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1.       INTRODUCTION 

This workshop on "Optical System Assessment for Design and Simulated 
Annealing" represents the twenty-third of a series of intensive academic / 
government interactions in the field of advanced electro-optics, as part of the 
Army sponsored University Research Initiative. By documenting the associated 
technology status and dialogue it is hoped that this baseline will serve all 
interested parties towards providing a solution to high priority Army 
requirements. Responsible for program and program execution are Dr. 
Nicholas George, University of Rochester (ARO-URI), and Dr. Rudolf Buser, 
CCNVEO. 



2.    SUMMARY  AND   FOLLOW-UP 

The meeting began with a brief presentation by Bob Spande of the Night Vision 
Laboratory who described a variety of optical systems that his group was 
involved in designing. These included a number of many-element systems and 
systems which incorporate diffractive optics and gradient index elements. 
Since the design of such systems presents entirely new challenges, it was felt 
that global optimization may have the most to offer in such contexts on account 
of the paucity of "rules of thumb" to guide the designer in finding appropriate 
starting points for the regular, local optimization algorithms. 

The second and third presentations were given by Greg Forbes and Andrew 
Jones. After illustrating the impracticality of an algorithm that is guaranteed to 
find global the minimum for problems such as the design of non-trivial optical 
systems, Forbes described the ideas behind the simulated annealing algorithm. 
He also presented the concepts introduced in order to automate the 
temperature control and step generation components of such an algorithm in an 
adaptive fashion. Jones described some of the principal difficulties that must be 
addressed in applying this algorithm in the context of lens design. The most 
important of these being the problem of dealing with the issues of constraint 
enforcement and non-linear transformations of the coordinates and merit 
function. This presentation was concluded with a report on applications of this 
adaptive simulated annealing algorithm to a number of optical design problems. 

The workshop ended following a discussion of potential joint projects and 
collaboration. It was decided that it would be of benefit and interest to al! 
concerned if the adaptive simulated algorithm and dedicated hardware at The 
Institute of Optics be applied to a variety of optical design problems supplied by 
NVL for comparison with their proposed systems. 
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Towards Global Optimization 

with 

Adaptive Simulated Annealing 

Greg Forbes and Andrew Jones 

The Institute of Optics 

University of Rochester 



Statement of Problem 

Configuration space : 

Merit function : 
fir). 

Constraints ( region of interest): 

Q(r) < 0  for i = 1,2,..., p, 
E[(r) = 0  for i = 1,2,..., q. 

Task: 

Find the point rMin [ inside the region of 

interest ] where flj) takes its lowest value. 



Lesson One 

There is no algorithm that is guaranteed 

to find the global minimum in a finite time 



Simulated Annealing Algorithm 

m 
T 

x 

Repeat: 

Take random step of mean distance s 

• if downhill *& accept it as new position 

• if uphill «£§= accept with probability e~^T 



Concepts for Annealing 

Probability of accepting a step : 

A(r, rf) = probability of accepting the 
step from r to r' given that T = 1/ß. 

fl, /(r')</(r), 

e-H/(0-/(r)]f   /(r')>/(r). 
A(r,r') = < 

Step distribution : 
S(r, rf) dx' = probability of generating a 

step to within volume element dx' at 
point r' given that the start point is r. 

Occupation density : 

p (r) dx = fraction of cases where 
current point is within volume element 
dx at position r.    [ So,  J p(r)dx = 1. ] 
{ Same set-up observed many times. } 



Modelling Annealing 

Effect of one cycle of algorithm : 

If occupation density is pM (r) after n 
cycles, then 

p[«+l] (r) _ p[«] (r) + arrivais _ departures, 

where 

arrivals = J p[n\r')S(r\r)A(r\r) di\ 

departures = J p[n\r)S(r,r')A{r,rx) dl\ 

Equilibrium density : 

As n —> °o, p[n] (r) tends towards a fixed 
distribution: 

Veqy'iV)        N(ß) c ' 

iV(ß)  =  J £>~^r) <ft, 

provided S(r,r') = S(r\r). 



A simple merit function 

Equilibrium density plots 
i     ■     i 
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0.2 - 
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higher temp 
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lower temp 
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"Optimal" temperature and 
step schedules 

Heuristic principle: 

At every step, keep the occupation density 

as close to equilibrium as possible. 

...need to have measure of distance 

between distributions, so define one: 



Measures of equilibration 

• Rate of change of equilibrium distribution 
with temperature 

s.= lim Kpg,(/-;ßXpg,(r;ß + Aß)} 
Aß^01 Aß 

• Reduction per step in distance to 
equilibrium: Suppose pw(r) = p^(r;ß) 
and temperature is changed to ß+Aß then 
define 

=   lim   v{pln+1\r\ Pa?(/-;ß + Aß)} 

AßSo   2){pw(r), p^(r;ß + Aß)} ' 



Now can do some algebra to find: 

S = \\peq{rMKr)-<f>\dxf 

where 

<f>'=l Peq(
r>$)f(r)dT. 

