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I. Detection Models and Signal Detection Theory

Signal detection theory is the basis for analyzing the

detection models that are described in this report. In signal

detection theory, the decision making portion of a detection system

is called the receiver and a detection experiment is the analysis

-by a receiver of input data observed during some time interval.

The data that is related to a target is called signal. The data

that is not related to the target is called noise. In general, the

target data i3 associated with a localization region that in some

cases is called a resolution cell. In a detection experiment,

either the event H0 = (the receiver input is noise) or its

compliment H, = (the receiver input is signal and noise) occur.

In the first detection models that are described in this report,

after analysis of the input data by the receiver, either the event

Do =(the receiver decides the input is noise) or its complement

DI = (the receiver decides the input is signal and noise) also

occurs. Detection models for which D, is the complement of D.

are called binary detection models or forced choice detection

models. Eight events which are important in binary detection

models are indicated in the Venn diagram of Figure 1.

The Venn diagram emphasizes a decision problem that is

associated with a receiver that can be modeled using a binary

detection model in a forced choice situation. The problem is this:

Under what conditions should the event D, occur? That is, under
w

S~what conditions should a receiver decide that the input data

I I I I I I I I I I I I I I I I I I1
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"Figure 1. Eight events that are important in binary detection

models.

accumulated during the observation time interval is signal and

noise? Four criteria that provide a basis for answering this

question are discussed in Section II. In the discussion and in the

development of the detection models that are based these criteria,

the following notation and terminology is used: Pf = P(DIIH 0),

the conditiolLal probability of D, given H0 , is called the false

alarm probability; Pd = P(DIIH I ), the conditional probability of

DI given H1, is called the detection probability and P = P(HI)

the probability of HI, is called the prior probability.

In the detection models, the input to a receiver is determined

by a stochastic process that has the following ch_..:acteristics: It

is a random noise process when there is no target data and it is a

random noise process plus a signal process when there is target

data. Although the receiver input in some cases may appear to be

determined by a continuous parameter stochastic process, because of

the finite amount of data contained in a bounded sequence of finite

2
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length, a discrete parameter stochastic process is sufficient to

determine the receiver input in thece cases. This is established

formally by the stochastic sampling theorem. Consequently, in

these models, the input to a receiver is determined by a sequence

of random variables Y1, " , Y. and an observation yields a

sequence of values Y,''... ,y.

Three detection models are described in Section III. In the

first model, the signal process is a daterministic process. That

is, the signal data can be determined prior to its gener'tion. In

the second and third models, the signal process is a random

process. Therefore, the noise data can not be determined prior to

its generation except in terms of its statistical characteristics.

To define a random noise process or a random signal process, only

the joint distribution of the finite sequence of random variables

that determine the process needs to be specified. If the signal

process is a deterministic process, the signal values can be

determined before an observation is performed. To define the

process in this case, only these values need to be specified.
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II. Decision Criteria

To simplify the discussion of decision criteria and decision

rules, a receiver's input will be assumed to be determined by a

single decision random variable Y. In this case, the input

process in determined by the conditicnal distribution function

Fy(yIH0 ) when the input is noise alone and by the conditional

distribution function Fy(yIHI) when the input is signal plus

noise.

The condition that a receiver's input is required to

satisfy in order that the event DI will occur can be specified in

terms of a decision rule. For the assumed case, a decision rule is

a rule which determines for every observable value of Y the

decision that the receiver is to make. The decision rule can be

considered to be a function O(y) which relates each observable

value of y to one or the other of the following two decisions:

do ="the receiv-r input was noise"

d= "the receiver input was signal and noise".

Choosing a decision rule p(y) defines a sat R of observable

values of Y such that the event D, = ( Y e [I ).

The problem which was considered in Section I can now be

restated in the following way: What criterion should be adopted in

order to determine a decision iule or, what is equivalent, its

corresponding set Q ? A desirable characteristic for a criterion

is suggested by the following argument: Consider the odds in favor

of HI given y is observed. That is, consider
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P(H1IY = y)/P(H0 IY = y). One might expect that y would be a

member of the set n if and only if y made this ratio equal to

or greater than some value k. But this is equivalent to defining

nl as follows: n = ( y : L(y) Ž K ) where L(y) is the likelihood

ratio associated with an observed value y and K is a constant

related to the constant k. This suggests that choosing an optimum

criterion is equivalent to choosing an optimum value for K.

Four specific decision criteria are defined next in terms of

K. For each criterion, n has the above form. But for each

criterion the choice of K is different. The decision criteria

are:

1. The Neyman-Pearson Criterion: Choose 0 so that Pd is

a maximum subject to the constraint that pf 5 a where a is a

specified value. For a continuous decision random variable, the

constant K is chosen so that Pf = a.

2. The Bayes Criterion: Choose n so that the expected cost

of a receiver's decision is a minimum. For a continuous decision

random variable, if cK > c., and c0 1 > c11 where ci, is the cost

of Di n H,, then K = [(c 1 0-c 0 0)/(c 0.- c 11) ] (-P)/P.

3. The Ideal Observer Criterion: Choose 2 so that the

probability that the receiver makes an incorrect decision is a

minimum. For a cortinuous decision random variable, K = (I-P)/P.

4. The Minimax Criterion: Choose 0 when P is unknown so

"that the maximum expected cost of a receiver's decision is a

minimum. For a continuous decision random variable, if c10 > coo

and c., > c 1 1 , then K = [(c 1 0-c 00)/ (c 01-c 11 ) ] (l-P*)/P • Here, P* is

5



the value of the prior probability P that would make the expected

cost of a receiver's decision a maximum if P were known and the

Bayes Criterion were used.

If a model which specifies the conditional distributions

Fy(yIH0 ) and F,(yJH1 ) and a decision rule are adopted, then the

value of p, and the value of Pd are determined. This pair of

values (Pf 'Pd) is called a receiver operating point. If the

decision rule results from using a likelihood ratio criterion such

as one of the four listed above, then it will involve the parameter

K since fl = (y: L(y) Ž K). And, for a given value of K, since

* uniquely determines the pair (Pf'Pd), a single operating point

results. By varying K, a set of operating points can be generated

which detarmines a receiver operating characteristic curve or ROC

curve. Different ROC curves can be produced by changing either one

or both of the conditional distributions which implies either a

change in the signal process or a change in the noise process.

A decision rule which results from using a likelihood ratio

criterion in a model in which the input process is determined by a

set of m random variables can be expressed in terms of a set n

as follows: R { (y," , y,) : L(yl,. "" , ym) • K ) where K

is specified in the same way that it is when m = 1.

6



III. Three Binary Detection Models

Three detection models are examined in this section. For the

first two detection models, the input stochastic process for an

observation is defined by a time sequence of continuous random

variables. The random variables represent a sample from a

continuous parameter stochastic process which is sampled at times

such that the random variables are independent. For the third

detection model, the input stochastic process is a counting process

and it is defined by a single discrete random variable that is

equal to the number of events that are counted during the

observation.

Model I: In the first detection model, a sampled noise value

is a value of a normally distributed random variable with mean zero

and with known variance a' . And a sampled signal value is a known

value of a deterministic variable. Thus, the input process

corresponding to an observation consists of some number m of

independent normal random variables Y1, . .. YM each with

variance a2. And, for i = 1, 2, , m, when a signal is not

present the mean of Y. is zero and when a signal is present the

mean is s,. The result of using a likelihood ratio decision rule

in the model can be expressed in terms of a random variable Z.

This random variable is called a crosscorrelation statistic and it

is defined by Z = 7 si-Y, where the suu.t index i = 1, 2, - , m

here and in the remainder of this section. However, it is more

convenient to express the result in terms of a statistic V which

is defined by V = Z/oZ. In terms of V, the two conditional
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probabilities pf and Pd are determined by: pf = . - o(v*) and

Pd = 1 - W(v* - dh) where 0 is the standard normal cumulative

distribution function, v. = (i/a,)(a 2 ln K + (1/2) Z sj 2 ), is

determined by the decision rule and d = Z siI/a' is called the

detection index.

Often, the input stochastic process represents a quantity

whose square is proportional to power. In such a case, the average

receiver'input power is the random variable Z Yi'/m. The expected

average receiver input noise power is N = Z U2/m = U2 where N

is called the noise. The average receiver input signal power is

S = E s,'/m where S is called the signal. In terms of these two

quantities, d = n- (S/N) where S/N is called the signal-to-noise

ratio.

If a receiver's input data can be considered to be a time

sequence of current or voltage values, in some cases a frequency

representation can be used that involves the concept of receiver

bandwidth. In these cases, the noise process is assumed to be

such that m = t/6t where t is the integration time (the

duration of an observation) and St is the time between samples

with 6t = I/[2(BW)) where BW is the bandwidth and 6t is

determined by the sampling theorem. This implies that the

detection index d = 2t- (BW) (S/N). By defining No as the power

spectral density where N. = N/BW this becomes 4 = 2t (S/N 0 ).

In Reference 2, the conditions required " iis form of the

first model are called Case I. In the follk ! sections, this

form of the first model: Pf =1 - W(v) and Pd = 1 - ftv - d()
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where d = t (BW)(S/N) is called the Case I model. A receiver

that processes data such that it would implement a likelihood ratio

decisici rule under the conditions of the first model is called a

matched filter or crosscorrelation detector. If the description

of the input noise is adequate, a Case I model can be used to

obtain an estimate of an upper bound on a detection system's

performance, since all the information necessary to define the

signal is assumed to be known.

Model II: In the second detection model, a sampled noise

value is an independent normal random variable with mean zero and

known variance a'. And, a sampled signal value is an independent

random variable with mean zero and known variance a 2 Thus, the

input process corresponding to an observation consists of some

numbsr ra of independent normal random variables YI,, -, Ym each

with mean zero and each with variance a2  when a signal is nut

present and each with variance a' + aS2 when a signal is present.

