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Abstract - A Monte-Carlo simulation technique for the calculation of the

partition function of a general Gibbs rsndom field is prcsntced. We sho-, that

the partition function of a general Gibbs random field is equivalent to an

expectation. This observation allows us to develop an importance sampling

approach for estimating this expectation by using Monte-Carlo simulations.

Two different methods are proposed for this task. We show that the resulting

estimators are unbiased and consistent. Computations are performed itera-

tively, by using a simple, Metropolis-like, Monte-Carlo algorithm with remark-

able success, as it is demonstrated by our simulations. Our work concentrates

on binary, second-order Gibbs random fields defined on a rectangular lattice.

However, the proposed methods can be easily extended to more general Gibbs

random fields and, therefore, can become quite useful in many scientific areas,

such as biology, statistical mechanics and image processing. Furthermore, a

potential contribution of our technique to optimally estimating the parameters

of a general Gibbs random field from a given realization via a maximum-

likelihood approach is anticipated.
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I. INTRODUCTION

Markov, or, equivalently, Gibbs random fields (GRF's) belong to a well

known and popular class of parametric random field models [1], [2]. They are

extensively used for modeling spatial interaction phenomena, including the

phenomenon of phase transition which occurs when some macroscopic proper-

ties of a physical system change discontinuously over a small perturbation of

its parameters. Some "classic" application areas of GRF's include statistical

mechanics [3-51, ecology [6], sociology [7] and crystallography [8], [9]. Recently,

GRF models have found wide applicability in the general areas of image

analysis and computer v-ision, where they have become an attractive tool for

providing statistical models for images [10-13]. Since they capture various

image characteristics in terms of a few parameters, they have been successfully

applied in a variety of image processing problems, such as smoothing and seg-

mentation [14-18], restoration [19], [20], reconstruction [21] and coding [22], as

well as in a variety of computer vision tasks [23], [24]. However, many theoret-

ical and computational difficulties prohibit the application of these models to a

wider class of problems, one of the major difficulties being the computation of

the partition function. No exact solutions are known for this problem, except

for very simple cases [51, which are not adequate for most applications of

interest. As an alternative to exact solutions, approximation methods are used

to get a good estimate of this quantity. Some of the better known approxima-

tion techniques could be grouped into the following categories [5]: (a) cell, or

cluster, approximations [25], [26], (b) series expansions in powers of an

appropriate variable [271, [28], (c) renormalization group techniques [29], [30];

and, (d) statistical simulation and other techniques [5], [31]. Most of these

methods are either unreliable, especially around the critical point where a

phase transition occurs, or require considerable faith in the involved
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assumptions [5].

The lack of a closed form solution for the partition function imposes many

restrictions. For example, the statistical inference of GRF's, via a maximum-

likelihood approach, is an open problem, since solution of the likelihood equa-

tions is impossible without knowing the exact value of the partition function

and, possibly, some of its derivatives. As a result of this, alternative methods

have been developed with moderate success [6], [11], [17], [201, [32-36]. It is,

therefore, clear that the problem of calculating the partition function of a gen-

eral GRF, in a computationally amenable way, is of great interest. The study of

this problem is the purpose of the present paper.

The approximation technique proposed here is based on a stochastic simu-

lation approach and it makes use of a mutually compatible Gibbs random field

(or, equivalently, Markov mesh random field) and its relation to a general GRF

[37], [38]. Section II is devoted to establishing the required background aud

notation. In Section III we discuss the problem of computing the partition

function of a general GRF via Monte-Carlo simulations, and we propose two

methods to achieve this, which correspond to different approximations of a gen-

eral GRF by a MC-GRF random field. In Section IV we consider the algo-

rithmic implementation of these methods and discuss various important pro-

perties of the obtained estimators. Estimation of the derivatives of the parti-

tion function, and other related quantities, is very important and is also neces-

sary in order to carry out our second method. This is discussed in Section V,

whereas, in Section VI various supporting simulation experiments are

presented. Finally, in Section VII, we review our results and draw our conclu-

sions.
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If. GIBBS RANDOM FIELDS

Assume that we have a collection of MxN sites which form a two-

dimensional rectangular lattice AMN = ((i, j): 1< i <M, 1< j <N I. A discrete ran-

dom variable H(i, j) is assigned at each site of the lattice, taking values from a

discrete ensemble EH = [01, ob .... oR I, which contains R > 2 distinct values. The

resulting random field [H]= {H(i,j): 15 i <M, 1 j <N} can take any one of

the RMN possible realizations [h] = (hij :1< i <M, 1<j<N } in the Cartesian

product E MN with joint probability dist-ribution1 Pr[H=h]. At each lattice site

s,, n = 1,2 ... MN, a set N,. of neighbor sites is assigned such that: (a) s" 4

N,, ; and, (b) if sheN., then sm N, . We shall restrict [H] to be in the class of

Markov random fields (MRF's). In this case the following Markovian property

is satisfied:

Pr[H(s,) = h(s,,) IH(s) = h(s), s EAMN - (sf]

= Pr[H(sn) = h(sr)IH(s) = h(s), s eN, I > 0.

According to the Hammersley-Clifford Theorem [6], [H] is equivalent to a GRF

whose joint probability distribu:tion is given by the Gibbs measure

Pr[H = h] = - exp (-- U(h)}. (1)

In eq. (1), Z is a normalizing constant known as the partition function, T is a

positive parameter, known as the temperature, which controls the degree of

peaking in the Gibbs measure, whereas, U(.) is the energy function which

depends on a specific realization h of the GRF and the potentials associated

with its cliques [6].

1 In the following, boldface characters denote vectors which correspond to a lexicographic
oraering of the random field.



page 5

Without loss of generality, we consider second-order GRF's [6]. These ran-

dom fields is a "rich" class of models capable of describing a variety of spatial

interaction phenomena in a satisfactory way. In this case, the neighborhood

NV,2), at site (i, j) r AMN, will be given by

and the Gibbs measure (1) by

1 M N
Pr[H=hI = -jlij(hij,hil,,j,hi, j-r,,hij-), (2a)Pr[H h] -ZMN j=1 j=1

where
M N

ZMN =  1: rI rI (Yij(hij hi-,, jhi-, j-,hi, j-,). (2b)
states h i=1 j=1

In eq. (2), rij(x, y, z, o) is the local transfer function (LTF) of the GRF [H], and

the summation is carried over all RMN states [37]. The LTF has to be modified

at the boundary sites of AMN depending on the type of boundary conditions

assumed (free, or toroidal). In this paper, we shall assume free boundary con-

ditions2; i.e., H(i,j) = 01 in (i,j) , i 0 or j <0 ). The case of a first-order

GRF with neighborhood

Nijl) = {(i-1, j), (i, j-i), (i, j+l), (i+1, j)} ,

is a special case of eq. (2), with aij(hij, hi_ j, hi-,j-, h1 ,j 1 ) not depending on

hi-l,j-1 •

A special case of a general GRF is a mutually compatible Gibbs random

field (MC-GRF), or, equivalently, a Markov mesh random field [37]. The proba-

bility structure of a subset [H]A of such a random field [H], restricted on a

finite sublattice A of AMN, is independent of the size, or shape, of A. The LTF

trj (x, y, z, w) of these GRF's is restricted to satisfy the following relationship:

This t-y, of boundary conditions is most natural in many practical situations [19].
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",~~A T j(u ,y,z,co) =kj ,
u EEM

for every triplet (y ,z, (0) E , where kij is a constant. It is easy to show that the

computation of the partition function ZMN in this case is trivial. Indeed,

M N

Z MN = X 1T I ,,(hgvhi-1,j hi-1,j-l hi,j-,)
statesh i=1 j=l

M N M N

= -Ij Z Tij(u, hi-,j, hi-lj-j, hij-1) = rIjI kij
i=1 j=1 u eE H  i=i j=1

In this case, the partition function is expressed as the product of regular and

local partition functions (the kij's); therefore, no phase transition is associated

with these models [37].

Generating a realization of a MC-GRF is also an easy task, because this

can be done lexicographically using point by point simulation, as the following

relation implies:

M N rjj(h 1.,hj.,j,hi-tj-Y hi, j-)Pr [ H = h I = nI ri Z~j~ T xj(u,hj-j,j,hj-j,j-j, h,j-)
uE H

M N

= 1I n Pr [ hij I hi- 1,j,hi_1,j-1 , hi,j..1 ] ,
i=1 j=l

where

Pr [hij hi-, jhi-1 j-1 hij-1 - ij (hij j hi-, j ,9 hi -1, j-19 hi, j-1)
Pr[~~~~~ ~~~ hi h-rjh-~-h~-1 _ j(u,hi-l,j,hj-j,j-j~hj,j-j)•

uLSEH

Therefore, knowing the values of random variables H(i-lj), H(i-l,j-1) and

H(i,j-1), we can generate the value of H(i,j) by sampling the conditional pro-

bability Pr[ h Ihi 1 - 1 ,jhj-,j-, hj, j-1 ] over all possible values in EH.

Since a MC-GRF is characterized by many attractive properties, it has

been pointed out that it might be a good idea to try to approximate a general

GRF by a MC-GRF [381. Two approaches have been adopted here for the
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solution of this approximation problem. The first one is the simplest one, how-

ever the second one achieves optimality with respect to an "entropy" distance

between the probability distribution of a general GRF and the probability dis-

tribution of a MC-GRF. Both will be used to develop an importance sampling

procedure for the Monte-Carlo calculation of the partition function ZMN, given

by eq. (2b). This will be discussed in the following section.

