in this
model can be expressed in terms of a statistic X which is defined
by X =12 v/ .

When a signal is not present, the statistic X/N has a
chi-square distribution with m degrees of freedom. When a signal
is present, the statistic X/(N+S) has a chi-square distribution
with m degrees of freedom. So, in terms of these statistics, the
two conditicnal probabilities p, and p, are: p, = P(X!, 2 x'/N)
and py = P{X* 2 (xﬂﬂU[l/(l+S/N)]) where X° is a chi-square

random variable with m degrees of freedom, X' is a number which




is determined by the decision rule and S/N is the signal-to-noise

A receiver that would implement a likelihood ratio decision

ratio.

rule under the conditions of the second model is called an energy

detector or square law detector.

The mean of a chi-~square random variable with m degrees of

freedom is m and the variance is 2m. By the central limit .

théorem, as the number of degrees ¢f freedom of a chi-square random

variable becomes large, it can be approximated by a normal random

For m sufficiently

variable that has the same mean and variance.
P =1~ &[(x/N - m)/(2m)%]

large, after using this approximation,

And, with

and p, =1 - &{([1/(1+S/N)][x"/N = m = m* (S/HN)]/(2m)%).

the approximations

"= [x'/N - m)/(2m)*] and d = (m/2)(S/N)?,

v =
are: p, =1 - &(v') and p, =1 - {[1/(1+S/N)1(v" - a% ). Lf the

hien Py

N 1is significantly larger than the signal 5, <t

noise

can be further approximated by: Py =1 -3(v" - d@%) ). The concept

= 2¢* (BW) , then the

of bandwidth is applicable so that m
In Reference 2, the conditions

detection index d = t- (BW) (S/N)?.

required for these approximations are called Case 1I. In the

following sections, the last limiting form of the second model:

P; =1 - #(v) and p,=1 - &#(v' - d%) where 4 = t- (BW)(8/N)? ,

m>»> 1 and 8/M << 1 is called the Case II model.

a sanmpled noise

Model III: In the third detection model,

value and a sampled signal value are values of independent random

variables that are determined by independent Poisson processes that

are observed for a time interval t. The noise process is

the signal process is

characterized by a counting rate a,

10



characterized by a counting rate «,Z and the noise and signal
processes are additive. This implies that when the input is noise
alone, the input is a Poisson random variable with parameter at,
the expected number of noise counts, and when the input is signal
and noise, the input is a Poisson random variable with parameter
(¢ + a))t, the expected number of noise and signal counts.

For a likelihood ratio decision rule, p, =1 - P(y";at) and
Py =1 - Plyi(a + a)t] where y is a threshold value thét is
determined by the decision rule and P(y:©) represents the Poisson
cumulative distribution function with parameter 6. When 6 is
large, the cumulative distribution function can be approximated by
the cumulative distribution function of a normal random variable
that has the same mean and variance. Using this approximation for
cases where at is sufficiently large, since both the mean and
variance of a Poisson random variable are equal, p; = 1 ~ 3(V')
and py =1~ &{[1/(1 + a/a)"} (v’ ~ @%)} where V' = (y - at)/(at)*
and d = at- (a/a)?*. If, in addition, a is significantly larger
than o, then p; and p, can be approximated by: p, =1 - & (v")
and p, = 1 - §(v- - d% which is identical to the form of the
expression for p, and p; for the Case I and Case II models.
And, the approximations: p; =1 - #(v') and py,=1 - #(v' - a%
where a/a << 1 and at »>> 1 could be called the Case III model.

This Case III model could be used to describe a receiver whose

input for an observation is the number of photons counted by a

radiation detector in situations where at, the expected number of




counts when no signal is present, is of the order of thirty or
more.

When a likelihood ratio decision rule is used in the three
models discussed above, for the first model and under 1imiting
conditions for the second and third models, the following result is
obtained: p,; =1~ #(v) and p,=1 ~ #(v' - &%) where the value
of v depends on the noise power N for the first and second

models. For a sonar receiver described by the first model, that

is, by the Case I model: d = 2t: (BW)(S/N). For a sonar receiver

described under the limiting conditions for the second model, that
is, by the Case II model, d = t* (BW)(S/N)*. This implies that in
either a Case I model or a Case II model of a sonar receiver, the
detection index d is a function of the time bandwidth product
t' (BW) and the signal-to-noisc ratio S/N. Since sonar equations
relate S/N to system, target and environmental parameters, a
sonar equation can be used to relate S/N to these parameters in

a model of a sonar receiver.




IV. General Detection Models

The detection models that have been considered to this point
are based on binary detection theory. After each observation, a
receiver decides either that the input data corresponding tr the
observation was noise or else it decides it was signal plus noise.
However, in some detection systems this decision is not prior to
-ihe next observation. 1In a computational sense, a model of such a
detection system is generally more complex than a binary detection
model. To illustrate this, consider an active sonar system whose
receiver includes an operator. Suppose the probability that the
operator will detect a target echo has been determined in a
laboratory experimenit in which the operator was required to decide
after each observation that either the input was signal and noise
or the input was noise alone. 1In addition, suppose that under
operational conditions the operator normally delays this decision.
Then, in general, the probability that the operator will decide
that the input corresponding to a resolution cell that contains a
target is a target echo and noise will not be equal to the
probability of the event in the forced choice experiment. And, in
addition, the probability that the operator will decide the input
corresponding to a resolution cell that does not contain a target
is a target echo and noise will not be equal to the probability of

this event in the forced choice experiment, Consequently, in

general, the value of both Py and Py for an operational

environment will be different than that for the laboratory

environment.




One model that has been proposed to deal with this kind of
situation defines the event that a receiver decides that the input
corresponding to a resolution cell is signal and noise to be
equivalent to the event that out of n consecutive observations at
least k of them would result in the decision that the input was
signal and noise in a forced choice experiment. The model is said
-to be based on an k-out-of-n detection criterion. With this
‘criterioﬁ, the pfbbability that a target will be first detected on
the j" observation can be found as follows: Determine the 2}
sequences of forced choice responses that could result for a
sequence of j consecutive observations. Next, determine the
probability of occurrence for each sequence that first satisfies
the k-out-of-n detection criterion on the j* observation. The
probability of first detection on the j'" observation is equal to

the sum of these probabilities. The cumulative probability of

detection at the j'™ observation is the sum of the probabilities of

first detection on the i'" owservation for i =1, 2, - , j.




V. 8ignal-to-Noise Ratio Detection Models

In some radar and sonar Jdetection models, for a specified
value of p;, a minimum acceptable value of p; is defined. This
minimum acceptable value of p; and the specified value of p,
define what can be called a minimum acceptable signal-to~-noise
ratio (S/N),, if Py is a nondecreasing function of the
signal-to~noise ratio. In some sonar detection models, (S/N), in
decibels is called the detection threshold DT. In symbols, the
detection threshold DT = 10 log(S/N),. If the minimum acceptable
value of p, is .5, then DT is usually called the recognition
differential RD. The difference between the signal-to-noise ratio
in decibels and RD (or DT) is called the signal excess 8E. In
symbols, the signal excess S8E = 10 log{8/N) ~ RD.

One interpretation of signal excess 1is that for a
localization region containing a target detection occurs with
probability one if SE 2 0 and with probability zero if SE < 0.
This interpretation provides the basis for defining detection in
the three encounter detection models that are discussed in Section
VII. A more consistent interpretation is: If SE 2 0, then the
probability of detection p, is greater than or equal to the
minimum acceptakle value. (The minimum acceptable value is .5 if
recognition differential RD 1is used to define signal excess.)
For cases where p,; increases rapidly with signal excess in the

neighborhood of zero signal excess, the two interpretations may be

operationally equivalent. For a discussion of this point as well




as a discussion of an operational case in which receiver decisions
are delayed, see Reference 3.