Also have 

n = 
j peq(r;p)\f(r)-<f>+j[f(r')-f(r)mr,r')A(r,r')dx'\dx 

Jpe<?(r;ß)|/(r)-</>|rfx 

Key Observations: 

• It is possible to evaluate numerically any 

such entity during the annealing process. 

• Can use S and 2(to control algorithm. 



10 

Restate heuristic 

Keep within a distance of £ of equilibrium: 

If ßn is temperature at cycle n, require 

£>{p[wV), Peffaßn)} < E> for all w. 

•   Can now deduce that, at each cycle, ß 
should change by no more than: 

Aß = e(1-^ s 

NB. Have other checks on whether 
cooling too quickly that can be used as 

governors. For example, it is easy to 
derive the following standard result: 

d <   f > r/>2 r       2-1 

dp 
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Skeleton of simple algorithm 

Input: merit function, constraints, and e. 

• Cycle at ß = 0 (ie. infinite temperature) 
to initialize the statistics %> s, <f>, etc. 

• repeat 
repeat 

• generate a random step 
• reflect from linear constraints 

until have feasible system 
• accept or reject current step 
• update statistics 
• increase ß by £(1~!?l) 

until ß is sufficiently high. 

Key points in context of lens design : 

• Efficient evaluation of merit function. 
• Explicitly incorporate constraints. 
• Transformations of variables & merit fn. 
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Lens Design with Adaptive Simulated Annealing 

Andrew Jones 
Institute of Optics 

University of Rochester 



Goal: 
To locate with maximum certainty the global minimum of the 
merit function for a lens system. 

Merit function: 
RMS spot size, integrated over the pupil, field and color: 

<D=[J J J J (£/ + 8y
2) dy dx dX dh] 1/2 

h    X   pupil 

Variables: 
Curvature, 
Thickness, 
Entrance pupil location, 
etc. 

Region of interest (constraints on independent variables): 

• Simple inequality constraints: 
c . < c< c mm max 

t   •    <t<t mm max 

• Feasibility constraints: 
Non-negative edge thicknesses 
-(semi-aperture)-1 < c < (semi-aperture)-1 

• Equality constraints: 
uk' = -l/(2F#) 



Annealing can be applied in a simple fashion: 
• generate curvatures, thicknesses, etc. randomly 
• discard systems which violate constraints 
• evaluate remaining systems 

This leads to problems at high T, when we are trying to 
sample nearly uniformly over the region of interest ~ almost 
all generated systems violate constraints and the annealing 
process becomes very inefficient. 

Improve efficiency: 
• transformation of independent variables 
• reflection of step vectors from constraints 

Example of transformation: 
Instead of using curvatures as variables, use transformed 
variables x: 

c = c . + (x + 1J (c    - c .) / 2       -1 < x < 1 
mm       v /  v   max        mirr 

where c . and c    are the minimum and maximum 
mm max 

feasible values of the curvature. The constraints are now 
"combined" with the independent variables, and the region 
of interest is now an N-dimensional "box." 



Example: F/8 Landscape lens, 15° hfov, 160 mm efl 

z.—1 

o.i 

-o.i 

infeasible./    ^v  infeasible 

feasible 

infeasible 

transform 

-1 

-60 60 -60 

feasible 

60 



Reflection: 
Even after transformation, some infeasible systems may be 
generated: 

• trial point with x>lorx<-l 

trial point 

constraint violation at last surface (dependent variable) 



Instead of discarding the infeasible trial point, we perform a 
reflection about the constraint which is violated: 

™"*-. Infeasible region (q<0) 

Feasible region (q > 0)        \ generated step vector, Av 

trial point, v* 

^CVq(y') 

'CVq(v) CVq(V) 

The function q(w) gives an estimate of the "feasibility" of a 
point w: 

q(w) > 0    if w is feasible 
q(w) < 0    if w is infeasible 
q(w) = 0    if w is on the constraint 

The larger the magnitude of q(w), the "farther" w is from the 
constraint. 



The reflection should be performed so that the equilibrium 
distribution at ß = 0 is uniform. 

Reflection algorithm: 
1. Estimate the point where the step vector crosses the 

constraint, v + XAv 
2. Choose the value of |i such that V + JICVq(V) lies 

on the linear approximation to the constraint 
3. Set the new trial point v^ equal to V + 2jiCVq(V) 

where 
C = covariance matrix of step distribution 
v = base point 
Av = generated step vector 
V = v + Av = trial point (infeasible) 
VI = new trial point 

If the new trial point v^ is also infeasible, it is discarded and 
a new step vector is generated randomly. 



Transformations: 
Monotonie nonlinear transformations of the independent 
variables and the merit function can change greatly the 
behavior of the algorithm. 