The result of applying a likelihood ratio decision rule in this

model can be expressed in terms of a statistic X which is defined

by X = Z Yi,.

When a signal is not present, the statistic X/N has a

chi-square distribution with m degrees of freedom, When a signal

is present, the statistic X/(N+S) has a chi-square distribution

with m degrees of freedom. So, in terms of these statistics, the

two coizditional probabilities p, and pd are: pf = P(X 2 t x*/N)

and Pd = P(X2 m -> (x*/N) (I/(l+S/N) J ) where X2 m is a chi-square

random variable with m degrees of freedom, x* is a number which

9



is determined by the decision rule and S/N is the signal-to-noise

ratio. A receiver that would implement a likelihood ratio decision

rule under the conditions of the second model is called an energy

detector or square law detector.

The mean of a chi-square random variable with m degrees of

freedom is m and the variance is 2m. By the central limit

theorem, as the number of degrees of freedom of a chi-square random

variable becomes large, it can be approximated by a normal random

variable that has the same mean and variance. For m sufficiently

large, after using this approximation, pf = 1 - 4[(x*/N - m)/(2m)½]

and Pd = 1 - @([1/(I+S/N)][x*/N - m - m" (S/N)]/(2m)h). And, with

v* = [x*/N- i)/(2m)W] and d (m/2) (S/N) 2, the approximations

are: Pf 1 - O(v*) and Pd = 1 - 4[I/(I+S/N))(v* - d")}. If the

noise N is significantly larger than the signal S, then pd

can be further approximated by: Pd = 1 -§(v' - d%)). The concept

of bandwidth is applicable so that m = 2t" (BW) , then the

detection index d = t- (BW) (S/N) 2 . In Reference 2, the conditions

required for these approximations are called Case II. In the

following sections, the last limiting form of the second model:

p•f = 1 - *(v*) and Pd = 1 - #(V* - de) where d = t (BW) (S/N)2 ,

m >> 1 and S/N << 1 is called the Case I1 model.

Model III: In the third detection model, a sampled noise

value and a sampled signal value are values of independent random

variables that are determined by independent Poisson processes that

are observed for a time interval t. The noise process is

characterized by a counting rate a, the signal process is

10



characterized by a counting rate as and the noise and signal

processes are additive. This implies that when the input is noise

alone, the input is a Poisson random variable with parameter at,

the expected number of noise counts, and when the input is signal

and noise, the input is a Poisson random variable with parameter

(a + as)t, the expected number of noise and signal counts.

For a likelihood ratio decision rule, pf = 1 - P(y*;at) and

Pd= 1 - P(y*;(a + a8)t] where y" is a threshold value that is

determined by the decision rule and P(y;e) represents the Poisson

cumulative distribution function with parameter 8. When e is

large, the cumulative distribution function can be approximated by

the cumulative distribution function of a normal random variable

that has the same mean and variance. Using this approximation for

cases where at is sufficiently large, since both the mean and

variance of a Poisson random variable are equal, pf = 1 - i(v*)

and Pd = 1 - {[I/(1 + as/a)"] (v* - d"')} where v* = (y* - at)/(at)P

and d = at- (as/a)2. If, in addition, a is significantly larger

than as then pf and p. can be approximated by: pf = 1 - 4(v*)

and pd, 1 - $(v* - d6') which is identical to the form of the

expression for pf and Pd for the Case I and Case II models.

And, the approximations: pf = I - t(v*) and Pd = 1 - (V"- dy)

where a./c << I and at >> 1 could be called the Case III model.

This Case III model could be used to describe a receiver whose

input for an observation is the number of photons counted by a

radiation detector in situations where at, the expected number of

I 11



counts when no signal is present, is of the order of thirty or

more.

When a likelihood ratio decision rule is used in the three

models discussed above, for the first model and under limiting

conditions for the second and third models, the following result is

obtained: Pf = I - W(v*) and Pd = 1 - - 4') where the value

of v* depends on the noise power N for the first and second

models. For a sonar receiver described by the first model, that

is, by the Case I model: d = 2t- (BW)(S/N). For a sonar receiver

described under the limiting conditions for the second model, that

is, by the Case II model, d = t" (BW) (S/N) 2 . This implies that in

either a Case I model or a Case II model of a sonar receiver, the

detection index d is a function of the time bandwidth product

t- (13W) and the biginal-to-noise ratio S/NI Since sonar equations

relate SIN to system, target and environmental parameters, a

sonar equation can be used to relate S/N to these parameters in

a model of a sonar receiver.

12



IV. General Detection Models

The detection models that have been considered to this point

are based on binary detection theory. After each observation, a

receiver decides either that the input data corresponding tr the

observation was noise or else it decides it was signal plus noise.

However, in some detection systems this decision is not prior to

the next observation. In a computational sense, a model of such a

detection system is generally more complex than a binary detection

model. To illustrate this, consider an active sonar system whose

receiver includes an operator. Suppose the probability that the

operator will detect a target echo has been determined in a

laboratory experiment in which the operator was required to decide

after each observation that either the input was signal and noise

or the input was noise alone. in addition, suppose that under

operational conditions the operator normally delays this decision.

Then, in general, the probability that the operator will decide

that the input corresponding to a resolution cell that contains a

target is a target echo and noise will not be equal to the

probability of the event in the forced choice experiment. And, in

addition, the probability that the operator will decide the input

corresponding to a resolution cell that does not contain a target

is a target echo and noise will not be equal to the probability of

this event in the forced choice experiment. Consequently, in

general, the value of both Pd and Pf for an operational

environment will be different than that for the laboratory

environment.

13



One model that has been proposed to deal with this kind of

situation defines the event that a receiver decides that the input

corresponding to a resolution cell is signal and noise to be

equivalent to the event that out of n consecutiva observations at

least k of them would result in the decision that the input was

signal and noise in a forced choice experiment. The model is said

to be based on an k-out-of-n detection criterion. With this

criterion, the probability that a target will be first detected on

the jth observation can be found as follows: Determine the 2i

sequences of forced choice responses that could result for a

sequence of j consecutive observations. Next, determine the

probability of occurrence for each sequence that first satisfies

thC k- out-of-n detection criterion on the )th observation. The

probability of first detection on the jth observation is equal to

the sum of these probabilities. The cumulative probability of

detection at the jth observation is the sum of the probabilities of

first detection on the i0h observation for i = 1, 2, , j.

14



V. Signal-to-Noise Ratio Detection Models

In some radar and sonar detection models, for a specified

value of pf, a minimum acceptable value of Pd is defined. This

minimum acceptable value of Pd and the specified value of pi

define what can be called a minimum acceptable signal-to-noise

ratio (S/N)m if Pd is a nondecreasing function of the

signal-to-noise ratio. In some sonar detection models, (S/N), in

decibels is called the detection threshold DT. In symbols, the

detection threshold DT = 10 log(S/N),. If the minimum acceptable

value of Pd is .5, then DT is usually called the recognition

differential RD. The difference between the signal-to-noise ratio

in decibels and RD (or DT) is called the signal excess SE. In

symbols, the signal excess SE = 10 log(S/N) - RD.

One interpretation of signal excess i. that for a

localization region containing a target detection occurs with

probability one if SE Ž 0 and with probability zero if SE < 0.

This interpretation provides the basis for defining detection in

the three encounter detection models that are discussed in Section

VII. A more consistent interpretation is: If SE Ž 0, then the

probability of detection Pd is greater than or equal to the

minimum acceptable value. (The minimum acceptable value is .5 if

recognition differential RD is used to define signal excess.)

For cases where Pd increases rapidly with signal excess in the

neighborhood of zero signal excess, the two interpretations may be

operationally equivalent. For a discussion of this point as well15/



as a discussion of an operational case in which receiver decisions

are delayed, see Reference 3.

The signal excess (signal-to-noise ratio) detection model

provides a basis for detection models describing nonstationary

noise and signal processes and randomly changing decision rules.

This is illustrated by the models discussed in Section VII. In

addition, the signal excess model provides a basis for detection

models describing delayed receiver decision models. This is

illustrated by the active sonar detection models in Reference 4

and Reference 5 that are based on a k-out-of-n detection

criterion. In both of these models, the signal-to-noise ratio and

the recognition differential are random variables.

Using X(t) to represent a random variable corresponding to

an index time t and a subscript to identify the random variable

in such models, for a passive sonar receiver, the signal-to-noise

ratio in decibels associated with a decision at the index time is:

XSL(t) - XTI(t) - [XL(t) - XOI(t)]. In this expression, SL

represents source level, TL represents transmission loss, NL

represents noise level and DI represents directivity index.

Since signal excess SE is defined to be the difference in

decibels between the signal-to-noise ratio and the recognition

differential (or detection threshold), it too is a random variable

and, for any decision time t, one can write:

(1) XSE(t) = XSL(t) - XTL(t) - [XNL(t) - X0 1 (t)] - XRD(t).

The distributions of the random variables on the right side of

Equation 1 determine the distribution of the signal excess. In

16



the passive sonar detection model described in Reference 6, XsL(t),

XRD(t) and, in effect, XbL(t) are normally distributed random

variables while X1 1 (t) is a uniformly distributed random

variable. In the three signal excess models that are described in

Section VII, all of the random variables in Equation 1 are

normally distributed.

It is sometimes convenient to write Equation 1 as:

(2) XSE(t) = SE(t) + X(t).

In Equation 2, SE(t) is the expected value of the signal excess

determined by the following expected value equation:

(3) SE(t) = SL(t) - TL(t) - [NL(t) - DI(t)] - RD(t)

where each term on the right represents the expected value of the

indicated random variable and X(t) is a random variable that

determines the stochastic character of the signal excess. Since

SE(t) is the mean of XSE(t) ; by Equation 2, the mean of X(t) is

equal to zero and the standard deviation of X(t) is equal to the

standard deviation of XsE(t). If the quantities on the right side

of Equation 1 are independent random variables, it implies that

SUSL + a T'L + a + 0Da + aRID where a represents the standard

deviation of XSE(t). This relation has been used to determine a

standard deviation for the signal excess in operational models.