The signal excess (signal-to-noise ratio) detection model
provides a basis for detection models describing nonstationary
noise and signal processes and randomly changing decision rules.
This is illustrated by the models discussed in Section VII. 1In
addition, the signal excess model provides a basis for detection
models describing delayed receiver decision models, This is
illustrated by the active sonar detection meodels in Reference 4
and Reference § that are based on a k-out-of-n detection
criterion. In both of these models, the signal-to-noise ratio and
the recognition differential are random variables.

Using X(t) to represent a random variable corresponding to
an index time t and a subscript to identify the random variable
in such models, for a passive sonar receiver, the signal-to-noise
ratio in decibels associated with a decision at the index time is:
X (B) = X, (t) - [X,(t) - X, (¥)]. In this expression, SL
represents source level, TL represents transmission loss, NL
represents noise level and DI represents directivity index.
Since signal excess SE is defined to be the difference in

decibels between the signal-to-noise ratio and the recognition

differential (or detection threshold), it too is a random variable

and, for any decision time t, one can write:
(1) Xe(t) = X, (t) = X, (t) = (X, (t) - X, (£)] = X (t).
The distributions of the random variables on the right side of

Equation 1 determine the distribution of the signal excess, 1In

16




the passive sonar detection model described in Reference 6, X (t),
Xo(t) and, in effect, X, (t) are normally distributed random
variables while X, (B) is a uniformly  distributed random
variable. In the three signal excess models that are described in
Section VII, all of the random variables in Equation 1 are
normally disﬁributed.

It is sometimes convenient to write Equation 1 as:
(2) X (t) = SE(t) + X(t).
In Equation 2, SE(t) is the expected value of the signal excess
determined by the following expected value equation:
(3) SE(t) = SL(t) - TL(t) - [NL(t) = DI(t)] - RD(t)
where each term on the right represents the expected value of the
indicated random variable and X(t) is a random variable that
determines the stochastic character of the signal excess. Since
SE(t) 1is the mean of X (t): by Equation 2, the mean of X(t) is
equal to zero and the standard deviation of X(t) is equal to the
standard deviation of X (t). If the quantities on the right side

of Equation 1 are independent random variables, it implies that

2 2 2

2 ? 1
0 =05, + 0, *+ 0, +0,,+ 0, Where o0 represents the standard

deviation of X, (t). This relation has been used to determine a

standard deviation for the signal excess in operational models.




VI. General Encounter Models

A basic problem associated with search modeling is that of
determining the probability that a target will be detected by a
detection system during an encounter with one or more detection
systems. In the encounter models that are considered in this
report, during a search, observations are made of a series of
localization regions. The probability of detection resulting from
an. observation is P(D, n H,). And, the probability of a false
élarm is P(D, n Hy)). TIn these models, the time to resolve a false
alarm is ignored. However, Py and p; are assumed to be
determined by some criterion such that p, is an operationally
reasonable value.

Using the order number of a decision rather than its time as
an index and a random variable N to represent the order number at
which detection first occurs, the probability of detection during
an encounter can be written as:

P(N £ n) = P(N <m) + P(N=m+1) + - + P(N = n)
or as:

P(N<n) =1~ [1=PB(N2m](l=ag,) "+ (1-g)

where g, = P(N = i|N < i-1) is the probability of the event
detection at the i'™ decision conditioned on the event no detection

at an earlier decision and 1 £ m € n. The second expression is

generally of greater interest than the first expression, since g

can usually be more directly related to operational parameters such
as range and environmental conditions that determine a target‘'s
detectability than can P(N = i).

18




With a time rather than the order number to index a decision
and a random variable T to represent the time index at which
detection first occurs, P(N < n! becomes P(T £ £t ) with
P(T=<t) =1-1[1-P(T<¢t)I1=-g(t,)] - [1- g(t)]
where g(t;) = P(T = t,|T <t,.).

If g(t) << 1 for i = 1,2, *++ ,n, then, to a first
-épproximation, Infl - g(t))] = -g(t;) for 1 =1,2, -+ ,n and
P(T=<t) =1-1[1~P(T<t)) exp[-= g(t;)]. This follows since
P(T£t)=1-=-1[1-P(T< t)] exp(Z In(l - g(t;)] where the sum
index i =m+l, -+ , n. A continuous analog to this approximation
can be used to describe an encounter fcr cases where g(t;) << 1
for i =m, m+¥l, -+ , n and decisions during the encounter can be
considered to occur continuously. That 1is, the time of an
ohservation corresponding to a decision and the time between
decisions are both negligible relative to the time of the
encounter.

The analog can be developed as follows: First, let 6t be

the time between decisions, then t, = i-6t and the probability of

detection P(T < t) =1-[1 - P(T < t)]-exp[-Z 7(t;)-46t] where

7(t;) = (1/8t)g(t,) 1is a detection rate function

(a probability of detecticn per unit time) and, in terms of ét,

the probability g(t;,) = P[T = i-6t|T < (i-1)-6t].

If T 1is considered to be a continuous random variable, the
expression for ©P(T < t)) above indicates that the sum in the
exponent should be replaced by an integral whose integrand is a

continuous function 71(t). 1If 7(t) can be determined, then, with
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ga(t,) as a gquide, P(T < t), the cumulative probability of
detection, can be defined by:

(4) T(t) = lim {(1/6t) P(t < T < t+6t|T < t))

where the limit is for 6t approaching zero. Equation 4 implies
the following differential equation: dp(t)/dt = [1 - p(t)]-r(t)

where p(t) = P(T £ t). A solution to this eguation is:

(5) ,: P(Tst,) =1-[1—P(T$tm)]exp[-f:'1:(t)dt]
where t is the time index for a decision during an encounter, tm
is some time during the encounter and tn > tm. A 7(t) that is
based on a visual detection model is described in Reference 7. If
the detection capability of a detection system is assumed to depend
on a target's position relative to the detection system during an
encounter but not to depend on the clock time, then the time index
of a decision can be a relative index that determines the target
position that is assocjated with a decision rather than the clock
time associated with the decision.

The above results apply to the case of an encounter between a
target and a collection of detection systems. However, if the
detection systems are not collocated, it is generally convenient to
describe encounters of this kind in terms of encounters between the
target and the individual detection systems. 1In either case, if
the event target detection Inx a detection system is not
independent of the event for other detection systems, then in order
to describe this in an encounter model the correlation between the

input to the detection system and the inputs to the other detection
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systems must be specified. This has been done in some wodels as
follows: First determine the probability of detection for each
system acting alone. Let P, be the probability that the i*"
system detects the target during the encounter under this
condition. Next, consider two cases: In the first case, the
random factors that determine detection for a system are
independent of those that determine detection for the remaining
systems. In the second case, the random factors that determine
detection for the systems are completely dependent. In the first
case, the probability that at least one system detects the target
is given by: P, =1 - (1 - P)(1 - PF,) -+ (1 - P,) where n is
the number of detection systems involved. 1In the second case, the

probability that none of the systems detect the target is given by:

l1~-r,=1-~F where P 2P fori=1,2, " ,n since if the

mth

system does not detect the target, none of the remaining
systems will detect it. The probability that at least one system
detects the target is given by: P = a'F; + (1 - a)*P, where «

determines the degree of correlation and 0 < a £ 1. A way to

determine a value for a«a is described in Reference 8.




ViX. Three Signal Excess Encounter Models

In the three models described in this section, detection is
defined in terms of signal excess as it is in Section V. Each
model determines a cumulative probability of detection for a target
in an encounter with a passive sonar system. An observation in the
models is indexed by time and the index can usually be considered
to be the time at the end of the observation. During an encounter,
6bservations are made of one or a series of localization regioné.
By implication, a false alarm can occur for a localization region
that does not contain a target during an observation since the
value of RD (or DT) is determined by some specified false alarm
probability. However, as they are generally used, signal excess
models do not account for false alarms. This can be viewed as
equivalent to modeling the time to resolve a false alarr. to be
effectively zero.