III. MONTE-CARLO CALCULATION OF THE PARTITION FUNCTION

As we mentioned before, the main purl ?3e of our work is to calculate the

partition function ZMN of a general GRF via Monte-Carlo simulations. From eq.

(2b) observe that

ZMN= Z AMN(h) , (3a)
states h

where

M N

AMN(h) = 7 1 aij(hi , hi_l,j, hi-l.j-1, hij-1). (3b)
i=1 j=1

Since the previous summation is carried over RMN states, it is not possible to

compute ZMN directly, even for moderate size lattices. Assume that PMN(h) is a

joint probability distribution defined on the space of all RMN realizations h,

such that PMN (h) > 0, for every state h E EHfN. In this case

ZMN = Z [AMN (h) PMN(h) = Ep AMN(h) (4)
states h [-3N()IPNh

From eq. (4) we derive the following estimate 2MNP for the partition function

ZMN :

MN,p= lim 2MN e(K)= lim _K- ++- ' K._++.- I , (5a),

where
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K AMN(hk)
ZMN,P(K)= = , (5b)

k=1MN (hk) (b

provided that

AMN(h) (5c)
PMN(h)

for every h E EN. In eq. (5), hk, k = 1, 2,..., K, are i.i.d. realizations drawn

with probability PMN(hk), and, therefore, 2MNP is a Monte-Carlo estimate of

the partition function [39]. Inequality (5c) is satisfied in the case of finite lat-

tices. When MN - +-, this inequality may be violated and our approach has to

be modified. This modification will be discussed shortly.

Let us now focus on the problem of choosing the appropriate joint proba-

bility distribution PMN(h). Since ZMN,p(K), and, therefore, ZMNP, are unbiased

estimators of ZMN [391, we shall concentrate on finding joint probability distri-

butions PMN(h) which result in a small error variance Ep[ (ZMNP(K) - ZMN )2],

for every K. Ultimately, we would like to minimize the quantity

Ep [ 2,2N,p (K) ]_I AMN(h__)K-1 MN
Kt() hPMN(h) + K

with respect to PMN(h), provided that we can draw samples h from the proba-

bility distribution PMN(h) in a computationally efficient way. Equivalently, we

would like to minimize (with respect to PMN(h)) the Ali-Silvey distance [401

d s OWN, PMN) = I [ -N) lPMN(h)
statesh PMN(h)

K_
- NEP[ 2N,p(K) ] - (K- 1), (6)

between the probability measures PMN(h) and xMN(h). Notice that PwN(h)

should be known explicitly, since at each step of the Monte-Carlo algorithm the

quantity AMN (h) / PMN (h) must be calculated.
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It is straightforward to show that the direct minimization of eq. (6), with

respect to PMN(h), results in PMN(h) = 7rMN(h) = AMN (h)/ZMN , which is the Gibbs

measure. Although this choice results in zero error variance, it is useless, since

the computation of AMN (h) /PMN (h) requires ZMN to be known explicitly. We can

resolve this problem by considering probability distributions PMN(h) which

correspond to a MC-GRF, therefore, satisfying the following relation:

M N
PMN (h) = [j I" rij(hij,hi-1,j,hi-1,j-1, hi,7j-1) > 0, (7a)

i=1 j=l

where

Xitj(u,y, z, )=, for every (y, z, o)c-EH (7b)

uIEH

We shall denote this class of distributions by D; i.e.,

PMN (h) E D, if and only if eq. (7) holds .

This is a convenient choice, since drawing samples from PMN(h) (i.e., generating

a realization of a MC-GRF) is an easy task, as it was mentioned in the previ-

ous section. Computing the ratio AMN(h)IPMN(h) is also straightforward. Indeed,

if

qij~phijyi-,,ohi-,j-lhi~j,) = (7ij (hij I hi-1, j, hi-1, j-10 hi, j-1) ( a
q h h~l. 1 j.., ha,j..i) = j1..1 h , j-1) hi , (8a)

and

M N

QMN,P(h) = I -I qijp (hiY,h- i-1,j-1, hi,j-1)  (8b)
i=I j=1

then (see eqs. (3), (4), (7) and (8))

ZMN= E QMN,p(h) PMN(h), (9)
states h

and

2MNP = lir ZMN P(K) = lim Q MNP(h k )] (10a)K -K-- Kk. ,p~t 1a
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whei e

ZMNP(K) = -K QMN,P(hk), (10b)

provided that

QMN,P(h) <-ho, (11)

for every h E EMN. The error variance in this case will be given by (see eq. (10))

Varp[ZMNp(K)] = (h)PMN(h) ZIN]. (12)

A simple choice for the LTF of a MC-GRF could be r!J4(x,y, z, co) = IJR, for

every (x,y,z,o) EH4 and every (i,j)GAN. In this case Piid(h)=IlRMN (i.e., the

joint probability distribution of an i.i.d. random field) and the error variance

will be given by

Varpid AZMNP ud(K)] [R ~N h AMN (h) - .MN (13)

In most practical situations one does not expect the i.i.d. choice to give a

good estimate of ZMN in a reasonable time. The reason for this is that, in most

cases ofinterest (e.g., in low temperatures), only a small fraction of realizations

hk contribute substantially to the partition function sum, while the contribu-

tion of most other realizations is negligible. Considering samples hk with equal

probability will greatly underestimate ZMN, since most of the time hk will be a

sample that does not contribute much to the computation of ZMN. To overcome

this difficulty, we will need many iterations, which could result in a K being

comparable to RMN. Nevertheless, this sampling scheme becomes attractive in

the case of GRF's which are "close" to i.i.d. random fields (i.e., in high tempera-

tures).

If we now choose the joint probability distribution of a MC-GRF which is

"as close as possible" to the Gibbs measure, then this choice will favor the most
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probable realizations of the GRF over the less probable ones. This will result in

the error variance given by eq. (12) which will be much less than the error

variance given by eq. (13). It is now natural to seek the optimal joint probabil-

ity distribution PWNP(h) of a MC-GRF, by solving the following constrained

minimization problem:

Pfv'f(h) = arg ( min dIs(MN, PMN) }14)
PMN 

C 
D

However, the olution of eq. (14) is not feasible in geLeral. Therefore, we shall

derive two suboptimal solutions to this problem. The first one is motivated by

the following theorem:

Theorem 1: For every joint probability distribution P,4'2(h) e D, there will

be a joint probability eistribution Pm(' (h) E D, with

(?x,, , ) = ._(x ,y 0,) (15a)

for every (i,j)E AMN - [(M, N)} and

= aMN(X Y , Z, C))
I MN(UyzU)) (15b)
EllE

for every (x ,y ,z, O)E EH, such that Varp(2)[MgPC2)C(K' ] < Varp(l)[MN'PX)(K)].

Proof: For every (y, z, w) E E', let tu2(x,y,z, o) be the LTF which minim-

izes the following constrained minimization problem:

OMN(U ,y ,Z, 1J)
minimize )9 (16a)

UeEl tMN(UY,Z ,i)

such that

E MN(U 1 C z O) = 9 (16b)

and

tCMN(X,y,ZoU) > 0, for everyx EH (16c)
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By usii g a Lagrange multiplier X~and by differentiating eq. (16a) with

respect to TMN(U, Y, Z,, we obtain

_____ aMN(U ly Z () 1 1YtMN(W, YZ () 1=O,

aTMN(X,Y,Z, C) LUS=H TMN(UYZ(O))uEEHJ

or

tMN(XIyZO) = aMN(XYZQ)>0 (17)

From eq. (16b) we have that

which together with eq. (17) gives eq. (15b). Notice that, the only non-zero

entries of the Hessian of

x OMN(U,Y,Z,O) ,FX NUyZ, )l
UE~EH TMN(U,Y ,Z, W) £sE

will be the diagonal ones, which are positive. Therefore, the LTF tr.&x ,y , Z, 1 ),

given by eq. (15b), is the solution of problem (16). If A'MN = AMN - ((M, N)), we

have that (see also eqs. (7), (8), (12) and (15))

KVar(PM [ZW,(l)(K) + ZM2N H N a'5( ,~i~
Sstale s h on AMN i~lj=l i (ijh-,jh- jhij

sates h on A'MN !(iJ) eA'M a 1  .1 ~ ( , , j1

cr?(, ,ij h11,..-, hi,j, 4 F MN(u h~~,h j, j 1 , h _1)

states bon A'NOEAM N i )( z-i~jj,j' ~ h jjEEH Tr~ku h~~~jj~~~jjj

~F1 N 12 a)(h8jyj~, h , K I~~ Z ((K)I + Z,3N (18)

gtates bon AMN i=1 j=1 Ty 4'()L N P
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The proof is now a direct consequence of eq. (18).