17



V1. General Encounter Models

A basic problem associated with search modeling is that of

determining the probability that a target will be detected by a

detection system during an encounter with one or more detection

systems. In the encounter models that are considered in this

report, during a search, observations are made of a series of

localization regions. The probability of detection resulting from

an. observation is P(DI n HI). And, the probability of a false

alarm is P(DI n H0) In these models, the time to resolve a false

alarm is ignored. However, Pd and p, are assumed to be

determined by some criterion such that Pf is an operationally

reasonable value.

Using the order number of a decision rather than its time as

an index and a random variable N to represent the order number at

which detection first occurs, the probability of detection during

an encounter can be written as:

P(N S n) P(N : m) + P(N m+l) + + P(N = n)

or as:

P(IN 1 n) =1 - 1 P (N :5 ) I -g•).- ( g")

where gj = P(N = i N S i-l) is the probability of the event

detection at the ith decision conditioned on the event no detection

at an earlier decision and 1 S m • n. The second expression is

generally of greater interest than the first expression, since g,

can usually be more directly related to operational parameters such

as range and environmental conditions that determine a target's

detectability than can P(N i).
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With a time rather than the order number to index a decision

and a random variable T to represent the time index at which

detection first occurs, P(N < n) becomes P(T S tn) with

P(T -< tn) = 1 - [1 - P(T S tm)1]( - g(t ,)] [1 - g(tn)]

where g(ti) P(T t 1 IT 5ti.1 ).

If g(t 1 ) << 1 for i = 1,2, ... ,n, then, to a first

approximation, inml - g(ti)] = -g(ti) for 1 = 1,2, .- ,n and

P(T <_ tn) = 1 - [1 - P(T < tm)]*exp[-T g(ti)]. This follows since

P(T S tn) = 1 - [I - P(T < ti)]'exp[Z in[l - g(t 1 )] where the sum

index i = m+1, ... , n. A continuous analog to this approximation

can be used to describe an encounter for cases where g(ti) << 1

for i = m, m+1, . , n and decisions during the encounter can be

considered to occur continuously. That is, the time of an

observation corresponding to a decision and the time between

decisions are both negligible relative to the time of the

encounter.

The analog can be developed as follows: First, let 6t be

the time between decisions, then ti = i-6t and the probability of

detection P(T < tn) = 1 - [I - P(T < t 1n)]'exp[--E T(ti)-6t) where

7(t 1 ) = (1/6t)g(ti) is a detection rate function

(a probability of detection per unit time) and, in terms of 6t,

the probability g(ti) = P[T = i-6tjT _< (i-l).6t].

If T is considered to be a continuous random variable, the

expression for P(T < ti) above indicates that the sum in the

exponent should be replaced by an integral whose integrand is a

continuous function r(t). If T(t) can be determined, then, with

19



g(tj) as a guide, P(T • t), the cumulative probability of

detection, can be defined by:

(4) T(t) = Jim ((lI6t) P(t < T • t+6tlT • t))

where the limit is for 6t approaching zero. Equation 4 implies

the following differential equation: dp~t)/dt = [1 - p(t)].r(t)

where p(t) = P(T : t). A solution to this equation is:

(5) P-ýT:ýtn,) =i1- [ 1-P (T--,t,,) exp, [ '-f• (t) dt]

where t is the time index for a decision during an encounter, tm

is some time during the encounter and tn > tm. A T(t) that is

based on a visual detection model is described in Reference 7. If

the detection capability of a detection system is assumed to depend

on a target's position relative to the detection system during an

encounter but not to depend on the clock time, then the time index

of a decision can be a relative index that determines the target

position that is associated with a decision rather than the clock

time associated with the decision.

The above results apply to the case of an encounter between a

target and a collection of detection systems. However, if the

detection systems are not collocated, it is generally convenient to

describe encounters of this kind in terms of encounters between the

target and the individual detection systems. In either case, if

the event target detection for a detection system is not

independent of the event for other detection systems, then in order

to describe this in an encounter model the correlation between the

input to the detection system and the inputs to the other detection
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systems must be specified. This has been done in some models as

follows: First determine the probability of detection for each

system acting alone. Let Pi be the probability that the ith

system detects the target during the encounter under this

condition. Next, consider two cases: In the first case, the

random factors that determine detection for a system are

independent of those that determine detection for the remaining

systems. In the second case, the random factors that determine

detection for the systems are completely dependent. In the first

case, the probability that at least one system detects the target

is given by: P1  1 - (I - PO)(1 - P2) "'" (1 - Pd) where n is

the number of detection systems involved. In the second case, the

probability that none of the systems detect the target is given by:

1 - P1 = I - P• where P 2 P. for i = 1, 2, -.- , n since if the

mth system does not detect the target, none of the remaining

systems will detect it. The probability that at least one system

detects the target is given by: P =a-P + (1 - a)'P, where a

determines the degree of correlation and 0 S a 5 1. A way to

determine a value for a is described in Reference 8.
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VII. Three Signal Excess Encounter Models

In the three models described in this section, detection is

defined in terms of signal excess as it is in Section V. Each

model determines a cumulative probability of detection for a target

in an encounter with a passive sonar system. An observation in the

models is indexed by time and the index can usually be considered

to be the time at the end of the observation. During an encounter,

observations are made of one or a series of localization regions.

By implication, a false alarm can occur for a localization region

that does not contain a target during an observation since the

value of RD (or DT) is determined by some specified false alarm

probability. However, as they are generally used, signal excess

models do not account for false alarms. This can be viewed as

equivalent to modeling the time to resolve a false alarr. to be

effectively zero.

To determine signal excess in the models, it is convenient to

use Equation 2. For each decision in an encounter, there is a

random variable X(t) defined by Equation 2 that determines the

random character of the signal excess. For a sequence of

decisions, the set of these random variables ordered by their time

index constitutes a stochastic process. And the joint

distributions of these random variables determines the nature of

the stochastic process. In the three encounter models described in

this section, the stochastic process is called a lambda-sigma jump

process. The time series that are generated by lambda-sigma jump

processes are represented by the plot in Figure 2 below. The
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jumps in the time series occur at times determined by a Poisson

process with a mean jump rate A. This implies that the time

between jumps is a random variable with an exponential distribution

and that the expected times between jumps 7 is equal to the

reciprocal of A.

dB

i_"'_ __ __ __ __ __ __ time

Figure 2. A time series representing a realization of a lambda-

sigma jump process. On the plot, a in dB equals one unit on

the vertical axis and r equals one time unit on the horizontal

axis.

From Figure 2, note that the observed values of neighboring

random variables are equal unless a jump has occurred between the

observations. When a jump occurs, the first random variable after

the jump is normally distributed with mean zero and variance a2

and it is independent of all the random variables before the jump.

Conditioned on a jump pattern, this random variable and all the

random variables between it and the next jump are dependent and the
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correlation coefficient between any pair is one. However, since

the jumps occur randomly, knowing the value of the signal excess

with certainty at some time does not determine the values of the

signal excess with certainty at neighboring times. In the

unconditioned case, the correlation coefficient between the random

variables X(t) and X(t+r) is equal to l/e. For this reason,

7 is referred to as a relaxation time.

It appears that the use of the lambda-sigma jump process to

describe the stochastic character of signal excess is based more on

past practice than on experimental justification. In this regard,

see Reference 9. By referring to Equation 1, it can be seen that

the signal excess stochastic process is determined by the sum of

the stochastic processes that determine the random variables on the

right side of this equation. Although the sum of a collection of

normal random variables is a normal random variable, in general,

the sum of a collection of lambda-sigma jump processes is not a

lambd&-sigma jump process. This suggests that if the lambda-sigma

jump process does adequately describe the variability of the signal

excess, then the majority of the variability of the signal excess

is due to a single one of its components. If that component is

transmission loss, then there is an additional complication: The

internal wave field appears to be a major factor in determining the

temporal variability of the transmission loss. For example, see

Reference 10. If this is true, the spatial variability of the

internal wave field should also be a factor. In this case,

movement relative to the internal wave field by a source or a
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receiver should generate variability in the signal excess which

would depend on the spatial variability of the field and the

relative motion.

In the three encounter models described below, detection is

defined in terms of signal excess and decisions are indexed by a

time that can usually be considered to be the time of the decision.

During an encounter, observations are made sequentially of one or

a series of localization regions (resolution cells). For a

localization region that does not contain a target, the signal

observed during the observation of the region is zero. For these

observations, the time to resolve a false alarm is zero. However,

since the value of RD (or DT) is finite and consequently the

false alarm probability is not zero, by implication, the cost

assuuiated with a false alarm is not zero.

The First Passive Sonar Encounter Detection Model: This model

describes an encounter in terms of a series of decisions with each

decision based on the signal excess XSE(t) at a time corresponding

to the end of an observation. The observations are of equal

duration and the integration time that determines the recognition

differential is equal to the duration of the observations. In the

model, XsE(t) is determined by a lambda-sigma jump process. For

an encounter of m observations in which SE(t) is unimodal and

in which the tine of the single maximum is prior to or at the end

of the encounter, it is shown in Reference 11 that the probability

p that detection will occur during the encounter is given by the

following equation:
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(6) p 1-[(- PI)/ BPC)) - pI) (1.. Bp')

where B = 1 - exp(-6t/7) and where Pj = O(SE(t1 )/c] for the

index i 1, 2, - , n. Here, 6t indicates the duration of an

observation and I indicates the standard normal cumulative

distribution function as before. The integer c is the index of

a decision time t. for which SE(tc) is greater than or equal to

SE(t:) for any time t, and t, : tc : tm.

