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Introduction:

Hormone release from pituitary cells appears related to a
modification of the basal electrical activity of the cell.
This electrical activity has been shown to be modulated by
agents that also regulate secreting activity. For instance At
Thyrotropin-releasing hormone (TRH) triggers the release of
prolactin in GH 3 cells and simultaneously leads to an

increase in action potential frequency in these electrically
active cells. The membrane potential associated with the
appearance of released hormone in the extracellular fluid
appears to initially be hyperpolarized (thought to result in

opening of a Ca+ activated potassium channel) followed by a

decrease in the voltage dependent K+ currents. Dubinsky and
Oxford (1) have suggested that upon application of TRH 1:

CA++ is released from intracellular stores which activates

CA++ activated K channels; 2: voltage-dependent K channel
openings are depressed during hyperexcitable phase and that
3: TRH does not directly modulate calcium channel activity.

During the burst of action potentials during the

hyperexcitable phase, extracellular CA++ enters the cells

through voltage gated CA + + channels (perhaps to participate
in prolactin secretion) (2) and accumulates to a point where
electrical activity becomes again silent.

Temperature effects the transition rates of voltage gated
channels (3,4). This project addresses the role of channel
gating on models of the electrical properties of cellular
action potentials and on the accumulation of intracellular

Ca++. The work has followed three directions: that of
developing computing tools to facilitate management and
display of model results; developing a minimal model of the
electrical properties of GH 3 cells and to develop analytic

tools to characterize the use-and frequency-dependent
properties of the accumulation intracellular calcium during

bursts of action potentials.
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Progress Report:

1) Our research group has been involved in developing
software tools to facilitate acquisition, management,
analysis and display of research data. We have taken the
approach that all data files must be self-describing, e.g.
files that control experiments such as stimulus protocols as
well as primary data files must be readily interpretable
without the use of other documents. To accomplish this goal,
we include in self-documenting files a dictionary record (as

the first record of the file) that names the variables stored
in the file. This record is followed by one or more
"comment" records that describe the experiment and the
experimental conditions. Together with the raw data, these
records define a file that can be easily interpreted.

The most rezent work has focused on developing tools for
visualizing primary data, results of simulations and displays
of derived results. Using the X-window system operating on
Sun 4 workstations, we have developed a graphical editor that
allows cutting and pasting segments of a graphic display.
These selected segments can be printed or subjected to
further analyses e.g. curve fitting. In addition we have
developed a tool for scanning a sequence of research data
records (e.g. simulations for a set of different conditions).
These tools have been extremely useful in visually
investigating a small segment of a long simulation. The
software tools have been described in several manuscripts
listed at the end of this report (7,8).

2) GH3 cell model. For a minimal model, we have considered a
3 component model: a voltage activated potassium current, IK,

and voltage and calcium inactivated calcium current, Ica, and
a leakage current, Ii, that are considered electrically in

parallel with the membrane capacitance. In addition, we have
assumed a first order sequestration of internal calcium.
Defining the membrane capacitance as Cm we define the minimal

model as

dv _ 1
=v (Ica + I k  + Il )dt Cm

2



where V is the membrane potential, Ica is the calcium current

described by

Ica = gca d(V) f (V,Cai) (V - Vca)

where d and f are activation and inactivation gating
variables, Vca is the calcium reversal potential and gca is

the maximum calcium conductance. Similarly, for the
potassium current

I k = gkn(V) (V - Vk)

where n(v) is the activation variable, Vk is the reversal

potential and gk is the maximum potassium current. The gating
variables are defined to reflect transitions in channel
protein conformations according to a simple first order model

closed - N open

so that for the potassium channel, n at equilibrium is

n = cL/cL+p and n(t) is the solution to

dn (X (1 - n) -9 n
dt

To incorporate Ca++ inactivation into the inactivation
variable f, we assume a first order process leading to an

equilibrium inactivation of the form f. = [1 + Ca++/kn ]- I

Finally, intracellular calcium distribution is determined by

d ++ ++
--C a Ica - KcaCai
d t

where Ica represents calcium entering the cell through open

channels and is normalized per unit volume. We have solved
these equations with some preliminary estimates of rate
constants and have investigated temperature dependence
assuming a Q1 0 of 3. We have found that this simple model

3



can exhibit 3 types of temperature sensitive behavior (figure
1 and 2) : simple oscillations, bursts of oscillations and
continuous oscillations from a depolarized baseline. These
results suggest the nonlinear terms in the model can produce
behavior similar to that seen in other systems exhibiting
behavior described by the term, chaos. Figure 1 illustrates
results when the absorption rate of Ca i is held constant

while the temperature effect is restricted to channel

conformation rates. Figure 2 illustrates the same sets of
rate constants but also allowing kca to vary with

temperature. The vertical axis is membrane potential (mV)
while the horizontal axis is time (msec) . The detailed
mechanism leading to such dramatic changes in oscillatory
behavior is the focus of current investigations.

3) Our work with analytically characterizing the use-
dependent properties of Cai has followed that of our models
of ion channel blockade (5) . Basically, with each action
potential, intracellular calcium is incremented by a
fraction, proportional to the difference between

intracellular and extracellular calcium. For the nth action
potential when the channel is conducting

d -Ci =Y(Co - Ci) - KaCi
dt

where Ci and Co  are intracellular and extracellular

concentrations and y represents diffusion rate down the
calcium concentration gradient. When the channel is not
conducting, Ci is reduced through intracellular storage at a

rate Ka SO

d-Ci = -KaCi
dt

If the channel open time is exponentially distributed with

mean, to, (5) then

C i  = C(") + [C(o) - C( )] e-(YCo + ka)to
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where C(0) = yCo/(y + ka)

While the channel is not conducting

Ci(t) = C(o)e-kat

During a burst, internal calcium is incrementally increased

so that for the nth pulse

Cn = Css + (Co - Css)e-Lkatr + (y + ka)toln

where tr is the interpulse interval between action potentials

during d burst and to is the mean channel open time and

0 C (.,,) (l1 -e -(y + ka)to

-e[krtr + (Y + ka)to]

Thus, it is possible to estimate the behavior of
intracellular calcium during and between bursts if the
channel open time is exponentially distributed. These
preliminary analyses indicate that temperature influences on
channel gating will modify the oscillatory bursting
properties of the cells.

4) The role of channel gating in drug-complexed channels. We
have explored the role of pharmacologic blockade of ion
channels using data from our own laboratory as well as data
from studies of the interaction of nimodipine with calcium

channels from GH4C3 cells (6) . Measurements of ionic
currents are described by Ohms law as

ICa = gca df (1 - b) (V - VCa)
where d and f are activation and inactivation parameters

determined from the channel gating properties, b is the
fraction of blocked channels and VCa is the calcium reversal

potential. We found that it is not possible to estimate drug
binding properties from measurements of ionic currents if the
drug both blocks the channel and modifies the activation
and/or inactivation process. The reason is that blockade,
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activation and inactivation may share the same voltage
dependence. Unless binding is via a fixed affinity site, it
is not possible tc extract unique and unambiguious voltage
dependent rates. For example, any change in the voltage
dependence of channel gating could be negated by a postulated
voltage dependence of drug binding. We are the first to
demonstrate that it is not possible to uniquely identify

channel gating parameters in the presence of variable
affinity binding. These results, describing both studies of
lidocaine blockade of sodium channels and nimodipine block of
calcium channels were recently published(lO in Contract
Related Publications).
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