Example: 
y(x) = 1.5 x4 - x2 - 0.1 x + 0.3       -1 < x < 1 

Peq(x> 

0.8 

0.6 

0.4 

0.2 

-1.       -0.5 

2; 

1.5 

1. 

0.5 

T = 0.1 

•1.        -0.5 0.5 1. -1.        -0.5 0.5 1. 

Transform: x = 0.8 (x1)3 + 0.2 x' 

MyGO 2'5lPeq(x') 

0.5 1. -1.       -0.5 

T = 0.1 

0.5 1. 

Transform: z(x) = log y(x) 
0 .T  Z(x) 

-1.       -0.5 0.5 1. 

T = 0.7 

-1.       -0.5 0.5 1. 



Adaptive simulated annealing on parallel processors: 
Adaptive simulated annealing depends heavily upon the 
statistics of previously generated trial points in order to 
determine the temperature schedule and step distribution. 
By using parallel processors, we can improve greatly the 
quality of the statistics collected. 

Macintosh IIx 

T800 T800 

T800 T800 

TSOO T800 

T800 T800 

Using eight transputers, we can generate and evaluate for each 
base point groups of eight trial points until an accepted point is 
found. The trial points and merit function values are used in 
formulating statistics. The annealing process is also much more 
efficient. 



Experiences with adaptive simulated annealing 
• algorithm has been developed using "monochromatic 
quartet" problem from ILDC '90: 

• many local minima 
• minima differ significantly 
• most minima are near constraints 
• 15 dimensions 

/ 
1 

F/3, 100 mm efl, hfov 15' 

3 

algorithm seems to work well on polychromatic systems 
if proper glass choices are made a priori 

Possible future modifications: 
• run downhill optimizer from selected starting points 
• develop method for optimizing glass combinations 
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Towards global optimization with adaptive simulated annealing 

G. W. Forbes and Andrew E. W. Jones 

The Institute of Optics 
University of Rochester 
Rochester, NY 14627 

Abstract 

The structure of the simulated annealing algorithm is presented and its rationale is discussed A unifying heuristic is 
then introduced which serves as a guide in the design of all of the sub-components of the algorithm. Simply put, this 
heuristic principle states that, at every cycle in the algorithm, the occupation density should be kept as close as possible to 
the equilibrium distribution. This heuristic has been used as a guide to develop novel step generation and temperature 
control methods intended to improve the efficiency of the simulated annealing algorithm. The resulting algorithm has been 
used in attempts to locate good solutions for one of the lens design problems associated with this conference, viz. the 

"monochromatic quartet", and a sample of the results is presented. 

1 Global optimization in the context of lens design 

Whatever the context, optimization algorithms relate to problems that take the following form: Given some 
configuration space with coordinates r = (x: tx2>...,xH) and a merit function written as/(r), find the point r^ whereßr) 
takes it lowest value. That is, find the global minimum. In many cases, there is also a set of auxiliary constraints that 
must be met so the problem statement becomes: Find the global minimum of the merit function within the region defined 
by Ej (r) = 0, / = 1,2,..., p and /y(r) > 0, j - 1,2,..., q. This region is referred to in what follows as the region of 
interest. In the context of lens design, the coordinates are just the system parameters in one form or another (e.g. 
refractive indices, thicknesses, curvatures or radii, etc.), the inequality constraints may take the form of the requirement for 
positive edge thicknesses or specifying maximum glass thicknesses on axis, and an example of an equality constraint is the 
requirement of a specific focal length. 

It is evident that such a problem is easy to state, however, its solution is another matter — in fact, this problem of 
global optimization is generally intractable. This is readily appreciated by considering even the simplest case illustrated 
schematically in Fig. 1 where a smooth one dimensional merit function is represented. Even if the region of interest is 
finite (i.e. there are inequality constraints of the form: x - x0 > 0, and Xj - x > 0 ), it is clear that by making the steep dip 
in the function narrower, it is possible to make the problem of locating the global minimum arbitrarily difficult. 

In practice, as a consequence of certain bounds associated with realistic problems, the task of locating the global 
minimum is feasible, in principle. In most cases, however, the effort required to find the minimum is truly formidable. 
For example, imagine that the problem illustrated in Fig. 1 represents a lens design problem where the variable is, say, a 
thickness limited to the interval 0 to 100mm. It is clear that it is possible to sample the merit function on a regular grid 
where the sample spacing is taken to be comparable to the manufacturing tolerance on such a thickness, presumably 
somewhere between lO'^mm and 10"3mm. In this way, with something like a thousand samples ( and certainly no more 
than one hundred thousand), it is possible to guarantee that all minima of any practical significance will be found. 



Assuming that the cost of each evaluation of the merit function is typical of lens design problems, this computation is 
hardly a challenge at all—even for a personal computer. Consequently, the global minimum can be guaranteed in such a 
case. However this problem is not representative of real design problems; the key issue is the dimensionality. 

fix) 

Fig, 1  A simple one dimensional merit function. 