As 7 appioaches zero, B approaches one and Equation 6

approaches:

(7) p = 1 - (1 - P0) "'" (1 - Pm)

In this limit, the signal excess random variables are all

independent. Note that Equation 7 applies without the condition

that SE(t) be unimodal.

As T approaches infinity, B approaches zero and, in this

case, Equation 6 approaches:
(8) P = PC"

In this limit, the correlation coefficient between any pair of

signal excess random variables is equal to one. Note that

Equation 8 also applies without the condition that SE(t) be

unimodal. Equation 8 defines a complete dependence encounter

model.

The Second Passive Sonar Encounter Detection Model% This

model is in a sense a third limiting form of the first passive

sonar encounter detection model. In this limit, the time 6t

between decisions approaches zero. However, in this limit the

integration time that determines the recognition differential is
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not equal to 6t and it does not approach zero. It is, in ef fect,

chosen by the user of the model through the user's choice of the

value for the recognition differential. For an encounter that

begins at t, and ends at t2and for which X.,E(t) is determined

by a lambda-sigma jump process and SE(t) is

unimodal, it is shown in Reference 11 that for this limit,

Equation 6 has the following form:

where p(t) = -ý[SE(t)/a] and where now tcis the encounter time

such that SEct.) is greater than equal to SE(t) for any other

encounter time t and ti :5 •c: t2.

Th'ae Th~ird Passive sonar Encounter Detection Xodel: This

model describes an encounter between a target and a passive sonar

detection system in which detection occurs during an encounter if

the average value of the square of the continuously observed

signal-to-noise ratio over a time interval of length u is greater

than or equal to the square of the signal-to-noise ratio that

determines the recognition differential for an integration time

equal to u. With R(s) the random signal-to-noise ratio at a

time s and R,,(u) the random signal-to-noise ratio that

determines R(s) for an integration time u, detection occurs at

the first time t that the following inequality is satisfied:
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(10) (1/u) f [R (S) /Rm(U) 2dS

Here, the time origin is chosen so that t Ž 0 and the integration

time u=t for t<t, and u=t, for t •tOwhere to isa

maximum integration time. The random integrand in the inequality

is related to the random signal excess at the time s for an

integration time u. The relation is:

(11) 10 log [R(s)/Rm(U)] 2 = 2[SE(s;u) + X(s)]

where SE(s;u) is the expected value of the signal excess at a

time s for an integration time u and X(s) is the random

component of the signal excess at the time s. In the model, X(s)

is determined by a lambda-sigma jump process and SE(s;u) is

detormined by an expected value sonar equation with a recognition

differential RD(u) = 10 log rm(u). Here, r,(t) is the value of

the signal-to-noise ratio that gives a probability of detection

equal to .5 for an integration time t and a specified

probability of false alarm pf. With the signal detection process

described by a Case II signal detection model, the detection index

necessary to give the required operating point (pf,. 5 ) is related

to the integration time t and the signal-to-noise ratio r,(t)

by:

(12) d = u (BW) Crm(t) ]2

where BW is the bandwidth of the receiver. For a spectrum

analyzer, BW would be the bandwidth corresponding to a given

frequency resolution anct d would be the detection index required

in order to be at the operating point (pf,.5) for a signal that
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was contained within a bandwidth BW. Since d in Equation 12

must be the same for t = u and t = to,

(13) RD(u) = 5 log(t./u) + RD(t 0 )

where t0 is the maximum integration time. Then, since

SE(s;u) - SE(s;t 0 ) = RD(t 0 ) - RD(u), by using Equation 13 and

Equation 11, Relation 10 becomes:

(14) f U10 (1/5) Wx(s) -SE(09; to) -5l-g(to) dsk1

where as above the time origin is chosen so that t Ž 0, the

integiation time u = t for t < to and u = t. for t Ž to and

where SE(s;t 0 ) is the expected value of the signal excess at the

time s for a recognition differential determined by an

integration time to. in an encounter, detection occurs the first

tixne that Relation 14 is satisfied.

AL noted in Reference 12, the appeal of the Third Passive

Sonar En. nter Detection Model relative to the Second and First

Passive Sonar Encounter Detection Models is that it appears to more

closely descLibe the detection process in passive sonar detection

systems thai. display their processed data to an operator in a

continuous manner over a time window of duration to. However,

results reported in Reference 13 indicate that the difference

between the three models may not be significant in some types of

encounters.
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VIII. Straight Line Encounters

In general, a range r, can be defined beyond which the

probability of detecting a target based on an observation is

effectively zero. For example, the range to a radar horizon. In

this report, an encounter between a target and a detection system

exists when the range between the target and the detection system

is less than or equal to r.. Suppose rm is small enough so that

when the target and the detection system are having an encounter

they can be considered to be moving on planes parallel to & tangent

plane to the earth's surface at a point in their vicinity. In this

case, if the target and detection system maintain a constant course

and speed during the encounter, it is called a straight line

encounter.

A straight line encounter can be described in terms of a two

dimensional rectangular coordinate system whose plane is parallel

to the tangent plane to the earth. If the coordinate system is

stationary relative to the detection system with the detection

system located at the origin and is oriented so that the target's

motion is parallel to the y-axis and is in the positive

y-direction, then the target's x-coordinate during a straight

line encounter will be constant. The constant is equal to the

target's horizontal range at the closest point of approach (CPA)

on the straight line track on which the target is moving relative

to the detection system during the encounter. This range is called

the target's lateral range.
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A complete straight line encounter is a straight line

encounter that begins at a range from a detection system that is

greater than or equal to rm and continues past CPA to a range

from the detection system that is again equal to or greater than

r.. Let p(x) be the cumulative probability that a target is

detected by a detection system in a complete straight line

encounter in which the target's lateral range is x. Then the

function p(x) defines what is called a lateral range curve or

lateral range function.

Let p be the probability that a target is detected during a

complete straight line encounter. If the lateral range of a target

in a straight line encounter is assumed to be a continuous random

variable X with a uniform distribution with f,(x) = 1/a for Ix!

S a/2 and p(x) = 0 for (xj > a/2, then the probability that a

target will be detected during a complete straight line encounter

is given by:

(15) p(Il/a)f 7(x) dx

where the limits of integration can be used since the value of

p(x) is zero for lxi > a/2. Equation 15 suggests a measure of a

detection system's capability to detect a target in a straight line

encounter. The measure W is called sweep width and it is defined

in Reference 6 as:

(16) W px) dx.
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In an application of the definition, the infinite limits are

replaced by a number that corresponds to a maximum detection range

for the circumstances involved. To do this may require some

analysis. For example, consider a detection system described by

the Case II model and a signal such that the maximum encounter

signal-to-noise ratio approached zero as x increased. In this

case, p(x) would approach p, and the integrand in defining

Equation'16 would not approach zero and W would increase without

limit as x increased.
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IX. Two Intermittent signal Encounter Models

In the intermittent signal encounter models that are described

here, a straight line encounter takes place between a detection

system and a target that at various times either emits a signal (an

acoustic transient) or is the cause of a signal (a visible wake)

during the encounter. Two cases are considered: In the first

case, the signals occur periodically, the signals are of length 6t

and the time between the occurrence of signals is r where T >

6t. And, for the detection system, prior to the detection of a

signal, the time at which a signal will be emitted in a time

interval of length T is uniformly distributed over that interval.

In the second case, 6t = 0 (the signals are instantaneous) and the

signals occur at times determined by a Poisson process with Y the

expected time between signals.

In the models, the detectability of a target signal depends on

the target's horizontal range r from the detection system where

r is determined by the characteristics of the detection system and

the target signal. If a signal is present while the target is

within horizontal range r, it will be detected. Otherwise, it

will not be detected. The geometry for an encounter is shown in

Figure 3.

For an intermittent signal, the exposure time of a target

relative to a detection system is (2/w)(r' -_X2 ) + 6t. The

models are based on the assumption that the encounters are such

that a target is exposed for this time between two consecutive

signals.
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For a periodic intermit-ent signal, if r >_ w. (T - 6t)/2 , the

lateral range function for an encounter is:

p(x) = 0 for lxI > r

(17) p(x) = 1 for xi !S (Vr - [w" (7 - 6t)/2]- )Y

p(x) = (2/(w7)] (r2 - x2)Y + 6t/T otherwise

If r < w (T - 6t)/2 , the middle equality in Equation 17 does

not apply.

For intermittent signals whose occurrence is determined by a

Poisson process and for which 6t = 0, the lateral range function

for an encounter is:

p(x) = 1 - exp{-[2/(wr)](r 2 - x2)W) for lxi < r
(18)

p(x) = 0 for 1XI > r.

For signals whose occurrence is determined by a Poisson process and

for which 6t > 0, signals can overlap. If this is allowed,

y
Target

x

Figure 3. The encounter geometry for the two intermittent signal

models described here.
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then Equation 18 can be modified to describe this case by adding

6t/T to the term in the exponent of Equation 18 that is within

the square brackets. In particular, note that a modified Equation

18 can be approximated by the bottom equality in Equation 17 when

(2/wr) (r 2 - xz ) + 6t/lr << 1. This implies that when the expected

time r between signals is large relative to the exposure time

(2/w) (r- - x 2 )h + 6t, the periodic signal model and the Poisson

random signal model are essentially equivalent.

If r < w- (i - 6t)/2, for a periodic intermittent signal and

an encounter such that between two consecutive signals the exposure

time is (2/w) (r' - xz)4 + St for lxi < r, the sweep width for

the encounter W = nrl/(wr) + 2r6ti/.
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X. A Random Search Model

As the term is used here, a random search of a region is one

in which a detection system's track relative to a target consists

of a series of straight line segments which, in a limiting sense,

are placed randomly within a search region. Figure 4 represents

the track of a detection system performing a random search for a

fixed target in a search region bounded by a circle.