Given the LTF aij(x,y,z,wo) of a GRF, our first suboptimal choice for the

joint probability distribution PMN(h) will be a joint probability distribution

PMN(h), given by eq. (7), with LTF

.* ( X Yj Ix y z ,) a i ( X) )

ix I cij(ui,y,z,o) ' (19)
UEE H

for every (x, y, z, (o) E EH and every (i, j) E AMN. In this case (see eq. (8a))

qijjp.(x,y,z,o)= X: O,(U,y,z,0)). (20)

The MC-GRF with LTF given by eq. (19) corresponds to the MC-GRF

obtained by approximating a general GRF via the "Approach B" developed in

[38]. This is a sensible choice, because the computation of the joint probability

distribution PwN(h) is feasible, and the obtained MC-GRF contains substantial

information about the original GRF [38], much more than the ii.d. random

field, which contains absolutely no information about the GRF in low tempera-

tures. One expects that the samples h, drawn from this joint probability distri-

bution, will contribute substantially to the computation of the partition func-

tion sum, resulting in a considerable variance reduction. In general, we expect

that

Varp.[ZMNP.(K)] < < Varpia[2MN,pid(K)],

where

Varp. NP.(K)l- w -ZN

which has been verified to be the case in most of our simulations.
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Probability PLN(h), although simple to compute, may result in an unac-

ceptably high error variance. This is typically the case for GRF's in low tem-

peratures, as our simulations demonstrate; therefore, a better choice for PMN(h)

is needed, which will result in larger error variance reduction. This is provided

by a theorem, which appears in [41].

Consider the following "entropy" distance between the Gibbs distribution

and a probability distribution PMN(h):

dIL (A.WN, PMN) = E In [ I, h PMN (h)= 1 (h)lIn 7CMN (h)
statesh PMN(h)j L M(h) 8tates L PMN(h) (

This is also an Ali-Silvey type of distance, and is minimized for

PMN (h) = nMN (h), for all states h. For the reasons stated above we would like to

constrain the minimization problem and obtain a probability distribution

P;N(h) which satisfies

P;N (h) =arg{ min dIL(ItMN, PMN). (21)
PMN e D

If we assume that the Gibbs distribution iEMN(h) has homogeneous 3 LTF's, i.e.,

aij(x,y ,z , O) -= aCY(Xyz, ),

for every (i, j) E AMN and (x,y,z, () E EH, then we obtain the following theorem.

Theorem 2: The probability measure P t,(h) E D with LTF

a nZMN ]

( z,1(x, a(x,yz O)
-j I O ~ ~ N C( ,O (~ (22)

u IEH a(U ,y, , 0)

for every (x,y,z,o) E E4 and (i,j) E AMN satisfies eq. (21).

3 This is a reasonable assumption in image processing applications and simplifies our
deri ations considerably.
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Proof. The proof can be found in [41].

F1

The MC-GRF with probability measure PtN is optimal, achieving a

minimum entropy distance from the Gibbs distribution 7tMN. However, in gen-

eral, it is suboptimal with respect to minimizing the error variance, or

equivalently the distance d1s (7tMN, PMN)"

Given the LTF o x ,y ,z, o) of a GRF, our second choice for the joint proba-

bility distribution PMN(h) will be a joint probability distribution P;N(h) given by

eq. (7), with LTF given by eq. (22). In this case (see eq. (8a))

[ IlfZMN 1

S a(u,y ,z, O) I(u,y,z,o)
) EH  1(23)

Ea(x ,y ,z, o)

As expected, the MC-GRF with LTF given by eq. (22) approximates the origi-

nal GRF better than the MC-GRF with LTF given by eq. (19), especially in low

temperatures. This may result in significant variance reduction; i.e., we expect

VarP.[2 MNP..(K)] << VarP.[ZMNP.(K)],

where

VarP"[ZMNP'(K)] = "K [ P[(h) ; ZN 3
which has been verified by our simulation experiments for a variety of GRF's.

To summarize, we propose two methods for calculating the partition func-

tion ZMN:

FA 1_ QN,=limMethod 1: ZMN =Ep. A (MN., =KL..-__ L  _

where hk - PMN(hk),
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"F A M  1h  r m
Method 2: ZMN =E- AAFh = 2MN rn- -kMQMNp uI,

[P~N~h) j =N7-K-.+- L k=I

where hk - P;N(hl),

with P N(h) and PjZ'N(h) being the joint probability distributions of two MC-

GRF's with LTF's given by eq. (19) and eq. (22) respectively, and QMN,p.(h),

QMN.p-(h) by eqs. (8b), (20) and (8b), (23) respectively.

IV. COMPUTATIONAL ALGORITHMS

After deciding for the MC-GRF joint probability distribution to be used in

the Monte-Carlo partition function calculation, the next step is to determine

how to implement this calculation in a computationally efficient way. In the

following we shall denote both P N(h) and P;N(h) as P4N(h), i.e, the superscript

y will stand for * or **. A simple approach is to use the following algorithm:

ALGORITHM I:

1. Draw K statistically independent realizations hl, k = 1, 2,..., K, from

probability P,4N(h), given by eq. (7), with rj(x, y, z, (0) = y(x, y, z, o)), given

by eq. (19) or (22). This can be done lexicographically, as it has been dis-

cussed in Section II.

2. Compute QMNPy(hk), for every realization hA, k = 1, 2..., K, by using eq.

(8b) and one of (20), (23).

3. Compute 2MNT(K) by using eq. (10b).

The statistical properties of the estimator ZMN,PT(K) can be easily derived.

Indeed, 2MN,PY(K) is a sum of the i.i.d. random variables QMNPTf(hl), QMN,pv(h2)

QMN,py(hK) divided by K. Each of these random variables has finite mean
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MNPt = EP[QMN,PY(hk)] = ZMN and finite variance (yM2N,P, = VarPy[QMN,py(hk)]

states Q2N,pT() PI N(h) - Z2N > 0. From the central limit theorem we have that

,MNpT(K) is an asymptotically normal random variable with

2MNPT(K) - ZMN
4K- - -4 N(0, 1),

(MN,Py

as K -+ +oo. From the strong law of large numbers we also have that

Pr [K2imzMN p,(K) =ZMNI] = 1 ;

i.e., our estimator converges to the partition function with probability one.

Therefore, it converges in probability; i.e.,

Pr [ MNp,(K) - ZMN I >_ e] -+ 0, (24)

as K-- +00, for every e > 0. Hence, 2MN,PY(K) is an unbiased and consistent

estimator of ZMN. To get a practical idea on the accuracy of such an estimator,

it is worthwhile calculating the sample variance, defined by

MN.PT(K) = K [QMN'PI(hk) - QMNPf(K) ]2, (25a)

where
1K

QMN PT(K) = - ,QMNp(hk). (25b)
K k=1

This is the usual estimator for the variance of 2N ,(K), and can be effectively

used to decide how many iterations K are needed in order to achieve a

prespecified accuracy in estimating ZMN.

The computational complexity of Algorithm I is 0 (KMN), since it requires

the generation of KMN samples drawn from the discrete conditional probability

distribution Pr[ hij I hi. 1,j, hi1 ,j-1 , hi,j- 1 1; therefore, for a large lattice, we may

not be able to obtain accurate estilates of ZMN in a reasonable time. This
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problem may be partially solved by considering realizations hl, h 2,.... which

differ only slightly from each other. In this case, hk+l and QMN,P7f(hk+) may be

easily calculated from hi and QMNP-T(hk) by a simple update. This can be done

by generating a Markov chain on the RMN possible realizations of [H] with

prespecified + -ansition probabilities P . +k1i), given by

p(kk+) = Pr [Hk+l hj I Hk hi I

from state hi, at step k, to state hi, at step k + 1. These transition probabili-

ties form a sequence of RMNxRMN transition probability matrices p(k),

k = 1, 2, .... which should satisfy the following relationship:

(pY), p(k)= (pY)t , (26)

where pY is the RMN - dimensional probability vector with elements PT =

PN(hl) and t denotes transposition. If Pr[ H, = h] = PN(h), and if eq. (26) is

satisfied for every k = 1, 2 .. ., then every state of our Markov chain will be a

sample drawn from PmN(h). Therefore, we have to construct p(h) such that eq.

(26) is satisfied. However, we have to keep in mind that, in this case, the reali-

zations hl, h 2, ... , are no longer statistically independent, and a new analysis

is required for the study of the statistical properties of 2MNP,7 (K).

A simple way to accomplish the previous ideas is to consider a sequence

hl, h 2, ... , of realizations such that hk+l differs from h only at one site sp,

this site being chosen randomly (among all possible MN sites in AMN), or, sys-

tematically (e.g., lexicographically). Furthermore, the random variable Hk+l(sp),

at site sp, takes a value h (sp) in EH drawn from a given probability distribu-

tion. When this probability distribution is given by

Pr [HA+l(sp) = h(sp)IH1(s) = h(s), s E N, ] > 0,

the resulting algorithm is known as the Gibbs sampler [191. Other algorithms

of a similar nature are described in [41] and are known as the Metropolis',
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Barker's and Hastings' algorithms.

We have compared the performances of all these algorithms, using ran-

dom, or lexicographic, site updating. As expected from the analysis in [411, the

Gibbs sampler with lexicographic site updating gave the best results: it con-

verged, on the average, faster than the other algorithms, requiring less compu-

tational time, and resulted in lower rejection rates (higher percentage of suc-

cessful updates). This result comes to no surprise, since the Gibbs sampler is

an importance sampling based procedure [39], [42], [43].

The Gibbs sampler is the sampling scheme used exclusively in our simula-

tions and results in the following algorithm for the estimation of ZMN.

ALGORITHM II:

1. Generate a realization h, of the MC-GRF with probability P4N(h), given by

eq. (7), with rij(x,y,z, o)=TT(x,y,z, Q,), given by eq. (19) or (22). This is

done lexicographically, as discussed in Section II. Calculate QMNP,(hl),

given by eqs. (8b) and (20) or (8b) and (23).