To determine signal excess in the models, it is convenient to
use Equation 2. For each decision in an encounter, there is a
random variable X(t) defined by Equation 2 that determines the
random character of the signal excess. For a sequence of
decisions, the set of these random variables ordered by their time
index constitutes a stochastic process. And the Jjoint
distributions of these random variables determines the nature of
the stochastic process. 1In the three encounter models described in

this section, the stochastic process is called a lawbda-sigma jump

process. The time series that are generated by lambda-sigma jump

processes are represented by the plot in Figure 2 below. The
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jumps in the time series occur at times determined by a Poisson

process with a mean jump rate A. This implies that the time

between jumps is a random variable with an exponential distribution
and that the expected times between jumps

T is equal to the
reciprocal of A.

dB

1 T I T time

Figure 2. A time series representing a realization of a lambda-

sigma jump process. On the plot, ¢ in 4B egquals one unit on

the vertical uxis and 7 equals one time unit on the horizontal

axis.

From Figure 2, note that the observed values of neighboring

randem variables are equal unless a jump has occurred between the

observations. When a jump occurs, the first random variable after

the jump is normally distributed with mean zero and variance o¢?

and it is independent of all the random variables before the jump.

Conditioned on a jump pattern, this random variable and all the

random variables between it and the next jump are dependent and the
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correlation coefficient between any pair is one. However, since

the jumps occur randomly, knowing the value of the signal excess

with certainty at some time does not determine the values of the
In the

signal excess with certainty at neighboring times.

unconditioned case, the correlation coefficient between the random
For this reason,

variables X(t) and X(t+r) 1is equal to 1/e.

is referred to as a relaxation time.

It appears that the use of the lambda-sigma jump process to

T

describe the stochastic character of signal excess is based more on
In this regard,

past practice than on experimental justification.
it can be seen that

see keference 9. By referring to Equation 1,

the signal excess stochastic process is determined by the sum of

the stochastic processes that determine the random variables on the

Although the sum of a collaction of

right side of this equation.

in general,

normal random variables is a normal rando.n variable,

the sum of a collection of lambda~sigma jump processes is not a

This suggests that if the lambda-sigma

lambda-sigma jump process.

junp process does adequately describe the variability of the signal

excess, then the majority of the variability of the signal excess

If that component is

is due to a single one of its components.

transmission loss, then there is an additional complication: The

internal wave field appears to be a major factor in determining the

For example, see

temporal variability of the transmission loss.
the spatial variability of the

Reference 10. If this is true,
also be a factor. In this case,

internal wave field should

movement relative to the internal wave field by a source or a
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receiver should generate variability in the signal excess which
would depend on the spatial variability of the field and the
relative motion,

In the three encounter models described below, detection is
defined in terms of signal excess and decisions are indexed by a
time that can usually be considered to be the time of the decision.
~buring an encounter, observations are made sequentially of one or
a series of 1localization regions (resolution cells). For a
locaiization region that dces not contain a target, the signal
observed during the observation of the region is zero. For these
observations, the time to resolve a false alarm is zero. However,
since the value of RD (or DT) is finite and consequentiy the
false alarm probability is not zero, by implication, the cost
associated with a false alarm is not zero.

The First Passive Sonar Encounter Detection Model: This model
describes an encounter in terms of a series of decisions with each
decision based on the signal excess X (t) at a time corresponding
to the end of an observation. The observations are of equal
duration and the integration time that deteimines the recognition
differential is equal to the duration of the observations. 1In the
model, X,(t) 1is determined by a lambda-sigma jump process. Foxr
an encounter of m observations in which SE(t) is unimodal and
in which the time of the single maximum is prior to or at the end
of the encounter, it is shown in Reference 11 that the probability
p that detection will occur during the encounter is given by the

following equation:




(6) p 1 -0 =p)/(1 -8Bp)J(1-8p) *** (1 - B"p,)

where 8 = 1 - exp(-ét/7) and where p; = ¢[SE(t,)/0] for the
index i =1, 2, -+ , m. Here, 46t indicates the duration of an
observation and -] indicates the standard normal cumulative
distribution function as before. The integer ¢ is the index of
a decision time t_ for which SE(t)) is greater than or equal to
: SE(ti) for any time t;, and t, £ t < t,.

As tT appfoacheS'zero, 8 approaches one and Egquation 6

approaches:

(7) pP=1-(-p) "~ (1 -p).

In this 1limit, the signal excess random variables are all
independent. Note that Equation 7 applies without the condition
that SE(t) be unimodal.

As 1 approaches infinity, £ approaches zero and, in this
case, Equation 6 approaches:

(8) p = p,..

In this limit, the correlation coefficient hetween any pair of
signal excess random variables is equal to one. Note that
Equation 8 also applies without the condition that SE(t) be
unimodal. Equation 8 defines a complete dependence encounter
model.

The Second Passive Sonar Encounter Detection Model: This
model is in a sense a third limiting form of the first passive
sonar encounter detection model. In this limit, the time ét
between decisions approaches zero. However, in this limit the

integration time that determines the recognition differential is
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not equal to ét and it does not approach zero. It is, in effect,
chosen by the user of the model through the user's choice of the
value for the recognition differential. For an encounter that
beginé at t, and ends at t, and for which X, (t) is determined
by a lambda-sigma jump process and SE(t) is

unimodal, it is shown in Reference 11 that for this 1limit,

Equation 6 has the following form:

(9) p=1-11-p(to)lexp[-1[ “p(t) de)

where p(t) = ¢[SE(t)/o] and where now t_ is the encounter time
such that SE(t)) 1is greater than equal to SE(t) for any other
encounter time t and t, St st

The Third Passive Sonar Encounter Detection Model: This
model describes an encounter between a target and a passive sonar
detection system in which detection occurs during an encounter if
the average value of the square of the continuously observed
signal-to-noise ratio over a time interval of length u is gareater
than or equal to the square of the signal-to-noise ratio that
determines the recognition differential for an integration time
equal to u. With R(s) the random signal-to-noise ratio at a
time s and R (u) the random signal-to-noise ratio that

determines R(s) for an integration time u, detection occurs at

the first time t that the follewing inequality is satisfied:




(10) (l/u)f:ﬂ[R(s)/R%(u)]zdszl

Here, the time origin is chosen so that t 2 0 and the integration
time u=t for t<t, and u=1t, for t 2 t, where t, is a
maximum intggration time. The .random integrand in the inequality
is related to the random signal excess at the time s for an
infegration time wu. The relation is:

(11) 10 log [R(s)/R (u)]}* = 2(SE(s;u) + X(s)]

vhere SE(s;u) is the expected value of the signal excess at a
time s for an integration time u and X(s) is the random
component of the signal excess at the time s. In the model, X(s)
is determined by a lambda-sigma jump process and SE(s;u) is
determined by an expected value sonar equation with a recognition
differential RD(u) = 10 log r,(u). Here, 1r,(t) is the value of
the signal-to-noise ratio that gives a probability of detection
equal to .5 for an integration time t and a specified
probability of false alarm p,. With the signal detection process
described by a Case II signal detection model, the detection index
necessary to give the required operating point (p,,.5) is related
to the integration time t and the signal-to-noise ratio r,(t)
by:

(12) a = u (BW)[r,(t)]*

where BW is the bandwidth of the receiver. For a spectrum
analyzer, BW would be the bandwidth corresponding to a given
frequency resolution and d would be the detection index required

in order to be at the operating point (p,,.5) for a signal that
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was contained within a bandwidth BW. Since d in Equation 12
must be the same for t =u and t = t,

(13)  RD{u) = 5 log(ty,/u) + RD(t,)

where t, is the maximum integration time. Then, since

SE(siu) - SE(s:t;) = RD(t;) - RD{(u), by using Equation 13 and

Equation 11, Relation 10 becomes:

t D SE(g: p.) mEe ;
(14) 10(1/5) [X(s) +SE(5;ty) Slog(to)ldszl
t-u

where as above the time origin is chosen so that t > 0

., the
integration time u =t for t<t, and u=¢t; for t2z2t, and
where SE(s;t,) is the expected value of the signal excess at the
time s for a recognition differential determined by an
integraticn time ¢,. In an encounter, detection occurs the first
time that Relation 14 1is satisfied.