Figure 4. A search region and a track that could be described as

a random search track.
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Three models that represent this kind of search are described

in this section. The first model is based on the following

conditions: 1. A search consists of the search of a series of

rectangular subregions that are completely contained within the

search region, whose width is determined by the maximum detection

range of the searcher's detection system on a track segment and

whose length is equal to the length of the detection system's

corresponding track segment. 2. Given a target is within the

search region, the probability that the target will be within a

rectangle during its search is equal to the ratio of the area of

the rectangle to the area of the search region. 3. The track

segments are located in such a way that the event the target is in

a track segment's corresponding rectangle is independent of the

event that is in any other rectangle. 4. If the target is within

a rectangle being searched, a complete straight line encounter

occurs in which the relative track of the detection system (the

corresponding track segment) is parallel to the long axis of the

rectangle and the lateral range of the target is uniformly

distributed across the width of the rectangle. 5. The probability

thaat the searcher's detection system will detect the target in the

encounter is p(x) where x is the lateral range and p(x) is

the lateral range function for the encounter. 6. The probability

that the searcher's detection system will detect a target that is

not in the rectangle being searched is zero.
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Swept Area

Figure 5. A search rectangle and the track cf a searching aircraft

,with a side looking detection system.

Based on the above conditions, the probability that a target

will be detected given it is in a search rectangle that is being

searched is given by:

(19) ('p(x) f(x() dx=W/b

where fx(x) = I/b for -b/2 5 x S b/2 and where fx(x) = 0 and

p(xM = 0 otherwise. Note that the left side of Equation 19

applies to any complete straight line encounter in which the

target's lateral range for the encounter is a random variable with

a distribution corresponding to the probability density function

f×(X). The unconditional probability that the target will be

detected on the track segment is: (W/b)(SA/A) where 6A is the

area of the search rectangle associated with the track segment and

A is the area of the search region. With k the length of the

rectangle, 6A = b- and the probability becomes: (W-,)/A.

Then, since the event that the target will be in the search

rectangle of a track segment is independent of the event that it is
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rectangle of a track segment is independent of the event that it is

in the search rectangle of any other track segment, the probability

p that a random search consisting of m track segments will

detect the target is given by:

I - [i - (W.f 1 )/A]I 1 - (W. 2 )/A] ... [1 - (W-en)/A] where ti is

the length of the ith track segment. The probability is also

given by: p = 1 - exp(Z ln[l - (W'fi)/A]) where i = 1, 2,

n. If (W-ef)/A << 1 for i = 1, 2, , n, this expression can

be approximated by:

(20) p = 1 - exp[-(W'e)/A]

where f = Z fl is the track length of the search. Equation 20

is known as the random search formula.

The second model of a random search is based on Equation 5 and

a ranci-m search detection rate function: r(t) = W-v(t)/A where

v(t) is the detection system's or the target's speed. With this

detection rate function and Equation 5, the random search formula

is:

(20a) P(T : t) = 1 - exp {-[W't(t)]/A}

where £(t) is the track length for a random search that starts at

time 0 and ends at time t and

(20b) k(t) ýf (s) ds

Replacing P(T : t) by p and R(t) by f gives Equation 20.

In the form of Equation 20a, the random search formula indicates

explicitly the relation between the probability of detection and

the duration of a random search. Note that Equation 20a implies
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that the sweep width is independent of speed over the range of

speeds in the encounter. Reference 15 contains an example of an

extension of this model to determine the probability of detecting

a target in a random search with r(t) = W-v/A(t) where A(t) is

the area of a disk whose radius increases with time.

A random search model can be used to determine the probability

of detecting an intermittent target using a sweep width determined

with one of the intermittent target models described in Section IX.

For the periodic intermittent target model, W = [vr'/(vr) +

2r6t/7] and Wvt is the area that is approximately equal to the

area searched for a track e = vt if t >> 7 .

The two models each imply that the time to resolve a false

alarm is zero in a random search. However, for each model, Pd and

pf can be assumed to be determined by a criterion such that pf is

less than one. Consequently, although the time to resolve false

alarms is ignored in each model, the cost associated with a false

alarm is not zero. (A model that accounts for the time to resolve

false alarms is described in Reference 14.)
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XI. Ladder and Barrier Search Models

In some barrier searches, the barrier search track is a ladder

search trdck relative to a reference system that moves with the

target. This fact is used in the barrier search model development

that follows the two ladder search model developments below. The

first ladder search model is referred to as an ideal ladder search

model. It can be considered to describe a ladder search with

precise navigation. The second ladder search model is referred to

as a degraded ladder search. It can be considered to describe a

ladder search track in which navigational errors result in

omissions and overlaps in coverage.

An Ideal Ladder Search Model: The model is based on the

following conditions: 1. A ladder search region is a rectangle

that contains a fixed target. 2. During a search of the region, a

searcher's detection system searches a set of m adjacent parallel

rectangular strips of width s and length b that just cover the

ladder search region. 3. There is a complete straight line

encounter between the target and the detection system daring the

search of a strip. 4. The target's position in a strip is

uniformly distributed across the width of the strip. 5. If the

target is not in a rectangular strip, then the probability that the

target will be detected during the search of the strip is zero.

Because of Condition 5, targets outside of the rectangular strip

that corresponds to a track segment cannot be detected while a

detection system is on the track segment. This implies that the

lateral range function for an encounter must satisfy the relation
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p(x) = 0 for values of the lateral range x for which the target

is outside of the strip and, consequently, W : s. If W = s

then the detection system detect the target with

b
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Figure 6. A schematic representation of a ladder search geometry

for a case in which the searcher's track bisects the rectangular

strips.

probability one if the ladder search is completed.

The ideal ladder search model implies that if the conditions of

the model are satisfied, the probability p that a target will be

detected by a an ideal ladder search is given by:

(21) p = W/s

where W/s • 1. The quantity W/s is called the coverage factor

in this case.

A Degraded Ladder Search Model: The ideal ladder search model

implies precise navigation. A model of a ladder search is given

in Reference 6 that can be used for cases in which this is a poor
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assumption. The model which is referred to here as a degraded

ladder search model can be considered to describe navigational

inaccuracies in terms of omissions and overlaps of coverage of the

rectangular strips. It is developed as follows: Consider a random

search in the ladder search region whose track length is equal to

the search track length required to complete an ideal ladder

-search, that is, a track length t = mb. The degraded ladder

search model describes the result of omissions and overlaps in a

ladder search to be such that the probability of detection for the

ladder search is equal to the probability of detection for this

random search. Consequently, since the area of the ladder search

region is msb, for the degraded ladder search model:

(22) p = 1 - exp(-W/s).

Although the requirement that the coverage factor W/s • 1 can be

relaxed for Equation 22, it is still an approximate condition.

The condition that the target be fixed within the rectangular

search region is critical to the models that determine both

Equation 21 and Equation 22. However, these equations are also

applicable to a search for a moving target under the conditions

that are described next.

A Barrier Search Model: A target moves with a constant course

and a constant speed u. Both the target's course and the target's

speed are known by a searcher. The searcher establishes a barrier

of width b that is perpendicular to the target's track and moves

on the barrier with a speed v > u. The barrier is designed so

that in a reference system relative to the target the barrier
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search is a ladder search that satisfies the conditions for a

ladder search that are given above. There are two cases to

consider: 1. The barrier is established in front of the target.

2. The barrier is established behind the target.

From the search geometry for a barrier established in front of

the target, it can be seen from Figure 7 below that

e sin'l(u/v) and d = vT where T = s/(v + u) is the time to move

from one search leg to the next. The angle e and the

perpendicular distance d which depend on u, v and s, and the

width of the barrier b are the quantities that determine the

implementation of the barrier.
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Figure 7. A barrier search track for a barrier established in

front of the target. The track is shown in a reference system

fixed relative to the earth.

For a barrier that is established in front of a target, one of

three barrier types will result. A barrier's type is determined by

the relation of the distance d to the distance

g = ut where the time t = b/(v2 - uz )h is the time to complete

a search leg (cross the barrier). The barrier type is determined

as follows: 1. For g < d, the barrier is an advancing barrier.

2. For g = d, the barrier is a stationary barrier. 3. For g > d,

the barrier is a retreating barrier.

For a barrier established behind the target, there is only one

barrier type and it is called an overtaking barrier. For an

overtaking barrier, e = sin 1 (u/v) as for a barrier established

in front of the target. But, for an overtaking barrier,

7 =s/(v-u) and d=v-s/(v-u).
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Given that a target crosses a barrier, the probability uf

detection for an ideal barrier search is given by Equation 21 and

the probability for a degraded barrier search is given by Equation

22 where the terms ideal and degraded refer to the nature of the

ladder search in the reference system moving with the target. A

discussion of an application of these two equations to a search for

a magnetic dipole target is given in Reference 16.
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XII. A Target State Estimation Procedure

A target state estimation procedure based on bearing

observations is developed in this section that generates point

estimates of a target's position and velocity vector coordinates in

a rectangular coordinate system. The procedure is based on a model

in which bearing errors are unknown and are not determined by

random variables with known distributions. Because of this,

confidence regions for the estimates are not generated by the

procedure. However, for a moving target, it illustrates general

characteristics of bearings only target motion analysis (TMA).

The model is defined as follows: 1. The target moves in a plane

with constant but unknown course and speed. 2. Observations of the

target are made from known positions at known times. 3. The

observations provide only target bearings with unknown errors.

North y

[xt(i),y,(i)] estimate

P 
~di = r, 

'sin (13i - 0j)

r r range estimate

0i observed bearing

B1 bearing estimate

[xo(i),yo(i)] observer

x East

Figure 8. The geometry of the target motion analysis model.
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The procedure criterion is: For observations from n positions,

choose target position estimates xt(i) and yt(i) and target

velocity component estimates ux and uY that make the sum of the

squares of the algebraic distance di between the estimated

positions and their corresponding observed bearing lines a minimum.