Consider the case of the "monochromatic quartet" ( one of the lens design problems associated with this conference). 
This system has four elements which means that there are eight surfaces ( each of which has an associated curvature and 
thickness) and\ since the refractive indices are fixed, there is a total of sixteen system parameters. In fact one degree of 
freedom is lost since the focal length is required to take a specified value so the problem is seen to be fifteen-dimensional. 
This, of course, is relatively modest since the refractive indices are fixed, all surfaces are required to be spheres, and there are 
only four elements. It is clear that many problems in lens design are of a significantly higher dimensionality. Now 
consider the prospect of sampling on a regular grid in this fifteen-dimensional space. Suppose that, just to get started, a 
grid is laid out with only ten samples in each dimension. (It was suggested above that possibly a thousand points or so 
would be more typical for a reasonable guarantee.) In fifteen dimensions, mis coarse grid requires sampling at 1015 points 
in the configuration space. Supposing that the merit function can be evaluated by tracing just a few rays, there are of the 
order of 1016 -1017 ray-surfaces to be traced here. Currently, supercomputers can trace no more than about 106 ray 
surfaces per second so this job would require at least 1011 seconds. This is about ten thousand years — and we've hardly 
scratched the surface with such coarse sampling. Increasing the sampling to just thirty points in each dimension pushes the 
supercomputer computation time for this modest lens design problem up by another seven orders of magnitude to far 
beyond the age of the universe! This is a formidable global optimization task and there can be no guarantees. 

Of course, the lack of a guarantee need not proscribe a search. It is clear, however, that some drastic simplification of 
the problem is necessary. The most common approach is to reduce the demands placed on the algorithm and design it to 
seek any local minimum. Most optimization algorithms used in lens design simply seek a local minimum in the 
neighborhood of some specified starting point by proceeding downhill until some flat terrain is found. This is a relatively 
straightforward process and there is a variety of algorithms designed for this purpose. In essence, the tough component of 
the design problem now becomes finding a good starting point for such a blinkered algorithm to polish up. With the 
prospect of individuals having workstations on their desk (more than likely sitting idle each night), a more ambitious, 
automated search of the configuration space is becoming a realistic option. In many practical problems, it seems 
reasonable to expect to find some good local minima. 



This particular option is what we have in mind when we speak of a move towards global optimization. The goal of our 
research in this area is the specification of an algorithm that, speaking loosely, has the maximum chance of finding the best 
minima for any given amount of computational effort. It is expected that the chance of success increases with increasing 
effort, so when such an algorithm is invoked the user must provide an indication (even if only a relative one) as to how 
much effort is to be expended in the current search. The algorithm would explore the region of interest in the configuration 
space in search of good minima and, given sufficient computational effort, would undoubtedly succeed in discovering 
minima that are comparable to (if not better than) those uncovered using the conventional methods. ( Notice that such an 
algorithm should not require a user-specified starting point—just the specification of a region to explore.) The question 
that immediately comes to mind is: How much computational effort is required in the case of modest lens design 
problems? In 1990 terms, the answer is expected to lie somewhere between a PC-day and a Cray-month. 

A related, but more easily answered question is: How much success can be had in the context of lens design with a 
reasonable expenditure of computational effort? By "reasonable", it is meant that the algorithm should terminate within a 
realistic period of time, say a couple of hours or even a couple of days, when running on a medium sized computer, say one 
whose cost is of the order of a typical annual salary of an engineer. At present, the price may be around $10K - $100K 
which includes machines capable MFLOPS and multiprocessing. It is clear that what is "reasonable" by this definition is 
sure to be significantly different in just five years. Consequently, the answer to this question is forever changing and we 
must make do with a rough cut at the answer for 1990. To this end, in Section 4, we present the results for the design of a 
monochromatic quartet derived by one particular global optimization algorithm. 

2 Introduction to simulated annealing 

The development of global search algorithms has proceeded, in some cases, by making analogies with models varying 
from biological evolution with pairwise reproduction in populations subject to random mutation, through to 
thermodynamics and die configuration of an alloy during cooling. On account of its simplicity and elegance, we have 
chosen the general approach of the so-called simulated annealing algorithm1 as the underlying philosophy upon which to 
base our investigation. 

The simulated annealing algorithm is essentially a prescription for a partially random walk in the configuration space. 
At each cycle of the algorithm, a random step is generated and, upon evaluation of the merit function at the associated trial 
point, a decision is made as to whether to accept that step or not A more specific description of the algorithm involves 
two entities. The first parameter, referred to as the temperature and written here as T, is used in determining whether a 
proposed step is to be accepted. In particular, if the merit function is reduced as a result of taking the step, the step is 
always accepted. On the other hand, if the merit function is increased by an amount Af, the step is accepted with a 
probability equal to e~^/T. (One way to realize the process of accepting a step with probability p is to generate a random 
number, say u> uniformly distributed between zero and one and then accept the step if u<p.) That is, T simply sets a 
scale on the size of the allowed increases in the merit function value for any single step. The probability of accepting a 
step from the point with coordinates r to the point /, say A(rt /■*), is now seen to be given by 