2. Set SUM1 = QFUN1 = QMNoPT(hl) and k = 1.

3. Set h = hk (sp), with p = (k - 1) modulo MN + 1, where s 1, s ..... sMN , is a

lexicographic (row by row) ordering of the sites in AMN. Denote site sp by

(i, j).

4. Draw a value 0 E EH from probability d,/ (ER d1 ), n = 1,2,..., R, where

d,= '.Yj (ot, hil ,j, hi j-1, hikj 1 ) x '. j+1(h(k)+1 , hi- k j+1, ,)
9+ ) (k) (k) " -jh j+1lphi (k) I ,o p h

(k
)

X-,yl,j(hi+i,jl,hi ji,,hi(. _1) x ,+,j+* hi~l ,k+,j)

for = 1, 2 .... R.

5. If 0 = h set QFUN~k 1 QFUNk and go to step 6, otherwise compute the

ratio

RATIO = QMN,PT (h k +l)/QMN,PT('1A),
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by

RATIO = pj+ly i , - j+ , h1 1,j, ) x q+1 j,p(hi+l, o, hi, hi+ ,j-1)
RAUh(k) W W (k) RT(k)Iq6 j+SetSUM l ,, -,j+Q, 1  f qk + 1= , sej ( lj,h S khi,.-k k + , a d g, t+o,j-1)

W o l(k) h ha, ()h c o Algorithi, con-
i q + ,j+ ,p,(hi+l,j+l,hi(,k,+ l , 'h+l),j/ x ,j,py. h~i ~lj,h ikl),,.I h~

(k W (kh (k)qi+I~j+,,PyT Vk,+1h!) h,h (k, j) xq.. PY(h  h (,jh) j(k) jj-

for, heycano "cve" rpilytheenir stt spc of -[H, espeia jlly ihe

where qijP(xyz f) is given by eq. (20) or (23). Set QFUNsd+L --

QFUNk, x RATIO.

6. Set SUMk +, <-- SUMk + QFUNk,. If k + 1 = K, set ZMNPY(K) = SUMk +1

and stop; otherwise, set h it(+) h (k+a ) = st(), for every (m, n) (i,vj),

k <-- k + 1, and go to step 3.

We would like now to emphasize that, the case of Algorithm II, con-

secutive realizations of the Markov chain differ in at most one site and, there-

fore, they cannot "cover" rapidly the entire state space of [H 1, especially in the

case of large lattices. A remedy for this problem would be to consider L < < MN

successive realizations of our algorithm as one state transition of the Markov

chain. In practice however, we have noticed that this modification does not

improve the convergence rate of Algorithm c[

Once again, we are interested in the statistical properties of the estimator

2MNpT(K) , resulting from Algorithm IL In order to simplify our presentation,

we shall consider Algorithm II with random (instead of lexicographic) site

updating, in which case, the underlying Markov chain is characterized by sta-

tionary transition probabilities. A more general treatment (which is necessary

when lexicographic site updating is considered) can be found in [441. Both

cases result in the same properties for the estimator 2MNPY(K). As in the case

of Algorithm I, the estimator 2MNPT(K) is the sum of identically distributed

random variables QMN,p,(hk), which are characterized by a finite mean
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,,N,P y - ZMN and finite, nonzero variance aM2 PT. Obviously, 2MNP,.(K) is an

unbiased estimator of ZMN. The computation of the variance of 2MN,,P(K)

requires more effort. Observe that

Var, [N,(K)] =EP, [( 1 Z QMN PT(h )
-
ZMN)2 -- ZMN)]]

.K k= . K 2  k= ilQz.P ( k - Z N ]

= 1--- [ -EP[(QMNPf(bk)-ZMN)
2] + 2 2 2 Ep,[(QMNP,(hm)-ZMN)(QMNp,(hn )-ZMN)]]

or

KVarp y 2 MN ~p(K)]

= , [( QMN,PY(hl) _ ZMN )2] +2X K_ [EP,[QMP~h) QM,(l] _ ZM2N]K /=t K , ,

= X X QMN,P(hm) QMNp(hn) P2g(h.) S.-P N(hm)PYN(hn
states hmstates h.

K-1 Kl+ 2 E I PhN (h,,)[IP. t ) - P& (hn), (27)
1=1 Kf~

where Smn is the Kronecker delta, and

Pm(") = Pr[ HI = hn Hi=hm ].

Equation (27) can be easily written in a matrix form as

KVarPJZM P.(K)]=(Q )l P'-PYA+2P K- K (PI-A) _ (28)

' Z=1 K

where all the matrices are RMNx RMN matrices. Matrix PY is a diagonal matrix

with elements the RMN probabilities PhN(h), h e EHMN. Matrix A has RMN identi-

cal rows which are equal to the diagonal of PI, whereas, P' is the I power of

the transition probability matrix P. Finally, _Q is an RMN- dimensional vector,

with elements QMNPT(h), h e EAN. For an ergodic transition probability matrix

P the fundamental matrix F, given by F = (I - P + A)-', exists, and [451
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F=I+ li. 'K -pI A). (29)
K I =1 K (

From eqs. (28) and (29) we obtain

im KVarp7 [2MNPYcK)] = (_qy)t [2 PYF - PTy- PTA] _qT

or

lim Varpy [2MNPT(K)] =0. (30)

K -++- L

From eq. (30) and the Tchebycheff inequality we obtain eq. (24); therefore,

Algorithm II results 4 in an unbiased and consistent estimator for ZMN .

We would also like to get a practical idea of the accuracy of the resulting

estimate. However, since the samples hA are no longer independent, we cannot

use the sample variance given by eq. (25). In the case of Algorithm II, eq. (25)

will most probably underestimate the variance, since it does not take into con-

sideration the correlations among consecutive realizations. To overcome this

difficulty, we may use the ideas in [48].

In many instances ZMN -* +- with increasing lattice size (i.e., as

M, N -+ +-). Additionally, for many realizations h, Pj4N(h) -- 0, whereas,

AMN(h) -- +o as M, N ->-+-. Therefore, eq. (5c), or equivalently, eq. (11), may be

violated. Since most applications require use of rather large lattices, we have

to examine the problems introduced by this behavior and modify our Monte-

Carlo calculation procedure. It is clear that, in these cases, a simple partition

function calculation algorithm (like Algorithm I, or Algorithm II) will suffer

from overflow problems. A first step towards the remedy of this problem is to

estimate the quantity

f '-MNJ ln(ZMN), (31)f MN N

4 The central limit theorem, developed in [46], [47], is directly applicable in our case, and,
therefore, our estimator is also asymptotically normal.
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instead of ZMN, by (see also eqs. (8b) and (10b))

1MN) M 1n(2MN p,(K)) = ln(QN N,(hl)) + In I QMNpk 1 (32a)' ' ' hk=1 QMN. O )

with

ln (QMN,P,(hl)) = ln [qj 1py(h1h('])  (32b)

where qijp.P(x,y,z, o) is given by eq. (20) or (23). This is a reasonable approach

for two main reasons: (a) f (ZMN) will not necessarily become infinite as

M, N, ZMN -- +- (see for example the case of the Ising model, discussed in Sec-

tion VI), or, at least, it will be much smaller than ZMN; and, (b) we are usually

interested in computing the logarithm of the partition function rather than the

partition function itself (e.g., in the case of maximum likelihood parameter esti-

mation). However, computing the summation in eq. (32a) may still result in

overflow.

To overcome this problem observe that (see also eqs. (8b), (9) and (31))

f (ZMN)= 1 In I QMNP(h)P N(h)
MN [ Nis h

I in [qPi 1) . . . .j PYN(h)
MN ts hi~lj l q(max)p

- N In[ MN QMNP 'Y(h)P N(h)
In qrnax , PY yhP

M N V V L tates h M I

I1nq,,pp + - In ZQ N y (h)P N (h), (33)
MN s h MN

where

[M 
N

q (max) = max [qij,p(xYZ9at ; qy,,,PT = VT (max)
'T 4,y, ) i j q 'py
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and

M N qj e(hij,hi- jphi-, j-l, hi j-l)
QMNPT (h) = 1I[J 1L iP 'a(mar)i=1 j=1 "quj P T

From eq. (33) we see that, in order to compute f (ZMN) we have to calculate the

expectation EP7 [QMN,., (h)]. This can be done by a simple modification of the

previous two algorithms. Notice that, in this case, Monte-Carlo calculations can

proceed with no overflow, even in the case of large lattices, because QMN,,(h)

_ 1 < +o, for all realizations h; therefore, condition (11) is satisfied. Equation

(33) yields the following Monte-Carlo estimate for f (ZMN) K
n( (K)) = 1nq,,p, + In Q

SK,P T (ZMN) - MN MN, P Y MN =1 MNP J

where hi are samples drawn from the joint probability distribution P, N(h).

It is worthwhile noticing that the estimator In ( MN, P(K)) will only asymp-

totically (i.e., for K -+ +-o) yield an unbiased estimate for ln(ZmN) [49].To see

this, and for the case of Algorithm I, use the central limit theorem for

WN, p(K) and the fact that the function In(- ) has a nonzero derivative at ZwN

to prove that In(2 MNPT(K)) is asymptotically normal with mean ln(ZMN) and

variance l1K (a$WN, PI/ZMN) 2, where

NC2  Q2  (h) P, N(h) - Z. N

MN.PT = MN , P
states h

A similar result can be proved for the case of Algorithm II. Finally, we can

easily show that i/MN In( WN pT(K)) is a consistent estimator for 11MN 11(ZMN),

when either one of the two algorithms is used.