From Figure 8, the algebraic distance can be written as

di = [xt(i) - xo(i)]'cos ej - [yt(i) - yo(i)]-sin ef. Because of the

requirement that the target move with constant course and speed

during the encounter, the number of independent estimates is

reduced from 2n to 4: Ux , uY and any two position estimates

xt(j), yt(j). In the following, j = 1 and, for i = 2, 3, --

, n, the estimates are given by:

xt(i) = xt(l) + u,- (ti - t2 ) and yt(i) yt (1) - uY, (ti - t 1 ). To

determine "best" estimates of the target state parameters, take the

partial derivative of the sum S = Z di3 with respect to each of

them. Then set the four partial derivatives equal to zero. This

creates four linear equations in xt(l), y,(1), u, and uy whose

solution are the desired estimates xt(1), y (1), u, and u y. In

"matrix notation, the equations can be represented by AX B uhere

the elements of X are: x,1 = xt('), X21 = yt()I X51= u, and

S= uY. The determinant of A will be equal to zero if n < 4

Therefore, a necessary condition for a unique solution for X is

that n > 4.

The procedure described above can also be used to estimate a

target's position at various times when both the target's course

and speed are constant and known. In particular, it can be used if
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the target is stationary so that U. and uy are both equal to

zero. In this case, since the number of unknowns is two, the

number of linear equations is also two and a necessary condition

for a unique solution is n Ž 2.

Now, suppc e the observations are at positions and times that

correspond to the positions and times of an observer moving on some

constant course at some constant speed (including zero speed). In

this case, the observation position coordinates are related by:

Xo(i) = X)(l) + vx- (t1 - t,) and y,(i) = y,(1) + vy. (ti - t,) where

v. and vy are the required velocity components of the observer.

Using these equations of motion, the matrix equation AX = B can

be transformed to the matrix equation AX'= 0 where the elements

of X are related to the elements of the matrix X' by the

quqtioiis: x;1 = xt(1) - x,(1), x2' = yt(1) - y0 (1), x3 u -

and x, 1 = uy - vy.

Since the linear equations represented by AX' = 0 are

homogenous, they do not have a unique solution. Therefore, neither

do the equations represented by AX = B. Consequently, in this

case, the condition n ? 4 is clearly not a sufficient condition

for a unique solution However, if there is at least one

observation whose time anm position is not determined by ".-ie above

equations of motion, thu transtormation fioni X to X' cannot be

maue. If thce observations are made from a platform that is moving

with a constant course and speed, the requirement can be achieved

by changinj the coar~e, the 'fpaed or both prior to completing the

observations. (Tha,: the cond*tion n Ž 4 is riot a sufficient
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condition in this case has been established by a counter example

for n = 4. See Reference 17.)

Estimation models that describe bearing error as a random

variable provide a basis for determining confidence regions for

point estimates such as those discussed above. For example, see

Reference 18 for a fixed target or simultaneous observation model

and Reference 19 for more general cases.
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XIII. Position Distributions That Change with Motion

Target motion models provide a basis for determining position

distributions that change with target motion. In this section, two

classes of target motion models are considered. In the first

class, a target moves in a plane with a constant course and speed

and the course and speed are independent of the target's position.

In the second class, a target moves in a plane but its course or

speed changes during the motion. Three models of the first class

are developad first. This is followed by a discussion of some

models of the second class.

Motion Models of the First Class: For the first class of

motion models, the joint density function of the distribution that

determines a target's coordinates X(t) and Y(t) at some time

t Ž 0 can be determined by:

(23) _U~y (y;t f-(xut-ut;0) fu. U U,, 1) du~duy

Equation 23 can be developed as follows: To first order,

fXct),Yt)(x,y;t1 6x6y is the probability that a target's coordinates

x and y are in an element of area 6x6y. To first order, the

integrand cf Equation 23 multiplied by 6q6s and 6ux uY is the

probability that the target's position at time 0 has coordinates

q = X - u t and s = y - u t in an element of area 6q6s. To

first order, 6q6s is identical in size and shape to 6x6y because

of the transformation from q and s to x and y. And, to

first order, the sum of such probabilities for all pairs of values

of u. and uY is also the probability that the target's coordinates
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at time t are in the element of area 6x~y. In the limit, after

equating the two expressions for this probability and canceling the

common factor Sx6y, Equation 23 results.

The First Motion Model: In the first model, X(O) and Y(O)

are both independent normal random variables with means A. and

AY and equal standard deviations a. However, UX and Uy are

not normal and they are not independent random variables. In this

model, U. = u-sin 4 and U. = u. cos 4 where $ is the random

variable that determines the target's course and u is the targets

speed which is known. So, only a value for the random variable §

is required to determine the target's velocity. In the model, 0

has a uniform distribution over the interval 0 to 2r and it is

convenient to choose the rectangular coordinate system so that the

means gX and Ay are each equal to 0. Then, with the circular

normal distribution determining the random position coordinates and

with the distribution that is described above determining the

random velocity components , in the coordinates u and 0, the

integral of Equation 23 is a single integral over 0 and the

integrand of the integral is (i/2vrl) exp[-(q2 + s2)/2a2] (1/2r)

where now q = x - ut.sin • and s = y - ut-cos q. Integration

gives:

(24) fX (C)C (x,y; t) =-.1 exp(- [x2+y2+(ut)2] /202)o1{(X2+y2) 1/2Ut/0 2)
2ito2

where t >_ 0 and I. indicates the hyperbolic Bessel function of

zeroth order. In Reference 6, fx(t),Y(t)(x,y;t) is plotted for

several values of t in terms of r = (x 2 + y2)l, the target's
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range from the origin. The plots show a characteristic of the

distribution that can be indicated as follows: First, replace (x2

+ yZ )* by r in fx(t),y(t(x,y;t). Next, multiply and then divide

fx(t),y(t (r; t) by exp(-rut/aa). This gives.-

(25) 2,exp (-2) (r-u 2

where t o 0. As noted in Reference 20, 10(z)-exp(-z) is a

slowly decreasing function that asymptotically approaches l/(2rz)*

as z increases. Because of this, a plot of fX(?)0Y(t)(r;t) against

r for values of t greater than 4a/u has the appearance of a

normal density function.

A target's random rectangular coordinates X(t) and Y(t)

and its ranauom bearing 6(t) and range R(t) from the origin are

related by: X(t) = R(t)-sin 0(t) and Y(t) = R(t)'cos e(t).

Using these relations, fX(t), Y()(x,y;t) can be transformed to

the joint density function fR(t)e(t) (r,o;t) of the random variables

R(t) and E(t). To do this, replace x2 + y2 by r 2 in

Expression 24. Then multiply by r, the Jacobian of the

transformation. Next, integrate the resulting joint density

function fR(t).e(t)(r,a;t) over the interval 0 to 27r . This gives

the marginal density function for the target's range R(t):

(2_6) 02) (r;t) -r [ - 2

where 0 < r
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The Second Motion Model: In the second model, X(O) and

Y(O) are independent normal random variables with means g. and

AY and standard deviations a. and ay that determine a target's

random position coordinates at time 0. And U. and U are

independent normal random variables with means 0 and Oy and

standard deviation au that determine a target's random velocity

components. Because of these conditions, the target coordinates

are X(t) = X(0) + t'U and Y(t) = Y(0) + t-Uy at time t. This

implies that X(t) and Y(t) are independent normal random

variables with means + uxt and A + Cyt and with standard

deviations acx + au2 t 2  and o2 Y + U2 t 2 . The model describes a

bivariate normal position distribution whose center moves with a

constant velocity determined by Q. and 5y and which becomes more

and more circular as its standard deviations increase with the

passage of time. Although the tarcets joint density can be found

by using Equation 23, this procedure is more direct. For another

discussion of the first and second models, see Reference 7.

The Third Motion Model: In the third model, the target is at

the origin of a rectangular coordinate system at time zero. After

that, its position is uniformly distributed on a circular disk of

radius umt centered at the origin. This implies that

(27) fx(C)Y(C) (X,y: t) I_

54 Uj
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for t > 0 where x2 + y 2 : Um2 t 2  and that the joint density

function of the distribution of the random variables e(t) and

R(t) that determine a target's bearing and range is:

(28) fR().e(t)(r,u;t) - 7ruJ~t2

for t > 0 where 0 5 a < 27 and 0 < r : u~t. Since the ranges

of a and r are independent and their joint density function is

equal to the product of 1/(2 7) and 2r/(um2 t 2 ), the random

variables 0(t) and R(t) are independent and fe(t)(a) = 1/(2r)

and fR(t) - 2r/(uM2 t 2) where 0 : a < 27 and 0 < r : umt. These

two marginal distributions define the motion model: At time 0,

choose a course . from a uniform distribution defAa A'ined by the

density function f,(O) = 1/(27r) where 0 is in radians and where

0 : 0 < 2v and a speed u from a triangular distribution defined

by the density function fu(u) = 2u/um2 where 0 : u S um.