[X /<O</(0. 
*"i^», /(o>/(o, (21) 

where ß is defined by ß := 1 / T. The second entity is a probability density that characterizes the distribution of the 
random steps generated at each cycle of the algorithm: given that the current point in the walk about the configuration 
space has coordinates r, the probability that a generated step lands within a volume element ax' = dx\ dx'2 ...<£*'„  at some 



point r* is written as S(r, f) dx'. Notice that, on account of this definition, it follows that \S(r, r')df = 1 for all r. 
In these terms, the heart of the simulated annealing algorithm takes the form of repeatedly carrying out the following two 

operations: 

• Generate a random step from the current point r with distribution S(r, /). 

• If f(r') <f(r)    then   Accept the step (i.e. r is replaced by the value of r"), 

else   Accept the step with probability ^-MAO-ZWl^ 

Cycling through these two operations essentially generates a tour about the configuration space and, to understand the 

rationale behind this algorithm, it is important to characterize the manner in which such a tour occupies the space. 

To this end, consider defining an occupation density as follows: First imagine a set-up consisting of a host of 
computers all carrying out this guided tour—each one starting in the same way ( either from a specific point in the space 
or from a point in the region of interest chosen at random in the same way on each machine) but with the different 
computers starting their random number generators with independent seeds. Suppose that all the computers execute m 
cycles of the algorithm given above and now define the occupation density ptw](r) in the configuration space to 
characterize the distribution of the final positions arrived at by each of the computers. That is, p^m\r) dx is just the 
fraction of the points within the volume dx at point r and it follows that J pw(r) dx = 1, for all m. According to this 
definition, p^\r) characterizes the distribution of the start points, p[1](r) characterizes the distribution of the points after 
one cycle, etc. 

It is now straightforward to derive an explicit expression for pt*,+1](r) in terms of p^m\r): 

p[«+i] (r) _ p[«] (r) + arrivals _ departures, (2.2a) 

where 
arrivals = J p[m](r') S(r\ r) A(r\ r) dx\ 

departures = J pM (r) 5(r, r") A(r, r') dx\ (2.2b) 

With this expression, it is possible to investigate the evolution of the occupation density and explore the effect of different 
step distributions, etc. For any fixed step distribution and temperature, the most important and striking result is that, as m 
becomes large, this occupation density tends to a fixed distribution. This fixed distribution, called the equilibrium 
distribution and written here as p^(>"), can be determined by simply taking p^w+1l(r) = pM(r) = p (r) in Eq.(2.2). 
Provided the step distribution is chosen to be symmetric [ i.e. 5(r, r') = S(r', r) ] and T is non-zero, the resulting equation 
is readily seen to be satisfied by an equilibrium distribution of the form 

p«,w> = -me~mr)> <2-3> 
where the temperature dependence is now made explicit for the equilibrium density and #(ß) is simply a normalization 
factor given by 

rmr) dx. (2.4) AT(ß) == J 

(As may be expected, there are, in fact, other weak conditions on the form of the merit function and step distribution to 
attain this equilibrium form — e.g. that they be not too pathological — but they are of little significance here.) 

Notice that the equilibrium distribution is not only independent of the step distribution but it is also independent of the 
initial occupation density. It is now clear that, as may be expected for such a partially random walk, the choice of start 

point is of no consequence. Also notice that if ß is set equal to zero (i.e. the temperature is infinite so all steps are 



accepted) the equilibrium density corresponds to uniform occupation of the configuration space. However, when ß is non- 
zero the equilibrium density is larger where the merit function is lower and it is easy to see that, as ß becomes large, the 
equilibrium density corresponds to having all points clustered around the global minimum. The rationale behind simulated 
annealing now becomes clear start at high temperature (where the equilibrium distribution is essentially uniform ) and 
cycle while gradually reducing the temperature. If the temperature is reduced to zero infinitely slowly, the occupation 
density is always identical to the associated equilibrium density and we are guaranteed to end up at the global minimum. In 
practice, of course, the temperature must be reduced faster than this and, as a result, the global minimum can not be 

guaranteed 

It is now clear that there are two crucial aspects in any implementation of the simulated annealing algorithm. The first 
is to determine how to control the temperature—there are surely stages when it would be advantageous to reduce the 
temperature relatively slowly. Similarly, the optimal step distribution must be determined and it can be expected mat this 
will change with temperature. In earlier work, the temperature control (both the initial value and the reduction schedule) 
and the step generation components of the algorithm have often been simplistic and governed by a multiplicity of unrelated 
ad hoc prescriptions. For example, the temperature may be reduced by a specific fraction every N steps, where N is 
predetermined, and the steps chosen to uniformly fill a rectangular parallelepiped aligned to the coordinate axes and scaled 
such that roughly 50% of the trial steps are accepted.2 Others have proposed coupling the parameter that is referred to here 
as temperature directly to the merit function value.3 This radical proposal may prove to be effective, but it breaks the 
principal link in the analogy with the physical annealing process (i.e. the equilibrium distribution discussed above has no 
relevance to this, so-called, generalized simulated annealing algorithm ). We have taken a different path and adopted a 
unifying, simple heuristic principle that serves as a guide in the design of every aspect of the algorithm and allows for 
harmony in a completely adaptive algorithm. The resulting algorithm, which we refer to as adaptive simulated annealing, 
is also designed such that its performance is unchanged by linear transformations of the coordinates. 