The practical implementation of the previous ideas requires the develop-

ment of fast algorithms. There are many ways to improve performance. For

example, much time is devoted to generating uniformly distributed random

numbers. The development of a good, fast and, probably, machine-dependent
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random number generator will definitely result in computational savings.

Another problem is the fact that the rejection rate approaches 100% in low

temperatures. To avoid "being stuck" at the same realization for a long time,

one might try to use some "a-priori" knowledge for the MC-GRF parameters

and perform various simulations with different suitable configurations of the

state space, averaging the obtained results with appropriate weights. An

ingenious idea to overcome a similar problem is the "n-fold algorithm" proposed

in [50]. Since in low temperatures most GRF's will favor realizations which are

characterized by large clusters, one can try to break these clusters into smaller

ones and then assign a random spin value to the whole cluster. This idea is

used in [51] to obtain an efficient and fast Monte-Carlo simulation algorithm.

It is also important to notice that Algorithm II can be directly implemented on

the Monte-Carlo simulation machines developed in [52-55]. These are spr cial

purpose computers developed for the study of various properties of GRF's.

Implementation of our algorithm on such machines ma-, result in a substantial

reduction of computational time.

Traditionally, stochastic methods are used to simulate GRF's and calcu-

late various quantities related to them. Our method fits to this framework.

However, some researchers have adopted deterministic, or pseudo-

deterministic, evolution algorithms, like the microcanonical simulation algo-

rithm in [561, [571. For such algorithms, it is much more difficult to prove con-

vergence and study statistical propertic3 of the resulting estimators. Addition-

ally, it is not clear if they can result in significant computational savings. How-

ever, we believe that it is extremely interesting to pursue many of these

methods further. We haven't done so here though, since our major objective is

to present fundamental ideas, and a simple algorithm, for the calculation of

4MN
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V. CALCULATION OF PARTITION FUNCTION DERIVATIVES

So far, we have discussed the problem of computing the partition function

ZMN of a GRF. We have proposed two methods which require sampling from

two different MC-GRFs, namely, PJN and P;N. Method 2 requires the computa-

tion of the R 4 first-order derivatives of the logarithm of the partition function

with respect to the LTF (see eq. (22)); i.e., it requires computation of the vector

V,-lnZMN = (x,y,z,o)' (x,y,z,0o) E E}. (34)

The analytical computation of eq. (34) is not possible in general (except in some

special cases). However, this calculation can be approximated 1,-ia Monte-Carlo

simulations by using a scheme similar to that used in statistical mechanics for

the calculation of various thermodynamic properties of large-scale systems [581.

In addition to the derivatives in eq. (34) we may also want to compute the

internal energy (which is related to first-order derivatives of the partition func-

tion) and the specific heat (which is related to second-order derivatives of the

partition function) of a general GRF. These quantities provide valuable means

for detecting and studying phase transitions. All these computations can be

approximated by a simple Monte-Carlo simulation algorithm, as it will be

demonstrated in this section.

Let us study the calkulition of the derivatives of the logarithm5 of the

partition function ZMN with respect to the LTF o(x,y,z,co). We shall limit our

analysis to the computation of first- and second-order derivatives. However,

our presentation can be trivially extended to include the computation of any

higher-order derivative. In the following, we shall denote by vk(x,y,z, o) the

5 We prefer to calculate the derivatives of the logarithm of the partition function, instead
of the derivatives of the partition function itself, for reasons similar to those explained at the
end of Section IV.
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total number of elementary squares (h -k) j,h j, hik)_ = (x

which appear in a realization hk of the GRF [H ]. From eqs. (2b) and (3a) we

have that

ZMN= Z H q . AMN(1 hj), (35a)
states h, (q, u,u, w) e E14 states h,

where

AMN(hi)= fI (qu,v,W )Vt(q , ", , )  (35b)
(q u,u ,w ) e E4

Differentiating eq. (35a) with respect to the LTF a(x ,y ,z, o) we obtain

1 a lnZMN1Z uM(X , y ,z 1 (1)) =
Z MN cao(x,y,z,o))

E vt(x,y,z,0o)AMN(h t )
1 1 states h,

MN a(x,y,z,o) AmN(hj)
states hi

-M1 1 V(X,y,z,o)rMN(h), (36)
MN G(XY)Z,)satesh

whereas, differentiating eq. (36) with respect to a(q, u, v, w), we obtain (see also

eq. (35))

1 a2]nZMN
Z(x,y ,z,o; q,u ,,w) = MN ao(x,y,z,o)) aa(q,u,v,w)

1 1
MN a(x,y,z,o)o(q,u,v,w)

x vta (x ,y ,z,) v (q ,u ,v ,w)- vt(x ,y ,z,at) -h 5L1x . ] ) r MN t )

-I v(q,tu,v,W)nMN(hj)1 Z V1(X,Y,Z,O))7CMNOh) , (37)
[states h, j states h, f
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where

{ 1 if(x,y,z,oa)= (q,uvw)
vz" = 0 if(x,y,z,o))#(q,u,v,w)"

The quantities defined by equations (36) and (37) can be efficiently calcu-

lated via Monte-Carlo simulations based on drawing samples directly from the

Gibbs distribution (2). This is a quite difficult problem in practice, whose solu-

tion can only be obtained asymptotically, therefore the resulting Monte-Carlo

estimates are biased. In practice, we will generate a Markov Chain of realiza-

tions hk, k = 1, 2, . . . , K, with suitable transition probabilities, that will

asymptotically be distributed according to the Gibbs distribution, i.e.,

hk - cMN , or lir Pr[C H = hk ] = irMN(hk), given by eq. (2). In order to reduce

the variance of the resulting estimates, we discard the K1 initial configurations

of this Markov Chain, where K1 is a sufficiently large number, such that

Pr[( H = hk I = 7MN(hk), for k > K1.Then, we consider the K 2 next states of the

Markov Chain, i.e., hk, k = KI+1, K 1+2 ,.... K,+K2, on which we form ergodic

averages. This results in

1 1 ___ 
I<

2M(x,'y'z,';K'K =MN 1(x,y,z,o) K2 K2 vk(x,y,z,0), (38a)
MN OXlyzl(; k2k=Kl+l

and

2 2 x-i 1
2M(,y ,z, co; q,uiiv ,w; K1,K) XN , qM2)-N (x,y,z,ao)a(q,u,v,w)

SI +K 2  ]K,+K2 (3b

-K 1 L=K+
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which are the Monte-Carlo estimates of the the first- and second-order deriva-

tives of the logarithm of the partition function with respect to the LTF's.

There are many important applications which require the calculation of

the partition function and its derivatives. An anticipated application is the

development of an optimal algorithm for the maximum-likelihood estimation of

the LTF of a GRF from a given realization. We shall not expand on this subject

here; instead, we shall illustrate the use of these calculations for the computa-

tional study of phase transitions.

The internal energy EMN(T) and the specific heat CMN(T), given by

Em T)- T 2 
alnZMN (39a)

EMN(T) =

MN (39a

and

EMN (T) 2  T + 1 T2 a2lnZMN
CMN(T) = mN (T)MN T2  (39b)

respectively, are two important thermodynamic quantities, associated with a

GRF, which allow the study of phase transitions [5]. If T, is a temperature

such that

lim lim CMN(T)=+oo, (40)
T-T M, N--4+-

then we say that the GRF is in phase transition at critical temperature T,. The

study of phase transition is very important, being the subject of many discip-

lines, including statistical mechanics [2], [3-5], [29], [34], [44], [59], probability

and information theory [2], [32-34], [44], [60], [61] and image processing [12],

[34], [44]. From eqs. (39) and (40) we see that the critical temperature T, is the

temperature at which the internal energy EMN(T), or the first-order derivative

alnZMN/aT, is discontinuous. Observe that

aIflZMN aMN a(Xyz,) (41)

OT (I.zY'Z C)E 8aY(x,y, ) ar (
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and, therefore, the internal energy EMN(T) car. be approximated by (see also

eqs. (36), (38a), (39a) and (41))

MN(T;K,K 2 )=T 2 I 2( (x,y,z,c;gl,K2)  a(xyz'o()
Ox,Y'Zc.EE4 aT

TM2 1 1 , X vk(X,y,Z,(O) alna(x,y,z,o))
2 k=K +l (xYz,(z)eE aT I(42)

At the critical temperature, the second-order derivative D2InZMN/DT 2 will neces-

sarily become infinite. From eqs. (36)-(38), (39b) and (42) we can easily show

that the specific heat CMN(T) can be approximated by

f2 N(~y~z I aa(x'y 'z 'co)+ 2a(x'y 'z '°x)

OMN(T; K,K 2) = T 2 X m() x z; K1,K2) T a 2  I

aTD aT2

+ aT N) -()M(X,N, z, (; q,u, v, w; K1, K2) a

- M K2{:+:1LK vk(x,y,z,)T 2 alnax,y,z, o) 2

T2 MN 7 K 2 :II[ y..,
T =el( X Y Z 0 6 E H a T

K2 v(x, y, z, o 2) T 2 aln o (x,y,zO)) (43)

I aT
K 2 k = K + I ( X 'y 'z ' O ) 6 E 4 T

To effectively compute the Monte-Carlo estimates given by eqs. (38a), (42)

and (43) we employ the Gibbs Sampler algorithm with a lexicographic site

updating, by generating a Markov Chain which asymptotically reaches the

Gibbs distribution. The overall procedure is summarized in the following Algo-

rithm III.
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ALGORITHM III:

Initialization

1. Generate, lexicographically, a realization h, of the MC-GRF with probabil-

ity P4N(h), given by eq. (7), with -rij(x, y, z, co) = itj(x, y, z, ), given by eq.