Motion Models of the Second Class: For the second class of

motion models, a target's course or speed or both can change. In

a limited number of cases, a description in terms of a closed form

position distribution is possible. An example which is due to

Washburn is described in Reference 21. In this model, a target's

speed is known and its position is known at time 0 but is unknown

at any future time. In addition, although the target's course 0

at any time is unknown, it is known that the course is chosen from

a uniform distribution and fo(o) = 1/(27) for 0 in radians

where 0 • 0 < 2v A new course is chosen at times determined by
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a Poisson process with rate parameter I. This idealized motion is

referred to as a random tour. With p, = (xz + yz )/(ut)2 , a target

position distribution at a time t > 0 is defined as follows: For

p < 1,

fx~~~) VO (X Y;exp(-1C[I- (l-p?) 112J

(29) 2%U2t2 (i_p2)1/2

For p >,.l, fXC()YX(t)(x,y;t) = 0. For p = 1, fx(t),Y() (x,y;t) is not

"defined, since P(X 2 (t) + Y (t) = u2 t 2 ) = exp(-)t) for p = 1. By

transforming to bearing and range coordinates, a target range

distribution at a time t > 0 can be determined by inspection and

is defined as follows: For p < 1,

IC_• IZ It }ex {_•It [1-_(l p2) 1/2].
(30) f-RMt ( ;t 2t2 t (i_p2i 1/2

For p> 1, fR(t)(r;t) = 0. For p = 1, P[R(t) ut 2 ] = exp(-It).

An example that can not be defined in this manner which is a

modification of the third model of the first class is described in

Reference 22.

Two additional ways of defining target position distributions

are by means of state transitions and by means of monte carlo

simulations. Reference 23 gives an example of the use of state

transitions and Reference 24 gives an example of the use of monte

carlo simulations.
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XIV. Position Distributions That Change with Search

For the models that are considered here, a target is within a

region that has been divided into n subregions or cells and the

event Si = (the target is in the ith cell). For each cell, a

number is assigned that is interpreted as the probability that the

target is in the cell at the time of the search. This set of

numbers define a target position distribution at that time. In a

search of the region, suppose that a search planner is told that

the target has been detected. Or suppose the search planner is

told the target has not been detected. In the first case, positive

information is available that can be used by the search planner to

modify the position distribution. In the second case, negative

information is available that can be used to do this. Models are

developed below that provide ways of utilizing this kind of

positive and negative information to modify a target position

distribution. In the development, three random variables are

determined by a search: N., the number of unresolved contacts; Nt,

the number of unresolved true contacts and Nf the number of

unresolved false contacts. Since NC = Nt + Nf, this implies that

(31) P(N,=0)= E P[(Nt=J)n(N1 =k)] where j Ž 0 and k Ž 0.

A Positive Information Model: The event (Nc = 1) is the

union of two mutually exclusive events: (Nt = 1) n (Nf = 01 and

{Nt = 0) n (Nf = 1). Let the event C = {Nc = 1) and the

events TC = (Nt = 1) n (Nf = 0) and FC = (Nt 0) n (Nf = 1)

where TC represents a true contact and FC a false contact.
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Since P(SJ1C) = [P(S1 n TC) + P(Si n FC)]/P(C) and TC = TC n C

and FC = PC n C, P(SjIC) = P(S 1 ITC)P(TCIC) + P(S 1 IFC)P(FCIC)

where i 1, 2, - , n. The probability p = P(TCIC) has been

called the credibility of the contact. In terms of p,

(32) P(SiIC) = P(SiITC)-p + P(SIIFC)" (1 - p)

for i = 1, 2, - , n. If (Nt = 1) n Si and (Nf = 0) are

independent for i = 1, 2, n, then P(SjITC) is given by

(32a) P(SiITC) = P(Nt=I Sj) P(Si) sincep(M =i)

P[ (N,=I)r(N=O) ] =P(AN=O)•P[ (N=I)r)S.] and P(N,=1)=fP[(N,=I)nSj)
1 1

imply that (Nt = 1) and (Nf 01 are independent events. If,

in addition, the events (Nt 01) r Si and (Nf = 1) are

independent for i = 1, 2, --' , n then P(SjIFC) is given by

(32b) P(Si EC) = P(NC=O IS1) since
P(Nr=0)

P[ (Nt=O)n (Nf=1) ]=P(Nf=l) P[(Nt=O)rnSj] and P(N,=O)=fP[(N,=O) nS.]
1 1

imply that {Nt = 0) and tNf = 1) are independent events. To

illustrate how Equation 32 might be used, suppose that the

conditions for Equation 32a and Equation 32b are satisfied, that

a contact is a line of bearing contact or an omnidirectional sensor

contact and that the cells are range cells. With ri a range

identifying the ith cell and the random variable R the target's

range, suppose that P(N, = lIR = r,) = §[SE(ri)/a]. In this case,
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P(Mc:l) =-f0[S.E(rj) /o] P(R=.r.) and PN:)=(- S~j/])(~j
1 1

A classical analogue to the above is obtained if R is taken to be

continuous; r, fR(rIC) and fR(r) replace ri, P(R = rIC) and

P(R = r,) and, in addition,

P(Nt=l) =[f'O [SE(r) /a] f,,(r) dr and P(N,=0) =f2({l0 (SE(r)/o])fa(r) dr.

A Negative Information Model: The event (Nc = 0) is the

intersection of the events (Nt = 0) and {Nf = 0). Let the event

NC = (Nc = 0) and the events NTC = {Nt = 0) and NFC = (Nf = 0).

Then, NC = NTC n NFC and

(34) P(S1iNC) = P(NFCINTC n S,)P(NTCIS,)P(S 1 )/P(NC).

If NTC n Si and NFC are independCnt for i = 1, 2, -- " ,

then P(S 1 INC) = P(NTCIS,)P(S1 )/P(NTC) or, equivalently,

P(N=OISi)
(34a) P(S INC) P(N-=0) P(Si) since

P[ (N==0) rA (N1 =) J =P(N=O) P[(N,=O) nS.] and P(Nc=O) =P[ (Nt=0) )Sj11 ., 1

imply that NTC and NFC also are independent. To illustrate how

it might be used, suppose the conditions for Equation 34a are

satisfied and a search in a cell is a random search. With Ai the

area, W, the sweep width and t, the track length of the ith cell:

"exp[-(W iQ1)/Ai]P(Si)

texp[- (Wj£Q) /A)] P(Sj)
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XV. Search Models and Search Theory

Search theory provides a basis for determining optimal search

plans for a target whose state is determined within some bounds.

Here, an optimal search plan is one for which the probability of

finding a target within a given length of time is a maximum, the

expected time to find a target is a minimum given the target is

found or a search plan for which some other optimal search

criterion is satisfied.

Search theory results are based on models of the search

process. To the degree that a search model describes a search

process, an optimal search plan for a target that is based on the

search model should provide guidance fox the development of an

operationally feasible search plan. However, because of the

limitations of analytical search models, an optimal search plan

that is based on an analytical search model may give only initial

guidance in this regard. The optimal search plans that are

described below illustrate this. The search plans are based on the

random search model. Because of this, the requirement on the

location of search track segments is not realizable and the time to

resolve false alarms is ignored.

Optimal search plans based on search models implemented

through a monte carlo simulation are not considered here. However,

wit'a sufficient information, such a plan could be superior to an

optimal search plan based on an analytical search model in some

cases.
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Three Optimal Search Plans: The three optimal search plans

differ in their criterion for an optimal search plan. However,

each one is based on the following search model: A target is fixed

at some point in a region that consists of n subregions. A

search in a subregion is a random search in the sense of the

definition in Section X and a searchers sweep width there is a

constant. In addition, a search of a subregion will not detect a

target which is in another subregion. To determine a plan, let

Si = (the target is in subregion i) for i = 1, 2, - , n and

let p, = P(Si) be the prior probability that the target is in the

ith subregion. Let W. be the sweep width in the ith subregion.

Let 6i = Ai/Wi where Ai is the area of the ith subregion and 6i

is the expected track length to find the target by a search of the

ith subregion given the target is in the ith subregion, a

characteristic length. The probability P that the target will be

detected by a random search is given by:

(35) P = Z [I - exp(-fi/6i)]'pi

where the sum index i = 1,2, - n and 9i is the track

length of the search in the ith subregion.

The first criterion: Choose f so that P is a maximum

subject to the two constraints: 1. k Z t, and 2. ti Ž 0 where

the index i = 1, 2, *', , n. Determining this choice is a

nonlinear optimization problem whose solution is given in Reference

25. It is:

(616i in(pi/61 ) - A(k) i 1, 2, , k
(36)

=i*/6i 0 i = k+l, k+2, ,n
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where I(k) = (t//6I).[6j.ln(p/&)] -ij and the sum index

j = 1, 2, --- , k where the subregions are relabeled so that the

following order relation holds: pi/6 1 > p 2!6 2 > ... > pr65 and

where k is chosen so that for k+l the solution for ek+. using

A(k+l) is either negative or zero,

The second criterion: Choose ti so that P is a maximum

subject to the two constraints: 1. c = Z ci and 2. c, > 0 where

the index i = l, 2, , n, c, = k" £. is the cost of the search

in the ith subregion and k, is the cost per unit track length in

that subregion. For this criterion, the solution to the

corresponding nonlinear optimization problem can be obtained from

Equation 36 by replacing 6i by ci = ki" 6i and labeling the

subregions so that pl/ei > p 2/6i > "'" > p,/Ei. The basis for this

can be seen by replacing ti/ 6 i by its equivalent ci/ei in the

exponential term in Equation 35.

The third criterion: Choose ti so that the expected utility

of the search is a maximum subject to the following two

constraints: 1. e = Z fL and 2. 2i >- 0 where the index

i = 1, 2, - , n. For this criterion, the solution to the

corresponding nonlinear optimization problem can be obtained from

Equation 36, first, by replacing pi by qi where qi = ui*Pi and

ui is the utility of detecting the target given it is in the ith

subregion. And, second, by labeling the subregions so that the

following inequalities hold: q1/6 1 > q 2/6 2 > ... > qr/6n. The basis

for this can be seen by multiplying the ith summation term in

Equation 35 by u, for i 1, 2, , n so that the resulting

62



equation gives the expected utility of the search given the utility

of not detecting the target is zero.

Equation 36 can be used to determine an order of search for

the subregions which will effectively minimize the expected track

length required to detect a target given it :s detected. To do

this, divio2 the available track length t into units small enough

so that with , single unit only the 1S su)-egion would be searched.