A« © noted in Reference 12, the appeal of the Third Passive
Sonar En. nter Detection Model relative to the Second and First
Passive Sorar Encounter Detection Models is that it appears to more
closely desc.ibe the detection process in passive sonar detection
systems thai display their processed data to an operator in a
continuous manner over a time window of duration t,;. However,

results reported in Reference 13 indicate that the difference

between the three models may not be significant in some types of

encounters.




VIII. 8Straight Line Encounters

In general, a range r, can be defined beyond which the
probability of detecting a target based on an observation is
effectively zero. For example, the range to a radar horizon. 1In
this report, an encounter between a target and a detection system
exists when the range between the target and the detection system
is less than or equal to r,. Suppose r, 1is small enough so that
when ﬁhe target and the detection system are having an encounter
they can be considered to be mcving on planes parallel to & tangent
plane to the earth's surface at a point in their vicinity. In this
case, if the target and detection system maintain a constant course
and speed during the encounter, it is called a straight 1line
encounter.

A straight line encounter can be described in terms of a two
dimensional rectangular coordinate system whose plane is parallel
to the tangent plane to the earth. If the coordinate system is
stationary relative to the detection system with the detection
system located at the origin and is oriented so that the target's
motion is parallel to the y-axis and is in the positive
y-direction, then the target's x-coordinate during a straight
line encounter will be constant. The constant is equal to the
target's horizontal range at the closest point of approach (CPA)
on tha straight line track on which the target is moving relative

to the detection system during the encounter. This range is called

the target's lateral range.




A complete straight 1line encounter is a straight 1line
encounter that begins at a range from a detection system that is
greater than or equal to r, and continues past CPA to a range
from the detection system that is again equal to or greater than
r,. Let p(x) be the cumulative probability that a target is
detected by a detection system in a complete straight 1line

~éncounter in which the target's lateral range is x. Then the
function p(x) defines what is called a lateral range cuxrve oOr
lateral range function.

Let p be the probability that a target is detected during a
complete straight line encounter. If the lateral range of a target
in a straight line encounter is assumed to be a continuous random
variable X with a uniform distribution with f,(x) = 1/a for [x]|
< a/2 and p(x) = 0 for |x| > a/2, then the probability that a
target will be detected during a complete straight line encounter

is given by:

(15) p=(1/a) [“p(x)dx

where the limits of integration can be used since the value of
p(x) is zero for |x| > a/2. Equation 15 suggests a measure of a
detection system's capability to detect a target in a straight line

encounter. The measure W is called sweep width and it is defined

in Reference 6 as:

(16) w=["p(x) dx.




In an application of the definition, the infinite limits are
replaced by a number that corresponds to a maximum detection range
for the circumstances involved. To do this may require some
analysis. For example, consider a detection system described by
the Case II model and a signal such that the maximum encounter
signal-to-noise ratio approached zero as x increased. 1In this
- case, p(x) would approach p; and the integrand in defining

.Equation'ls would not approach zero and W would increase without

limit as x 1increased.




IX. Two Intermittent signal Encounter Models

In the intermittent signal encounter models that are described
here, a straight line encounter takes place between a detection
systeﬁ and a target that at various times either emits a signal (an
acoustic transient) or is the cause of a signal (a visible wake)
during the encounter. Two cases are considered: 1In the first
case, the signals occur periodically, the signals are of length ét
and the time between the occurrence of signals is 1 where 1 >
§t. And, for the detection system, prior to the detection of a
signal, the time at which a signal will be emitted in a time
interval of length 7 is uniformly distributed over that interval.
In the second case, 8t = 0 (the signals are instantaneous) and the
signals occur at times determined by a Poisson process with 7 the
expected time between signals.

In the models, the detectability of a target signal depends on
the target's horizontal range r from the detection system where
r is determined by the characteristics of the detection system and
the target signal. 1If a signal is present while the target is
within horizontal range r, it will be detected. Otherwise, it
will not be detected. The geometry for an enccunter is shown in
Figure 3.

For an intermittent signal, the exposure time of a target

relative to a detection system is (2/w)(r* - x*)* + §t. The

models are kased on the assumption that the encounters are such
that a target is exposed for this time betwean two consecutive

signals.




For a periodic intermittent signal, if r 2 w: (v - ét)/2 , the
lateral range function for an encounter is:
p(x) =0 for |[x| >r
(17) p(x)
p(x)

1 for |x| € {(x* - [w (1 - &t)/2]1*}*

[2/(wr)](r? - x*)% + §t/17 otherwise

if r < w (7 - ét)/2 , the middle equality in Equation 17 does
ﬁot apply.

| For intermittent signals whose occurrence is determined by a
Pcisson process and for which ét = 0, the lateral range function
for an encounter is:

p(x) = 1 - exp{=[2/(wr)](x* - x*)*) for |x| sr
(18)

0 for !x| > r.

p{x)

For signals whose occurrence is determined by a Poisson process and —

for which 6t > 0, signais can overlap. If this is allowed, E

A Target f;f

<

Figure 3. The encounter geometry for the two intermittent signal

models described here.
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then Equation 18 can be modified to describe this case by adding
§t/7 to the term in the exponent of Equation 18 that is within
the square brackets. In particular, note that a modified Equation
18 can be approximated by the bottom equality in Equation 17 when
(2/wr) (r* - x*)% + §t/7 << 1. This implies that when the expected
time 7 Dbetween signals is large relative to the exposure time
(2/w) (r? - x*)* + 6t, the periodic signal model and the FPoisson
random signal model are essentially equivalent.

If r< w- (1 - 8t)/2, for a periodic interunittent signal and
an encounter such that between two consecutive signals the exposure

time is (2/w)(x* - x*)* + 6t for |x| £ r, the sweep width for

the encounter W = nmr?®/(wr) + 2xét/7 .




Cad o s

X. A Random Search Model
As the term is used here, a random search of a region is one
in which a detection system's track relative to a target consists

of a series of straight line segments which, in a limiting sense,

. are placed rardomly within a search region. Figure 4 represents

the track of a detection system performing a random search for a

fixed target in a search region bounded by a circle.

v

Figure 4. A search region and a track that could be described as

a random search track.




Three models that represent this kind of search are described

in this section. The first model is based on the following

conditions: 1. A search consists of the search of a series of

rectangular subregions that are completely contained within the
search region, whose width is determined by the maximum detection
range of the searcher's detection system on a track segment and

-whose length is egqual to the length of the detection system's

corresponding track segment. 2. Given a target is within the

search region, the probability that the target will be within a

rectangle during its search is equal to the ratio of the area of

the rectangle to the area cf the search region. 3. The track

segments are located in such a way that the event the target is in

a track segment's corresponding rectangle is independent of the

event that is in any other rectangle. 4. If the target is within

a rectangle being searched, a complete straight line encounter

occurs in which the relative track of the detection system (the

corresponding track sagment) is parallel to the long axis of the

rectangle and the 1lateral range of the target is uniformly

distributed across the width of the rectangle. 5. The probability

that the searcher's detection system will detect the target in the

encounter is p(x) where x

is the lateral range and p(x) is

the lateral range function for the encounter. 6. The probability

that the searcher’'s detection system will detect a target that is

not in the rectangle being searched is zero.