(19). Set k <-- 1.

2. Set h = hk (Sp), with p = (k - 1) modulo MN + 1, where s 1, s 2 ,... SMN, is a

lexicographic ordering of the sites in AMN. Denote site s, by (i, j).

3. Draw a value 0 from probability d,, / (j,= d ), n = 1,2,..., R, where

dt =o¢t k () h(k) ) o (k!)l (k) t(k)
= (ol i-lhi -l-1 , 1  x (h I ) ,hi-l, j+, hi-,j, 0)

o ( k)  ( )  h (k) W . (k) ( k)()
x c h i +1, j cp ,,j i .I -1 , I +1' j- , x ,il+i j+1lIh i, r+j l h i +1'j )  ,(4 4 )

for 1= 1, 2, .. ., R.

4. Set hi-(')= (.ck+ =.h,(), for every (m,n) # (i,j). Set k <- k + 1.

5. Ifk =K, + 2 compute vK+l(x,y,z,0), for all (x,y,z,O) EH4, and

TERMK1+l= T 2  VK1 +1(x,y,zO)) Tln(x,y,z,ot)

(x,y,z,we Ej

Then,

derK,+l(x,y,z,o ) = vK+l(x,y,z,1), for every (x,y,z,o) E E 4,

SUM 1K,+1= TERMK1+i., SUM2K,+l= TERM21 +1

otherwise, go to step 2.

Main Iteration

6. Set h = ht(sp), with p = (k - 1) modulo MN + 1, where s 1, s 2, ... , SMN, is a

lexicographic ordering of Lhe sites in AMN. Denote site sp by (i, j).

7. Draw a value o from probability d, /(ER, d1 ), n = 1, 2 ... , R, where dj,

I = 1, 2,..., R are given by eq. (44).
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8. If =hik ) , go to step 9; otherwise, compute vk +(x,y,z, (0) of the new reali-

zation, for all (x,y,z,o) E EH. Also, compute:

TERMk = T2 I vk+(x,y,z,(,) alna(x,y,z, o)

9. Set

derk+l(x,y,z, co) <-- derk(x,y,z,ao) + vk+1(x,y,z,wC), for every (x,y,z, o) E EH,

SUM 1 k+1 +-SUM1k +TERM+, SUM2k+1l-SUM2k +TERM2+ 1 .

10. Ifk +l=K+K, set

2 ('N)(x~y~~) 1 1 1 derKl+K2(X ,YZ, a),

MN (x,y,z,w) K 2

MN(T; KlK 2) 1 SUM1K1+K2 'MN K 2

1 1 1 [ 1SUM2 2 SUM12
CMN(T; K1,K 2) - K2 MN K2

• h (+D /,(k)

and stop; otherwise, set h.(k ')= - 4€, . = h,, , for every (m, n) (i, j), k <

k + 1, and go to step 6.

The obtained estimates will be consistent, but only asymptotically unbiased.

VI. SIMULATION EXPERIMENTS

We have demonstrated the fact that the partition function of a general

GRF can be calculated by using the Monte-Carlo schemes discussed in Section

IV. Two major questions have to be answered at this point. The first is how

well the proposed algorithms work. This question is essential, because, in prac-

tice, there are many factors that can prevent us from getting the expected

results. Some of these factors are: (a) the quality of the random number gen-

erator used in the program, (b) the truncation errors incorporated in the
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computation of various sums; (c) the number K of samples used for the compu-

tation of the estimates; and, (d) the numbers K, and K 2 used in Method 2 for

the calculation of the first-order derivatives of the partition function (see Sec-

tion V). The mishandling of some, or all, of these factors may give misleading

results. The second question concerns the relative merits of Method 1 and

Method 2. We are interested in knowing which method gives more accurate

results, and which is more computationally efficient. Additionally, we would

like to demonstrate the fact that sampling from the probability distribution of

a MC-GRF with the i.i.d. choice for the LTF fails to give reasonable estimates,

whereas, our methods constitute a vast improvement over the i.i.d. case. All

these can be accomplished by comparing our computational results with

analytical results obtained by either performing the required summations over

all RMN possible realizations of the GRF [H ], or by using analytically known

solutions. The first approach is limited to GRF's defined over small lattices,

whereas, the second approach is usually limited to the 2-D Ising model with no

external magnetic field and nearest neighbor interactions [2], [51, [32-34], [59],

[61-66]. We shall present various comparisons, by employing both approaches,

and demonstrate that the proposed methods provide highly accurate results.

In the first set of experiments we consider five binary GRF's, at different

temperatures, with a second-order neighborhood system and a homogeneous

LTF, defined initially over a small rectangular lattice of 4 x 4 sites. These

GRF's are fully descibed in terms of 16 parameters a = { C(x,y,z,1), x, y, z, 

= 0, 1 }. A program has been written which estimates the partition function by

using Algorithm H and by sampling from the three different probability distri-

butions P d, PMN, and P;N. Estimates of VIlnZMN, EMN(T) and CMN(T) are also

obtained by using Algorithm III. All estimated quantities are compared with

the actual ones, which are calculated by performing summations over all possi-

ble 64,000 states. Various simulation experiments have been performed for the
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three different sampling probability distributions and for a wide range of tem-

peratures. The results are extremely accurate and demonstrate the fact that

both our methods work well, converging to the correct values within a small

number of iterations (usually less than a thousand). The method based on the

i.i.d. choice fails, especially at low temperatures. The number of iterations

greatly depends on the choice of the LTF of the underlying sampling probabil-

ity distribution, as well as on the temperature. At high temperatures, our

methods converge extremely fast, whereas, at low temperatures many itera-

tions are necessary. This is a predictable behavior, since, at high temperatures,

the GRF and the MC-GRF are both "close" to an i.i.d. random field, whereas,

at lower temperatures, the MC-GRF is only an approximation of the original

GRF [381. This is especially obvious when the GRF exhibits strong diagonal

interactions between sites (i, j) and (i-1, j+1), in which case, Method 1 does not

perform much better than the i.i.d. case; however, Method 2 is always superior.

This can be seen by calculating the error variances of the different sampling

schemes by performing the necessary summations over all the 64,000 states,

and by assuming that Algorithm I is used. These calculations show that

Method 2 results in the lowest variance, whereas, in most cases, Method 1 has

lower variance than the i.i.d. case.

Figure 1 depicts realizations of the five GRF's considered here. Each of the

five rows corresponds to realizations of one 128 x 128 site GRF at five different

temperatures. Phase transition is apparent in these realizations. As the tem-

perature drops from high (T > T,; realizations look random) to low (T < T,;

realizations look ordered and structured), the qualitative behavior of the ran-

dom field changes, and short range interactions among sites develop into long

range ones. Table I depicts the different temperatures used for the realizations

of Fig. 1, whereas, Table II depicts the values of vector a. In Figs. 2A-2E a

comparison of the exact value of f(Z 4,4) and the estimated one, obtained by
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using Algorithm H with all three sampling methods (i.i.d., Method 1, and

Method 2), is depicted. In this case K = K1 = K 2 = 1,600. In many instances, the

i.i.d. case fails to give a reasonable result, whereas, our methods give perfect

results. The exact internal energy E 4,4(T) and specific heat C4,4(T) are also dep-

icted, as well as their corresponding estimates, obtained by using Algorithm

III. A high degree of accuracy is achieved. Figures 3A-3E illustrate the

behavior of our methods as compared to the i.i.d. case. The minimum number

of iterations Kp necessary to achieve a certain degree of confidence in the qual-

ity of our estimates (a 5% confidence interval), is plotted, in a logarithmic

scale, as a function of temperature T, for the five different GRF's of Table II. If

we assume an i.i.d. sampling scheme (like that of Algorithm I) and that an

asymptotically normal distribution is achieved, then we can easily show that

p it [00.0 Varp(QMNP) Pr[ZMN,p(K) 1.2 ZMN) ] 0.95,Kp=it10. ZM2 N 08ZN

for K > Kp. Method 2 results in substantial improvement (with respect to the

minimum number of iterations) over the i.i.d. case.

From the first set of experiments, we can conjecture that Method 2 is

superior to Method 1. Now, we would like to see whether this is true as the lat-

tice size grows. In the sequel, we consider the same five GRF's on larger lat-

tices (up to 128 x 128 sites). We use Algorithms II and III to obtain estimates of

ZMN(K) (sampling from PkN, PMN and P;N), of EMN(T), and CMN(T). Although

exact analytical results are unavailable for general GRF's, we can draw some

conclusions about the efficiency of our two methods by checking the behavior of

the estimated curves of f (MNp) versus the temperature T as the lattice size

becomes larger. Such curves are depicted in Figs. 4A-4E (for 16x 16 sites), Figs.