3 Adaptive simulated annealing 

It is intuitive that there are temperature schedules and step generation procedures that are in some sense optimal for 
annealing. For example, it is now apparent that the parameter referred to as temperature determines the region of spread of 
the occupation density in the configuration space which, in turn, can be expected to set the scale for the step distribution. 
At any particular temperature, it is evident that if the generated steps are too small, the occupation density will be slow to 
change and therefore equilibration will also be slowed. Conversely, if the generated steps are too big, the vast majority will 
be rejected so that, once again, equilibration will be slowed. Similarly, there will be times when it will be expedient to 
reduce the temperature more rapidly. The key issue here is: Just how is the worth of a proposed prescription for step 
generation or temperature control measured? Ideally, of course, the probability of winding up at the global minimum 
should be maximized (i.e. the higher this probability, the better the prescription). However, we have found criteria like 
this to be unworkable so we have tried a simpler alternative. 

As a means to define a measure of the effectiveness of any proposed annealing algorithm, we have introduced the 
following heuristic principle: At every stage of the annealing process, the occupation density should be kept as 
close as possible to the equilibrium density. That is, the smaller the maximum distance from equilibrium, the better. On 
a moment's reflection, it can be appreciated that the traditional "staircase" temperature schedule and the associated concept of 
cycling at each fixed temperature value "until equilibrium is attained" must be rejected here. In order to apply this heuristic, 
however, it is necessary to introduce a measure of the distance between two distributions. There are a number of reasonable 
ways to do this and we have adopted a measure of distance such that the distance between two occupation densities, say 



pa (r) and ph (r), is given by 

2>{p.('). P*<»0) = TJ |pe(r)-p*(r)|rfl. (3.1) 

With this definition, since all densities are everywhere positive and integrate to one by definition, it follows that distance is 
always between zero (complete coincidence ) and one (nothing in common ). If pb(r) is taken to be the desired 
equilibrium density, this distance can be loosely interpreted as a measure of the fraction of the cases for which the walk 
characterized by pa(r) is "out of place". 

Consider a system where the temperature is changed by a small amount ("small" is given a more definite meaning in a 
moment) at every step. If at the m'th cycle the reciprocal temperature is ßm, the heuristic can now be stated more 
specifically as: 

*{ Plm\r), p«,(r; ßw)} < E,   for all m, (3.2) 

where e is some fixed parameter to be specified as input to the algorithm. It can be expected that smaller values of e will 
require more computation for any given annealing problem. That is, e is a relative measure of how exhaustively the 
algorithm will explore the configuration space. 

With these definitions and the idea of small temperature changes at each step, it seems natural to introduce a measure of 
the rate of change of the equilibrium distribution with change in temperature, i.e. a "sensitivity", as follows: 

s .__  ^ r*>K(r;P).P(r;P+Aß)}l 
Aß-»o| Aß I 

It can be anticipated that it will be appropriate to cool more slowly when the value of this sensitivity parameter s becomes 
larger. To quantify such an expectation, it is necessary to also have some measure of how much each cycle reduces the 
distance to equilibrium. Accordingly, define a reduction factor ^,by 

* :=  11*   t[M1(r),P^r;ß+Aßl)}> M *-*   2>{p[n]e0, p^(r;ß + Aß)} 

where it is to be assumed that p[m](r) is equal to ptq (r;ß) and the reciprocal temperature for the current step is equal to 
ß+Aß. In fact, p1™1 (r) will not be equal to peq (r; ß) in practice, however, it seems reasonable to expect that 
pM(r) _ p^(r; ß + Aß) jg r0Ughiy equal to y{ peq(rt ß) - peq(r; ß + Aß) }, for some constant y (presumably greater 

than one). With this more realistic form for p[m](r), i.e. pw(r) - Y P«, (r> ß) + (1-Y) P«9(
r'. ß + Aß)» «is readily 

shown that, as a consequence of homogeneity, the resulting value of the reduction factor is identical to the simpler form 
defined above, for any non-zero value of y. 