Swept Area

A

- Figure 5. A search rectangle and the track cf a searching aircraft

with a side looking detection systemn.

Based on the above conditions, the probability that a target
will be detected given it is in a search rectangle that is being

searched is given by:

(19) [ p(x) £40) ax=n/b

where f£,(x) = 1/b for -b/2 £ x £ b/2 and where f£,(x) =0 and
p{x} = 0 otherwise. Note that the left side of Egquation 19
applies to any complete straight line encounter in which the
target's lateral range for the encounter is a random variable with
a distribution corresponding to the probability density function
£,(x). The unconditional probability that the target will be
detected on the track segment is: (W/b)(8A/A) where 6A is the
area of the search rectangle associated with the track segment and
A 1is the area of the search region. With ¢ the length of the
rectangle, §A = b€ and the probability becomes: (W-2)/A.
Then, since the event that the target will be in the search

rectangle of a track segment is independent of the event that it is
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rectangle of a track segment is independent of the event that it is
in the search rectangle of any other track segment, the probability
p that a random search consisting of m track segments will
detecf the target is given hy:
1 - [1 = (W2)/Al(1 - (W &,)/A] *+- [1 - (W-£)/A] where ¢, is
the length of the i track segment. The probability is also
given by: p =1 - exp(S In[l - (W-£,)/A)) where i=1, 2, *-- ,
n. If (W-¢,)/A<<1 fori=1, 2, -*+ , n, this expression can
be approximated by:
(20) p=1- exp[-(W2)/A]
where ¢ = ¥ ¢, 1is the track length of the search. Equation 20
is known as the random search formula.

The second model of a random search is based on Equation 5 and
a rand~m search detection rate function: 7(t) = W-v(t)/A where
v(t) is the detection system's or the target's speed. With this
detection rate function and Equation 5, the random search formula
is:
(20a) P(T < £) =1 - exp {~[W L(t)]/A}
where £(t) 1is the track length for a random search that starts at

time O and ends at time t and

(20b) a(t)=f:v(s)ds.

Replacing P(T < t) by p and £(t) by £ gives Equation 20.
In the form of Equation 20a, the randem search formula indicates
explicitly the relation between the probability of detection and
the duration of a random search. Note that Equation 20a implies
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that the sweep width is independent of speed over the range of
speeds in the encounter. Reference 15 contains an example of an
extension of this model to determine the probability of detecting
a target in a random search with 71(t) = W-v/A(t) where A(t) is
the area of a disk whose radius increases with time.

A random search model can be used to determine the probability
of'detecting an intermittent target using a sweep width determined
with one of the intermittent target models described in Section Ii.
For the periodic intermittent target model, W = ([wr?/(vr) +
2rét/7] and Wvt is the area that is approximately equal to the
area searched for a track £ = vt 1if t >> 71 .

The two models each imply that the time to resolve a false
alarm is zero in a random search. However, for each model, p; and
P; can be assumed to be determined by a criterion such that p, is
less than one. Consequently, although the time to resolve false
alarms is ignored in each model, the cost associated with a false

alarm is not zero. (A model that accounts for the time to resolve

false alarms is described in Reference 14.)




XI. Ladder and Barrier Search Models

In some barrier searches, the barrier search track is a ladder
search track relative to a reference system that moves with the
target. This fact is used in the barrier search model developmer.t
that follows the two ladder search model developments below. The
:first ladder search model is referred to as an ideal ladder search
model. It can be considered to describe a ladder search with
precise navigation. The second ladder search model is referred to
as a degraded ladder search. It can be considered to describe a
ladder search track in which navigational errors result in
omissions and overlaps in coverage.

An Ideal Ladder Search Model: The model is based on the
following conditions: 1. A ladder search region is a rectangle
that contains a fixed target. 2. During a search of the region, &
searcher's detection system searches a set of m adjacent parallel
rectangular strips of width s and length b that just cover the
ladder search regicn. 3. There is a complete straight 1line
encounter between the target and the detection system during the
search of a strip. 4. The target's position in a strip is
uniformly distributed across the width of the strip. 5. If the
target is not in a rectangular strip, then the probability that the
target will be detected during the search of the strip is zero.
Because of Condition 5, targets outside of the rectangular strip
that corresponds to a track segment cannot be detected while a
detection system is on the track segment. This implies that the

lateral range function for an encounter must satisfy the relation

41




P(x) = 0 for values of the lateral range x for which the target
is outsida of the strip and, consequently, W £ s. If W =s ,

then the detection system detect the target with

Figure 6. A schematic representation of a ladder search geometry
for a case in which the searcher's track bisects the rectangular

strips.

probability one if the ladder search is completed.

The ideal ladder search model implies that if the conditions of
the model are satisfied, the probability p that a target will be
detected by a an ideal ladder search is given by:

(21) p = W/s
where W/s < 1. The quantity W/s is called the coverage factor
in this case.

A Degraded Ladder Search Model: The ideal ladder search model

implies precise navigation. A model of a ladder search is given

in Reference 6 that can be used for cases in which this is a poor
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assumption. The model which is referred to here as a degraded
ladder search model can be considered to describe navigational
inaccuracies in terms of omissions and overlaps of coverage of the
rectangular strips. It is develcped as follows: Consider a random
search in the ladder search region whose track length is equal to
the search track 1length required to complete an ideal 1ladder
~éearch, that is, a track length & = mb. The degraded ladder
search model describes the result of omissions and overlaps in a
ladder search to be such that the probability of detection for the
ladder search is equal to the probability of detection for this
random search. Consequently, since the area of the ladder search
region is msb, for the degraded ladder search model:

(22) p=1- exp(-W/s).

Although the requirement that the coverage factor W/s < 1 can be
relaxed for Equation 22, it is still an approximate condition.

The condition that the target be fixed within the rectangular
search region is critical to the models that determine both
Equation 21 and Equation 22. However, these equations are also
applicable to a search for a moving target under the conditions
that are described next.

A Barrier Search Model: A target moves with a constant course
and a constant speed u. Both the target's course and the target's
speed are known by a searcher. The searcher establishes a barrier
of width b that is perpendicular to the target's track and moves
on the barrier with a speed v > u. The barrier is designed so

that in a reference system relative to the target the barrier
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search is a ladder search that satisfies the conditions for a
ladder search that are giver above. There are two cases to
consider: 1. The barrier is established in front of the target.
2. The barrier is established behind the target.

From the search geometry for a barrier established in front of

the target, it can be seen from Figure 7 below that

-0 é-sinq(u/v) and d = vr where r = g/(v + u) is the time to move
from oné search leg to the next. The angle © and the
perpendicular distance d which depend on u, v and s, and the
width of the barrier b are the quantities that determine the

implementation of the barrier.




g
] searcher
y
b
Figure 7. A barrier search track for a barrier established in
front of the target. The track is shown in a reference system

fixed relative to the earth.

For a barrier that is established in front of a target, one of
three barrier types will result. A barrier's type is determined by
the relation of the distance 4 +to the distance
g = ut where the time t = b/(v? - u’)* is the time to complete
a search leg (cross the barrier). The barrier type is determined
as follows: 1. For g < d, the barrier is an advancing barrier.
2. For g = d, the barrier is a stationary barrier. 3. For g > d,
the barrier is a retreating barrier.

For a barrier established behind the target, there is only one

barrier type and it 1is called an overtaking barrier. For an

overtaking barrier, 6 = sin''(u/v) as for a barrier established

in front of the target. But, for an overtaking barrier,

T =s/(v -u) and d = v:'s/(v - u).
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Given that a target crosses a barrier, the probability of
detection for an ideal barrier search is given by Equation 21 and
the probability for a degraded barrier search is given by Equation
22 where the terms ideal and degraded refer to the nature of the
ladder search in the reference system moving with the target. A

discussion of an application of these two equations to a search for

a magnetic dipole target is given in Reference 16.