5A-5E (for 32x32 sites), Figs. 6A-6E (for 64x64 sites), and Figs. 7A-7E (for

128 x 128 sites), for the five GRF models of Table II. In all cases

K = K, = K 2 = 10,000 MN. The shape of these curves indicates that Method 1
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breaks down at low temperatures (for T < T,), being comparable to Method 2 at

high temperatures (for T > T,). However, it is impossible to judge the accuracy

of Method 2, especially at low temperatures and at temperatures around the

critical temperature, since we have no exact results to compare with. It seems

though, that Method 2 gives reasonably good estimates, except in the case

when the random field exhibits strong diagonal interactions between sites (i, j)

and (i-I, j+1). This is evident from Figs. 1, 4E, 5E, 6E, and 7E; the estimated

curves of the partition function versus T, obtained from our simulations, are

not "smooth enough" at low temperatures, implying large error variance. Notice

however that, the remarkably good results obtained from the second set of our

experiments, described next, are very encouraging and strongly favor Method 2

over Method 1. Finally, to obtain a rough idea about the location of the critical

temperature T, of the GRF's under consideration, we plot the internal energy

and specific heat curves of the GRF models, for different lattice sizes (8x8,

16x 16, and 32x32). The resulting graphs are depicted in Figs. 8A-8E; they

allow us to conclude that the break down point of Method 1 is indeed very close

to T,. The critical temperature corresponds to the peak of the specific heat

curve as the lattice size grows (see eq. (40)).

In the second set of our experiments, we compare our results with analyti-

cally known solutions. We consider a special case of a GRF, the two-

dimensional Ising model with no external magnetic field and nearest neighbor

interactions, defined on a rectangular lattice. This model has been first intro-

duced by the German physicist Ernst Ising in his attempt to statistically for-

mulate the phenomenon of ferromagnetism. Although the Ising model has a

very simple LTF, it has been enjoying considerable attention, because it is one

of the rare non-trivial (i.e., it exhibits phase transition) GRF models whose par-

tition function and its derivatives can be computed analytically. The neighbor-

hood system for such a model is the first-order system Nj51), defined in Section
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II, whereas, R = 2,E = - 1,+1} and 6

a(XY, Z,D)=exP[T(BXY + Ax)]. (45)

If we assume torodial boundary conditions, we can compute the partition func-

tion analytically, as it has been done initially by Onsager [59]. If we define

parameters a =A/ T and P3 = B / T, then the partition function of the Ising model

is given by [32], [63] (for all temperatures T such that T # Tc)

_ N f M N M
ZMN = (2sinh2a) 2 i[2 cosh( -MY2r )] + I[ 2 sifh(- Y 2r )]2 r=1 r=1 2

N M N M

+ -[ 2 cosh( -72r-) ] + NI [ 2 sinh( 72r-1 ) (46a)
r1r=1 2 rj

where

coshyi = cosh2a* cosh2a - sinh2a° sinh23 cos(nj IN), (46b)

for j = 1, 2... 2N, and a* satisfies

sinh2a sinh2a = I. (46c)

Phase transition occurs at the critical temperature T, which satisfies the

equation

sinh[ TI] sinh[~ . (47)

At the critical temperature y2N = 0. Following the derivation of eq. (46) in [63]

we can easily see that y,. >0, for every r=1,2,... ,2N-1 and that

y2N > 0, if T < T,, whereas, 7yN < 0, if T > T . Therefore, eq. (46), together with the

identity

6 We use capital letters for x,y,z,o to denote that they take values in {-1, +1 ). Small

letters will denote variables x,y,z, c which take values in ( 0, + 1.
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coshlO = 2-1 H [coshO-cos (2s+13
8 =0 21

and the knowledge of the signs of y,'s, car. be used to calculate the partition

function of the Ising model. In the case of large lattices, and for temperatures

T # T,, the following approximation can be used [61]

1nZMN ln{ 4 cosh2a cosh2p3) + B(a, P) (48a)
MN 2

where
12z 2m

B(x, p) = ' f 0 oln(tanh2a,tanh2.B;o,o)dod6, (48b)

1 1

D(X,y ;9,0) = 1 _-X (l-y2)2 cos} _-Y (1_X2) 2 cos4 , (48c)

with x =tanh2a and y =tanh23. Equation (48b) can be approximated by its

Riemann sum; therefore,

1 M N
B( 2MN ( p In (tanh2a, tanh23; Ojk, ok), (49a)

2Nj=l h=l

where

S2j-2 + 2k-i 10 = M -MN'J 4b

and

O1k = 2k -]I (49c)

Equations (48) and (49) are quite accurate, even in the cases of small lattices;

therefore, we shall use them when M, N > 20. When M, N < 20, eq. (46) should

be used.

Equations (48) and (49) can also be used to compute the first- and

second-order derivatives of the partition function with respect to T. Indeed, it

is easy to show that,
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EmN (T) =T 2 1 alrlA1N (50a)
MN aT

and

1m (T)Z~f 1 TallTzA2(50b
CMNT) MN- T MN aT2  5b

wheru

1 DIIZMN __A 1 3lflZAW. B 1 aIn~mN
MN aT T MN aa 2 Nt 5c

I a2 InmN I 2A aflnZ,, N 2B aII1ZmN
MN T 2  

-MN }T j~ 3 a T3 +

A2 aflnZMN 2AB aIn-mN B 2 a 2 ilz (0d
+ a T 4aaa T a52 f(5d

and, for T # T

1 aflnzMN _ah'( 1 M N 4(.X,y;EOjk,ok) (51a)
MN aa 1R- 'E4(xyoko,

1 DlnZMWN 1ah~ M N b(DDX,y;eOjk, ok)(5bMN ap tn 2WI-X (51b2MNJk.l (D( Y;EOjk,ok)

1aIlnMNI 2 1 [M N 4(D.X y ; Oj ,ibk)
-2(1 -tanh 2a) + IIMN aa2  2MN j~k~ 'D(X,Y;ek Ok)

M N (D.(X 'Y; 9jM, )1

- I~k= I(~~~~k - (51c)

12 alflzN 2 1 [N (D5(X,Y;8jk,Ok)MN ap2 2(1-tanh 2 P~)+ 1 E
MN 322M'N LJ=1h=I 'O(X,Y;O)jk,Ok)

M N cQ(X'y;Ojk'o~k)1

j=llt= 02(X,y; Ejk, ok)(5d

12 aIrzMN M N (D.O(X y;ojh,Obk)

MN aaax - 2MN [Fly. 4 (x,y;E8jk,ok)

E N ':c (yejkO k ' , y;GEjk , k ) (5 1 e )
j=1'dI(kyO~~lh
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In eqs. (51) 0 , (D, 4D, tD and 04 are the first- and second-order partial

derivatives of ( with respect to a and 0, given by

1 1

¢D(x,y; 0, 0) = - 2 (1-x 2)(1_y 2) 2 cose + 2xy (1-x 2) 2 cosO, (52a)

1 1

bpO(x,y ;,)= -2(1-y 2)(1-x 2)2 cosO + 2xy (1-y 2) 2 cos, (52b)

1 1
4P (x,y ;O,Q)= 8x (1-x 2)(1-y 2)2 cos3 + 4(1-2x 2)y (1-x 2)2 cos$ , (52c)

1 1

1DD(x,y ;0, )= 8y (1-y 2)(1-x 2)2 cosO + 4(1-2y 2)x (l-y 2) 2 cosO , (52d)

and
1 1

IP (x,y ;0,4)= 4y (1-x 2)(1-y 2) 2 cosO + 4x (1-x 2)2 (1-y 2)cosO. (52e)

Equations (48)-(52) are used for the analytical computation of the parti-

tion function and its derivatives. To obtain the Monte-Carlo estimates, we have

to modify our program, since the random variable H(ij) assumes values

-1, + 1 instead of values 0, + 1, and since we have assumed toroidal boundary

conditions, instead of free boundary conditions. As the lattice becomes large

the effects of the boundary conditions become negligible [2]. 7 We can now use

the original Monte-Carlo simulation program, used in the first class of experi-

ments, by employing the following transformation

X=2x- 1, Y=2y-1, Q =2o-1, (53)

which yields binary 0-1 random variables. Substituting eq. (53) into eq. (45) we

obtain

a(x,y,z,O) = exp [ I-(A+B)-(2A+2B)x -2By -2Ao +4Bxy +'ti .

7 This may not be the case when the temperature is close to the critical temperature, in
which case a discrepancy between the analytical and computational result is expected.
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In our simulation experiments we have considered four different Ising

models defined on various size lattices, up to 128x 128 sites. These models are

viewed as one-parameter models in which A, B are kept fixed and T varies.

Realizations of these GRF's on a 128x128 site lattice, at different tempera-

tures, are depicted in Fig. 9. The corresponding values of A and B, together

with some other useful information, are depicted in Table III. Our objective

now is to compare the exact values of the partition function with the estimated

ones, obtained by using Method 1 and Method 2. Figures 10A and 10B show

the typical convergence behavior of our two methods for the case of the Ising 1

model considered on a 16 x 16 site lattice, at a high temperature (weak cou-

plings) and at a low temperature (strong couplings). The obtained results verify

our previously observation that Method 2 is more accurate at temperatures

below the critical temperature than Method 1. In Figs. llA-11D we compare

the estimates obtained by using Method 1 and Method 2 with the exact results

for the four Ising models of Table III considered on a 32x32 site lattice. The

same quantities are depicted in Figs. 12A-12D, for a 64x64 site lattice, and in

Figs. 13A-13D for a 128x 128 site lattice. In all cases K = K1 =K 2 = 10,OOOMN.