If each cycle of the annealing process is successfully drawing the occupation density toward the equilibrium density, the 
reduction factor defined above must take values between zero (instant equilibration ) and one (infinite time to equilibrate), 
It is now proposed that the step distribution should be chosen to minimize the value of ^,at each stage of the process. That 
is, equilibration should be as rapid as possible — in keeping with the heuristic and the desire to reduce the temperature as 
quickly as possible. This means that there is now a well defined criterion for assessing step generation algorithms. 
Furthermore, the reduction factor, the sensitivity, and the statement of the heuristic given in Eq.(3.2) can be used together 
to deduce that, at each cycle, the reciprocal temperature should be increased by no more than 

Aß = Ül^>. (3.5) 



This follows simply from the fact that the equilibrium distribution moves a distance JAß when the reciprocal temperature 
is changed by Aß and that, assuming the distance to equilibrium was about e, one cycle of the algorithm will reduce this 
distance by a factor of & The skeleton of an adaptive algorithm is now apparent start with ß set equal to zero, generate 
steps chosen to minimize #.and, at each cycle, change the temperature by the value specified in Eq.(3.5). There is only one 
missing piece at this stage: a means to estimate ^and S "on the fly". 

It is a simple exercise to expand the form defining Sin Eq.(3.3) as a Taylor series in Aß, use the definition of distance 
given in Eq.(3.1), and the form of the equilibrium distribution specified in Eq.(2.3) in order to find the following exact 

result: 
■* = ij Peq(nt)\m-<f>\dz, (3.6) 

where </> is defined by 
</>:= Jp^(r,ß)/(r)A. (3.7) 

Similarly, Eq.(3.4) can be reduced to 

f P-,(nP) f(r)-<f> + f[/(r,)-/(r)]5(r,r')A(r,r'Mx' 
* =  Jp«,C;ß)|/(r)-</>|dx 

dz 
—. ■ (3.8) 

The key observation here is that each of these three expressions can be estimated during the annealing process although this 
requires some explanation. 

Notice that all but one of the integrals appearing in these equations take the form of an integral over the configuration 
space of a function of the value of the merit function multiplied by the equilibrium density. Integrals like this can be 
readily estimated if the walk is ergodic: So far, the occupation and equilibrium densities have been defined by reference to a 
host of independent runs of the algorithm. Now consider a single computer executing one such walk about the 
configuration space at fixed temperature. The walk is said to be ergodic if the occupation density defined in terms of the 
recorded history of the current point for this one system tends to the same equilibrium density defined above. It is expected 
that [ under weak conditions on the merit function and step distribution like those brushed aside following Eq.(2.4) ] this 
will be so here — all that has happened is that the observations from many separate runs have been replaced by many 
observations from the one run and remember that the random aspect scrambles any information about the past for each such 
walk. That is, where the walk will end up after N more steps is essentially independent of the current point provided JV is 

large enough. This being so, an integral tike the one appearing in the definition of < / > is readily evaluated by simply 
averaging over the current value of the merit function at each cycle of the walk. Since the temperature is gradually 
changing, it is necessary to average only over a set of the most recent values. This can be done conveniently by using 
exponentially decaying weights in the averaging process. A similar approach can be taken to the estimation of &and 5 
which, as indicated above, form the basis of the adaptive control in our simulated annealing algorithm. 

A significant simplification in the step generation process follows if the covariance matrix of the generated steps is 
required to be proportional to the covariance of either the accepted steps or the equilibrium distribution. This virtually 
ensures that the algorithm is invariant under linear changes in the coordinate system. There is a number of ways to achieve 
this and we have chosen to use an n-dimensional Gaussian distribution whose covariance is coupled to the accepted steps. 
This is realized by relying on the central limit theorem and simply forming new steps by making random linear 
combinations of previously accepted steps which leaves only the overall scale factor free. This scale factor is controlled in 
a fashion derived from the requirement that ^be minimized. The remaining details of the adaptive simulated annealing 
algorithm are to be presented elsewhere. In closing, it is mentioned that, in terms of the statistics gathering [ especially for 



the innermost integral in Eq.(3.8) ] and reducing the overall run time, there are significant advantages if the algorithm is 
implemented in a multiprocessing environment so that, from each current point, multiple random steps can be investigated 

at the one time. 

4 Preliminary results for the "monochromatic quartet" 

In the implementation of any global optimization process for lens design, there are several important issues that must 
be dealt with at the outset. First, since many thousands — perhaps millions — of optical systems will be assessed in the 
process, it is vital that the evaluation of the merit function be done as efficiently as possible. For a problem like the 
monochromatic quartet, using Gaussian quadrature4 is surely the most effective approach. Second, for random walks in the 
configuration space like the type proposed here, it is crucial to explicitly enforce as many of the constraints as possible. 
For example, choosing a set of curvatures and thicknesses at random is virtually guaranteed to give an impractical system 
where edge thicknesses may be negative or there may be such a high degree of vignetting that essentially no light gets 
through. Accordingly, we have chosen variables which guarantee that almost all of the generated systems are feasible. For 
instance, to avoid vignetting problems, the surface curvatures may be defined with respect to the (first order) unvignetted 
aperture radius, say A, in the associated plane, etc. In the interest of efficiency and fair sampling, it is also crucial to devise 
a (linear coordinate transformation independent) procedure for reflecting wayward steps off violated constraints to force new 
trial points to lie always within the region of interest. For instance, if a generated step causes an element to have negative 
thickness on axis, it is appropriate to add a component proportional to the gradient of the constraint ( with respect to the 
natural metric associated with the accepted steps) in order to reflect this step back into the region of interest. 