Then allocate one unit to thc. search of the I" subregion. If the

search is unsuccessful, detirmine the optimum al'ocation for two

units. Then search with a second unit so that the first search

with the first unit plus the second search with the second unit

satisfy the optimum allocation for two units. If the search is

unsuccessful, continue in this fashion until either the target is

found oi. dll the track length is expended. That this allocation

order will effectively minimize the expected track length required

to detect a target given it is detected can be argued as foJlows:

Let L be the track length at detection, let Ae be a unit of

track length and let n be the number of units. Then the value of

the probability P(L : i.A) that the target will be detected on

or before the ith step of the search for the given allocation order

will be greater than or equal to its value for any other allocation

order with the same allocation step size. Since the value of the

probability P(L 5 Z) will be equal to its value for any other

allocation order of the optimum allocation. And, in addition,

since P(L S i°ieIL : 1) = P(L : i-At)/P(L S t), the value of the

distribution function FL(i-AeIL e) = P(L : iAZCIL • E) will be
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greater than or equal to its value for any other allocation order.

This implies that the expected track\ length given detection occurs

is given by: E(LIL < Z) = [I - FL(i.AUIL < t)), where the sum

index i = 1, 2, -- , n, is effectively a minimum for the given

allocation order. A search based on the optimum alloation given

by Equation 36 and the given allocation order is equivalent to the

following search: After an allocation of track length At and an

unsuccessful search, new values for P(S1 ) are calculated using

Equation 34 and then Equation 36 is used with these new values to

determine the next optimum allocation. A discussion of this

procedure is given in Reference 6. And an example of its

application is given in Reference 26.

Equation 36 also defines an optimal search plan for a

detection system that searches beams and can be described by

Equation 35 by replacing Z, by ti where t, is the time the

ith beam is searched and by replacing 6, by 1i where Ti, a

characteristic time, is the expected time to detect the target by

a search of the ith beam given the target is in the ith beam.

For a more extensive discussion of search theory and its

application to military operations research, see Reference 27.

64



References

1. Helstrom, C.W., Statistical Theory of Signal Detection,

2d Edition, Pergamon Press, New York, NY, 1968.

2. Urick, R.J., Principles of Underwater Sound, 3 rd Edition,

McGraw-Hill Book Co., New York, NY, 1983.

3. Andrews, F.A., "Two 50% probabilities," The Journal of the

Acoustical Society of America, Vol 57, No. 1, pp 245-248, January

1975.

4. Watson, W.H. and McGirr, R.W., "An Active Sonar Performance

Prediction Model," NOC-TP-286, Naval Research and Development

Center, San Diego, CA 92J.32, April 1972.

5. Forrest, R.N., "Active Acoustic Detection and Signal Excess

Fluctuations," NPS71-87-002, Naval Postgraduate School, Monterey,

CA 93943, November 1987.

6. Koopman, B.O., "Search and Screening," OEG Report No.56,

Operations Evaluation Group, Office of the Chief of Naval

Operations, Navy Department, Washington, D.C., 1946.

7. Koopman, B.O., Search and Screening, Pergamon Press,

New York, NY, 1980.

8. McCabe, B.J., "The Use of Detection Models in ASW Analysis,"

Daniel H. Wagner, Associates, Paoli, PA 19301, December 5, 1974.

65



9. Cavanagh, R.C., "Acoustic Fluctuation Modeling and System

Performance Estimation," Vols. I and II, SAI 79-737-WA and

SAI 79-738-WA, Science Applications, Inc., 8400 Westpark Drive,

McLean, VA 22101, January 1978.

10. Moses, E., Galati, W. and Nicholas, N., "Model Results of the

Effects of Internal Waves on Acoustic Propagation," ORI, Inc.,

Silver Spring, MD 20910, August 3, 1978.

1 1. Loane, E.P. and Richardson, H. R., "Theory of Cumulative

Detection Probability," A Report to the Navy Underwater Sound

Laboratory, Daniel H. Wagner, Associates, Paoli, PA 19301, November

10, 1964.

12. McCabe, B.J. and Belkin, B., " A Comparison of Detection

Models Used in ASW Operations Analysis," DHWA Log No. 74-2745,

Daniel H. Wagner, Associates, Paoli, PA 19301, October 31,1973.

13. Forrest, R.N., "Passive Acoustic Detection Models and the

Naval Warfare Gaming System," NPS55-85-007, Naval Postgraduate

School, Monterey, CA, April 1985.

14. Pollock, S.M., "Search Detection and Subsequent Action: Some

Problems on the Interfaces," Operations Research, Vol. 19, No.3, pp

559-586, 1971.

15. Coggins, P.B., "Detection Probability Computations for Random

Search of an Expanding Area," NRC:CUW:0374, National Academy of

Sciences, Washington, D.C. 20418, July 1971.

66



16. Forrest, R.N., "The Search Effectiveness of MAD," NPS55-79-06

(Revised), Naval Postgraduate School, Monterey, CA 93943, February

1979 (Revised September 1980).

17. Stromquist, W., unpublished example refined by D.H. Wagner,

July 1990 (private communication from D.H. Wagner October 1990).

18. Forrest, R.N., "Three Position Estimation Procedures," NPS55-

84-13 (Second Revision), Naval Postgraduate School, Monterey, CA

93943, June 1984 (Revised April 1989).

19. Gelb, A.E. ed., Applied Optimal Estimation, The M.I.T. Press,

Cambridge, MA, 1974.

20. Schwartz, M., Information Transmission, Modulaticn, and Noise,

2d Edition, McGraw-Hill Book Company, New York, NY, 1970.

21. Washburn, A.R., "Probability Density of a Moving Particle,"

Operations Research, Vol. 17, No.5, pp 861-871, 1969.

22. Forrest, R.N., "An Analysis of Three Post Launch Evasion

Strategies," NPS71-84-001 (Revised), Naval Postgraduate School,

Monterey, CA 93943, June 1984 (Revised January 1985).

23. Stone, L.D., Trader, D.A., Davison, M.E. and Corwin, T.L.,

"Technical Documentation of Salt," Metron, Inc., McLean, VA,

February 4, 1987.

24. Benkoski, S.J., Grunert, M.E., "Comparison of Casper and Tacco

Search Plans," Daniel H. Wagner, Associates, 1270 Oakmead Parkway,

Suite 314, Sunnyvale, CA 94086, April 30, 1986.

25. Hillier, F.S. and Lieberman G.J., Operations Research, 2nd

Edition, Holden-Day, Inc., San Francisco, CA, 1974.

67



26. Richardson, H.R. and Stone, L.D., "Operations Analysis During

the Underwater Search for Scorpion," Naval Rese.4rch Logistiqs

Quarterly, Vol. 18, pp 141-158, 1971.

27. Washburn, A.R., Search and Detection, Military Applications

Section, Operations Research Society of America, 1989.

68- m



71

Bibliography

1. Zehna, P.W. (ed.) , Selected Met-qods and Models in3 Military

Opierations Researc~h, U. S. Government Printing Of fice, Washington,

D.C., 1971.

2. Selin, I., "Detection Theory," R-436-PR, The RAND corporation,

Santa Monica, California, 1965.

3. Morse, P.M. and Kimball, G.E., "M~ethods of operations

Research," OEG Report No. 54, Operations Evaluation Group,

Office of the Chief of Naval operations, Navy Department,

Wasbington, D.C., 1946.

4. Waddington, D.C., 0. R. in World War 2, Paul Elek Ltd.,

London, 1973.

5. Naval Operations Analysis, 2rd Edition, Naval Institute Press,

Annapolis, Maryland, 1977.

6. Notes-on Operations Research, The M.I.T. Press, Cambridge,

Massachusetts, 1959.

*7. Haley, K.D. and Stone, L.D. (eds.), SerhTer n

* Applications, Plenum Press, New York, 1980.

8. Shephard, R.W., Hartley, D.A., Haysman, P.J., Thorpe, L. and

Bathe, M.R., Applied Operations Research, Plenum Press,

NwYorkJ, 1988.

PerormnceatSea," operations Research, Vol. 316, pp 651-659,
andmbrOcoe W19 ner88.,EtmaigViulDeeto

69I



10. Wagner, D.H., "Naval Tactical Decision Aids," NPS-55-89-l1,

Naval Postgraduate School, Monterey, CA 93943, September 1989.

70

70



Initial Distribution List

copies

Director of Research Administration (Code 012) 1
Naval Postgraduate School
Monterey, CA 93943-5000

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Library (Code 0142) 2
Naval Postgraduate School
Monterey, CA 93943-5000

Director, Wargaming Department 1
Naval War College
Newport, Ri 02841

Chief of Naval Operations 1
Department of the Navy
Attn: Code OP-21TI1
The Pentagon, Room 4D534
Washington, DC 20350

Commander 1
Submarine Development Squadron 12
Naval Submarine Base, New London
Groton, CT 06349

Commander 1
Surface Warfare Development Group
Naval Amphibious Base, Little Creek
Norfolk, VA 23521

Naval Air Development Center 1
Johnsville, PA 18974

Naval Surface Weapons Center 1
White Oak
Silver Spring, MD 20910

Naval Underwater Systems Center 1
Newport, RI 02840

Naval Underwater Systems Center 1
New London, CT 06320

Naval Ocean Systems Center 1
Sar Diego, CA 92132



Naval Technical Intelligence Center 1

4301 Suitland Road
Washington; DC 20395-5020

Naval Research Laboratory I

Washington, DC 20375

Center for Naval Analysis I

4401 Ford Avenue
P. 0. Box 16268
Alexandria, VA 22302-0268

Commandant (G-OSR-1) 1

U. S. .Coast Guard
Washington, DC 20593

Code 55Fo 75

Naval Postgraduate School
Monterey, CA 93943