The obtained results indicate that Method 2 provides really good estimates of

the partition function, whereas, Method 1 fails to do so at low temperatures. In

Figs. 14A-14D we compare 2 32,32(T; K1, K 2) with E 32 ,32(T), and 63 2 ,32(T; K 1, K 2 )

with C 32,32(T), in order to check on the accuracy of Algorithm III. We have used

K 1 = K 2 = 32 2X 10,000 iterations. Finally, we consider the Ising model as a two-

parameter model, with respect to the parameters (a = AlT, p = BIT), on a 16x 16

site lattice. We took 0.2 < a, 0 < 0.8, which corresponds to models with both

strong and weak couplings, as it is indicated in Fig. 15. The partition function

of the Ising model has been calculated by using Method 1 (see Fig. 16B) and

Method 2 (see Fig. 16C). The exact partition function is depicted in Fig. 16A.

The resulting computational error is shown in Figs. 17A and 17B. These
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results clearly illustrate the superiority of Method 2.

To conclude, we would like to point out that, although Method 2 is usually

superior to method i at virtually all temperatures, we prefer to use Method 1

at high temperatures (i.e., for T > T,) because of its reasonable accuracy and

computational efficiency (recall that the implementation of Method 2 requires

the computation of the first-order derivatives of the partition function, with

respect to a(x ,y,z, (o), which is a quite expensive computation).

VII. CONCLUSIONS

We have presented a new technique for the estimation of the partition

function of a general GRF which is based on approximating a general GRF by

a MC-GRF. We have discussed an optimal choice for the MC-GRF in terms of

achieving error variance reduction, and we have adopted two reasonable subop-

timal choices that have the advantage of simplicity and computability. These

choices contain substantial information about the initial GRF, and allow us to

achieve significant error variance reduction. The second choice is optimal in

terms of minimizing an entropy distance from the given Gibbs distribution. We

have also considered different Monte-Carlo algorithms and concluded that the

choice of the Gibbs Sampler with lexicographic site updating was the most

appropriate. Our proposed techniques result in unbiased and consistent esti-

mates of the partition function. This is a major improvement over existing

Metropolis-like simulation algorithms, which sample directly from a distribu-

tion that asymptotically approaches the Gibbs distribution, and are capable of

estimating only the derivatives of the logarithm of the partition function, and

not the logarithm of the partition function itself.

Our two choices of MC-GRF's have resulted in two different methods for

the calculation of the partition function. We have carried out many simulation
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experiments in order to test the reliability, accuracy and the relative merits of

the two approaches. The obtained results have been compared to analytical

ones, wherever possible. Our experiments gave remarkably accurate results,

demonstrating the fact that we can obtain good estimates within reasonable

computational time, for a wide variety of GRF models. We have also examined

the behavior of the methods as the lattice size increases and as the tempera-

ture approaches the critical temperature, and conjectured that Method 2 is

more reliable than Method 1 around and below the critical region of the GRF.

Nevertheless, we prefer to use Method 1 at high temperatures. We believe that

our methods can be effectively used for the optimal parameter estimation of a

general GRF. We would finally like to notice that, the use of computationally

efficient algorithms can boost the performance of our methods, and yield even

more reliable estimates.
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Table I: Temperatures used in the GRE'
realizations depicted in Fig.l.

SReference JTemperatures
name 1To T, T 2  T 3  T'4

GRF1 2.00 1.30 1.00 0.75 0.50
GRF2 2.00 1.70 1.40 1.20 1.00
G R F2 3.00 2.00 1.30 1.00 0.50
GRF4 3.00 2.00 1.30 1.00 0.80
GRF5 '3.00 2.30 12.00 11.30 1.00

Table 11: LTF's of the five GRF's depicted in Fig. 1.

LTF-, GRF1 7GRF2 I__GRF3 IGRF4_jGRF5I

T x lnoY(0,0,0,0) 0.00000 0.00000 0.00000 0.00000 0.00000
T x lno(0,0,0,1) -0.50000 0.00000 0.00000 -0.40000 0.00000
T x In a(0,0,1,0) -0.50000 0.00000 0.00000 0.03000 0.00000
"Tx n cr(0, 0, 1,1) -1.00000 0.00000 0.00000 -0.72000 0.00000

"Tx Ina(0, 1,0,0) 1.00000 0.00000 0.00000 -0.91800 0.00000
" x In a(0,1,0,1) 0.51500 -1.25000 0.59500 -2.04300 5.00000
"Tx In(M, 1, 1,0) 0.50000 0.00000 0.00000 -0.55000 0.00000
"Tx In a(0,1, 1,1) 0.01500 -1.84960 0.59500 -2.85500 5.20000
T x In a(1,0,0,0) -0.26000 0.89540 0.00000 -3.20000 0.20000
T x Inoc(l, 0,0, 1) -2.76000 .0.94740 -1.25000 -0.60000 -1.80000
T x In ((1,0, 1,0) -0.63000 1.22990 0.59500 -4.99000 -4.80000
T x In a(l,0,1,1) -3.13000 -0.68070 -0.65500 -0.24000 -6.70000
T x In a(1,1,0,0) 2.84000 -0.86980 -1.25000 -0.64260 0.70000
T x In a(1, 1,0, 1) 0.35500 0.96180 -1 90500 -0.20560 4.10000
T x In a(l,1, 1,0) 2.47000 -0.66600 -0.65500 -0.97210 -4.200A0
T x lno,(1,1,1,1) 1-0.01500 10.90200 1-1.31000 1-0.11510 10.40000
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Figure 2E Figures 2A-2E: Comparison of the exact

1.2 GRF5, 4 x 4 sites and estimated partition function, negative

1.0 I internal energy and specific heat for the

five GRF models of Table II (K=
08 K,=K2 = 1600).
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Figure 4A Figure 4B
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Figure 5A Figure 5B
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Figure 6A Figure 6B
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Figure 7A Figure 7B
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Figure 8A Figure 8B
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Table III: Interaction parameters (A,B) of the Ising models
of Fig. 9 for different temperatures Ti.

Reference Interactions Crit. temp. Temperatures of Fig. 9
name (A,B) Tc To T1  T2 T 3  T 4

Isng 1 (1.0,1.0) 2.26918 4.00 3.00 2.50 2.27 2.00
Ising 2 (2.0,1.0) 3.28204 5.00 4.00 3.50 3.28 3.00
Ising 3 (3.0,1.0) 4.15617 6.00 5.00 4.50 4.15 3.50

Ising 4 (-1.0,1.0) 2.26918 4.00 2.50 2.00 1.50 1.00

Figure 1OA
ISING 1, 16 x 16 sites, T = 3.0

0.80

0.78
100 10' 102 103 10 106

Iterations

Figure 1OB
ISING 1, 16 x 16 sites, T = 1.5

1.3

1.2 .

1.1
, 8

10 10' 102 1 104  10 6

Iterations

Figures 10A, 1OB: Convergence behavior of the Monte-Carlo algorithm

for the estimation of the partition function of the 16x 16 site Ising 1

model at T=3.0 (Figure 10A, T >T.), or at T = 1.5 (Figure 10B, T <T).

1
162 InZ 1 66,1 - Exact result.

1-.(K) - Method 1 (plotted versus K).
162 I1,16,P(K)

...... 1 2 n.2 11,- (K) - Method 2 (plotted versus K).
162 6I,
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Figure 1 A Figure liB
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Figures IIA-IID: Monte-Carlo estimation of the partition function of the four Ising

models of Table I1, considered on a 32x32 site lattice, by using two different sampling

schemes (K =322 X 104). Comparison with the exact partition function.
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Figure 12A Fgr 2
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Figures 12A-12D: Monte-Carlo estimation of the partition function of the four Ising

models of Table LII considered on a 64 x64 site lattice, by using two different sampling

schemes (K = 64ex 10'). Comparison with the exact partition function.
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Figure 13A Figure 13B
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Figure 13C Figure 13D
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Figures 13A-13D: Monte-Carlo estimation of the partition function of the four Ismg

models of Table III considered on a 128 x 128 site lattice, by using two different sam-

pling schemes (K = 1282 x 104). Comparison with the exact partition function.
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Figure 14A Figure 14B
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ISING 3, 32 x 32 sites ISNG 4, 32 x 32 sites

4.0 2.0
" . 2.0

3.0 1, 1.5

2.0 1.0

1.0 0.5

0.00.
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Temperature Temperature

Figures 14A-14D: Comparison of the exact and Monte-Carlo estimates of the internal

energy and specific heat for the four Ising models of Table III, considered on a 32 x 32

site lattice (K I =K 2 = 10,000x322).
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Figure 15: Areas of strong and weak couplings for the two-p,rameter Ising

model. The regions which correspond to the parameter values

considered in our simulation experiments are shown.

Critical region: Sepgrates areas of weak and

strong couplings;

13 -------------- 03 Ising 1 model;

14 . sing 2 model;

Ising 3 model;

Ising 4 model;

the shaded area corr-sponds to the parameter values

used for the results depicted in Figs. 16 and 17.
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1 nZ 61

Figure 1 6A

21

1 0.9 3.8 1 nZ 161,P(K)
2 In 6,16,P'K16

Figure 16B Figure 16C

Figuires 16A-16C: Comparison of the exact and the Monte-Carlo estimated partition

tunction of a 16x 16 site Ising model with parameters .2<cc<0.8 and 0.2<5<0.8

(K = 16 2 X 104).
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