XII. A Target state Estimation Procedure

A target state estimation procedure based on bearing
observations is develcped in this section that generates point
estimates of a target's position and velocity vector coordinates in
a rectangular coordinate system. The procedure is based on a model
in which bearing errors are unknown and are not determined by
random variables with known distributions., Because of this,
confidence regions for the estimates are not generated by the
precedure. However, for a moving target, it illustrates general
characteristics of bearings only target motion analysis (TMA).
The model is defined as follows: 1. The target moves in a plane
with constant but unknown course and speed. 2. Observations of the
target are made from known positions at known times. 3. The

observations provide only target bearings with unknown errors.

North Y

. = ri'sin (B; - 6,)

(%, (1) ,Y,(1)] estimate

; range estimate

6, observed bearing

B; bearing estimate

[x,(1),Y,(i)] observer

x East

Figure 8. The geometry of the target motion analysis model.
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The procedure criterion is: For observations from n positions,
choose target position estimates x.(i) and 1y, (i) and target
velocity component estimates wu, and u, that make the sum of the
squares of the algebraic distance 4, between the estimated
positions and their corresponding cobserved bearing lines a minimum.

From Figure 8, the algebraic distance can be written as

d; = [%,(i) - %x,(i)]-cos &, - [y (1) - y,(i)]) -sin ©8,. Because of the

requifement that the target move with constant course and speed

during the encounter, the number of independent estimates is
reduced from 2n to 4: wu, , u, and any two position estimates
X (3, Y. (3). In the following, 3 =1 and, for i =2, 3, ---
, n, the estimates are given by:
X (1) = %, (1) + u-(t;, - ) and y. (i) = y (1) + u-(t; - t)). To
determine "best" estimates of the target state parameters, take the
partial derivative of the sum S = ¥ d;* with respect to each of
them. Then set the four partial derivatives equal to zero. This
creates four linear equations in x.(1), y,(1), u,  and u, whose
solution are the desired estimates X (1), Yy, (1), v, and u,. In
matrix notation, the equaticns can be represented by AX = B where
the elements of X ar=: x,, = x/(1), Xop = Y (1), %5 = 4y
¥,y = W,. The determinant of A will be equal to zero ir n < 4 .
Therefore, a necessary condition for a unique solution for X is
that n 2 4.

The procedure described above can also be used to estimate a

target's position at various times when both the target's course

and speed are constant and known. In particular, it can be used if
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the target is stationary so that u, and u, are both equal to

zero. In this case, since the number of unknowns is two, the
number of linear equations is also two and a necessary condition

for a unique soclution is n 2 2.

Now, suppc € the observations are at positions and t.mes that
correspond to the positions and times of an observer moving on some

-constant course at scme constant speed (including zero speed). 1In

the observation position coordinates are related by:
X, (1) = %, (1) + v, - (t; - ty)

this case,

and Yy (i) =y, (1) + v (t; - t,) where

v, and v,

are the required velocity conmponents of the observer.

Using these equations of motion, the matrix equation AX = B can

be transformed to the matrix equation AX'= 0 where the elements

of X are related to the elements of the matrix b &

by the
egugtions: xj, = % (1) - %, (1), X%}, =y, (1) -y, (1), X3 =u =V,
and x}, = u, = v,

Since the linear equations represented by AX' = ©¢ are

homogenous, they do not have a unique solution. Therefore, neither

do the equations represented by AX = B.

Consequently, in this
case, the condition n 2 ¢4

is clearly not a sufficient condition

for a unique solution However, if there is at Jleast one

observation whose time ang position is not determined by :ae above

equations of motion, the transtormation fiom X to X' cannot be
made.

1f tbha ouservations are made from a platform that is moving

with a constant course and speed, the requirement can be achieved

by changinjy the co.rse, the «p=ed or both prior to completing the
observaticrns. (Thac

the cornd’tion n 2> 4 is not a sufficient
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condition in this case has peen established by a counter example
for n = 4. See Reference 17.)

Estimation models that describe bearing error as a random
variable provide a pasis for determining confidence regions for
point estimatzs such as those discussed above. For exarple, see
Reference 18 for a fixed target or simultaneous observation model

- and- Reference 19 for more general cases.
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X1IX. ©Position Distributions That Ckhange with Motion

Targec motion models provide a basis for determining position
distributions that change with target motion. In this section, two

classes of target motion models are considered. In the first

class, a target moves in a plane with a constant course and speed
and the course and speed are independent of the target's position.

In the second class, a target moves in a plane but its course or

speed changes during the motion. Three models of the first class

are developad first. This is followed by a discussion of some

models of the second class.

Motion Models of the First Class: For the first class of

motion models, the joint Gensity function of the distribution that

determines a target's coordinates X(t) and Y(t) at some time

T 2 0 can be determined by:

(23) Lyier,vin (X0 ¥i E) =f_J_.fx(o)’,,(0) (x~u,t,y-u,t;0) £, , (u,. u,)dudu,

Equation 23 can be developed as fellows: To first order,

fio v (X, Yit) éx8y is the probability that a target's coordinates
X and vy

are in an element of area 6x8y. To first order, the

integrand c¢f Equation 23

multiplied by &ads

and 6ux5uy is the

probability that the target's position at time 0 has coordinates

q=x-ut and s =y - ut in an element of area égqés. To

first order,

6gés is identical in size and shape to 6x§y Dbecause
of the transformation from g

and s to x and y. And, to

first order, the sum of such probabilities for all pairs of values
of u, and u 1is also the probability that the target's coordinates
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at time t are in the element of area éxfy. In the limit, after

equating the two expressions for this probability and canceling the

common factor §éx8y, Equation 23 results.

The First Motion Model: In the first model, X(0) and Y(0)

are both independent normal random variables with means 4, and

My and equal standard deviations o¢. However, U, and U, are

not normal and they are not independent random variables. In this

model, U, = u-sin ¢ and Uy = ucos & where ¢ 1is the random

variable that determines the target's course and u is the targets

speed which is known. So, only a value for the random variable ¢

is required to determine the target's velocity. In the model, ¢

has a uniform distribution over the interval 0 to 27 and it is

convenient to choose the rectangular coordinate system so that the

means 4, and u, are each equal to 0. Then, with the circular

normal distribution determining the random position coordinates and

with the distribution that is described above determining the

random velocity components , in the coordinates u and ¢, the

integral of Equation 23 is a single integral over ¢ and the

integrand of the integral is (1/2wo?) exp([-(q! + s?)/2a*] (1/2m)

vhere now q = X - ut'sin ¢ and s =y - ut-cos ¢. Integration

gives:

fyie).vip (X, ¥ L) =-——%-~2exp{- [x2+y2+(ut)?] /203 I (x2+y?) Y2ut/ 0%

(24)
210

where t 2 0 and I, indicates the hyperbolic Bessel function of

is plotted for

zeroth order. In Reference 6, f,,,,,(X,¥it)

several values of t in terms of r = (x* + y’)”, the target's
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range from the origin. The plots show a characteristic of the
distribution that can be indicated as follows: First, replace (x?
+y2)® by r in f“tLy“,(x,y:t). Next, multiply and then divide

f“thvu)(r:t) by exp(-rut/c®). This gives:

- 1 1yl zut
(25) 21wzexp{( 202) (r-ut) }IO( g? )

where t 2 0. As noted in Reference 20, I,(z)-exp(-2) 'is a
slowly decreasing function that asymptotically appreoaches 1/ (2nz)*
as 2 increases. Because of this, a plot of f“tLYu)(r:t) against
r for values of t greater than 4o0g/u has the appearance of a
normal density function.