Another important point to realize is that non-linear transformations of the variables (e.g. using surface radii in place of 
the curvatures ) fundamentally changes the optimization problem — a totally random walk in the configuration space will 
have an entirely different occupation density for different sets of coordinates. Furthermore, using geographic terminology, 
the merit function terrain may be smooth and rolling with wide valleys surrounding the lowest minima in one set of 
coordinates, while this same problem may have steep curved gulleys with the lowest minima hidden as "sink holes up in 
the hills" when viewed using another set of coordinates. Clearly, a global optimizer would have a significantly better 
chance of finding the global minimum with the former coordinate set Furthermore, since the global minimum off(r) is 
also the global minimum of any function of the form M\f{r)] provided M is a monotonic, increasing function, there is 
another set of transformations of a particular problem that must be considered It is crucial to realize that the equilibrium 
densities for the annealing algorithm are fundamentally different when a non-linear transformation of this type is applied to 
the merit function. For example, is it better to optimize using a mean square criterion, a root mean square criterion or 
some other transformation of the merit function? 

We have not had the opportunity to explore coordinate transformations or merit function transformations in any 
systematic way since we are still in the process of fine-tuning the free parameters that remain in the adaptive simulated 
annealing algorithm. Furthermore, we have not explored the option of incorporating a regular downhill optimizer which 
may be invoked to start at any promising intermediate configurations. Ideally all these considerations should be combined 
into the one investigation since, no doubt, there are interdependencies here. Having done all this, it would then perhaps be 
clear whether it is best to have a small number of extensive runs (with the value of e taken to be as small as possible 
while remaining within the constraints imposed by a limited computational budget) or many quicker, independent runs. 

We have implemented adaptive simulated annealing on an accelerated Macintosh II. The computer is capable of 
multiprocessing since it incorporates eight "transputer" processors (made by Inrnos) giving us a throughput comparable to 
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Fig. 2   The best one, two, and three element configurations found by annealing are presented with the 
associated spot sizes (measured as in the statement of the monochromatic quartet problem). 
The entrance pupils and stops are shown as short dashes here and in Fig. 3. 
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Fig. 3   A sample of some of the better monochromatic quartets arrived at by adaptive simulated annealing. 



the newly released RISC workstations that are available from a variety of computer firms. The option of parallel 
processing suits this application well. In order to interpret the results of the algorithm in the case of the monochromatic 
quartet, we began with the same problem except the number of elements was first reduced to one and then increased to two 
and three. That is, the focal length, f-number, field angle, merit function, etc were all unchanged. We executed a number 
of runs on each of these simpler problems and fairly consistently came up with the three best systems shown in Fig. 2. 
These results were quite encouraging and provided us with a scale for the results in the four element case: a quartet with a 
spot size in excess of 15[jm can be regarded as a poor solution. But what is the mark of a good solution? A sample of the 
results we found for the monochromatic quartet are presented in Fig. 3. These were evaluated in overnight runs where the 
cooling parameter e was set so that each night would allow up to about six separate attempts at the problem — a new run 
starting when the preceding run had reduced the temperature to a level that the associated changes in the merit function were 
no longer significant There was a wide variety of solutions with many interesting forms giving spot sizes in excess of 
15um. It turns out that the better solutions presented here are within a factor of two of the best solutions reported at the 
conference and this is an encouraging result considering the fact that there is much left for us to investigate in this context 

5 Concluding remarks 

There are many aspects of the annealing process which we are yet to explore fully in the context of lens design. Most 
important among these is the investigation of the significance of specific transformations of the lens design merit functions 
and coordinates (which include alternative schemes for enforcing such things as focal length constraints ). In a broader 
context, we are yet to consider the incorporation of downhill optimizers. Even so, the early results are very encouraging. 
The three element system found reliably by adaptive simulated annealing was confirmed in a personal communication from 
David Shafer (the creator of the monochromatic quartet problem ) to coincide with the best solution known to him. A 
couple of the monochromatic quartet solutions are within about a factor of two (of the 2fim spot size ) of the best systems 
reported at this meeting. The variety of different systems with spot sizes around 10-20|im that was found by annealing 
suggests that lens design problems are sure to offer an attractive challenge to any advocates of particular global 
optimization algorithms. There is a wide variety of algorithms that have been proposed for global optimization and there 
are many aspects to be addressed in their successful implementation in any given context We would be delighted if, as in 
years gone by, the field of lens design becomes the arena for the development of state-of-the-art optimization algorithms. 
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