A target's random rectangular coordinates X(t) and Y(t)
and its random bearing @(t) and range R(t) from the origin are
related by: X(t) = R(t)'sin 6(t) and Y(t) = R(t)-cos 6(t).
Using these relations, f“tLY“)(x,y;t) can be transformed to

the joint density function £, 4 (¥,2;t) of the random variables

R(t) and e(t). To do this, replace x: + y by r? in
Expression 24. Then multiply by r, the Jacobian of the
transformaticn. Next, integrate the resulting joint density

function £, o (r,@;t) over the interval 0 to 27 . This gives

the marginal density function for the target's range R(t):

(26) fpp trit) =.8r_zexp{—[-&1—2) (r2+ (UC)ZI}IO( ruc)
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The Second Motion Model: In the second model, X(0) and
Y(0) are independent normal random variables with means u, and
#, and standard deviations o, and g, that determine a target's
random position coordinates at time 0. And U, and U, are
independent normal random variables with means 4, and ﬁy and

X

standard deviation o, that determine a target's random velocity
components. Because of these conditions, the target coordinates

are X(t) = X(0) + £-U, and Y(t) = Y(0) + t-U, at time t. This

x
implies that  X(t) and Y (t) are independent normal random
variables with means u, + Q,t and B, *+ ﬁyt and with standard
deviations o¢*, + o2t’ and o' + 07t’. The model describes a
bivariate normal position distribution whose center moves with a
constant velocity determined by 4, and ﬁy and which becomes more
and more circular as its standard deviations increase with the
passage of time. Although the tarcets joint density can be found
by using Equation 23, this procedure is more direct. For another
discussion of the first and second models, see Reference 7.

The Third Motion Model: 1In the third model, the target is at
the origin of a rectangular coordinate system at time zero. After
that, its position is uniformly distributed on a circular disk of
radius yt centered at the origin. This implies that

(27) Exter, viey (%, ¥ £) ==

nult?




for t > 0 where x* + y’ < u?t?! and that the joint density
function of the distribution of the random variables ©6(t) and

R(t) that determine a target's bearing and range is:

(28) fR()O )(r:“it)=
, oot nult?

-for t >0 where 0< o <27mr and 0 <r £ut. Since the ranges
of @ and r are independent and their joint density function is
equal to the product of 1/(27m) and 2r/(u *t?*), the random
variables 6(t) and R(t) are independent and fory (@) = 1/(2m)
and fp,, = 2r/(u?*t?) where 0 < a < 27 and 0 < r < ut. These
two marginal distributions define the motion model: At time O,
choose a course ¢ from a uniform distribution defined by the
density function f£,(¢) = 1/(27) where ¢ is in radians and where
0 2 ¢ < 2mr and a speed u from a triangular distribution defined
by the density function £ (u) = 2u/u?® where 0 £ u £ u,.

Motion Models of the Second Class: For the second class of
motion models, a target's course or speed or both can change. In
a limited number of cases, a description in terms of a closed form
position distribution is possible. An example which is due to
Washburn is described in Reference 21. In this model, a target's
speed is known and its position is known at time 0 but is unknown

at any future time. 1In addition, although the target's course ¢

at any time is unknown, it is known that the course is chosen from

a uniform distribution and f,{¢) = 1/(2m) for ¢ in radians

wvhere 0 < ¢ < 2m . A new course is chosen at times determined by
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a Poisson process with rate parameter A. This idealized motion is
referred to as a random tour. With p? = (x* + y?*)/(ut)?, a target
position distribution at a time t > 0 is defined as follows: For

<1,

Ty ve (X yit) = 1 { At }eprlt[l-(l-pﬂlfﬂ},

(29) 2nu?e? | (1-p?) /2

" For p>1, £y (Xyit) =0. Forp=1, f (x,y:t) is not

X(t),Y(¢t)
‘defined, since P(¥*(t) + Y’ (t) = ult?} = exp(-At) for p = 1. By
transforming to bearing and range coordinates, a target range
distribution at a time t > 0 can be determined by inspection and

is defined as follows: For p < 1,

(30) g izit)= - [ AL }exp{-lt[l‘(l—pz)llz]}.

U2t2 l (1_92) /2

For p> 1, f,,(rit) = 0. For p = 1, P[R(t) = ult?] = exp(-At).

An example that can not be defined in this manner which is a
modification of the third model of the first class is described in
Reference 22.

Two additional ways of defining target position distributions
are by means of state transitions and by means of monte carlo
simulations. Reference 23 gives an example of the use of state
transitions and Reference 24 gives an example of the use of monte

carlo simulations.




XIV. Position Distributions That Change with S8earch

For the models that are considered here, a target is within a

region that has been divided into n subregions or cells and the
event S. =

. {the target is in the i'" cell}. For each cell, a

number is assigned that is interpreted as the probability that the

target is in the cell at the time of the search. This set of

numbers define a target position distribution at that time. 1In a

r search of the region, suppose that a search planner is told that

the target has been detected. Or suppose the search planner is

told the target has not been detected.

In the first case, positive

information is available that can be used by the search planner to

modify the position distribution. 1In the second case, negative

information is available that can be used to do this. Models are

developed below that provide ways of utilizing this kind of

positive and negative information to modify a target position

distribution.

In the development, three random variables are
determined by a search: N

c? the number of unresolved contacts; Nu

Ny the number of

the number of unresolved true contacts and

unresolved false contacts. Since N_= N, + N, this implies that

(31) p(Nc=a)=§!p[(Nc=j)n(.vf=k)J where j 2 0
Jeke

and k =z 0.

A Positive Information Model: The event (N, = 1} is the

c

union of two mutually exclusive events: (N . = 1} n (N, = 0} and

{N, = 0) n (N, = 1}. Let the event C = (N,

events

= 1} and the

TC = (N, = 1) n (N, = 0} and FC = (N,
where TC

= 0) n {N, = 1)

represents a true contact and FC a false contact.
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since P(S.,/C) = [P(S; n TC) + P(S; n FC)]/P(C) and TC = 1C n C
and FC = FC n ¢, P(s;|c) = P(s;lTc)P(TC|C) + P(S,|FC)P(FC|C)
where i =1, 2, **+ , n. The probability p = P(TC|C) has been
called the credibility of the contact. In terms of p,

(32) P(S;lc) = P(s,;{TC) p + P(S;|FC): (1 - p)

for i=1,2, - , n. If (N =1} n S, and (N, = 0) are
independent for i =1, 2, *** . n, then P(S,|TC) is given by

' F(N,=1]|S;) .

(32a) P(SATC)z—Tﬂ%E:T%“P(SQ' since

PL(N,=1) N(N;=0)] =p(Nf=o)>;:P[ (N,=1)nS;] and P(N,=1) =3lfp[ (N.=1) nsy)

imply that (N, = 1} and (N; = 0} are independent events. If,

in additicn, the events (N, = 0) n s, and (N, = 1} are
independent for i =1, 2, **- , n then P(S,|FC) is given by
P(N.=0[S))

(32b) P(8;|FC) = P(S;), since

P(N,=0)
PL(N=0)N{N;=1)] =P(N=1) LP[ (N,=0)nS,] and P(N,=0) =$;JP[ (N=0)nS;]
1

imply that (N, = 0} and (N, = 1} are independent events. To
illustrate how Equation 32 might be used, suppose that the
conditions for Equation 32a and Equation 32b are satisfied, that
a contact is a line of bearing contact or an omnidirectional sensor
contact and that the cells are range cells. With r, a range

identifying the i'™M cell and the random variable R the target's

range, suppcse that P{(N, = 1jR = r,) = ¢[SE(r;)/c]. In this case,
t | i

1




P(N,=1) =50 [S2(r;) /o] P(R=z,) and P(N,=0) =31-® [SE(r,)/0)}P(R=1,) .
1 1

A classical analogue to the above is obtained if R is taken to be
continuous; r, fp(r|C) and f,(r) replace r,, P(R=r/|C) and

P(R = r;) and, in addition,
| P(Nt=1)=fr’<D[SE(r)/o]fR(r) dr and PIN,=0)=[ %1-® [SE(r) /o])fg(r)dr.

A Negative Information Model: The event (N, = 0} is the
intersection of the events (N, = 0) and (N, = 0). Let the event
NC = (N, = 0} and the events NTC = {N, = 0} and NFC = (N, = 0).
Then, NC = NTC n NFC and
(34)  P(S;|NC) = P(NFC|NTC n S,)P(NTC|S,)P(S,;)/P(NC).

If NTC n S; and NFC are independent for i =1, 2, *** , n,
then P(S,|NC) = P(NTC|S;)P(S,)/P(NTC) or, equivalently,

P(N,=0]|S;)

{34a) P(5,|NC) = FIN.=0)

P(S;) since

PI(N,=0) N(N;=0)]=P(N;=0)£P[(N,=0)nS,] and P(N,=0)=5P[(N,=0)NS,]
1 1

imply that NTC and NFC also are independent. To illustrate how
it might be used, suppose the conditions for Equation 34a are
satisfied and a search in a cell is a random search. With A; the

area, W; the sweep width and £, the track length of the i'" cell:

exp[-(W,l;) /A;] P(S))

P(S,|N,=0) =

Lexp (- (,,) /2, P(5,)




XV. 8S8earch Models and Search Theory

Search theory provides a basis for determinirg optimal search
plans for a target whose state is determined within some bounds.
Here, an optimal search plan is one for which the probability of
finding a target within a given length of time is a maximum, the
expected time to find a target is a minimum given the target is
found or a search plan for which some other optimal search
criterion is satisfied.

- Search theory results are based on models of the search
process. To the degree that a search model describes a search
process, an optimal search plan for a target that is based on the
search model should provide guidance for the development of an
operationally feasible search plan. However, because of the
limitations of analytical search models, an optimal search pian
that is based on an analytical search model may give only initial
guidance in this regard. The optimal search plans that are
descrilbed below illustrate this. The search plans are based on the
random search model. Because of this, the requirement on the
location of search track segments is not realizable and the time to
resolve false alarms is ignored.

Optimal search plans based on search models impiemented

through a monte carlo simulation are not considered here. However,

with sufficient information, such a plan could be superior to an

optimal search plan based on an analytical search model in sone

casees.




Three Optimal Search Plans: The three optimal search plans
differ in their criterion for an optimal search plan. However,
each one is based on the following search model: A target is fixed
at some point in a region that consists of n subregions. A
search in a subregion is a random search in the sense of the

definition in Section X and a searchers sweep width there is a

.éonstant. In addition, a search of a subregion will not detect a

target which is in another subregion. To determine a plan, let
S, = {(the target is in subregion i} for i =1, 2, -+ , n and
let p., = P(S,) be the prior probability that the target is in the
i™ subregion. Let W, be the sweep width in the i' subregion.
Let &, = A,/W, where A, is the area of the i*" subregion and §;
is the expected track length to find the target by a search of the
i*™ subregion given the target is in the i'™ subregion, a
characteristic length. The probability P that the target will be
detected by a random search is given by:

(35) P=Zz(1 - eXp(-Ei/tSi)]'ps

where the sum index 1 =1, 2, *** , n . is the track
length of the search in the i subregion.

The first criterion: Choose ¢, so that P is a maximum
subject to the two constraints: 1. ¢ =X ¢, and 2. ¢, 2 0 where
the index i=1, 2, - , n. Determining this choice is a
nonlinear optimization problem whose solution is given in Reference
25. It is:

£;°/8; = In(py/6;) - A(k)
(36)
e, /8, =0




where A(k) = (E/ESj)-E[Sj'ln(ph/aj)] - &/%$; and the sum index
j=1, 2, - , k where the subregions are relabeled so that the
following order relation holds: Ppy/&, > p/6, > > p/%, and
where Kk is chosen so that for k+1 the solution for ¢,,, using
A(k+1) is either negative or zero-

The second criterion: Choose £; so that P is a maximum

- subject to the two constraints: 1. ¢ =2 ¢; and 2. c; 2 0 vwvhere

the index 1i = 1, 2, **+ , n, ¢, = k- ¢, is the cost of the search

in the it

subregion and k, is the cost per unit track length in
that subregion. For this criterion, the solution to the
corresponding nonlinear optimization problem can be obtained from
Equation 36 by replacing §; by ¢€; = Kk;*§; and labeling the
subregions so that p,/€; > pPy/€; > ' > p/€;. The basis for this
can be seen by replacing ¢,/6; by its equivalent <¢;/¢; in the
exponential term in Equation 35.

The third criterion: Choose £, so that the expected utility
of the search is a maximum subject to the following two
constraints: 1. ¢ =% ¢ and 2. £ 2 0 where the index
i=1, 2, -+ , n. For this criterion, the solution to the
corresponding nonlinear optimization problem can be obtained from
Equation 36, first, by replacing p; by q; where g; = u;°p; and
u, is the utility of detecting the target given it is in the i*
subregion. And, second, by labeling the subregions so that the
following inequalities hold: q,/6, > Qy/6, > - > q,/6,- The basis

for this can be seen by multiplying the it" summation term in

Equation 36 by u, fer i =1, 2, *** , n soO that the resulting
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equation gives the expected utility of the search given the utility
of not detecting the target is zervo.

Equation 36 can be used to determine an crder of search for

the subregions which will effectively minimize the expected track
length requiied to detect a target given it ‘s detected. To do
this, divioz the available track length £ into units small encugh
so that with &« single unit enly the 1% sukregion would be searched.
Then allocate one unit to thc¢ search of the 1* subregion. If the

search is unsuccessful, det=rmine the optimum allocation for two

units. Then search with a second unit so that the first search

with the first unit plus the second search with the second unit

satisfy the optimum allocation for two units. If the search is

unsuccessful, continue in this fashion until either the target is
found or all the track length is expended. That this allocation
order will effectively minimize the expected track length r.quired
to detect a target given it is detected can be argued as folliows:

Let L be the track length at detection, let A¢ be a unit of

track length and let n be the number of units. Then the value of

the probability P(L < i-4¢2)

that the target will be detected on

or before the i step of the search for the given allocation order

will be greater than or equal to its value for any other allocation

order with the same allocation step size. Since the value of the

probability P(L < ¢)

will be equal to its value for any other

allocation order of the optimum allocation. and, in addition,

since P(L £ i-A¢|L 1) =

P(L < i-A2)/P(L < £), the value of the

distribution function F (i-Ae|L < ¢) = P(L < i-42|L < ¢) will be
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greater than or equal to its value for any other allocation order.
This implies that the expected track length given detection occurs
is given by: E(L|L £ &) =2 [1 - F (i-A2|L < ¢)], where the sum
index i =1, 2, *+ , n, is effectively a minimum for the given
allocation order. A search based on the optimum allo:ation given

by Equation 36 and the given allocation order is equivalent to the

following search: After an allocation of track length A2 and an

unsuccessful search, new values for P(S;) are calculated usihg
Equation 34 and then Equation 36 is used with these new values to
determine the next optimum allocation. A discussion of this
procedure 1is given in Reference 6. And an example of its
application is given in Reference 26.

Equation 36 also defines an optimal search plan for a
detection system that searches beams and can be described by

Equation 35 by replacing ¢, by t, where t; is the time the

1 1

2 th

i beam is searched and by replacing 6, by 7, where 171, a

1
chiaracteristic time, is the exp2cted time to detect the target by
a search of the it beam given the target is in the i'" beam.
For a more extensive discussion of search theory and its

application to military operations research, see Reference 27.
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